<?xml version="1.0" encoding="US-ASCII"?> encoding="UTF-8"?>

<!DOCTYPE rfc SYSTEM "rfc2629.dtd" []>
<?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?>
<?rfc toc="yes"?>
<?rfc tocdepth="2"?>
<?rfc symrefs="yes"?>
<?rfc sortrefs="yes" ?>
<?rfc compact="no" ?> "rfc2629-xhtml.ent">

<rfc category="std" xmlns:xi="http://www.w3.org/2001/XInclude"
     docName="draft-ietf-homenet-babel-profile-07"
     ipr="trust200902">
     number="9080"
     ipr="trust200902"
     obsoletes=""
     updates=""
     submissionType="IETF"
     category="std"
     consensus="true"
     xml:lang="en"
     tocInclude="true"
     tocDepth="2"
     symRefs="true"
     sortRefs="true"
     version="3">

  <!-- xml2rfc v2v3 conversion 3.2.1 -->

  <front>
    <title abbrev="Homenet Babel profile">Homenet profile Profile">Homenet Profile of the Babel routing protocol</title> Routing Protocol</title>
    <seriesInfo name="RFC" value="9080"/>
    <author fullname="Juliusz Chroboczek" initials="J." surname="Chroboczek">
      <organization>IRIF, University of Paris-Diderot</organization>
      <address>
        <postal>
          <street>Case 7014</street>
<city>75205 Paris Cedex
          <city>Paris CEDEX 13</city>
<region></region>
<code></code>
	  <code>75205</code>
          <country>France</country>
        </postal>
        <email>jch@irif.fr</email>
      </address>
    </author>
    <date day="18" month="July" year="2018"/> month="August" year="2021"/>

    <abstract>
      <t>This document defines the exact subset of the Babel routing protocol
and its extensions that is required by an implementation of the Homenet
protocol suite, as well as the interactions between the Home Networking
Control Protocol (HNCP) and Babel.</t>
    </abstract>
  </front>
  <middle>
    <section title="Introduction"> numbered="true" toc="default">
      <name>Introduction</name>
      <t>The core of the Homenet protocol suite consists of the Home Networking
Control Protocol (HNCP) <xref target="RFC7788"/>, target="RFC7788" format="default"/>, a protocol used for
flooding configuration information and assigning prefixes to links,
combined with the Babel routing protocol <xref target="RFC6126bis"/>. target="RFC8966" format="default"/>.
Babel is an extensible, flexible flexible, and modular protocol: minimal
implementations of Babel have been demonstrated that consist of a few
hundred lines of code, while the "large" implementation includes support
for a number of extensions and consists of over ten thousand lines of
C code.</t>
      <t>This document consists of two parts.  The first specifies the exact
subset of the Babel protocol and its extensions that is required by an
implementation of the Homenet protocol suite.  The second specifies how
HNCP interacts with Babel.</t>
      <section title="Requirement Language">

