<?xmlversion="1.0" encoding="US-ASCII"?>version='1.0' encoding='UTF-8'?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd"> <?rfc toc="yes"?> <?rfc tocompact="yes"?> <?rfc tocdepth="3"?> <?rfc tocindent="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc comments="yes"?> <?rfc inline="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?>"rfc2629-xhtml.ent"> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF" category="std" consensus="true" number="9086" docName="draft-ietf-idr-bgpls-segment-routing-epe-19"ipr="trust200902">ipr="trust200902" obsoletes="" updates="" xml:lang="en" tocInclude="true" tocDepth="3" symRefs="true" sortRefs="true" version="3"> <front> <title abbrev="Segment Routing EPE BGP-LSExtensions">BGP-LS extensionsExtensions">Border Gateway Protocol - Link State (BGP-LS) Extensions for Segment Routing BGP Egress Peer Engineering</title> <seriesInfo name="RFC" value="9086"/> <author fullname="Stefano Previdi" initials="S." surname="Previdi"><organization>Individual</organization><organization>Huawei Technologies</organization> <address> <postal> <street/> <city/> <code/> <country/> </postal> <email>stefano@previdi.net</email> </address> </author> <author fullname="Ketan Talaulikar" initials="K." role="editor" surname="Talaulikar"> <organization>Cisco Systems, Inc.</organization> <address> <postal> <street/> <city/> <region/> <code/> <country>India</country> </postal> <email>ketant@cisco.com</email> </address> </author> <author fullname="Clarence Filsfils" initials="C." surname="Filsfils"> <organization>Cisco Systems, Inc.</organization> <address> <postal> <street/> <city>Brussels</city> <region/> <code/> <country>Belgium</country> </postal> <email>cfilsfil@cisco.com</email> </address> </author> <author fullname="Keyur Patel" initials="K." surname="Patel"> <organization>Arrcus, Inc.</organization> <address> <email>Keyur@arrcus.com</email> </address> </author> <author fullname="Saikat Ray" initials="S." surname="Ray"><organization>Individual Contributor</organization><organization>Individual</organization> <address> <email>raysaikat@gmail.com</email> </address> </author> <author fullname="Jie Dong" initials="J." surname="Dong"> <organization>Huawei Technologies</organization> <address> <postal> <street>Huawei Campus, No. 156 Beiqing Rd.</street> <city>Beijing</city> <region/> <code>100095</code> <country>China</country> </postal> <email>jie.dong@huawei.com</email> </address> </author> <dateyear=""/>year="2021" month="August"/> <area>Routing</area> <workgroup>Inter-Domain Routing</workgroup> <keyword>BGP</keyword> <keyword>BGP-LS</keyword> <keyword>Segment Routing</keyword> <abstract><t>Segment Routing (SR) leverages source routing.<t> A node steers a packet through a controlled set of instructions, called segments, by prepending the packet withan SR header.a list of segment identifiers (SIDs). A segment can represent any instruction, topological orservice-based.service based. SR segments allow steering a flow through any topological path and service chain while maintaining per-flow state only at the ingress node of the SR domain.</t> <t>This document describes an extension toBGP Link-StateBorder Gateway Protocol - Link State (BGP-LS) for advertisement of BGP Peering Segments along with their BGP peering node information so that efficient BGP Egress Peer Engineering (EPE) policies and strategies can be computed based on Segment Routing.</t> </abstract><note title="Requirements Language"> <t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here.</t> </note></front> <middle> <section anchor="INTRO"title="Introduction">numbered="true" toc="default"> <name>Introduction</name> <t>Segment Routing (SR) leverages source routing. A node steers a packet through a controlled set of instructions, called segments, by prepending the packet withan SR header witha list of segment identifiers(SID).(SIDs). A SID can represent any instruction, topological orservice-based.service based. SR segments allows to enforce a flow through any topological path or service function while maintaining per-flow state only at the ingress node of the SR domain.</t> <t>The SR architecture <xreftarget="RFC8402"/>target="RFC8402" format="default"/> defines three types of BGP Peering Segments that may be instantiated at a BGPnode:<list style="symbols"> <t>Peernode:</t> <ul spacing="normal"> <li>Peer Node Segment (PeerNode SID) : instruction to steer to a specific peernode</t> <t>Peernode</li> <li>Peer Adjacency Segment (PeerAdj SID) : instruction to steer over a specific local interface towards a specific peernode</t> <t>Peernode</li> <li>Peer Set Segment (PeerSet SID) : instruction to load-balance to a set of specific peernodes</t> </list></t>nodes</li> </ul> <t>SR can be directly applied to eithertoan MPLSdataplane (SR/MPLS)data plane (SR-MPLS) with no change on the forwarding plane or to a modified IPv6 forwarding plane (SRv6).</t> <t>This document describes extensions to the BGPLink-State NLRI- Link State Network Layer Reachability Information (BGP-LS NLRI) and the BGP-LS Attribute defined for BGP-LS <xreftarget="RFC7752"/>target="RFC7752" format="default"/> for advertising BGP peering segments from a BGP node along with its peering topology information (i.e., its peers, interfaces, and peeringASs)Autonomous Systems (ASes)) to enable computation of efficient BGP Egress Peer Engineering (BGP-EPE) policies and strategies using theSR/MPLS dataplane.SR-MPLS data plane. The corresponding extensions for SRv6 are specified in <xreftarget="I-D.dawra-idr-bgpls-srv6-ext"/>.