rfc9058.original   rfc9058.txt 
Network Working Group S. Smyshlyaev, Ed. Independent Submission S. Smyshlyaev, Ed.
Internet-Draft CryptoPro Request for Comments: 9058 CryptoPro
Intended status: Informational V. Nozdrunov Category: Informational V. Nozdrunov
Expires: October 14, 2021 V. Shishkin ISSN: 2070-1721 V. Shishkin
TC 26 TC 26
E. Griboedova E. Griboedova
CryptoPro CryptoPro
April 12, 2021 June 2021
Multilinear Galois Mode (MGM) Multilinear Galois Mode (MGM)
draft-smyshlyaev-mgm-20
Abstract Abstract
Multilinear Galois Mode (MGM) is an authenticated encryption with Multilinear Galois Mode (MGM) is an Authenticated Encryption with
associated data (AEAD) block cipher mode based on EtM principle. MGM Associated Data (AEAD) block cipher mode based on the Encrypt-then-
is defined for use with 64-bit and 128-bit block ciphers. MAC (EtM) principle. MGM is defined for use with 64-bit and 128-bit
block ciphers.
MGM has been standardized in Russia. It is used as an AEAD mode for MGM has been standardized in Russia. It is used as an AEAD mode for
the GOST block cipher algorithms in many protocols, e.g. TLS 1.3 and the GOST block cipher algorithms in many protocols, e.g., TLS 1.3 and
IPsec. This document provides a reference for MGM to enable review IPsec. This document provides a reference for MGM to enable review
of the mechanisms in use and to make MGM available for use with any of the mechanisms in use and to make MGM available for use with any
block cipher. block cipher.
Status of This Memo Status of This Memo
This Internet-Draft is submitted in full conformance with the This document is not an Internet Standards Track specification; it is
provisions of BCP 78 and BCP 79. published for informational purposes.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months This is a contribution to the RFC Series, independently of any other
and may be updated, replaced, or obsoleted by other documents at any RFC stream. The RFC Editor has chosen to publish this document at
time. It is inappropriate to use Internet-Drafts as reference its discretion and makes no statement about its value for
material or to cite them other than as "work in progress." implementation or deployment. Documents approved for publication by
the RFC Editor are not candidates for any level of Internet Standard;
see Section 2 of RFC 7841.
This Internet-Draft will expire on October 14, 2021. Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9058.
Copyright Notice Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved. document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of (https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must to this document.
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Introduction
2. Conventions Used in This Document . . . . . . . . . . . . . . 3 2. Conventions Used in This Document
3. Basic Terms and Definitions . . . . . . . . . . . . . . . . . 3 3. Basic Terms and Definitions
4. Specification . . . . . . . . . . . . . . . . . . . . . . . . 4 4. Specification
4.1. MGM Encryption and Tag Generation Procedure . . . . . . . 4 4.1. MGM Encryption and Tag Generation Procedure
4.2. MGM Decryption and Tag Verification Check Procedure . . . 7 4.2. MGM Decryption and Tag Verification Check Procedure
5. Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5. Rationale
6. Security Considerations . . . . . . . . . . . . . . . . . . . 9 6. Security Considerations
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10 7. IANA Considerations
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 10 8. References
8.1. Normative References . . . . . . . . . . . . . . . . . . 10 8.1. Normative References
8.2. Informative References . . . . . . . . . . . . . . . . . 11 8.2. Informative References
Appendix A. Test Vectors . . . . . . . . . . . . . . . . . . . . 11 Appendix A. Test Vectors
A.1. Test Vectors for the Kuznyechik block cipher . . . . . . 11 A.1. Test Vectors for the Kuznyechik Block Cipher
A.2. Test Vectors for the Magma block cipher . . . . . . . . . 16 A.1.1. Example 1
Appendix B. Contributors . . . . . . . . . . . . . . . . . . . . 22 A.1.2. Example 2
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 22 A.2. Test Vectors for the Magma Block Cipher
A.2.1. Example 1
A.2.2. Example 2
Contributors
Authors' Addresses
1. Introduction 1. Introduction
Multilinear Galois Mode (MGM) is an authenticated encryption with Multilinear Galois Mode (MGM) is an Authenticated Encryption with
associated data (AEAD) block cipher mode based on EtM principle. MGM Associated Data (AEAD) block cipher mode based on EtM principle. MGM
is defined for use with 64-bit and 128-bit block ciphers. The MGM is defined for use with 64-bit and 128-bit block ciphers. The MGM
design principles can easily be applied to other block sizes. design principles can easily be applied to other block sizes.
MGM has been standardized in Russia [R1323565.1.026-2019]. It is MGM has been standardized in Russia [AUTH-ENC-BLOCK-CIPHER]. It is
used as an AEAD mode for the GOST block cipher algorithms in many used as an AEAD mode for the GOST block cipher algorithms in many
protocols, e.g. TLS 1.3 and IPsec. This document provides a protocols, e.g., TLS 1.3 and IPsec. This document provides a
reference for MGM to enable review of the mechanisms in use and to reference for MGM to enable review of the mechanisms in use and to
make MGM available for use with any block cipher. make MGM available for use with any block cipher.
This document does not have IETF consensus and does not imply IETF This document does not have IETF consensus and does not imply IETF
support for MGM. support for MGM.
2. Conventions Used in This Document 2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP "OPTIONAL" in this document are to be interpreted as described in
14 [RFC2119] [RFC8174] when, and only when, they appear in all BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here. capitals, as shown here.
3. Basic Terms and Definitions 3. Basic Terms and Definitions
This document uses the following terms and definitions for the sets This document uses the following terms and definitions for the sets
and operations on the elements of these sets: and operations on the elements of these sets:
V* the set of all bit strings of a finite length (hereinafter V* The set of all bit strings of a finite length (hereinafter
referred to as strings), including the empty string; referred to as strings), including the empty string;
substrings and string components are enumerated from right to substrings and string components are enumerated from right
left starting from zero; to left starting from zero.
V_s the set of all bit strings of length s, where s is a non- V_s The set of all bit strings of length s, where s is a non-
negative integer. For s = 0, the V_0 consists of a single negative integer. For s = 0, the V_0 consists of a single
empty string; empty string.
|X| the bit length of the bit string X (if X is an empty string, |X| The bit length of the bit string X (if X is an empty
then |X| = 0); string, then |X| = 0).
X || Y concatenation of strings X and Y both belonging to V*, i.e., X || Y Concatenation of strings X and Y both belonging to V*,
a string from V_{|X|+|Y|}, where the left substring from i.e., a string from V_{|X|+|Y|}, where the left substring
V_{|X|} is equal to X, and the right substring from V_{|Y|} from V_{|X|} is equal to X, and the right substring from
is equal to Y; V_{|Y|} is equal to Y.
a^s the string in V_s that consists of s 'a' bits; a^s The string in V_s that consists of s 'a' bits.
(xor) exclusive-or of the two bit strings of the same length; (xor) Exclusive-or of two bit strings of the same length.
Z_{2^s} ring of residues modulo 2^s; Z_{2^s} Ring of residues modulo 2^s.
