<?xml version='1.0' encoding='utf-8'?><?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?> <?rfc toc="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc comments="yes"?><rfcipr="trust200902" docName="draft-ietf-cose-hash-algs-09" category="info"xmlns:xi="http://www.w3.org/2001/XInclude" version="3"submissionType="IETF">category="info" consensus="true" docName="draft-ietf-cose-hash-algs-09" indexInclude="true" ipr="trust200902" number="9054" prepTime="2022-08-24T14:59:32" scripts="Common,Latin" sortRefs="true" submissionType="IETF" symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en"> <link href="https://datatracker.ietf.org/doc/draft-ietf-cose-hash-algs-09" rel="prev"/> <link href="https://dx.doi.org/10.17487/rfc9054" rel="alternate"/> <link href="urn:issn:2070-1721" rel="alternate"/> <front> <title abbrev="COSE Hashes">CBOR Object Signing and Encryption (COSE): Hash Algorithms</title> <seriesInfo name="RFC" value="9054" stream="IETF"/> <author initials="J." surname="Schaad" fullname="Jim Schaad"><organization>August<organization showOnFrontPage="true">August Cellars</organization><address> <email>ietf@augustcellars.com</email> </address><address/> </author><date/><date month="08" year="2022"/> <area>Security</area><abstract> <t><workgroup>COSE Working Group</workgroup> <keyword>SHA-1 Hash Algorithm</keyword> <keyword>SHA-2 HAsh Algorithm</keyword> <keyword>SHAKE Algorithm</keyword> <abstract pn="section-abstract"> <t indent="0" pn="section-abstract-1"> The CBOR Object Signing and Encryption (COSE) syntax<xref target="I-D.ietf-cose-rfc8152bis-struct"/>(see RFC 9052) does not define any direct methods for using hash algorithms. There are, however, circumstances where hash algorithms are used, such as indirectsignaturessignatures, where the hash of one or more contents are signed, and identification of an X.509 certificate or other objectidentificationby the use of a fingerprint. This document definesa set ofhash algorithms that are identified by COSEAlgorithm Identifiers.algorithm identifiers. </t> </abstract><note removeInRFC="true"> <name>Contributing<boilerplate> <section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1"> <name slugifiedName="name-status-of-this-memo">Status of This Memo</name> <t indent="0" pn="section-boilerplate.1-1"> This document is not an Internet Standards Track specification; it is published for informational purposes. </t> <t indent="0" pn="section-boilerplate.1-2"> This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841. </t> <t indent="0" pn="section-boilerplate.1-3"> Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at <eref target="https://www.rfc-editor.org/info/rfc9054" brackets="none"/>. </t> </section> <section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2"> <name slugifiedName="name-copyright-notice">Copyright Notice</name> <t indent="0" pn="section-boilerplate.2-1"> Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved. </t> <t indent="0" pn="section-boilerplate.2-2"> This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of publication of thisdocument</name> <!-- RFC EDITOR -document. Pleaseremovereview these documents carefully, as they describe your rights and restrictions with respect to thisnote before publishing --> <t> The source fordocument. Code Components extracted from thisdraft is being maintaineddocument must include Revised BSD License text as described inGitHub. Suggested changes should be submittedSection 4.e of the Trust Legal Provisions and are provided without warranty aspull requests at <eref target="https://github.com/cose-wg/X509"/> Editorial changes can be manageddescribed inGitHub, but any substantial issues need to be discussed ontheCOSE mailing list.Revised BSD License. </t></note></section> </boilerplate> <toc> <section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1"> <name slugifiedName="name-table-of-contents">Table of Contents</name> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1"> <li pn="section-toc.1-1.1"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.1.2"> <li pn="section-toc.1-1.1.2.1"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.2.1.1"><xref derivedContent="1.1" format="counter" sectionFormat="of" target="section-1.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-requirements-terminology">Requirements Terminology</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.2"> <t indent="0" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-hash-algorithm-usage">Hash Algorithm Usage</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.2.2"> <li pn="section-toc.1-1.2.2.1"> <t indent="0" keepWithNext="true" pn="section-toc.1-1.2.2.1.1"><xref derivedContent="2.1" format="counter" sectionFormat="of" target="section-2.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-example-cbor-hash-structure"> Example CBOR Hash Structure </xref></t> </li> </ul> </li> <li pn="section-toc.1-1.3"> <t indent="0" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-hash-algorithm-identifiers">Hash Algorithm Identifiers</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2"> <li pn="section-toc.1-1.3.2.1"> <t indent="0" pn="section-toc.1-1.3.2.1.1"><xref derivedContent="3.1" format="counter" sectionFormat="of" target="section-3.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sha-1-hash-algorithm">SHA-1 Hash Algorithm</xref></t> </li> <li pn="section-toc.1-1.3.2.2"> <t indent="0" pn="section-toc.1-1.3.2.2.1"><xref derivedContent="3.2" format="counter" sectionFormat="of" target="section-3.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sha-2-hash-algorithms">SHA-2 Hash Algorithms</xref></t> </li> <li pn="section-toc.1-1.3.2.3"> <t indent="0" pn="section-toc.1-1.3.2.3.1"><xref derivedContent="3.3" format="counter" sectionFormat="of" target="section-3.