<?xmlversion = "1.0" encoding = "utf-8"?>version='1.0' encoding='UTF-8'?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd"> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?>"rfc2629-xhtml.ent"> <?rfc toc="yes"?> <?rfc tocdepth="4"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes" ?> <?rfc compact="no" ?> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" number="9058" category="info" docName="draft-smyshlyaev-mgm-20"ipr="trust200902">ipr="trust200902" obsoletes="" updates="" submissionType="independent" xml:lang="en" tocInclude="true" tocDepth="4" symRefs="true" sortRefs="true" version="3"> <front> <title abbrev="Multilinear Galois Mode (MGM)"> Multilinear Galois Mode (MGM) </title> <seriesInfo name="RFC" value="9058"/> <author fullname="Stanislav Smyshlyaev"initials="S.V."initials="S" role="editor" surname="Smyshlyaev"> <organization>CryptoPro</organization> <address> <phone>+7 (495) 995-48-20</phone> <email>svs@cryptopro.ru</email> </address> </author> <author fullname="Vladislav Nozdrunov"initials="V.N."initials="V" surname="Nozdrunov"> <organization>TC 26</organization> <address> <email>nozdrunov_vi@tc26.ru</email> </address> </author> <author fullname="Vasily Shishkin"initials="V.S."initials="V" surname="Shishkin"> <organization>TC 26</organization> <address> <email>shishkin_va@tc26.ru</email> </address> </author> <author fullname="Ekaterina Griboedova"initials="E.S."initials="E" surname="Griboedova"> <organization>CryptoPro</organization> <address> <email>griboedovaekaterina@gmail.com</email> </address> </author> <dateyear="2021" /> <!--если не указываем число и месяц, они подставляются автоматически-->month="June" year="2021"/> <area>General</area><!--как в rfc7748--><workgroup>Network Working Group</workgroup> <keyword>authenticatedencryption, modeencryption</keyword> <keyword>mode ofoperation, AEAD</keyword>operation</keyword> <keyword>AEAD</keyword> <abstract> <t> Multilinear Galois Mode (MGM) is anauthenticated encryptionAuthenticated Encryption withassociated dataAssociated Data (AEAD) block cipher mode based onEtMthe Encrypt-then-MAC (EtM) principle. MGM is defined for use with 64-bit and 128-bit block ciphers. </t> <t> MGM has been standardized in Russia. It is used as an AEAD mode for the GOST block cipher algorithms in many protocols,e.g.e.g., TLS 1.3 and IPsec. This document provides a reference for MGM to enable review of the mechanisms in use and to make MGM available for use with any block cipher. </t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="Introduction">anchor="Introduction" numbered="true" toc="default"> <name>Introduction</name> <t> Multilinear Galois Mode (MGM) is anauthenticated encryptionAuthenticated Encryption withassociated dataAssociated Data (AEAD) block cipher mode based on EtM principle. MGM is defined for use with 64-bit and 128-bit block ciphers. The MGM design principles can easily be applied to other block sizes. </t> <t> MGM has been standardized in Russia <xreftarget="R1323565.1.026-2019"/>.target="AUTH-ENC-BLOCK-CIPHER" format="default"/>. It is used as an AEAD mode for the GOST block cipher algorithms in many protocols,e.g.e.g., TLS 1.3 and IPsec. This document provides a reference for MGM to enable review of the mechanisms in use and to make MGM available for use with any block cipher. </t> <t> This document does not have IETF consensus and does not imply IETF support for MGM. </t> </section> <sectiontitle="Conventionsnumbered="true" toc="default"> <name>Conventions Used in ThisDocument">Document</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119"/>target="RFC2119" format="default"/> <xreftarget="RFC8174"/>target="RFC8174" format="default"/> when, and only when, they appear in all capitals, as shown here. </t> </section> <sectiontitle="Basicanchor="Definition" numbered="true" toc="default"> <name>Basic Terms andDefinitions" anchor="Definition">Definitions</name> <t> This document uses the following terms and definitions for the sets and operations on the elements of these sets:<list style = "hanging" hangIndent = "8"> <t hangText = "V*"> the</t> <dl newline="false" spacing="normal" indent="10"> <dt>V*</dt> <dd> The set of all bit strings of a finite length (hereinafter referred to as strings), including the empty string; substrings and string components are enumerated from right to left starting fromzero; </t> <t hangText = "V_s"> thezero. </dd> <dt>V_s</dt> <dd> The set of all bit strings of length s, where s is a non-negative integer. For s = 0, the V_0 consists of a single emptystring; </t> <t hangText = "|X|"> thestring. </dd> <dt>|X|</dt> <dd> The bit length of the bit string X (if X is an empty string, then |X| =0); </t> <t hangText = "X || Y"> concatenation0). </dd> <dt>X || Y</dt> <dd> Concatenation of strings X and Y both belonging to V*, i.e., a string from V_{|X|+|Y|}, where the left substring from V_{|X|} is equal to X, and the right substring from V_{|Y|} is equal toY; </t> <t hangText = "a^s"> theY. </dd> <dt>a^s</dt> <dd> The string in V_s that consists of s 'a'bits; </t> <t hangText = "(xor)"> exclusive-orbits. </dd> <dt>(xor)</dt> <dd> Exclusive-or ofthetwo bit strings of the samelength; </t> <t hangText = "Z_{2^s}"> ringlength. </dd> <dt>Z_{2^s}</dt> <dd> Ring of residues modulo2^s; </t> <t hangText = "MSB_i:2^s. </dd> <dt>MSB_i</dt> <dd><t> V_s-> V_i"> the-> V_i</t> <t>The transformation that maps the string X = (x_{s-1}, ... , x_0) in V_s into the string MSB_i(X) = (x_{s-1}, ... , x_{s-i}) in V_i, i <=s,s (most significantbits); </t> <t hangText = "Int_s: V_s -> Z_{2^s}"> thebits).</t> </dd> <dt>Int_s</dt><dd> <t>V_s -> Z_{2^s}</t> <t>The transformation that maps the string X = (x_{s-1}, ... , x_0) in V_s, s>> 0, into the integer Int_s(X) = 2^{s-1} * x_{s-1} + ... + 2 * x_1 + x_0 (the interpretation of the bit string as aninteger); </t> <t hangText = "Vec_s:integer).</t> </dd> <dt>Vec_s</dt><dd><t> Z_{2^s}-> V_s"> the-> V_s</t> <t>The transformation inverse to the mapping Int_s (the interpretation of an integer as a bitstring); </t> <t hangText = "E_K: V_n -> V_n"> thestring).</t> </dd> <dt>E_K</dt><dd><t>V_n -> V_n</t> <t>The block cipher permutation under the key K inV_k; </t> <t hangText = "k"> theV_k.</t> </dd> <dt>k</dt> <dd> The bit length of the block cipherkey; </t> <t hangText = "n"> thekey. </dd> <dt>n</dt> <dd> The block size of the block cipher (inbits); </t> <t hangText = "len:bits). </dd> <dt>len</dt><dd><t> V_s-> V_{n/2}"> the-> V_{n/2}</t> <t>The transformation that maps a string X in V_s, 0 <= s <= 2^{n/2} - 1, into the string len(X) = Vec_{n/2}(|X|) in V_{n/2}, where n is the block size of the used blockcipher; </t> <t hangText = "[+]"> thecipher.</t> </dd> <dt>[+]</dt> <dd> The addition operation in Z_{2^{n/2}}, where n is the block size of the used blockcipher; </t> <t hangText = "(x)"> thecipher. </dd> <dt>(x)</dt> <dd> The transformation that maps twostringsstrings, X = (x_{n-1}, ... , x_0) in V_n and Y = (y_{n-1}, ... ,y_0)y_0), in V_n into the string Z = X (x) Y = (z_{n-1}, ... , z_0) in V_n; the string Z corresponds to the polynomial Z(w) = z_{n-1} * w^{n-1} + ... + z_1 * w +z_0z_0, which is the result of multiplying the polynomials X(w) = x_{n-1} * w^{n-1} + ... + x_1 * w + x_0 and Y(w) = y_{n-1} * w^{n-1} + ... + y_1 * w + y_0 in the field GF(2^n), where n is the block size of the used block cipher; if n = 64, then the field polynomial is equal to f(w) = w^64 + w^4 + w^3 + w + 1; if n = 128, then the field polynomial is equal to f(w) = w^128 + w^7 + w^2 + w +1; </t> <t hangText = "incr_l:1. </dd> <dt>incr_l</dt><dd><t> V_n-> V_n"> the-> V_n</t> <t> The transformation that mapsaan n-byte string A = L ||R, where L,Rin V_{n/2},into the n-byte stringincr_l(L || R)incr_l(A) = Vec_{n/2}(Int_{n/2}(L) [+] 1) ||R;R, where L and R are n/2-byte strings. </t><t hangText = "incr_r: V_n -> V_n"> the</dd> <dt>incr_r</dt> <dd><t>V_n -> V_n</t> <t> The transformation that mapsaan n-byte string A = L ||R, where L,Rin V_{n/2},into the n-byte stringincr_r(L || R)incr_r(A) = L || Vec_{n/2}(Int_{n/2}(R) [+]1). </t> </list>1), where L and R are n/2-byte strings. </t> </dd> </dl> </section> <sectiontitle="Specification">numbered="true" toc="default"> <name>Specification</name> <t> An additional parameter that defines the functioning ofMultilinear Galois Mode (MGM)MGM is the bit length S of the authentication tag, 32 <= S <= n. The value of SMUST<bcp14>MUST</bcp14> be fixed for a particular protocol. The choice of the value S involves a trade-off between message expansion and the forgery probability. </t> <sectiontitle="MGManchor="ENC" numbered="true" toc="default"> <name>MGM Encryption and Tag GenerationProcedure" anchor="ENC">Procedure</name> <t> The MGM encryption and tag generation procedure takes the following parameters as inputs:<list style="numbers"> <t></t> <ol spacing="normal" type="1"><li> Encryption key K in V_k.</t> <t></li> <li> Initial counter nonce ICN in V_{n-1}.</t> <t></li> <li> Associated authenticated data A, 0 <= |A| < 2^{n/2}. If |A|>> 0, then A = A_1 || ... || A*_h, A_j in V_n, for j = 1, ... , h - 1, A*_h in V_t, 1 <= t <= n. If |A| = 0, then by definition A*_h is empty, and the h and t parameters are set as follows: h = 0, t = n. The associated data is authenticated but is not encrypted.