</t>target="I-D.ietf-idr-bgpls-srv6-ext" format="default"/>.</t> <t><xreftarget="I-D.ietf-spring-segment-routing-central-epe"/>target="RFC9087" format="default"/> illustrates a centralized controller-based BGP Egress Peer Engineering solution involving SR path computation using the BGP Peering Segments. This use case comprises a centralized controller that learns the BGP Peering SIDs via BGP-LS and then uses this information to program a BGP-EPE policy at any node in the domain to perform traffic steering via a specific BGP egress node toaspecificEBGPExternal BGP (EBGP) peer(s) optionally also over a specific interface. The BGP-EPE policy can be realized using the SR Policy framework <xreftarget="I-D.ietf-spring-segment-routing-policy"/>.</t>target="I-D.ietf-spring-segment-routing-policy" format="default"/>.</t> <t>This document introduces a new BGP-LS Protocol-ID for BGP and defines new BGP-LS Node and Link Descriptor TLVs to facilitate advertising BGP-LS Link NLRI to represent the BGP peering topology. Further, it specifies the BGP-LS Attribute TLVs for advertisement of the BGP Peering Segments (i.e., PeerNode SID, PeerAdj SID, and PeerSet SID) to be advertised in the same BGP-LS Link NLRI.</t> </section> <section anchor="TERMINOLOGY"> <name>Requirements Language</name> <t> The key words "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section> <section anchor="BGPPEERINGSEG"title="BGPnumbered="true" toc="default"> <name>BGP PeeringSegments">Segments</name> <t>As described in <xreftarget="RFC8402"/>,target="RFC8402" format="default"/>, aBGP-EPE enabledBGP-EPE-enabled EgressPEProvider Edge (PE) node instantiates SR Segments corresponding to its attached peers. These segments are called BGP Peering Segments or BGP Peering SIDs. In the case of EBGP, they enable the expression of source-routedinter-domaininterdomain paths.</t> <t>An ingress border router of an AS may compose a list of SIDs to steer a flow along a selected path within the AS, towards a selected egress border router C of the AS, and to a specific EBGP peer. At minimum, a BGP-EPE policy applied at an ingress PE involves two SIDs: the Node SID of the chosen egress PE and then the BGP Peering SID for the chosen egress PE peer or peering interface.</t> <t>Each BGP sessionMUST<bcp14>MUST</bcp14> be described by a PeerNode SID. The description of the BGP sessionMAY<bcp14>MAY</bcp14> be augmented by additional PeerAdj SIDs. Finally, multiple PeerNode SIDs or PeerAdj SIDsMAY<bcp14>MAY</bcp14> be part of the same group/set in order to group EPE resources under a common PeerSet SID. These BGP Peering SIDs and their encoding are described in detail in <xreftarget="PEERSEGMENTS"/>.</t>target="PEERSEGMENTS" format="default"/>.</t> <t>The following BGP Peering SIDs need to be instantiated on a BGP router for each of its BGP peer sessions that are enabled for Egress PeerEngineering:<list style="symbols"> <t>OneEngineering:</t> <ul spacing="normal"> <li>One PeerNode SIDMUST<bcp14>MUST</bcp14> be instantiated to describe the BGP peersession.</t> <t>Onesession.</li> <li>One or more PeerAdj SIDMAY<bcp14>MAY</bcp14> be instantiated corresponding to the underlying link(s) to the directly connected BGP peersession.</t> <t>Asession.</li> <li>A PeerSet SIDMAY<bcp14>MAY</bcp14> be instantiated and additionally associated and shared between one or more PeerNode SIDs or PeerAdjSIDs.</t> </list></t>SIDs.</li> </ul> <t>While an egress point in a topology usually refers to EBGP sessions between external peers, there's nothing in the extensions defined in this document that would prevent the use of these extensions in the context ofIBGPInternal BGP (IBGP) sessions. However, unlike EBGPsessionssessions, which are generally between directly connected BGP routerswhich arealso along the traffic forwarding path, IBGP peer sessions may besetupset up to BGP routerswhichthat are not in the forwarding path. As such, when the IBGP design includes sessions withroute-reflectors,route reflectors, a BGP routerSHOULD NOT<bcp14>SHOULD NOT</bcp14> instantiate a BGP Peering SID for those sessions to peer nodeswhichthat are not in the forwarding path since the purpose of BGP Peering SID is to steer traffic tothatthose specific peers. Thus, the applicability for IBGP peering may be limited to only those deployments where the IBGP peer is also along the forwarding data path.</t> <t>Any BGP Peering SIDs instantiated on the node are advertised via BGP-LS Link NLRI type as described in the sections below. An illustration of the BGP Peering SIDs' allocations in a reference BGP peering topology along with the information carried in the BGP-LS Link NLRI and its corresponding BGP-LS Attribute are described in <xreftarget="I-D.ietf-spring-segment-routing-central-epe"/>.</t>target="RFC9087" format="default"/>.</t> </section> <section anchor="EPENLRI"title="BGP-LSnumbered="true" toc="default"> <name>BGP-LS NLRI Advertisement for BGPProtocol">Protocol</name> <t>This section describes the BGP-LS NLRI encodings that describe the BGP peering and link connectivity between BGP routers.</t> <t>This document specifies the advertisement of BGP peering topology information via BGP-LS Link NLRItypetype, which requires use of a new BGP-LS Protocol-ID.