<?xml version="1.0"encoding="US-ASCII"?>encoding="utf-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd"> <?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?> <?rfc toc="yes" ?> <?rfc toc="yes"?> <?rfc tocompact="yes"?> <?rfc tocdepth="2"?> <?rfc symrefs="yes" ?> <?rfc sortrefs="yes"?> <?rfc strict="no" ?>"rfc2629-xhtml.ent"> <rfc ipr="trust200902" category="info"docName="draft-ietf-v6ops-ipv6-ehs-packet-drops-08">docName="draft-ietf-v6ops-ipv6-ehs-packet-drops-08" number="9098" obsoletes="" updates="" submissionType="IETF" xml:lang="en" tocInclude="true" tocDepth="2" symRefs="true" sortRefs="true" version="3" consensus="true" xmlns:xi="http://www.w3.org/2001/XInclude"> <front> <title abbrev="IPv6 Extension Headers">Operational Implications of IPv6 Packets with Extension Headers</title> <seriesInfo name="RFC" value="9098"/> <author fullname="Fernando Gont" initials="F." surname="Gont"> <organization abbrev="SI6 Networks">SI6 Networks</organization> <address> <postal> <street>Segurola y Habana 4310, 7mo Piso</street> <city>Villa Devoto</city> <region>Ciudad Autonoma de Buenos Aires</region> <country>Argentina</country> </postal> <email>fgont@si6networks.com</email> <uri>https://www.si6networks.com</uri> </address> </author> <author fullname="Nick Hilliard" initials="N" surname="Hilliard"> <organization>INEX</organization> <address> <postal> <street>4027 Kingswood Road</street> <city>Dublin</city> <code>24</code><country>IE</country><country>Ireland</country> </postal> <email>nick@inex.ie</email> </address> </author> <author fullname="Gert Doering" initials="G" surname="Doering"> <organization>SpaceNet AG</organization> <address> <postal> <street>Joseph-Dollinger-Bogen 14</street> <city>Muenchen</city> <code>D-80807</code> <country>Germany</country> </postal> <email>gert@space.net</email> </address> </author> <author fullname="Warren Kumari" initials="W." surname="Kumari"> <organization>Google</organization> <address> <postal> <street>1600 Amphitheatre Parkway</street> <city>MountainView, CA</city>View</city> <region>CA</region> <code>94043</code> <country>US</country> </postal> <email>warren@kumari.net</email> </address> </author> <author fullname="Geoff Huston" initials="G." surname="Huston"> <organization abbrev="APNIC"/> <address> <email>gih@apnic.net</email><uri>http://www.apnic.net</uri><uri>https://www.apnic.net</uri> </address> </author> <author fullname="Will (Shucheng) Liu" initials="W." surname="Liu"> <organization>Huawei Technologies</organization> <address> <postal> <street>Bantian, Longgang District</street> <city>Shenzhen</city> <code>518129</code><country>P.R. China</country><country>China</country> </postal> <email>liushucheng@huawei.com</email> </address> </author><date/><date month="September" year="2021"/> <area>Operations and Management</area> <workgroup>IPv6 Operations Working Group (v6ops)</workgroup> <abstract> <t> This document summarizes the operational implications of IPv6 extension headers specified in the IPv6 protocol specification(RFC8200),(RFC 8200) and attempts to analyze reasons why packets with IPv6 extension headers are often dropped in the public Internet. </t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="intro">anchor="intro" numbered="true" toc="default"> <name>Introduction</name> <t> IPv6Extension Headersextension headers (EHs) allow for the extension of the IPv6protocol,protocol and provide support for core functionality such as IPv6 fragmentation. However, common implementation limitations suggest that EHs present a challenge for IPv6 packet routing equipment andmiddle-boxes,middleboxes, and evidence exists that IPv6 packets with EHs are intentionally dropped in the public Internet in some circumstances. </t> <t>This document has the following goals:<list style="symbols"> <t>Raise</t> <ul spacing="normal"> <li>Raise awareness about the operational and security implications of IPv6Extension Headersextension headers specified in <xreftarget="RFC8200"/>,target="RFC8200" format="default"/> and present reasons why some networks resort to intentionally dropping packets containing IPv6Extension Headers.</t> <t>Highlightextension headers.</li> <li>Highlight areas where current IPv6 support by networking devicesmaybe sub-optimal,may be suboptimal, such that the aforementioned support isimproved.</t> <t>Highlightimproved.</li> <li>Highlight operational issues associated with IPv6 extension headers, such that those issues are considered in IETF standardizationefforts.</t> </list> </t>efforts.</li> </ul> <t> <xreftarget="background"/>target="background" format="default"/> of this document provides background information about the IPv6 packet structure and associated implications. <xreftarget="previous-work"/> of this documenttarget="previous-work" format="default"/> summarizestheprevious work that has been carried out in the area of IPv6 extension headers. <xreftarget="pfe-constraints"/>target="pfe-constraints" format="default"/> discussespacket forwardingpacket-forwarding engine constraints in contemporary routers. <xreftarget="inability"/>target="inability" format="default"/> discusses why intermediate systems may need to accessLayer-4Layer 4 information to make a forwarding decision. Finally, <xreftarget="operational-implications"/>target="operational-implications" format="default"/> discussestheoperational implications of IPv6 EHs.<!--Finally, <xref target="future-work"/> suggests a possible action plan for improving the state of affairs with respect to IPv6 extension headers. --></t> </section> <sectiontitle="Terminology">numbered="true" toc="default"> <name>Terminology</name> <t> This document uses the term "intermediate system" to describe both routers andmiddle-boxes,middleboxes when there is no need to distinguish between the two and where the important issue is that the device being discussed forwards packets.</t> </section> <sectiontitle="Disclaimer" anchor="disclaimer">anchor="disclaimer" numbered="true" toc="default"> <name>Disclaimer</name> <t>This document analyzes the operational challenges represented by packets that employ IPv6Extension Headers,extension headers and documents some of the operational reasons why these packets are often dropped in the public Internet. This document is not a recommendation to drop such packets, but rather an analysis of why they are currently dropped. </t> </section> <sectiontitle="Background Information" anchor="background">anchor="background" numbered="true" toc="default"> <name>Background Information</name> <t> It is useful to compare the basic structure of IPv6 packets against that of IPv4packets,packets and analyze the implications of the two different packet structures. </t> <t> IPv4 packets have a variable-length headersize,size that allows for the use of IPv4 "options" -- optional information that may be of usebyto nodes processing IPv4 packets. The IPv4 header length is specified in theIHL header"Internet Header Length" (IHL) field of the mandatory IPv4header,header and must be in the rangefromof 20 octets (the minimum IPv4 header size) to 60octets (accommodatingoctets, accommodating