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-shake-algorithms">SHAKE Algorithms</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.4"> <t indent="0" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2"> <li pn="section-toc.1-1.4.2.1"> <t indent="0" pn="section-toc.1-1.4.2.1.1"><xref derivedContent="4.1" format="counter" sectionFormat="of" target="section-4.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-cose-algorithm-registry">COSE Algorithm Registry</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.5"> <t indent="0" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t> </li> <li pn="section-toc.1-1.6"> <t indent="0" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-references">References</xref></t> <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2"> <li pn="section-toc.1-1.6.2.1"> <t indent="0" pn="section-toc.1-1.6.2.1.1"><xref derivedContent="6.1" format="counter" sectionFormat="of" target="section-6.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-normative-references">Normative References</xref></t> </li> <li pn="section-toc.1-1.6.2.2"> <t indent="0" pn="section-toc.1-1.6.2.2.1"><xref derivedContent="6.2" format="counter" sectionFormat="of" target="section-6.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t> </li> </ul> </li> <li pn="section-toc.1-1.7"> <t indent="0" pn="section-toc.1-1.7.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.a"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-address">Author's Address</xref></t> </li> </ul> </section> </toc> </front> <middle> <sectionanchor="introduction"> <name>Introduction</name> <t>anchor="introduction" numbered="true" removeInRFC="false" toc="include" pn="section-1"> <name slugifiedName="name-introduction">Introduction</name> <t indent="0" pn="section-1-1"> The CBOR Object Signing and Encryption (COSE) syntax <xref target="RFC9052" format="default" sectionFormat="of" derivedContent="RFC9052"/> does not define any direct methods for the use of hash algorithms. It also does not define a structure syntax that is used to encode a digested object structure along the lines of the DigestedData ASN.1 structure in <xreftarget="RFC5652"/>.target="RFC5652" format="default" sectionFormat="of" derivedContent="CMS"/>. This omission was intentional, as a structure consisting of just a digest identifier, the content, and a digest value does not, by itself, provide any strong security service. Additionally, an application is going to be better off defining this type of structure so that it can include any additional data that needs to be hashed, as well as methods of obtaining the data. </t><t><t indent="0" pn="section-1-2"> While the above is true, there are some cases where having some standard hash algorithms defined for COSE with a common identifier makes a great deal of sense. Two of the cases where these are going to be used are: </t><ul> <li><ul bare="false" empty="false" indent="3" spacing="normal" pn="section-1-3"> <li pn="section-1-3.1"> Indirect signing of content, and </li><li><li pn="section-1-3.2"> Object identification. </li> </ul><t><t indent="0" pn="section-1-4"> Indirect signing of content is a paradigm where the content is not directly signed, but instead a hash of the content iscomputedcomputed, and that hashvalue,value -- along with an identifier for the hashalgorithm,algorithm -- is included in the content that will be signed.Doing indirectIndirect signing allows for a signature to be validated without first downloading all of the content associated with the signature.RatherRather, the signature can be validated on all of the hash values and pointers to the associatedcontents, thencontents; those associated parts can then be downloaded, then the hash value of that partcomputed,can be computed andthencompared to the hash value in the signed content. This capability can be of even greater importance in a constrainedenvironmentenvironment, as not all of the content signed may be needed by the device. An example of how this is used can be found in <xreftarget="I-D.ietf-suit-manifest"/>.target="I-D.ietf-suit-manifest" sectionFormat="of" section="5.4" format="default" derivedLink="https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-19#section-5.4" derivedContent="SUIT-MANIFEST"/>. </t><t><t indent="0" pn="section-1-5"> The use of hashes to identify objects is something that has been very common. One of the primary things that has been identified by a hash function in a secure message is a certificate. Two examples of this can be found in <xreftarget="RFC2634"/>target="RFC2634" format="default" sectionFormat="of" derivedContent="ESS"/> and the COSE equivalents in <xreftarget="I-D.ietf-cose-x509"/>.target="I-D.ietf-cose-x509" format="default" sectionFormat="of" derivedContent="COSE-x509"/>. </t> <sectionanchor="requirements-terminology"> <name>Requirementsanchor="requirements-terminology" numbered="true" removeInRFC="false" toc="include" pn="section-1.1"> <name slugifiedName="name-requirements-terminology">Requirements Terminology</name><t><t indent="0" pn="section-1.1-1"> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xreftarget="RFC2119"/>target="RFC2119" format="default" sectionFormat="of" derivedContent="RFC2119"/> <xreftarget="RFC8174"/>target="RFC8174" format="default" sectionFormat="of" derivedContent="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section><!