</t><texttable<table anchor="PROTOCOL-IDS"title="BGP-LSalign="center"> <name>BGP-LS Protocol Identifier forBGP"> <ttcol align="center">Protocol-ID</ttcol> <ttcolBGP</name> <thead> <tr> <th align="center">Protocol-ID</th> <th align="left">NLRIinformation source protocol</ttcol> <c>7</c> <c>BGP</c> </texttable>Information Source Protocol</th> </tr> </thead> <tbody> <tr> <td align="center">7</td> <td align="left">BGP</td> </tr> </tbody> </table> <t>The use of a new Protocol-ID allows separation and differentiation between the BGP-LS NLRIs carrying BGP information from the BGP-LS NLRIs carrying IGP link-state information defined in <xreftarget="RFC7752"/>.</t>target="RFC7752" format="default"/>.</t> <t>The BGP Peering information along with their Peering Segments are advertised using BGP-LS Link NLRI type with the Protocol-ID set to BGP.TheBGP-LS Link NLRI type uses the Descriptor TLVs and BGP-LS Attribute TLVs as defined in <xreftarget="RFC7752"/>.target="RFC7752" format="default"/>. In order to correctly describe BGP nodes, new TLVs are defined in this section.</t> <t><xreftarget="RFC7752"/>target="RFC7752" format="default"/> defines BGP-LS Link NLRIType istype as follows: </t> <figureanchor="LINKNLRI" title="BGP-LSanchor="LINKNLRI"> <name>BGP-LS LinkNLRI"> <artwork><![CDATA[NLRI</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+ | Protocol-ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identifier | | (64 bits) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Local Node Descriptors // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Remote Node Descriptors // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ // Link Descriptors // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork></figure><list style="hanging"> <t>Node</figure> <dl newline="false" spacing="normal"> <dt/> <dd>Node Descriptors and Link Descriptors are defined in <xreftarget="RFC7752"/>.</t> </list></t>target="RFC7752" format="default"/>.</dd> </dl> <section anchor="BGPIDCONFEDMEMBER"title="BGPnumbered="true" toc="default"> <name>BGP Router-ID and Member ASNumber">Number</name> <t>Two new NodeDescriptorsDescriptor TLVs are defined in thisdocument:<list style="symbols">document:</t> <ul spacing="normal"> <li> <t>BGP Router Identifier (BGP Router-ID):<list style="hanging"> <t>Type: 516</t> <t>Length: 4 octets</t> <t>Value:</t> <dl newline="false" spacing="normal"> <dt/> <dd>Type: 516</dd> <dt/> <dd>Length: 4octetoctets</dd> <dt/> <dd>Value: 4-octet unsigned non-zero integer representing the BGP Identifier as defined in <xreftarget="RFC6286"/>.</t> </list></t> </list><list style="symbols">target="RFC6286" format="default"/></dd> </dl> </li> </ul> <ul spacing="normal"> <li> <t>Member-AS Number(Member-ASN)<list style="hanging"> <t>Type: 517</t> <t>Length: 4 octets</t> <t>Value:(Member-ASN)</t> <dl newline="false" spacing="normal"> <dt/> <dd>Type: 517</dd> <dt/> <dd>Length: 4octetoctets</dd> <dt/> <dd>Value: 4-octet unsigned non-zero integer representing the Member-AS Number <xreftarget="RFC5065"/>.</t> </list></t> </list></t>target="RFC5065" format="default"/></dd> </dl> </li> </ul> </section> <section anchor="MANDATORYNODEDESC"title="Mandatorynumbered="true" toc="default"> <name>Mandatory BGP NodeDescriptors">Descriptors</name> <t>The following NodeDescriptorsDescriptor TLVsMUST<bcp14>MUST</bcp14> be included in BGP-LS NLRI as Local Node Descriptors when distributing BGPinformation:<list style="symbols"> <t>BGPinformation:</t> <ul spacing="normal"> <li>BGP Router-ID (TLV 516), which contains a valid BGP Identifier of the local BGPnode.</t> <t>Autonomousnode.</li> <li>Autonomous System Number (TLV 512) <xreftarget="RFC7752"/>,target="RFC7752" format="default"/>, which contains theASNAutonomous System Number (ASN) or AS Confederation Identifier(ASN)(an ASN) <xreftarget="RFC5065"/>,target="RFC5065" format="default"/>, if confederations are used, of the local BGPnode.</t> </list></t>node.</li> </ul> <t>Note that <xreftarget="RFC6286"/> (section 2.1)target="RFC6286" sectionFormat="of" section="2.1"/> requires the BGP identifier (Router-ID) to be unique within an Autonomous System and non-zero. Therefore, the <ASN, BGP Router-ID> tuple is globally unique. Their use in the Node Descriptor helps map Link-State NLRIs with BGP protocol-ID to a unique BGP router in the administrative domain where BGP-LS is enabled.</t> <t>The following NodeDescriptorsDescriptor TLVsMUST<bcp14>MUST</bcp14> be included in BGP-LS Link NLRI as Remote Node Descriptors when distributing BGPinformation:<list style="symbols"> <t>BGPinformation:</t> <ul spacing="normal"> <li>BGP Router-ID (TLV 516), which contains the valid BGP Identifier of the peer BGPnode.</t> <t>Autonomousnode.</li> <li>Autonomous System Number (TLV 512) <xreftarget="RFC7752"/>,target="RFC7752" format="default"/>, which contains the ASN or the AS Confederation Identifier(ASN)(an ASN) <xreftarget="RFC5065"/>,target="RFC5065" format="default"/>, if confederations are used, of the peer BGPnode.</t> </list></t>node.</li> </ul> </section> <section anchor="OPTIONALNODEDESC"title="Optionalnumbered="true" toc="default"> <name>Optional BGP NodeDescriptors">Descriptors</name> <t>The following NodeDescriptorsDescriptor TLVsMAY<bcp14>MAY</bcp14> be included in BGP-LS NLRI as Local Node Descriptors when distributing BGPinformation:<list style="symbols"> <t>Member-ASNinformation:</t> <ul spacing="normal"> <li>Member-ASN (TLV 517), which contains the ASN of the confederation member (i.e., Member-AS Number), if BGP confederations are used, of the local BGPnode.