at most 40 octets ofoptions).options. The upper-layer protocol type is specified via the "Protocol" field of the mandatory IPv4 header. </t><t><figuretitle="IPv4anchor="ipv4-packet"> <name>IPv4 PacketStructure" anchor="ipv4-packet"><artwork><![CDATA[Structure</name> <artwork name="" type="" align="left" alt=""><![CDATA[ Protocol, IHL +--------+ | | | v +------//-----+------------------------+ | | | | IPv4 | Upper-Layer | | Header | Protocol | | | | +-----//------+------------------------+ variable length <------------->]]></artwork></figure> </t>]]></artwork> </figure> <t> IPv6 took a different approach to the IPv6 packet structure. Rather than employing a variable-length header as IPv4 does, IPv6 employs alinked-list-likepacketstructure,structure similar to a linked list, where a mandatory fixed-length IPv6 header is followed by an arbitrary number of optional extension headers, with the upper-layer header being the last header in the IPv6 header chain. Each extension header typically specifies its length (unless it is implicit from the extension headertype),type) and the "next header" (NH) type that follows in the IPv6 header chain. </t><t><figuretitle="IPv6anchor="ipv6-packet"> <name>IPv6 PacketStructure" anchor="ipv6-packet"><artwork><![CDATA[Structure</name> <artwork name="" type="" align="left" alt=""><![CDATA[ NH NH, EH-length NH, EH-length +-------+ +------+ +-------+ | | | | | | | v | v | v +-------------+-------------+-//-+---------------+--------------+ | | | | | | | IPv6 | Ext. | | Ext. | Upper-Layer | | header | Header | | Header | Protocol | | | | | | | +-------------+-------------+-//-+---------------+--------------+ fixed length variable number of EHs & length <------------> <-------------------------------->]]></artwork></figure> </t>]]></artwork> </figure> <t>This packet structure has the following implications:<list style="symbols"> <t><xref target="RFC8200"/></t> <ul spacing="normal"> <li> <xref target="RFC8200" format="default"/> requires the entire IPv6 header chain to be contained in the first fragment of a packet, therefore limiting the IPv6extensionheader chain to the size of the path MTU.</t> <t>Other</li> <li>Other than the path MTU constraints, there are no other limits to the number of IPv6 EHs that may be present in a packet. Therefore, there is noupper-limitupper limit regarding"howhow deep into the IPv6packet"packet the upper-layer protocol header may be found.</t> <t>The</li> <li>The only way for a node to obtain the upper-layer protocol type or find the upper-layer protocol header is to parse and process the entire IPv6 header chain, in sequence, starting from the mandatory IPv6header,header until the last header in the IPv6 header chain is found.</t> </list> </t></li> </ul> </section> <sectiontitle="Previousanchor="previous-work" numbered="true" toc="default"> <name>Previous Work on IPv6 ExtensionHeaders" anchor="previous-work">Headers</name> <t>Some of the operational and security implications of IPv6Extension Headersextension headers have been discussedatin the IETF:<list style="symbols"> <t><xref target="I-D.taylor-v6ops-fragdrop"/></t> <ul spacing="normal"> <li> <xref target="I-D.taylor-v6ops-fragdrop" format="default"/> discusses a rationale for which operators drop IPv6fragments.</t> <t>fragments.</li> <li> <xreftarget="I-D.wkumari-long-headers"/>target="I-D.wkumari-long-headers" format="default"/> discusses possible issues arising from "long" IPv6 headerchains.</t> <t><xref target="I-D.kampanakis-6man-ipv6-eh-parsing"/>chains.</li> <li> <xref target="I-D.kampanakis-6man-ipv6-eh-parsing" format="default"/> describes how inconsistencies in the way IPv6 packets with extension headers are parsed by different implementations could result in evasion of securitycontrols,controls and presents guidelines for parsing IPv6 extensionheadersheaders, with the goal of providing a common and consistent parsing methodology for IPv6 implementations.</t> <t><xref target="I-D.ietf-opsec-ipv6-eh-filtering"/></li> <li> <xref target="I-D.ietf-opsec-ipv6-eh-filtering" format="default"/> analyzes the security implications of IPv6 EHs,andas well as the operational implications of dropping packets that employ IPv6 EHs and associated options.</t> <t><xref target="RFC7113"/></li> <li> <xref target="RFC7113" format="default"/> discusses how some popularRA-GuardRouter Advertisement Guard (RA-Guard) implementations are subject to evasion by means of IPv6 extensionheaders.</t> <t><xref target="RFC8900"/>headers.</li> <li> <xref target="RFC8900" format="default"/> analyzes the fragility introduced by IPfragmentation.</t> </list> </t>fragmentation.</li> </ul> <t>A number of recent RFCs have discussed issues related to IPv6 extensionheaders, specifyingheaders and have specified updates toa previous revisionRFC 2460 <xref target="RFC2460" format="default"/> (an earlier version of the IPv6standard <xref target="RFC2460"/>, manystandard). Many ofwhichthese updates have now been incorporated into the current IPv6 core standard <xreftarget="RFC8200"/>target="RFC8200" format="default"/> or the IPv6Node Requirementsnode requirements <xreftarget="RFC8504"/>.target="RFC8504" format="default"/>. Namely,<list style="symbols"> <t><xref target="RFC5095"/></t> <ul spacing="normal"> <li> <xref target="RFC5095" format="default"/> discusses the security implications of Routing Header Type 0(RTH0),(RHT0) and deprecatesit.</t> <t><xref target="RFC5722"/>it.</li> <li> <xref target="RFC5722" format="default"/> analyzes the security implications of overlappingfragments,fragments and provides recommendations in thisarea.</t> <t><xref target="RFC7045"/>area.</li> <li> <xref target="RFC7045" format="default"/> clarifies how intermediate nodes should deal with IPv6 extensionheaders.</t> <t><xref target="RFC7112"/>headers.</li> <li> <xref target="RFC7112" format="default"/> discusses the issues arising in a specific fragmentation case where the IPv6 header chain is fragmented into two or more fragments(andand formally forbids suchfragmentation).</t> <t><xref target="RFC6946"/>fragmentation.</li> <li> <xref target="RFC6946" format="default"/> discusses a flawed (but common) processing of the so-called IPv6 "atomicfragments",fragments" andspecifiedspecifies improved processing of suchpackets.</t> <t><xref target="RFC8021"/>packets.</li> <li> <xref target="RFC8021" format="default"/> deprecates the generation of IPv6 atomicfragments.</t> <t><xref target="RFC8504"/>fragments.</li> <li> <xref target="RFC8504" format="default"/> clarifies processing rules for packets with extensionheaders,headers and also allows hosts to enforce limits on the number of options included in IPv6EHs.</t> <t><xref target="RFC7739"/>EHs.</li> <li> <xref target="RFC7739" format="default"/> discusses the security implications of predictable fragment Identificationvalues,values and provides recommendations for the generation of thesevalues.</t> <t><xref target="RFC6980"/>values.</li> <li> <xref target="RFC6980" format="default"/> analyzes the security implications of employing IPv6 fragmentation with Neighbor Discovery forIPv6,IPv6 and formally recommends against suchusage.