<?xml version="1.0" encoding="utf-8"?><!-- name="GENERATOR" content="github.com/mmarkdown/mmark Mmark Markdown Processor - mmark.miek.nl" --><!DOCTYPE rfc SYSTEM "rfc2629-xhtml.ent"> <rfc version="3" ipr="trust200902" docName="draft-dukhovni-tls-dnssec-chain-08" number="9102" submissionType="independent" category="exp" updates="" obsoletes="" tocInclude="true" symRefs="true" sortRefs="true" xml:lang="en" xmlns:xi="http://www.w3.org/2001/XInclude"> <front> <titleabbrev="tls-dnssec-chain">TLSabbrev="TLS DNSSEC Chain">TLS DNSSEC ChainExtension</title><seriesInfo value="draft-dukhovni-tls-dnssec-chain-08" stream="independent" status="experimental" name="Internet-Draft"></seriesInfo>Extension</title> <seriesInfo name="RFC" value="9102"/> <author initials="V." surname="Dukhovni" fullname="ViktorDukhovni"><organization>Two Sigma</organization><address><postal><street></street>Dukhovni"> <organization>Two Sigma</organization><address><postal> </postal><email>ietf-dane@dukhovni.org</email> </address></author> <author initials="S." surname="Huque" fullname="ShumonHuque"><organization>Salesforce</organization><address><postal><street>415Huque"> <organization>Salesforce</organization> <address> <postal> <extaddr>3rd Floor</extaddr> <street>415 MissionStreet, 3rd Floor</street>Street</street> <city>San Francisco</city><code>CA 94105</code><region>CA</region> <code>94105</code> <country>United States of America</country> </postal><email>shuque@gmail.com</email> </address></author> <author initials="W." surname="Toorop" fullname="Willem Toorop"><organization>NLnet Labs</organization><address><postal><street>Science Park 400</street> <city>Amsterdam</city> <code>1098 XH</code> <country>Netherlands</country> </postal><email>willem@nlnetlabs.nl</email> </address></author> <author initials="P." surname="Wouters" fullname="PaulWouters"><organization>Aiven</organization><address><postal><street></street>Wouters"><organization>Aiven</organization><address><postal> <city>Toronto</city> <country>Canada</country> </postal><email>paul.wouters@aiven.io</email> </address></author> <author initials="M." surname="Shore" fullname="MelindaShore"><organization>Fastly</organization><address><postal><street></street>Shore"><organization>Fastly</organization><address><postal> </postal><email>mshore@fastly.com</email> </address></author> <date year="2021"month="June" day="10"></date> <area>Security</area> <workgroup></workgroup>month="July" /> <abstract> <t>This document describes an experimental TLS extension for the in-band transport of the complete set ofDNSSEC validatablerecords that can be validated by DNSSEC and that are needed to performDANE authenticationDNS-Based Authentication of Named Entities (DANE) of a TLSserver withoutserver. This extension obviates the need to performseparateseparate, out-of-band DNS lookups. When the requisite DNS records do not exist, the extension conveys avalidatable denial of existence proof.</t>denial-of-existence proof that can be validated.</t> <t>This experimental extension is developed outside the IETF and is published here to guide implementation of the extension and to ensure interoperability among implementations.</t> </abstract> </front> <middle> <section anchor="introduction"><name>Introduction</name> <t>This document describes an experimental TLS <xreftarget="RFC5246"></xref><xreftarget="RFC5246"></xref> <xref target="RFC8446"></xref> extension for in-band transport of the complete set of resource records (RRs) validated by DNSSEC <xreftarget="RFC4033"></xref><xref target="RFC4034"></xref><xref target="RFC4035"></xref> validated Resource Records (RRs) that enabletarget="RFC4033"></xref> <xref target="RFC4034"></xref> <xref target="RFC4035"></xref>. This extension enables a TLS client to perform DANEAuthenticationauthentication <xref target="RFC6698"></xref> <xreftarget="RFC6698"></xref><xreftarget="RFC7671"></xref> of a TLS server without the need to perform out-of-band DNS lookups. Retrieval of the required DNS records may be unavailable to the client <xreftarget="NLNETLABS"></xref>,target="DISCOVERY"></xref> or may incur undesirable additional latency.</t> <t>The extension described here allows a TLS client to request that the TLS server return the DNSSEC authentication chain corresponding to its DNSSEC-validated DANE TLSAResource Recordresource record set(RRset),(RRset) or authenticated denial of existence of such an RRset (as described in <xref target="denial_of_existence"></xref>). If the server supports thisextensionextension, it performs the appropriate DNS queries, builds the authentication chain, and returns it to the client. The server will typically use a previously cached authentication chain, but it will need to rebuild it periodically as described in <xref target="sec_caching"></xref>. The client then authenticates the chain using a preconfigured DNSSEC trust anchor.</t> <t>In the absence of TLSA records, this extension conveys the required authenticated denial of existence. Such proofs are needed to securely signal that specified TLSA records are not available so that TLS clients can safely fall back toPublic-Keyauthentication based on Public Key Infrastructure X.509 (PKIX, sometimes called WebPKI)based authenticationif allowed by local policy. These proofs are also needed to avoid downgrade from opportunistic authenticated TLS (when DANE TLSA records are present) to unauthenticated opportunistic TLS (in the absence of DANE).Denial of existenceDenial-of-existence records are also used by the TLS client to clear extension pins that are no longerrelevant extension pins,relevant, as described in <xref target="pinning"></xref>.</t> <t>This extension supports DANE authentication of either X.509 certificates or raw publickeyskeys, as described in the DANE specification <xreftarget="RFC6698"></xref><xreftarget="RFC6698"></xref> <xref target="RFC7671"></xref>and<xref target="RFC7250"></xref>.</t> <t>This extension also mitigates against an unknown key share (UKS) attack <xref target="I-D.barnes-dane-uks"></xref> when using raw publickeys,keys since the server commits to its DNS name (normally found in its certificate) via the content of the returned TLSA RRset.</t> <t>This experimental extension is developed outside the IETF and is published here to guide implementation of the extension and to ensure interoperability among implementations.</t> <section anchor="scope-of-the-experiment"><name>Scope of theexperiment</name>Experiment</name> <t>The mechanism described in this document is intended to be used with applications on the wider internet. One application of TLS well suited for the TLS DNSSEC Chain extension is DNS over TLS <xref target="RFC7858"></xref>. In fact, one of the authentication methods for DNS over TLS <em>is</em> the mechanism described in this document, as specified inSection 8.2.2 of<xreftarget="RFC8310"></xref>.</t>target="RFC8310" section="8.2.2" sectionFormat="of"></xref>.</t> <t>The need for this mechanism when using DANE to authenticate aDNS over TLSDNS-over-TLS resolver is obvious, since DNS may not be available to perform the required DNS lookups. Other applications of TLS would benefit from using this mechanism as well. The client sides of those applications would not be required to be used onend-pointsendpoints with a working DNSSEC resolver in order for them to use the DANE authentication of the TLS service.ThereforeTherefore, we invite other TLS services to try out this mechanism as well.</t> <t>In the TLSworking group,Working Group, concerns have been raised that the pinning technique as described in <xref target="pinning"></xref> would complicate deployability of the TLS DNSSECChainchain extension. The goal of the experiment is to study these complications inreal worldreal-world deployments. This experiment hopefully will give the TLSworking groupWorking Group some insight into whether or not this is a problem.</t> <t>If the experiment is successful, it is expected that the findings of the experiment will result in an updated document forstandards trackStandards Track approval.</t> </section> <section anchor="requirements-notation"><name>Requirements Notation</name><t>The<t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119"></xref>target="RFC2119"/> <xreftarget="RFC8174"></xref>target="RFC8174"/> when, and only when, they appear in all capitals, as shownhere.</t>here. </t> </section> </section> <section anchor="dnssec-authentication-chain-extension"><name>DNSSEC Authentication Chain Extension</name> <section anchor="protocol-tls-1-2"><name>Protocol, TLS 1.2</name> <t>A clientMAY<bcp14>MAY</bcp14> include an extension of type <tt>dnssec_chain</tt> in the (extended) ClientHello. The <tt>extension_data</tt> field of this extension consists of the server's 16-bit TCP port number in network (big-endian) byte order. Clients sending this extensionMUST<bcp14>MUST</bcp14> also send the Server Name Identification(SNI,(SNI) extension <xreftarget="RFC6066"></xref>) extension.target="RFC6066"></xref>. Together, these make it possible for the TLS server to determine which authenticated TLSA RRset chain needs to be used for the <tt>dnssec_chain</tt> extension.</t> <t>When a server that implements (and is configured to enable the use of) this extension receives a <tt>dnssec_chain</tt> extension in the ClientHello, itMUST<bcp14>MUST</bcp14> first check whether the requested TLSA RRset (based on the port number in this extension and hostname in the SNI extension) is associated with the server. If the extension, the SNIhostnamehostname, or the port number is unsupported, the server's extended ServerHello messageMUST NOT<bcp14>MUST NOT</bcp14> include the <tt>dnssec_chain</tt> extension.</t> <t>Otherwise, the server's extended ServerHello messageMUST<bcp14>MUST</bcp14> contain a serialized authentication chain using the format described below. If the server does not have access to the requested DNS chain--- forexampleexample, due to a misconfiguration or expired chain--- the serverMUST<bcp14>MUST</bcp14> omit the extension rather than send an incomplete chain. Clients that are expecting this extensionMUST<bcp14>MUST</bcp14> interpret this as a downgrade attack andMUST<bcp14>MUST</bcp14> abort the TLS connection. Therefore, serversMUST<bcp14>MUST</bcp14> senddenial of existence proofs,denial-of-existence proofs unless, for the particular application protocol or service, clients are expected to continue even in the absence of such a proof. As with all TLS extensions, if the server does not support thisextensionextension, it will not return any authentication chain.