</t> <t>Nodenode.</li> <li>Node Descriptors as defined in <xreftarget="RFC7752"/>.</t> </list></t>target="RFC7752" format="default"/>.</li> </ul> <t>The following NodeDescriptorsDescriptor TLVsMAY<bcp14>MAY</bcp14> be included in BGP-LS Link NLRI as Remote Node Descriptors when distributing BGPinformation:<list style="symbols"> <t>Member-ASNinformation:</t> <ul spacing="normal"> <li>Member-ASN (TLV 517), which contains the ASN of the confederation member (i.e., Member-AS Number), if BGP confederations are used, of the peer BGPnode.</t> <t>Nodenode.</li> <li>Node Descriptors as defined in <xreftarget="RFC7752"/>.</t> </list></t>target="RFC7752" format="default"/>.</li> </ul> </section> </section> <section anchor="PEERSEGMENTS"title="BGP-LSnumbered="true" toc="default"> <name>BGP-LS Attributes for BGP PeeringSegments">Segments</name> <t>This section defines the BGP-LS Attributes corresponding to the following BGP Peer SegmentSIDs:<list style="hanging"> <t>PeerSIDs:</t> <ul> <li>Peer Node Segment Identifier (PeerNodeSID)</t> <t>PeerSID) </li> <li>Peer Adjacency Segment Identifier (PeerAdjSID)</t> <t>PeerSID) </li> <li>Peer Set Segment Identifier (PeerSetSID)</t> </list></t>SID) </li> </ul> <t>The following new BGP-LS LinkattributesAttribute TLVs are defined for use with BGP-LS Link NLRI for advertising BGP Peering SIDs:</t><figure anchor="CODEPOINTVALUES" title="BGP-LS<table anchor="CODEPOINTVALUES"> <name>BGP-LS TLVcode pointsCode Points forBGP-EPE"> <artwork><![CDATA[+----------+---------------------------+ | TLVBGP-EPE</name> <thead> <tr> <th>TLV Code| Description | | Point | | +----------+---------------------------+ | 1101 | PeerNode SID | | 1102 | PeerAdj SID | | 1103 | PeerSet SID | +----------+---------------------------+ ]]></artwork> </figure>Point</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td>1101</td> <td>PeerNode SID</td> </tr> <tr> <td>1102</td> <td>PeerAdj SID</td> </tr> <tr> <td>1103</td> <td>PeerSet SID</td> </tr> </tbody> </table> <t/> <t>PeerNode SID, PeerAdj SID, and PeerSet SIDhaveall have the same format as definedherebelow: </t> <figureanchor="PEERSID" title="BGPanchor="PEERSID"> <name>BGP Peering SIDs TLVFormat"> <artwork><![CDATA[Format</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Flags | Weight | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SID/Label/Index (variable) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure><list style="symbols"> <t>Type:</figure> <ul spacing="normal"> <li>Type: 1101,11021102, or 1103 as listed in <xreftarget="CODEPOINTVALUES"/>.</t> <t>Length:target="CODEPOINTVALUES" format="default"/></li> <li>Length: variable. Valid values are either 7 or 8 based onthewhether the encoding is done as a SID Index or alabel.</t>label.</li> <li> <t>Flags: one octet of flags with the following definition: </t> <figureanchor="PEERINGSIDFLAGS" title="Peeringanchor="PEERINGSIDFLAGS"> <name>Peering SID TLV FlagsFormat"> <artwork><![CDATA[Format</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+ |V|L|B|P| Rsvd | +-+-+-+-+-+-+-+-+ ]]></artwork></figure><list style="symbols"> <t>V-Flag:</figure> <ul spacing="normal"> <li>V-Flag: Valueflag.Flag. If set, then the SID carries a label value. Bydefaultdefault, the flag isSET.</t> <t>L-Flag:SET.</li> <li>L-Flag: Local Flag. If set, then the value/index carried by the SID has local significance. Bydefaultdefault, the flag isSET.</t> <t>B-Flag:SET.</li> <li>B-Flag: Backup Flag. If set, the SID refers to a path that is eligible for protection using fastre-routereroute (FRR). The computation of the backup forwarding path and its association with the BGP Peering SID forwarding entry is implementation specific. <xreftarget="I-D.ietf-spring-segment-routing-central-epe"/> section 3.6target="RFC9087" sectionFormat="of" section="3.6"/> discusses some of the possible ways of identifying backup paths for BGP PeeringSIDs.</t> <t>P-Flag:SIDs.</li> <li>P-Flag: Persistent Flag: If set, the SID is persistently allocated, i.e., the SID value remains consistent across router restart and session/interfaceflap.</t> <t>Rsvdflap.</li> <li>Rsvd bits: Reserved for future use andMUST<bcp14>MUST</bcp14> be zero when originated and ignored whenreceived.</t> </list></t> <t>Weight:received.</li> </ul> </li> <li>Weight: 1 octet. The value represents the weight of the SID for the purpose of load balancing. An example use of the weight is described in <xreftarget="RFC8402"/>.</t>target="RFC8402" format="default"/>.</li> <li> <t>SID/Index/Label. According to the TLV length andtotheVV- andL flagsL-Flag settings, it contains either:<list style="symbols"> <t>A 3 octet</t> <ul spacing="normal"> <li>A 3-octet local label where the 20 rightmost bits are used for encoding the label value. In this case, theVV- andL flags MUSTL-Flags <bcp14>MUST</bcp14> beSET.</t> <t>A 4 octetSET.</li> <li>A 4-octet index defining the offset in the Segment Routing Global Block (SRGB) <xreftarget="RFC8402"/>target="RFC8402" format="default"/> advertised by this router. In this case, the SRGBMUST<bcp14>MUST</bcp14> be advertised using the extensions defined in <xreftarget="I-D.ietf-idr-bgp-ls-segment-routing-ext"/>.