</t> </list> </t>usage.</li> </ul> <t>Additionally, <xreftarget="RFC8200"/>target="RFC8200" format="default"/> has relaxed the requirement that"all"all nodes must examine and process the Hop-by-Hop Optionsheader"header" from <xreftarget="RFC2460"/>,target="RFC2460" format="default"/>, by specifying that only nodes that have been explicitly configured to process the Hop-by-Hop Options header are required to do so.</t> <t>A number of studies have measured the extent to which packets employing IPv6 extension headers are dropped in the public Internet:<list style="symbols"> <t><xref target="PMTUD-Blackholes"/><!--, <xref target="Gont-IEPG88"/>,</t> <ul spacing="normal"> <li> <xreftarget="Gont-Chown-IEPG89"/>,-->target="PMTUD-Blackholes" format="default"/> and <xreftarget="Linkova-Gont-IEPG90"/> presentedtarget="Linkova-Gont-IEPG90" format="default"/> present some preliminary measurements regarding the extent to whichpacketpackets containing IPv6 EHs are dropped in the publicInternet.</t> <t><xref target="RFC7872"/>Internet.</li> <li> <xref target="RFC7872" format="default"/> presents more comprehensive results and documents the methodology used to obtain theseresults.</t> <t><xref target="Huston-2017"/>results.</li> <li> <xref target="Huston-2017" format="default"/> and <xreftarget="Huston-2020"/> measuredtarget="Huston-2020" format="default"/> measure packet drops resulting from IPv6 fragmentation when communicating with DNSservers.</t> </list> </t>servers.</li> </ul> </section> <sectiontitle="Packet Forwardinganchor="pfe-constraints" numbered="true" toc="default"> <name>Packet-Forwarding EngineConstraints" anchor="pfe-constraints">Constraints</name> <t> Most contemporary carrier-grade routers use dedicated hardware,e.g. application-specific integrated circuitse.g., Application-Specific Integrated Circuits (ASICs) ornetwork processing unitsNetwork Processing Units (NPUs), to determine how to forward packets across their internal fabrics (see <xreftarget="IEPG94-Scudder"/>target="IEPG94-Scudder" format="default"/> and <xreftarget="APNIC-Scudder"/>target="APNIC-Scudder" format="default"/> for details). Oneof thecommonmethodsmethod of handling next-hoplookuplookups is to send a small portion of the ingress packet to a lookup engine withspecialisedspecialized hardware,e.g.e.g., ternary content-addressable memory (TCAM) or reduced latency dynamic random-access memory (RLDRAM), to determine the packet'snext-hop.next hop. Technical constraints mean that there is a trade-off between the amount of data sent to the lookup engine and the overallpacket forwardingpacket-forwarding rate of the lookup engine. If more data is sent, the lookup engine can inspect further into the packet, but the overallpacket forwardingpacket-forwarding rate of the system will be reduced. If less data is sent, the overallpacket forwardingpacket-forwarding rate of the router will beincreasedincreased, but the packet lookup engine may not be able to inspect far enough into a packet to determine how it should be handled. </t><!-- <t> <list style="hanging"> <t hangText="NOTE:"><vspace blankLines="0"/>For example, contemporary high-end routers can use up to 192 bytes of header (Cisco ASR9000 Typhoon) or 384 bytes of header (Juniper MX Trio). </t> </list> </t> --> <t> <list style="hanging"><aside> <t>NOTE:</t> <thangText="NOTE:"><vspace blankLines="0"/>Forindent="3"> For example, some contemporary high-end routers are known to inspect up to 192 bytes, while others are known to parse up to 384 bytes of header. </t></list> </t></aside> <t>If ahardware forwardinghardware-forwarding engine on a contemporary router cannot make a forwarding decision about a packet because critical information is not sent to thelook-uplookup engine, then the router will normally drop the packet. <xreftarget="inability"/>target="inability" format="default"/> discusses some of the reasons for which a contemporary router might need to accesslayer-4Layer 4 information to make a forwarding decision.</t> <t> Historically, somepacket forwardingpacket-forwarding engines punted packets of thisformkind to the control plane for more in-depth analysis, but this is unfeasible on most contemporary router architectures as a result of the vast difference between thehardwarehardware-based forwarding capacity of the router and the processing capacity of the control plane and the size of the management linkwhichthat connects the control plane to the forwarding plane. Other platforms may have a separatesoftwaresoftware-based forwarding plane that is distinct both from thehardwarehardware-based forwarding plane and the control plane. However, the limited CPU resources of this software-based forwarding plane, as well as the limited bandwidth of the associatedlinklink, results in similar throughput constraints. </t> <t> If an IPv6 header chain is sufficiently long such that it exceeds the packetlook-uplookup capacity of the router, the router might be unable to determine how the packet should behandled,handled and thus could resort to dropping the packet. </t> <sectiontitle="Recirculation" anchor="recirculation">anchor="recirculation" numbered="true" toc="default"> <name>Recirculation</name> <t> AlthoughTLVtype-length-value (TLV) chains are amenable to iterative processing on architectures that have packetlook-uplookup engines with deep inspection capabilities, somepacket forwardingpacket-forwarding engines manage IPv6Extension Headerheader chains using recirculation. This approach processesExtension Headersextension headers one at a time: when processing on oneExtension Headerextension header is completed, the packet is looped back through the processing engine again. This recirculation process continues repeatedly until there are no moreExtension Headersextension headers left to be processed. </t> <t> Recirculation is typically used onpacket forwardingpacket-forwarding engines with limitedlook-uplookup capability, because it allows arbitrarily long header chains to be processed without the complexity and cost associated withpacket forwarding enginespacket-forwarding engines, which have deeplook-uplookup capabilities. However, recirculation can impact the forwarding capacity of hardware, as each packet will pass through the processing engine multiple times. Depending on configuration, the type of packets being processed, and the hardware capabilities of thepacket forwardingpacket-forwarding engine,this could impactthe data-plane throughput performance on therouter.router might be negatively affected. </t> </section> </section> <sectiontitle="Requirementanchor="inability" numbered="true" toc="default"> <name>Requirement to ProcessLayer-3/layer-4 informationLayer 3 / Layer 4 Information in IntermediateSystems" anchor="inability">Systems</name> <t>The following subsections discuss some of the reasons for which intermediate systems may need to processLayer-3/layer-4Layer 3 / Layer 4 information to make a forwarding decision.