</t> <t></li> <li> Plaintext P, 0 <= |P| < 2^{n/2}. If |P|>> 0, then P = P_1 || ... || P*_q, P_i in V_n, for i = 1, ... , q - 1, P*_q in V_u, 1 <= u <= n. If |P| = 0, then by definition P*_q is empty, and the q and u parameters are set as follows: q = 0, u = n.</t> </list> </t></li> </ol> <t> The MGM encryption and tag generation procedure outputs the following parameters:<list style="numbers"> <t>Initial</t> <ol spacing="normal" type="1"><li>Initial counter nonceICN.</t> <t>AssociatedICN.</li> <li>Associated authenticated dataA.</t> <t>CiphertextA.</li> <li>Ciphertext C inV_{|P|}.</t> <t>AuthenticationV_{|P|}.</li> <li>Authentication tag T inV_S.</t> </list> </t>V_S.</li> </ol> <t> The MGM encryption and tag generation procedure consists of the following steps: </t><t> <figure> <artwork> <![CDATA[<sourcecode type="pseudocode"><![CDATA[ +----------------------------------------------------------------+ | MGM-Encrypt(K, ICN, A, P) | |----------------------------------------------------------------| | 1. Encryption step: | | - if |P| = 0 then | | - C*_q = P*_q | | - C = P | | - else | | - Y_1 = E_K(0^1 || ICN), | | - For i = 2, 3, ... , q do | | Y_i = incr_r(Y_{i-1}), | | - For i = 1, 2, ... , q - 1 do | | C_i = P_i (xor) E_K(Y_i), | | - C*_q = P*_q (xor) MSB_u(E_K(Y_q)), | | - C = C_1 || ... || C*_q. | | | | 2. Padding step: | | - A_h = A*_h || 0^{n-t}, | | - C_q = C*_q || 0^{n-u}. | | | | 3. Authentication tag T generation step: | | - Z_1 = E_K(1^1 || ICN), | | - sum = 0^n, | | - For i = 1, 2, ..., h do | | H_i = E_K(Z_i), | | sum = sum (xor) ( H_i (x) A_i ), | | Z_{i+1} = incr_l(Z_i), | | - For j = 1, 2, ..., q do | | H_{h+j} = E_K(Z_{h+j}), | | sum = sum (xor) ( H_{h+j} (x) C_j ), | | Z_{h+j+1} = incr_l(Z_{h+j}), | | - H_{h+q+1} = E_K(Z_{h+q+1}), | | - T = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) | | ( len(A) || len(C) ) ))). | | | | 4. Return (ICN, A, C, T). | +----------------------------------------------------------------+]]> </artwork> </figure> </t>]]></sourcecode> <t> The ICN value for each message that is encrypted under the given key K must be chosen in a unique manner. </t> <t> Users who do not wish to encrypt plaintext can provide a string P of zero length. Users who do not wish to authenticate associated data can provide a string A of zero length. The length of the associated data A and of the plaintext PMUST<bcp14>MUST</bcp14> be such that 0 < |A| + |P| < 2^{n/2}. </t> </section> <sectiontitle="MGMnumbered="true" toc="default"> <name>MGM Decryption and Tag Verification CheckProcedure">Procedure</name> <t> The MGM decryption and tag verification procedure takes the following parameters as inputs:<list style="numbers"> <t></t> <ol spacing="normal" type="1"><li> Encryption key K in V_k.</t> <t></li> <li> Initial counter nonce ICN in V_{n-1}.</t> <t></li> <li> Associated authenticated data A, 0 <= |A| < 2^{n/2}. If |A|>> 0, then A = A_1 || ... || A*_h, A_j in V_n, for j = 1, ... , h - 1, A*_h in V_t, 1 <= t <= n. If |A| = 0, then by definition A*_h is empty, and the h and t parameters are set as follows: h = 0, t = n. The associated data is authenticated but is not encrypted.</t> <t></li> <li> Ciphertext C, 0 <= |C| < 2^{n/2}. If |C|>> 0, then C = C_1 || ... || C*_q, C_i in V_n, for i = 1, ... , q - 1, C*_q in V_u, 1 <= u <= n. If |C| = 0, then by definition C*_q is empty, and the q and u parameters are set as follows: q = 0, u = n.</t> <t></li> <li> Authentication tag T in V_S.</t> </list> </t></li> </ol> <t> The MGM decryption and tag verification procedure outputs FAIL or the following parameters:<list style="numbers"> <t>Associated</t> <ol spacing="normal" type="1"><li>Associated authenticated dataA.</t> <t>PlaintextA.</li> <li>Plaintext P inV_{|C|}.</t> </list> </t>V_{|C|}.</li> </ol> <t> The MGM decryption and tag verification procedure consists of the following steps: </t><t> <figure> <artwork> <![CDATA[<sourcecode type="pseudocode"><![CDATA[ +----------------------------------------------------------------+ | MGM-Decrypt(K, ICN, A, C, T) | |----------------------------------------------------------------| | 1. Padding step: | | - A_h = A*_h || 0^{n-t}, | | - C_q = C*_q || 0^{n-u}. | | | | 2. Authentication tag T verification step: | | - Z_1 = E_K(1^1 || ICN), | | - sum = 0^n, | | - For i = 1, 2, ..., h do | | H_i = E_K(Z_i), | | sum = sum (xor) ( H_i (x) A_i ), | | Z_{i+1} = incr_l(Z_i), | | - For j = 1, 2, ..., q do | | H_{h+j} = E_K(Z_{h+j}), | | sum = sum (xor) ( H_{h+j} (x) C_j ), | | Z_{h+j+1} = incr_l(Z_{h+j}), | | - H_{h+q+1} = E_K(Z_{h+q+1}), | | - T' = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) | | ( len(A) || len(C) ) ))), | | - If T' != T then return FAIL. | | | | 3. Decryption step: | | - if |C| = 0 then | | - P = C | | - else | | - Y_1 = E_K(0^1 || ICN), | | - For i = 2, 3, ... , q do | | Y_i = incr_r(Y_{i-1}), | | - For i = 1, 2, ... , q - 1 do | | P_i = C_i (xor) E_K(Y_i), | | - P*_q = C*_q (xor) MSB_u(E_K(Y_q)), | | - P = P_1 || ... || P*_q. | | | | 4. Return (A, P). | +----------------------------------------------------------------+]]> </artwork> </figure> </t>]]></sourcecode> <t> The length of the associated data A and of the ciphertext CMUST<bcp14>MUST</bcp14> be such that 0 < |A| + |C| < 2^{n/2}. </t> </section> </section> <section anchor="RefRationale"title="Rationale">numbered="true" toc="default"> <name>Rationale</name> <t>TheMGM was originally proposed in <xreftarget="PDMODE"/>.target="PDMODE" format="default"/>. </t> <t> From the operational point ofview theview, MGM is designed to be parallelizable,inverse-free,inverse free, and online and is also designed to provide availability of precomputations. </t> <t> Parallelizability oftheMGM is achieved due to its counter-type structure and the usage of the multilinear function for authentication. Indeed, both encryption blocks E_K(Y_i) and authentication blocks H_i are produced in the counter mode manner, and the multilinear function determined by H_i is parallelizable in itself. Additionally, the counter-type structure of the mode provides the inverse-free property. </t> <t> The online property means the possibilityto process messageof processing messages even if it is not completely received (so its length is unknown). To provide thisproperty theproperty, MGM uses blocks E_K(Y_i) andH_iH_i, which are producedbasingbased on two independent source blocks Y_i and Z_i. </t> <t> Availability of precomputations fortheMGM means the possibilityto calculateof calculating H_i and E_K(Y_i) even before data is retrieved. It holds again due to the usage of counters for calculating them. </t> </section> <section anchor="Security"title="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t> The security properties oftheMGM are based on the following:<list style="symbols"> <t></t> <dl spacing="normal" newline="true"> <dt> Different functions generating the counter values:<vspace/> The</dt> <dd>The functions incr_r and incr_l are chosen to minimize intersection (if it happens) of counter values Y_i andZ_i. </t> <t>Z_i.</dd> <dt> Encryption of the multilinear functionoutput:<vspace/>output:</dt> <dd> It allowsto resistattacks based on padding and linear properties to be resisted (see <xreftarget="Ferg05"/>target="FERG05" format="default"/> fordetails). </t> <t>details).</dd> <dt> Multilinear function forauthentication:<vspace/>authentication:</dt> <dd> It allowsto resistthe small subgroup attacks to be resisted <xreftarget="Saar12"/>. </t> <t>target="SAAR12" format="default"/>.</dd> <dt> Encryption of the nonces (0^1 || ICN) and (1^1 ||ICN):<vspace/>ICN):</dt> <dd> The use of this encryption minimizes the number of plaintext/ciphertext pairs of blocks known to an adversary. Itallows to resistprevents attacks that need a substantial amount of such material (e.g., linear and differentialcryptanalysis,cryptanalysis and side-channel attacks).</t> </list> </t></dd> </dl> <t> It is crucial to the security of MGM to use unique ICN values. Using the same ICN values for two different messages encrypted with the same key eliminates the security properties of this mode. </t> <t> It is crucial for the security of MGM not to process empty plaintext and empty associated data at the same time. Otherwise, a tag becomes independent from a nonce value, leading to vulnerability to forgeryattack.attacks. </t> <t> Security analysis for MGM with E_K being a random permutation was performed in <xreftarget="SecMGM"/>.target="SEC-MGM" format="default"/>. More precisely, the bounds for confidentiality advantage (CA) and integrity advantage (IA) (fordetailsdetails, see <xreftarget="I-D.irtf-cfrg-aead-limits"/>)target="I-D.irtf-cfrg-aead-limits" format="default"/>) were obtained. According to these results, for an adversary making at most q encryption queries with the total length of plaintexts and associated data of at most sblocksblocks, and allowed to output a forgery with the summary length of ciphertext and associated data of at most l blocks:<list style = "empty"> <t> CA</t> <t indent="6">CA <= ( 3( s + 4q )^2 )/ 2^n, </t><t> IA<t indent="6">IA <= ( 3( s + 4q + l + 3 )^2 )/ 2^n + 2/2^S, </t></list><t> where n is the block size and S is the authentication tag size. </t> <t> These bounds can be used as guidelines on how to calculate confidentiality and integrity limits (fordetailsdetails, also see <xreftarget="I-D.irtf-cfrg-aead-limits"/>).target="I-D.irtf-cfrg-aead-limits" format="default"/>). </t> </section> <section anchor="IANA"title="IANA Considerations">numbered="true" toc="default"> <name>IANA Considerations</name> <t> This documentdoes not require anyhas no IANA actions. </t> </section> </middle> <back><references title="Normative References"> <?rfc include='http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml' ?