</t> </list></t> </list></t>target="RFC9085" format="default"/>.</li> </ul> </li> </ul> <t>The values of the PeerNode SID, PeerAdj SID, and PeerSet SID Sub-TLVsSHOULD<bcp14>SHOULD</bcp14> be persistent across router restart.</t> <t>When enabled for Egress Peer Engineering, the BGP routerMUST<bcp14>MUST</bcp14> include the PeerNode SID TLV in the BGP-LS Attribute for the BGP-LS Link NLRI corresponding to its BGP peering sessions. The PeerAdj SID and PeerSet SID TLVsMAY<bcp14>MAY</bcp14> be included in the BGP-LS Attribute for the BGP-LS Link NLRI.</t> <t>Additional BGP-LS Link AttributeTLVs,TLVs as defined in <xreftarget="RFC7752"/> MAYtarget="RFC7752" format="default"/> <bcp14>MAY</bcp14> be included with the BGP-LS Link NLRI in order to advertise the characteristics of the peeringlink. E.g.,link, e.g., one or more interface addresses (TLV 259 or TLV 261) of the underlying link(s) over which a multi-hop BGP peering session issetupset up may be included in the BGP-LS Attribute along with the PeerNode SID TLV.</t> <section anchor="PEERNODESID"title="Advertisementnumbered="true" toc="default"> <name>Advertisement of the PeerNodeSID">SID</name> <t>The PeerNode SID TLV includes a SID associated with the BGP peer node that is described by a BGP-LS Link NLRI as specified in <xreftarget="EPENLRI"/>.</t>target="EPENLRI" format="default"/>.</t> <t>The PeerNode SID, at the BGP node advertising it, has the following semantics (as defined in <xreftarget="RFC8402"/>):<list style="symbols"> <t>SRtarget="RFC8402" format="default"/>):</t> <ul spacing="normal"> <li>SR operation:NEXT.</t> <t>Next-Hop:NEXT</li> <li>Next-Hop: the connected peering node to which the segment isassociated.</t> </list></t>associated</li> </ul> <t>The PeerNode SID is advertised with a BGP-LS Link NLRI, where:<list style="symbols"></t> <ul spacing="normal"> <li> <t>Local Node Descriptorsinclude:<list> <t>Localinclude:</t> <ul spacing="normal"> <li>Local BGP Router-ID (TLV 516) of theBGP-EPE enabled egress PE.</t> <t>LocalBGP-EPE-enabled Egress PE</li> <li>Local ASN (TLV512).</t> </list></t>512)</li> </ul> </li> <li> <t>Remote Node Descriptorsinclude:<list> <t>Peerinclude:</t> <ul spacing="normal"> <li>Peer BGP Router-ID (TLV 516) (i.e., the peer BGP ID used in the BGPsession)</t> <t>Peersession)</li> <li>Peer ASN (TLV512).</t> </list></t>512)</li> </ul> </li> <li> <t>Link Descriptors include the addresses used by the BGP session encoded using TLVs as defined in <xreftarget="RFC7752"/>: <list> <t>IPv4target="RFC7752" format="default"/>: </t> <ul spacing="normal"> <li>IPv4 Interface Address (TLV 259) contains the BGP session IPv4 localaddress.</t> <t>IPv4address.</li> <li>IPv4 Neighbor Address (TLV 260) contains the BGP session IPv4 peeraddress.</t> <t>IPv6address.</li> <li>IPv6 Interface Address (TLV 261) contains the BGP session IPv6 localaddress.</t> <t>IPv6address.</li> <li>IPv6 Neighbor Address (TLV 262) contains the BGP session IPv6 peeraddress.</t> </list></t> <t>Linkaddress.</li> </ul> </li> <li>Link Attribute TLVs include the PeerNode SID TLV as defined in <xreftarget="PEERSID"/>.</t> </list></t>target="PEERSID" format="default"/>.</li> </ul> </section> <section anchor="PEERADJSID"title="Advertisementnumbered="true" toc="default"> <name>Advertisement of the PeerAdjSID">SID</name> <t>The PeerAdj SID TLV includes a SID associated with the underlying link to the BGP peer node that is described by a BGP-LS Link NLRI as specified in <xreftarget="EPENLRI"/>.</t>target="EPENLRI" format="default"/>.</t> <t>The PeerAdj SID, at the BGP node advertising it, has the following semantics (as defined in <xreftarget="RFC8402"/>):<list style="symbols"> <t>SRtarget="RFC8402" format="default"/>):</t> <ul spacing="normal"> <li>SR operation:NEXT.</t> <t>Next-Hop:NEXT</li> <li>Next-Hop: the interface peeraddress.</t> </list></t>address</li> </ul> <t>The PeerAdj SID is advertised with a BGP-LS Link NLRI,where:<list style="symbols">where:</t> <ul spacing="normal"> <li> <t>Local Node Descriptorsinclude:<list> <t>Localinclude:</t> <ul spacing="normal"> <li>Local BGP Router-ID (TLV 516) of theBGP-EPE enabled egress PE.</t> <t>LocalBGP-EPE-enabled Egress PE</li> <li>Local ASN (TLV512).</t> </list></t>512)</li> </ul> </li> <li> <t>Remote Node Descriptorsinclude:<list> <t>Peerinclude:</t> <ul spacing="normal"> <li>Peer BGP Router-ID (TLV 516) (i.e., the peer BGP ID used in the BGPsession).</t> <t>Peersession)</li> <li>Peer ASN (TLV512).</t> </list></t>512)</li> </ul> </li> <li> <t>Link DescriptorsMUST<bcp14>MUST</bcp14> include the following TLV, as defined in <xreftarget="RFC7752"/>: <list> <t>Linktarget="RFC7752" format="default"/>: </t> <ul spacing="normal"> <li>Link Local/Remote Identifiers (TLV 258) contains the 4-octet Link Local Identifier followed by the 4-octet Link Remote Identifier. The value 0 is used by default when the link remote identifier isunknown.</t> </list></t>unknown.</li> </ul> </li> <li> <t>Additional Link Descriptors TLVs, as defined in <xreftarget="RFC7752"/>, MAYtarget="RFC7752" format="default"/>, <bcp14>MAY</bcp14> also be included to describe the addresses corresponding to the link between the BGP routers:<list> <t>IPv4</t> <ul spacing="normal"> <li>IPv4 Interface Address (Sub-TLV 259) contains the address of the local interface through which the BGP session isestablished.</t> <t>IPv6established.