<t>The numbered="true" toc="default">
        <name>Requirements Language</name>
<t>
    The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL
    NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>",
"<bcp14>NOT RECOMMENDED</bcp14>",
    "<bcp14>MAY</bcp14>", and
"OPTIONAL" "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as
    described in BCP 14 BCP&nbsp;14 <xref target="RFC2119"/> target="RFC2119" format="default"/> <xref target="RFC8174"/> target="RFC8174" format="default"/>
    when, and only when, they appear in all capitals, as shown here.</t> here.
</t>
      </section>
      <section title="Background"> numbered="true" toc="default">
        <name>Background</name>
        <t>The Babel routing protocol and its extensions are defined in a number
of documents:
<list style="symbols">
<t>RFC&nbsp;6126bis
</t>
        <ul spacing="normal">
          <li>RFC&nbsp;8966 <xref target="RFC6126bis"/> target="RFC8966" format="default"/> defines the Babel routing
protocol.  It allows Babel's control data to be carried either over
link-local IPv6 or over IPv4, IPv4 and in either case allows announcing both
IPv4 and IPv6 routes.  It leaves link cost estimation, metric computation computation,
and route selection to the implementation.  Distinct implementations of
RFC&nbsp;6126bis
Babel <xref target="RFC8966" format="default"/> will interoperate, in the sense that they will
maintain a set of loop-free forwarding paths.  However, if they implement
conflicting options, they might not be able to exchange a full set of
routes; in
routes. In the worst case, an implementation that only implements the IPv6
subset of the protocol and an implementation that only implements the IPv4
subset of the protocol will not exchange any routes.  In addition, if
implementations use conflicting route selection policies, persistent
oscillations might occur.</t>
<t>The occur.</li>
          <li>The informative Appendix&nbsp;A of RFC&nbsp;6126bis <xref target="RFC8966" section="A" sectionFormat="of" format="default"/> suggests a simple and
easy to implement
easy-to-implement algorithm for cost and metric computation that has been
found to work satisfactorily in a wide range of topologies.</t>
<t>While RFC&nbsp;6126bis topologies.</li>
          <li>While RFC&nbsp;8966 does not provide an algorithm for route selection,
its Section&nbsp;3.6 Section <xref target="RFC8966" section="3.6" sectionFormat="bare" format="default"/>
suggests selecting the route with the smallest metric
with some hysteresis applied.  An algorithm that has been found to work
well in practice is described in Section&nbsp;III.E of
<xref target="DELAY-BASED"/>.</t>
<t>Five RFCs and Internet-Drafts target="DELAY-BASED" format="default"/>.</li>
          <li>Four documents define optional extensions to Babel:
HMAC-based
authentication based on Hashed Message Authentication Code (HMAC) <xref target="RFC7298"/>, target="RFC8967" format="default"/>,
source-specific routing <xref target="BABEL-SS"/>, target="RFC9079" format="default"/>,
delay-based routing <xref target="BABEL-RTT"/> target="I-D.ietf-babel-rtt-extension" format="default"/>, and
ToS-specific (Type of Service) routing <xref target="ToS-SPECIFIC"/>. target="I-D.chouasne-babel-tos-specific" format="default"/>.
All of these extensions interoperate with
the core protocol as well as with each other.</t>
</list>
</t> other.</li>
        </ul>
      </section>
    </section>
    <section title="The numbered="true" toc="default">
      <name>The Homenet profile Profile of Babel"> Babel</name>
      <section title="Requirements">

<t>REQ1: a numbered="true" toc="default">
        <name>Requirements</name>
<ol type="REQ%d:" group="req" indent="8">
        <li anchor="req1"><t>A Homenet implementation of Babel MUST <bcp14>MUST</bcp14> encapsulate Babel control
traffic in IPv6 packets sent to the IANA-assigned port 6696 and either the
IANA-assigned multicast group ff02::1:6 or to a link-local unicast
address.</t>

<t><list style="empty"><t>Rationale: since
          <t indent="3">Rationale: Since Babel is able to carry both
IPv4 and IPv6 routes over either IPv4 or IPv6, choosing the protocol used
for carrying control traffic is a matter of preference.  Since IPv6 has
some features that make implementations somewhat simpler and more reliable
(notably properly scoped and reasonably stable link-local addresses), we
require carrying control data over IPv6.</t></list></t>

<t>REQ2: a IPv6.</t></li>
        <li anchor="req2"><t>A Homenet implementation of Babel MUST <bcp14>MUST</bcp14> implement the IPv6 subset
of the protocol defined in the body of RFC&nbsp;6126bis.</t>

<t><list style="empty"><t>Rationale: support RFC&nbsp;8966.</t>
<t indent="3">Rationale: Support for IPv6 routing is an
essential component of the Homenet architecture.</t></list></t>

<t>REQ3: a architecture.</t></li>
        <li anchor="req3"><t>A Homenet implementation of Babel SHOULD <bcp14>SHOULD</bcp14> implement the IPv4
subset of the protocol defined in the body of RFC&nbsp;6126bis. RFC&nbsp;8966.  Use of other
techniques for acquiring IPv4 connectivity (such as multiple layers of
NAT) is strongly discouraged.</t>

<t><list style="empty"><t>Rationale: support
          <t indent="3">Rationale: Support for IPv4 will likely remain
necessary for years to come, and even in pure IPv6 deployments, including
code for supporting IPv4 has very little cost.  Since HNCP makes it easy
to assign distinct IPv4 prefixes to the links in a network, it is not
necessary to resort to multiple layers of NAT, with all of its
problems.</t></list></t>