MSB_i: V_s -> V_i the transformation that maps the string X = MSB_i V_s -> V_i
(x_{s-1}, ... , x_0) in V_s into the string MSB_i(X) =
(x_{s-1}, ... , x_{s-i}) in V_i, i <= s, (most significant
bits);
Int_s: V_s -> Z_{2^s} the transformation that maps the string X = The transformation that maps the string X = (x_{s-1}, ... ,
(x_{s-1}, ... , x_0) in V_s, s > 0, into the integer Int_s(X) x_0) in V_s into the string MSB_i(X) = (x_{s-1}, ... ,
= 2^{s-1} * x_{s-1} + ... + 2 * x_1 + x_0 (the interpretation x_{s-i}) in V_i, i <= s (most significant bits).
of the bit string as an integer);
Vec_s: Z_{2^s} -> V_s the transformation inverse to the mapping Int_s V_s -> Z_{2^s}
Int_s (the interpretation of an integer as a bit string);
E_K: V_n -> V_n the block cipher permutation under the key K in V_k; The transformation that maps the string X = (x_{s-1}, ... ,
x_0) in V_s, s > 0, into the integer Int_s(X) = 2^{s-1} *
x_{s-1} + ... + 2 * x_1 + x_0 (the interpretation of the
bit string as an integer).
k the bit length of the block cipher key; Vec_s Z_{2^s} -> V_s
n the block size of the block cipher (in bits); The transformation inverse to the mapping Int_s (the
interpretation of an integer as a bit string).
len: V_s -> V_{n/2} the transformation that maps a string X in V_s, E_K V_n -> V_n
0 <= s <= 2^{n/2} - 1, into the string len(X) =
Vec_{n/2}(|X|) in V_{n/2}, where n is the block size of the
used block cipher;
[+] the addition operation in Z_{2^{n/2}}, where n is the block The block cipher permutation under the key K in V_k.
size of the used block cipher;
(x) the transformation that maps two strings X = (x_{n-1}, ... , k The bit length of the block cipher key.
x_0) in V_n and Y = (y_{n-1}, ... , y_0) in V_n into the
string Z = X (x) Y = (z_{n-1}, ... , z_0) in V_n; the string
Z corresponds to the polynomial Z(w) = z_{n-1} * w^{n-1} +
... + z_1 * w + z_0 which is the result of multiplying the
polynomials X(w) = x_{n-1} * w^{n-1} + ... + x_1 * w + x_0
and Y(w) = y_{n-1} * w^{n-1} + ... + y_1 * w + y_0 in the
field GF(2^n), where n is the block size of the used block
cipher; if n = 64, then the field polynomial is equal to f(w)
= w^64 + w^4 + w^3 + w + 1; if n = 128, then the field
polynomial is equal to f(w) = w^128 + w^7 + w^2 + w + 1;
incr_l: V_n -> V_n the transformation that maps a string L || R, n The block size of the block cipher (in bits).
where L, R in V_{n/2}, into the string incr_l(L || R) =
Vec_{n/2}(Int_{n/2}(L) [+] 1) || R;
incr_r: V_n -> V_n the transformation that maps a string L || R, len V_s -> V_{n/2}
where L, R in V_{n/2}, into the string incr_r(L || R) = L ||
Vec_{n/2}(Int_{n/2}(R) [+] 1). The transformation that maps a string X in V_s, 0 <= s <=
2^{n/2} - 1, into the string len(X) = Vec_{n/2}(|X|) in
V_{n/2}, where n is the block size of the used block
cipher.
[+] The addition operation in Z_{2^{n/2}}, where n is the block
size of the used block cipher.
(x) The transformation that maps two strings, X = (x_{n-1}, ...
, x_0) in V_n and Y = (y_{n-1}, ... , y_0), in V_n into the
string Z = X (x) Y = (z_{n-1}, ... , z_0) in V_n; the
string Z corresponds to the polynomial Z(w) = z_{n-1} *
w^{n-1} + ... + z_1 * w + z_0, which is the result of
multiplying the polynomials X(w) = x_{n-1} * w^{n-1} + ...
+ x_1 * w + x_0 and Y(w) = y_{n-1} * w^{n-1} + ... + y_1 *
w + y_0 in the field GF(2^n), where n is the block size of
the used block cipher; if n = 64, then the field polynomial
is equal to f(w) = w^64 + w^4 + w^3 + w + 1; if n = 128,
then the field polynomial is equal to f(w) = w^128 + w^7 +
w^2 + w + 1.
incr_l V_n -> V_n
The transformation that maps an n-byte string A = L || R
into the n-byte string incr_l(A) = Vec_{n/2}(Int_{n/2}(L)
[+] 1) || R, where L and R are n/2-byte strings.
incr_r V_n -> V_n
The transformation that maps an n-byte string A = L || R
into the n-byte string incr_r(A) = L ||
Vec_{n/2}(Int_{n/2}(R) [+] 1), where L and R are n/2-byte
strings.
4. Specification 4. Specification
An additional parameter that defines the functioning of Multilinear An additional parameter that defines the functioning of MGM is the
Galois Mode (MGM) is the bit length S of the authentication tag, 32 bit length S of the authentication tag, 32 <= S <= n. The value of S
<= S <= n. The value of S MUST be fixed for a particular protocol. MUST be fixed for a particular protocol. The choice of the value S
The choice of the value S involves a trade-off between message involves a trade-off between message expansion and the forgery
expansion and the forgery probability. probability.
4.1. MGM Encryption and Tag Generation Procedure 4.1. MGM Encryption and Tag Generation Procedure
The MGM encryption and tag generation procedure takes the following The MGM encryption and tag generation procedure takes the following
parameters as inputs: parameters as inputs:
1. Encryption key K in V_k. 1. Encryption key K in V_k.
2. Initial counter nonce ICN in V_{n-1}. 2. Initial counter nonce ICN in V_{n-1}.
skipping to change at page 6, line 5 skipping to change at line 234
2. Associated authenticated data A. 2. Associated authenticated data A.
3. Ciphertext C in V_{|P|}. 3. Ciphertext C in V_{|P|}.
4. Authentication tag T in V_S. 4. Authentication tag T in V_S.
The MGM encryption and tag generation procedure consists of the The MGM encryption and tag generation procedure consists of the
following steps: following steps:
+----------------------------------------------------------------+ +----------------------------------------------------------------+
| MGM-Encrypt(K, ICN, A, P) | | MGM-Encrypt(K, ICN, A, P) |
|----------------------------------------------------------------| |----------------------------------------------------------------|
| 1. Encryption step: | | 1. Encryption step: |
| - if |P| = 0 then | | - if |P| = 0 then |
| - C*_q = P*_q | | - C*_q = P*_q |
| - C = P | | - C = P |
| - else | | - else |
| - Y_1 = E_K(0^1 || ICN), | | - Y_1 = E_K(0^1 || ICN), |
| - For i = 2, 3, ... , q do | | - For i = 2, 3, ... , q do |
| Y_i = incr_r(Y_{i-1}), | | Y_i = incr_r(Y_{i-1}), |
| - For i = 1, 2, ... , q - 1 do | | - For i = 1, 2, ... , q - 1 do |
| C_i = P_i (xor) E_K(Y_i), | | C_i = P_i (xor) E_K(Y_i), |
| - C*_q = P*_q (xor) MSB_u(E_K(Y_q)), | | - C*_q = P*_q (xor) MSB_u(E_K(Y_q)), |
| - C = C_1 || ... || C*_q. | | - C = C_1 || ... || C*_q. |
| | | |
| 2. Padding step: | | 2. Padding step: |
| - A_h = A*_h || 0^{n-t}, | | - A_h = A*_h || 0^{n-t}, |
| - C_q = C*_q || 0^{n-u}. | | - C_q = C*_q || 0^{n-u}. |
| | | |
| 3. Authentication tag T generation step: | | 3. Authentication tag T generation step: |
| - Z_1 = E_K(1^1 || ICN), | | - Z_1 = E_K(1^1 || ICN), |
| - sum = 0^n, | | - sum = 0^n, |
| - For i = 1, 2, ..., h do | | - For i = 1, 2, ..., h do |
| H_i = E_K(Z_i), | | H_i = E_K(Z_i), |
| sum = sum (xor) ( H_i (x) A_i ), | | sum = sum (xor) ( H_i (x) A_i ), |
| Z_{i+1} = incr_l(Z_i), | | Z_{i+1} = incr_l(Z_i), |
| - For j = 1, 2, ..., q do | | - For j = 1, 2, ..., q do |
| H_{h+j} = E_K(Z_{h+j}), | | H_{h+j} = E_K(Z_{h+j}), |
| sum = sum (xor) ( H_{h+j} (x) C_j ), | | sum = sum (xor) ( H_{h+j} (x) C_j ), |
| Z_{h+j+1} = incr_l(Z_{h+j}), | | Z_{h+j+1} = incr_l(Z_{h+j}), |
| - H_{h+q+1} = E_K(Z_{h+q+1}), | | - H_{h+q+1} = E_K(Z_{h+q+1}), |
| - T = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) | | - T = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) |
| ( len(A) || len(C) ) ))). | | ( len(A) || len(C) ) ))). |
| | | |
| 4. Return (ICN, A, C, T). | | 4. Return (ICN, A, C, T). |
+----------------------------------------------------------------+ +----------------------------------------------------------------+
The ICN value for each message that is encrypted under the given key The ICN value for each message that is encrypted under the given key
K must be chosen in a unique manner. K must be chosen in a unique manner.
Users who do not wish to encrypt plaintext can provide a string P of Users who do not wish to encrypt plaintext can provide a string P of
zero length. Users who do not wish to authenticate associated data zero length. Users who do not wish to authenticate associated data
can provide a string A of zero length. The length of the associated can provide a string A of zero length. The length of the associated
data A and of the plaintext P MUST be such that 0 < |A| + |P| < data A and of the plaintext P MUST be such that 0 < |A| + |P| <
2^{n/2}. 2^{n/2}.
skipping to change at page 8, line 5 skipping to change at line 313
The MGM decryption and tag verification procedure outputs FAIL or the The MGM decryption and tag verification procedure outputs FAIL or the
following parameters: following parameters:
1. Associated authenticated data A. 1. Associated authenticated data A.
2. Plaintext P in V_{|C|}. 2. Plaintext P in V_{|C|}.
The MGM decryption and tag verification procedure consists of the The MGM decryption and tag verification procedure consists of the
following steps: following steps:
+----------------------------------------------------------------+ +----------------------------------------------------------------+
| MGM-Decrypt(K, ICN, A, C, T) | | MGM-Decrypt(K, ICN, A, C, T) |
|----------------------------------------------------------------| |----------------------------------------------------------------|
| 1. Padding step: | | 1. Padding step: |
| - A_h = A*_h || 0^{n-t}, | | - A_h = A*_h || 0^{n-t}, |
| - C_q = C*_q || 0^{n-u}. | | - C_q = C*_q || 0^{n-u}. |
| | | |
| 2. Authentication tag T verification step: | | 2. Authentication tag T verification step: |
| - Z_1 = E_K(1^1 || ICN), | | - Z_1 = E_K(1^1 || ICN), |
| - sum = 0^n, | | - sum = 0^n, |
| - For i = 1, 2, ..., h do | | - For i = 1, 2, ..., h do |
| H_i = E_K(Z_i), | | H_i = E_K(Z_i), |
| sum = sum (xor) ( H_i (x) A_i ), | | sum = sum (xor) ( H_i (x) A_i ), |
| Z_{i+1} = incr_l(Z_i), | | Z_{i+1} = incr_l(Z_i), |
| - For j = 1, 2, ..., q do | | - For j = 1, 2, ..., q do |
| H_{h+j} = E_K(Z_{h+j}), | | H_{h+j} = E_K(Z_{h+j}), |
| sum = sum (xor) ( H_{h+j} (x) C_j ), | | sum = sum (xor) ( H_{h+j} (x) C_j ), |
| Z_{h+j+1} = incr_l(Z_{h+j}), | | Z_{h+j+1} = incr_l(Z_{h+j}), |
| - H_{h+q+1} = E_K(Z_{h+q+1}), | | - H_{h+q+1} = E_K(Z_{h+q+1}), |
| - T' = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) | | - T' = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) |
| ( len(A) || len(C) ) ))), | | ( len(A) || len(C) ) ))), |
| - If T' != T then return FAIL. | | - If T' != T then return FAIL. |
| | | |
| 3. Decryption step: | | 3. Decryption step: |
| - if |C| = 0 then | | - if |C| = 0 then |
| - P = C | | - P = C |
| - else | | - else |
| - Y_1 = E_K(0^1 || ICN), | | - Y_1 = E_K(0^1 || ICN), |
| - For i = 2, 3, ... , q do | | - For i = 2, 3, ... , q do |
| Y_i = incr_r(Y_{i-1}), | | Y_i = incr_r(Y_{i-1}), |
| - For i = 1, 2, ... , q - 1 do | | - For i = 1, 2, ... , q - 1 do |
| P_i = C_i (xor) E_K(Y_i), | | P_i = C_i (xor) E_K(Y_i), |
| - P*_q = C*_q (xor) MSB_u(E_K(Y_q)), | | - P*_q = C*_q (xor) MSB_u(E_K(Y_q)), |
| - P = P_1 || ... || P*_q. | | - P = P_1 || ... || P*_q. |
| | | |
| 4. Return (A, P). | | 4. Return (A, P). |
+----------------------------------------------------------------+ +----------------------------------------------------------------+
The length of the associated data A and of the ciphertext C MUST be The length of the associated data A and of the ciphertext C MUST be
such that 0 < |A| + |C| < 2^{n/2}. such that 0 < |A| + |C| < 2^{n/2}.
5. Rationale 5. Rationale
The MGM was originally proposed in [PDMODE]. MGM was originally proposed in [PDMODE].
From the operational point of view the MGM is designed to be From the operational point of view, MGM is designed to be
parallelizable, inverse-free, online and to provide availability of parallelizable, inverse free, and online and is also designed to
precomputations. provide availability of precomputations.
Parallelizability of the MGM is achieved due to its counter-type Parallelizability of MGM is achieved due to its counter-type
structure and the usage of the multilinear function for structure and the usage of the multilinear function for
authentication. Indeed, both encryption blocks E_K(Y_i) and authentication. Indeed, both encryption blocks E_K(Y_i) and
authentication blocks H_i are produced in the counter mode manner, authentication blocks H_i are produced in the counter mode manner,
and the multilinear function determined by H_i is parallelizable in and the multilinear function determined by H_i is parallelizable in
itself. Additionally, the counter-type structure of the mode itself. Additionally, the counter-type structure of the mode
provides the inverse-free property. provides the inverse-free property.
The online property means the possibility to process message even if The online property means the possibility of processing messages even
it is not completely received (so its length is unknown). To provide if it is not completely received (so its length is unknown). To
this property the MGM uses blocks E_K(Y_i) and H_i which are produced provide this property, MGM uses blocks E_K(Y_i) and H_i, which are
basing on two independent source blocks Y_i and Z_i. produced based on two independent source blocks Y_i and Z_i.
