<?xmlversion='1.0' encoding='utf-8'?>version="1.0" encoding="UTF-8"?> <!DOCTYPE rfc SYSTEM"rfc2629.dtd" [ <!ENTITY RFC7432 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7432.xml"> <!ENTITY RFC5512 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5512.xml"> <!ENTITY RFC2119 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"> <!ENTITY RFC8174 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"> <!ENTITY RFC8365 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8365.xml"> <!ENTITY I-D.ietf-bess-evpn-inter-subnet-forwarding SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-bess-evpn-inter-subnet-forwarding.xml"> <!ENTITY RFC4364 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4364.xml"> <!ENTITY RFC7606 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7606.xml"> <!ENTITY RFC7365 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7365.xml"> <!ENTITY RFC5227 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5227.xml"> <!ENTITY RFC7348 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7348.xml"> <!ENTITY I-D.ietf-nvo3-geneve SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.draft-ietf-nvo3-geneve-06.xml"> <!ENTITY I-D.ietf-nvo3-geneve SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-nvo3-geneve.xml"> ]>"rfc2629-xhtml.ent"> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF"docName="draft-ietf-bess-evpn-prefix-advertisement-11"category="std"ipr="trust200902"> <!-- Generated by id2xml 1.5.0 on 2020-06-11T21:13:55Z --> <?rfc strict="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?> <?rfc symrefs="yes"?> <?rfc sortrefs="no"?> <?rfc text-list-symbols="oo*+-"?> <!-- draft-ietf-bess-evpn-prefix-advertisement-11-manual.txt(14): Warning: Expected an expires indication top left, found none --><?rfc toc="yes"?>consensus="true" docName="draft-ietf-bess-evpn-prefix-advertisement-11" number="9136" ipr="trust200902" obsoletes="" updates="" xml:lang="en" symRefs="true" sortRefs="true" tocInclude="true" version="3"> <front> <title abbrev="EVPN Prefix Advertisement">IP Prefix Advertisement inEVPN</title>Ethernet VPN (EVPN)</title> <seriesInfo name="RFC" value="9136"/> <author initials="J." surname="Rabadan" fullname="Jorge Rabadan" role="editor"> <organization>Nokia</organization> <address> <postal> <street>777 E. Middlefield Road</street> <city>Mountain View</city> <region>CA</region> <code>94043</code><country>USA</country><country>United States of America</country> </postal><phone></phone><phone/> <email>jorge.rabadan@nokia.com</email> </address> </author> <author initials="W." surname="Henderickx" fullname="Wim Henderickx"> <organization>Nokia</organization> <address> <email>wim.henderickx@nokia.com</email> </address> </author> <author initials="J." surname="Drake" fullname="John Drake"> <organization>Juniper</organization> <address> <email>jdrake@juniper.net</email> </address> </author> <author initials="W." surname="Lin" fullname="Wen Lin"> <organization>Juniper</organization> <address> <email>wlin@juniper.net</email> </address> </author> <author initials="A." surname="Sajassi" fullname="Ali Sajassi"> <organization>Cisco</organization> <address> <email>sajassi@cisco.com</email> </address> </author> <dateyear="2020" month="July"/>year="2021" month="October"/> <workgroup>BESS Workgroup</workgroup><abstract><t><keyword>RT5</keyword> <keyword>RT-5</keyword> <keyword>Type-5</keyword> <keyword>Interface-less</keyword> <keyword>Interface-ful</keyword> <abstract> <t> The BGP MPLS-based Ethernet VPN (EVPN)<xref target="RFC7432"/>(RFC 7432) mechanism provides a flexible control plane that allows intra-subnet connectivity in an MPLS and/orNVO (NetworkNetwork VirtualizationOverlay) <xref target="RFC7365"/>Overlay (NVO) (RFC 7365) network. In some networks, there is also a need foradynamic and efficient inter-subnet connectivity across Tenant Systems andEnd Devicesend devices that can be physical or virtual and do not necessarily participate in dynamic routing protocols. This document defines a new EVPN route type for the advertisement of IPPrefixesprefixes and explains some use-case examples where this newroute-typeroute type is used.</t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="sect-1"><t> <xref target="RFC7365"/>anchor="sect-1" numbered="true" toc="default"> <name>Introduction</name> <t><xref target="RFC7365" format="default"/> provides a framework for Data Center (DC) Network Virtualization over Layer 3 and specifies that the Network Virtualization Edge (NVE) devices(NVEs)must providelayerLayer 2 andlayerLayer 3 virtualized network services in multi-tenant DCs. <xreftarget="RFC8365"/>target="RFC8365" format="default"/> discusses the use of EVPN as the technology of choice to providelayerLayer 2 or intra-subnet services in these DCs. This document, along with <xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>,target="RFC9135" format="default"/>, specifies the use of EVPN forlayerLayer 3 or inter-subnet connectivity services.</t> <t> <xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>target="RFC9135" format="default"/> defines some fairly common inter-subnet forwarding scenarios whereTSesTenant Systems (TSs) can exchange packets withTSesTSs located in remote subnets. In order to achieve this, <xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>target="RFC9135" format="default"/> describes howMAC/IPsMedia Access Control (MAC) and IPs encoded in TS RT-2 routes are not only used to populateMAC-VRFMAC Virtual Routing and Forwarding (MAC-VRF) and overlayARP tables,Address Resolution Protocol (ARP) tables but also IP-VRF tables with the encoded TS host routes (/32 or /128). In some cases, EVPN may advertise IPPrefixesprefixes and therefore provide aggregation in the IP-VRF tables, as opposed topropagatepropagating individual host routes. This document complements the scenarios described in <xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>target="RFC9135" format="default"/> and defines how EVPN may be used to advertise IPPrefixes.prefixes. Interoperability between EVPN andL3VPNLayer 3 Virtual Private Network (VPN) <xreftarget="RFC4364"/>target="RFC4364" format="default"/> IP Prefix routes is out of the scope of this document.</t> <t> <xreftarget="sect-2.1"/>target="sect-2.1" format="default"/> describes the inter-subnet connectivity requirements inData Centers.DCs. <xreftarget="sect-2.2"/>target="sect-2.2" format="default"/> explains why a new EVPN route type is required for IPPrefixprefix advertisements. Sections3, 4<xref target="sect-3" format="counter"/>, <xref target="sect-4" format="counter"/>, and5<xref target="sect-5" format="counter"/> will describe this route type and how it is used in some specific use cases.</t> <sectiontitle="Terminology" anchor="sect-1.1"><t>anchor="sect-1.1" numbered="true" toc="default"> <name>Terminology</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xreftarget="RFC2119"/>target="RFC2119" format="default"/> <xreftarget="RFC8174"/>target="RFC8174" format="default"/> when, and only when, they appear in all capitals, as shown here.<list style="hanging" hangIndent="3"> <t hangText="AC:">Attachment Circuit.</t> <t hangText="ARP:">Address</t> <dl indent="10"> <dt>AC:</dt> <dd>Attachment Circuit</dd> <dt>ARP:</dt> <dd>Address ResolutionProtocol.</t> <t hangText="BD:">BroadcastProtocol</dd> <dt>BD:</dt> <dd>Broadcast Domain. As per[RFC7432],<xref target="RFC7432"/>, an EVI consists of a single BD or multiple BDs. In case of VLAN-bundle and VLAN-based service models (see <xreftarget="RFC7432"/>),target="RFC7432" format="default"/>), a BD is equivalent to an EVI. In case of a VLAN-aware bundle service model, an EVI contains multiple BDs. Also, in this document,BD"BD" andsubnet"subnet" are equivalentterms.</t> <t hangText="BDterms.</dd> <dt>BD RouteTarget:">refersTarget:</dt> <dd>Refers to theBroadcast Domain assignedbroadcast-domain-assigned Route Target <xreftarget="RFC4364"/>.target="RFC4364" format="default"/>. In case of a VLAN-aware bundle service model, all the BD instances in the MAC-VRF share the same RouteTarget.</t> <t hangText="BT:">BridgeTarget.</dd> <dt>BT:</dt> <dd>Bridge Table. The instantiation of a BD in a MAC-VRF, as per <xreftarget="RFC7432"/>.</t> <t hangText="DGW:">Datatarget="RFC7432" format="default"/>.</dd> <dt>CE:</dt><dd>Customer Edge</dd> <dt>DA:</dt><dd>Destination Address</dd> <dt>DGW:</dt> <dd>Data CenterGateway.</t> <t hangText="EthernetGateway</dd> <dt>Ethernet A-Droute:">EthernetRoute:</dt> <dd>Ethernet Auto-Discovery (A-D) route, as per <xreftarget="RFC7432"/>.</t> <t hangText="Ethernettarget="RFC7432" format="default"/>.</dd> <dt>Ethernet NVOtunnel:">refersTunnel:</dt> <dd>Refers to Network Virtualization Overlay tunnels with Ethernet payload. Examples of this type oftunnelstunnel are VXLAN orGENEVE.</t> <t hangText="EVI:">EVPNGENEVE.</dd> <dt>EVI:</dt> <dd>EVPN Instance spanning the NVE/PE devices that are participating on that EVPN, as per <xreftarget="RFC7432"/>.</t> <t hangText="EVPN:">Ethernet Virtual Private Networks,target="RFC7432" format="default"/>.</dd> <dt>EVPN:</dt> <dd>Ethernet VPN, as per <xreftarget="RFC7432"/>.</t> <t hangText="GRE:">Generictarget="RFC7432" format="default"/>.</dd> <dt>GENEVE:</dt> <dd>Generic Network Virtualization Encapsulation, as per <xref target="RFC8926" format="default"/>.</dd> <dt>GRE:</dt> <dd>Generic RoutingEncapsulation.</t> <t hangText="GW IP:">Gateway IP Address.</t> <t hangText="IPL:">IPEncapsulation</dd> <dt>GW IP:</dt> <dd>Gateway IP address</dd> <dt>IPL:</dt> <dd>IP PrefixLength.</t> <t hangText="IPLength</dd> <dt>IP NVOtunnel:">it refersTunnel:</dt> <dd>Refers to Network Virtualization Overlay tunnels with IP payload (no MAC header in thepayload).</t> <t hangText="IP-VRF:">A VPNpayload).</dd> <dt>IP-VRF:</dt> <dd>A Virtual Routing and Forwarding table for IP routes on an NVE/PE. The IP routes could be populated by EVPN and IP-VPN address families. An IP-VRF is also an instantiation of alayerLayer 3 VPN in anNVE/PE.</t> <t hangText="IRB:">IntegratedNVE/PE.</dd> <dt>IRB:</dt> <dd>Integrated Routing and Bridging interface. It connects an IP-VRF to a BD (orsubnet).</t> <t hangText="MAC-VRF:">Asubnet).</dd> <dt>MAC:</dt> <dd>Media Access Control</dd> <dt>MAC-VRF:</dt> <dd>A Virtual Routing and Forwarding table forMedia Access Control (MAC)MAC addresses on an NVE/PE, as per <xreftarget="RFC7432"/>.target="RFC7432" format="default"/>. A MAC-VRF is also an instantiation of an EVI in anNVE/PE.</t> <t hangText="ML:">MAC address length.</t> <t hangText="ND:">Neighbor Discovery Protocol.</t> <t hangText="NVE:">NetworkNVE/PE.</dd> <dt>ML:</dt> <dd>MAC Address Length</dd> <dt>ND:</dt> <dd>Neighbor Discovery</dd> <dt>NVE:</dt> <dd>Network VirtualizationEdge.</t> <t hangText="GENEVE:">Generic NetworkEdge</dd> <dt>NVO:</dt> <dd>Network VirtualizationEncapsulation, <xref target="I-D.ietf-nvo3-geneve"/>.</t> <t hangText="NVO:">Network Virtualization Overlays.</t> <t hangText="RT-2:">EVPN route typeOverlay</dd> <dt>PE:</dt> <dd>Provider Edge</dd> <dt>RT-2:</dt> <dd>EVPN Route Type 2, i.e., MAC/IPadvertisementAdvertisement route, as defined in <xreftarget="RFC7432"/>.</t> <t hangText="RT-5:">EVPN route typetarget="RFC7432" format="default"/>.</dd> <dt>RT-5:</dt> <dd>EVPN Route Type 5, i.e., IP Prefixroute. Asroute, as defined inSection 3.</t> <t hangText="SBD:">Supplementary<xref target="sect-3"/>.</dd> <dt>SBD:</dt> <dd>Supplementary Broadcast Domain. A BD that does not have any ACs, only IRB interfaces, anditis used to provide connectivity among all the IP-VRFs of the tenant. The SBD is only required in IP-VRF-to-IP-VRFuse-casesuse cases (see <xreftarget="sect-4.4"/>.).