<t>REQ4: a
problems.</t></li>
        <li anchor="req4"><t>A Homenet implementation of Babel MUST <bcp14>MUST</bcp14> implement source-specific
routing for IPv6, as defined in draft-ietf-babel-source-specific RFC 9079
<xref target="BABEL-SS"/>.</t>

<t><list style="empty"><t>Rationale: source-specific target="RFC9079" format="default"/>.</t>
          <t indent="3">Rationale: Source-specific routing is an
essential component of the Homenet architecture.  Source-specific routing
for IPv4 is not required, since HNCP arranges things so that a single
non-specific
nonspecific IPv4 default route is announced (Section&nbsp;6.5 of <xref
target="RFC7788"/>).</t></list></t>

<t>REQ5: a (<xref target="RFC7788" section="6.5" sectionFormat="of" format="default"/>).</t></li>
        <li anchor="req5"><t>A Homenet implementation of Babel must use metrics that are
of a similar magnitude to the values suggested in Appendix&nbsp;A of
RFC&nbsp;6126bis.
<xref target="RFC8966" section="A" sectionFormat="of" format="default"/>.
In particular, it SHOULD <bcp14>SHOULD</bcp14> assign costs that are no less
than 256 to wireless links, links and SHOULD <bcp14>SHOULD</bcp14> assign costs between 32 and 196 to
lossless wired links.</t>

<t><list style="empty"><t>Rationale: if
          <t indent="3">Rationale: If two implementations of Babel
choose very different values for link costs, combining routers from
different vendors will cause sub-optimal routing.</t></list></t>

<t>REQ6: a suboptimal routing.</t></li>
        <li anchor="req6"><t>A Homenet implementation of Babel SHOULD <bcp14>SHOULD</bcp14> distinguish between
wired and wireless links; if it is unable to determine whether a link is
wired or wireless, it SHOULD <bcp14>SHOULD</bcp14> make the worst-case hypothesis that the link
is wireless.  It SHOULD <bcp14>SHOULD</bcp14> dynamically probe the quality of wireless links
and derive a suitable metric from its quality estimation.  Appendix&nbsp;A
of RFC&nbsp;6126bis
<xref target="RFC8966" section="A" sectionFormat="of" format="default"/>
gives an example of a suitable algorithm.</t>

<t><list style="empty"><t>Rationale: support
          <t indent="3">Rationale: Support for wireless transit links is
a distinguishing feature of Homenet, and one that is requested by our
users.  In the absence of dynamically computed metrics, the routing
protocol attempts to minimise the number of links crossed by a route, route and
therefore prefers long, lossy links to shorter, lossless ones.  In
wireless networks, "hop-count routing is worst-path routing".</t>

<t>While
          <t indent="3">While it would be desirable to perform link-quality probing on some
wired link technologies, notably power-line networks, these kinds of links
tend to be difficult or impossible to detect automatically, and we are not
aware of any published link-quality algorithms for them.  Hence, we do not
require link-quality estimation for wired links of any kind.</t></list></t> kind.</t></li>
</ol>
      </section>
      <section title="Optional features">

<t>OPT1: a numbered="true" toc="default">
        <name>Optional Features</name>
<ol type="OPT%d:" group="opt" indent="8">
        <li anchor="opt1"><t>A Homenet implementation of Babel MAY <bcp14>MAY</bcp14> perform route selection by
applying hysteresis to route metrics, as suggested in Section&nbsp;3.6 of
RFC&nbsp;6126bis
<xref target="RFC8966" section="3.6" sectionFormat="of" format="default"/>
and described in detail in Section&nbsp;III.E of <xref
target="BABEL-RTT"/>. target="DELAY-BASED" format="default"/>.
However, hysteresis is not required, and the
implementation may simply pick the route with the smallest metric.</t>

<t><list style="empty"><t>Rationale: hysteresis
          <t indent="3">Rationale: Hysteresis is only useful in
congested and highly dynamic networks.  In a typical home network, which is stable
and uncongested, the feedback loop that hysteresis compensates for does
not occur.</t></list></t>

<t>OPT2: a occur.</t></li>
        <li anchor="opt2"><t>A Homenet implementation of Babel may include support for other
extensions to the protocol, as long as they are known to interoperate with
both the core protocol and source-specific routing.</t>