Availability of precomputations for the MGM means the possibility to Availability of precomputations for MGM means the possibility of
calculate H_i and E_K(Y_i) even before data is retrieved. It holds calculating H_i and E_K(Y_i) even before data is retrieved. It holds
again due to the usage of counters for calculating them. again due to the usage of counters for calculating them.
6. Security Considerations 6. Security Considerations
The security properties of the MGM are based on the following: The security properties of MGM are based on the following:
o Different functions generating the counter values: Different functions generating the counter values:
The functions incr_r and incr_l are chosen to minimize The functions incr_r and incr_l are chosen to minimize
intersection (if it happens) of counter values Y_i and Z_i. intersection (if it happens) of counter values Y_i and Z_i.
o Encryption of the multilinear function output: Encryption of the multilinear function output:
It allows to resist attacks based on padding and linear properties It allows attacks based on padding and linear properties to be
(see [Ferg05] for details). resisted (see [FERG05] for details).
o Multilinear function for authentication: Multilinear function for authentication:
It allows to resist the small subgroup attacks [Saar12]. It allows the small subgroup attacks to be resisted [SAAR12].
o Encryption of the nonces (0^1 || ICN) and (1^1 || ICN): Encryption of the nonces (0^1 || ICN) and (1^1 || ICN):
The use of this encryption minimizes the number of plaintext/ The use of this encryption minimizes the number of plaintext/
ciphertext pairs of blocks known to an adversary. It allows to ciphertext pairs of blocks known to an adversary. It prevents
resist attacks that need substantial amount of such material attacks that need a substantial amount of such material (e.g.,
(e.g., linear and differential cryptanalysis, side-channel linear and differential cryptanalysis and side-channel attacks).
attacks).
It is crucial to the security of MGM to use unique ICN values. Using It is crucial to the security of MGM to use unique ICN values. Using
the same ICN values for two different messages encrypted with the the same ICN values for two different messages encrypted with the
same key eliminates the security properties of this mode. same key eliminates the security properties of this mode.
It is crucial for the security of MGM not to process empty plaintext It is crucial for the security of MGM not to process empty plaintext
and empty associated data at the same time. Otherwise, a tag becomes and empty associated data at the same time. Otherwise, a tag becomes
independent from a nonce value, leading to vulnerability to forgery independent from a nonce value, leading to vulnerability to forgery
attack. attacks.
Security analysis for MGM with E_K being a random permutation was Security analysis for MGM with E_K being a random permutation was
performed in [SecMGM]. More precisely, the bounds for performed in [SEC-MGM]. More precisely, the bounds for
confidentiality advantage (CA) and integrity advantage (IA) (for confidentiality advantage (CA) and integrity advantage (IA) (for
details see [I-D.irtf-cfrg-aead-limits]) were obtained. According to details, see [AEAD-LIMITS]) were obtained. According to these
these results, for an adversary making at most q encryption queries results, for an adversary making at most q encryption queries with
with the total length of plaintexts and associated data of at most s the total length of plaintexts and associated data of at most s
blocks and allowed to output a forgery with the summary length of blocks, and allowed to output a forgery with the summary length of
ciphertext and associated data of at most l blocks: ciphertext and associated data of at most l blocks:
CA <= ( 3( s + 4q )^2 )/ 2^n, CA <= ( 3( s + 4q )^2 )/ 2^n,
IA <= ( 3( s + 4q + l + 3 )^2 )/ 2^n + 2/2^S, IA <= ( 3( s + 4q + l + 3 )^2 )/ 2^n + 2/2^S,
where n is the block size and S is the authentication tag size. where n is the block size and S is the authentication tag size.
These bounds can be used as guidelines on how to calculate These bounds can be used as guidelines on how to calculate
confidentiality and integrity limits (for details also see confidentiality and integrity limits (for details, also see
[I-D.irtf-cfrg-aead-limits]). [AEAD-LIMITS]).
7. IANA Considerations 7. IANA Considerations
This document does not require any IANA actions. This document has no IANA actions.
8. References 8. References
8.1. Normative References 8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>. <https://www.rfc-editor.org/info/rfc2119>.
skipping to change at page 11, line 7 skipping to change at line 455
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>. May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8891] Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015: [RFC8891] Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015:
Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891, Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891,
September 2020, <https://www.rfc-editor.org/info/rfc8891>. September 2020, <https://www.rfc-editor.org/info/rfc8891>.
8.2. Informative References 8.2. Informative References
[Ferg05] Ferguson, N., "Authentication weaknesses in GCM", 2005. [AEAD-LIMITS]
Günther, F., Thomson, M., and C. A. Wood, "Usage Limits on
AEAD Algorithms", Work in Progress, Internet-Draft, draft-
irtf-cfrg-aead-limits-02, 22 February 2021,
<https://tools.ietf.org/html/draft-irtf-cfrg-aead-limits-
02>.
[AUTH-ENC-BLOCK-CIPHER]
Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security.
Authenticated encryption block cipher operation modes", R
1323565.1.026-2019, 2019.
[FERG05] Ferguson, N., "Authentication weaknesses in GCM", May
2005.
[GOST3412-2015] [GOST3412-2015]
Federal Agency on Technical Regulating and Metrology, Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security. "Information technology. Cryptographic data security.
Block ciphers", GOST R 34.12-2015, 2015. Block ciphers", GOST R 34.12-2015, 2015.
[I-D.irtf-cfrg-aead-limits]
Guenther, F., Thomson, M., and C. Wood, "Usage Limits on
AEAD Algorithms", draft-irtf-cfrg-aead-limits-01 (work in
progress), September 2020.
[PDMODE] Nozdrunov, V., "Parallel and double block cipher mode of [PDMODE] Nozdrunov, V., "Parallel and double block cipher mode of
operation (PD-mode) for authenticated encryption", CTCrypt operation (PD-mode) for authenticated encryption", CTCrypt
2017 proceedings, pp. 36-45, 2017. 2017 proceedings, pp. 36-45, June 2017.
[R1323565.1.026-2019]
Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security.
Authenticated encryption block cipher operation modes",
R 1323565.1.026-2019, 2019.
[Saar12] Saarinen, O., "Cycling Attacks on GCM, GHASH and Other [SAAR12] Saarinen, M-J., "Cycling Attacks on GCM, GHASH and Other
Polynomial MACs and Hashes", FSE 2012 proceedings, pp. Polynomial MACs and Hashes", FSE 2012 proceedings, pp.
216-225, 2012. 216-225, DOI 10.1007/978-3-642-34047-5_13, 2012,
<https://doi.org/10.1007/978-3-642-34047-5_13>.
[SecMGM] Akhmetzyanova, L., Alekseev, E., Karpunin, G. and V. [SEC-MGM] Akhmetzyanova, L., Alekseev, E., Karpunin, G., and V.
Nozdrunov, "Security of Multilinear Galois Mode (MGM).", Nozdrunov, "Security of Multilinear Galois Mode (MGM)",
IACR Cryptology ePrint Archive 2019, p. 123, 2019. IACR Cryptology ePrint Archive 2019, pp. 123, 2019.