</t> <t hangText="SN:">Subnet.</t> <t hangText="TS:">Tenant System.</t> <t hangText="VA:">Virtual Appliance.</t> <t hangText="VNI:">Virtualtarget="sect-4.4" format="default"/>).</dd> <dt>SN:</dt> <dd>Subnet</dd> <dt>TS:</dt> <dd>Tenant System</dd> <dt>VA:</dt> <dd>Virtual Appliance</dd> <dt>VM:</dt> <dd>Virtual Machine</dd> <dt>VNI:</dt> <dd>Virtual Network Identifier. As in[RFC8365],<xref target="RFC8365"/>, the term is used as a representation of a 24-bit NVO instance identifier, with the understanding thatVNI"VNI" will refer to a VXLAN Network Identifier in VXLAN, or a Virtual Network Identifier in GENEVE,etc.etc., unless it is statedotherwise.</t> <t hangText="VTEP:">VXLANotherwise.</dd> <dt>VSID:</dt> <dd>Virtual Subnet Identifier</dd> <dt>VTEP:</dt> <dd>VXLAN Termination End Point, asinper <xreftarget="RFC7348"/>.</t> <t hangText="VXLAN:">Virtual Extensible LAN,target="RFC7348" format="default"/>.</dd> <dt>VXLAN:</dt> <dd>Virtual eXtensible Local Area Network, asinper <xreftarget="RFC7348"/>.</t> </list> </t>target="RFC7348" format="default"/>.</dd> </dl> <t>This document also assumes familiarity with the terminology of <xreftarget="RFC7432"/>,target="RFC7365" format="default"/>, <xreftarget="RFC8365"/>target="RFC7432" format="default"/>, and <xreftarget="RFC7365"/>.</t>target="RFC8365"/>.</t> </section> </section> <sectiontitle="Problem Statement" anchor="sect-2"><t>anchor="sect-2" numbered="true" toc="default"> <name>Problem Statement</name> <t> ThisSectionsection describes the inter-subnet connectivity requirements inData CentersDCs and why a specific route type to advertise IPPrefixesprefixes is needed.</t> <sectiontitle="Inter-Subnetanchor="sect-2.1" numbered="true" toc="default"> <name>Inter-Subnet Connectivity Requirements in DataCenters" anchor="sect-2.1"><t>Centers</name> <t> <xreftarget="RFC7432"/>target="RFC7432" format="default"/> is used as the control plane fora Network Virtualization Overlay (NVO)an NVO solution inData Centers (DC),DCs, whereNetwork Virtualization Edge (NVE)NVE devices can be located inHypervisorshypervisors orTop of Rack switches (ToRs),Top-of-Rack (ToR) switches, as described in <xreftarget="RFC8365"/>.</t>target="RFC8365" format="default"/>.</t> <t> The following considerations apply toTenant Systems (TS)TSs that are physical or virtual systems identified by MACand maybe(and possibly IPaddressesaddresses) and are connected to BDs by Attachment Circuits:<list style="symbols"> <t>The</t> <ul spacing="normal"> <li>The Tenant Systems may beVirtual Machines (VMs)VMs that generate traffic from their own MAC andIP.</t>IP.</li> <li> <t>The Tenant Systems may beVirtual ApplianceVA entities(VAs)that forward traffic to/from IP addresses of differentEnd Devicesend devices sitting behind them.<list style="symbols"> <t>These</t> <ul spacing="normal"> <li>These VAs can be firewalls, load balancers, NAT devices, otherappliancesappliances, or virtual gateways with virtual routinginstances.</t> <t>Theseinstances.</li> <li>These VAs do not necessarily participate in dynamic routing protocols and hence rely on the EVPN NVEs to advertise the routes on theirbehalf.</t> <t>Inbehalf.</li> <li>In all these cases, the VA will forward traffic to otherTSesTSs using its own sourceMACMAC, but the source IP will be the one associatedtowith theEnd Deviceend device sitting behind the VA or a translated IP address (part of a public NAT pool) if the VA is performingNAT.</t> <t>NoteNAT.</li> <li>Note that the same IP address and endpoint could exist behind two of theseTSes.TSs. One example of this would be certain appliance resiliency mechanisms, where a virtual IP or floating IP can be owned by one of the two VAs running the resiliency protocol (themasterMaster VA). The Virtual Router Redundancy Protocol(VRRP), RFC5798,(VRRP) <xref target="RFC5798"/> is one particular example of this. Another example ismulti-homedmultihomed subnets, i.e., the same subnet is connected to twoVAs.</t> <t>AlthoughVAs.</li> <li>Although these VAs provide IP connectivity to VMs and the subnets behind them, they do not always have their own IP interface connected to the EVPNNVE, e.g., layerNVE; Layer 2 firewalls are examples of VAs not supporting IP interfaces.</t> </list> </t> </list> </t> <t>Figure 1</li> </ul> </li> </ul> <t><xref target="fig-1"/> illustrates some of the examples described above.</t> <figuretitle="DC inter-subnet use-cases"anchor="fig-1"><artwork><![CDATA[<name>DC Inter-subnet Use Cases</name> <artwork name="" type="" align="left" alt=""><![CDATA[ NVE1 +-----------+ TS1(VM)--| (BD-10) |-----+IP1/M1M1/IP1 +-----------+ | DGW1 +---------+ +-------------+ | |----| (BD-10) | SN1---+ NVE2 | | | IRB1\ | | +-----------+ | | | (IP-VRF)|---+ SN2---TS2(VA)--| (BD-10) |-| | +-------------+ _|_ |IP2/M2M2/IP2 +-----------+ | VXLAN/ | ( ) IP4---+ <-+ | GENEVE | DGW2 ( WAN ) | | | +-------------+ (___) vIP23 (floating) | |----| (BD-10) | | | +---------+ | IRB2\ | | SN1---+ <-+ NVE3 | | | | (IP-VRF)|---+ |IP3/M3M3/IP3 +-----------+ | | | +-------------+ SN3---TS3(VA)--| (BD-10) |---+ | | | +-----------+ | | IP5---+ | | | | NVE4 | | NVE5 +--SN5 +---------------------+ | | +-----------+ | IP6------| (BD-1) | | +-| (BD-10) |--TS4(VA)--SN6 | \ | | +-----------+ | | (IP-VRF) |--+ ESI4 +--SN7 | / \IRB3 | |---| (BD-2) (BD-10) | SN4| +---------------------+ Note: ESI4 = Ethernet Segment Identifier 4 ]]></artwork> </figure> <t>Where:</t> <t>NVE1, NVE2, NVE3, NVE4, NVE5,DGW1DGW1, and DGW2 share the same BD for a particular tenant. BD-10 is comprised of the collection of BD instances defined in all the NVEs. All the hosts connected to BD-10 belong to the same IP subnet. The hosts connected to BD-10 are listed below:<list style="symbols"> <t>TS1</t> <ul spacing="normal"> <li>TS1 is a VM that generates/receives trafficfrom/toto/from IP1, where IP1 belongs to the BD-10subnet.</t> <t>TS2subnet.</li> <li>TS2 and TS3 areVirtual Appliances (VA)VAs that send/receive trafficfrom/toto/from the subnets and hosts sitting behind them (SN1, SN2, SN3,IP4IP4, and IP5). Their IP addresses (IP2 and IP3) belong to the BD-10subnetsubnet, and they can also generate/receive traffic. When these VAs receive packets destined to their own MAC addresses (M2 andM3)M3), they will route the packets to the proper subnet or host. These VAs do not support routing protocols to advertise the subnets connected to them and can move to a different server and NVE when theCloud Management Systemcloud management system decides to do so. These VAs may also support redundancy mechanisms for some subnets, similar to VRRP, where a floating IP is owned by themasterMaster VA and only themasterMaster VA forwards traffic to a given subnet.E.g.,:For example, vIP23 inFigure 1<xref target="fig-1"/> is a floating IP that can be owned by TS2 or TS3 depending on which system is themaster.Master. Only themasterMaster will forward traffic toSN1.</t> <t>IntegratedSN1.</li> <li>Integrated Routing and Bridging interfaces IRB1,IRB2IRB2, and IRB3 have their own IP addresses that belong to the BD-10 subnet too. These IRB interfaces connect the BD-10 subnet to Virtual Routing and Forwarding (IP-VRF) instances that can route the traffic to other subnets for the same tenant (within the DC or at the other end of theWAN).</t> <t>TS4WAN).</li> <li>TS4 is alayerLayer 2 VA that provides connectivity to subnets SN5,SN6SN6, andSN7,SN7 but does not have an IP address itself in the BD-10. TS4 is connected to a port on NVE5 that is assigned to Ethernet Segment Identifier4.</t> </list> </t>4 (ESI4).</li> </ul> <t> For a BDthatto which an ingress NVE isattached to,attached, "Overlay Index" is defined as an identifier that the ingress EVPN NVE requires in order to forward packets to a subnet or host in a remote subnet. As an example, vIP23(Figure 1)(<xref target="fig-1"/>) is an Overlay Index that any NVE attached to BD-10 needs to know in order to forward packets to SN1. The IRB3 IP address is an Overlay Index required to get to SN4, and ESI4(Ethernet Segment Identifier 4)is an Overlay Index needed to forward traffic to SN5. In other words, the Overlay Index is anext-hopnext hop in the overlay address space that can be an IP address, a MACaddressaddress, or an ESI. When advertised along with an IPPrefix,prefix, the Overlay Index requires a recursive resolution to find outto whatthe egress NVE to which the EVPN packets need to be sent.</t> <t> All the DC use cases inFigure 1<xref target="fig-1"/> require inter-subnetforwarding andforwarding; therefore, the individual host routes and subnets:<list style="format (%c)"> <t>must</t> <ol spacing="normal" type="%c)"> <li>must be advertised from the NVEs (since VAs and VMs do not participate in dynamic routing protocols)and</t> <t>mayand</li> <li>may be associatedtowith an Overlay Index that can be a VA IP address, a floating IP address, a MACaddressaddress, or an ESI. The Overlay Index is further discussed in <xreftarget="sect-3.2"/>.</t> </list> </t>target="sect-3.2" format="default"/>.</li> </ol> </section> <sectiontitle="Theanchor="sect-2.2" numbered="true" toc="default"> <name>The Need for the EVPN IP PrefixRoute" anchor="sect-2.2"><t>Route</name> <t> <xreftarget="RFC7432"/>target="RFC7432" format="default"/> defines a MAC/IP Advertisement route (also referred to asRT-2)"RT-2") where a MAC address can be advertised together with an IP address length and IP address (IP). While a variable IP address length might have been used to indicate the presence of an IP prefix in a route type 2, there are several specific use cases in which using this route type to deliver IPPrefixesprefixes is not suitable.</t> <t> One example of such use cases is the "floating IP" example described in <xreftarget="sect-2.1"/>.target="sect-2.1" format="default"/>. In thisexampleexample, it isneedednecessary to decouple the advertisement of the prefixes from the advertisement of a MAC address of either M2 orM3, otherwiseM3; otherwise, the solution gets highly inefficient and does not scale.</t> <t> For example, if 1,000 prefixes are advertised from M2 (using RT-2) and the floating IP owner changes from M2 to M3, 1,000 routes would be withdrawnfromby M2 andreadvertise 1k routes fromreadvertised by M3.HoweverHowever, if a separate route type is used, 1,000 routes can be advertised as associatedtowith the floating IP address(vIP23)(vIP23), and only one RT-2 can be used for advertising the ownership of the floating IP, i.e., vIP23 and M2 in the route type 2. When the floating IP owner changes from M2 to M3, a single RT-2withdraw/updatewithdrawal/update is required to indicate the change. The remote DGW will not change any of the 1,000 prefixes associatedto vIP23,with vIP23 but will only update the ARP resolution entry for vIP23 (now pointing at M3).</t> <t> An EVPN route (type 5) for the advertisement of IPPrefixesprefixes is described in this document. This new route type has a differentiated role from the RT-2 route and addresses theData Centerinter-subnet connectivity scenarios for DCs (or NVO-based networks in general)inter-subnet connectivity scenariosdescribed in this document. Using this new RT-5, an IPPrefixprefix may be advertised along with an OverlayIndex thatIndex, which can be a GW IP address, aMACMAC, or anESI, orESI. The IP prefix may also be advertised without an Overlay Index, in which case the BGPnext-hopnext hop will point at the egressNVE/ASBR/ABRNVE, Area Border Router (ABR), or ASBR, and the MAC in the EVPN Router's MAC Extended Community will provide the inner MAC destination address to be used. As discussed throughout the document, the EVPN RT-2 does not meet the requirements for all the DC usecases, thereforecases; therefore, this EVPN route type 5 is required.