-- <section removeInRFC="true"> <name>Open Issues</name> <ul> <li> No Open Issues </li> </ul> </section> --></section><section> <name>Hash<section numbered="true" removeInRFC="false" toc="include" pn="section-2"> <name slugifiedName="name-hash-algorithm-usage">Hash Algorithm Usage</name><t><t indent="0" pn="section-2-1"> As noted in the previous section, hash functions can be used for a variety of purposes. Some of these purposes require that a hash function be cryptographically strong. These include direct and indirectsignatures. Thatsignatures -- that is, using the hash as part of the signature or using the hash as part of the body to be signed. Other uses of hash functions may not require the same level of strength. </t><t><t indent="0" pn="section-2-2"> This document contains some hash functions that are not designed to be used for cryptographic operations. An application that is using a hash function needs to carefully evaluate exactly what hash properties are needed and which hash functions are going to provide them. Applications should also make sure that the ability to change hash functions is part of the base design, as cryptographic advances are sure to reduce the strength ofaany given hash function <xreftarget="BCP201"/>.target="BCP201" format="default" sectionFormat="of" derivedContent="BCP201"/>. </t><t><t indent="0" pn="section-2-3"> A hash function is a map from one, normally large, bit string to a second, usually smaller, bit string. As the number of possible input values is far greater than the number of possible output values, it is inevitable that there are going to be collisions. The trick is to make sure that it is difficult to find two values that are going to map to the same output value. A "Collision Attack" is one where an attacker can find two different messages that have the same hash value. A hash function that is susceptible to practical collisionattacks,attacks <bcp14>SHOULD NOT</bcp14> be used for a cryptographic purpose. The discovery of theoretical collision attacks against a given hash function <bcp14>SHOULD</bcp14> trigger protocol maintainers and users todo areviewofthe continued suitability of the algorithm if alternatives are available and migration is viable. The only reasonwhysuch a hash function is used is when there is absolutely no other choice(e.g.(e.g., a Hardware Security Module (HSM) that cannot be replaced), and only after looking at the possible security issues. Cryptographic purposes would include the creation of signatures or the use of hashes for indirect signatures. These functions may still be usable fornon-cryptographicnoncryptographic purposes. </t><t><t indent="0" pn="section-2-4"> An example of anon-cryptographicnoncryptographic use of a hash isforfiltering from a collection of values to find a set of possible candidates; the candidates can then be checked to see if they can successfully be used. A simple example of this is the classic fingerprint of a certificate. If the fingerprint is used to verify that it is the correct certificate, then that usage is a cryptographic one and is subject to the warning above about collision attack. If, however, the fingerprint is used to sort through a collection of certificates to find those that might be used for the purpose of verifying a signature, a simple filter capability is sufficient. In this case, one still needs to confirm that the public key validates the signature (and that the certificate is trusted), and all certificates that don't contain a key that validates the signature can be discarded as false positives. </t><t><t indent="0" pn="section-2-5"> To distinguish between these two cases, a new value in therecommendedRecommended column of theCOSE Algorithms"COSE Algorithms" registryis to behas been added. "Filter Only" indicates that the only purpose of a hash function should be to filterresults andresults; it is not intended for applicationswhichthat require a cryptographically strong algorithm. </t><section> <name><section numbered="true" removeInRFC="false" toc="include" pn="section-2.1"> <name slugifiedName="name-example-cbor-hash-structure"> Example CBORhash structureHash Structure </name><t><t indent="0" pn="section-2.1-1"> <xreftarget="RFC8152"/>target="RFC8152" format="default" sectionFormat="of" derivedContent="COSE"/> did not provide a default structure for holding a hash valuenot onlyboth because no separate hash algorithms weredefined, butdefined and becausehowthe way the structure issetupset up is frequently application specific. There are four fields that are often included as part of a hash structure: </t><ul> <li><ul bare="false" empty="false" indent="3" spacing="normal" pn="section-2.1-2"> <li pn="section-2.1-2.1"> The hash algorithm identifier. </li><li><li pn="section-2.1-2.2"> The hash value. </li><li><li pn="section-2.1-2.3"> A pointer to the value that was hashed. This could be a pointer to a file, an object that can be obtained from the network,ora pointer to someplace in the message, or something very application specific. </li><li><li pn="section-2.1-2.4"> Additionaldata; thisdata. This can be something as simple as a random value(i.e.(i.e., salt) to make finding hash collisions slightly harder(as(because the payload handed to the application could have been selected to have a collision), or as complicated as a set of processing instructions thatareis used with the object that is pointed to. The additional data can be dealt with in a number of ways, prepending or appending to the content, but it is strongly suggested thatiteither it be a fixed known size, or the lengths of the pieces being hashed beincluded.included so that the resulting byte string has a unique interpretation as the additional data. (Encoding as a CBOR array accomplishes this requirement.) </li> </ul><t><t indent="0" pn="section-2.1-3"> An example of a structurewhichthat permits all of the above fields to exist would look like thefollowing.following: </t> <sourcecodetype="CDDL">type="cddl" markers="false" pn="section-2.1-4"> COSE_Hash_V = ( 1 : int / tstr, # Algorithm identifier 2 : bstr, # Hash value ? 3 : tstr, # Location of object that was hashed ? 