> <?rfc include='http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7801.xml' ?> <?rfc include='http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml' ?> <?rfc include='http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8891.xml' ?><displayreference target="I-D.irtf-cfrg-aead-limits" to="AEAD-LIMITS"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7801.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8891.xml"/> </references><references title="Informative References"> <?rfc include='http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.draft-irtf-cfrg-aead-limits-01.xml' ?><references> <name>Informative References</name> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-irtf-cfrg-aead-limits.xml"/> <reference anchor="PDMODE"> <front><title> Parallel<title>Parallel and double block cipher mode of operation (PD-mode) for authenticated encryption </title><author> <organization> Nozdrunov, V. </organization><author fullname="Vladislav Nozdrunov" initials="V." surname="Nozdrunov"> <organization/> </author> <date month="June" year="2017"/> </front><seriesInfo name="CTCrypt<refcontent>CTCrypt 2017proceedings," value="pp. 36-45"/>proceedings, pp. 36-45 </refcontent> </reference> <reference anchor="GOST3412-2015"> <front><title> Information<title>Information technology. Cryptographic data security. Block ciphers </title> <author><organization> Federal<organization>Federal Agency on Technical Regulating and Metrology </organization> </author> <date year="2015"/> </front><seriesInfo name="GOST R" value="34.12-2015"/><refcontent>GOST R 34.12-2015</refcontent> </reference> <referenceanchor="Ferg05">anchor="FERG05"> <front><title> Authentication<title>Authentication weaknesses in GCM </title><author> <organization> Ferguson, N. </organization><author fullname="Niels Ferguson" initials="N" surname="Ferguson"> <organization/> </author> <dateyear="2005"/>year="2005" month="May"/> </front> </reference> <referenceanchor="R1323565.1.026-2019">anchor="AUTH-ENC-BLOCK-CIPHER"> <front> <title> Information technology. Cryptographic data security. Authenticated encryption block cipher operation modes </title> <author> <organization> Federal Agency on Technical Regulating and Metrology </organization> </author> <date year="2019"/> </front><seriesInfo name="R" value="1323565.1.026-2019"/><refcontent>R 1323565.1.026-2019</refcontent> </reference> <referenceanchor="Saar12">anchor="SAAR12"> <front><title> Cycling<title>Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes </title><author> <organization> Saarinen, O. </organization><author fullname="Markku-Juhani Olavi Saarinen" initials="M-J" surname="Saarinen"> <organization>Fast Software Encryption</organization> </author> <date year="2012"/> </front><seriesInfo name="FSE<refcontent>FSE 2012proceedings," value="pp. 216-225"/>proceedings, pp. 216-225</refcontent> <seriesInfo name="DOI" value="10.1007/978-3-642-34047-5_13"/> </reference> <referenceanchor="SecMGM">anchor="SEC-MGM"> <front><title> Security<title>Security of Multilinear Galois Mode(MGM).(MGM) </title><author> <organization> Akhmetzyanova, L., Alekseev, E., Karpunin, G. and V. Nozdrunov </organization> </author><author fullname="Liliya Akhmetzyanova" initials="L" surname="Akhmetzyanova"/> <author fullname="Evgeny Alekseev" initials="E" surname="Alekseev"/> <author fullname="Grigory Karpunin" initials="G" surname="Karpunin"/> <author fullname="Vladislav Nozdrunov" initials="V" surname="Nozdrunov"/> <date year="2019"/> </front><seriesInfo name="IACR<refcontent>IACR Cryptology ePrint Archive2019," value="p. 123"/>2019, pp. 123</refcontent> </reference> </references> </references> <section anchor="Appendix"title="Test Vectors">numbered="true" toc="default"> <name>Test Vectors</name> <sectiontitle="Testnumbered="true" toc="default"> <name>Test Vectors for the Kuznyechikblock cipher">Block Cipher</name> <t> Test vectors for the Kuznyechik block cipher (n = 128, k = 256) are defined in <xreftarget="GOST3412-2015"/>target="GOST3412-2015" format="default"/> (the English version can be found in <xreftarget="RFC7801"/>).target="RFC7801" format="default"/>). </t><t> <figure> <artwork> <![CDATA[ -------------------------Example 1--------------------------<section anchor="example1"> <name>Example 1</name> <sourcecode><![CDATA[ Encryption key K: 00000: 88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 00010: FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF ICN: 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Associated authenticated data A: 00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03 00020: EA 05 05 05 05 05 05 05 05 Plaintext P: 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00010: 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00020: 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 00030: 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 00040: AA BB CC1. Encryption step:]]></sourcecode> <ol> <li><t>Encryption step:</t> <sourcecode><![CDATA[ 0^1 || ICN: 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Y_1: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CD E_K(Y_1): 00000: B8 57 48 C5 12 F3 19 90 AA 56 7E F1 53 35 DB 74 Y_2: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CE E_K(Y_2): 00000: 80 64 F0 12 6F AC 9B 2C 5B 6E AC 21 61 2F 94 33 Y_3: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CF E_K(Y_3): 00000: 58 58 82 1D 40 C0 CD 0D 0A C1 E6 C2 47 09 8F 1C Y_4: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D0 E_K(Y_4): 00000: E4 3F 50 81 B5 8F 0B 49 01 2F 8E E8 6A CD 6D FA Y_5: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D1 E_K(Y_5): 00000: 86 CE 9E 2A 0A 12 25 E3 33 56 91 B2 0D 5A 33 48 C: 00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC 00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39 00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C 00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB 00040: 2C 75 522. Padding step:]]></sourcecode> </li> <li><t>Padding step:</t> <sourcecode><![CDATA[ A_1 || ... || A_h: 00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03 00020: EA 05 05 05 05 05 05 05 05 00 00 00 00 00 00 00 C_1 || ... || C_q: 00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC 00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39 00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C 00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB 00040: 2C 75 52 00 00 00 00 00 00 00 00 00 00 00 00 003. Authentication]]></sourcecode> </li> <li><t>Authentication tag T generationstep:step:</t> <sourcecode><![CDATA[ 1^1 || ICN: 00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Z_1: 00000: 7F C2 45 A8 58 6E 66 02 A7 BB DB 27 86 BD C6 6F H_1: 00000: 8D B1 87 D6 53 83 0E A4 BC 44 64 76 95 2C 30 0B current sum: 00000: 4C F4 27 F4 AD B7 5C F4 C0 DA 39 D5 AB 48 CF 38 Z_2: 00000: 7F C2 45 A8 58 6E 66 03 A7 BB DB 27 86 BD C6 6F H_2: 00000: 7A 24 F7 26 30 E3 76 37 21 C8 F3 CD B1 DA 0E 31 current sum: 00000: 94 95 44 0E F6 24 A1 DD C6 F5 D9 77 28 50 C5 73 Z_3: 00000: 7F C2 45 A8 58 6E 66 04 A7 BB DB 27 86 BD C6 6F H_3: 00000: 44 11 96 21 17 D2 06 35 C5 25 E0 A2 4D B4 B9 0A current sum: 00000: A4 9A 8C D8 A6 F2 74 23 DB 79 E4 4A B3 06 D9 42 Z_4: 00000: 7F C2 45 A8 58 6E 66 05 A7 BB DB 27 86 BD C6 6F H_4: 00000: D8 C9 62 3C 4D BF E8 14 CE 7C 1C 0C EA A9 59 DB current sum: 00000: 09 FE 3F 6A 83 3C 21 B3 90 27 D0 20 6A 84 E1 5A Z_5: 00000: 7F C2 45 A8 58 6E 66 06 A7 BB DB 27 86 BD C6 6F H_5: 00000: A5 E1 F1 95 33 3E 14 82 96 99 31 BF BE 6D FD 43 current sum: 00000: B5 DA 26 BB 00 EB A8 04 35 D7 97 6B C6 B5 46 4D Z_6: 00000: 7F C2 45 A8 58 6E 66 07 A7 BB DB 27 86 BD C6 6F H_6: 00000: B4 CA 80 8C AC CF B3 F9 17 24 E4 8A 2C 7E E9 D2 current sum: 00000: DD 1C 0E EE F7 83 C8 EB 2A 33 F3 58 D7 23 0E E5 Z_7: 00000: 7F C2 45 A8 58 6E 66 08 A7 BB DB 27 86 BD C6 6F H_7: 00000: 72 90 8F C0 74 E4 69 E8 90 1B D1 88 EA 91 C3 31 current sum: 00000: 89 6C E1 08 32 EB EA F9 06 9F 3F 73 76 59 4D 40 Z_8: 00000: 7F C2 45 A8 58 6E 66 09 A7 BB DB 27 86 BD C6 6F H_8: 00000: 23 CA 27 15 B0 2C 68 31 3B FD AC B3 9E 4D 0F B8 current sum: 00000: 99 1A F5 C9 D0 80 F7 63 87 FE 64 9E 7C 93 C6 42 Z_9: 00000: 7F C2 45 A8 58 6E 66 0A A7 BB DB 27 86 BD C6 6F H_9: 00000: BC BC E6 C4 1A A3 55 A4 14 88 62 BF 64 BD 83 0D len(A) || len(C): 00000: 00 00 00 00 00 00 01 48 00 00 00 00 00 00 02 18 sum (xor) ( H_9 (x) ( len(A) || len(C) ) ): 00000: C0 C7 22 DB 5E 0B D6 DB 25 76 73 83 3D 56 71 28 Tag T: 00000: CF 5D 65 6F 40 C3 4F 5C 46 E8 BB 0E 29 FC DB 4C]]> </artwork> </figure> </t> <t> <figure> <artwork> <![CDATA[ -------------------------Example 2--------------------------]]></sourcecode> </li> </ol> </section> <section anchor="example2"> <name>Example 2</name> <sourcecode><![CDATA[ Encryption key K: 00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE 00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88 ICN: 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Associated authenticated data A: 