</li> <li>IPv6 Interface Address (Sub-TLV 261) contains the address of the local interface through which the BGP session isestablished.</t> <t>IPv4established.</li> <li>IPv4 Neighbor Address (Sub-TLV 260) contains the IPv4 address of the peer interface used by the BGPsession.</t> <t>IPv6session.</li> <li>IPv6 Neighbor Address (Sub-TLV 262) contains the IPv6 address of the peer interface used by the BGPsession.</t> </list></t> <t>Linksession.</li> </ul> </li> <li>Link Attribute TLVs include the PeerAdj SID TLV as defined in <xreftarget="PEERSID"/>.</t> </list></t>target="PEERSID" format="default"/>.</li> </ul> </section> <section anchor="PEERSETSID"title="Advertisementnumbered="true" toc="default"> <name>Advertisement of the PeerSetSID ">SID</name> <t>The PeerSet SID TLV includes a SID that is shared amongst BGP peer nodes or the underlying links that are described by BGP-LS Link NLRI as specified in <xreftarget="EPENLRI"/>.</t>target="EPENLRI" format="default"/>.</t> <t>The PeerSet SID, at the BGP node advertising it, has the following semantics (as defined in <xreftarget="RFC8402"/>):<list style="symbols"> <t>SRtarget="RFC8402" format="default"/>):</t> <ul spacing="normal"> <li>SR operation:NEXT.</t> <t>Next-Hop: load balanceNEXT</li> <li>Next-Hop: load-balance across any connected interface to any peer in the associated peerset.</t> </list></t>set</li> </ul> <t>The PeerSet SID TLV containing the same SID value (encoded as defined in <xreftarget="PEERSID"/>)target="PEERSID" format="default"/>) is included in the BGP-LS Attribute for all of the BGP-LS Link NLRI corresponding to the PeerNode or PeerAdj segments associated with the peer set.</t> </section> </section> <section anchor="IANA"title="IANA Considerations">numbered="true" toc="default"> <name>IANA Considerations</name> <t>This documentdefines:<list style="hanging"> <t>Adefines:</t> <ul> <li>A new Protocol-ID: BGP. Thecodepointcode point is from the "BGP-LS Protocol-IDs"registry.</t> <t>Tworegistry. </li> <li>Two new TLVs: BGP-Router-ID and BGP Confederation Member. Thecodepointscode points are in the "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs"registry.</t> <t>Threeregistry. </li> <li>Three new BGP-LS Attribute TLVs: PeerNode SID, PeerAdjSIDSID, and PeerSet SID. Thecodepointscode points are in the "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs"registry.</t> </list></t>registry. </li> </ul> <section anchor="IANAPROT"title="Newnumbered="true" toc="default"> <name>New BGP-LSProtocol-ID">Protocol-ID</name> <t>This document defines a new value in the registry "BGP-LSProtocol-IDs":<figure align="center" anchor="BGPPROT" title="BGP Protocol Codepoint"> <artwork align="center"><![CDATA[+------------------------------------------------------+ | Codepoint | Description | Status | +------------------------------------------------------+ | 7 | BGP | Early Allocation by IANA | +------------------------------------------------------+]]></artwork> </figure></t>Protocol-IDs":</t> <table anchor="BGPPROT"> <name>BGP-LS Protocol-ID</name> <thead> <tr> <th>Protocol-ID</th> <th>NLRI information source protocol</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>7</td> <td>BGP</td> <td>RFC 9086</td> </tr> </tbody> </table> </section> <section anchor="IANANODEATTR"title="Nodenumbered="true" toc="default"> <name>Node Descriptors and Link AttributeTLVs">TLVs</name> <t>This document defines5five new TLVs in the registry "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and AttributeTLVs":<list style="symbols"> <t>TwoTLVs":</t> <ul spacing="normal"> <li>Two newnode descriptor TLVs</t> <t>ThreeNode Descriptor TLVs</li> <li>Three newlink attribute TLVs</t> </list></t>Link Attribute TLVs</li> </ul> <t>All five of the new5 codepointscode points are in the same registry: "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs".</t> <t>The following new NodeDescriptorsDescriptor TLVs are defined:<figure align="center" anchor="DESCCODE" title="BGP-LS</t> <table anchor="DESCODE"> <name>BGP-LS DescriptorTLVs Codepoints"> <artwork align="center"><![CDATA[+-------------------------------------------------------------------+ | Codepoint | Description | Status | +-------------------------------------------------------------------+ | 516 | BGP Router-ID | Early Allocation by IANA | | 517 | BGPTLV Code Points</name> <thead> <tr> <th>TLV Code Point</th> <th>Description</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>516</td> <td>BGP Router-ID</td> <td>RFC 9086</td> </tr> <tr> <td>517</td> <td>BGP ConfederationMember | Early Allocation by IANA | +------------+------------------------------------------------------+]]></artwork> </figure></t>Member</td> <td>RFC 9086</td> </tr> </tbody> </table> <t>The following new Link Attribute TLVs are defined:<figure align="center" anchor="ATTRCODE" title="BGP-LS</t> <table anchor="ATTRCODE"> <name>BGP-LS AttributeTLVs Codepoints"> <artwork align="center"><![CDATA[+-------------------------------------------------------------------+ | Codepoint | Description | Status | +-------------------------------------------------------------------+ | 1101 | PeerNode SID | Early Allocation by IANA | | 1102 | PeerAdj SID | Early Allocation by IANA | | 1103 | PeerSet SID | Early Allocation by IANA | +------------+------------------------------------------------------+]]></artwork> </figure></t>TLV Code Points</name> <thead> <tr> <th>TLV Code