</t> <t> The EVPN route type 5 decouples the IPPrefixprefix advertisements from the MAC/IProute advertisementsAdvertisement routes inEVPN, hence: <list style="format (%c)"> <t>Allows theEVPN. Hence: </t> <ol spacing="normal" type="%c)"> <li>The clean and clear advertisements of IPv4 or IPv6 prefixes inan NLRI (Networka Network Layer Reachability Informationmessage) with no(NLRI) message without MACaddresses.</t> <t>Sinceaddresses are allowed.</li> <li>Since the route type is different from the MAC/IP Advertisement route, the current<xref target="RFC7432"/>procedures described in <xref target="RFC7432" format="default"/> do not need to bemodified.</t> <t>Allows amodified.</li> <li>A flexible implementation is allowed where the prefix can be linked to different types of Overlay/Underlay Indexes: overlay IPaddress,addresses, overlay MAC addresses, overlayESI,ESIs, underlay BGPnext-hops,next hops, etc.</t> <t>An</li> <li>An EVPN implementation not requiring IPPrefixesprefixes can simply discard them by looking at the route type value.</t> </list> </t></li> </ol> <t> The followingSectionssections describe how EVPN is extended with a route type for the advertisement of IP prefixes and how this route is used to address the inter-subnet connectivity requirements existing in theData Center.</t>DC.</t> </section> </section> <sectiontitle="Theanchor="sect-3" numbered="true" toc="default"> <name>The BGP EVPN IP PrefixRoute" anchor="sect-3">Route</name> <t> The BGP EVPN NLRI as defined in[RFC7432]<xref target="RFC7432"/> is shown below:</t><texttable style="all"><ttcol><figure> <name>BGP EVPN NLRI</name> <artwork> +-----------------------------------+ | Route Type (1octet)</ttcol> <c>Lengthoctet) | +-----------------------------------+ | Length (1octet)</c> <c>Routeoctet) | +-----------------------------------+ | Route Type specific(variable)</c> <postamble> BGP EVPN NLRI</postamble> </texttable>(variable) | +-----------------------------------+ </artwork> </figure> <!-- <t keepWithPrevious="true"> </t> --> <t> This document defines an additional route type (RT-5) in the IANAEVPN"EVPN RouteTypesTypes" registry <xreftarget="EVPNRouteTypes"/>,target="EVPNRouteTypes" format="default"/> to be used for the advertisement of EVPN routes using IPPrefixes:</t> <t>Value: 5</t> <t>Description: IP Prefix Route</t>prefixes:</t> <ul empty="true"><li> <dl spacing="compact"> <dt>Value:</dt><dd>5</dd> <dt>Description:</dt><dd>IP Prefix</dd> </dl> </li></ul> <t> According toSection 5.4 in<xreftarget="RFC7606"/>,target="RFC7606" section="5.4" format="default"/>, a node that doesn't recognize theRoute Typeroute type 5 (RT-5) will ignore it.ThereforeTherefore, an NVE following this document can still be attached to a BD where an NVE ignoring RT-5s isattached to.attached. Regular<xref target="RFC7432"/>procedures described in <xref target="RFC7432" format="default"/> would apply in that case for both NVEs. In case two or more NVEs are attached to different BDs of the same tenant, theyMUST<bcp14>MUST</bcp14> support the RT-5 for the properInter-Subnet Forwardinginter-subnet forwarding operation of the tenant.</t> <t> The detailed encoding of this route and associated procedures are described in the followingSections.</t>sections.</t> <sectiontitle="IPanchor="sect-3.1" numbered="true" toc="default"> <name>IP Prefix RouteEncoding" anchor="sect-3.1"><t>Encoding</name> <t> An IP PrefixRoute Typeroute type for IPv4 has the Length field set to 34 and consists of the following fields:</t><texttable style="all"><ttcol><figure> <name>EVPN IP Prefix Route NLRI for IPv4</name> <artwork> +---------------------------------------+ | RD (8octets)</ttcol> <c>Ethernetoctets) | +---------------------------------------+ |Ethernet Segment Identifier (10octets)</c> <c>Ethernetoctets)| +---------------------------------------+ | Ethernet Tag ID (4octets)</c> <c>IPoctets) | +---------------------------------------+ | IP Prefix Length (1 octet, 0 to32)</c> <c>IP32) | +---------------------------------------+ | IP Prefix (4octets)</c> <c>GWoctets) | +---------------------------------------+ | GW IP Address (4octets)</c> <c>MPLSoctets) | +---------------------------------------+ | MPLS Label (3octets)</c> <postamble> EVPN IP Prefix route NLRI for IPv4</postamble> </texttable>octets) | +---------------------------------------+ </artwork> </figure> <!-- <t keepWithPrevious="true"> </t> --> <t> An IP PrefixRoute Typeroute type for IPv6 has the Length field set to 58 and consists of the following fields:</t><texttable style="all"><ttcol><figure> <name>EVPN IP Prefix Route NLRI for IPv6</name> <artwork> +---------------------------------------+ | RD (8octets)</ttcol> <c>Ethernetoctets) | +---------------------------------------+ |Ethernet Segment Identifier (10octets)</c> <c>Ethernetoctets)| +---------------------------------------+ | Ethernet Tag ID (4octets)</c> <c>IPoctets) | +---------------------------------------+ | IP Prefix Length (1 octet, 0 to128)</c> <c>IP128) | +---------------------------------------+ | IP Prefix (16octets)</c> <c>GWoctets) | +---------------------------------------+ | GW IP Address (16octets)</c> <c>MPLSoctets) | +---------------------------------------+ | MPLS Label (3octets)</c> <postamble> EVPN IP Prefix route NLRI for IPv6</postamble> </texttable>octets) | +---------------------------------------+ </artwork> </figure> <!-- <t keepWithPrevious="true"> </t> --> <t> Where:</t><t><list style="symbols"><t>The<ul spacing="normal"> <li>The Length field of the BGP EVPN NLRI for an EVPN IP Prefix routeMUST<bcp14>MUST</bcp14> be either 34 (if IPv4 addresses are carried) or 58 (if IPv6 addresses are carried). The IPPrefixprefix andGatewaygateway IPAddress MUSTaddress <bcp14>MUST</bcp14> be from the same IP addressfamily.</t> <t>Routefamily.</li> <li>The Route Distinguisher (RD) and Ethernet Tag IDMUST<bcp14>MUST</bcp14> be used as defined in <xreftarget="RFC7432"/>target="RFC7432" format="default"/> and <xreftarget="RFC8365"/>.target="RFC8365" format="default"/>. In particular, the RD is unique per MAC-VRF (or IP-VRF). The MPLS Label field is set to either an MPLS label or a VNI, as described in <xreftarget="RFC8365"/>target="RFC8365" format="default"/> for other EVPN routetypes.</t> <t>Thetypes.</li> <li>The Ethernet Segment IdentifierMUST<bcp14>MUST</bcp14> be a non-zero 10-octet identifier if the ESI is used as an Overlay Index (see the definition ofOverlay Index"Overlay Index" in <xreftarget="sect-3.2"/>).target="sect-3.2" format="default"/>). ItMUST<bcp14>MUST</bcp14> be all bytes zero otherwise. The ESI format is described in <xreftarget="RFC7432"/>.</t> <t>Thetarget="RFC7432" format="default"/>.</li> <li>The IPPrefix Lengthprefix length can be set to a value between 0 and 32 (bits) for IPv4 and between 0 and 128 for IPv6, and it specifies the number of bits in thePrefix.prefix. The valueMUST NOT<bcp14>MUST NOT</bcp14> be greater than128.</t> <t>The128.</li> <li>The IPPrefixprefix is a44- or 16-octet field (IPv4 orIPv6).</t> <t>TheIPv6).</li> <li>The GW(Gateway)IP Address field is a44- or 16-octet field (IPv4 orIPv6),IPv6) and will encode a valid IP address as an Overlay Index for the IPPrefixes.prefixes. The GW IP fieldMUST<bcp14>MUST</bcp14> be all bytes zero if it is not used as an Overlay Index. Refer to <xreftarget="sect-3.2"/>target="sect-3.2" format="default"/> for the definition and use of the OverlayIndex.</t> <t>TheIndex.</li> <li>The MPLS Label field is encoded as 3 octets, where the high-order 20 bits contain the label value, as per <xreftarget="RFC7432"/>.target="RFC7432" format="default"/>. When sending, the label valueSHOULD<bcp14>SHOULD</bcp14> be zero if a recursive resolution based onoverlay indexan Overlay Index is used. If the received MPLSLabellabel value is zero, the routeMUST<bcp14>MUST</bcp14> contain an OverlayIndexIndex, and the ingress NVE/PEMUST do<bcp14>MUST</bcp14> perform a recursive resolution to find the egress NVE/PE. If the receivedLabellabel is zero and the route does not contain an Overlay Index, itMUST<bcp14>MUST</bcp14> betreat-as-withdraw"treat as withdraw" <xreftarget="RFC7606"/>.</t> </list> </t>target="RFC7606" format="default"/>.</li> </ul> <t> The RD, Ethernet Tag ID, IPPrefix Lengthprefix length, and IPPrefixprefix are part of the route key used by BGP to compare routes. The rest of the fields are not part of the route key.</t> <t> An IP PrefixRoute MAYroute <bcp14>MAY</bcp14> be sent along withaan EVPN Router's MAC Extended Community (defined in <xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>)target="RFC9135" format="default"/>) to carry the MAC address that is used as theoverlay index.Overlay Index. Note that the MAC address may be that ofana TS.</t> <t> As described in <xreftarget="sect-3.2"/>,target="sect-3.2" format="default"/>, certain data combinations in a receivedroutesroute would imply a"treat-as-withdraw"treat-as-withdraw handling of the route <xreftarget="RFC7606"/>.</t>target="RFC7606" format="default"/>.</t> </section> <sectiontitle="Overlayanchor="sect-3.2" numbered="true" toc="default"> <name>Overlay Indexes and Recursive LookupResolution" anchor="sect-3.2"><t>Resolution</name> <t> RT-5 routes support recursive lookup resolution through the use of Overlay Indexes as follows:</t><t><list style="symbols"> <t>An<ul spacing="normal"> <li>An Overlay Index can be anESI,ESI or IP address in the address space of the tenant or MACaddressaddress, and it is used by an NVE as thenext-hopnext hop for a given IPPrefix.prefix. An Overlay Index always needs a recursive route resolution on the NVE/PE that installs the RT-5 into one of itsIP-VRFs,IP-VRFs so that the NVE knows to which egress NVE/PE it needs to forward the packets. It is important to note that recursive resolution of the Overlay Index applies upon installation into anIP-VRF,IP-VRF and not upon BGP propagation (for instance, on an ASBR). Also, as a result of the recursive resolution, the egress NVE/PE is not necessarily the same NVE that originated theRT-5.</t> <t>TheRT-5.</li> <li>The Overlay Index is indicated along with the RT-5 in the ESI field, GW IPfieldfield, or EVPN Router's MAC Extended Community, depending on whether the IPPrefix next-hopprefix next hop is an ESI, an IPaddressaddress, or a MAC address in the tenant space. The Overlay Index for a given IPPrefixprefix is set by local policy at the NVE that originates an RT-5 for that IPPrefixprefix (typically managed by theCloud Management System).</t>cloud management system).</li> <li> <t>In order to enable the recursive lookup resolution at the ingress NVE, an NVE that is a possible egress NVE for a given Overlay Index must originate a route advertising itself as the BGP next hop on the path to the system denoted by the Overlay Index. For instance:<list style="symbols"> <t>If</t> <ul spacing="normal"> <li>If an NVE receives an RT-5 that specifies an Overlay Index, the NVE cannot use the RT-5 in its IP-VRF unless (or until) it can recursively resolve the OverlayIndex.</t> <t>IfIndex.</li> <li>If the RT-5 specifies an ESI as the Overlay Index, a recursive resolution can only be done if the NVE has received and installed an RT-1(Auto-Discovery per-EVI)(auto-discovery per EVI) route specifying thatESI.</t> <t>IfESI.