00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 Plaintext P: 00000:1. Encryption step:]]></sourcecode> <ol> <li><t>Encryption step:</t> <sourcecode><![CDATA[ C: 00000:2. Padding step:]]></sourcecode> </li> <li><t>Padding step:</t> <sourcecode><![CDATA[ A_1 || ... || A_h: 00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 C_1 || ... || C_q: 00000:3. Authentication]]></sourcecode> </li> <li><t>Authentication tag T generationstep:step:</t> <sourcecode><![CDATA[ 1^1 || ICN: 00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Z_1: 00000: 79 32 72 68 96 C4 3E 3F BF D6 50 89 EB F1 E5 B6 H_1: 00000: 99 3A 80 66 CC C0 A4 0F AC 4A 14 F7 A2 F6 6D 9B current sum: 00000: 0A C1 1E 2C 1C D6 07 D8 2F E3 55 54 B4 01 02 81 Z_2: 00000: 79 32 72 68 96 C4 3E 40 BF D6 50 89 EB F1 E5 B6 H_2: 00000: 0C 38 A7 1E E7 93 BF 76 89 81 BF CD 7C DA 78 C8 len(A) || len(C): 00000: 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00 00 sum (xor) ( H_2 (x) ( len(A) || len(C) ) ): 00000: CA 1E F8 92 71 EA 60 C4 53 9E 40 EB 26 C2 80 5D Tag T: 00000: 79 01 E9 EA 20 85 CD 24 7E D2 49 69 5F 9F 8A 85]]> </artwork> </figure> </t>]]></sourcecode> </li> </ol> </section> </section> <sectiontitle="Testnumbered="true" toc="default"> <name>Test Vectors for the Magmablock cipher">Block Cipher</name> <t> Test vectors for the Magma block cipher (n = 64, k = 256) are defined in <xreftarget="GOST3412-2015"/>target="GOST3412-2015" format="default"/> (the English version can be found in <xreftarget="RFC8891"/>).target="RFC8891" format="default"/>). </t><t> <figure> <artwork> <![CDATA[ -------------------------Example 1--------------------------<section anchor="examplemagma1"> <name>Example 1</name> <sourcecode><![CDATA[ Encryption key K: 00000: FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00 00010: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF ICN: 00000: 12 DE F0 6B 3C 13 0A 59 Associated authenticated data A: 00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 00020: 05 05 05 05 05 05 05 05 EA Plaintext P: 00000: FF EE DD CC BB AA 99 88 11 22 33 44 55 66 77 00 00010: 88 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 00020: 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88 00030: AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88 99 00040: AA BB CC1. Encryption step:]]></sourcecode> <ol> <li><t>Encryption step:</t> <sourcecode><![CDATA[ 0^1 || ICN: 00000: 12 DE F0 6B 3C 13 0A 59 Y_1: 00000: 56 23 89 01 62 DE 31 BF E_K(Y_1): 00000: 38 7B DB A0 E4 34 39 B3 Y_2: 00000: 56 23 89 01 62 DE 31 C0 E_K(Y_2): 00000: 94 33 00 06 10 F7 F2 AE Y_3: 00000: 56 23 89 01 62 DE 31 C1 E_K(Y_3): 00000: 97 B7 AA 6D 73 C5 87 57 Y_4: 00000: 56 23 89 01 62 DE 31 C2 E_K(Y_4): 00000: 94 15 52 8B FF C9 E8 0A Y_5: 00000: 56 23 89 01 62 DE 31 C3 E_K(Y_5): 00000: 03 F7 68 BF F1 82 D6 70 Y_6: 00000: 56 23 89 01 62 DE 31 C4 E_K(Y_6): 00000: FD 05 F8 4E 9B 09 D2 FE Y_7: 00000: 56 23 89 01 62 DE 31 C5 E_K(Y_7): 00000: DA 4D 90 8A 95 B1 75 C4 Y_8: 00000: 56 23 89 01 62 DE 31 C6 E_K(Y_8): 00000: 65 99 73 96 DA C2 4B D7 Y_9: 00000: 56 23 89 01 62 DE 31 C7 E_K(Y_9): 00000: A9 00 50 4A 14 8D EE 26 C: 00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE 00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D 00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76 00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E 00040: 03 BB 9C2. Padding step:]]></sourcecode> </li> <li><t>Padding step:</t> <sourcecode><![CDATA[ A_1 || ... || A_h: 00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 00020: 05 05 05 05 05 05 05 05 EA 00 00 00 00 00 00 00 C_1 || ... || C_q: 00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE 00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D 00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76 00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E 00040: 03 BB 9C 00 00 00 00 003. Authentication]]></sourcecode> </li> <li><t>Authentication tag T generationstep:step:</t> <sourcecode><![CDATA[ 1^1 || ICN: 00000: 92 DE F0 6B 3C 13 0A 59 Z_1: 00000: 2B 07 3F 04 94 F3 72 A0 H_1: 00000: 70 8A 78 19 1C DD 22 AA current sum: 00000: D6 BB 5B EA 81 93 12 62 Z_2: 00000: 2B 07 3F 05 94 F3 72 A0 H_2: 00000: 6F 02 CC 46 4B 2F A0 A3 current sum: 00000: DD 1C 82 4E 91 78 49 A5 Z_3: 00000: 2B 07 3F 06 94 F3 72 A0 H_3: 00000: 9F 81 F2 26 FD 19 6F 05 current sum: 00000: 05 89 22 17 F6 5A DA C7 Z_4: 00000: 2B 07 3F 07 94 F3 72 A0 H_4: 00000: B9 C2 AC 9B E5 B5 DF F9 current sum: 00000: D1 DB 9B 7F C4 9E 7C 97 Z_5: 00000: 2B 07 3F 08 94 F3 72 A0 H_5: 00000: 74 B5 EC 96 55 1B F8 88 current sum: 00000: 56 45 F6 B5 18 5C B7 1A Z_6: 00000: 2B 07 3F 09 94 F3 72 A0 H_6: 00000: 7E B0 21 A4 03 5B 04 C3 current sum: 00000: 3F C2 