</t> <t>The set of supported combinations of a port number and SNI name may be configured explicitly by serveradministrators,administrators or could be inferred from the available certificates combined with a list of supported ports. It is important to note that the client's notional port number may be different from the actual port on which the server is receiving connections.</t> <t>Differences between the client's notional port number and the actual port at the server could be a result of intermediate systems performing network addresstranslation,translation orperhapsa result of a redirect via HTTPS or SVCB records (both defined in <xref target="I-D.ietf-dnsop-svcb-https"></xref>).</t> <t>Though a DNS zone's HTTPS or SVCB records may be signed, a client using this protocol might not have direct access to a validatingresolver,resolver and might not be able to check the authenticity of the target port number or hostname. In order to avoid downgrade attacks via forged DNS records, the SNI name and port number inside the client extensionMUST<bcp14>MUST</bcp14> be based on the original SNI name and port andMUST NOT<bcp14>MUST NOT</bcp14> be taken from the encountered HTTPS or SVCB record. The client supporting this document and HTTPS/or SVCBrecords, MUSTrecords <bcp14>MUST</bcp14> still use the HTTPS or SVCB records to select the target transport endpoint. Servers supporting this extension that are targets of HTTPS or SVCB recordsMUST<bcp14>MUST</bcp14> be provisioned to process client extensions based on the client's logical service endpoint's SNI name and port as it is prior to HTTPS or SVCB indirection.</t> </section> <section anchor="protocol-tls-1-3"><name>Protocol, TLS 1.3</name> <t>In TLS 1.3 <xref target="RFC8446"></xref>, when the server receives the <tt>dnssec_chain</tt> extension, it adds its <tt>dnssec_chain</tt> extension to the extension block of the Certificate message containing theend entityend-entity certificate beingvalidated,validated rather than to the extended ServerHello message.</t> <t>The extension protocol behavior otherwise follows that specified for TLS version 1.2 <xref target="RFC5246"></xref>.</t> </section> <section anchor="auth_chain_data"><name>DNSSEC Authentication Chain Data</name> <t>The <tt>extension_data</tt> field of the client's <tt>dnssec_chain</tt> extensionMUST<bcp14>MUST</bcp14> contain the server's 16-bit TCP port number in network (big-endian) byte order:</t><artwork><sourcecode> struct { uint16 PortNumber; } DnssecChainExtension;</artwork></sourcecode> <t>The <tt>extension_data</tt> field of the server's <tt>dnssec_chain</tt> extensionMUST<bcp14>MUST</bcp14> contain a DNSSECAuthentication Chainauthentication chain encoded in the following form:</t><artwork><sourcecode> struct { uint16 ExtSupportLifetime; opaqueAuthenticationChain&lt;1..2^16-1&gt;AuthenticationChain<1..2^16-1> } DnssecChainExtension;</artwork></sourcecode> <t>The ExtSupportLifetime value is the number of hoursfor whichthat the TLS server has committed itself to serving this extension. A value of zero prohibits the client from unilaterally requiring ongoing use of the extension based on prior observation of its use (extension pinning). This is further described in <xref target="pinning"></xref>.</t> <t>The AuthenticationChain is composed of a sequence of uncompressed wire format DNS RRs (including all requisite RRSIG RRs <xreftarget="RFC4034"></xref> RRs)target="RFC4034"></xref>) in no particular order. The format of theResource Recordresource record is described in <xreftarget="RFC1035"></xref>, Section 3.2.1.</t>target="RFC1035" sectionFormat="comma" section="3.2.1"></xref>.</t> <artwork> RR = { owner, type, class, TTL, RDATA length, RDATA } </artwork> <t>The order of returned RRs isunspecifiedunspecified, and a TLS clientMUST NOT<bcp14>MUST NOT</bcp14> assume any ordering of RRs.</t> <t>Use ofnativeDNS wire format records enables easier generation of the data structure on the server and easier verification of the data on the client by means of existing DNS library functions.</t> <t>The returned RRsetsMUST<bcp14>MUST</bcp14> contain either the TLSA RRset orelsethe associateddenial of existencedenial-of-existence proof of the configured (and requested) SNI name and port. In either case, the chain of RRsetsMUST<bcp14>MUST</bcp14> be accompanied by the full set of DNS records needed to authenticate the TLSA record set or its denial of existence up the DNS hierarchy to either theRoot Zoneroot zone or another trust anchor mutually configured by the TLS server and client.</t> <t>When some subtree in the chain is subject to redirection via DNAME records, the associated inferred CNAME records need not be included. They can be inferred by the DNS validation code in the client. Any applicable ordinary CNAME records that are not synthesized from DNAME recordsMUST<bcp14>MUST</bcp14> be included along with their RRSIGs.</t> <t>In case of a server-side DNS problem, servers may be unable to construct the authentication chain and would then have no choice but to omit the extension.</t> <t>In the case of adenial of existencedenial-of-existence response, the authentication chainMUST<bcp14>MUST</bcp14> include allDNSSEC signed recordsDNSSEC-signed records, starting with those from thetrust-anchor zonetrust anchor zone, that chain together to reach a proof ofeither the non-existenceeither:</t> <ul empty="false"> <li>the nonexistence of the TLSA records (possibly redirected via aliases)TLSA records or else of anor</li><li>an insecure delegation above or at the (possibly redirected) owner name of the requested TLSARRset.</t>RRset.</li></ul> <t>Names that are aliased via CNAME and/or DNAME records may involve multiple branches of the DNS tree. In this case, the authentication chain structure needs to include DS and DNSKEY record sets that cover all the necessary branches.</t> <t>The returned chainSHOULD<bcp14>SHOULD</bcp14> also include the DNSKEYRRSetsRRsets of all relevant trust anchors (typically just the root DNS zone). Though the same trust anchors are presumably also preconfigured in the TLS client, including them in the response from the server permits TLS clients to use the automated trust anchor rollover mechanism defined in <xref target="RFC5011"></xref> to update their configured trust anchors.</t> <t>Barring prior knowledge of particular trust anchors that the server shares with its clients, the chain constructed by the serverMUST<bcp14>MUST</bcp14> be extended ascloseclosely as possible to the root zone. Truncation of the chain at some intermediate trust anchor is generally only appropriate inside private networks where all clients and the server are expected to be configured with DNS trust anchors for one or more non-root domains.</t> <t>The following is an example of the records in the AuthenticationChain structure for the HTTPS server at <tt>www.example.com</tt>, where there are zone cuts at<tt>com.</tt><tt>com</tt> and<tt>example.com.</tt><tt>example.com</tt> (record data are omitted here for brevity):</t><artwork>_443._tcp.www.example.com.<sourcecode type="dns-rr">_443._tcp.www.example.com. TLSA RRSIG(_443._tcp.www.example.com. TLSA) example.com. DNSKEY RRSIG(example.com. DNSKEY) example.com. DS RRSIG(example.com. DS) com. DNSKEY RRSIG(com. DNSKEY) com. DS RRSIG(com. DS) . DNSKEY RRSIG(. DNSKEY)</artwork></sourcecode> <t>The following is an example of denial of existence for a TLSA RRset at <tt>_443._tcp.www.example.com</tt>. The NSEC record in this example asserts thenon-existencenonexistence of both the requested RRset and any potentially relevant wildcard records.</t><artwork>www.example.com.<sourcecode type="dns-rr">www.example.com. IN NSEC example.com. A NSEC RRSIG RRSIG(www.example.com. NSEC) example.com. DNSKEY RRSIG(example.com. DNSKEY) example.com. DS RRSIG(example.com. DS) com. DNSKEY RRSIG(com. DNSKEY) com. DS RRSIG(com. DS) . DNSKEY RRSIG(. DNSKEY)</artwork></sourcecode> <t>The following is an example of (hypothetical) insecure delegation of <tt>example.com</tt> from the <tt>.com</tt> zone. This example shows NSEC3 records <xref target="RFC5155"></xref>recordswith opt-out.</t><artwork>;<sourcecode type="dns-rr">; covers example.com onib9mgub9h0rml3cdf5bgrj59dkjhvj.com. NSEC3 (1 1 0 - onib9mgub9h0rml3cdf5bgrj59dkjhvl NS DS RRSIG) RRSIG(onib9mgub9h0rml3cdf5bgrj59dkjhvj.com. NSEC3) ; covers *.com 3rl2r262eg0n1ap5olhae7mah2ah09hi.com. NSEC3 (1 1 0 - 3rl2r262eg0n1ap5olhae7mah2ah09hk NS DS RRSIG) RRSIG(3rl2r262eg0n1ap5olhae7mah2ah09hj.com. NSEC3) ; closest-encloser "com" ck0pojmg874ljref7efn8430qvit8bsm.com. NSEC3 (1 1 0 - ck0pojmg874ljref7efn8430qvit8bsm.com NS SOA RRSIG DNSKEY NSEC3PARAM) RRSIG(ck0pojmg874ljref7efn8430qvit8bsm.com. NSEC3) com. DNSKEY RRSIG(com. DNSKEY) com. DS RRSIG(com. DS) . DNSKEY RRSIG(. DNSKEY)</artwork></sourcecode> <section anchor="denial_of_existence"><name>Authenticated Denial of Existence</name> <t>TLS servers that support this extension and respond to a request containing this extension that do not have a signed TLSA record for the configured (and requested) SNI name and portMUST<bcp14>MUST</bcp14> instead return a DNSSEC chain that provides authenticated denial of existence for the configured SNI name and port. A TLS client receiving proof of authenticated denial of existenceMUST<bcp14>MUST</bcp14> use an alternative method to verify the TLS server identity or close the connection. Such an alternative could be the classic PKIX model of preinstalled rootCA's.</t>certificate authorities (CAs).</t> <t>Authenticated denial chains include NSEC or NSEC3 records that demonstrate one of the following facts:</t> <ul> <li><t>The TLSA record (after anyDNSSEC validatedDNSSEC-validated alias redirection) does not exist.</t> </li> <li><t>There is no signed delegation to a DNS zonewhichthat is either an ancestorof,of or the sameas,as the TLSA record name (after anyDNSSEC validatedDNSSEC-validated alias redirection).</t> </li> </ul> </section> </section> </section> <section anchor="construction"><name>Construction of Serialized Authentication Chains</name> <t>This section describes a possible procedure for the server to use to build the serialized DNSSEC chain.