</li> <li>If the RT-5 specifies a GW IP address as the Overlay Index, a recursive resolution can only be done if the NVE has received and installed an RT-2 (MAC/IP Advertisement route) specifying that IP address in the IPaddressAddress field of itsNLRI.</t> <t>IfNLRI.</li> <li>If the RT-5 specifies a MAC address as the Overlay Index, a recursive resolution can only be done if the NVE has received and installed an RT-2 (MAC/IP Advertisement route) specifying that MAC address in the MACaddressAddress field of itsNLRI.</t> </list> </t> </list> </t>NLRI.</li> </ul> <t>Note that the RT-1 or RT-2 routes needed for the recursive resolution may arrive before or after the given RT-5route. <list style="symbols"> <t>Irrespectiveroute.</t> </li> <li>Irrespective of the recursive resolution, if there is no IGP or BGP route to the BGPnext-hopnext hop of an RT-5, BGPMUST NOT<bcp14>MUST NOT</bcp14> install the RT-5 even if the Overlay Index can beresolved.</t> <t>Theresolved.</li> <li>The ESI and GW IP fields may both be zero at the same time. However, theyMUST NOT<bcp14>MUST NOT</bcp14> both be non-zero at the same time. A route containing a non-zero GW IP and a non-zero ESI (at the same time)SHOULD<bcp14>SHOULD</bcp14> betreat-as-withdrawtreat as withdraw <xreftarget="RFC7606"/>.</t> <t>Iftarget="RFC7606" format="default"/>.</li> <li>If either the ESI or the GW IP are non-zero, then the non-zero one is the Overlay Index, regardless of whether the EVPN Router's MAC Extended Community is present or the value of theLabel.label. In case the GW IP is the Overlay Index(hence(hence, ESI is zero), the EVPN Router's MAC Extended Community is ignored ifpresent.</t> <t>Apresent.</li> <li>A route where ESI, GW IP,MACMAC, and Label are all zero at the same timeSHOULD<bcp14>SHOULD</bcp14> betreat-as-withdraw.</t> </list> </t>treat as withdraw.</li> </ul> <t> The indirection provided by the Overlay Index and its recursive lookup resolution is required to achieve fast convergence in case of a failure of the object represented by the Overlay Index (see the example described in <xreftarget="sect-2.2"/>).</t>target="sect-2.2" format="default"/>).</t> <t>Table 1<xref target="fields_overlay_table"/> shows the different RT-5 field combinations allowed by this specification and what Overlay Index must be used by the receiving NVE/PE in each case.Those casesCases where there is no OverlayIndex,Index are indicated as "None" inTable 1.<xref target="fields_overlay_table"/>. If there is no OverlayIndexIndex, the receiving NVE/PE will not perform any recursive resolution, and the actualnext-hopnext hop is given by the RT-5's BGPnext-hop.</t> <!-- [rfced] id2xml converted the following table to artwork. Please review --> <figure><artwork><![CDATA[ +----------+----------+----------+------------+----------------+ | ESI | GW IP | MAC* | Label | Overlay Index | |--------------------------------------------------------------| | Non-Zero | Zero | Zero | Don't Care | ESI | | Non-Zero | Zero | Non-Zero | Don't Care | ESI | | Zero | Non-Zero | Zero | Don't Care | GW IP | | Zero | Zero | Non-Zero | Zero | MAC | | Zero | Zero | Non-Zero | Non-Zero | MAC or None** | | Zero | Zero | Zero | Non-Zero | None*** | +----------+----------+----------+------------+----------------+ RT-5 fieldsnext hop.</t> <table anchor="fields_overlay_table"> <name>RT-5 Fields and Indicated OverlayIndex ]]></artwork></figure>Index</name> <thead> <tr> <th>ESI</th> <th>GW IP</th> <th>MAC*</th> <th>Label</th> <th>Overlay Index</th> </tr> </thead> <tbody> <tr> <td>Non-Zero</td> <td>Zero</td> <td>Zero</td> <td>Don't Care</td> <td>ESI</td> </tr> <tr> <td>Non-Zero</td> <td>Zero</td> <td>Non-Zero</td> <td>Don't Care</td> <td>ESI</td> </tr> <tr> <td>Zero</td> <td>Non-Zero</td> <td>Zero</td> <td>Don't Care</td> <td>GW IP</td> </tr> <tr> <td>Zero</td> <td>Zero</td> <td>Non-Zero</td> <td>Zero</td> <td>MAC</td> </tr> <tr> <td>Zero</td> <td>Zero</td> <td>Non-Zero</td> <td>Non-Zero</td> <td>MAC or None**</td> </tr> <tr> <td>Zero</td> <td>Zero</td> <td>Zero</td> <td>Non-Zero</td> <td>None***</td> </tr> </tbody> </table> <t>TableNOTES: <list style="symbols"> <t>Notes: </t> <dl spacing="normal" indent="6"> <dt>*</dt><dd> MAC withZero"Zero" value means no EVPN Router's MACextended communityExtended Community is present along with the RT-5.Non-Zero"Non-Zero" indicates that the extended community is present and carries a valid MAC address. The encoding of a MAC addressMUST<bcp14>MUST</bcp14> be the 6-octet MAC address specified by <xreftarget="IEEE-802.1Q"/> and <xref target="IEEE-802.1D-REV"/>.target="IEEE-802.1Q" format="default"/>. Examples of invalid MAC addresses are broadcast or multicast MAC addresses. The routeMUST<bcp14>MUST</bcp14> betreat-as-withdrawtreat as withdraw in case of an invalid MAC address. The presence of the EVPN Router's MACextended communityExtended Community alone is not enough to indicate the use of the MAC address as the OverlayIndex,Index since the extended community can be used for otherpurposes.</t> <t>Inpurposes.</dd> <dt>**</dt><dd>In this case, the Overlay Index may be the RT-5's MAC address orNone,"None", depending on the local policy of the receiving NVE/PE. Note that the advertising NVE/PE that sets the Overlay IndexSHOULD<bcp14>SHOULD</bcp14> advertise an RT-2 for the MAC Overlay Index if there are receiving NVE/PEs configured to use the MAC as the Overlay Index. This case inTable 1<xref target="fields_overlay_table"/> is used in the IP-VRF-to-IP-VRF implementations described in4.4.1Sections <xref target="sect-4.4.1" format="counter"/> and4.4.3.<xref target="sect-4.4.3" format="counter"/>. The support of a MAC Overlay Index in this model isOPTIONAL.</t> <t>The<bcp14>OPTIONAL</bcp14>.</dd> <dt>***</dt><dd>The Overlay Index isNone."None". This is a special case used for IP-VRF-to-IP-VRF where the NVE/PEs are connected by IP NVO tunnels as opposed to Ethernet NVOtunnels.</t> </list> </t>tunnels.</dd> </dl> <t> If the combination of ESI, GW IP,MACMAC, and Label in the receiving RT-5 is different than the combinations shown inTable 1,<xref target="fields_overlay_table"/>, the router will process the route as per the rules described at the beginning of thisSection (3.2).</t>section (<xref target="sect-3.2" format="default"/>).</t> <t>Table 2<xref target="use_overlay_table"/> shows the different inter-subnetuse-casesuse cases described in this document and the corresponding coding of the Overlay Index in the route type 5 (RT-5).</t><!-- [rfced] id2xml converted the following table to artwork. Please review --> <figure><artwork><![CDATA[ +---------+---------------------+----------------------------+ | Section | Use-case |<table anchor="use_overlay_table"> <name>Use Cases and Overlay Indexes for Recursive Resolution</name> <thead> <tr> <th>Section</th> <th>Use Case</th> <th>Overlay Index in theRT-5 | +-------------------------------+----------------------------+ | 4.1 | TS IP address | GW IP | | 4.2 | Floating IP address | GW IP | | 4.3 | "Bump in the wire" | ESI or MAC | | 4.4 | IP-VRF-to-IP-VRF | GWRT-5</th> </tr> </thead> <tbody> <tr> <td><xref target="sect-4.1" format="counter"/></td> <td>TS IP address</td> <td>GW IP</td> </tr> <tr> <td><xref target="sect-4.2" format="counter"/></td> <td>Floating IP address</td> <td>GW IP</td> </tr> <tr> <td><xref target="sect-4.3" format="counter"/></td> <td>"Bump-in-the-wire"</td> <td>ESI or MAC</td> </tr> <tr> <td><xref target="sect-4.4" format="counter"/></td> <td>IP-VRF-to-IP-VRF</td> <td>GW IP,MACMAC, orNone | +---------+---------------------+----------------------------+ Use-cases and Overlay Indexes for Recursive Resolution ]]></artwork> </figure>None</td> </tr> </tbody> </table> <t> The aboveuse-casesuse cases are representative of the different Overlay Indexes supported by the RT-5 (GW IP, ESI,MACMAC, or None).</t> </section> </section> <sectiontitle="Overlayanchor="sect-4" numbered="true" toc="default"> <name>Overlay IndexUse-Cases" anchor="sect-4"><t>Use Cases</name> <t> ThisSectionsection describes someuse-casesuse cases for the Overlay Index types used with the IP Prefix route. Although the examples use IPv4Prefixesprefixes and subnets, the descriptions of the RT-5 are valid for the same cases with IPv6,only replacing theexcept that IP Prefixes,IPLIPL, and GW IP are replaced by the corresponding IPv6 values.</t> <sectiontitle="TSanchor="sect-4.1" numbered="true" toc="default"> <name>TS IP Address Overlay IndexUse-Case" anchor="sect-4.1"> <t>Figure 5Use Case</name> <t><xref target="fig-2"/> illustrates an example of inter-subnet forwarding for subnets sitting behindVirtual AppliancesVAs (on TS2 and TS3).</t> <figuretitle="TS IP address use-case"anchor="fig-2"><artwork><![CDATA[<name>TS IP Address Use Case</name> <artwork name="" type="" align="left" alt=""><![CDATA[ IP4---+ NVE2 DGW1 | +-----------+ +---------+ +-------------+ SN2---TS2(VA)--| (BD-10) |-| |----| (BD-10) | |IP2/M2M2/IP2 +-----------+ | | | IRB1\ | -+---+ | | | (IP-VRF)|---+ | | | +-------------+ _|_ SN1 | VXLAN/ | ( ) | | GENEVE | DGW2 ( WAN ) -+---+ NVE3 | | +-------------+ (___) |IP3/M3M3/IP3 +-----------+ | |----| (BD-10) | | SN3---TS3(VA)--| (BD-10) |-| | | IRB2\ | | | +-----------+ +---------+ | (IP-VRF)|---+ IP5---+ +-------------+ ]]></artwork> </figure> <t> An example of inter-subnet forwarding between subnet SN1, which uses a24 bit24-bit IP prefix (written as SN1/24 in the future), and a subnet sitting in the WAN is described below. NVE2, NVE3,DGW1DGW1, and DGW2 are running BGP EVPN. TS2 and TS3 do not participate in dynamic routing protocols, and they only have a static route to forward the traffic to the WAN. SN1/24 is dual-homed to NVE2 and NVE3.</t> <t> In this case, a GW IP is used as an Overlay Index. Although a different Overlay Index type could have been used, thisuse-caseuse case assumes that the operator knows the VA's IP addresses beforehand, whereas the VA's MAC address is unknown and the VA's ESI is zero. Because of this, the GW IP is the suitable Overlay Index to be used with the RT-5s. The NVEs know the GW IP to be used for a givenPrefixprefix by policy.<list style="format (%d)"></t> <ol spacing="normal" type="(%d)"> <li> <t>NVE2 advertises the following BGP routes on behalf of TS2:<list style="symbols"> <t>Route</t> <ul spacing="normal"> <li>Route type 2 (MAC/IP Advertisement route) containing:ML=48ML = 48 (MACAddress Length), M=M2address length), M = M2 (MACAddress), IPL=32address), IPL = 32 (IPPrefix Length), IP=IP2prefix length), IP = IP2, and[RFC5512]BGP Encapsulation Extended Community <xref target="RFC9012"/> with the correspondingTunneltunnel type. The MAC and IP addresses may be learned via ARPsnooping.</t> <t>Routesnooping.</li> <li>Route type 5 (IP Prefix route) containing:IPL=24, IP=SN1, ESI=0,IPL = 24, IP = SN1, ESI = 0, and GW IPaddress=IP2.address = IP2. The prefix and GW IP are learned bypolicy.</t> </list> </t>policy.</li> </ul> </li> <li> <t>Similarly, NVE3 advertises the following BGP routes on behalf of TS3:<list style="symbols"> <t>Route</t> <ul spacing="normal"> <li>Route type 2 (MAC/IP Advertisement route) containing:ML=48, M=M3, IPL=32, IP=IP3ML = 48, M = M3, IPL = 32, IP = IP3 (and BGP Encapsulation ExtendedCommunity).</t> <t>RouteCommunity).</li> <li>Route type 5 (IP Prefix route) containing:IPL=24, IP=SN1, ESI=0,IPL = 24, IP = SN1, ESI = 0, and GW IPaddress=IP3.</t> </list> </t>address = IP3.