C2 E6 FB EE D0 4D Z_7: 00000: 2B 07 3F 0A 94 F3 72 A0 H_7: 00000: C2 A9 C3 A8 70 4D 9B B0 current sum: 00000: 15 47 1F B5 CD 8E 6C 02 Z_8: 00000: 2B 07 3F 0B 94 F3 72 A0 H_8: 00000: F5 D5 05 A8 7B 83 83 B5 current sum: 00000: 12 56 78 96 1D 40 E0 93 Z_9: 00000: 2B 07 3F 0C 94 F3 72 A0 H_9: 00000: F7 95 E7 5F DE B8 93 3C current sum: 00000: 6E F4 0A B0 C1 5F 20 48 Z_10: 00000: 2B 07 3F 0D 94 F3 72 A0 H_10: 00000: 65 A1 A3 E6 80 F0 81 45 current sum: 00000: A4 64 A7 08 FF 45 14 22 Z_11: 00000: 2B 07 3F 0E 94 F3 72 A0 H_11: 00000: 1C 74 A5 76 4C B0 D5 95 current sum: 00000: 60 94 4E 05 D0 85 75 14 Z_12: 00000: 2B 07 3F 0F 94 F3 72 A0 H_12: 00000: DC 84 47 A5 14 E7 83 E7 current sum: 00000: EE 98 B9 B5 0F F7 83 E8 Z_13: 00000: 2B 07 3F 10 94 F3 72 A0 H_13: 00000: A7 E3 AF E0 04 EE 16 E3 current sum: 00000: C0 39 0F A2 28 AF 6D CB Z_14: 00000: 2B 07 3F 11 94 F3 72 A0 H_14: 00000: A5 AA BB 0B 79 80 D0 71 current sum: 00000: 73 E0 6E 07 EF 37 CD CC Z_15: 00000: 2B 07 3F 12 94 F3 72 A0 H_15: 00000: 6E 10 4C C9 33 52 5C 5D current sum: 00000: 2F 40 69 0A EB 53 F5 39 Z_16: 00000: 2B 07 3F 13 94 F3 72 A0 H_16: 00000: 83 11 B6 02 4A A9 66 C1 len(A) || len(C): 00000: 00 00 01 48 00 00 02 18 sum (xor) ( H_16 (x) ( len(A) || len(C) ) ): 00000: 73 CE F4 4B AE 6B DB 61 Tag T: 00000: A7 92 80 69 AA 10 FD 10]]> </artwork> </figure> </t> <t> <figure> <artwork> <![CDATA[ -------------------------Example 2--------------------------]]></sourcecode> </li> </ol> </section> <section anchor="examplemagma2"> <name>Example 2</name> <sourcecode><![CDATA[ Encryption key K: 00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE 00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88 ICN: 00000: 00 77 66 55 44 33 22 11 Associated authenticated data A: 00000: Plaintext P: 00000: 22 33 44 55 66 77 00 FF1. Encryption step:]]></sourcecode> <ol> <li><t>Encryption step:</t> <sourcecode><![CDATA[ 0^1 || ICN: 00000: 00 77 66 55 44 33 22 11 Y_1: 00000: 5B 2A 7E 60 4F 9F BB 95 E_K(Y_1): 00000: 48 A6 A5 17 0D 52 9D B1 C: 00000: 6A 95 E1 42 6B 25 9D 4E2. Padding step:]]></sourcecode> </li> <li><t>Padding step:</t> <sourcecode><![CDATA[ A_1 || ... || A_h: 00000: C_1 || ... || C_q: 00000: 6A 95 E1 42 6B 25 9D 4E3. Authentication]]></sourcecode> </li> <li><t>Authentication tag T generationstep:step:</t> <sourcecode><![CDATA[ 1^1 || ICN: 00000: 80 77 66 55 44 33 22 11 Z_1: 00000: 59 73 54 78 7E 52 E6 EB H_1: 00000: EC E3 F9 DA 11 8C 7D 95 current sum: 00000: 25 D0 E4 20 7B 6B F6 3D Z_2: 00000: 59 73 54 79 7E 52 E6 EB H_2: 00000: 31 0C 0D AC C9 D0 4D 93 len(A) || len(C): 00000: 00 00 00 00 00 00 00 40 sum (xor) ( H_2 (x) ( len(A) || len(C) ) ): 00000: 66 D3 8F 12 0F 78 92 49 Tag T: 00000: 33 4E E2 70 45 0B EC 9E]]> </artwork> </figure> </t>]]></sourcecode> </li> </ol> </section> </section> </section> <section anchor="contributors"title="Contributors"> <t> <list style="symbols"> <t> Evgeny Alekseev <vspace/> CryptoPro <vspace/> alekseev@cryptopro.ru </t> <t> Alexandra Babueva <vspace/> CryptoPro <vspace/> babueva@cryptopro.ru </t> <t> Lilia Akhmetzyanova <vspace /> CryptoPro<vspace /> lah@cryptopro.ru </t> <t> Grigory Marshalko<vspace /> TC 26<vspace /> marshalko_gb@tc26.ru </t> <t> Vladimir Rudskoy<vspace /> TC 26<vspace /> rudskoy_vi@tc26.ru </t> <t> Alexey Nesterenko <vspace /> Nationalnumbered="false" toc="default"> <name>Contributors</name> <contact fullname="Evgeny Alekseev"> <organization>CryptoPro</organization> <address> <email>alekseev@cryptopro.ru</email> </address> </contact> <contact fullname="Alexandra Babueva"> <organization>CryptoPro</organization> <address> <email>babueva@cryptopro.ru</email> </address> </contact> <contact fullname="Lilia Akhmetzyanova"> <organization>CryptoPro</organization> <address> <email>lah@cryptopro.ru</email> </address> </contact> <contact fullname="Grigory Marshalko"> <organization>TC 26</organization> <address> <email>marshalko_gb@tc26.ru</email> </address> </contact> <contact fullname="Vladimir Rudskoy"> <organization>TC 26</organization> <address> <email>rudskoy_vi@tc26.ru</email> </address> </contact> <contact fullname="Alexey Nesterenko"> <organization>National Research University Higher School ofEconomics<vspace /> anesterenko@hse.ru </t> <t> Lidia Nikiforova<vspace/> CryptoPro<vspace /> nikiforova@cryptopro.ru </t> </list> </t> </section> <!-- <section title="Acknowledgments"> <t> We thank TODO for their useful comments. </t>Economics</organization> <address> <email>anesterenko@hse.ru</email> </address> </contact> <contact fullname="Lidia Nikiforova"> <organization>CryptoPro</organization> <address> <email>nikiforova@cryptopro.ru</email> </address> </contact> </section>--></back> </rfc>