Point</th> <th>Description</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>1101</td> <td>PeerNode SID </td> <td>RFC 9086</td> </tr> <tr> <td>1102</td> <td>PeerAdj SID</td> <td>RFC 9086</td> </tr> <tr> <td>1103</td> <td>PeerSet SID</td> <td>RFC 9086</td> </tr> </tbody> </table> </section> </section> <section anchor="Manageability"title="Manageability Considerations">numbered="true" toc="default"> <name>Manageability Considerations</name> <t>The new protocol extensions introduced in this document augment the existing IGP topology information BGP-LS distribution <xreftarget="RFC7752"/>target="RFC7752" format="default"/> by adding support for distribution of BGP peering topology information. As such,the Manageability Considerations section of<xreftarget="RFC7752"/>target="RFC7752" sectionFormat="of" section="6"/> (Manageability Considerations) applies to these new extensions as well.</t> <t>Specifically, the malformed Link-State NLRI and BGP-LS Attribute tests for syntactic checks inthe Fault Management section of<xreftarget="RFC7752"/>target="RFC7752" sectionFormat="of" section="6.2.2"/> (Fault Management) now apply to the TLVs defined in this document. The semantic or content checking for the TLVs specified in this document and their association with the BGP-LS NLRI types or their associated BGP-LS Attributes is left to the consumer of the BGP-LS information (e.g., an application or a controller) and not the BGP protocol.</t> <t>A consumer of the BGP-LS information retrieves this information from a BGP Speaker, over a BGP-LS session (referSection 1to Sections <xref target="RFC7752" sectionFormat="bare" section="1"/> and2<xref target="RFC7752" sectionFormat="bare" section="2"/> of <xreftarget="RFC7752"/>).target="RFC7752" format="default"/>). The handling of semantic or content errors by the consumer would be dictated by the nature of its application usage andhenceis hence beyond the scope of this document. It may be expected that an error detected in the NLRIdescriptorDescriptor TLVs would result in that specific NLRI update being unusable and hence its update to be discarded along with an errorlog. Whilelog, whereas an error in Attribute TLVs would result in only that specific attribute being discarded with an error log.</t> <t>The operatorMUST<bcp14>MUST</bcp14> be provided with the options of configuring, enabling, and disabling the advertisement of each of the PeerNode SID, PeerAdj SID, and PeerSet SID as well as control of which information is advertised to which internal or external peer. This is not different from what is required by a BGP speaker in terms of information origination and advertisement.</t> <t>BGP Peering Segments are associated with the normal BGP routing peering sessions. However, the BGP peering information along with these Peering Segments themselves are advertised via a distinct BGP-LS peering session. It is expected that this isolation as described in <xreftarget="RFC7752"/>target="RFC7752" format="default"/> is followed when advertising BGP peering topology information via BGP-LS.</t> <t>BGP-EPE functionality enables the capability for instantiation of an SR path for traffic engineering a flow via an egress BGP router to a specific peer, bypassing the normal BGPbest pathbest-path routing for that flow and any routing policies implemented in BGP on that egress BGP router. As with anytraffic engineeringtraffic-engineering solution, the controller or application implementing the policy needs to ensure that there is no looping ormis-routingmisrouting of traffic. Traffic counters corresponding to the MPLS label of the BGP Peering SID on the router would indicate the traffic being forwarded based on the specific EPE path. Monitoring these counters and the flows hitting the corresponding MPLS forwarding entry would help identify issues, if any, with traffic engineering over the EPE paths. Errors in the encoding or decoding of the SR information in the TLVs defined in this document may result in the unavailability of such information to a Centralized EPE Controller or incorrect information being made available to it. This may result in the controller not being able to perform the desiredSR basedSR-based optimization functionality orto performperforming it in an unexpected or inconsistent manner. The handling of such errors by applications like such a controller may be implementation specific and out of scope of this document.</t> </section> <section anchor="Security"title="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t><xreftarget="RFC7752"/>target="RFC7752" format="default"/> defines BGP-LS NLRI to which the extensions defined in this document apply.The Security Considerations section of<xreftarget="RFC7752"/>target="RFC7752" sectionFormat="of" section="8"/> also applies to these extensions. The procedures and new TLVs defined in this document, by themselves, do not affect the BGP-LS security model discussed in <xreftarget="RFC7752"/>.</t>target="RFC7752" format="default"/>.</t> <t>BGP-EPE enables engineering of traffic when leaving the administrative domain via an egress BGP router.ThereforeTherefore, precaution is necessary to ensure that the BGP peering information collected via BGP-LS is limited to specific consumers in a secure manner. Segment Routing operates within a trusted domain <xreftarget="RFC8402"/>target="RFC8402" format="default"/>, and its security considerations also apply to BGP Peering Segments. The BGP-EPE policies are expected to be used entirely within this trusted SR domain (e.g., between multiple AS/domains within a single provider network).