</t> <sectiontitle="ECMPanchor="ecmp-load-balancing" numbered="true" toc="default"> <name>ECMP andHash-based Load-Sharing" anchor="ecmp-load-balancing">Hash-Based Load Sharing</name> <t>In the case ofequal cost multi-pathEqual Cost Multipath (ECMP) load sharing, the intermediate system needs to make a decision regarding which of its interfaces to use to forward a given packet. Since round-robin usage of the links is usually avoided to prevent packet reordering, forwarding engines need to use a mechanism that will consistently forward the same data streams down the same forwarding paths. Most forwarding engines achieve this by calculating a simple hash using an n-tuple gleaned from a combination oflayer-2Layer 2 through tolayer-4 packetLayer 4 protocol header information. This n-tuple will typically use the src/dstMAC address,Media Access Control (MAC) addresses, src/dst IPaddress, andaddresses, and, ifpossiblepossible, furtherlayer-4Layer 4 src/dst port information. </t> <t>In the IPv6 world, flows are expected to be identified by means of the IPv6Flow Label"Flow Label" <xreftarget="RFC6437"/>.target="RFC6437" format="default"/>. Thus, ECMP andHash-based Load-Sharinghash-based load sharing should be possible without the need to process the entire IPv6 header chain to obtain upper-layer information to identify flows. <xreftarget="RFC7098"/>target="RFC7098" format="default"/> discusses how the IPv6 Flow Label can be used to enhancelayerLayer 3/4 load distribution and balancing for large server farms. </t> <t>Historically, many IPv6 implementations failed to set the Flow Label, and hash-based ECMP/load-sharing devices also did not employ the Flow Label for performing their task. While support of <xreftarget="RFC6437"/>target="RFC6437" format="default"/> is currently widespread for current versions of all popular host implementations, there is still only marginal usage of the IPv6 Flow Label for ECMP and load balancing <xreftarget="Cunha-2020"/>.target="Almeida-2020" format="default"/>. A contributing factor could be the issues that have been found in host implementations andmiddle-boxesmiddleboxes <xreftarget="Jaeggli-2018"/>.</t>target="Jaeggli-2018" format="default"/>.</t> <t> Clearly, widespread support of <xreftarget="RFC6437"/>target="RFC6437" format="default"/> would relieve intermediate systems from having to process the entire IPv6 header chain, making Flow Label-based ECMP andLoad-Sharingload sharing <xreftarget="RFC6438"/>target="RFC6438" format="default"/> feasible. </t> <t> If an intermediate system cannot determine consistent n-tuples for calculating flow hashes, data streams are more likely to end up being distributed unequally across ECMP and load-shared links. This may lead to packet drops or reduced performance. </t> </section> <sectiontitle="Enforcing infrastructure ACLs" anchor="enforcing-infrastructure-acls">anchor="enforcing-infrastructure-acls" numbered="true" toc="default"> <name>Enforcing Infrastructure ACLs</name> <t>InfrastructureACLsAccess Control Lists (iACLs) drop unwanted packets destined to a network's infrastructure. Typically, iACLs are deployed because external direct access to a network's infrastructure addresses is operationallyunnecessary,unnecessary and can be used for attacks of different sorts against router control planes. To this end, traffic usually needs to be differentiated on the basis oflayer-3Layer 3 orlayer-4Layer 4 criteria to achieve a useful balance of protection and functionality. For example, an infrastructure may be configured with the following policy:<list style="symbols"> <t>Permit</t> <ul spacing="normal"> <li>Permit some amount of ICMP echo (ping) traffic towards a router's addresses fortroubleshooting.</t> <t>Permittroubleshooting.</li> <li>Permit BGP sessions on the shared network of an exchange point (potentially differentiating between the amount ofpackets/secondspackets/second permitted for established sessions and for connection establishment), but do not permit other traffic from the same peer IPaddresses.</t> </list> </t>addresses.</li> </ul> <t> If a forwarding router cannot determine consistent n-tuples for calculating flow hashes, data streams are more likely to end up being distributed unequally across ECMP and load-shared links. This may lead to packet drops or reduced performance. </t> <t> If a network cannot deploy infrastructure ACLs, then the security of the network may be compromiseddue to having more potentialas a result of the increased attackvectors open.surface. </t> </section> <sectiontitle="DDoSanchor="ddos-management" numbered="true" toc="default"> <name>DDoS Management and Customer Requests forFiltering" anchor="ddos-management">Filtering</name> <t>The case of customerDDoSDistributed Denial-of-Service (DDoS) protection and edge-to-core customer protection filters is similar in nature to the iACL protection. Similar to iACL protection,layer-4Layer 4 ACLs generally need to be applied as close to the edge of the network as possible, even though the intent is usually to protect the customer edge rather than the provider core. Application oflayer-4Layer 4 DDoS protection to a network edge is often automated using BGP Flowspec <xreftarget="RFC8955"/>target="RFC8955" format="default"/> <xreftarget="RFC8956"/>.target="RFC8956" format="default"/>. </t> <t>For example, aweb sitewebsite that normally onlyhandledhandles traffic on TCP ports 80 and 443 could be subject to a volumetric DDoS attack using NTP and DNS packets withrandomiseda randomized source IP address, thereby renderingtraditional <xref target="RFC5635"/>source-basedreal-timeremote triggered black hole <xref target="RFC5635"/> mechanisms useless. In this situation, ACLs that provide DDoS protectionACLscould be configured to block all UDP traffic at the network edge without impairing the web server functionality in any way. Thus, being able to block arbitrary protocols at the network edge can avoid DDoS-related problems both in the provider network and on the customer edge link. </t> </section> <sectiontitle="Networkanchor="nids" numbered="true" toc="default"> <name>Network Intrusion Detection andPrevention" anchor="nids">Prevention</name> <t>Network Intrusion Detection Systems (NIDS) examine network traffic and try to identify traffic patterns that can be correlated to network-based attacks. These systems generally attempt to inspect application-layer traffic (ifpossible), butpossible) but, at the bareminimumminimum, inspectlayer-4Layer 4 flows. When attack activity is inferred, the operator is notified of the potential intrusion attempt. </t> <t>Network Intrusion Prevention Systems (IPS) operate similarly toNIDS's,NIDSs, but they can also prevent intrusions by reacting to detected attack attempts by e.g., triggering packet filtering policies at firewalls and other devices.</t> <t>Use of extension headers can be problematic for NIDS/IPS, since:<list style="symbols"> <t>Extension</t> <ul spacing="normal"> <li>Extension headers increase the complexity of resultingtraffic,traffic and the associated work and system requirements to processit.</t> <t>Useit.