</t> <t>When the goal is to perform DANE authentication <xreftarget="RFC6698"></xref><xreftarget="RFC6698"></xref> <xref target="RFC7671"></xref> of the server, the DNS record set to be serialized is a TLSA record set corresponding to the server's domain name, protocol, and port number.</t> <t>The domain name of the serverMUST<bcp14>MUST</bcp14> be that included in the TLS <tt>server_name</tt> (SNI) extension <xref target="RFC6066"></xref>. If the server does not recognize the SNI name as oneifof its ownnames,names but wishes to proceed with the handshake rather thantoabort the connection, the serverMUST NOT<bcp14>MUST NOT</bcp14> send a <tt>dnssec_chain</tt> extension to the client.</t> <t>The name in the client's SNI extensionMUST NOT<bcp14>MUST NOT</bcp14> beCNAME-expandedCNAME expanded by the server. The TLSA base domain(Section 3 of <xref target="RFC6698"></xref>) SHALL(<xref target="RFC6698" sectionFormat="of" section="3"></xref>) <bcp14>SHALL</bcp14> be the hostname from the client's SNIextensionextension, and the guidance inSection 7 of<xreftarget="RFC7671"></xref>target="RFC7671" sectionFormat="of" section="7"></xref> does not apply. See <xref target="virtual"></xref> for further discussion.</t> <t>The TLSA record to be queried is constructed by prepending underscore-prefixed port number and transport name labels to the domain name as described in <xref target="RFC6698"></xref>. The port number is taken from the client's <tt>dnssec_chain</tt> extension. The transport name is "tcp" for TLSservers,servers and "udp" for DTLS servers. The port number label is theleft-mostleftmost label, followed by the transport name label, followed by the server domain name (from SNI).</t> <t>The components of the authentication chain are typically built by starting at the target record set and its correspondingRRSIG. ThenRRSIG, then traversing the DNS tree upwards towards the trust anchor zone (normally the DNS root). For each zone cut, theDNSKEY andDNSKEY, DSRRsetsRRsets, and their signatures are added. However, see <xref target="auth_chain_data"></xref> for specific processing needed for aliases. If DNS response messages contain any domain names utilizing name compression <xref target="RFC1035"></xref>, then theyMUST<bcp14>MUST</bcp14> be uncompressed prior to inclusion in the chain.</t> <t>Implementations of EDNSChain Query RequestsCHAIN query requests as specified in <xref target="RFC7901"></xref> may offer an easier way to obtain all of the chain data in one transaction with an upstreamDNSSEC awareDNSSEC-aware recursive server.</t> </section> <section anchor="sec_caching"><name>Caching and Regeneration of the Authentication Chain</name> <t>DNS records have Time To Live (TTL) parameters, and DNSSEC signatures have validity periods (specifically signature expiration times). After the TLS server constructs the serialized authentication chain, itSHOULD<bcp14>SHOULD</bcp14> cache and reuse it in multiple TLS connection handshakes. However, itSHOULD<bcp14>SHOULD</bcp14> refresh and rebuild the chain as TTL values require. A server implementation could carefully track TTL parameters and requery component records in the chain correspondingly. Alternatively, it could be configured to rebuild the entire chain at some predefined periodic interval that does not exceed the DNS TTLs of the component records in the chain. If a record in the chain has a very short TTL(eg(e.g., 0 up to a few seconds), the serverMAY<bcp14>MAY</bcp14> decide to serve the authentication chain a few seconds past the minimum TTL in the chain. This allows an implementation to dedicate a process or single thread to building the authentication chain andre-usereuse it for more than a single waiting TLS client before needing to rebuild the authentication chain.</t> </section> <section anchor="sec_caching_exp"><name>ExpiredsignaturesSignatures in the Authentication Chain</name> <t>A serverMAY<bcp14>MAY</bcp14> look at the signature expiration of RRSIG records. While these should never expire before the TTL of the corresponding DNS record is reached, if this situation isencountered nevertheless,nevertheless encountered, the serverMAY<bcp14>MAY</bcp14> lower the TTL to prevent serving expired RRSIGs if possible. If the signatures are already expired, the serverMUST<bcp14>MUST</bcp14> still include these recordsintoin the authentication chain. This allows the TLS client to either support a grace period forstaleness,staleness orallows the TLS client togive a detailed error, either as a log message or a message to a potential interactive user of the TLS connection. The TLS clientSHOULD<bcp14>SHOULD</bcp14> handle expired RRSIGssimilarsimilarly to how it handles expired PKIX certificates.</t> </section> <section anchor="sec_verification"><name>Verification</name> <t>A TLS client performingDANE basedDANE-based verification might not need to use this extension. For example, the TLS client could performnativeDNS lookups andperformDANE verification without thisextension. Orextension, or it could fetch authentication chains via another protocol. If the TLS client already possesses a valid TLSA record, itMAY omit using<bcp14>MAY</bcp14> bypass use of this extension. However, if it includes this extension, itMUST<bcp14>MUST</bcp14> use the TLS server reply to update the extension pinning status of the TLS server's extension lifetime. See <xref target="pinning"></xref>.</t> <t>A TLS client making use of thisspecification, and whichspecification that receives a valid DNSSEC authentication chain extension from a TLSserver, MUSTserver <bcp14>MUST</bcp14> use this information to perform DANE authentication of the TLS server. In order to perform the validation, it uses the mechanism specified by the DNSSEC protocol <xreftarget="RFC4035"></xref><xreftarget="RFC4035"></xref> <xref target="RFC5155"></xref>. This mechanism is sometimes implemented in a DNSSEC validation engine or library.</t> <t>If the authentication chain validates, the TLS client then performs DANE authentication of the server according to the DANE TLS protocol <xreftarget="RFC6698"></xref><xreftarget="RFC6698"></xref> <xref target="RFC7671"></xref>.</t> <t>ClientsMAY<bcp14>MAY</bcp14> cache the server's validated TLSA RRset to amortize the cost of receiving and validating the chain over multiple connections. The period of such cachingMUST NOT<bcp14>MUST NOT</bcp14> exceed the TTL associated with those records. A client that possesses a validated and unexpired TLSA RRset or the full chain in its cache does not need to send the <tt>dnssec_chain</tt> extension for subsequent connections to the same TLS server. It can use the cached information to perform DANE authentication.</t> <t>Note that when a client and server perform TLS sessionresumptionresumption, the server sends no <tt>dnssec_chain</tt>. This is particularly clear with TLS 1.3, where the certificate message to which the chain might be attached is also not sent on resumption.</t> </section> <section anchor="pinning"><name>Extension Pinning</name> <t>TLS applications can be designed to unconditionally mandate this extension. Such TLS clients requesting this extension would abort a connection to a TLS server that does not respond witha validatablean extensionreply.</t>reply that can be validated.</t> <t>However, in a mixed-use deployment of PKIX and DANE, there is the possibility that the security of a TLS client is downgraded from DANE to PKIX. This can happen when a TLS client connection is intercepted and redirected to a rogue TLS server presenting a TLS certificate that is considered valid from a PKIX point ofview,view butone thatdoes not match the legitimate server's TLSA records. By omitting this extension, such a rogue TLS server could downgrade the TLS client to validate the mis-issued certificate using only PKIX and not via DANE, provided the TLS client is also not able to fetch the TLSA records directly from DNS.</t> <t>The ExtSupportLifetime element of the extension provides a countermeasure against such downgrade attacks. Its value represents the number of hours that the TLS server (or cluster of servers serving the sameServer Name) commitserver name) commits to serving this extension in the future. This is referred to as the "pinning time" or "extension pin" of the extension. A non-zero extension pin value receivedMUST<bcp14>MUST</bcp14> ONLY be used if the extension also contains a valid TLSA authentication chain that matches the server's certificate chain (the server passes DANE authentication based on the enclosed TLSA RRset).</t> <t>Any existing extension pin for the server instance (name and port)MUST<bcp14>MUST</bcp14> be cleared on receipt of a valid denial of existence for the associated TLSA RRset. The same also applies if the client obtained thedenial of existencedenial-of-existence proof via another method, such as through direct DNS queries. Based on the TLS client's local policy, itMAY<bcp14>MAY</bcp14> then terminate the connection orMAY<bcp14>MAY</bcp14> continue usingPKIX basedPKIX-based server authentication.</t> <t>Extension pinsMUST<bcp14>MUST</bcp14> also be cleared upon the completion of aDANE authenticatedDANE-authenticated handshake with a server that returns a <tt>dnssec_chain</tt> extension with a zero ExtSupportLifetime.</t> <t>Upon completion of afullfully validated handshake with a server that returns a <tt>dnssec_chain</tt> extension with a non-zero ExtSupport lifetime, the clientMUST<bcp14>MUST</bcp14> update any existing pin lifetime for the service (name and port) to a value that isnonot longer than that indicated by the server. The clientMAY,<bcp14>MAY</bcp14>, subject to local policy, create a previouslynon-existentnonexistent pin, again for a lifetime that is not longer than that indicated by the server.</t> <t>The extension support lifetime is not constrained by any DNS TTLs or RRSIG expirations in the returned chain. The extension support lifetime is the time for which the TLS server is committing itself to serve the extension; it is not a validity time for the returned chain data. During thisperiodperiod, the DNSSEC chain may be updated. Therefore, the ExtSupportLifetime value is not constrained by any DNS TTLs or RRSIG expirations in the returned chain.