<t><list style="empty"><t>Rationale: a
          <t indent="3">Rationale: A number of extensions to the Babel
routing protocol have been defined over the years; however, they are
useful in fairly specific situations, such as routing over global-scale
overlay networks <xref target="BABEL-RTT"/> target="I-D.ietf-babel-rtt-extension" format="default"/> or multi-hop wireless networks
with multiple radio frequencies <xref target="BABEL-Z"/>. target="I-D.chroboczek-babel-diversity-routing" format="default"/>.  Hence, with the
exception of source-specific routing, no extensions are required for
Homenet.</t></list></t>
Homenet.</t></li>
</ol>
      </section>
    </section>
    <section title="Interactions numbered="true" toc="default">
      <name>Interactions between HNCP and Babel"> Babel</name>
      <t>The Homenet architecture cleanly separates configuration, which is done
by HNCP, from routing, which is done by Babel.  While the coupling between
the two protocols is deliberately kept to a minimum, some interactions are
unavoidable.</t>
      <t>All the interactions between HNCP and Babel consist of HNCP causing
Babel to perform an announcement on its behalf (under no circumstances
does Babel cause HNCP to perform an action).  How this is realised is an
implementation detail that is outside the scope of this document; while it
could conceivably be done using a private communication channel between
HNCP and Babel, in existing implementations implementations, HNCP installs a route in the
operating system's kernel which that is later picked up by Babel using the
existing redistribution mechanisms.</t>
      <section title="Requirements">

<t>REQ7: if numbered="true" toc="default">
        <name>Requirements</name>
<ol type="REQ%d:" group="req" indent="8">
        <li anchor="req7"><t>If an HNCP node receives a DHCPv6 prefix delegation for prefix
P and publishes an External-Connection TLV containing a Delegated-Prefix
TLV with prefix P and no Prefix-Policy TLV, then it MUST <bcp14>MUST</bcp14> announce
a source-specific default route with source prefix P over Babel.</t>

<t><list style="empty"><t>Rationale: source-specific
          <t indent="3">Rationale: Source-specific routes are the main
tool that Homenet uses to enable optimal routing in the presence of
multiple IPv6 prefixes.  External connections with non-trivial nontrivial prefix
policies are explicitly excluded from this requirement, since their exact
behaviour is application-specific.</t></list></t>

<t>REQ8: if application specific.</t></li>
        <li anchor="req8"><t>If an HNCP node receives a DHCPv4 lease with an IPv4 address and
wins the election for NAT gateway, then it MUST <bcp14>MUST</bcp14> act as a NAT gateway and
MUST
<bcp14>MUST</bcp14> announce a (non-specific) (nonspecific) IPv4 default route over Babel.</t>

<t><list style="empty"><t>Rationale: the
          <t indent="3">Rationale: The Homenet stack does not use
source-specific routing for IPv4; instead, HNCP elects a single NAT
gateway and publishes a single default route towards that gateway
(<xref target="RFC7788"/> Section 6.5).</t></list></t>

<t>REQ9: if target="RFC7788" section="6.5" sectionFormat="comma" format="default"/>).</t></li>
        <li anchor="req9"><t>If an HNCP node assigns a prefix P to an attached link and
announces P in an Assigned-Prefix TLV, then it MUST <bcp14>MUST</bcp14> announce a route towards
P over Babel.</t>

<t><list style="empty"><t>Rationale: prefixes
          <t indent="3">Rationale: Prefixes assigned to links must be
routable within the Homenet.</t></list></t> Homenet.</t></li>
</ol>
      </section>
      <section title="Optional features">

<t>OPT3: an numbered="true" toc="default">
        <name>Optional Features</name>
<ol type="OPT%d:" group="opt" indent="8">
        <li anchor="opt3"><t>An HNCP node that receives a DHCPv6 prefix delegation MAY <bcp14>MAY</bcp14>
announce a non-specific nonspecific IPv6 default route over Babel in addition to the
source-specific default route mandated by requirement REQ7.</t>

<t><list style="empty"><t>Rationale: since <xref target="req7" format="none">REQ7</xref>.</t>
          <t indent="3">Rationale: Since the source-specific default
route is more specific than the non-specific nonspecific default route, the former
will override the latter if all nodes implement source-specific routing.
Announcing an additional non-specific nonspecific route is allowed, since doing that
causes no harm and might simplify operations in some circumstances,
e.g.&nbsp;when
e.g., when interoperating with a routing protocol that does not
support source-specific routing.</t></list></t>