</t> <t>The isolation of BGP-LS peering sessions is also required to ensure that BGP-LS topology information (including the newly added BGP peering topology) is not advertised to an external BGP peering session outside an administrative domain.</t> </section><section anchor="Contributors" title="Contributors"> <figure> <artwork><![CDATA[Mach (Guoyi) Chen Huawei Technologies China Email: mach.chen@huawei.com]]></artwork> </figure> <figure> <artwork><![CDATA[Acee Lindem Cisco Systems Inc. US Email: acee@cisco.com]]></artwork> </figure> </section></middle> <back> <displayreference target="I-D.ietf-spring-segment-routing-policy" to="SR-POLICY"/> <displayreference target="I-D.ietf-idr-bgpls-srv6-ext" to="BGPLS-SRV6"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6286.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5065.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8402.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7752.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <reference anchor='RFC9085' target='https://www.rfc-editor.org/info/rfc9085'> <front> <title>Border Gateway Protocol - Link State (BGP-LS) Extensions for Segment Routing</title> <author initials='S' surname='Previdi' fullname='Stefano Previdi'> <organization /> </author> <author initials='K' surname='Talaulikar' fullname='Ketan Talaulikar' role='editor'> <organization /> </author> <author initials='C' surname='Filsfils' fullname='Clarence Filsfils'> <organization /> </author> <author initials='H' surname='Gredler' fullname='Hannes Gredler'> <organization /> </author> <author initials='M' surname='Chen' fullname='Mach(Guoyi) Chen'> <organization /> </author> <date month="August" year="2021"/> </front> <seriesInfo name="RFC" value="9085"/> <seriesInfo name="DOI" value="10.17487/RFC9085"/> </reference> </references> <references> <name>Informative References</name> <reference anchor='RFC9087' target='https://www.rfc-editor.org/info/rfc9087'> <front> <title>Segment Routing Centralized BGP Egress Peer Engineering</title> <author initials='C' surname='Filsfils' fullname='Clarence Filsfils' role='editor'> <organization /> </author> <author initials='S' surname='Previdi' fullname='Stefano Previdi'> <organization /> </author> <author initials='G' surname='Dawra' fullname='Gaurav Dawra' role='editor'> <organization /> </author> <author initials='E' surname='Aries' fullname='Ebben Aries'> <organization /> </author> <author initials='D' surname='Afanasiev' fullname='Dmitry Afanasiev'> <organization /> </author> <date month="August" year="2021"/> </front> <seriesInfo name="RFC" value="9087"/> <seriesInfo name="DOI" value="10.17487/RFC9087"/> </reference> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-spring-segment-routing-policy-13.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-idr-bgpls-srv6-ext.xml"/> </references> </references> <section anchor="Acknowledgements"title="Acknowledgements">numbered="false" toc="default"> <name>Acknowledgements</name> <t>The authors would like to thankJakob Heitz, Howard Yang, Hannes Gredler, Peter Psenak, Arjun Sreekantiah and Bruno Decraene<contact fullname="Jakob Heitz"/>, <contact fullname="Howard Yang"/>, <contact fullname="Hannes Gredler"/>, <contact fullname="Peter Psenak"/>, <contact fullname="Arjun Sreekantiah"/>, and <contact fullname="Bruno Decraene"/> for their feedback and comments.Susan Hares<contact fullname="Susan Hares"/> helped in improving the clarity of the document with her substantial contributions during her shepherd's review. The authors would also like to thankAlvaro Retana<contact fullname="Alvaro Retana"/> for his extensive review andcommentscomments, which helped correct issues and improve the document.</t> </section></middle> <back> <references title="Normative References"> <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"?> <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.6286.xml"?> <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.5065.xml"?> <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.8402.xml"?> <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.7752.xml"?> <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.8174.xml"?> <?rfc include="reference.I-D.ietf-idr-bgp-ls-segment-routing-ext.xml"?> </references> <references title="Informative References"> <?rfc include="reference.I-D.ietf-spring-segment-routing-central-epe.xml"?> <?rfc include="reference.I-D.ietf-spring-segment-routing-policy.xml"?> <?rfc include="reference.I-D.dawra-idr-bgpls-srv6-ext.xml"?> </references><section anchor="Contributors" numbered="false" toc="default"> <name>Contributors</name> <author fullname="Mach(Guoyi) Chen" initials="M." surname="Chen"> <organization>Huawei Technologies</organization> <address> <postal> <street/> <city/> <code/> <country>China </country> </postal> <email>mach.chen@huawei.com</email> </address> </author> <author fullname="Acee Lindem" initials="A" surname="Lindem"> <organization>Cisco Systems Inc.</organization> <address> <postal> <street/> <city/> <code/> <country>United States of America </country> </postal> <email>acee@cisco.com</email> </address> </author> </section> </back> </rfc>