</li> </ul> </li> <li> <t>DGW1 and DGW2 import both received routes based on the Route Targets:<list style="symbols"> <t>Based</t> <ul spacing="normal"> <li>Based on the BD-10 Route Target in DGW1 and DGW2, the MAC/IP Advertisement route isimportedimported, and M2 is added to the BD-10 along with its corresponding tunnel information. For instance, if VXLAN is used, the VTEP will be derived from the MAC/IP Advertisement route BGPnext-hopnext hop and VNI from the MPLS Label1 field.IP2 - M2M2/IP2 is added to the ARP table. Similarly, M3 is added toBD-10BD-10, andIP3 - M3M3/IP3 is added to the ARPtable.</t> <t>Basedtable.</li> <li>Based on the BD-10 Route Target in DGW1 and DGW2, the IP Prefix route is alsoimportedimported, and SN1/24 is added to the IP-VRF with Overlay Index IP2 pointing at the local BD-10. In this example, it is assumed that the RT-5 from NVE2 is preferred over the RT-5 from NVE3. If both routes were equally preferable and ECMP enabled, SN1/24 would also be added to the routing table with Overlay IndexIP3.</t> </list> </t>IP3.</li> </ul> </li> <li> <t> When DGW1 receives a packet from the WAN with destination IPx, where IPx belongs to SN1/24:<list style="symbols"> <t>A</t> <ul spacing="normal"> <li>A destination IP lookup is performed on the DGW1 IP-VRFrouting tabletable, and OverlayIndex=IP2Index = IP2 is found. Since IP2 is an OverlayIndexIndex, a recursive route resolution is required forIP2.</t> <t>IP2IP2.</li> <li>IP2 is resolved to M2 in the ARP table, and M2 is resolved to the tunnel information given by the BD FIB (e.g., remote VTEP and VNI for the VXLANcase).</t>case).</li> <li> <t>The IP packet destined to IPx is encapsulated with:<list style="symbols"> <t>Source inner</t> <ul spacing="normal"> <li>Inner source MAC = IRB1MAC.</t> <t>Destination innerMAC.</li> <li>Inner destination MAC =M2.</t> <t>TunnelM2.</li> <li>Tunnel information provided by the BD (VNI, VTEPIPsIPs, and MACs for the VXLANcase).</t> </list> </t> </list> </t>case).</li> </ul> </li> </ul> </li> <li> <t>When the packet arrives at NVE2:<list style="symbols"> <t>Based</t> <ul spacing="normal"> <li>Based on the tunnel information (VNI for the VXLAN case), the BD-10 context is identified for a MAClookup.</t> <t>Encapsulationlookup.</li> <li>Encapsulation is stripped offandand, based on a MAC lookup (assuming MAC forwarding on the egress NVE), the packet is forwarded to TS2, where it will be properlyrouted.</t> </list> </t> <t>Shouldrouted.</li> </ul> </li> <li>Should TS2 move from NVE2 to NVE3, MAC Mobility procedures will be applied to the MAC routeIP2/M2,M2/IP2, as defined in[RFC7432].<xref target="RFC7432"/>. Route type 5 prefixes are not subject to MACmobility procedures, henceMobility procedures; hence, no changes in the DGW IP-VRFroutingtable will occur for TS2mobility,mobility -- i.e., all the prefixes will still be pointing at IP2 as the Overlay Index. There is an indirectionforfor, e.g., SN1/24, which still points at Overlay Index IP2 in the routing table, but IP2 will be simply resolved to a differenttunnel,tunnel based on the outcome of the MACmobilityMobility procedures for the MAC/IP Advertisement routeIP2/M2.</t> </list> </t>M2/IP2.</li> </ol> <t> Note that in the opposite direction, TS2 will send traffic based on its static-route next-hop information (IRB1 and/or IRB2), and regular EVPN procedures will be applied.</t> </section> <sectiontitle="Floatinganchor="sect-4.2" numbered="true" toc="default"> <name>Floating IP Overlay IndexUse-Case" anchor="sect-4.2"><t>Use Case</name> <t> SometimesTenant Systems (TS)TSs work in active/standby mode where an upstream floating IP-owned by the active TS-is used as the Overlay Index to get to some subnetsbehind.behind the TS. This redundancy mode, already introduced in Sections <xreftarget="sect-2.1"/>target="sect-2.1" format="counter"/> and2.2,<xref target="sect-2.2" format="counter"/>, is illustrated inFigure 6.</t><xref target="fig-3"/>.</t> <figuretitle="Floatinganchor="fig-3"> <name>Floating IP Overlay Index forredundant TS" anchor="fig-3"> <artwork><![CDATA[Redundant TS</name> <artwork name="" type="" align="left" alt=""><![CDATA[ NVE2 DGW1 +-----------+ +---------+ +-------------+ +---TS2(VA)--| (BD-10) |-| |----| (BD-10) | |IP2/M2M2/IP2 +-----------+ | | | IRB1\ | | <-+ | | | (IP-VRF)|---+ | | | | +-------------+ _|_ SN1 vIP23 (floating) | VXLAN/ | ( ) | | | GENEVE | DGW2 ( WAN ) | <-+ NVE3 | | +-------------+ (___) |IP3/M3M3/IP3 +-----------+ | |----| (BD-10) | | +---TS3(VA)--| (BD-10) |-| | | IRB2\ | | +-----------+ +---------+ | (IP-VRF)|---+ +-------------+ ]]></artwork> </figure> <t> In thisuse-case,use case, a GW IP is used as an Overlay Index for the same reasons as in4.1.<xref target="sect-4.1" format="default"/>. However, this GW IP is a floating IP that belongs to the active TS. Assuming TS2 is the active TS and owns vIP23:<list style="format (%d)"></t> <ol spacing="normal" type="(%d)"> <li> <t>NVE2 advertises the following BGP routes for TS2:<list style="symbols"> <t>Route</t> <ul spacing="normal"> <li>Route type 2 (MAC/IP Advertisement route) containing:ML=48, M=M2, IPL=32, IP=vIP23 (andML = 48, M = M2, IPL = 32, and IP = vIP23 (as well as BGP Encapsulation Extended Community). The MAC and IP addresses may be learned via ARPsnooping.</t> <t>Routesnooping.</li> <li>Route type 5 (IP Prefix route) containing:IPL=24, IP=SN1, ESI=0,IPL = 24, IP = SN1, ESI = 0, and GW IPaddress=vIP23.address = vIP23. The prefix and GW IP are learned bypolicy.</t> </list> </t>policy.</li> </ul> </li> <li> <t>NVE3 advertises the following BGP route for TS3 (it does not advertise an RT-2 forvIP23/M3): <list style="symbols"> <t>RouteM3/vIP23): </t> <ul spacing="normal"> <li>Route type 5 (IP Prefix route) containing:IPL=24, IP=SN1, ESI=0,IPL = 24, IP = SN1, ESI = 0, and GW IPaddress=vIP23.address = vIP23. The prefix and GW IP are learned bypolicy.</t> </list> </t>policy.</li> </ul> </li> <li> <t>DGW1 and DGW2 import both received routes based on the Route Target:<list style="symbols"> <t>M2</t> <ul spacing="normal"> <li>M2 is added to the BD-10 FIB along with its corresponding tunnel information. For the VXLAN use case, the VTEP will be derived from the MAC/IP Advertisement route BGPnext-hopnext hop and VNI from the VNI field.vIP23 - M2M2/vIP23 is added to the ARPtable.</t> <t>SN1/24table.</li> <li>SN1/24 is added to the IP-VRF in DGW1 and DGW2 with OverlayindexIndex vIP23 pointing at M2 in the localBD-10.</t> </list> </t>BD-10.</li> </ul> </li> <li> <t>When DGW1 receives a packet from the WAN with destination IPx, where IPx belongs to SN1/24:<list style="symbols"> <t>A</t> <ul spacing="normal"> <li>A destination IP lookup is performed on the DGW1 IP-VRFrouting tabletable, and OverlayIndex=vIP23Index = vIP23 is found. Since vIP23 is an Overlay Index, a recursive route resolution for vIP23 isrequired.</t> <t>vIP23required.</li> <li>vIP23 is resolved to M2 in the ARP table, and M2 is resolved to the tunnel information given by the BD (remote VTEP and VNI for the VXLANcase).</t>case).</li> <li> <t>The IP packet destined to IPx is encapsulated with:<list style="symbols"> <t>Source inner</t> <ul spacing="normal"> <li>Inner source MAC = IRB1MAC.</t> <t>Destination innerMAC.</li> <li>Inner destination MAC =M2.</t> <t>TunnelM2.</li> <li>Tunnel information provided by the BD FIB (VNI, VTEPIPsIPs, and MACs for the VXLANcase).</t> </list> </t> </list> </t>case).</li> </ul> </li> </ul> </li> <li> <t>When the packet arrives at NVE2:<list style="symbols"> <t>Based</t> <ul spacing="normal"> <li>Based on the tunnel information (VNI for the VXLAN case), the BD-10 context is identified for a MAClookup.</t> <t>Encapsulationlookup.</li> <li>Encapsulation is stripped offandand, based on a MAC lookup (assuming MAC forwarding on the egress NVE), the packet is forwarded to TS2, where it will be properlyrouted.</t> </list> </t> <t>Whenrouted.</li> </ul> </li> <li>When the redundancy protocol running between TS2 and TS3 appoints TS3 as the new active TS for SN1, TS3 will now own the floating vIP23 and will signal this newownership,ownership using a gratuitous ARP REPLY message (explained in <xreftarget="RFC5227"/>)target="RFC5227" format="default"/>) or similar. Upon receiving the new owner's notification, NVE3 will issue a route type 2 forM3-vIP23M3/vIP23, and NVE2 will withdraw the RT-2 forM2-vIP23.M2/vIP23. DGW1 and DGW2 will update their ARP tables with the new MAC resolving the floating IP. No changes are made in the IP-VRFrouting table.</t> </list> </t>table.</li> </ol> </section> <sectiontitle="Bump-in-the-Wire Use-Case" anchor="sect-4.3"><t> Figure 7anchor="sect-4.3" numbered="true" toc="default"> <name>Bump-in-the-Wire Use Case</name> <t> <xref target="fig-4"/> illustrates an example of inter-subnet forwarding for an IP Prefix route that carriesasubnet SN1. In thisuse-case,use case, TS2 and TS3 arelayerLayer 2 VA devices without any IPaddressaddresses that can be included as an Overlay Index in the GW IP field of the IP Prefix route. Their MAC addresses are M2 andM3 respectivelyM3, respectively, and are connected to BD-10. Note that IRB1 and IRB2 (in DGW1 andDGW2DGW2, respectively) have IP addresses in a subnet different than SN1.</t> <figuretitle="Bump-in-the-wire use-case"anchor="fig-4"><artwork><![CDATA[<name>Bump-in-the-Wire Use Case</name> <artwork name="" type="" align="left" alt=""><![CDATA[ NVE2 DGW1 M2 +-----------+ +---------+ +-------------+ +---TS2(VA)--| (BD-10) |-| |----| (BD-10) | | ESI23 +-----------+ | | | IRB1\ | | + | | | (IP-VRF)|---+ | | | | +-------------+ _|_ SN1 | | VXLAN/ | ( ) | | | GENEVE | DGW2 ( WAN ) | + NVE3 | | +-------------+ (___) | ESI23 +-----------+ | |----| (BD-10) | | +---TS3(VA)--| (BD-10) |-| | | IRB2\ | | M3 +-----------+ +---------+ | (IP-VRF)|---+ +-------------+ ]]></artwork> </figure> <t> SinceneitherTS2norand TS3cancannot participate in any dynamic routing protocol andhave noneither has an IP address assigned, there are two potential Overlay Index types that can be used when advertising SN1:<list style="format (%c)"> <t>an</t> <ol spacing="normal" type="%c)"> <li>an ESI, i.e., ESI23, that can be provisioned on the attachment ports of NVE2 and NVE3, as shown inFigure 7.</t> <t>or the<xref target="fig-4"/> or</li> <li>the VA's MAC address,thatwhich can be added to NVE2 and NVE3 bypolicy.</t> </list> </t>policy.</li> </ol> <t> The advantage of using an ESI as the Overlay Index as opposed to the VA's MACaddress,address is that the forwarding to the egress NVE can be done purely based on the state of the AC in theESEthernet segment (notified by the Ethernet A-Dper-EVI route)per EVI route), and all the EVPNmulti-homingmultihoming redundancy mechanisms can be reused. For instance, the<xref target="RFC7432"/> mass-withdrawalmass withdrawal mechanism described in <xref target="RFC7432" format="default"/> for fast failure detection and propagation can be used.This Section assumesIt is assumed per this section that an ESI Overlay Index is used in thisuse-caseuse case, butitthis use case does notpreventpreclude the use of the VA's MAC address as an Overlay Index. If a MAC is used as the Overlay Index, the control plane must follow the procedures described in <xreftarget="sect-4.4.3"/>.</t>target="sect-4.4.3" format="default"/>.</t> <t> The model supports VA redundancy in a similar way to the one described in <xreftarget="sect-4.2"/>target="sect-4.2" format="default"/> for the floating IP Overlay Indexuse-case,use case, except that it uses the EVPN Ethernet A-Dper-EVIper EVI route instead of the MAC advertisement route to advertise the location of the Overlay Index. The procedure is explained below:<list style="format (%d)"></t> <ol spacing="normal" type="(%d)"> <li> <t> Assuming TS2 is the active TS in ESI23, NVE2 advertises the following BGP routes:<list style="symbols"> <t>Route</t> <ul spacing="normal"> <li>Route type 1 (Ethernet A-D route for BD-10) containing:ESI=ESI23ESI = ESI23 and the corresponding tunnel information (VNI field), as well as the BGP Encapsulation Extended Community as per[RFC8365].