Appendix A. Test Vectors Appendix A. Test Vectors
A.1. Test Vectors for the Kuznyechik block cipher A.1. Test Vectors for the Kuznyechik Block Cipher
Test vectors for the Kuznyechik block cipher (n = 128, k = 256) Test vectors for the Kuznyechik block cipher (n = 128, k = 256) are
defined in [GOST3412-2015] (the English version can be found in defined in [GOST3412-2015] (the English version can be found in
[RFC7801]). [RFC7801]).
-------------------------Example 1-------------------------- A.1.1. Example 1
Encryption key K: Encryption key K:
00000: 88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 00000: 88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
00010: FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 00010: FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
ICN: ICN:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Associated authenticated data A: Associated authenticated data A:
00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01
00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03 00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03
00020: EA 05 05 05 05 05 05 05 05 00020: EA 05 05 05 05 05 05 05 05
Plaintext P: Plaintext P:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
00010: 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00010: 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
skipping to change at page 12, line 19 skipping to change at line 518
00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03 00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03
00020: EA 05 05 05 05 05 05 05 05 00020: EA 05 05 05 05 05 05 05 05
Plaintext P: Plaintext P:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
00010: 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00010: 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
00020: 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 00020: 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
00030: 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 00030: 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
00040: AA BB CC 00040: AA BB CC
1. Encryption step: 1. Encryption step:
0^1 || ICN: 0^1 || ICN:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Y_1: Y_1:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CD 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CD
E_K(Y_1): E_K(Y_1):
00000: B8 57 48 C5 12 F3 19 90 AA 56 7E F1 53 35 DB 74 00000: B8 57 48 C5 12 F3 19 90 AA 56 7E F1 53 35 DB 74
Y_2: Y_2:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CE 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CE
E_K(Y_2): E_K(Y_2):
00000: 80 64 F0 12 6F AC 9B 2C 5B 6E AC 21 61 2F 94 33 00000: 80 64 F0 12 6F AC 9B 2C 5B 6E AC 21 61 2F 94 33
Y_3: Y_3:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CF 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CF
E_K(Y_3): E_K(Y_3):
00000: 58 58 82 1D 40 C0 CD 0D 0A C1 E6 C2 47 09 8F 1C 00000: 58 58 82 1D 40 C0 CD 0D 0A C1 E6 C2 47 09 8F 1C
Y_4: Y_4:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D0 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D0
E_K(Y_4): E_K(Y_4):
00000: E4 3F 50 81 B5 8F 0B 49 01 2F 8E E8 6A CD 6D FA 00000: E4 3F 50 81 B5 8F 0B 49 01 2F 8E E8 6A CD 6D FA
Y_5: Y_5:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D1 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D1
E_K(Y_5): E_K(Y_5):
00000: 86 CE 9E 2A 0A 12 25 E3 33 56 91 B2 0D 5A 33 48 00000: 86 CE 9E 2A 0A 12 25 E3 33 56 91 B2 0D 5A 33 48
C: C:
00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC 00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC
00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39 00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39
00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C 00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C
00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB 00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB
00040: 2C 75 52 00040: 2C 75 52
2. Padding step: 2. Padding step:
A_1 || ... || A_h: A_1 || ... || A_h:
00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01
00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03 00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03
00020: EA 05 05 05 05 05 05 05 05 00 00 00 00 00 00 00 00020: EA 05 05 05 05 05 05 05 05 00 00 00 00 00 00 00
C_1 || ... || C_q: C_1 || ... || C_q:
00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC 00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC
00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39 00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39
00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C 00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C
00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB 00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB
00040: 2C 75 52 00 00 00 00 00 00 00 00 00 00 00 00 00 00040: 2C 75 52 00 00 00 00 00 00 00 00 00 00 00 00 00
3. Authentication tag T generation step: 3. Authentication tag T generation step:
1^1 || ICN: 1^1 || ICN:
00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Z_1: Z_1:
00000: 7F C2 45 A8 58 6E 66 02 A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 02 A7 BB DB 27 86 BD C6 6F
H_1: H_1:
00000: 8D B1 87 D6 53 83 0E A4 BC 44 64 76 95 2C 30 0B 00000: 8D B1 87 D6 53 83 0E A4 BC 44 64 76 95 2C 30 0B
current sum: current sum:
00000: 4C F4 27 F4 AD B7 5C F4 C0 DA 39 D5 AB 48 CF 38 00000: 4C F4 27 F4 AD B7 5C F4 C0 DA 39 D5 AB 48 CF 38
Z_2: Z_2:
00000: 7F C2 45 A8 58 6E 66 03 A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 03 A7 BB DB 27 86 BD C6 6F
H_2: H_2:
00000: 7A 24 F7 26 30 E3 76 37 21 C8 F3 CD B1 DA 0E 31 00000: 7A 24 F7 26 30 E3 76 37 21 C8 F3 CD B1 DA 0E 31