4 : any # object containing other details and things ) </sourcecode><t><t indent="0" pn="section-2.1-5"> Below is an alternative structure that could be used in situations where one is searching a group of objects for a matching hash value. In this case, the location would not beneededneeded, and adding extra data to the hash would be counterproductive. This results in a structure that looks like this: </t> <sourcecodetype="CDDL">type="cddl" markers="false" pn="section-2.1-6"> COSE_Hash_Find = [ hashAlg : int / tstr, hashValue : bstr ] </sourcecode> </section> </section><section> <name>Hash<section numbered="true" removeInRFC="false" toc="include" pn="section-3"> <name slugifiedName="name-hash-algorithm-identifiers">Hash Algorithm Identifiers</name><section> <name>SHA-1<section numbered="true" removeInRFC="false" toc="include" pn="section-3.1"> <name slugifiedName="name-sha-1-hash-algorithm">SHA-1 Hash Algorithm</name><t><t indent="0" pn="section-3.1-1"> The SHA-1 hash algorithm <xreftarget="RFC3174"/>target="RFC3174" format="default" sectionFormat="of" derivedContent="RFC3174"/> was designed by the United States National Security Agency and published in 1995. Since thattimetime, a large amount of cryptographic analysis has been applied to thisalgorithmalgorithm, and a successful collision attack has been created(<xref target="SHA-1-collision"/>).<xref target="SHA-1-collision" format="default" sectionFormat="of" derivedContent="SHA-1-collision"/>. The IETF formally started discouraging the use of SHA-1with the publishing ofin <xreftarget="RFC6194"/>.target="RFC6194" format="default" sectionFormat="of" derivedContent="RFC6194"/>. </t><!-- RFC Editor - I had an original comment that the grammar of the "or where" clause did not match with the start of the sentence. I re-wrote the second sentence but it is possible that I still have the same problem. --> <t><t indent="0" pn="section-3.1-2"> Despitethe above,these facts, there are still times where SHA-1 needs to beused and thereforeused; therefore, it makes sense to assign acodepointcode point for the use of this hash algorithm. Some of these situationsare withinvolve historic HSMs where only SHA-1 is implemented; in othersituations are wheresituations, the SHA-1 value is used for the purpose offiltering and thusfiltering; thus, thecollision resistancecollision-resistance property is not needed. </t><t><t indent="0" pn="section-3.1-3"> Because of the known issues for SHA-1 and the fact that it should no longer be used, the algorithm will be registered with the recommendation of "Filter Only". This provides guidance about when the algorithm is safe for use, while discouraging usage where it is not safe. </t><t><t indent="0" pn="section-3.1-4"> The COSE capabilities for this algorithm is an empty array. </t> <table align="center"anchor="SHA1-Algs"> <name>SHA-1anchor="SHA1-Algs" pn="table-1"> <name slugifiedName="name-sha-1-hash-algorithm-2">SHA-1 Hash Algorithm</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th> <th>Capabilities</th> <th>Reference</th> <th>Recommended</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> <th align="left" colspan="1" rowspan="1">Capabilities</th> <th align="left" colspan="1" rowspan="1">Reference</th> <th align="left" colspan="1" rowspan="1">Recommended</th> </tr> </thead> <tbody> <tr><td>SHA-1</td> <td>-14</td> <td>SHA-1<td align="left" colspan="1" rowspan="1">SHA-1</td> <td align="left" colspan="1" rowspan="1">-14</td> <td align="left" colspan="1" rowspan="1">SHA-1 Hash</td><td>[]</td> <td>[This Document]</td> <td>Filter<td align="left" colspan="1" rowspan="1">[]</td> <td align="left" colspan="1" rowspan="1">RFC 9054</td> <td align="left" colspan="1" rowspan="1">Filter Only</td> </tr> </tbody> </table> </section><section> <name>SHA-2<section numbered="true" removeInRFC="false" toc="include" pn="section-3.2"> <name slugifiedName="name-sha-2-hash-algorithms">SHA-2 Hash Algorithms</name><t><t indent="0" pn="section-3.2-1"> The family of SHA-2 hash algorithms <xreftarget="FIPS-180-4"/>target="FIPS-180-4" format="default" sectionFormat="of" derivedContent="FIPS-180-4"/> was designed by the United States National Security Agency and published in 2001. Since thattimetime, some additional algorithms have been added to the original set to deal withlength extensionlength-extension attacks and some performance issues. While the SHA-3 hash algorithms have been published since that time, the SHA-2 algorithms are still broadly used. </t><t><t indent="0" pn="section-3.2-2"> There are a number of different parameters for the SHA-2 hash functions. The set of hash functionswhich havethat has been chosen for inclusion in this documentareis based on those different parameters and some of the trade-offs involved. </t><ul> <li> <t><ul bare="false" empty="false" indent="3" spacing="normal" pn="section-3.2-3"> <li pn="section-3.2-3.1"> <t indent="0" pn="section-3.2-3.1.1"> <strong>SHA-256/64</strong> provides a truncated hash. The length of the truncation is designed to allow for smaller transmission size. The trade-off is that the odds that a collision will occur increase proportionally. Use of this hash functionneedsrequires analysis of the potential problemswith havingthat could result from acollision occur,collision, or it must be limited to where thefunctionpurpose of the hash isnon-cryptographic.noncryptographic. </t><t><t indent="0" pn="section-3.2-3.1.2"> The latter is the case for some of the scenarios identified in <xreftarget="I-D.ietf-cose-x509"/>. Thetarget="I-D.ietf-cose-x509" format="default" sectionFormat="of" derivedContent="COSE-x509"/>, specifically, for the cases when the hash value is used to select among possiblecertificates and,certificates: if there are multiple choicesremaining then,remaining, then each choice can be tested by using the public key. </t> </li><li><li pn="section-3.2-3.2"> <strong>SHA-256</strong> is probably the most common hash function used currently. SHA-256 is an efficient hash algorithm for 32-bit hardware. </li><li><li pn="section-3.2-3.3"> <strong>SHA-384</strong> and <strong>SHA-512</strong> hash functions are efficient for 64-bit hardware. </li><li><li pn="section-3.2-3.4"> <strong>SHA-512/256</strong> provides a hash function that runs more efficiently on 64-bithardware,hardware but offers the same securitylevelslevel as SHA-256. </li> </ul><t><aside pn="section-3.2-4"> <t indent="0" pn="section-3.2-4.1">NOTE: SHA-256/64 is a simple truncation of SHA-256 to 64 bits defined in this specification. SHA-512/256 is a modified variant of SHA-512 truncated to 256 bits, as defined in <xref target="FIPS-180-4" format="default" sectionFormat="of" derivedContent="FIPS-180-4"/>.