</t> <t>Route<xref target="RFC8365"/>.</li> <li>Route type 5 (IP Prefix route) containing:IPL=24, IP=SN1, ESI=ESI23,IPL = 24, IP = SN1, ESI = ESI23, and GW IPaddress=0.address = 0. The EVPN Router's MAC Extended Community defined in[EVPN-INTERSUBNET]<xref target="RFC9135"/> is added and carries the MAC address (M2) associatedtowith the TS behind which SN1 sits. M2 may be learned bypolicy, howeverpolicy; however, the MAC in the Extended Community is preferred if sent with theroute.</t> </list> </t>route.</li> </ul> </li> <li> <t>NVE3 advertises the following BGP route for TS3 (no ADper-EVIper EVI route is advertised):<list style="symbols"> <t>Route</t> <ul spacing="normal"> <li>Route type 5 (IP Prefix route) containing:IPL=24, IP=SN1, ESI=23,IPL = 24, IP = SN1, ESI = 23, and GW IPaddress=0.address = 0. The EVPN Router's MAC Extended Community is added and carries the MAC address (M3) associatedtowith the TS behind which SN1 sits. M3 may be learned bypolicy, howeverpolicy; however, the MAC in the Extended Community is preferred if sent with theroute.</t> </list> </t>route.</li> </ul> </li> <li> <t>DGW1 and DGW2 import the received routes based on the Route Target:<list style="symbols"> <t>The</t> <ul spacing="normal"> <li>The tunnel information to get to ESI23 is installed in DGW1 and DGW2. For the VXLAN use case, the VTEP will be derived from the Ethernet A-D route BGPnext-hopnext hop and VNI from the VNI/VSID field (see[RFC8365]).</t> <t>The<xref target="RFC8365"/>).</li> <li>The RT-5 coming from the NVE that advertised the RT-1 isselectedselected, and SN1/24 is added to the IP-VRF in DGW1 and DGW2 with Overlay Index ESI23 and MAC =M2.</t> </list> </t>M2.</li> </ul> </li> <li> <t>When DGW1 receives a packet from the WAN with destination IPx, where IPx belongs to SN1/24:<list style="symbols"> <t>A</t> <ul spacing="normal"> <li>A destination IP lookup is performed on the DGW1 IP-VRFrouting tabletable, and OverlayIndex=ESI23Index = ESI23 is found. Since ESI23 is an Overlay Index, a recursive route resolution is required to find the egress NVE where ESI23resides.</t>resides.</li> <li> <t>The IP packet destined to IPx is encapsulated with:<list style="symbols"> <t>Source inner</t> <ul spacing="normal"> <li>Inner source MAC = IRB1MAC.</t> <t>Destination innerMAC.</li> <li>Inner destination MAC = M2 (this MAC will be obtained from the EVPN Router's MAC Extended Community received along with the RT-5 for SN1). Note that the EVPN Router's MAC Extended Community is used in this case to carry theTS'TS's MAC address, as opposed to theNVE/PE'sMACaddress.</t> <t>Tunneladdress of the NVE/PE.</li> <li>Tunnel information for the NVO tunnel is provided by the Ethernet A-D routeper-EVIper EVI for ESI23 (VNI and VTEP IP for the VXLANcase).</t> </list> </t> </list> </t>case).</li> </ul> </li> </ul> </li> <li> <t>When the packet arrives at NVE2:<list style="symbols"> <t>Based</t> <ul spacing="normal"> <li>Based on the tunnel demultiplexer information (VNI for the VXLAN case), the BD-10 context is identified for a MAC lookup (assuming a MAC-based disposition model[RFC7432])<xref target="RFC7432"/>), or the VNI may directly identify the egress interface (foraan MPLS-based disposition model, which in this context is a VNI-based dispositionmodel).</t> <t>Encapsulationmodel).</li> <li>Encapsulation is stripped offandand, based on a MAC lookup (assuming MAC forwarding on the egress NVE) or a VNI lookup (in case of VNI forwarding), the packet is forwarded to TS2, where it will be forwarded toSN1.</t> </list> </t> <t>IfSN1.</li> </ul> </li> <li>If the redundancy protocol running between TS2 and TS3 follows an active/standby model and there is a failure,appointingTS3 is appointed as the new active TS forSN1,SN1. TS3 will now own the connectivity to SN1 and will signal this new ownership. Upon receiving the new owner's notification, NVE3's AC will become active and issue a route type 1 for ESI23, whereas NVE2 will withdraw its Ethernet A-D route for ESI23. DGW1 and DGW2 will update their tunnel information to resolve ESI23. Thedestinationinner destination MAC will be changed toM3.</t> </list> </t>M3.</li> </ol> </section> <sectiontitle="IP-VRF-to-IP-VRF Model" anchor="sect-4.4"><t>anchor="sect-4.4" numbered="true" toc="default"> <name>IP-VRF-to-IP-VRF Model</name> <t> Thisuse-caseuse case is similar to the scenario described in"IRB forwarding on NVEs for Tenant Systems" in<xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>, howevertarget="RFC9135" sectionFormat="of" section="9.1"/>; however, the new requirement here is the advertisement of IPPrefixesprefixes as opposed to only host routes.</t> <t> In the examples described in Sections4.1, 4.2<xref target="sect-4.1" format="counter"/>, <xref target="sect-4.2" format="counter"/>, and4.3,<xref target="sect-4.3" format="counter"/>, the BD instance can connect IRB interfaces and any other Tenant Systems connected to it. EVPN provides connectivity for:</t><t><list style="numbers"> <t>Traffic<ol spacing="normal" type="1"> <li anchor="step1">Traffic destined to the IRB or TS IPinterfacesinterfaces, as wellas</t> <t>Trafficas</li> <li anchor="step2">Traffic destined to IP subnets sitting behind the TS, e.g., SN1 orSN2.</t> </list> </t>SN2.</li> </ol> <t> In order to provide connectivity for(1),<xref target="step1" format="none">(1)</xref>, MAC/IP Advertisement routes (RT-2) are needed so that IRB or TS MACs and IPs can be distributed. Connectivity type(2)<xref target="step2" format="none">(2)</xref> is accomplished by the exchange of IP Prefix routes (RT-5) for IPs and subnets sitting behind certain Overlay Indexes, e.g., GWIP or ESIIP, ESI, or TS MAC.</t> <t> In some cases, IP Prefix routes may be advertised for subnets and IPs sitting behind an IRB. Thisuse-caseuse case is referred to as the "IP-VRF-to-IP-VRF" model.</t> <t> <xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>target="RFC9135" format="default"/> defines an asymmetric IRB model and a symmetric IRBmodel,model based on the required lookups at the ingress and egressNVE: theNVE. The asymmetric model requires an IP lookup and a MAC lookup at the ingress NVE, whereas only a MAC lookup is needed at the egress NVE; the symmetric model requires IP and MAC lookups atboth,both the ingress and egress NVE. From that perspective, the IP-VRF-to-IP-VRFuse-caseuse case described in thisSectionsection is a symmetric IRB model.</t> <t> Notethat,that in an IP-VRF-to-IP-VRF scenario, out of the many subnets that a tenant may have, it may be the case that only a few are attached to a givenNVE/PE's IP-VRF.IP-VRF of the NVE/PE. In order to provide inter-subnet connectivity among the set of NVE/PEs where the tenant is connected, a new SBD is created on all of them if a recursive resolution is needed. This SBD is instantiated as a regular BD (with no ACs) in each NVE/PE and has an IRB interface that connects the SBD to the IP-VRF. The IRB interface's IP or MAC address is used as theoverlay indexOverlay Index for a recursive resolution.</t> <t> Depending on the existence and characteristics of the SBD and IRB interfaces for the IP-VRFs, there are three different IP-VRF-to-IP-VRF scenarios identified and described in this document:<list style="hanging" hangIndent="3"> <t hangText="Interface-less model:">no</t> <ol> <li>Interface-less model: no SBD and nooverlay indexes required.</t> <t hangText="Interface-fulOverlay Indexes required.</li> <li>Interface-ful with an SBD IRBmodel:"> itmodel: requiresSBD,SBD as well as GW IP addresses asoverlay indexes.</t> <t hangText="Interface-fulOverlay Indexes.</li> <li>Interface-ful with an unnumbered SBD IRBmodel:"> itmodel: requiresSBD,SBD as well as MAC addresses asoverlay indexes.</t> </list> </t>Overlay Indexes.</li> </ol> <t> Inter-subnet IP multicast is outside the scope of this document.</t> <sectiontitle="Interface-lessanchor="sect-4.4.1" numbered="true" toc="default"> <name>Interface-less IP-VRF-to-IP-VRFModel" anchor="sect-4.4.1"> <t>Figure 8 will be used forModel</name> <t><xref target="fig-5"/> depicts thedescription of thisInterface-less IP-VRF-to-IP-VRF model.</t> <figuretitle="Interface-less IP-VRF-to-IP-VRF model"anchor="fig-5"><artwork><![CDATA[<name>Interface-less IP-VRF-to-IP-VRF Model</name> <artwork name="" type="" align="left" alt=""><![CDATA[ NVE1(M1) +------------+ IP1+----| (BD-1) | DGW1(M3) | \ | +---------+ +--------+ | (IP-VRF)|----| |-|(IP-VRF)|----+ | / | | | +--------+ | +---| (BD-2) | | | _+_ | +------------+ | | ( ) SN1| | VXLAN/ | ( WAN )--H1 | NVE2(M2) | GENEVE/| (___) | +------------+ | MPLS | + +---| (BD-2) | | | DGW2(M4) | | \ | | | +--------+ | | (IP-VRF)|----| |-|(IP-VRF)|----+ | / | +---------+ +--------+ SN2+----| (BD-3) | +------------+ ]]></artwork> </figure> <t>In this case:<list style="format (%c)"> <t>The</t> <ol spacing="normal" type="%c)"> <li>The NVEs and DGWs must provide connectivity between hosts in SN1, SN2, and IP1 and hosts sitting at the other end of theWAN,WAN -- for example, H1. It is assumed that the DGWs import/export IP and/or VPN-IP routesfrom/toto/from theWAN.</t> <t>TheWAN.</li> <li>The IP-VRF instances in the NVE/DGWs are directly connected through NVO tunnels, and no IRBs and/or BD instances are instantiated to connect theIP-VRFs.</t> <t>TheIP-VRFs.</li> <li>The solution must providelayerLayer 3 connectivity among the IP-VRFs for Ethernet NVOtunnels,tunnels -- for instance, VXLAN orGENEVE.</t> <t>TheGENEVE.</li> <li>The solution may providelayerLayer 3 connectivity among the IP-VRFs for IP NVOtunnels,tunnels -- for example, GENEVE (with IPpayload).</t> </list> </t>payload).</li> </ol> <t> In order to meet the above requirements, the EVPN route type 5 will be used to advertise the IPPrefixes,prefixes, along with the EVPN Router's MAC Extended Community as defined in <xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>target="RFC9135" format="default"/> if the advertising NVE/DGW uses Ethernet NVO tunnels. Each NVE/DGW will advertise an RT-5 for each of its prefixes with the following fields:<list style="symbols"> <t>RD</t> <ul spacing="normal"> <li>RD as per <xreftarget="RFC7432"/>.</t> <t>Ethernettarget="RFC7432" format="default"/>.</li> <li>Ethernet TagID=0.</t> <t>IP Prefix LengthID = 0.</li> <li>IP prefix length and IP address, as explained in the previousSections.</t> <t>GWsections.</li> <li>GW IPaddress=0.</t> <t>ESI=0</t> <t>MPLSaddress = 0.</li> <li>ESI = 0.</li> <li>MPLS label or VNI corresponding to theIP-VRF.</t> </list> </t>IP-VRF.</li> </ul> <t> Each RT-5 will be sent with a Route Target identifying the tenant (IP-VRF) and may be sent with two BGP extended communities:<list style="symbols"> <t>The</t> <ul spacing="normal"> <li>The first one is the BGP Encapsulation Extended Community, as per <xreftarget="RFC5512"/>,target="RFC9012" format="default"/>, identifying the tunneltype.</t> <t>Thetype.</li> <li>The second one is the EVPN Router's MAC ExtendedCommunityCommunity, as per <xreftarget="I-D.ietf-bess-evpn-inter-subnet-forwarding"/>target="RFC9135" format="default"/>, containing the MAC address associatedtowith the NVE advertising the route. This MAC address identifies the NVE/DGW andMAY<bcp14>MAY</bcp14> be reused for all the IP-VRFs in the NVE. The EVPN Router's MAC Extended Community must be sent if the route is associatedtowith an Ethernet NVOtunnel,tunnel -- for instance, VXLAN. If the route is associatedtowith an IP NVOtunnel,tunnel -- forinstanceinstance, GENEVE with an IPpayload,payload -- the EVPN Router's MAC Extended Community should not besent.