</t> <t>ClientsMAY<bcp14>MAY</bcp14> implement support for a subset of DANE certificate usages. For example, clients may support only DANE-EE(3) and DANE-TA(2) <xref target="RFC7218"></xref>, only PKIX-EE(1) andPKIX-TA(0)PKIX-TA(0), or all four. Clients that implement DANE-EE(3) and DANE-TA(2)MUST<bcp14>MUST</bcp14> implement the relevant updates in <xref target="RFC7671"></xref>.</t> <t>For a non-zero saved value ("pin") of the ExtSupportLifetime element of the extension, TLS clients that do not have a cached TLSA RRset with an unexpired TTLMUST<bcp14>MUST</bcp14> use the extension for the associated name and port to obtain this information from the TLS server. This TLS client thenMUST<bcp14>MUST</bcp14> require that the TLS serverrespondsrespond with thisextension that MUSTextension, which <bcp14>MUST</bcp14> contain a valid TLSA RRset or proof ofnon-existencenonexistence of the TLSA RRset that covers the requested name and port. Note that anon-existencenonexistence proof or proof of insecure delegation will clear the pin. The TLS clientMUST<bcp14>MUST</bcp14> require this for as long as the time period specified by the pin value, independent of the DNS TTLs.If duringDuring this process, if the TLS client fails to receive this information, itMUST<bcp14>MUST</bcp14> either abort the connection or delay communication with the server via the TLS connection until it is able to obtain valid TLSA records (or proof ofnon-existence)nonexistence) out of band, such as via direct DNS lookups. If attempts to obtain the TLSA RRset out of band fail, the clientMUST<bcp14>MUST</bcp14> abort the TLS connection. ItMAY<bcp14>MAY</bcp14> try a new TLS connectionagain, for exampleagain (for example, using an exponential back-offtimer,timer) in an attempt to reach a different TLS server instance that does properly serve the extension.</t> <t>A TLS client that has a cached validated TLSA RRset and a valid non-zero extension pin timeMAY<bcp14>MAY</bcp14> still refrain from requesting the extension as long as it uses the cached TLSA RRset to authenticate the TLS server. This RRsetMUST NOT<bcp14>MUST NOT</bcp14> be used beyond its received TTL. Once the TLSA RRset's TTL has expired, the TLS client with a valid non-zero extension pin timeMUST<bcp14>MUST</bcp14> request the extension andMUST<bcp14>MUST</bcp14> abort the TLS connection if the server responds without the extension. A TLS clientMAY<bcp14>MAY</bcp14> attempt to obtain the valid TLSA RRset by some other means before initiating a new TLS connection.</t> <t>Note that requiring the extension is NOT the same as requiring the use of DANE TLSA records or even DNSSEC. A DNS zone operator may at any time delete the TLSArecords,records or even remove the DS records to disable the secure delegation of the server's DNS zone. The TLS serverwill,will replace the chain with the corresponding denial-of-existence chain when it updates its cached TLSA authenticationchain, replace the chain with the corresponding denial of existencechain. The server's only obligation is continued support for this extension.</t> </section> <section anchor="sec_trustmaint"><name>Trust Anchor Maintenance</name> <t>The trust anchor may change periodically,e.g.e.g., when the operator of the trust anchor zone performs a DNSSEC key rollover. TLS clients using this specificationMUST<bcp14>MUST</bcp14> implement a mechanism to keep their trust anchors up to date. They could use the method defined in <xref target="RFC5011"></xref> to perform trust anchor updatesinbandin-band inTLS,TLS by tracking the introduction of new keys seen in the trust anchor DNSKEY RRset. However, alternative mechanisms external to TLS may also be utilized. Some operating systems may have a system-wide service to maintain and keep the root trust anchor up to date. In such cases, the TLS client application could simply reference that as its trust anchor, periodically checking whether it has changed. Some applications may prefer to implement trust anchor updates as part of their automated software updates.</t> </section> <section anchor="virtual"><name>Virtual Hosting</name> <t>Delivery of application services is often provided by a third party on behalf of the domain owner (hosting customer). Since the domain owner may want to be able to move the service between providers, non-zero support lifetimes for this extension should only be enabled by mutual agreement between the provider and domain owner.</t> <t>When CNAME records are employed to redirect network connections to the provider's network, as mentioned in <xreftarget="construction"></xref>target="construction"></xref>, the server uses the client's SNI hostname as the TLSA base domain without CNAME expansion. When the certificate chain for the service is managed by the provider, it is impractical to coordinate certificate changes by the provider with updates in the hosting customer's DNS. Therefore, the TLSA RRset for the hosted domain is best configured as a CNAME from the customer's domain to a TLSA RRset that is managed by the provider as part of delivering the hosted service. For example:</t><artwork>;<sourcecode type="dns-rr">; Customer DNS www.example.com. IN CNAME node1.provider.example. _443._tcp.www.example.com. IN CNAME _dane443.node1.provider.example. ; Provider DNS node1.provider.example. IN A 192.0.2.1 _dane443.node1.provider.example. IN TLSA 1 1 1 ...</artwork></sourcecode> <t>Clients that obtain TLSA records directly from DNS, bypassing this extension, mayhoweverperformCNAME-expansionCNAME expansion as inSection 7 of<xreftarget="RFC7671"></xref>, and iftarget="RFC7671" sectionFormat="of" section="7"></xref>. If TLSA records are associated with thefully-expandedfully expanded name,may usethat name may be used as the TLSA base domain and SNI name for the TLS handshake.</t> <t>To avoid confusion, it isRECOMMENDED<bcp14>RECOMMENDED</bcp14> that server operators not publish TLSA RRs (_port._tcp. + base domain) based on the expanded CNAMEs used to locate their network addresses. Instead, the server operatorSHOULD<bcp14>SHOULD</bcp14> publish TLSA RRs at an alternative DNS node (as in the example above), to which the hosting customer will publish a CNAME alias. This results in all clients (whether they obtain TLSA records from DNSdirectly,directly or employ this extension) seeing the same TLSA records and sending the same SNI name.</t> </section> <section anchor="operational-considerations"><name>Operational Considerations</name> <t>When DANE is being introduced incrementally into an existing PKIX environment, there may be scenarios in which DANE authentication for a server fails but PKIX succeeds, or vice versa. What happens here depends on TLS client policy. If DANE authentication fails, the client may decide to fall back totraditionalregular PKIX authentication. In order to do so efficiently within the same TLS handshake, the TLS server needs to have provided the full X.509 certificate chain. When TLS servers only support DANE-EE or DANE-TA modes, they have the option to send a much smaller certificate chain: just the EE certificate for theformer,former and a short certificate chain from the DANE trust anchor to the EE certificate for the latter. If the TLS server supports both DANE andtraditional PKIX,regular PKIX and wants to allow efficient PKIX fallback within the same handshake, they should always provide the full X.509 certificate chain.</t> <t>When a TLS server operator wishes to no longer deploy this extension, it must properly decommission its use. If a non-zero pin lifetime is presently advertised, it must first be changed to 0. The extension can be disabled once all previously advertised pin lifetimes have expired. Removal of TLSA records or even DNSSEC signing of the zone can be done at any time, but the serverMUST<bcp14>MUST</bcp14> still be able to return the associateddenial of existencedenial-of-existence proofs to any clients that have unexpired pins.</t> <t>TLS clientsMAY<bcp14>MAY</bcp14> reduce the received extension pin value to a maximum set by local policy. This can mitigate a theoretical yet unlikely attack where a compromised TLS server is modified to advertise a pin value set to the maximum of 7 years. Care should be taken not to set a local maximum that is too short as that would reduce the downgrade attack protection that the extension pin offers.</t> <t>If the hosting provider intends to use end-entity TLSA records (certificate usage PKIX-EE(1) orDANE-EE(3))DANE-EE(3)), then the simplest approach is to use the samekey-pairkey pair for all the certificates at a given hostingnode,node and publish "1 1 1" or "3 1 1" RRs matching the common public key. Since key rollover cannot be simultaneous across multiple certificate updates, there will be times when multiple "1 1 1" (or "3 1 1") records will be required to match all the extant certificates. Multiple TLSA recordsareare, in anycasecase, needed a few TTLs before certificate updates as explained inSection 8 of<xreftarget="RFC7671"></xref>.</t>target="RFC7671" sectionFormat="of" section="8"></xref>.</t> <t>If the hosting provider intends to usetrust-anchortrust anchor TLSA records (certificate usage PKIX-TA(0) orDANE-TA(2))DANE-TA(2)), then the same TLSA record can match all end-entity certificates issues by the certification authority inquestion,question and continues to work across end-entity certificateupdates,updates so long as the issuer certificate or public keysremainsremain unchanged. This can be easier toimplement,implement at the cost of greater reliance on the security of the selected certification authority.</t> <t>The providercancan, ofcoursecourse, publish separate TLSA records for each customer, which increases the number of such RRsets that need to bemanaged,managed but makes each one independent of the rest.</t> </section> <section anchor="security-considerations"><name>Security Considerations</name> <t>The security considerations of the normatively referenced RFCs all pertain to this extension. Since the server is delivering a chain of DNS records and signatures to the client, itMUST<bcp14>MUST</bcp14> rebuild the chain in accordance with TTL and signature expiration of the chain components as described in <xref target="sec_caching"></xref>. TLS clients need roughly accurate time in order to properly authenticate these signatures. This could be achieved by running a time synchronization protocol like NTP <xref target="RFC5905"></xref> or SNTP <xref target="RFC5905"></xref>, which are already widely used today. TLS clientsMUST<bcp14>MUST</bcp14> support a mechanism to track and roll over the trust anchorkey,key or be able to avail themselves of a service that does this, as described in <xref target="sec_trustmaint"></xref>. Security considerations related to mandating the use of this extension are described in <xref target="pinning"></xref>.