</li> <li>Use of unknown extension headers can preventan NIDS/IPSa NIDS or IPS from processinglayer-4 information.</t> <t>UseLayer 4 information.</li> <li>Use of IPv6 fragmentation requires a stateful fragment-reassembly operation, even for decoy traffic employing forged source addresses(see(see, e.g., <xreftarget="nmap"/>).</t> </list> </t>target="nmap" format="default"/>).</li> </ul> <t>As a result, in order to increase the efficiency or effectiveness of these systems, packets employing IPv6 extension headers are often dropped at the network ingress point(s) of networks that deploy these systems.</t> </section> <sectiontitle="Firewalling" anchor="firewalls">anchor="firewalls" numbered="true" toc="default"> <name>Firewalling</name> <t>Firewalls enforce security policies by means of packet filtering. These systems usually inspectlayer-3Layer 3 andlayer-4 traffic,Layer 4 traffic but can often also examine application-layer traffic flows.</t> <t>As withNIDS/IPSa NIDS or IPS (<xreftarget="nids"/>),target="nids" format="default"/>), use of IPv6 extension headers can represent a challenge to network firewalls, since:<list style="symbols"> <t>Extension</t> <ul spacing="normal"> <li>Extension headers increase the complexity of resultingtraffic,traffic and the associated work and system requirements to process it, as outlined in <xreftarget="Zack-FW-Benchmark"/>.</t> <t>Usetarget="Zack-FW-Benchmark" format="default"/>.</li> <li>Use of unknown extension headers can prevent firewalls from processinglayer-4 information.</t> <t>UseLayer 4 information.</li> <li>Use of IPv6 fragmentation requires a stateful fragment-reassembly operation, even for decoy traffic employing forged source addresses(see(see, e.g., <xreftarget="nmap"/>).</t> </list> </t>target="nmap" format="default"/>).</li> </ul> <t>Additionally, a common firewall filtering policy is the so-called"default deny","default deny", where all traffic is blocked (by default), and only expected traffic is added to an "allow/accept list".</t> <t>As a result, packets employing IPv6 extension headers are often dropped by network firewalls, either because of the challenges represented by extension headers or because the use of IPv6 extension headers has not been explicitly allowed.</t> <t>Note that although the data presented in <xreftarget="Zack-FW-Benchmark"/> weretarget="Zack-FW-Benchmark" format="default"/> was several years old at the time of publication of this document, many contemporary firewalls use comparable hardware and softwarearchitecture, and consequentlyarchitectures; consequently, the conclusions of this benchmark are still relevant, despite its age.</t> </section> </section> <sectiontitle="Operationalanchor="operational-implications" numbered="true" toc="default"> <name>Operational and SecurityImplications" anchor="operational-implications"> <!-- [fgont] Isn't this already discussed in the "ddos-management" section? <t>FIXME: Implementation of edge-to-core customer sanitisation filters</t> -->Implications</name> <sectiontitle="Inabilityanchor="inability-layer-4-info" numbered="true" toc="default"> <name>Inability to FindLayer-4 Information" anchor="inability-layer-4-info">Layer 4 Information</name> <t>As discussed in <xreftarget="inability"/>,target="inability" format="default"/>, intermediate systems that need to find thelayer-4Layer 4 header must process the entire IPv6extensionheader chain. When such devices are unable to obtain the required information, the forwarding device has the option to drop the packet unconditionally, forward the packet unconditionally, or process the packet outside the normal forwarding path. Forwarding packets unconditionally will usually allow for the circumvention of security controls(see(see, e.g., <xreftarget="firewalls"/>),target="firewalls" format="default"/>), while processing packets outside of the normal forwarding path will usually open the door toDoSDenial-of-Service (DoS) attacks(see(see, e.g., <xreftarget="pfe-constraints"/>).target="pfe-constraints" format="default"/>). Thus, in these scenarios, devices often simply resort to dropping such packets unconditionally. </t> </section> <sectiontitle="Route-Processor Protection" anchor="route-processor-protection">anchor="route-processor-protection" numbered="true" toc="default"> <name>Route-Processor Protection</name> <t>Most contemporary carrier-grade routers have a fast hardware-assisted forwarding plane and a loosely coupled control plane, connected together with a link that has much less capacity than the forwarding plane could handle. Traffic differentiation cannot be performed by the controlplane,plane because this would overload the internal link connecting the forwarding plane to the control plane. </t> <t>The Hop-by-Hop Options header has been particularly challengingsincesince, in most circumstances, the corresponding packet is punted to the control plane for processing. As a result, many operators drop IPv6 packets containing this extension header <xreftarget="RFC7872"/>.target="RFC7872" format="default"/>. <xreftarget="RFC6192"/>target="RFC6192" format="default"/> provides advice regarding protection of a router's control plane.</t> </section> <sectiontitle="Inabilityanchor="finer-grained" numbered="true" toc="default"> <name>Inability to PerformFine-grained Filtering" anchor="finer-grained">Fine-Grained Filtering</name> <t>Some intermediate systems do not have support for fine-grained filtering of IPv6 extension headers. For example, an operator that wishes to drop packets containingRouting Header Type 0 (RHT0),RHT0 may only be able to filter on the extension header type (Routing Header). This could result in an operator enforcing amore coarse filtering policy (e.g., "drop all packets containing a Routing Header" vs. "only drop packets that contain a Routing Header Type 0"). </t> <!-- <t>Some router implementations lack fine-grained filtering of IPv6 extension headers. For example, an operator may want to drop packets containing Routing Header Type 0 (RHT0) but may only be able to filter on the extension header type (Routing Header). As a result, the operator may end up enforcing a more coarsecoarser filtering policy (e.g., "drop all packets containing a Routing Header" vs. "only drop packets that contain a Routing Header Type 0"). </t>--></section> <sectiontitle="Securityanchor="security-implications" numbered="true" toc="default"> <name>Security Concerns Associated with IPv6 ExtensionHeaders" anchor="security-implications">Headers</name> <t>The security implications of IPv6Extension Headersextension headers generally fall into one or more of these categories:<list style="symbols"> <t>Evasion</t> <ul spacing="normal"> <li>Evasion of securitycontrols</t> <t>DoScontrols</li> <li>DoS due to processingrequirements</t> <t>DoSrequirements</li> <li>DoS due to implementationerrors</t> <t>Extension Header-specific issues</t> </list> </t> <!