</t> </list> </t>sent.</li> </ul> <t> The following example illustrates the procedure to advertise and forward packets to SN1/24 (IPv4 prefix advertised from NVE1):<list style="format (%d)"></t> <ol spacing="normal" type="(%d)"> <li> <t>NVE1 advertises the following BGP route:<list style="symbols"></t> <ul spacing="normal"> <li> <t>Route type 5 (IP Prefix route) containing:<list style="symbols"> <t>IPL=24, IP=SN1, Label=10.</t> <t>GW IP=</t> <ul spacing="normal"> <li>IPL = 24, IP = SN1, Label = 10.</li> <li>GW IP = set to0.</t> <t><xref target="RFC5512"/>0.</li> <li> BGP Encapsulation ExtendedCommunity.</t> <t>Router'sCommunity <xref target="RFC9012" format="default"/>.</li> <li>EVPN Router's MAC Extended Community that containsM1.</t> <t>RouteM1.</li> <li>Route Target identifying the tenant(IP-VRF).</t> </list> </t> </list> </t>(IP-VRF).</li> </ul> </li> </ul> </li> <li> <t>DGW1 imports the received routes from NVE1:<list style="symbols"> <t>DGW1</t> <ul spacing="normal"> <li>DGW1 installs SN1/24 in the IP-VRF identified by the RT-5 RouteTarget.</t> <t>SinceTarget.</li> <li>Since GWIP=ESI=0,IP = ESI = 0, theLabellabel is a non-zerovaluevalue, and the local policy indicates this interface-less model,DGW1DGW1, will use theLabellabel andnext-hopnext hop of the RT-5, as well as the MAC address conveyed in the EVPN Router's MAC Extended Community (as the inner destination MAC address) to set up the forwarding state and later encapsulate the routed IPpackets.</t> </list> </t>packets.</li> </ul> </li> <li> <t>When DGW1 receives a packet from the WAN with destination IPx, where IPx belongs to SN1/24:<list style="symbols"> <t>A</t> <ul spacing="normal"> <li>A destination IP lookup is performed on the DGW1 IP-VRFroutingtable. The lookup yieldsSN1/24.</t> <t>SinceSN1/24.</li> <li>Since the RT-5 for SN1/24 had a GWIP=ESI=0,IP = ESI = 0, a non-zeroLabellabel, andnext-hopa next hop, and since the model is interface-less, DGW1 will not need a recursive lookup to resolve theroute.</t> <t>Theroute.</li> <li>The IP packet destined to IPx is encapsulated with:Sourceinner source MAC = DGW1 MAC,Destinationinner destination MAC = M1,Sourceouter source IP (tunnel source IP) = DGW1 IP,Destinationand outer destination IP (tunnel destination IP) = NVE1 IP. TheSourcesource andDestinationinner destination MAC addresses are not needed if IP NVO tunnels areused.</t> </list> </t>used.</li> </ul> </li> <li> <t>When the packet arrives at NVE1:<list style="symbols"> <t>NVE1</t> <ul spacing="normal"> <li>NVE1 will identify the IP-VRF for an IP lookup based on theLabellabel (theDestinationinner destination MAC is not needed to identify theIP-VRF).</t> <t>AnIP-VRF).</li> <li>An IP lookup is performed in the routing context, where SN1 turns out to be a local subnet associatedtowith BD-2. A subsequent lookup in the ARP table and the BD FIB will provide the forwarding information for the packet inBD-2.</t> </list> </t> </list> </t>BD-2.</li> </ul> </li> </ol> <t> The model described above is calledInterface-lessan "interface-less" model since the IP-VRFs are connected directly throughtunnelstunnels, and they don't require those tunnels to be terminated in SBDs instead, as in Sections4.4.2<xref target="sect-4.4.2" format="counter"/> or4.4.3.</t><xref target="sect-4.4.3" format="counter"/>.</t> </section> <sectiontitle="Interface-fulanchor="sect-4.4.2" numbered="true" toc="default"> <name>Interface-ful IP-VRF-to-IP-VRF with SBDIRB" anchor="sect-4.4.2"> <t>Figure 9 will be used forIRB</name> <t><xref target="fig-6"/> depicts thedescription of thisInterface-ful IP-VRF-to-IP-VRF with SBD IRB model.</t> <figuretitle="Interface-fulanchor="fig-6"> <name>Interface-ful with SBD IRBmodel" anchor="fig-6"> <artwork><![CDATA[Model</name> <artwork name="" type="" align="left" alt=""><![CDATA[ NVE1 +------------+ DGW1 IP10+---+(BD-1) | +---------------+ +------------+ | \ | | | | | |(IP-VRF)-(SBD)| |(SBD)-(IP-VRF)|-----+ | /IRB(IP1/M1) IRB(IP3/M3)IRB(M1/IP1) IRB(M3/IP3) | | +---+(BD-2) | | | +------------+ _+_ | +------------+ | | ( ) SN1| | VXLAN/ | ( WAN )--H1 | NVE2 | GENEVE/ | (___) | +------------+ | MPLS | DGW2 + +---+(BD-2) | | | +------------+ | | \ | | | | | | |(IP-VRF)-(SBD)| |(SBD)-(IP-VRF)|-----+ | /IRB(IP2/M2) IRB(IP4/M4)IRB(M2/IP2) IRB(M4/IP4) | SN2+----+(BD-3) | +---------------+ +------------+ +------------+ ]]></artwork> </figure> <t>In this model:<list style="format (%c)"> <t>As</t> <ol spacing="normal" type="%c)"> <li>As inSection 4.4.1,<xref target="sect-4.4.1"/>, the NVEs and DGWs must provide connectivity between hosts in SN1, SN2, and IP10 and in hosts sitting at the other end of theWAN.</t> <t>However,WAN.</li> <li>However, the NVE/DGWs are now connected through Ethernet NVO tunnels terminated in the SBD instance. The IP-VRFs use IRB interfaces for their connectivity to theSBD.</t> <t>EachSBD.</li> <li>Each SBD IRB has an IP and a MAC address, where the IP address must be reachable from other NVEs orDGWs.</t> <t>TheDGWs.</li> <li>The SBD is attached to all the NVE/DGWs in the tenant domainBDs.</t> <t>TheBDs.</li> <li>The solution must providelayerLayer 3 connectivity for Ethernet NVOtunnels,tunnels -- for instance, VXLAN or GENEVE (with Ethernetpayload).</t> </list> </t>payload).</li> </ol> <t> EVPN type 5 routes will be used to advertise the IPPrefixes,prefixes, whereas EVPN RT-2 routes will advertise the MAC/IP addresses of each SBD IRB interface. Each NVE/DGW will advertise an RT-5 for each of its prefixes with the following fields:<list style="symbols"> <t>RD</t> <ul spacing="normal"> <li>RD as per <xreftarget="RFC7432"/>.</t> <t>Ethernettarget="RFC7432" format="default"/>.</li> <li>Ethernet TagID=0.</t> <t>IP Prefix LengthID = 0.</li> <li>IP prefix length and IP address, as explained in the previousSections.</t> <t>GWsections.</li> <li>GW IPaddress=IRB-IPaddress = IRB-IP of the SBD (this is the Overlay Index that will be used for the recursive routeresolution).</t> <t>ESI=0</t> <t>Labelresolution).</li> <li>ESI = 0.</li> <li>Label value should be zero since the RT-5 route requires a recursive lookup resolution to an RT-2 route. It is ignored on reception,and, when forwarding packets,and the MPLS label or VNI from the RT-2's MPLS Label1 field isused.</t> </list> </t>used when forwarding packets.</li> </ul> <t> Each RT-5 will be sent with a Route Target identifying the tenant (IP-VRF). The EVPN Router's MAC Extended Community should not be sent in this case.</t> <t> The following example illustrates the procedure to advertise and forward packets to SN1/24 (IPv4 prefix advertised from NVE1):<list style="format (%d)"></t> <ol spacing="normal" type="(%d)"> <li> <t>NVE1 advertises the following BGP routes:<list style="symbols"></t> <ul spacing="normal"> <li> <t>Route type 5 (IP Prefix route) containing:<list style="symbols"> <t>IPL=24, IP=SN1, Label= SHOULD</t> <ul spacing="normal"> <li>IPL = 24, IP = SN1, Label = <bcp14>SHOULD</bcp14> be set to0.</t> <t>GW IP=IP10.</li> <li>GW IP = IP1 (SBD IRB'sIP)</t> <t>RouteIP).</li> <li>Route Target identifying the tenant(IP-VRF).</t> </list> </t>(IP-VRF).</li> </ul> </li> <li> <t>Route type 2 (MAC/IP Advertisement route for the SBD IRB) containing:<list style="symbols"> <t>ML=48, M=M1, IPL=32, IP=IP1, Label=10.</t> <t>A <xref target="RFC5512"/></t> <ul spacing="normal"> <li>ML = 48, M = M1, IPL = 32, IP = IP1, Label = 10.</li> <li>A BGP Encapsulation ExtendedCommunity.</t> <t>RouteCommunity <xref target="RFC9012" format="default"/>.</li> <li>Route Target identifying the SBD. This Route Target may be the same as the one used with theRT-5.</t> </list> </t> </list> </t>RT-5.</li> </ul> </li> </ul> </li> <li> <t>DGW1 imports the received routes from NVE1:<list style="symbols"></t> <ul spacing="normal"> <li> <t>DGW1 installs SN1/24 in the IP-VRF identified by the RT-5 Route Target.<list style="symbols"> <t>Since</t> <ul spacing="normal"> <li>Since GW IP is different from zero, the GW IP (IP1) will be used as the Overlay Index for the recursive route resolution to the RT-2 carryingIP1.</t> </list> </t> </list> </t>IP1.</li> </ul> </li> </ul> </li> <li> <t>When DGW1 receives a packet from the WAN with destination IPx, where IPx belongs to SN1/24:<list style="symbols"> <t>A</t> <ul spacing="normal"> <li>A destination IP lookup is performed on the DGW1 IP-VRFroutingtable. The lookup yields SN1/24, which is associatedtowith the Overlay Index IP1. The forwarding information is derived from the RT-2 received forIP1.</t> <t>TheIP1.</li> <li>The IP packet destined to IPx is encapsulated with:Sourceinner source MAC = M3,Destinationinner destination MAC = M1,Sourceouter source IP (source VTEP) = DGW1 IP,Destinationand outer destination IP (destination VTEP) =IP1.</t> </list> </t>NVE1 IP.</li> </ul> </li> <li> <t>When the packet arrives at NVE1:<list style="symbols"> <t>NVE1</t> <ul spacing="normal"> <li>NVE1 will identify the IP-VRF for an IP lookup based on theLabellabel and the inner MACDA.</t> <t>AnDA.</li> <li>An IP lookup is performed in the routing context, where SN1 turns out to be a local subnet associatedtowith BD-2. A subsequent lookup in the ARP table and the BD FIB will provide the forwarding information for the packet inBD-2.</t> </list> </t> </list> </t>BD-2.</li> </ul> </li> </ol> <t> The model described above is called'Interface-fulan "interface-ful with SBDIRB model'IRB" model because the tunnels connecting the DGWs and NVEs need to be terminated into the SBD. The SBD is connected to the IP-VRFs via SBD IRB interfaces, and that allows the recursive resolution of RT-5s to GW IP addresses.</t> </section> <sectiontitle="Interface-fulanchor="sect-4.4.3" numbered="true" toc="default"> <name>Interface-ful IP-VRF-to-IP-VRF with Unnumbered SBDIRB" anchor="sect-4.4.3"><t> Figure 10 will be used forIRB</name> <t> <xref target="fig-7"/> depicts thedescription of thisInterface-ful IP-VRF-to-IP-VRF with unnumbered SBD IRB model. Note that this model is similar to the one described in <xreftarget="sect-4.4.2"/>,target="sect-4.4.2" format="default"/>, only without IP addresses on the SBD IRB interfaces.</t> <figuretitle="Interface-fulanchor="fig-7"> <name>Interface-ful withunnumberedUnnumbered SBD IRBmodel" anchor="fig-7"> <artwork><![CDATA[Model</name> <artwork name="" type="" align="left" alt=""><![CDATA[ NVE1 +------------+ DGW1 IP1+----+(BD-1) | +---------------+ +------------+ | \ | | | | | |(IP-VRF)-(SBD)| (SBD)-(IP-VRF) |-----+ | / IRB(M1)| | IRB(M3) | | +---+(BD-2) | | | +------------+ _+_ | +------------+ | | ( ) SN1| | VXLAN/ | ( WAN )--H1 | NVE2 | GENEVE/ | (___) | +------------+ | MPLS | DGW2 + +---+(BD-2) | | | +------------+ | | \ | | | | | | |(IP-VRF)-(SBD)| (SBD)-(IP-VRF) |-----+ | / IRB(M2)| | IRB(M4) | SN2+----+(BD-3) | +---------------+ +------------+ +------------+ ]]></artwork> </figure> <t>In this model:<list style="format (%c)"> <t>As</t> <ol spacing="normal" type="%c)"> <li>As inSection 4.4.1Sections <xref target="sect-4.4.1" format="counter"/> and4.4.2,<xref target="sect-4.4.2" format="counter"/>, the NVEs and DGWs must provide connectivity between hosts in SN1, SN2, and IP1 and in hosts sitting at the other end of theWAN.</t> <t>AsWAN.</li> <li>As inSection 4.4.2,<xref target="sect-4.4.2"/>, the NVE/DGWs are connected through Ethernet NVO tunnels terminated in the SBD instance. The IP-VRFs use IRB interfaces for their connectivity to theSBD.