current sum: current sum:
00000: 94 95 44 0E F6 24 A1 DD C6 F5 D9 77 28 50 C5 73 00000: 94 95 44 0E F6 24 A1 DD C6 F5 D9 77 28 50 C5 73
Z_3: Z_3:
00000: 7F C2 45 A8 58 6E 66 04 A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 04 A7 BB DB 27 86 BD C6 6F
H_3: H_3:
00000: 44 11 96 21 17 D2 06 35 C5 25 E0 A2 4D B4 B9 0A 00000: 44 11 96 21 17 D2 06 35 C5 25 E0 A2 4D B4 B9 0A
current sum: current sum:
00000: A4 9A 8C D8 A6 F2 74 23 DB 79 E4 4A B3 06 D9 42 00000: A4 9A 8C D8 A6 F2 74 23 DB 79 E4 4A B3 06 D9 42
Z_4: Z_4:
00000: 7F C2 45 A8 58 6E 66 05 A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 05 A7 BB DB 27 86 BD C6 6F
H_4: H_4:
00000: D8 C9 62 3C 4D BF E8 14 CE 7C 1C 0C EA A9 59 DB 00000: D8 C9 62 3C 4D BF E8 14 CE 7C 1C 0C EA A9 59 DB
current sum: current sum:
00000: 09 FE 3F 6A 83 3C 21 B3 90 27 D0 20 6A 84 E1 5A 00000: 09 FE 3F 6A 83 3C 21 B3 90 27 D0 20 6A 84 E1 5A
Z_5: Z_5:
00000: 7F C2 45 A8 58 6E 66 06 A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 06 A7 BB DB 27 86 BD C6 6F
H_5: H_5:
00000: A5 E1 F1 95 33 3E 14 82 96 99 31 BF BE 6D FD 43 00000: A5 E1 F1 95 33 3E 14 82 96 99 31 BF BE 6D FD 43
current sum: current sum:
00000: B5 DA 26 BB 00 EB A8 04 35 D7 97 6B C6 B5 46 4D 00000: B5 DA 26 BB 00 EB A8 04 35 D7 97 6B C6 B5 46 4D
Z_6: Z_6:
00000: 7F C2 45 A8 58 6E 66 07 A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 07 A7 BB DB 27 86 BD C6 6F
H_6: H_6:
00000: B4 CA 80 8C AC CF B3 F9 17 24 E4 8A 2C 7E E9 D2 00000: B4 CA 80 8C AC CF B3 F9 17 24 E4 8A 2C 7E E9 D2
current sum: current sum:
00000: DD 1C 0E EE F7 83 C8 EB 2A 33 F3 58 D7 23 0E E5 00000: DD 1C 0E EE F7 83 C8 EB 2A 33 F3 58 D7 23 0E E5
Z_7: Z_7:
00000: 7F C2 45 A8 58 6E 66 08 A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 08 A7 BB DB 27 86 BD C6 6F
H_7: H_7:
00000: 72 90 8F C0 74 E4 69 E8 90 1B D1 88 EA 91 C3 31 00000: 72 90 8F C0 74 E4 69 E8 90 1B D1 88 EA 91 C3 31
current sum: current sum:
00000: 89 6C E1 08 32 EB EA F9 06 9F 3F 73 76 59 4D 40 00000: 89 6C E1 08 32 EB EA F9 06 9F 3F 73 76 59 4D 40
Z_8: Z_8:
00000: 7F C2 45 A8 58 6E 66 09 A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 09 A7 BB DB 27 86 BD C6 6F
H_8: H_8:
00000: 23 CA 27 15 B0 2C 68 31 3B FD AC B3 9E 4D 0F B8 00000: 23 CA 27 15 B0 2C 68 31 3B FD AC B3 9E 4D 0F B8
current sum: current sum:
00000: 99 1A F5 C9 D0 80 F7 63 87 FE 64 9E 7C 93 C6 42 00000: 99 1A F5 C9 D0 80 F7 63 87 FE 64 9E 7C 93 C6 42
Z_9: Z_9:
00000: 7F C2 45 A8 58 6E 66 0A A7 BB DB 27 86 BD C6 6F 00000: 7F C2 45 A8 58 6E 66 0A A7 BB DB 27 86 BD C6 6F
H_9: H_9:
00000: BC BC E6 C4 1A A3 55 A4 14 88 62 BF 64 BD 83 0D 00000: BC BC E6 C4 1A A3 55 A4 14 88 62 BF 64 BD 83 0D
len(A) || len(C): len(A) || len(C):
00000: 00 00 00 00 00 00 01 48 00 00 00 00 00 00 02 18 00000: 00 00 00 00 00 00 01 48 00 00 00 00 00 00 02 18
sum (xor) ( H_9 (x) ( len(A) || len(C) ) ): sum (xor) ( H_9 (x) ( len(A) || len(C) ) ):
00000: C0 C7 22 DB 5E 0B D6 DB 25 76 73 83 3D 56 71 28 00000: C0 C7 22 DB 5E 0B D6 DB 25 76 73 83 3D 56 71 28
Tag T: Tag T:
00000: CF 5D 65 6F 40 C3 4F 5C 46 E8 BB 0E 29 FC DB 4C 00000: CF 5D 65 6F 40 C3 4F 5C 46 E8 BB 0E 29 FC DB 4C
A.1.2. Example 2
-------------------------Example 2--------------------------
Encryption key K: Encryption key K:
00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE 00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE
00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88 00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88
ICN: ICN:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Associated authenticated data A: Associated authenticated data A:
00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
Plaintext P: Plaintext P:
00000: 00000:
1. Encryption step: 1. Encryption step:
C: C:
00000: 00000:
2. Padding step: 2. Padding step:
A_1 || ... || A_h: A_1 || ... || A_h:
00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
C_1 || ... || C_q: C_1 || ... || C_q:
00000: 00000:
3. Authentication tag T generation step: 3. Authentication tag T generation step:
1^1 || ICN: 1^1 || ICN:
00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Z_1: Z_1:
00000: 79 32 72 68 96 C4 3E 3F BF D6 50 89 EB F1 E5 B6 00000: 79 32 72 68 96 C4 3E 3F BF D6 50 89 EB F1 E5 B6
H_1: H_1:
00000: 99 3A 80 66 CC C0 A4 0F AC 4A 14 F7 A2 F6 6D 9B 00000: 99 3A 80 66 CC C0 A4 0F AC 4A 14 F7 A2 F6 6D 9B
current sum: current sum:
00000: 0A C1 1E 2C 1C D6 07 D8 2F E3 55 54 B4 01 02 81 00000: 0A C1 1E 2C 1C D6 07 D8 2F E3 55 54 B4 01 02 81
Z_2: Z_2:
00000: 79 32 72 68 96 C4 3E 40 BF D6 50 89 EB F1 E5 B6 00000: 79 32 72 68 96 C4 3E 40 BF D6 50 89 EB F1 E5 B6
H_2: H_2:
00000: 0C 38 A7 1E E7 93 BF 76 89 81 BF CD 7C DA 78 C8 00000: 0C 38 A7 1E E7 93 BF 76 89 81 BF CD 7C DA 78 C8
len(A) || len(C): len(A) || len(C):
00000: 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00 00 00000: 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00 00
sum (xor) ( H_2 (x) ( len(A) || len(C) ) ): sum (xor) ( H_2 (x) ( len(A) || len(C) ) ):
00000: CA 1E F8 92 71 EA 60 C4 53 9E 40 EB 26 C2 80 5D 00000: CA 1E F8 92 71 EA 60 C4 53 9E 40 EB 26 C2 80 5D
Tag T:
00000: 79 01 E9 EA 20 85 CD 24 7E D2 49 69 5F 9F 8A 85
A.2. Test Vectors for the Magma block cipher Tag T:
00000: 79 01 E9 EA 20 85 CD 24 7E D2 49 69 5F 9F 8A 85
Test vectors for the Magma block cipher (n = 64, k = 256) defined in A.2. Test Vectors for the Magma Block Cipher
[GOST3412-2015] (the English version can be found in [RFC8891]).
-------------------------Example 1-------------------------- Test vectors for the Magma block cipher (n = 64, k = 256) are defined
in [GOST3412-2015] (the English version can be found in [RFC8891]).