-- IPv4 packets that contain limited space for IPv4 options and an "Internet Header Length" (IHL) field whereerrors</li> <li>Issues specific to theupper-layer protocols c -->extension header type</li> </ul> <t>Unlike IPv4 packets where the upper-layer protocol can be trivially found by means of the"IHL" ("Internet Header Length")IHL field of the IPv4header field,header, the structure of IPv6 packets is more flexible and complex. This can represent a challenge for devices that need to find this information, since locating upper-layer protocol information requires that all IPv6 extension headers be examined. In turn, this presents implementation difficulties, since somepacket filteringpacket-filtering mechanisms that require upper-layer information (even if just theupper layerupper-layer protocol type) can be trivially circumvented by inserting IPv6Extension Headersextension headers between the main IPv6 header and theupper layer protocol.upper-layer protocol header. <xreftarget="RFC7113"/>target="RFC7113" format="default"/> describes this issue for the RA-Guard case, but the same techniques could be employed to circumvent other IPv6 firewall andpacket filteringpacket-filtering mechanisms. Additionally, implementation inconsistencies inpacket forwardingpacket-forwarding engines can result in evasion of security controls <xreftarget="I-D.kampanakis-6man-ipv6-eh-parsing"/>target="I-D.kampanakis-6man-ipv6-eh-parsing" format="default"/> <xreftarget="Atlasis2014"/>target="Atlasis2014" format="default"/> <xreftarget="BH-EU-2014"/>.target="BH-EU-2014" format="default"/>. </t><t>Sometimes<t>Sometimes, packets with IPv6Extension Headersextension headers can impact throughput performance on intermediate systems. Unless appropriate mitigations are put in place (e.g., packet dropping and/orrate-limiting),rate limiting), an attacker could simply send a large amount of IPv6 traffic employing IPv6Extension Headersextension headers with the purpose of performing aDenial of Service (DoS)DoS attack (see Sections <xreftarget="recirculation"/>target="recirculation" format="counter"/> and <xreftarget="operational-implications"/>target="operational-implications" format="counter"/> for further details).<list style="hanging">The extent to which performance is affected on these devices is implementation dependent. </t> <aside> <t>NOTE:</t> <thangText="NOTE:"><vspace blankLines="0"/>Inindent="3"> In the most trivial case, a packet that includes a Hop-by-Hop Options header might go through the slow forwarding path, to be processed by the router's CPU. Alternatively, a router configured to enforce an ACL based on upper-layer information (e.g.,upper layerupper-layer protocol type or TCP Destination Port) may need to process the entire IPv6 header chain in order to find the required information, thereby causing the packet to be processed in the slow path <xreftarget="Cisco-EH-Cons"/>.target="Cisco-EH-Cons" format="default"/>. We note that, for obvious reasons, the aforementioned performance issues can affectotherdevices such as firewalls,Network Intrusion Detection Systems (NIDS),NIDSs, etc. <xreftarget="Zack-FW-Benchmark"/>. The extent to which performance is affected on these devices is implementation-dependent. </t> </list> </t> <t>IPv6 implementations, like all other software, tendtarget="Zack-FW-Benchmark" format="default"/>. </t> </aside> <t>IPv6 implementations, like all other software, tend to mature with time and wide-scale deployment. While the IPv6 protocol itself has existed for over 20 years, serious bugs related to IPv6Extension Headerextension header processing continue to be discovered(see(see, e.g., <xreftarget="Cisco-Frag"/>,target="Cisco-Frag" format="default"/>, <xreftarget="Microsoft-SA"/>,target="Microsoft-SA" format="default"/>, and <xreftarget="FreeBSD-SA"/>).target="FreeBSD-SA" format="default"/>). Because there is currently little operational reliance on IPv6Extensionextension headers, the corresponding code paths are rarely exercised, and there is the potential for bugs that still remain to be discovered in some implementations.</t><t>IPv6<t>The IPv6 FragmentHeaders areHeader is employedto allowfor the fragmentation and reassembly of IPv6 packets. While many of the security implications of thefragmentation / reassemblyfragmentation/reassembly mechanism are known from the IPv4 world, several related issues have crept into IPv6 implementations. These range fromdenial of serviceDoS attacks to informationleakage,leakages, as discussed in <xreftarget="RFC7739"/>,target="RFC7739" format="default"/>, <xreftarget="Bonica-NANOG58"/>target="Bonica-NANOG58" format="default"/>, and <xreftarget="Atlasis2012"/>).target="Atlasis2012" format="default"/>. </t> </section> </section> <sectiontitle="IANA Considerations" anchor="iana-cons">anchor="iana-cons" numbered="true" toc="default"> <name>IANA Considerations</name> <t>This document has no IANA actions. </t> </section> <sectiontitle="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t>The security implications of IPv6 extension headers are discussed in <xreftarget="security-implications"/>.target="security-implications" format="default"/>. This document does not introduce any new security issues. </t> </section><section title="Acknowledgements"> <t>The authors would like to thank (in alphabetical order) Mikael Abrahamsson, Fred Baker, Dale W. Carder, Brian Carpenter, Tim Chown, Owen DeLong, Gorry Fairhurst, Guillermo Gont, Tom Herbert, Lee Howard, Tom Petch, Sander Steffann, Eduard Vasilenko, Eric Vyncke, Rob Wilton, Jingrong Xie, and Andrew Yourtchenko, for providing valuable comments</middle> <back> <displayreference target="I-D.ietf-opsec-ipv6-eh-filtering" to="IPV6-EH"/> <displayreference target="I-D.kampanakis-6man-ipv6-eh-parsing" to="PARSING"/> <displayreference target="I-D.taylor-v6ops-fragdrop" to="OPERATORS"/> <displayreference target="I-D.wkumari-long-headers" to="HEADERS"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6946.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5095.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5722.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7112.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8021.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8504.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6980.xml"/> </references> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2460.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5635.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6192.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6437.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6438.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7098.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7045.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7113.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7739.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7872.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8900.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8955.