</t> <t>The received DNSSEC chain could contain DNS RRs that are not related to the TLSA verification of the intended DNS name. If suchaan unrelated RR is not DNSSEC signed, itMUST<bcp14>MUST</bcp14> bedisgarded.discarded. If the unrelated RRset is DNSSEC signed, the TLS clientMAY<bcp14>MAY</bcp14> decide to add these RRsets and their DNSSEC signatures to its cache. ItMAY<bcp14>MAY</bcp14> even pass this data to the local system resolver for caching outside the application. However, care must be takenthatbecause caching these records could be used for timing and caching attacks to de-anonymize the TLS client or its user. A TLS client that wants to present the strongest anonymity protection to theirusers, MUSTusers <bcp14>MUST</bcp14> refrain from using and caching all unrelated RRs.</t> </section> <section anchor="iana_requests"><name>IANA Considerations</name><t>This document defines one new entry<t>IANA has made the following assignment in theTLS"TLS ExtensionTypeValuesValues" registry:</t> <table> <thead> <tr> <th align="right">Value</th> <th>Extension Name</th> <th>TLS 1.3</th> <th>Recommended</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <tdalign="right">TBD</td>align="right">59</td> <td>dnssec_chain</td> <td>CH</td> <td>No</td><td>[this document]</td><td>RFC 9102</td> </tr> </tbody> </table></section><section anchor="acknowledgments"><name>Acknowledgments</name> <t>Many thanks to Adam Langley for laying the groundwork for this extension in <xref target="I-D.agl-dane-serializechain"></xref>. The original idea is his but our acknowledgment in no way implies his endorsement. This document also benefited from discussions with and review from the following people: Daniel Kahn Gillmor, Jeff Hodges, Allison Mankin, Patrick McManus, Rick van Rein, Ilari Liusvaara, Eric Rescorla, Gowri Visweswaran, Duane Wessels, Nico Williams, and Richard Barnes.</t> </section></middle> <back> <displayreference target="I-D.agl-dane-serializechain" to="SERIALIZECHAIN"/> <displayreference target="I-D.barnes-dane-uks" to="DANE-UKS"/> <displayreference target="I-D.ietf-dnsop-svcb-https" to="DNSOP-SVCB-HTTPS"/> <references><name>References</name> <references><name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.1035.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4033.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4034.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4035.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5155.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5246.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6066.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6698.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7218.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7671.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7858.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8310.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/> </references> <references><name>Informative References</name> <!-- [I-D.agl-dane-serializechain] IESG state Expired --> <xi:includehref="https://xml2rfc.ietf.org/public/rfc/bibxml-ids/reference.I-D.agl-dane-serializechain.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml-ids/reference.I-D.barnes-dane-uks.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-dnsop-svcb-https.xml"/>href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.agl-dane-serializechain.xml"/> <!-- [I-D.barnes-dane-uks] IESG state Expired --> <referenceanchor="NLNETLABS"anchor='I-D.barnes-dane-uks'> <front> <title>Unknown Key-Share Attacks on DNS-Based Authentications of Named Entities (DANE)</title> <author initials='R' surname='Barnes' fullname='Richard Barnes'> <organization /> </author> <author initials='M' surname='Thomson' fullname='Martin Thomson'> <organization /> </author> <author initials='E' surname='Rescorla' fullname='Eric Rescorla'> <organization /> </author> <date month='October' day='9' year='2016' /> </front> <seriesInfo name='Internet-Draft' value='draft-barnes-dane-uks-00' /> <format type='TXT' target='http://www.ietf.org/internet-drafts/draft-barnes-dane-uks-00.txt' /> </reference> <!-- [I-D.ietf-dnsop-svcb-https] IESG state I-D Exists --> <reference anchor='I-D.ietf-dnsop-svcb-https'> <front> <title>Service Binding and Parameter Specification via the DNS (DNS SVCB and HTTPS RRs)</title> <author initials='B' surname='Schwartz' fullname='Benjamin Schwartz'> <organization /> </author> <author initials='M' surname='Bishop' fullname='Mike Bishop'> <organization /> </author> <author initials='E' surname='Nygren' fullname='Erik Nygren'> <organization /> </author> <date year='2021' month='June' day='16' /> </front> <seriesInfo name='Internet-Draft' value='draft-ietf-dnsop-svcb-https-06'/> <format type='TXT' target='https://www.ietf.org/internet-drafts/draft-ietf-dnsop-svcb-https-06.txt'/> </reference> <reference anchor="DISCOVERY" target="https://www.nlnetlabs.nl/downloads/publications/os3-2015-rp2-xavier-torrent-gorjon.pdf"> <front> <title>Discovery method for a DNSSEC validating stub resolver</title> <author fullname="Xavier Torrent Gorjon" initials="X." surname="Gorjon"></author> <author fullname="Willem Toorop" initials="W." surname="Toorop"></author> <date year="2015" month="July" day="14"></date> </front> </reference> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5011.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5905.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7250.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7901.xml"/> </references> </references> <section anchor="test-vectors"><name>Test Vectors</name> <t>The test vectors in this appendix are representations of the content of the "opaque AuthenticationChain" field in DNS presentationformat. Andformat and, except for the <tt>extension_data</tt> in <xref target="hex_dump"></xref>, do not contain the "uint16 ExtSupportLifetime" field.</t> <t>For brevity andreproducibilityreproducibility, all DNS zones involved with the test vectors are signed using keys with algorithm13: ECDSA13 (ECDSA Curve P-256 withSHA-256.</t>SHA-256).</t> <t>To reflect operational practice, different zones in the examples are in different phases of rolling their signing keys:</t> <ul> <li><t>All zones use a Key Signing Key (KSK) and Zone Signing Key (ZSK), except for theexample.com<tt>example.com</tt> andexample.net zones<tt>example.net</tt> zones, which use a Combined Signing Key (CSK).</t> </li> <li><t>The root and org zones are rolling theirZSK's.</t>ZSKs.</t> </li> <li><t>The com and org zones are rolling theirKSK's.</t>KSKs.</t> </li> </ul> <t>The test vectors are DNSSEC valid in the same period as the certificate is valid, which isinbetween November 28, 2018 and December 2, 2020andwith the following root trust anchor:</t><artwork>.<sourcecode type="dns-rr">. IN DS ( 47005 13 2 2eb6e9f2480126691594d649a5a613de3052e37861634 641bb568746f2ffc4d4 )</artwork></sourcecode> <t>The test vectors will authenticate the certificate used with<eref target="https://example.com/">https://example.com/</eref>, <eref target="https://example.net/">https://example.net/</eref><tt>https://example.com/</tt>, <tt>https://example.net/</tt>, and<eref target="https://example.org/">https://example.org/</eref><tt>https://example.org/</tt> at the time of writing:</t><artwork>-----BEGIN<sourcecode>-----BEGIN CERTIFICATE----- MIIHQDCCBiigAwIBAgIQD9B43Ujxor1NDyupa2A4/jANBgkqhkiG9w0BAQsFADBN MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMScwJQYDVQQDEx5E aWdpQ2VydCBTSEEyIFNlY3VyZSBTZXJ2ZXIgQ0EwHhcNMTgxMTI4MDAwMDAwWhcN MjAxMjAyMTIwMDAwWjCBpTELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3Ju aWExFDASBgNVBAcTC0xvcyBBbmdlbGVzMTwwOgYDVQQKEzNJbnRlcm5ldCBDb3Jw b3JhdGlvbiBmb3IgQXNzaWduZWQgTmFtZXMgYW5kIE51bWJlcnMxEzARBgNVBAsT ClRlY2hub2xvZ3kxGDAWBgNVBAMTD3d3dy5leGFtcGxlLm9yZzCCASIwDQYJKoZI hvcNAQEBBQADggEPADCCAQoCggEBANDwEnSgliByCGUZElpdStA6jGaPoCkrp9vV rAzPpXGSFUIVsAeSdjF11yeOTVBqddF7U14nqu3rpGA68o5FGGtFM1yFEaogEv5g rJ1MRY/d0w4+dw8JwoVlNMci+3QTuUKf9yH28JxEdG3J37Mfj2C3cREGkGNBnY80 eyRJRqzy8I0LSPTTkhr3okXuzOXXg38ugr1x3SgZWDNuEaE6oGpyYJIBWZ9jF3pJ QnucP9vTBejMh374qvyd0QVQq3WxHrogy4nUbWw3gihMxT98wRD1oKVma1NTydvt hcNtBfhkp8kO64/hxLHrLWgOFT/l4tz8IWQt7mkrBHjbd2XLVPkCAwEAAaOCA8Ew ggO9MB8GA1UdIwQYMBaAFA+AYRyCMWHVLyjnjUY4tCzhxtniMB0GA1UdDgQWBBRm mGIC4AmRp9njNvt2xrC/oW2nvjCBgQYDVR0RBHoweIIPd3d3LmV4YW1wbGUub3Jn ggtleGFtcGxlLmNvbYILZXhhbXBsZS5lZHWCC2V4YW1wbGUubmV0ggtleGFtcGxl Lm9yZ4IPd3d3LmV4YW1wbGUuY29tgg93d3cuZXhhbXBsZS5lZHWCD3d3dy5leGFt cGxlLm5ldDAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG AQUFBwMCMGsGA1UdHwRkMGIwL6AtoCuGKWh0dHA6Ly9jcmwzLmRpZ2ljZXJ0LmNv bS9zc2NhLXNoYTItZzYuY3JsMC+gLaArhilodHRwOi8vY3JsNC5kaWdpY2VydC5j b20vc3NjYS1zaGEyLWc2LmNybDBMBgNVHSAERTBDMDcGCWCGSAGG/WwBATAqMCgG CCsGAQUFBwIBFhxodHRwczovL3d3dy5kaWdpY2VydC5jb20vQ1BTMAgGBmeBDAEC AjB8BggrBgEFBQcBAQRwMG4wJAYIKwYBBQUHMAGGGGh0dHA6Ly9vY3NwLmRpZ2lj ZXJ0LmNvbTBGBggrBgEFBQcwAoY6aHR0cDovL2NhY2VydHMuZGlnaWNlcnQuY29t L0RpZ2lDZXJ0U0hBMlNlY3VyZVNlcnZlckNBLmNydDAMBgNVHRMBAf8EAjAAMIIB fwYKKwYBBAHWeQIEAgSCAW8EggFrAWkAdwCkuQmQtBhYFIe7E6LMZ3AKPDWYBPkb 37jjd80OyA3cEAAAAWdcMZVGAAAEAwBIMEYCIQCEZIG3IR36Gkj1dq5L6EaGVycX sHvpO7dKV0JsooTEbAIhALuTtf4wxGTkFkx8blhTV+7sf6pFT78ORo7+cP39jkJC AHYAh3W/51l8+IxDmV+9827/Vo1HVjb/SrVgwbTq/16ggw8AAAFnXDGWFQAABAMA RzBFAiBvqnfSHKeUwGMtLrOG3UGLQIoaL3+uZsGTX3MfSJNQEQIhANL5nUiGBR6g l0QlCzzqzvorGXyB/yd7nttYttzo8EpOAHYAb1N2rDHwMRnYmQCkURX/dxUcEdkC wQApBo2yCJo32RMAAAFnXDGWnAAABAMARzBFAiEA5Hn7Q4SOyqHkT+kDsHq7ku7z RDuM7P4UDX2ft2Mpny0CIE13WtxJAUr0aASFYZ/XjSAMMfrB0/RxClvWVss9LHKM MA0GCSqGSIb3DQEBCwUAA4IBAQBzcIXvQEGnakPVeJx7VUjmvGuZhrr7DQOLeP4R 8CmgDM1pFAvGBHiyzvCH1QGdxFl6cf7wbp7BoLCRLR/qPVXFMwUMzcE1GLBqaGZM v1Yh2lvZSLmMNSGRXdx113pGLCInpm/TOhfrvr0TxRImc8BdozWJavsn1N2qdHQu N+UBO6bQMLCD0KHEdSGFsuX6ZwAworxTg02/1qiDu7zW7RyzHvFYA4IAjpzvkPIa X6KjBtpdvp/aXabmL95YgBjT8WJ7pqOfrqhpcmOBZa6Cg6O1l4qbIFH/Gj9hQB5I 