</t> </aside> <t indent="0" pn="section-3.2-5"> The COSE capabilities array for these algorithms is empty. </t> <table align="center"anchor="SHA2-Algs"> <name>SHA-2anchor="SHA2-Algs" pn="table-2"> <name slugifiedName="name-sha-2-hash-algorithms-2">SHA-2 Hash Algorithms</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th> <th>Capabilities</th> <th>Reference</th> <th>Recommended</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> <th align="left" colspan="1" rowspan="1">Capabilities</th> <th align="left" colspan="1" rowspan="1">Reference</th> <th align="left" colspan="1" rowspan="1">Recommended</th> </tr> </thead> <tbody> <tr><td>SHA-256/64</td> <td>-15</td> <td>SHA-2<td align="left" colspan="1" rowspan="1">SHA-256/64</td> <td align="left" colspan="1" rowspan="1">-15</td> <td align="left" colspan="1" rowspan="1">SHA-2 256-bit Hash truncated to 64-bits</td><td>[]</td> <td>[This Document]</td> <td>Filter<td align="left" colspan="1" rowspan="1">[]</td> <td align="left" colspan="1" rowspan="1">RFC 9054</td> <td align="left" colspan="1" rowspan="1">Filter Only</td> </tr> <tr><td>SHA-256</td> <td>-16</td> <td>SHA-2<td align="left" colspan="1" rowspan="1">SHA-256</td> <td align="left" colspan="1" rowspan="1">-16</td> <td align="left" colspan="1" rowspan="1">SHA-2 256-bit Hash</td><td>[]</td> <td>[This Document]</td> <td>Yes</td><td align="left" colspan="1" rowspan="1">[]</td> <td align="left" colspan="1" rowspan="1">RFC 9054</td> <td align="left" colspan="1" rowspan="1">Yes</td> </tr> <tr><td>SHA-384</td> <td>-43</td> <td>SHA-2<td align="left" colspan="1" rowspan="1">SHA-384</td> <td align="left" colspan="1" rowspan="1">-43</td> <td align="left" colspan="1" rowspan="1">SHA-2 384-bit Hash</td><td>[]</td> <td>[This Document]</td> <td>Yes</td><td align="left" colspan="1" rowspan="1">[]</td> <td align="left" colspan="1" rowspan="1">RFC 9054</td> <td align="left" colspan="1" rowspan="1">Yes</td> </tr> <tr><td>SHA-512</td> <td>-44</td> <td>SHA-2<td align="left" colspan="1" rowspan="1">SHA-512</td> <td align="left" colspan="1" rowspan="1">-44</td> <td align="left" colspan="1" rowspan="1">SHA-2 512-bit Hash</td><td>[]</td> <td>[This Document]</td> <td>Yes</td><td align="left" colspan="1" rowspan="1">[]</td> <td align="left" colspan="1" rowspan="1">RFC 9054</td> <td align="left" colspan="1" rowspan="1">Yes</td> </tr> <tr><td>SHA-512/256</td> <td>-17</td> <td>SHA-2<td align="left" colspan="1" rowspan="1">SHA-512/256</td> <td align="left" colspan="1" rowspan="1">-17</td> <td align="left" colspan="1" rowspan="1">SHA-2 512-bit Hash truncated to 256-bits</td><td>[]</td> <td>[This Document]</td> <td>Yes</td><td align="left" colspan="1" rowspan="1">[]</td> <td align="left" colspan="1" rowspan="1">RFC 9054</td> <td align="left" colspan="1" rowspan="1">Yes</td> </tr> </tbody> </table> </section><section> <name>SHAKE<section numbered="true" removeInRFC="false" toc="include" pn="section-3.3"> <name slugifiedName="name-shake-algorithms">SHAKE Algorithms</name><t><t indent="0" pn="section-3.3-1"> The family of SHA-3 hash algorithms <xreftarget="FIPS-202"/>target="FIPS-202" format="default" sectionFormat="of" derivedContent="FIPS-202"/> was the result of a competition run by NIST. The pair of algorithms known as SHAKE-128 and SHAKE-256 are the instances of SHA-3 that are currently being standardized in the IETF.<!-- Check with Roman - maybe delete -->This is the reason for including these algorithms in this document. </t><t><t indent="0" pn="section-3.3-2"> The SHA-3 hash algorithms have a significantly different structure than the SHA-2 hash algorithms. </t><t><t indent="0" pn="section-3.3-3"> Unlike the SHA-2 hash functions, no algorithm identifier is created for shorter lengths. The length of the hash value stored is256-bits256 bits for SHAKE-128 and512-bits512 bits for SHAKE-256. </t><t><t indent="0" pn="section-3.3-4"> The COSE capabilities array for these algorithms is empty. </t> <table align="center"anchor="SHAKE-Algs"> <name>SHAKEanchor="SHAKE-Algs" pn="table-3"> <name slugifiedName="name-shake-hash-functions">SHAKE Hash Functions</name> <thead> <tr><th>Name</th> <th>Value</th> <th>Description</th> <th>Capabilities</th> <th>Reference</th> <th>Recommended</th><th align="left" colspan="1" rowspan="1">Name</th> <th align="left" colspan="1" rowspan="1">Value</th> <th align="left" colspan="1" rowspan="1">Description</th> <th align="left" colspan="1" rowspan="1">Capabilities</th> <th align="left" colspan="1" rowspan="1">Reference</th> <th align="left" colspan="1" rowspan="1">Recommended</th> </tr> </thead> <tbody> <tr><td>SHAKE128</td> <td>-18</td> <td>SHAKE-128<td align="left" colspan="1" rowspan="1">SHAKE128</td> <td align="left" colspan="1" rowspan="1">-18</td> <td align="left" colspan="1" rowspan="1">SHAKE-128 256-bit Hash Value</td><td>[]</td> <td>[This Document]</td> <td>Yes</td><td align="left" colspan="1" rowspan="1">[]</td> <td align="left" colspan="1" rowspan="1">RFC 9054</td> <td align="left" colspan="1" rowspan="1">Yes</td> </tr> <tr><td>SHAKE256</td> <td>-45</td> <td>SHAKE-256<td align="left" colspan="1" rowspan="1">SHAKE256</td> <td align="left" colspan="1" rowspan="1">-45</td> <td align="left" colspan="1" rowspan="1">SHAKE-256 512-bit Hash Value</td><td>[]</td> <td>[This Document]</td> <td>Yes</td><td align="left" colspan="1" rowspan="1">[]</td> <td align="left" colspan="1" rowspan="1">RFC 9054</td> <td align="left" colspan="1" rowspan="1">Yes</td> </tr> </tbody> </table> </section> </section> <sectionanchor="iana-considerations"> <name>IANAanchor="iana-considerations" numbered="true" removeInRFC="false" toc="include" pn="section-4"> <name slugifiedName="name-iana-considerations">IANA Considerations</name><!