A.2.1. Example 1
Encryption key K: Encryption key K:
00000: FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00 00000: FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00
00010: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF 00010: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF
ICN: ICN:
00000: 12 DE F0 6B 3C 13 0A 59 00000: 12 DE F0 6B 3C 13 0A 59
Associated authenticated data A: Associated authenticated data A:
00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02
00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04
00020: 05 05 05 05 05 05 05 05 EA 00020: 05 05 05 05 05 05 05 05 EA
Plaintext P: Plaintext P:
00000: FF EE DD CC BB AA 99 88 11 22 33 44 55 66 77 00 00000: FF EE DD CC BB AA 99 88 11 22 33 44 55 66 77 00
00010: 88 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 00010: 88 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77
00020: 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88 00020: 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88
00030: AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88 99 00030: AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88 99
00040: AA BB CC 00040: AA BB CC
1. Encryption step: 1. Encryption step:
0^1 || ICN:
00000: 12 DE F0 6B 3C 13 0A 59
Y_1: 0^1 || ICN:
00000: 56 23 89 01 62 DE 31 BF 00000: 12 DE F0 6B 3C 13 0A 59
E_K(Y_1):
00000: 38 7B DB A0 E4 34 39 B3
Y_2: Y_1:
00000: 56 23 89 01 62 DE 31 C0 00000: 56 23 89 01 62 DE 31 BF
E_K(Y_2): E_K(Y_1):
00000: 94 33 00 06 10 F7 F2 AE 00000: 38 7B DB A0 E4 34 39 B3
Y_3: Y_2:
00000: 56 23 89 01 62 DE 31 C1 00000: 56 23 89 01 62 DE 31 C0
E_K(Y_3): E_K(Y_2):
00000: 97 B7 AA 6D 73 C5 87 57 00000: 94 33 00 06 10 F7 F2 AE
Y_4: Y_3:
00000: 56 23 89 01 62 DE 31 C2 00000: 56 23 89 01 62 DE 31 C1
E_K(Y_4): E_K(Y_3):
00000: 94 15 52 8B FF C9 E8 0A 00000: 97 B7 AA 6D 73 C5 87 57
Y_5: Y_4:
00000: 56 23 89 01 62 DE 31 C3 00000: 56 23 89 01 62 DE 31 C2
E_K(Y_5): E_K(Y_4):
00000: 03 F7 68 BF F1 82 D6 70 00000: 94 15 52 8B FF C9 E8 0A
Y_6: Y_5:
00000: 56 23 89 01 62 DE 31 C4 00000: 56 23 89 01 62 DE 31 C3
E_K(Y_6): E_K(Y_5):
00000: FD 05 F8 4E 9B 09 D2 FE 00000: 03 F7 68 BF F1 82 D6 70
Y_7: Y_6:
00000: 56 23 89 01 62 DE 31 C5 00000: 56 23 89 01 62 DE 31 C4
E_K(Y_7): E_K(Y_6):
00000: DA 4D 90 8A 95 B1 75 C4 00000: FD 05 F8 4E 9B 09 D2 FE
Y_8: Y_7:
00000: 56 23 89 01 62 DE 31 C6 00000: 56 23 89 01 62 DE 31 C5
E_K(Y_8): E_K(Y_7):
00000: 65 99 73 96 DA C2 4B D7 00000: DA 4D 90 8A 95 B1 75 C4
Y_9: Y_8:
00000: 56 23 89 01 62 DE 31 C7 00000: 56 23 89 01 62 DE 31 C6
E_K(Y_9): E_K(Y_8):
00000: A9 00 50 4A 14 8D EE 26 00000: 65 99 73 96 DA C2 4B D7
C: Y_9:
00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE 00000: 56 23 89 01 62 DE 31 C7
00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D E_K(Y_9):
00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76 00000: A9 00 50 4A 14 8D EE 26
00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E
00040: 03 BB 9C
2. Padding step: C:
00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE
00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D
00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76
00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E
00040: 03 BB 9C
A_1 || ... || A_h: 2. Padding step:
00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02
00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04
00020: 05 05 05 05 05 05 05 05 EA 00 00 00 00 00 00 00
C_1 || ... || C_q: A_1 || ... || A_h:
00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02
00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04
00020: 05 05 05 05 05 05 05 05 EA 00 00 00 00 00 00 00
00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE C_1 || ... || C_q:
00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D 00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE
00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76 00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D
00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E 00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76
00040: 03 BB 9C 00 00 00 00 00 00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E
00040: 03 BB 9C 00 00 00 00 00
3. Authentication tag T generation step: 3. Authentication tag T generation step:
1^1 || ICN: 1^1 || ICN:
00000: 92 DE F0 6B 3C 13 0A 59 00000: 92 DE F0 6B 3C 13 0A 59
Z_1: Z_1:
00000: 2B 07 3F 04 94 F3 72 A0 00000: 2B 07 3F 04 94 F3 72 A0
H_1: H_1:
00000: 70 8A 78 19 1C DD 22 AA 00000: 70 8A 78 19 1C DD 22 AA
current sum: current sum:
00000: D6 BB 5B EA 81 93 12 62 00000: D6 BB 5B EA 81 93 12 62
Z_2: Z_2:
00000: 2B 07 3F 05 94 F3 72 A0 00000: 2B 07 3F 05 94 F3 72 A0
H_2: H_2:
00000: 6F 02 CC 46 4B 2F A0 A3 00000: 6F 02 CC 46 4B 2F A0 A3
current sum: current sum:
00000: DD 1C 82 4E 91 78 49 A5 00000: DD 1C 82 4E 91 78 49 A5
Z_3: Z_3:
00000: 2B 07 3F 06 94 F3 72 A0 00000: 2B 07 3F 06 94 F3 72 A0
H_3: H_3:
00000: 9F 81 F2 26 FD 19 6F 05 00000: 9F 81 F2 26 FD 19 6F 05
current sum: current sum:
00000: 05 89 22 17 F6 5A DA C7 00000: 05 89 22 17 F6 5A DA C7
Z_4: Z_4:
00000: 2B 07 3F 07 94 F3 72 A0 00000: 2B 07 3F 07 94 F3 72 A0
H_4: H_4:
00000: B9 C2 AC 9B E5 B5 DF F9 00000: B9 C2 AC 9B E5 B5 DF F9
current sum: current sum:
00000: D1 DB 9B 7F C4 9E 7C 97 00000: D1 DB 9B 7F C4 9E 7C 97
Z_5: Z_5:
00000: 2B 07 3F 08 94 F3 72 A0 00000: 2B 07 3F 08 94 F3 72 A0
H_5: H_5:
00000: 74 B5 EC 96 55 1B F8 88 00000: 74 B5 EC 96 55 1B F8 88
current sum: current sum:
00000: 56 45 F6 B5 18 5C B7 1A 00000: 56 45 F6 B5 18 5C B7 1A
Z_6: Z_6:
00000: 2B 07 3F 09 94 F3 72 A0
H_6:
00000: 7E B0 21 A4 03 5B 04 C3
current sum:
00000: 3F C2 C2 E6 FB EE D0 4D
00000: 2B 07 3F 09 94 F3 72 A0 Z_7:
H_6: 00000: 2B 07 3F 0A 94 F3 72 A0
00000: 7E B0 21 A4 03 5B 04 C3 H_7:
current sum: 00000: C2 A9 C3 A8 70 4D 9B B0
00000: 3F C2 C2 E6 FB EE D0 4D current sum:
00000: 15 47 1F B5 CD 8E 6C 02
Z_7: Z_8:
00000: 2B 07 3F 0A 94 F3 72 A0 00000: 2B 07 3F 0B 94 F3 72 A0
H_7: H_8:
00000: C2 A9 C3 A8 70 4D 9B B0 00000: F5 D5 05 A8 7B 83 83 B5
current sum: current sum:
00000: 15 47 1F B5 CD 8E 6C 02 00000: 12 56 78 96 1D 40 E0 93
Z_8: Z_9:
00000: 2B 07 3F 0B 94 F3 72 A0 00000: 2B 07 3F 0C 94 F3 72 A0
H_8: H_9:
00000: F5 D5 05 A8 7B 83 83 B5 00000: F7 95 E7 5F DE B8 93 3C
current sum: current sum:
00000: 12 56 78 96 1D 40 E0 93 00000: 6E F4 0A B0 C1 5F 20 48
Z_9: Z_10:
00000: 2B 07 3F 0C 94 F3 72 A0 00000: 2B 07 3F 0D 94 F3 72 A0
H_9: H_10:
00000: F7 95 E7 5F DE B8 93 3C 00000: 65 A1 A3 E6 80 F0 81 45
current sum: current sum:
00000: 6E F4 0A B0 C1 5F 20 48 00000: A4 64 A7 08 FF 45 14 22
Z_10: Z_11:
00000: 2B 07 3F 0D 94 F3 72 A0 00000: 2B 07 3F 0E 94 F3 72 A0
H_10: H_11:
00000: 65 A1 A3 E6 80 F0 81 45 00000: 1C 74 A5 76 4C B0 D5 95
current sum: current sum:
00000: A4 64 A7 08 FF 45 14 22 00000: 60 94 4E 05 D0 85 75 14
Z_11: Z_12:
00000: 2B 07 3F 0E 94 F3 72 A0 00000: 2B 07 3F 0F 94 F3 72 A0
H_11: H_12:
00000: 1C 74 A5 76 4C B0 D5 95 00000: DC 84 47 A5 14 E7 83 E7
current sum: current sum:
00000: 60 94 4E 05 D0 85 75 14 00000: EE 98 B9 B5 0F F7 83 E8
Z_12: Z_13:
00000: 2B 07 3F 0F 94 F3 72 A0 00000: 2B 07 3F 10 94 F3 72 A0
H_12: H_13:
00000: DC 84 47 A5 14 E7 83 E7 00000: A7 E3 AF E0 04 EE 16 E3
current sum: current sum:
00000: EE 98 B9 B5 0F F7 83 E8 00000: C0 39 0F A2 28 AF 6D CB
Z_13:
00000: 2B 07 3F 10 94 F3 72 A0
H_13:
00000: A7 E3 AF E0 04 EE 16 E3
current sum:
00000: C0 39 0F A2 28 AF 6D CB
Z_14: Z_14:
00000: 2B 07 3F 11 94 F3 72 A0 00000: 2B 07 3F 11 94 F3 72 A0
H_14: H_14:
00000: A5 AA BB 0B 79 80 D0 71 00000: A5 AA BB 0B 79 80 D0 71
current sum: current sum:
00000: 73 E0 6E 07 EF 37 CD CC 00000: 73 E0 6E 07 EF 37 CD CC
Z_15: Z_15:
00000: 2B 07 3F 12 94 F3 72 A0 00000: 2B 07 3F 12 94 F3 72 A0
H_15: H_15:
00000: 6E 10 4C C9 33 52 5C 5D 00000: 6E 10 4C C9 33 52 5C 5D
current sum: current sum:
00000: 2F 40 69 0A EB 53 F5 39 00000: 2F 40 69 0A EB 53 F5 39
Z_16: Z_16:
00000: 2B 07 3F 13 94 F3 72 A0 00000: 2B 07 3F 13 94 F3 72 A0
H_16: H_16:
00000: 83 11 B6 02 4A A9 66 C1 00000: 83 11 B6 02 4A A9 66 C1
len(A) || len(C): len(A) || len(C):
00000: 00 00 01 48 00 00 02 18 00000: 00 00 01 48 00 00 02 18
sum (xor) ( H_16 (x) ( len(A) || len(C) ) ): sum (xor) ( H_16 (x) ( len(A) || len(C) ) ):
00000: 73 CE F4 4B AE 6B DB 61 00000: 73 CE F4 4B AE 6B DB 61
Tag T: Tag T:
00000: A7 92 80 69 AA 10 FD 10 00000: A7 92 80 69 AA 10 FD 10
-------------------------Example 2-------------------------- A.2.2. Example 2
Encryption key K: Encryption key K:
00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE 00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE
00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88 00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88
ICN: ICN:
00000: 00 77 66 55 44 33 22 11 00000: 00 77 66 55 44 33 22 11
Associated authenticated data A: Associated authenticated data A:
00000: 00000:
Plaintext P: Plaintext P:
00000: 22 33 44 55 66 77 00 FF 00000: 22 33 44 55 66 77 00 FF
1. Encryption step: 1. Encryption step:
0^1 || ICN: 0^1 || ICN:
00000: 00 77 66 55 44 33 22 11 00000: 00 77 66 55 44 33 22 11
Y_1: Y_1:
00000: 5B 2A 7E 60 4F 9F BB 95 00000: 5B 2A 7E 60 4F 9F BB 95
E_K(Y_1): E_K(Y_1):
00000: 48 A6 A5 17 0D 52 9D B1 00000: 48 A6 A5 17 0D 52 9D B1
C: C:
00000: 6A 95 E1 42 6B 25 9D 4E 00000: 6A 95 E1 42 6B 25 9D 4E
2. Padding step: 2. Padding step:
A_1 || ... || A_h: A_1 || ... || A_h:
00000: 00000:
C_1 || ... || C_q: C_1 || ... || C_q:
00000: 6A 95 E1 42 6B 25 9D 4E 00000: 6A 95 E1 42 6B 25 9D 4E
3. Authentication tag T generation step: 3. Authentication tag T generation step:
1^1 || ICN: 1^1 || ICN:
00000: 80 77 66 55 44 33 22 11 00000: 80 77 66 55 44 33 22 11
Z_1: Z_1:
00000: 59 73 54 78 7E 52 E6 EB 00000: 59 73 54 78 7E 52 E6 EB
H_1: H_1:
00000: EC E3 F9 DA 11 8C 7D 95 00000: EC E3 F9 DA 11 8C 7D 95
current sum: current sum:
00000: 25 D0 E4 20 7B 6B F6 3D 00000: 25 D0 E4 20 7B 6B F6 3D
Z_2: Z_2:
00000: 59 73 54 79 7E 52 E6 EB 00000: 59 73 54 79 7E 52 E6 EB
H_2: H_2:
00000: 31 0C 0D AC C9 D0 4D 93 00000: 31 0C 0D AC C9 D0 4D 93
len(A) || len(C): len(A) || len(C):
00000: 00 00 00 00 00 00 00 40 00000: 00 00 00 00 00 00 00 40
sum (xor) ( H_2 (x) ( len(A) || len(C) ) ): sum (xor) ( H_2 (x) ( len(A) || len(C) ) ):
00000: 66 D3 8F 12 0F 78 92 49 00000: 66 D3 8F 12 0F 78 92 49
Tag T: Tag T:
00000: 33 4E E2 70 45 0B EC 9E
00000: 33 4E E2 70 45 0B EC 9E Contributors
Appendix B. Contributors Evgeny Alekseev
CryptoPro
o Evgeny Alekseev Email: alekseev@cryptopro.ru
CryptoPro
alekseev@cryptopro.ru
o Alexandra Babueva Alexandra Babueva
CryptoPro CryptoPro
babueva@cryptopro.ru
o Lilia Akhmetzyanova Email: babueva@cryptopro.ru
CryptoPro
lah@cryptopro.ru
o Grigory Marshalko Lilia Akhmetzyanova
TC 26 CryptoPro
marshalko_gb@tc26.ru
o Vladimir Rudskoy Email: lah@cryptopro.ru
TC 26
rudskoy_vi@tc26.ru
o Alexey Nesterenko Grigory Marshalko
National Research University Higher School of Economics TC 26
anesterenko@hse.ru
o Lidia Nikiforova Email: marshalko_gb@tc26.ru
CryptoPro
nikiforova@cryptopro.ru Vladimir Rudskoy
TC 26
Email: rudskoy_vi@tc26.ru
Alexey Nesterenko
National Research University Higher School of Economics
Email: anesterenko@hse.ru
Lidia Nikiforova
CryptoPro
Email: nikiforova@cryptopro.ru
Authors' Addresses Authors' Addresses
Stanislav Smyshlyaev (editor) Stanislav Smyshlyaev (editor)
CryptoPro CryptoPro
Phone: +7 (495) 995-48-20 Phone: +7 (495) 995-48-20
Email: svs@cryptopro.ru Email: svs@cryptopro.ru
Vladislav Nozdrunov Vladislav Nozdrunov
 End of changes. 155 change blocks. 
585 lines changed or deleted 609 lines changed or added

This html diff was produced by rfcdiff 1.48. The latest version is available from http://tools.ietf.org/tools/rfcdiff/