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8956.xml"/> <reference anchor='I-D.ietf-opsec-ipv6-eh-filtering'> <front> <title>Recommendations onearlier versionsthe Filtering ofthis document. </t> <t>Fernando Gont would like to thank Jan Zorz / Go6 Lab <https://go6lab.si/>, Jared Mauch, and Sander Steffann <https://steffann.nl/>, for providing access to systems and networks that were employed to perform experimentsIPv6 Packets Containing IPv6 Extension Headers at Transit Routers</title> <author initials='F' surname='Gont' fullname='Fernando Gont'> <organization /> </author> <author initials='W' surname='Liu' fullname='Will Liu'> <organization /> </author> <date year='2021' month='June' day='3' /> </front> <seriesInfo name='Internet-Draft' value='draft-ietf-opsec-ipv6-eh-filtering-08'/> <format type='TXT' target='https://www.ietf.org/internet-drafts/draft-ietf-opsec-ipv6-eh-filtering-08.txt'/> </reference> <reference anchor='I-D.taylor-v6ops-fragdrop'> <front> <title>Why Operators Filter Fragments andmeasurements involving packets withWhat It Implies</title> <author initials='J' surname='Jaeggli' fullname='Joel Jaeggli'> <organization /> </author> <author initials='L' surname='Colitti' fullname='Lorenzo Colitti'> <organization /> </author> <author initials='W' surname='Kumari' fullname='Warren Kumari'> <organization /> </author> <author initials='E' surname='Vyncke' fullname='Eric Vyncke'> <organization /> </author> <author initials='M' surname='Kaeo' fullname='Merike Kaeo'> <organization /> </author> <author initials='T' surname='Taylor' fullname='Tom Taylor' role="editor"> <organization /> </author> <date month='December' day='3' year='2013' /> </front> <seriesInfo name='Internet-Draft' value='draft-taylor-v6ops-fragdrop-02' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-taylor-v6ops-fragdrop-02.txt' /> </reference> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.wkumari-long-headers.xml"/> <reference anchor='I-D.kampanakis-6man-ipv6-eh-parsing'> <front> <title>Implementation Guidelines for Parsing IPv6 ExtensionHeaders.</t> </section> </middle> <back> <references title='Normative References'> <?rfc include="reference.RFC.6946" ?> <?rfc include="reference.RFC.5095" ?> <?rfc include="reference.RFC.5722" ?> <?rfc include="reference.RFC.7112" ?> <?rfc include="reference.RFC.8021" ?> <?rfc include="reference.RFC.8200" ?> <?rfc include="reference.RFC.8504" ?> <?rfc include="reference.RFC.6980" ?> </references> <references title='Informative References'> <?rfc include="reference.RFC.2460" ?> <?rfc include="reference.RFC.5635" ?> <?rfc include="reference.RFC.6192" ?> <?rfc include="reference.RFC.6437" ?> <?rfc include="reference.RFC.6438" ?> <?rfc include="reference.RFC.7098" ?> <?rfc include="reference.RFC.7045" ?> <?rfc include="reference.RFC.7113" ?> <?rfc include="reference.I-D.taylor-v6ops-fragdrop" ?> <?rfc include="reference.I-D.wkumari-long-headers" ?> <?rfc include="reference.I-D.kampanakis-6man-ipv6-eh-parsing" ?> <?rfc include="reference.RFC.7739" ?> <?rfc include="reference.RFC.7872" ?> <?rfc include="reference.I-D.ietf-opsec-ipv6-eh-filtering" ?> <?rfc include="reference.RFC.8900" ?> <?rfc include="reference.RFC.8955" ?> <?rfc include="reference.RFC.8956" ?>Headers</title> <author initials='P' surname='Kampanakis' fullname='Panos Kampanakis'> <organization /> </author> <date month='August' day='5' year='2014' /> </front> <seriesInfo name='Internet-Draft' value='draft-kampanakis-6man-ipv6-eh-parsing-01' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-kampanakis-6man-ipv6-eh-parsing-01.txt' /> </reference> <reference anchor="Atlasis2014" target="http://www.insinuator.net/2014/05/a-novel-way-of-abusing-ipv6-extension-headers-to-evade-ipv6-security-devices/"> <front> <title>A Novel Way of Abusing IPv6 Extension Headers to Evade IPv6 Security Devices</title> <authorinitials="A.A."initials="A." surname="Atlasis" fullname="Antonios Atlasis"><organization></organization><organization/> </author> <date month="May" year="2014"/> </front> </reference> <reference anchor="nmap" target="https://nmap.org/book/man-bypass-firewalls-ids.html"> <front><title>Dealing with IPv6 fragmentation in the DNS</title><title>Firewall/IDS Evasion and Spoofing</title> <authorfullname="Fyodor" initials="" surname="Fyodor">fullname="Gordon 'Fyodor' Lyon" initials="G." surname="Lyon"> </author> <date/> </front><seriesInfo name="" value="Firewall/IDS Evasion and Spoofing"/><refcontent>Chapter 15. Nmap Reference Guide</refcontent> </reference> <reference anchor="Huston-2017" target="https://blog.apnic.net/2017/08/22/dealing-ipv6-fragmentation-dns/"> <front> <title>Dealing with IPv6 fragmentation in the DNS</title> <author fullname="Geoff Huston" initials="G." surname="Huston"> <organization abbrev="APNIC"/><address> <email>gih@apnic.net</email> <uri>http://www.apnic.net</uri> </address></author> <dateyear="2017"/>year="2017" month="August"/> </front><seriesInfo name="" value="APNIC Blog"/><refcontent>APNIC Blog</refcontent> </reference> <reference anchor="Huston-2020" target="https://www.cmand.org/workshops/202006-v6/slides/2020-06-16-xtn-hdrs.pdf"> <front> <title>Measurement of IPv6 Extension Header Support</title> <author fullname="Geoff Huston" initials="G." surname="Huston"> <organization abbrev="APNIC"/><address> <email>gih@apnic.net</email> <uri>http://www.apnic.net</uri> </address></author> <dateyear="2020"/>year="2020" month="June"/> </front><seriesInfo name="" value="NPS/CAIDA<refcontent>NPS/CAIDA 2020 Virtual IPv6Workshop"/>Workshop</refcontent> </reference> <reference anchor="Jaeggli-2018" target="https://blog.apnic.net/2018/01/11/ipv6-flow-label-misuse-hashing/"> <front> <title>IPv6 flow label: misuse in hashing</title> <author fullname="Joel Jaeggli" initials="J." surname="Jaeggli"> </author> <dateyear="2018"/>year="2018" month="January"/> </front><seriesInfo name="" value="APNIC Blog"/><refcontent>APNIC Blog</refcontent> </reference> <referenceanchor="Cunha-2020" target="https://www.cmand.org/workshops/202006-v6/slides/cunha.pdf">anchor="Almeida-2020" target="https://homepages.dcc.ufmg.br/~cunha/papers/almeida20infocom-mca.pdf"> <front><title>IPv4 vs IPv6 load balancing<title>Classification of Load Balancing inInternet routes</title>the Internet</title> <author fullname="Rafael Almeida" initials="R." surname="Almeida"> <organization abbrev="UFMG"/> </author> <author fullname="Italo Cunha" initials="I." surname="Cunha"> <organization abbrev="UFMG"/> </author> <author fullname="Renata Teixeira" initials="R" surname="Teixeira"> <organization abbrev="INRIA"/> </author> <author fullname="Darryl Veitch" initials="D." surname="Veitch"> <organization abbrev="UTS"/> </author> <author fullname="Christophe Diot" initials="C." surname="Diot"> <organization abbrev="Google"/> </author> <dateyear="2020"/>year="2020" month="July"/> </front> <refcontent>IEEE INFOCOM 2020</refcontent> <seriesInfoname="" value="NPS/CAIDA 2020 Virtual IPv6 Workshop"/>name="DOI" value="10.1109/INFOCOM41043.2020.9155387"/> </reference> <reference anchor="BH-EU-2014" target="https://www.ernw.de/download/eu-14-Atlasis-Rey-Schaefer-briefings-Evasion-of-HighEnd-IPS-Devices-wp.pdf"> <front> <title>Evasion of High-End IDPS Devices at the IPv6 Era</title> <authorinitials="A.a."initials="A." surname="Atlasis" fullname="Antonios Atlasis"><organization></organization><organization/> </author> <authorinitials="E.R."initials="E." surname="Rey" fullname="Enno