-- RFC Editor I think that this paragraph can be removed before publishing. --> <t> The IANA actions in <xref target="I-D.ietf-cose-rfc8152bis-struct"/> and <xref target="I-D.ietf-cose-rfc8152bis-algs"/> need to be executed before the actions in this document. Where early allocation of codepoints has been made, these should be preserved. </t><sectionanchor="cose-algorithm-registry"> <name>COSEanchor="cose-algorithm-registry" numbered="true" removeInRFC="false" toc="include" pn="section-4.1"> <name slugifiedName="name-cose-algorithm-registry">COSE Algorithm Registry</name><t><t indent="0" pn="section-4.1-1"> IANAis requested to registerhas registered the following algorithms in the"COSE<eref target="https://www.iana.org/assignments/cose/" brackets="none">"COSE Algorithms"registry.registry</eref>. </t><ul> <li><ul bare="false" empty="false" indent="3" spacing="normal" pn="section-4.1-2"> <li pn="section-4.1-2.1"> The SHA-1 hash function found in <xreftarget="SHA1-Algs"/>.target="SHA1-Algs" format="default" sectionFormat="of" derivedContent="Table 1"/>. </li><li><li pn="section-4.1-2.2"> The set of SHA-2 hash functions found in <xreftarget="SHA2-Algs"/>.target="SHA2-Algs" format="default" sectionFormat="of" derivedContent="Table 2"/>. </li><li><li pn="section-4.1-2.3"> The set of SHAKE hash functions found in <xreftarget="SHAKE-Algs"/>.target="SHAKE-Algs" format="default" sectionFormat="of" derivedContent="Table 3"/>. </li> </ul><!-- IANA The following paragraph is retained for historic reasons only. --> <t><t indent="0" pn="section-4.1-3"> Many of the hash values produced are relativelylong andlong; assuch thesuch, use of atwo bytetwo-byte algorithm identifier seems reasonable. SHA-1 is tagged as'Filter Only' and thus"Filter Only", so a longer algorithm identifier is appropriate even though it is a shorter hash value. </t><t><t indent="0" pn="section-4.1-4"> IANAis requested to addhas added the value of'Filter Only'"Filter Only" to the set of legal values for the'Recommended'Recommended column. This value is only to be used for hash functions and indicates that it is not to be used for purposeswhichthat require collision resistance. As a result of this addition, IANAis requested to addhas added this documentto theas a referencesectionforthis table due to this addition.the "COSE Algorithms" registry. </t> </section> </section> <sectionanchor="security-considerations"> <name>Securityanchor="security-considerations" numbered="true" removeInRFC="false" toc="include" pn="section-5"> <name slugifiedName="name-security-considerations">Security Considerations</name><t><t indent="0" pn="section-5-1"> Protocols need to perform a careful analysis of the properties of a hash function that are needed and how they map onto the possible attacks. In particular, one needs to distinguish between those uses that need the cryptographic properties, such as collision resistance, and uses that only need properties that correspond to possible object identification. The different attacks correspond to who or what is being protected: is it the originator that is the attacker or a third party? This is the difference between collision resistance and second pre-image resistance. As a general rule, longer hash values are "better" than short ones, but trade-offs of transmission size, timeliness, and security all need to be included as part of this analysis. In manycasescases, the value being hashed is a public value and, as such, (first) pre-image resistance is not part of this analysis. </t><t><t indent="0" pn="section-5-2"> Algorithm agility needs to be considered a requirement for any use of hash functions <xreftarget="BCP201"/>.target="BCP201" format="default" sectionFormat="of" derivedContent="BCP201"/>. As with any cryptographic function, hash functions are under constantattackattack, and the cryptographic strength of hash algorithms will be reduced over time. </t> </section> </middle><back xmlns:xi="http://www.w3.org/2001/XInclude" xml:base="http://xml2rfc.ietf.org/public/rfc/"><back> <displayreference target="RFC2634" to="ESS"/> <displayreference target="RFC5652" to="CMS"/> <displayreference target="RFC8152" to="COSE"/> <displayreference target="I-D.ietf-cose-x509" to="COSE-x509"/> <displayreference target="I-D.ietf-suit-manifest" to="SUIT-MANIFEST"/> <referencestitle='Normative References'> <xi:include href="bibxml/reference.RFC.2119.xml" /> <xi:include href="bibxml/reference.RFC.8174.xml" /> <xi:include href="bibxml3/reference.I-D.ietf-cose-rfc8152bis-struct.xml" />pn="section-6"> <name slugifiedName="name-references">References</name> <references pn="section-6.1"> <name slugifiedName="name-normative-references">Normative References</name> <referenceanchor="FIPS-180-4">anchor="FIPS-180-4" quoteTitle="true" target="https://doi.org/10.6028/NIST.FIPS.180-4" derivedAnchor="FIPS-180-4"> <front> <title>Secure Hash Standard</title> <author><organization>National Institute of Standards and Technology</organization><organization showOnFrontPage="true">NIST</organization> </author> <date month="August" year="2015"/> </front> <seriesInfoname="FIPS" value="PUB 