<t>OPT4: an routing.</t></li>
        <li anchor="opt4"><t>An HNCP node that receives a DHCPv4 lease with an IPv4 address and
wins the election for NAT gateway SHOULD NOT <bcp14>SHOULD NOT</bcp14> announce a source-specific
IPv4 default route.</t>

<t><list style="empty"><t>Homenet
          <t indent="3">Rationale: Homenet does not require support for IPv4
source-specific routing.  Announcing IPv4 source-specific routes will not
cause routing pathologies (blackholes or routing loops), but it might
cause packets sourced in different parts of the Homenet to follow
different paths, with all the confusion that this entails.</t></list></t> entails.</t></li>
</ol>
      </section>
    </section>
    <section title="Security Considerations"> numbered="true" toc="default">
      <name>Security Considerations</name>
      <t>Both HNCP and Babel carry their control data in IPv6 packets with
a link-local source address, and implementations are required to drop
packets sent from a global address.  Hence, they are only susceptible to
attacks from a directly connected link on which the HNCP and Babel
implementations are listening.</t>
      <t>The security of a Homenet network relies on having a set of "Internal",
"Ad Hoc" Hoc", and "Hybrid" interfaces (Section 5.1 of <xref target="RFC7788"/>) (<xref target="RFC7788" section="5.1" sectionFormat="of" format="default"/>)
that are assumed to be connected to links that are secured at a lower
layer.  HNCP and Babel packets are only accepted when they originate on
these trusted links.  "External" and "Guest" interfaces are connected to
links that are not trusted, and any HNCP or Babel packets that are
received on such interfaces are ignored.  ("Leaf" interfaces are a special
case,
case since they are connected to trusted links links, but HNCP and Babel traffic
received on such interfaces is ignored.)  This implies that the security
of a Homenet network depends on the reliability of the border discovery
procedure described in Section 5.3 of <xref target="RFC7788"/>.</t> target="RFC7788" section="5.3" sectionFormat="of" format="default"/>.</t>
      <t>If untrusted links are used for transit, which is NOT RECOMMENDED, <bcp14>NOT RECOMMENDED</bcp14>,
then any HNCP and Babel traffic that is carried over such links MUST <bcp14>MUST</bcp14> be
secured using an upper-layer security protocol.  While both HNCP and Babel
support cryptographic authentication, at the time of writing writing, no protocol
for autonomous configuration of HNCP and Babel security has been defined.</t>
    </section>
    <section title="IANA Considerations"> numbered="true" toc="default">
      <name>IANA Considerations</name>
      <t>This document requires has no actions from IANA.</t>

</section>

<section title="Acknowledgments">

<t>A number of people have helped with defining the requirements listed in
this document.  I am especially indebted to Barbara Stark and Markus
Stenberg.</t> IANA actions.</t>
    </section>
  </middle>
  <back>

<references title="Normative References">

<reference anchor="RFC2119"><front>
<title>Key words for use in RFCs to Indicate Requirement Levels</title>
<author initials="S." surname="Bradner" fullname="S. Bradner"/>
<date year="1997" month="March"/>
</front>
<seriesInfo name="BCP" value="14"/>
<seriesInfo name="RFC" value="2119"/>
<seriesInfo name="DOI" value="10.17487/RFC2119"/>
</reference>

<reference anchor="RFC8174"><front>
<title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title>
<author initials="B." surname="Leiba" fullname="B. Leiba"/>
<date year="2017" month="May"/>
</front>
<seriesInfo name="BCP" value="14"/>
<seriesInfo name="RFC" value="8174"/>
<seriesInfo name="DOI" value="10.17487/RFC8174"/>
</reference>

<displayreference target="I-D.ietf-babel-rtt-extension" to="BABEL-RTT"/>
<displayreference target="I-D.chouasne-babel-tos-specific" to="ToS-SPECIFIC"/>
<displayreference target="I-D.chroboczek-babel-diversity-routing" to="BABEL-Z"/>

    <references>
      <name>References</name>
      <references>
        <name>Normative References</name>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7788.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8966.xml"/>