0Gs4+eH6F9h3SojmPTYkT+8KuZ9w84Mn+M8qBXUQoYoKgIjN -----END CERTIFICATE-----</artwork></sourcecode> <sectionanchor="tv-straight"><name>_443._tcp.www.example.com</name> <artwork>_443._tcp.www.example.com.anchor="tv-straight"><name><tt>_443._tcp.www.example.com</tt></name> <sourcecode type="dns-rr">_443._tcp.www.example.com. 3600 IN TLSA ( 3 1 1 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b 922 ) _443._tcp.www.example.com. 3600 IN RRSIG ( TLSA 13 5 3600 20201202000000 20181128000000 1870 example.com. rqY69NnTf4CN3GBGQjKEJCLAMsRkUrXe0JW8IqDb5rQHHzxNqqPeEoi+2vI6S z2BhaswpGLVVuoijuVdzxYjmw== ) example.com. 3600 IN DNSKEY ( 257 3 13 JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s /TsSfZMaGWVvlsuieh5nHcXzA== ) ; Key ID = 1870 example.com. 3600 IN RRSIG ( DNSKEY 13 2 3600 20201202000000 20181128000000 1870 example.com. nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt QHPGSpvRxTUC4tZi62z1UgGDw== ) example.com. 172800 IN DS ( 1870 13 2 e9b533a049798e900b5c29c90cd 25a986e8a44f319ac3cd302bafc08f5b81e16) example.com. 172800 IN RRSIG ( DS 13 2 172800 20201202000000 20181128000000 34327 com. sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO J1hhWSB6jgubEVl17rGNOA/YQ== ) com. 172800 IN DNSKEY ( 256 3 13 7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj 3URIZ8L3Fa2gBLMOZUzZ1GQCw== ) ; Key ID = 34327 com. 172800 IN DNSKEY ( 257 3 13 RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f Ic3I8xfZDNw8Wa0Pe3/g2QA/w== ) ; Key ID = 18931 com. 172800 IN DNSKEY ( 257 3 13 szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt DiVk37lNAQmgSlHbrGu0yOTkA== ) ; Key ID = 28809 com. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 18931 com. LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5 7LFdPKpcvb8BvhM+GqKWGBEsg== ) com. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 28809 com. sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev mDXqz6KEhhQjT+aQWDt6WFHlA== ) com. 86400 IN DS ( 18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202 f9eabb94487e658c188e7bcb52115 ) com. 86400 IN DS ( 28809 13 2 ad66b3276f796223aa45eda773e92c6d98e 70643bbde681db342a9e5cf2bb380 ) com. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb vBKTf6pk8JRCqnfzlo2QY+WXA== ) . 86400 IN DNSKEY ( 256 3 13 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918 . 86400 IN DNSKEY ( 256 3 13 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635 . 86400 IN DNSKEY ( 257 3 13 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005 . 86400 IN RRSIG ( DNSKEY 13 0 86400 20201202000000 20181128000000 47005 . 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m nBT1dtNjIczvLG9pQTnOKUsHQ== )</artwork></sourcecode> <t>A hex dump of the <tt>extension_data</tt> of the server's <tt>dnssec_chain</tt> extensionrepresentionrepresentation of this with an ExtSupportLifetime value of 0 is:</t><artwork<sourcecode anchor="hex_dump">0000: 00 00 04 5f 34 34 33 04 5f 74 63 70 03 77 77 77 0010: 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 34 00 0020: 01 00 00 0e 10 00 23 03 01 01 8b d1 da 95 27 2f 0030: 7f a4 ff b2 41 37 fc 0e d0 3a ae 67 e5 c4 d8 b3 0040: c5 07 34 e1 05 0a 79 20 b9 22 04 5f 34 34 33 04 0050: 5f 74 63 70 03 77 77 77 07 65 78 61 6d 70 6c 65 0060: 03 63 6f 6d 00 00 2e 00 01 00 00 0e 10 00 5f 00 0070: 34 0d 05 00 00 0e 10 5f c6 d9 00 5b fd da 80 07 0080: 4e 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 ce 1d 0090: 3a de b7 dc 7c ee 65 6d 61 cf b4 72 c5 97 7c 8c 00a0: 9c ae ae 9b 76 51 55 c5 18 fb 10 7b 6a 1f e0 35 00b0: 5f ba af 75 3c 19 28 32 fa 62 1f a7 3a 8b 85 ed 00c0: 79 d3 74 11 73 87 59 8f cc 81 2e 1e f3 fb 07 65 00d0: 78 61 6d 70 6c 65 03 63 6f 6d 00 00 30 00 01 00 00e0: 00 0e 10 00 44 01 01 03 0d 26 70 35 5e 0c 89 4d 00f0: 9c fe a6 c5 af 6e b7 d4 58 b5 7a 50 ba 88 27 25 0100: 12 d8 24 1d 85 41 fd 54 ad f9 6e c9 56 78 9a 51 0110: ce b9 71 09 4b 3b b3 f4 ec 49 f6 4c 68 65 95 be 0120: 5b 2e 89 e8 79 9c 77 17 cc 07 65 78 61 6d 70 6c 0130: 65 03 63 6f 6d 00 00 2e 00 01 00 00 0e 10 00 5f 0140: 00 30 0d 02 00 00 0e 10 5f c6 d9 00 5b fd da 80 0150: 07 4e 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 46 0160: 28 38 30 75 b8 e3 4b 74 3a 20 9b 27 ae 14 8d 11 0170: 0d 4e 1a 24 61 38 a9 10 83 24 9c b4 a1 2a 2d 9b 0180: c4 c2 d7 ab 5e b3 af b9 f5 d1 03 7e 4d 5d a8 33 0190: 9c 16 2a 92 98 e9 be 18 07 41 a8 ca 74 ac cc 07 01a0: 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 2b 00 01 01b0: 00 02 a3 00 00 24 07 4e 0d 02 e9 b5 33 a0 49 79 01c0: 8e 90 0b 5c 29 c9 0c d2 5a 98 6e 8a 44 f3 19 ac 01d0: 3c d3 02 ba fc 08 f5 b8 1e 16 07 65 78 61 6d 70 01e0: 6c 65 03 63 6f 6d 00 00 2e 00 01 00 02 a3 00 00 01f0: 57 00 2b 0d 02 00 02 a3 00 5f c6 d9 00 5b fd da 0200: 80 86 17 03 63 6f 6d 00 a2 03 e7 04 a6 fa cb eb 0210: 13 fc 93 84 fd d6 de 6b 50 de 56 59 27 1f 38 ce 0220: 81 49 86 84 e6 36 31 72 d4 7e 23 19 fd b4 a2 2a 0230: 58 a2 31 ed c2 f1 ff 4f b2 81 1a 18 07 be 72 cb 0240: 52 41 aa 26 fd ae e0 39 03 63 6f 6d 00 00 30 00 0250: 01 00 02 a3 00 00 44 01 00 03 0d ec 82 04 e4 3a 0260: 25 f2 34 8c 52 a1 d3 bc e3 a2 65 aa 5d 11 b4 3d 0270: c2 a4 71 16 2f f3 41 c4 9d b9 f5 0a 2e 1a 41 ca 0280: f2 e9 cd 20 10 4e a0 96 8f 75 11 21 9f 0b dc 56 0290: b6 80 12 cc 39 95 33 67 51 90 0b 03 63 6f 6d 00 02a0: 00 30 00 01 00 02 a3 00 00 44 01 01 03 0d 45 b9 02b0: 1c 3b ef 7a 5d 99 a7 a7 c8 d8 22 e3 38 96 bc 80 02c0: a7 77 a0 42 34 a6 05 a4 a8 88 0e c7 ef a4 e6 d1 02d0: 12 c7 3c d3 d4 c6 55 64 fa 74 34 7c 87 37 23 cc 02e0: 5f 64 33 70 f1 66 b4 3d ed ff 83 64 00 ff 03 63 02f0: 6f 6d 00 00 30 00 01 00 02 a3 00 00 44 01 01 03 0300: 0d b3 37 3b 6e 22 e8 e4 9e 0e 1e 59 1a 9f 5b d9 0310: ac 5e 1a 0f 86 18 7f e3 47 03 f1 80 a9 d3 6c 95 0320: 8f 71 c4 af 48 ce 0e bc 5c 79 2a 72 4e 11 b4 38 0330: 95 93 7e e5 34 04 26 81 29 47 6e b1 ae d3 23 93 0340: 90 03 63 6f 6d 00 00 2e 00 01 00 02 a3 00 00 57 0350: 00 30 0d 01 00 02 a3 00 5f c6 d9 00 5b fd da 80 0360: 49 f3 03 63 6f 6d 00 18 a9 48 eb 23 d4 4f 80 ab 0370: c9 92 38 fc b4 3c 5a 18 de be 57 00 4f 73 43 59 0380: 3f 6d eb 6e d7 1e 04 65 4a 43 3f 7a a1 97 21 30 0390: d9 bd 92 1c 73 dc f6 3f cf 66 5f 2f 05 a0 aa eb 03a0: af b0 59 dc 12 c9 65 03 63 6f 6d 00 00 2e 00 01 03b0: 00 02 a3 00 00 57 00 30 0d 01 00 02 a3 00 5f c6 03c0: d9 00 5b fd da 80 70 89 03 63 6f 6d 00 61 70 e6 03d0: 95 9b d9 ed 6e 57 58 37 b6 f5 80 bd 99 db d2 4a 03e0: 44 68 2b 0a 35 96 26 a2 46 b1 81 2f 5f 90 96 b7 03f0: 5e 15 7e 77 84 8f 06 8a e0 08 5e 1a 60 9f c1 92 0400: 98 c3 3b 73 68 63 fb cc d4 d8 1f 5e b2 03 63 6f 0410: 6d 00 00 2b 00 01 00 01 51 80 00 24 49 f3 0d 02 0420: 20 f7 a9 db 42 d0 e2 04 2f bb b9 f9 ea 01 59 41 0430: 20 2f 9e ab b9 44 87 e6 58 c1 88 e7 bc b5 21 15 0440: 03 63 6f 6d 00 00 2b 00 01 00 01 51 80 00 24 70 0450: 89 0d 02 ad 66 b3 27 6f 79 62 23 aa 45 ed a7 73 0460: e9 2c 6d 98 e7 06 43 bb de 68 1d b3 42 a9 e5 cf 0470: 2b b3 80 03 63 6f 6d 00 00 2e 00 01 00 01 51 80 0480: 00 53 00 2b 0d 01 00 01 51 80 5f c6 d9 00 5b fd 0490: da 80 7c ae 00 12 2e 27 6d 45 d9 e9 81 6f 79 22 04a0: ad 6e a2 e7 3e 82 d2 6f ce 0a 4b 71 86 25 f3 14 04b0: 53 1a c9 2f 8a e8 24 18 df 9b 89 8f 98 9d 32 e8 04c0: 0b c4 de ab a7 c4 a7 c8 f1 72 ad b5 7c ed 7f b5 04d0: e7 7a 78 4b 07 00 00 30 00 01 00 01 51 80 00 44 04e0: 01 00 03 0d cc ac fe 0c 25 a4 34 0f ef ba 17 a2 04f0: 54 f7 06 aa c1 f8 d1 4f 38 29 90 25 ac c4 48 ca 0500: 8c e3 f5 61 f3 7f c3 ec 16 9f e8 47 c8 fc be 68 0510: e3 58 ff 7c 71 bb 5e e1 df 0d be 51 8b c7 36 d4 0520: ce 8d fe 14 00 00 30 00 01 00 01 51 80 00 44 01 0530: 00 03 0d f3 03 19 67 89 73 1d dc 8a 67 87 ef f2 0540: 4c ac fe dd d0 32 58 2f 11 a7 5b b1 bc aa 5a b3 0550: 21 c1 d7 52 5c 26 58 19 1a ec 01 b3 e9 8a b7 91 0560: 5b 16 d5 71 dd 55 b4 ea e5 14 17 11 0c c4 cd d1 0570: 1d 17 11 00 00 30 00 01 00 01 51 80 00 44 01 01 0580: 03 0d ca f5 fe 54 d4 d4 8f 16 62 1a fb 6b d3 ad 0590: 21 55 ba cf 57 d1 fa ad 5b ac 42 d1 7d 94 8c 42 05a0: 17 36 d9 38 9c 4c 40 11 66 6e a9 5c f1 77 25 bd 05b0: 0f a0 0c e5 e7 14 e4 ec 82 cf df ac c9 b1 c8 63 05c0: ad 46 00 00 2e 00 01 00 01 51 80 00 53 00 30 0d 05d0: 00 00 01 51 80 5f c6 d9 00 5b fd da 80 b7 9d 00 05e0: de 7a 67 40 ee ec ba 4b da 1e 5c 2d d4 89 9b 2c 05f0: 96 58 93 f3 78 6c e7 47 f4 1e 50 d9 de 8c 0a 72 0600: df 82 56 0d fb 48 d7 14 de 32 83 ae 99 a4 9c 0f 0610: cb 50 d3 aa ad b1 a3 fc 62 ee 3a 8a 09 88 b6 be</artwork></sourcecode> </section> <sectionanchor="tv-wildcard-nsec"><name>_25._tcp.example.comanchor="tv-wildcard-nsec"><name><tt>_25._tcp.example.com</tt> NSECwildcard</name> <artwork>_25._tcp.example.com.Wildcard</name> <sourcecode type="dns-rr">_25._tcp.example.com. 3600 IN TLSA ( 3 1 1 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b 922 ) _25._tcp.example.com. 3600 IN RRSIG ( TLSA 13 3 3600 20201202000000 20181128000000 1870 example.com. BZawXvte5SyF8hnXviKDWqll5E2v+RMXqaSE+NOcAMlZOrSMUkfyPqvkv53K2 rfL4DFP8rO3VMgI0v+ogrox0w== ) *._tcp.example.com. 3600 IN NSEC ( smtp.example.com. RRSIG NSEC TLSA ) *._tcp.example.com. 3600 IN RRSIG ( NSEC 13 3 3600 20201202000000 20181128000000 1870 example.com. K6u8KrR8ca5bjtbce3w8yjMXr9vw12225lAwyIHpxptY43OMLCUCenwpYW5qd mpFvAacqj4+tSkKiN279SI9pA== ) example.com. 3600 IN DNSKEY ( 257 3 13 JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s /TsSfZMaGWVvlsuieh5nHcXzA== ) ; Key ID = 1870 example.com. 3600 IN RRSIG ( DNSKEY 13 2 3600 20201202000000 20181128000000 1870 example.com. nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt QHPGSpvRxTUC4tZi62z1UgGDw== ) example.com. 172800 IN DS ( 1870 13 2 e9b533a049798e900b5c29c90cd 25a986e8a44f319ac3cd302bafc08f5b81e16 ) example.com. 172800 IN RRSIG ( DS 13 2 172800 20201202000000 20181128000000 34327 com. sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO J1hhWSB6jgubEVl17rGNOA/YQ== ) com. 172800 IN DNSKEY ( 256 3 13 7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj 3URIZ8L3Fa2gBLMOZUzZ1GQCw== ) ; Key ID = 34327 com. 172800 IN DNSKEY ( 257 3 13 RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f Ic3I8xfZDNw8Wa0Pe3/g2QA/w== ) ; Key ID = 18931 com. 172800 IN DNSKEY ( 257 3 13 szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt DiVk37lNAQmgSlHbrGu0yOTkA== ) ; Key ID = 28809 com. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 18931 com. LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5 7LFdPKpcvb8BvhM+GqKWGBEsg== ) com. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 28809 com. sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev mDXqz6KEhhQjT+aQWDt6WFHlA== ) com. 86400 IN DS ( 18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202 f9eabb94487e658c188e7bcb52115 ) com. 86400 IN DS ( 28809 13 2 ad66b3276f796223aa45eda773e92c6d98e 70643bbde681db342a9e5cf2bb380 ) com. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb vBKTf6pk8JRCqnfzlo2QY+WXA== ) . 86400 IN DNSKEY ( 256 3 13 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918 . 86400 IN DNSKEY ( 256 3 13 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635 . 86400 IN DNSKEY ( 257 3 13 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005 . 86400 IN RRSIG ( DNSKEY 13 0 86400 20201202000000 20181128000000 47005 . 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m nBT1dtNjIczvLG9pQTnOKUsHQ== )</artwork></sourcecode> </section> <sectionanchor="tv-wildcard-nsec3"><name>_25._tcp.example.organchor="tv-wildcard-nsec3"><name><tt>_25._tcp.example.org</tt> NSEC3wildcard</name> <artwork>_25._tcp.example.org.Wildcard</name> <sourcecode type="dns-rr">_25._tcp.example.org. 3600 IN TLSA ( 3 1 1 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b 922 ) _25._tcp.example.org. 3600 IN RRSIG ( TLSA 13 3 3600 20201202000000 20181128000000 56566 example.org. lNp6th/CJel5WsYlLsLadcQ/YdSTJAIOttzYKnNkNzeZ0jxtDyEP818Q1R4lL cYzJ7vCvqb9gFCiCJjK2gAamw== ) dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org. 3600 IN NSEC3 ( 1 0 1 - t6lf7uuoi0qofq0nvdjroavo46pp20im RRSIG TLSA ) dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org. 3600 IN RRSIG ( NSEC3 13 3 3600 20201202000000 20181128000000 56566 example.org. guUyy9LIZlYb0FZttAdYJGrFNKpKu91Tm+dPOz98rnpwIlwwvLifXIvIl90nE X38cWzEQOpreJu3t4WAfPsxdg== ) example.org. 3600 IN DNSKEY ( 256 3 13 NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N UR5TlG4Zh+YPbbmUIixe4nS3w== ) ; Key ID = 56566 example.org. 3600 IN DNSKEY ( 257 3 13 uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr Wy9txxesNQ9MkO4LUrFght1LQ== ) ; Key ID = 44384 example.org. 3600 IN RRSIG ( DNSKEY 13 2 3600 20201202000000 20181128000000 44384 example.org. ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk 6OPPvyHjVXMAsvk0tqV0B+/ag== ) example.org. 86400 IN DS ( 44384 13 2 ec307e2efc8f0117ed96ab48a51 3c8003e1d9121f1ff11a08b4cdd348d090aa6 ) example.org. 86400 IN RRSIG ( DS 13 2 86400 20201202000000 20181128000000 9523 org. m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62 clpAfvZHx59Ackst4X+zXYpUA== ) org. 86400 IN DNSKEY ( 256 3 13 fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e HfWx7kzlBBoJB0vLrvsJtXJ6g== ) ; Key ID = 47417 org. 86400 IN DNSKEY ( 256 3 13 zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy mlMiAAoaoXh7BUkEBVgDVN8sQ== ) ; Key ID = 9523 org. 86400 IN DNSKEY ( 257 3 13 Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6 Dlger0VJTm0QuX/JVXcyGVGoQ== ) ; Key ID = 49352 org. 86400 IN DNSKEY ( 257 3 13 0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ HTjK6Fvy8W6yZ+cAptn8sQheg== ) ; Key ID = 12651 org. 86400 IN RRSIG ( DNSKEY 13 1 86400 20201202000000 20181128000000 12651 org. Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt us0pUgWngbT/OWXskdMYXZU4A== ) org. 86400 IN RRSIG ( DNSKEY 13 1 86400 20201202000000 20181128000000 49352 org. VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p vZEMj1YXD+dIqb2nUK9PGBAXw== ) org. 86400 IN DS ( 12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f 9db5c24a75743eb1e704b97a9fabc ) org. 86400 IN DS ( 49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe f4a2f18920db5f58710dd767c293b ) org. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV EemgaE357S4pX5D0tVZzeZJ6A== ) . 86400 IN DNSKEY ( 256 3 13 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918 . 86400 IN DNSKEY ( 256 3 13 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635 . 86400 IN DNSKEY ( 257 3 13 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005 . 86400 IN RRSIG ( DNSKEY 13 0 86400 20201202000000 20181128000000 47005 . 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m nBT1dtNjIczvLG9pQTnOKUsHQ== )</artwork></sourcecode> </section> <sectionanchor="tv-cname"><name>_443._tcp.www.example.organchor="tv-cname"><name><tt>_443._tcp.www.example.org</tt> CNAME</name><artwork>_443._tcp.www.example.org.<sourcecode type="dns-rr">_443._tcp.www.example.org. 3600 IN CNAME ( dane311.example.org. ) _443._tcp.www.example.org. 3600 IN RRSIG ( CNAME 13 5 3600 20201202000000 20181128000000 56566 example.org. R0dUe6Rt4G+2ablrQH9Zw8j9NhBLMgNYTI5+H7nO8SNz5Nm8w0NZrXv3Qp7gx Qb/a90O696120NsYaZX2+ebBA== ) dane311.example.org. 3600 IN TLSA ( 3 1 1 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b 922 ) dane311.example.org. 3600 IN RRSIG ( TLSA 13 3 3600 20201202000000 20181128000000 56566 example.org. f6TbTZTpu3h6MYpLkKQwWILAkYQ3EUY+Nsoa6any6yt+aeuunMUjw+IJB2QLm 0x0PrD7m39JA3NUSkUp9riNNQ== ) example.org. 3600 IN DNSKEY ( 256 3 13 NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N UR5TlG4Zh+YPbbmUIixe4nS3w== ) ; Key ID = 56566 example.org. 3600 IN DNSKEY ( 257 3 13 uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr Wy9txxesNQ9MkO4LUrFght1LQ== ) ; Key ID = 44384 example.org. 3600 IN RRSIG ( DNSKEY 13 2 3600 20201202000000 20181128000000 44384 example.org. ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk 6OPPvyHjVXMAsvk0tqV0B+/ag== ) example.org. 86400 IN DS ( 44384 13 2 ec307e2efc8f0117ed96ab48a51 3c8003e1d9121f1ff11a08b4cdd348d090aa6 ) example.org. 86400 IN RRSIG ( DS 13 2 86400 20201202000000 20181128000000 9523 org. m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62 clpAfvZHx59Ackst4X+zXYpUA== ) org. 86400 IN DNSKEY ( 256 3 13 fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e HfWx7kzlBBoJB0vLrvsJtXJ6g== ) ; Key ID = 47417 org. 86400 IN DNSKEY ( 256 3 13 zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy mlMiAAoaoXh7BUkEBVgDVN8sQ== ) ; Key ID = 9523 org. 86400 IN DNSKEY ( 257 3 13 Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6 Dlger0VJTm0QuX/JVXcyGVGoQ== ) ; Key ID = 49352 org. 86400 IN DNSKEY ( 257 3 13 0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ HTjK6Fvy8W6yZ+cAptn8sQheg== ) ; Key ID = 12651 org. 86400 IN RRSIG ( DNSKEY 13 1 86400 20201202000000 20181128000000 12651 org. Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt us0pUgWngbT/OWXskdMYXZU4A== ) org. 86400 IN RRSIG ( DNSKEY 13 1 86400 20201202000000 20181128000000 49352 org. VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p vZEMj1YXD+dIqb2nUK9PGBAXw== ) org. 86400 IN DS ( 12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f 9db5c24a75743eb1e704b97a9fabc ) org. 86400 IN DS ( 49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe f4a2f18920db5f58710dd767c293b ) org. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV EemgaE357S4pX5D0tVZzeZJ6A== ) . 86400 IN DNSKEY ( 256 3 13 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918 . 86400 IN DNSKEY ( 256 3 13 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635 . 86400 IN DNSKEY ( 257 3 13 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005 . 86400 IN RRSIG ( DNSKEY 13 0 86400 20201202000000 20181128000000 47005 . 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m nBT1dtNjIczvLG9pQTnOKUsHQ== )</artwork></sourcecode> </section> <sectionanchor="tv-dname"><name>_443._tcp.www.example.netanchor="tv-dname"><name><tt>_443._tcp.www.example.net</tt> DNAME</name><artwork>example.net.<sourcecode type="dns-rr">example.net. 3600 IN DNAME example.com. example.net. 3600 IN RRSIG ( DNAME 13 2 3600 20201202000000 20181128000000 48085 example.net. o3uV5k5Ewp5fdrOZt0n4QuH+/Hpku2Lo3CzGRt9/MS2zZt2Qb/AXz435UFQBx OI/pDnjJcLSd/gBLtqR52WLMA== ) ; _443._tcp.www.example.net. 3600 IN CNAME ( ; _443._tcp.www.example.com. ) _443._tcp.www.example.com. 3600 IN TLSA ( 3 1 1 8bd1da95272f7fa4ffb24137fc0ed03aae67e5c4d8b3c50734e1050a7920b 922 ) _443._tcp.www.example.com. 3600 IN RRSIG ( TLSA 13 5 3600 20201202000000 20181128000000 1870 example.com. rqY69NnTf4CN3GBGQjKEJCLAMsRkUrXe0JW8IqDb5rQHHzxNqqPeEoi+2vI6S z2BhaswpGLVVuoijuVdzxYjmw== ) example.net. 3600 IN DNSKEY ( 257 3 13 X9GHpJcS7bqKVEsLiVAbddHUHTZqqBbVa3mzIQmdp+5cTJk7qDazwH68Kts8d 9MvN55HddWgsmeRhgzePz6hMg== ) ; Key ID = 48085 example.net. 3600 IN RRSIG ( DNSKEY 13 2 3600 20201202000000 20181128000000 48085 example.net. CkwqgEt1p97oMa3w5LctIjKIuG5XVSapKrfwuHhb5p04fWXRMNsXasG/kd2F/ wlmMWiq38gOQaYCLNm+cjQzpQ== ) example.net. 172800 IN DS ( 48085 13 2 7c1998ce683df60e2fa41460c4 53f88f463dac8cd5d074277b4a7c04502921be ) example.net. 172800 IN RRSIG ( DS 13 2 172800 20201202000000 20181128000000 10713 net. w0JxDeiBJZNlpCdxKtRENlqfTpSxcs6Vftscsyfo/hyeTPYcIt4yItDkYsYK+ KQ6FYAVE4nisA3vDQoZVL4wow== ) net. 172800 IN DNSKEY ( 256 3 13 061EoQs4sBcDsPiz17vt4nFSGLmXAGguqLStOesmKNCimi4/lw/vtyfqALuLF JiFjtCK3HMPi8HQ1jbGEwbGCA== ) ; Key ID = 10713 net. 172800 IN DNSKEY ( 257 3 13 LkNCPE+v3S4MVnsOqZFhn8n2NSwtLYOZLZjjgVsAKgu4XZncaDgq1R/7ZXRO5 oVx2zthxuu2i+mGbRrycAaCvA== ) ; Key ID = 485 net. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 485 net. 031jXg06zSuDwI5zqYuYFJg1O5p+zy85csMXagvRxB9W2lL/wJRi6Gn9BcaCV RnDId5WR+yCADhsbKfSrrd9vQ== ) net. 86400 IN DS ( 485 13 2 ab25a2941aa7f1eb8688bb783b25587515a0c d8c247769b23adb13ca234d1c05 ) net. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . vOXoTjxggGTYKIwssQ3kpML0ag6D0Hcm+Syy7++4zT7gaFHfRH9a6uZekIWdb oss8y7q4onW4rxKdtw2S28hwQ== ) . 86400 IN DNSKEY ( 256 3 13 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918 . 86400 IN DNSKEY ( 256 3 13 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635 . 86400 IN DNSKEY ( 257 3 13 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005 . 86400 IN RRSIG ( DNSKEY 13 0 86400 20201202000000 20181128000000 47005 . 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m nBT1dtNjIczvLG9pQTnOKUsHQ== ) example.com. 3600 IN DNSKEY ( 257 3 13 JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s /TsSfZMaGWVvlsuieh5nHcXzA== ) ; Key ID = 1870 example.com. 3600 IN RRSIG ( DNSKEY 13 2 3600 20201202000000 20181128000000 1870 example.com. nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt QHPGSpvRxTUC4tZi62z1UgGDw== ) example.com. 172800 IN DS ( 1870 13 2 e9b533a049798e900b5c29c90cd 25a986e8a44f319ac3cd302bafc08f5b81e16 ) example.com. 172800 IN RRSIG ( DS 13 2 172800 20201202000000 20181128000000 34327 com. sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO J1hhWSB6jgubEVl17rGNOA/YQ== ) com. 172800 IN DNSKEY ( 256 3 13 7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj 3URIZ8L3Fa2gBLMOZUzZ1GQCw== ) ; Key ID = 34327 com. 172800 IN DNSKEY ( 257 3 13 RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f Ic3I8xfZDNw8Wa0Pe3/g2QA/w== ) ; Key ID = 18931 com. 172800 IN DNSKEY ( 257 3 13 szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt DiVk37lNAQmgSlHbrGu0yOTkA== ) ; Key ID = 28809 com. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 18931 com. LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5 7LFdPKpcvb8BvhM+GqKWGBEsg== ) com. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 28809 com. sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev mDXqz6KEhhQjT+aQWDt6WFHlA== ) com. 86400 IN DS ( 18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202 f9eabb94487e658c188e7bcb52115 ) com. 86400 IN DS ( 28809 13 2 ad66b3276f796223aa45eda773e92c6d98e 70643bbde681db342a9e5cf2bb380 ) com. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb vBKTf6pk8JRCqnfzlo2QY+WXA== )</artwork></sourcecode> </section> <sectionanchor="tv-denial-nsec"><name>_25._tcp.smtp.example.comanchor="tv-denial-nsec"><name><tt>_25._tcp.smtp.example.com</tt> NSEC Denial of Existence</name><artwork>smtp.example.com.<sourcecode type="dns-rr">smtp.example.com. 3600 IN NSEC ( www.example.com. A AAAA RRSIG NSEC ) smtp.example.com. 3600 IN RRSIG ( NSEC 13 3 3600 20201202000000 20181128000000 1870 example.com. rH/K4wghCOm4jpEHwQKiyZzvFIa7qpFySuKIGGetW4SE4O2Mh5jPxcEzf78Hf crlsQZmnAUlfmBNCygxAd7JNw== ) example.com. 3600 IN DNSKEY ( 257 3 13 JnA1XgyJTZz+psWvbrfUWLV6ULqIJyUS2CQdhUH9VK35bslWeJpRzrlxCUs7s /TsSfZMaGWVvlsuieh5nHcXzA== ) ; Key ID = 1870 example.com. 3600 IN RRSIG ( DNSKEY 13 2 3600 20201202000000 20181128000000 1870 example.com. nYisnu/26Sw1qmGuREa9o/fLgYuA4oNPt4+6PMBZoN0MS8Gjtli9NVRYeSIzt QHPGSpvRxTUC4tZi62z1UgGDw== ) example.com. 172800 IN DS ( 1870 13 2 e9b533a049798e900b5c29c90cd 25a986e8a44f319ac3cd302bafc08f5b81e16 ) example.com. 172800 IN RRSIG ( DS 13 2 172800 20201202000000 20181128000000 34327 com. sEAKvX4H6pJfN8nKcclB1NRcRSPOztx8omr4fCSHu6lp+uESP/Le4iF2sKukO J1hhWSB6jgubEVl17rGNOA/YQ== ) com. 172800 IN DNSKEY ( 256 3 13 7IIE5Dol8jSMUqHTvOOiZapdEbQ9wqRxFi/zQcSdufUKLhpByvLpzSAQTqCWj 3URIZ8L3Fa2gBLMOZUzZ1GQCw== ) ; Key ID = 34327 com. 172800 IN DNSKEY ( 257 3 13 RbkcO+96XZmnp8jYIuM4lryAp3egQjSmBaSoiA7H76Tm0RLHPNPUxlVk+nQ0f Ic3I8xfZDNw8Wa0Pe3/g2QA/w== ) ; Key ID = 18931 com. 172800 IN DNSKEY ( 257 3 13 szc7biLo5J4OHlkan1vZrF4aD4YYf+NHA/GAqdNslY9xxK9Izg68XHkqck4Rt DiVk37lNAQmgSlHbrGu0yOTkA== ) ; Key ID = 28809 com. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 18931 com. LJ4p5ORS2ViILwTotSlWixElqRXHY5tOdIuHlPWTdBGPMq3y40QNr1V+ZOyA5 7LFdPKpcvb8BvhM+GqKWGBEsg== ) com. 172800 IN RRSIG ( DNSKEY 13 1 172800 20201202000000 20181128000000 28809 com. sO+4X2N21yS6x8+dBVBzbRo9+55MM8n7+RUvdBuxRFVh6JaBlqDOC5LLkl7Ev mDXqz6KEhhQjT+aQWDt6WFHlA== ) com. 86400 IN DS ( 18931 13 2 20f7a9db42d0e2042fbbb9f9ea015941202 f9eabb94487e658c188e7bcb52115 ) com. 86400 IN DS ( 28809 13 2 ad66b3276f796223aa45eda773e92c6d98e 70643bbde681db342a9e5cf2bb380 ) com. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . nDiDlBjXEE/6AudhC++Hui1ckPcuAnGbjEASNoxA3ZHjlXRzL050UzePko5Pb vBKTf6pk8JRCqnfzlo2QY+WXA== ) . 86400 IN DNSKEY ( 256 3 13 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918 . 86400 IN DNSKEY ( 256 3 13 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635 . 86400 IN DNSKEY ( 257 3 13 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005 . 86400 IN RRSIG ( DNSKEY 13 0 86400 20201202000000 20181128000000 47005 . 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m nBT1dtNjIczvLG9pQTnOKUsHQ== )</artwork></sourcecode> </section> <sectionanchor="tv-denial-nsec3"><name>_25._tcp.smtp.example.organchor="tv-denial-nsec3"><name><tt>_25._tcp.smtp.example.org</tt> NSEC3 Denial of Existence</name><artwork>vkv62jbv85822q8rtmfnbhfnmnat9ve3.example.org.<sourcecode type="dns-rr">vkv62jbv85822q8rtmfnbhfnmnat9ve3.example.org. 3600 IN NSEC3 ( 1 0 1 - 93u63bg57ppj6649al2n31l92iedkjd6 A AAAA RRSIG ) vkv62jbv85822q8rtmfnbhfnmnat9ve3.example.org. 3600 IN RRSIG ( NSEC3 13 3 3600 20201202000000 20181128000000 56566 example.org. wn3cePVdc5VPPniYzGp+1CBPOY2m83/A3cjnAb7FTZuwL45B25fwVUyjKQksh gQeV5KgP1cdvPt1BEowKqK4Sw== ) dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org. 3600 IN NSEC3 ( 1 0 1 - t6lf7uuoi0qofq0nvdjroavo46pp20im RRSIG TLSA ) dlm7rss9pejqnh0ev6h7k1ikqqcl5mae.example.org. 3600 IN RRSIG ( NSEC3 13 3 3600 20201202000000 20181128000000 56566 example.org. guUyy9LIZlYb0FZttAdYJGrFNKpKu91Tm+dPOz98rnpwIlwwvLifXIvIl90nE X38cWzEQOpreJu3t4WAfPsxdg== ) a73bi8coh6dvf1arqdeuogf95r0828mk.example.org. 3600 IN NSEC3 ( 1 0 1 - c1p0lp7l1l8gdn0jl13pp1o41h35untj CNAME RRSIG ) a73bi8coh6dvf1arqdeuogf95r0828mk.example.org. 3600 IN RRSIG ( NSEC3 13 3 3600 20201202000000 20181128000000 56566 example.org. ePBUuWdj8Bc+/41gHBm2Bx/IK/j/Q4W7A5uTgSj/0Sd57mP/NTWRZq3p8yBNe FPC2mBJ2oWQFi6/V9dmyiBh2A== ) example.org. 3600 IN DNSKEY ( 256 3 13 NrbL6utGqIW1wrhhjeexdA6bMdD1lC1hj0Fnpevaa1AMyY2uy83TmoGnR996N UR5TlG4Zh+YPbbmUIixe4nS3w== ) ; Key ID = 56566 example.org. 3600 IN DNSKEY ( 257 3 13 uspaqp17jsMTX6AWVgmbog/3Sttz+9ANFUWLn6qKUHr0BOqRuChQWj8jyYUUr Wy9txxesNQ9MkO4LUrFght1LQ== ) ; Key ID = 44384 example.org. 3600 IN RRSIG ( DNSKEY 13 2 3600 20201202000000 20181128000000 44384 example.org. ttse9pYp9PSu0pJ+TOpIVFLWJ6NKOMWZX4Q/SlU6ZfaiKQc0Bg7Tut9+wPunk 6OPPvyHjVXMAsvk0tqV0B+/ag== ) example.org. 86400 IN DS ( 44384 13 2 ec307e2efc8f0117ed96ab48a51 3c8003e1d9121f1ff11a08b4cdd348d090aa6 ) example.org. 86400 IN RRSIG ( DS 13 2 86400 20201202000000 20181128000000 9523 org. m86Xz0CEa2sWG40a0bS2kqLKPmIlyiVyDeoWXAq3djeGiPaikLuKORNzWXu62 clpAfvZHx59Ackst4X+zXYpUA== ) org. 86400 IN DNSKEY ( 256 3 13 fuLp60znhSSEr9HowILpTpyLKQdM6ixcgkTE0gqVdsLx+DSNHSc69o6fLWC0e HfWx7kzlBBoJB0vLrvsJtXJ6g== ) ; Key ID = 47417 org. 86400 IN DNSKEY ( 256 3 13 zTHbb7JM627Bjr8CGOySUarsic91xZU3vvLJ5RjVix9YH6+iwpBXb6qfHyQHy mlMiAAoaoXh7BUkEBVgDVN8sQ== ) ; Key ID = 9523 org. 86400 IN DNSKEY ( 257 3 13 Uf24EyNt51DMcLV+dHPInhSpmjPnqAQNUTouU+SGLu+lFRRlBetgw1bJUZNI6 Dlger0VJTm0QuX/JVXcyGVGoQ== ) ; Key ID = 49352 org. 86400 IN DNSKEY ( 257 3 13 0SZfoe8Yx+eoaGgyAGEeJax/ZBV1AuG+/smcOgRm+F6doNlgc3lddcM1MbTvJ HTjK6Fvy8W6yZ+cAptn8sQheg== ) ; Key ID = 12651 org. 86400 IN RRSIG ( DNSKEY 13 1 86400 20201202000000 20181128000000 12651 org. Gq9wf+z3pasXXUwE210jYc0LhJnMAhcwXydnvkHtCVY6/0jUafHO4RksN84Zt us0pUgWngbT/OWXskdMYXZU4A== ) org. 86400 IN RRSIG ( DNSKEY 13 1 86400 20201202000000 20181128000000 49352 org. VGEkEMWBJ2IbOpm2Z56Qxu2NGPcVUDWCbYRyk+Qk1+HzGtyd2qPEKkpgMs/0p vZEMj1YXD+dIqb2nUK9PGBAXw== ) org. 86400 IN DS ( 12651 13 2 3979a51f98bbf219fcaf4a4176e766dfa8f 9db5c24a75743eb1e704b97a9fabc ) org. 86400 IN DS ( 49352 13 2 03d11a1aa114abbb8f708c3c0ff0db765fe f4a2f18920db5f58710dd767c293b ) org. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . adiFuP2UIulQw5Edsb/7WSPqr5nkRSTVXbZ2tkBeZRQcMjdCD3pyonWO5JPRV EemgaE357S4pX5D0tVZzeZJ6A== ) . 86400 IN DNSKEY ( 256 3 13 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918 . 86400 IN DNSKEY ( 256 3 13 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635 . 86400 IN DNSKEY ( 257 3 13 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005 . 86400 IN RRSIG ( DNSKEY 13 0 86400 20201202000000 20181128000000 47005 . 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m nBT1dtNjIczvLG9pQTnOKUsHQ== )</artwork></sourcecode> </section> <sectionanchor="tv-insecure-nsec3-optout"><name>_443._tcp.www.insecure.exampleanchor="tv-insecure-nsec3-optout"><name><tt>_443._tcp.www.insecure.example</tt> NSEC3opt-out insecure delegation</name> <artwork>c1kgc91hrn9nqi2qjh1ms78ki8p7s75o.example.Opt-Out Insecure Delegation</name> <sourcecode type="dns-rr">c1kgc91hrn9nqi2qjh1ms78ki8p7s75o.example. 43200 IN NSEC3 ( 1 1 1 - shn05itmoa45mmnv74lc4p0nnfmimtjt NS SOA RRSIG DNSKEY NSEC3PARAM ) c1kgc91hrn9nqi2qjh1ms78ki8p7s75o.example. 43200 IN RRSIG ( NSEC3 13 2 43200 20201202000000 20181128000000 15903 example. pW16gQOLhLpKYgXpGt4XB4o92W/QoPYyG5CjQ+t+g7LBVcCiPQv8ars1j9UOg RpXUsJhZBDax2dfDhK7zOk7ow== ) shn05itmoa45mmnv74lc4p0nnfmimtjt.example. 43200 IN NSEC3 ( 1 1 1 - a3ib1dvf1bdtfmd91usrdem5fiiepi6p NS DS RRSIG ) shn05itmoa45mmnv74lc4p0nnfmimtjt.example. 43200 IN RRSIG ( NSEC3 13 2 43200 20201202000000 20181128000000 15903 example. 5Aq//A8bsWNwcXbT91pMX2Oqf8VpJQRjqH4D2yZElW00wKmt85mhgu2qYPrvH QwGEB4STMz2Nefq01/GY6NHKg== ) example. 432000 IN DNSKEY ( 257 3 13 yrkqXSbVwXOoUxCjr/E9yg8XUzbZNlwPllVsoUPd73TLOnBQQ+03Qw4/k+Nme /66WIw+ZTlHYcTNalxiGYm0uQ== ) ; Key ID = 15903 example. 432000 IN RRSIG ( DNSKEY 13 1 432000 20201202000000 20181128000000 15903 example. wwEo3ri6JBuCqx5b33w8axFWOhIen1l+/mm0Isyc9FciuLhBiP+IqSgt+Igc8 9nR8zRpJpo1D6XR/qJxZgnfaA== ) example. 86400 IN DS ( 15903 13 2 7e0ebaf1cc0d309d4a73ca7d711719d d940f4da87b3d72865167650fc73ea577 ) example. 86400 IN RRSIG ( DS 13 1 86400 20201202000000 20181128000000 31918 . B5vx4zZaS+bOYfz0PzpaPfk9VxxBvYbGjIvGhpUZV3diXzfCguXxN4JIT1Sz8 eJX6BYT5QPIrbG/N35U1sIskw== ) . 86400 IN DNSKEY ( 256 3 13 zKz+DCWkNA/vuheiVPcGqsH40U84KZAlrMRIyozj9WHzf8PsFp/oR8j8vmjjW P98cbte4d8NvlGLxzbUzo3+FA== ) ; Key ID = 31918 . 86400 IN DNSKEY ( 256 3 13 8wMZZ4lzHdyKZ4fv8kys/t3QMlgvEadbsbyqWrMhwddSXCZYGRrsAbPpireRW xbVcd1VtOrlFBcRDMTN0R0XEQ== ) ; Key ID = 2635 . 86400 IN DNSKEY ( 257 3 13 yvX+VNTUjxZiGvtr060hVbrPV9H6rVusQtF9lIxCFzbZOJxMQBFmbqlc8Xclv Q+gDOXnFOTsgs/frMmxyGOtRg== ) ; Key ID = 47005 . 86400 IN RRSIG ( DNSKEY 13 0 86400 20201202000000 20181128000000 47005 . 0EPW1ca+N/ZhZPKla77STG734cTeIOjUwq7eW0HsnOfudWmnCEVeco2wLLq9m nBT1dtNjIczvLG9pQTnOKUsHQ== )</artwork></sourcecode> </section> </section> <section anchor="acknowledgments" numbered="false"><name>Acknowledgments</name> <t>Many thanks to <contact fullname="Adam Langley"/> for laying the groundwork for this extension in <xref target="I-D.agl-dane-serializechain"></xref>. The original idea is his, but our acknowledgment in no way implies his endorsement. This document also benefited from discussions with and review from the following people: <contact fullname="Daniel Kahn Gillmor"/>, <contact fullname="Jeff Hodges"/>, <contact fullname="Allison Mankin"/>, <contact fullname="Patrick McManus"/>, <contact fullname="Rick van Rein"/>, <contact fullname="Ilari Liusvaara"/>, <contact fullname="Eric Rescorla"/>, <contact fullname="Gowri Visweswaran"/>, <contact fullname="Duane Wessels"/>, <contact fullname="Nico Williams"/>, and <contact fullname="Richard Barnes"/>.</t> </section> </back> </rfc>