180-4"/>name="FIPS PUB" value="180-4"/> <seriesInfo name="DOI" value="10.6028/NIST.FIPS.180-4"/> </reference> <referenceanchor="FIPS-202">anchor="FIPS-202" quoteTitle="true" target="https://doi.org/10.6028/NIST.FIPS.202" derivedAnchor="FIPS-202"> <front> <title>SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions</title><author> <organization>National<author initials="M.J." surname="Dworkin"> <organization showOnFrontPage="true">National Institute of Standards and Technology</organization> </author> <date month="August" year="2015"/> </front> <seriesInfoname="FIPS" value="PUB 202"/>name="FIPS PUB" value="202"/> <seriesInfo name="DOI" value="10.6028/NIST.FIPS.202"/> </reference> <reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" quoteTitle="true" derivedAnchor="RFC2119"> <front> <title>Key words for use in RFCs to Indicate Requirement Levels</title> <author initials="S." surname="Bradner" fullname="S. Bradner"> <organization showOnFrontPage="true"/> </author> <date year="1997" month="March"/> <abstract> <t indent="0">In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC3174" target="https://www.rfc-editor.org/info/rfc3174" quoteTitle="true" derivedAnchor="RFC3174"> <front> <title>US Secure Hash Algorithm 1 (SHA1)</title> <author initials="D." surname="Eastlake 3rd" fullname="D. Eastlake 3rd"> <organization showOnFrontPage="true"/> </author> <author initials="P." surname="Jones" fullname="P. Jones"> <organization showOnFrontPage="true"/> </author> <date year="2001" month="September"/> <abstract> <t indent="0">The purpose of this document is to make the SHA-1 (Secure Hash Algorithm 1) hash algorithm conveniently available to the Internet community. This memo provides information for the Internet community.</t> </abstract> </front> <seriesInfo name="RFC" value="3174"/> <seriesInfo name="DOI" value="10.17487/RFC3174"/> </reference> <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" quoteTitle="true" derivedAnchor="RFC8174"> <front> <title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title> <author fullname="B. Leiba" surname="Leiba"/> <date month="May" year="2017"/> <abstract> <t indent="0">RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="8174"/> <seriesInfo name="DOI" value="10.17487/RFC8174"/> </reference> <reference anchor="RFC9052" target="https://www.rfc-editor.org/info/rfc9052" quoteTitle="true" derivedAnchor="RFC9052"> <front> <title>CBOR Object Signing and Encryption (COSE): Structures and Process</title> <author initials="J" surname="Schaad" fullname="Jim Schaad"> <organization showOnFrontPage="true"/> </author> <date month="August" year="2022"/> </front> <seriesInfo name="STD" value="96"/> <seriesInfo name="RFC" value="9052"/> <seriesInfo name="DOI" value="10.17487/RFC9052"/> </reference><!-- <?rfc include="bibxml/reference.RFC.5280.xml" /> --> <xi:include href="bibxml/reference.RFC.3174.xml" /></references> <referencestitle='Informative References'> <xi:include href="bibxml/reference.RFC.5652.xml"/> <xi:include href="bibxml/reference.RFC.2634.xml"/> <xi:include href="bibxml3/reference.I-D.ietf-cose-x509.xml"/> <xi:include href="bibxml/reference.RFC.6194.xml"/> <xi:include href="bibxml3/reference.I-D.ietf-cose-rfc8152bis-algs.xml"/> <xi:include href="bibxml3/reference.I-D.ietf-suit-manifest.xml"/> <!-- <xi:include href="bibxml/reference.RFC.2585.xml"/> <xi:include href="bibxml/reference.RFC.5246.xml"/> <xi:include href="bibxml/reference.RFC.7468.xml"/> <xi:include href="bibxml/reference.RFC.8152.xml"/> <xi:include href="bibxml/reference.RFC.8392.xml"/> <xi:include href="bibxml/reference.I-D.ietf-lamps-rfc5751-bis.xml"/> <xi:include href="bibxml/reference.I-D.ietf-cbor-cddl.xml"/> <xi:include href="bibxml/reference.I-D.selander-ace-cose-ecdhe.xml"/> --> <!-- <xi:include href="bibxml/reference.BCP.0201.xml"/> --> <referencegroup anchor="BCP201" target="https://www.rfc-editor.org/info/bcp201"> <!-- reference.RFC.7696.xml -->pn="section-6.2"> <name slugifiedName="name-informative-references">Informative References</name> <referenceanchor="RFC7696" target="https://www.rfc-editor.org/info/rfc7696">anchor="BCP201" target="https://www.rfc-editor.org/info/bcp201" quoteTitle="true" derivedAnchor="BCP201"> <front><title> Guidelines<title>Guidelines for Cryptographic Algorithm Agility and Selecting Mandatory-to-ImplementAlgorithms </title>Algorithms</title> <author initials="R." surname="Housley" fullname="Russ Housley"> <organization showOnFrontPage="true"/> </author> <date month="November" year="2015"/> </front> <seriesInfo name="BCP" value="201"/> <seriesInfo name="RFC" value="7696"/> </reference> <reference anchor="RFC5652" target="https://www.rfc-editor.org/info/rfc5652" quoteTitle="true" derivedAnchor="CMS"> <front> <title>Cryptographic Message Syntax (CMS)</title> <author initials="R." surname="Housley" fullname="R. Housley"><organization/><organization showOnFrontPage="true"/> </author> <dateyear="2015" month="November"/>year="2009" month="September"/> <abstract><t> Many IETF protocols use cryptographic algorithms<t indent="0">This document describes the Cryptographic Message Syntax (CMS). This syntax is used toprovide confidentiality, integrity, authentication,digitally sign, digest, authenticate, ordigital signature. Communicating peers must supportencrypt arbitrary message content. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="STD" value="70"/> <seriesInfo name="RFC" value="5652"/> <seriesInfo name="DOI" value="10.17487/RFC5652"/> </reference> <reference anchor="RFC8152" target="https://www.rfc-editor.org/info/rfc8152" quoteTitle="true" derivedAnchor="COSE"> <front> <title>CBOR Object Signing and Encryption (COSE)</title> <author initials="J." surname="Schaad" fullname="J. Schaad"> <organization showOnFrontPage="true"/> </author> <date year="2017" month="July"/> <abstract> <t indent="0">Concise Binary Object Representation (CBOR) is acommon set of cryptographic algorithmsdata format designed forthese mechanisms to work properly. This memo provides guidelinessmall code size and small message size. There is a need for the ability toensure that protocolshave basic security services defined for this data format. This document defines theabilityCBOR Object Signing and Encryption (COSE) protocol. This specification describes how tomigrate from one mandatory-to-implement algorithm suitecreate and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how toanother over time.represent cryptographic keys using CBOR.</t> </abstract> </front> <seriesInfo name="RFC" value="8152"/> <seriesInfo name="DOI" value="10.17487/RFC8152"/> </reference> <reference anchor="I-D.ietf-cose-x509" quoteTitle="true" target="https://datatracker.ietf.org/doc/html/draft-ietf-cose-x509-08" derivedAnchor="COSE-x509"> <front> <title>CBOR Object Signing and Encryption (COSE): Header parameters for carrying and referencing X.509 certificates</title> <author fullname="Jim Schaad"> <organization showOnFrontPage="true">August Cellars</organization> </author> <date month="December" day="14" year="2020"/> <abstract> <t indent="0"> The CBOR Signing And Encrypted Message (COSE) structure uses references to keys in general. For some algorithms, additional properties are defined which carry parameters relating to keys as needed. The COSE Key structure is used for transporting keys outside of COSE messages. This document extends the way that keys can be identified and transported by providing attributes that refer to or contain X.509 certificates. </t> </abstract> </front> <seriesInfoname="BCP" value="201"/>name="Internet-Draft" value="draft-ietf-cose-x509-08"/> <format type="TXT" target="https://www.ietf.org/archive/id/draft-ietf-cose-x509-08.txt"/> <refcontent>Work in Progress</refcontent> </reference> <reference anchor="RFC2634" target="https://www.rfc-editor.org/info/rfc2634" quoteTitle="true" derivedAnchor="ESS"> <front> <title>Enhanced Security Services for S/MIME</title> <author initials="P." surname="Hoffman" fullname="P. Hoffman" role="editor"> <organization showOnFrontPage="true"/> </author> <date year="1999" month="June"/> <abstract> <t indent="0">This document describes four optional security service extensions for S/MIME. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC"value="7696"/>value="2634"/> <seriesInfo name="DOI"value="10.17487/RFC7696"/>value="10.17487/RFC2634"/> </reference> <reference anchor="RFC6194" target="https://www.rfc-editor.org/info/rfc6194" quoteTitle="true" derivedAnchor="RFC6194"> <front> <title>Security Considerations for the SHA-0 and SHA-1 Message-Digest Algorithms</title> <author fullname="T. Polk" surname="Polk"/> <author fullname="L. Chen" surname="Chen"/> <author fullname="S. Turner" surname="Turner"/> <author fullname="P. Hoffman" surname="Hoffman"/> <date month="March" year="2011"/> <abstract> <t indent="0">This document includes security considerations for the SHA-0 and SHA-1 message digest algorithm. This document is not an Internet Standards Track specification; it is published for informational purposes.</t> </abstract> </front> <seriesInfo name="RFC" value="6194"/> <seriesInfo name="DOI" value="10.17487/RFC6194"/> </reference></referencegroup><reference anchor="SHA-1-collision"target="https://shattered.io/static/shattered.pdf">target="https://shattered.io/static/shattered.pdf" quoteTitle="true" derivedAnchor="SHA-1-collision"> <front> <title>The first collision for full SHA-1</title> <author initials="M." surname="Stevens"/> <author initials="E." surname="Bursztein"/> <author initials="P." surname="Karpman"/> <author initials="A." surname="Albertini"/> <author initials="Y." surname="Markov"/> <date month="Feb" year="2017"/> </front> </reference><xi:include href="bibxml/reference.RFC.8152.xml"/><reference anchor="I-D.ietf-suit-manifest" quoteTitle="true" target="https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-19" derivedAnchor="SUIT-MANIFEST"> <front> <title>A Concise Binary Object Representation (CBOR)-based Serialization Format for the Software Updates for Internet of Things (SUIT) Manifest</title> <author fullname="Brendan Moran"> <organization showOnFrontPage="true">Arm Limited</organization> </author> <author fullname="Hannes Tschofenig"> <organization showOnFrontPage="true">Arm Limited</organization> </author> <author fullname="Henk Birkholz"> <organization showOnFrontPage="true">Fraunhofer SIT</organization> </author> <author fullname="Koen Zandberg"> <organization showOnFrontPage="true">Inria</organization> </author> <date month="August" day="9" year="2022"/> <abstract> <t indent="0"> This specification describes the format of a manifest. A manifest is a bundle of metadata about code/data obtained by a recipient (chiefly the firmware for an IoT device), where to find the that code/data, the devices to which it applies, and cryptographic information protecting the manifest. Software updates and Trusted Invocation both tend to use sequences of common operations, so the manifest encodes those sequences of operations, rather than declaring the metadata. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-suit-manifest-19"/> <format type="TXT" target="https://www.ietf.org/archive/id/draft-ietf-suit-manifest-19.txt"/> <refcontent>Work in Progress</refcontent> </reference> </references> </references> <section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.a"> <name slugifiedName="name-authors-address">Author's Address</name> <author initials="J." surname="Schaad" fullname="Jim Schaad"> <organization showOnFrontPage="true">August Cellars</organization> <address/> </author> </section> </back> </rfc>