<reference anchor="RFC6126bis"><front>
<title>The Babel Routing Protocol</title>
<author fullname="Juliusz Chroboczek" initials="J." surname="Chroboczek"/>
<author fullname="David Schinazi" initials="D." surname="Schinazi"/>
<date month="October" year="2017"/>
</front>
<seriesInfo name="Internet Draft" value="draft-ietf-babel-rfc6126bis-04"/>
</reference>

<reference anchor="RFC7788"><front>
<title>Home Networking Control Protocol</title>
<author initials="M." surname="Stenberg" fullname="M. Stenberg"/>
<author initials="S." surname="Barth" fullname="S. Barth"/>
<author initials="P." surname="Pfister" fullname="P. Pfister"/>
<date year="2016" month="April"/>
</front>
<seriesInfo name="RFC" value="7788"/>
<seriesInfo name="DOI" value="10.17487/RFC7788"/>
</reference>

<reference anchor="BABEL-SS"> anchor='RFC9079'>
   <front>
      <title>Source-Specific Routing in Babel</title>
<author initials='M' surname='Boutier' fullname='Matthieu Boutier'></author>
<author initials='J' surname='Chroboczek' fullname='Juliusz Chroboczek'></author>
<date day="4" month="August" year="2018"/>
</front>
<seriesInfo name='Internet-Draft' value='draft-ietf-babel-source-specific-03'/>
</reference>

</references>

<references title="Informative References">

<reference anchor='RFC7298'><front>
<title>Babel Hashed Message Authentication Code (HMAC) Cryptographic Authentication</title>
<author initials='D.' surname='Ovsienko' fullname='D. Ovsienko'></author>
<date year='2014' month='July' />
</front>
<seriesInfo name='RFC' value='7298' />
</reference>

<reference anchor="BABEL-RTT">
<front>
<title>Delay-based Metric Extension for the Babel Routing Protocol</title>
      <author initials='B' surname='Jonglez' fullname='Baptiste Jonglez'></author>
<author initials='J' surname='Chroboczek' fullname='Juliusz Chroboczek'></author>
<date month='May' day='27' year='2015' />
</front>
<seriesInfo name='Internet-Draft' value='draft-jonglez-babel-rtt-extension-01' initials='M' surname='Boutier' fullname='Matthieu Boutier'>
         <organization />
</reference>

<reference anchor="BABEL-Z"><front>
<title>Diversity Routing for the Babel Routing Protocol</title>
      </author>
      <author initials='J' surname='Chroboczek' fullname='Juliusz Chroboczek'></author> Chroboczek'>
         <organization />
      </author>
      <date month='February' day='15' year='2016' month='August' year='2021' />
    </front>
    <seriesInfo name='Internet-Draft' value='draft-chroboczek-babel-diversity-routing-01'/> name="RFC" value="9079"/>
    <seriesInfo name="DOI" value="10.17487/RFC9079"/>
</reference>

      </references>
      <references>
        <name>Informative References</name>

        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8967.xml"/>
        <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-babel-rtt-extension.xml"/>
        <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.chroboczek-babel-diversity-routing.xml"/>

        <reference anchor="DELAY-BASED"><front> anchor="DELAY-BASED" target="http://arxiv.org/abs/1403.3488">
          <front>
            <title>A delay-based routing metric</title>
            <author fullname="Baptiste Jonglez" initials="B." surname="Jonglez"/>
            <author fullname="Matthieu Boutier" initials="M." surname="Boutier"/>
            <author fullname="Juliusz Chroboczek" initials="J." surname="Chroboczek"/>
            <date month="March" year="2014"/>
          </front>
<annotation>Available online from http://arxiv.org/abs/1403.3488</annotation>
</reference>

<reference anchor="ToS-SPECIFIC"><front>
<title>https://tools.ietf.org/id/draft-chouasne-babel-tos-specific-00.xml</title>
<author fullname="Gwendoline Chouasne" initials="G." surname="Chouasne"/>
<date day="3" month="July" year="2017"/>
</front>
<seriesInfo name='Internet-Draft' value='draft-chouasne-babel-tos-specific-00'/>
        </reference>

        <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.chouasne-babel-tos-specific.xml"/>
      </references>
    </references>

    <section numbered="false" toc="default">
      <name>Acknowledgments</name>
      <t>A number of people have helped with defining the requirements listed in
this document.  I am especially indebted to <contact fullname="Barbara Stark"/> and
<contact fullname="Markus Stenberg"/>.</t>
    </section>
  </back>
</rfc>