</t> <t>However,SBD.</li> <li>However, each SBD IRB has a MAC addressonly,only and no IP address(that(which is why the model refers to an'unnumbered'"unnumbered" SBD IRB). In this model, there is no need to have IP reachability to the SBD IRB interfacesthemselvesthemselves, and there is a requirement to limit the number of IP addressesused.</t> <t>Asused.</li> <li>As inSection 4.4.2,<xref target="sect-4.4.2"/>, the SBD is composed of all the NVE/DGW BDs of the tenant that needinter-subnet-forwarding.</t> <t>Asinter-subnet forwarding.</li> <li>As inSection 4.4.2,<xref target="sect-4.4.2"/>, the solution must providelayerLayer 3 connectivity for Ethernet NVOtunnels,tunnels -- for instance, VXLAN or GENEVE (with Ethernetpayload).</t> </list> </t>payload).</li> </ol> <t> This model will also make use of the RT-5 recursive resolution. EVPN type 5 routes will advertise the IPPrefixesprefixes along with the EVPN Router's MAC Extended Community used for the recursive lookup, whereas EVPN RT-2 routes will advertise the MAC addresses of each SBD IRB interface (this time without an IP).</t> <t> Each NVE/DGW will advertise an RT-5 for each of its prefixes with the same fields as described in4.4.2 except for: <list style="symbols"> <t>GW<xref target="sect-4.4.2"/>, except: </t> <ul spacing="normal"> <li>GW IPaddress=address = set to0.</t> </list> </t>0.</li> </ul> <t> Each RT-5 will be sent with a Route Target identifying the tenant (IP-VRF) and the EVPN Router's MAC Extended Community containing the MAC address associatedtowith the SBD IRB interface. This MAC address may be reused for all the IP-VRFs in the NVE.</t> <t> The example is similar to the one inSection 4.4.2: <list style="format (%d)"><xref target="sect-4.4.2"/>: </t> <ol spacing="normal" type="(%d)"> <li> <t>NVE1 advertises the following BGP routes:<list style="symbols"></t> <ul spacing="normal"> <li> <t>Route type 5 (IP Prefix route) containing the same values as in the example in <xreftarget="sect-4.4.2"/>, except for: <list style="symbols"> <t>GW IP= SHOULDtarget="sect-4.4.2" format="default"/>, except: </t> <ul spacing="normal"> <li>GW IP = <bcp14>SHOULD</bcp14> be set to0.</t> <t>Router's0.</li> <li>EVPN Router's MAC Extended Community containing M1 (this will be used for the recursive lookup toa RT-2).</t> </list> </t>an RT-2).</li> </ul> </li> <li> <t>Route type 2 (MAC route for the SBD IRB) with the same values as in <xreftarget="sect-4.4.2"/> except for: <list style="symbols"> <t>ML=48, M=M1, IPL=0, Label=10.</t> </list> </t> </list> </t>target="sect-4.4.2" format="default"/>, except: </t> <ul spacing="normal"> <li>ML = 48, M = M1, IPL = 0, Label = 10.</li> </ul> </li> </ul> </li> <li> <t>DGW1 imports the received routes from NVE1:<list style="symbols"></t> <ul spacing="normal"> <li> <t>DGW1 installs SN1/24 in the IP-VRF identified by the RT-5 Route Target.<list style="symbols"> <t>The</t> <ul spacing="normal"> <li>The MAC contained in the EVPN Router's MAC Extended Community sent along with the RT-5 (M1) will be used as the Overlay Index for the recursive route resolution to the RT-2 carryingM1.</t> </list> </t> </list> </t>M1.</li> </ul> </li> </ul> </li> <li> <t>When DGW1 receives a packet from the WAN with destination IPx, where IPx belongs to SN1/24:<list style="symbols"> <t>A</t> <ul spacing="normal"> <li>A destination IP lookup is performed on the DGW1 IP-VRFroutingtable. The lookup yields SN1/24, which is associatedtowith the Overlay Index M1. The forwarding information is derived from the RT-2 received forM1.</t> <t>TheM1.</li> <li>The IP packet destined to IPx is encapsulated with:Sourceinner source MAC = M3,Destinationinner destination MAC = M1,Sourceouter source IP (source VTEP) = DGW1 IP,Destinationand outer destination IP (destination VTEP) = NVE1IP.</t> </list> </t>IP.</li> </ul> </li> <li> <t>When the packet arrives at NVE1:<list style="symbols"> <t>NVE1</t> <ul spacing="normal"> <li>NVE1 will identify the IP-VRF for an IP lookup based on theLabellabel and the inner MACDA.</t> <t>AnDA.</li> <li>An IP lookup is performed in the routing context, where SN1 turns out to be a local subnet associatedtowith BD-2. A subsequent lookup in the ARP table and the BD FIB will provide the forwarding information for the packet inBD-2.</t> </list> </t> </list> </t>BD-2.</li> </ul> </li> </ol> <t> The model described above is calledInterface-fulan "interface-ful with unnumbered SBDIRBIRB" model (as in <xreftarget="sect-4.4.2"/>), only this timetarget="sect-4.4.2" format="default"/>) but without the SBD IRBdoes not havehaving an IP address.</t> </section> </section> </section> <sectiontitle="Security Considerations" anchor="sect-5"><t>anchor="sect-5" numbered="true" toc="default"> <name>Security Considerations</name> <t> This document provides a set of procedures to achieveInter-Subnet Forwardinginter-subnet forwarding across NVEs or PEs attached to a group of BDs that belong to the same tenant (or VPN). The security considerations discussed in <xreftarget="RFC7432"/>target="RFC7432" format="default"/> apply to theIntra-Subnet Forwardingintra-subnet forwarding or communication within each of those BDs. In addition, the security considerations in <xreftarget="RFC4364"/>target="RFC4364" format="default"/> should also be understood, since this document and <xreftarget="RFC4364"/>target="RFC4364" format="default"/> may be used in similar applications.</t> <t> Contrary to <xreftarget="RFC4364"/>,target="RFC4364" format="default"/>, this document does not describe PE/CE route distributiontechniques,techniques but rather considers the CEs asTSesTSs or VAs that do not run dynamic routing protocols. This can be considered a security advantage, since dynamic routing protocols can be blocked on the NVE/PE ACs, not allowing the tenant to interact with the infrastructure's dynamic routing protocols.</t> <t> In this document, the RT-5 may use a regular BGPNext Hopnext hop for its resolution or an Overlay Index that requires a recursive resolution to a different EVPN route (an RT-2 or an RT-1). In the latter case, it is worth noting that any action that ends up filtering or modifying theRT-2/RT-1RT-2 or RT-1 routes used to convey the OverlayIndexes,Indexes will modify the resolution of the RT-5 and therefore the forwarding of packets to the remote subnet.</t> </section> <sectiontitle="IANA Considerations" anchor="sect-6"><t> This document requestsanchor="sect-6" numbered="true" toc="default"> <name>IANA Considerations</name> <t> IANA has registered value 5 in the<xref target="EVPNRouteTypes"/>"EVPN Route Types" registry <xref target="EVPNRouteTypes" format="default"/> defined by <xreftarget="RFC7432"/>:</t> <figure><artwork><![CDATA[ Value Description Reference 5 IP Prefix route [this document] ]]></artwork> </figure>target="RFC7432" format="default"/> as follows:</t> <table> <thead> <tr> <th>Value</th> <th>Description</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>5</td> <td>IP Prefix</td> <td>RFC 9136</td> </tr> </tbody> </table> </section> </middle> <back><references title="Normative References"> &RFC7432; &RFC5512; &RFC2119; &RFC8174; &RFC8365; &I-D.ietf-bess-evpn-inter-subnet-forwarding;<references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7432.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.9012.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8365.xml"/> <reference anchor='RFC9135' target='https://www.rfc-editor.org/info/rfc9135'> <front> <title>Integrated Routing and Bridging in Ethernet VPN (EVPN)</title> <author initials='A' surname='Sajassi' fullname='Ali Sajassi'> <organization /> </author> <author initials='S' surname='Salam' fullname='Samer Salam'> <organization /> </author> <author initials='S' surname='Thoria' fullname='Samir Thoria'> <organization /> </author> <author initials='J' surname='Drake' fullname='John Drake'> <organization /> </author> <author initials='J' surname='Rabadan' fullname='Jorge Rabadan'> <organization /> </author> <date month='October' year='2021' /> </front> <seriesInfo name="RFC" value="9135"/> <seriesInfo name="DOI" value="10.17487/RFC9135"/> </reference> <reference anchor="EVPNRouteTypes"target="https://www.iana.org/assignments/evpn"><front>target="https://www.iana.org/assignments/evpn"> <front> <title>EVPN RouteType registry</title>Types</title> <author> <organization>IANA</organization> </author> <date/> </front> </reference> </references><references title="Informative References"> &RFC4364; &RFC7606;<references> <name>Informative References</name> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4364.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7606.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5798.xml"/> <referenceanchor="IEEE-802.1D-REV"><front>anchor="IEEE-802.1Q" target="https://standards.ieee.org/standard/802_1Q-2018.html"> <front> <title>IEEE Standard for Local andmetropolitan area networks - Media Access Control (MAC) Bridges</title> <author> </author> <date month="June" year="2004"/> </front> <seriesInfo name="IEEE" value="Std. 802.1D"/> </reference> <reference anchor="IEEE-802.1Q"><front> <title>"IEEE Standard for Local and metropolitan area networks - Media Access Control (MAC)Metropolitan Area Networks -- Bridges andVirtualBridgedLocal Area Networks"</title> <author>Networks</title> <seriesInfo name="IEEE Std" value="802.1Q"/> <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8403927"/> <author><organization>IEEE</organization> </author> <datemonth="November" year="2014"/>month="July" year="2018"/> </front><seriesInfo name="IEEE" value="Std 802.1Q(tm)"/></reference>&RFC7365; &RFC5227; &RFC7348; &I-D.ietf-nvo3-geneve;<xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7365.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5227.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7348.xml"/> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8926.xml"/> </references> </references> <sectiontitle="Acknowledgments" anchor="sect-8"><t>anchor="sect-8" numbered="false" toc="default"> <name>Acknowledgments</name> <t> The authors would like to thankMukul Katiyar and Jeffrey Zhang<contact fullname="Mukul Katiyar"/>, <contact fullname="Jeffrey Zhang"/>, and <contact fullname="Alex Nichol"/> for their valuable feedback and contributions.The following people<contact fullname="Tony Przygienda"/> and <contact fullname="Thomas Morin"/> also helpedimprovingimprove this document with theirfeedback: Tony Przygienda and Thomas Morin.feedback. SpecialTHANK YOUthanks toEric Rosen<contact fullname="Eric Rosen"/> for his detailed review,itwhich really helped improve the readability and clarify the concepts.Thank you to Alvaro RetanaWe also thank <contact fullname="Alvaro Retana"/> for his thorough review.</t> </section> <sectiontitle="Contributors" anchor="sect-9"><t>anchor="sect-9" numbered="false" toc="default"> <name>Contributors</name> <t> In addition to the authors listed on the front page, the followingco-authorscoauthors have also contributed to this document:</t><figure><artwork><![CDATA[ Senthil Sathappan Florin Balus Aldrin Isaac Senad Palislamovic Samir Thoria ]]></artwork> </figure><ul empty="true" spacing="compact"> <li><t><contact fullname="Senthil Sathappan"/></t></li> <li><t><contact fullname="Florin Balus"/></t></li> <li><t> <contact fullname="Aldrin Isaac"/></t></li> <li><t> <contact fullname="Senad Palislamovic"/></t></li> <li><t> <contact fullname="Samir Thoria"/></t></li> </ul> </section><section title="Authors' Addresses" anchor="sect-10"/></back> </rfc>