Rey"><organization></organization><organization/> </author> <authorinitials="R.S."initials="R." surname="Schaefer" fullname="Rafael Schaefer"><organization></organization><organization/> </author> <date year="2014"/> </front><seriesInfo name="" value="BlackHat<refcontent>Black Hat Europe2014"/>2014</refcontent> </reference> <reference anchor="Atlasis2012"target="https://media.blackhat.com/bh-eu-12/Atlasis/bh-eu-12-Atlasis-Attacking_IPv6-Slides.pdf">target="https://void.gr/kargig/ipv6/bh-eu-12-Atlasis-Attacking_IPv6-Slides.pdf"> <front> <title>Attacking IPv6 Implementation Using Fragmentation</title> <authorinitials="A.A."initials="A." surname="Atlasis" fullname="Antonios Atlasis"><organization></organization><organization/> </author> <dateyear=""/>month="March" year="2012"/> </front><seriesInfo name="" value="BlackHat<refcontent>Black Hat Europe2012. Amsterdam, Netherlands. March 14-16, 2012"/>2012</refcontent> </reference> <reference anchor="Linkova-Gont-IEPG90" target="http://www.iepg.org/2014-07-20-ietf90/iepg-ietf90-ipv6-ehs-in-the-real-world-v2.0.pdf"> <front> <title>IPv6 Extension Headers in the Real World v2.0</title> <author initials="J." surname="Linkova" fullname="Jen Linkova"><organization></organization><organization/> </author> <author initials="F." surname="Gont" fullname="Fernando Gont"><organization></organization><organization/> </author> <dateyear=""/>year="2014" month="July"/> </front><seriesInfo name="" value="IEPG 90. Toronto, ON, Canada. July 20, 2014"/><refcontent>IEPG 90</refcontent> </reference> <reference anchor="IEPG94-Scudder" target="http://www.iepg.org/2015-11-01-ietf94/IEPG-RouterArchitecture-jgs.pdf"> <front> <title>Modern Router Architecture for Protocol Designers</title> <author initials="B." surname="Petersen" fullname="Brian Petersen"> <organization>Juniper Networks</organization> </author> <author initials="J." surname="Scudder" fullname="John Scudder"> <organization>Juniper Networks</organization> </author> <dateyear=""/>year="2015" month="November"/> </front><seriesInfo name="" value="IEPG 94. Yokohama, Japan. November 1, 2015"/><refcontent>IEPG 94</refcontent> </reference> <reference anchor="APNIC-Scudder" target="https://blog.apnic.net/2020/06/04/modern-router-architecture-and-ipv6/"> <front> <title>Modern router architecture and IPv6</title> <author initials="J." surname="Scudder" fullname="John Scudder"> <organization>Juniper Networks</organization> </author> <dateyear=""/>year="2020" month="June"/> </front><seriesInfo name="" value="APNIC Blog, June 4, 2020"/><refcontent>APNIC Blog</refcontent> </reference> <reference anchor="Bonica-NANOG58" target="https://www.nanog.org/sites/default/files/mon.general.fragmentation.bonica.pdf"> <front><title>IPV6 FRAGMENTATION:<title>IPv6 Fragmentation: The Case For Deprecation</title> <author initials="R." surname="Bonica" fullname="Ron Bonica"><organization></organization><organization/> </author> <dateyear=""/>year="2013" month="June"/> </front><seriesInfo name="" value="NANOG 58. New Orleans, Louisiana, USA. June 3-5, 2013"/><refcontent>NANOG 58</refcontent> </reference> <reference anchor="Cisco-Frag" target="http://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20150611-iosxr"> <front> <title>Cisco IOS XR Software Crafted IPv6 Packet Denial of Service Vulnerability</title> <author> <organization>Cisco</organization> </author> <date month="June" year="2015"/> </front> </reference> <reference anchor="FreeBSD-SA" target="https://www.freebsd.org/security/advisories/FreeBSD-SA-20:24.ipv6.asc"> <front><title>FreeBSD Security Advisory FreeBSD-SA-20:24.ipv6: IPv6<title>IPv6 Hop-by-Hop options use-after-free bug</title> <author><organization>FreeBSD</organization><organization>The FreeBSD Project</organization> </author> <dateday="2"month="September" year="2020"/> </front> </reference> <reference anchor="Microsoft-SA" target="https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-24094"> <front> <title>Windows TCP/IP Remote Code ExecutionVulnerability (CVE-2021-24094)</title>Vulnerability</title> <author> <organization>Microsoft</organization> </author> <dateday="9"month="February" year="2021"/> </front> <refcontent>CVE-2021-24094</refcontent> </reference> <reference anchor="Cisco-EH-Cons" target="http://www.cisco.com/en/US/technologies/tk648/tk872/technologies_white_paper0900aecd8054d37d.pdf"> <front> <title>IPv6 Extension Headers Review and Considerations</title> <author> <organization>Cisco</organization> </author> <date month="October" year="2006"/> </front> </reference> <reference anchor="Zack-FW-Benchmark" target="https://www.ipv6hackers.org/files/meetings/ipv6-hackers-1/zack-ipv6hackers1-firewall-security-assessment-and-benchmarking.pdf"> <front> <title abbrev="Firewall Benchmarking">Firewall Security Assessment and Benchmarking IPv6 Firewall Load Tests</title> <author initials="E." surname="Zack" fullname="Eldad Zack"> </author> <dateyear=""/>year="2013" month="June"/> </front><seriesInfo name="" value="IPv6<refcontent>IPv6 Hackers Meeting#1, Berlin, Germany. June 30, 2013"/> <!-- July 27 - August 1 -->#1</refcontent> </reference> <reference anchor="PMTUD-Blackholes" target="http://www.nlnetlabs.nl/downloads/publications/pmtu-black-holes-msc-thesis.pdf"> <front> <title>Discovering Path MTU black holes on the Internet using RIPE Atlas</title> <author initials="M." surname="De Boer" fullname="Maikel De Boer"><organization></organization><organization/> </author> <author initials="J." surname="Bosma" fullname="Jeffrey Bosma"><organization></organization><organization/> </author> <date month="July" year="2012"/> </front> <refcontent>University of Amsterdam, MSc. Systems & Network Engineering</refcontent> </reference> </references> </references> <section numbered="false" toc="default"> <name>Acknowledgements</name> <t>The authors would like to thank (in alphabetical order) <contact fullname="Mikael Abrahamsson"/>, <contact fullname="Fred Baker"/>, <contact fullname="Dale W. Carder"/>, <contact fullname="Brian Carpenter"/>, <contact fullname="Tim Chown"/>, <contact fullname="Owen DeLong"/>, <contact fullname="Gorry Fairhurst"/>, <contact fullname="Guillermo Gont"/>, <contact fullname="Tom Herbert"/>, <contact fullname="Lee Howard"/>, <contact fullname="Tom Petch"/>, <contact fullname="Sander Steffann"/>, <contact fullname="Eduard Vasilenko"/>, <contact fullname="Éric Vyncke"/>, <contact fullname="Rob Wilton"/>, <contact fullname="Jingrong Xie"/>, and <contact fullname="Andrew Yourtchenko"/> for providing valuable comments on earlier draft versions of this document. </t> <t><contact fullname="Fernando Gont"/> would like to thank <contact fullname="Jan Zorz"/> / Go6 Lab <eref brackets="angle" target="https://go6lab.si/"/>, <contact fullname="Jared Mauch"/>, and <contact fullname="Sander Steffann"/> <eref brackets="angle" target="https://steffann.nl/"/> for providing access to systems and networks that were employed to perform experiments and measurements involving packets with IPv6 extension headers.</t> </section> </back> </rfc>