<?xmlversion="1.0" encoding="US-ASCII"?>version='1.0' encoding='UTF-8'?> <!DOCTYPE rfcSYSTEM 'rfc2629.dtd'[ <!ENTITY RFC0791 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.0791.xml"> <!ENTITY RFC2119 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml"> <!ENTITY RFC2460 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2460.xml"> <!ENTITY RFC4021 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4021.xml"> <!ENTITY RFC8422 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8422.xml"> <!ENTITY RFC4944 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4944.xml"> <!ENTITY RFC5246 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5246.xml"> <!ENTITY RFC5273 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5273.xml"> <!ENTITY RFC5272 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5272.xml"> <!ENTITY RFC2585 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2585.xml"> <!ENTITY RFC5705 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5705.xml"> <!ENTITY RFC5958 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5958.xml"> <!ENTITY RFC5967 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5967.xml"> <!ENTITY RFC6402 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.6402.xml"> <!ENTITY RFC6090 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.6090.xml"> <!ENTITY RFC6347 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.6347.xml"> <!ENTITY RFC6690 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.6690.xml"> <!ENTITY RFC7030 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7030.xml"> <!ENTITY RFC7049 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7049.xml"> <!ENTITY RFC7230 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7230.xml"> <!ENTITY RFC7251 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7251.xml"> <!ENTITY RFC7252 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7252.xml"> <!ENTITY RFC7925 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7925.xml"> <!ENTITY RFC7959 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7959.xml"> <!ENTITY RFC4919 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.4919.xml"> <!ENTITY RFC5929 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.5929.xml"> <!-- <!ENTITY RFC7525 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7525.xml"> --> <!ENTITY RFC7228 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7228.xml"> <!ENTITY RFC7299 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7299.xml"> <!ENTITY RFC7627 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7627.xml"> <!ENTITY RFC7748 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.7748.xml"> <!ENTITY RFC8075 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8075.xml"> <!ENTITY RFC8174 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8174.xml"> <!ENTITY RFC8446 PUBLIC "" "http://xml.resource.org/public/rfc/bibxml/reference.RFC.8446.xml"> <!ENTITY I-D.ietf-anima-bootstrapping-keyinfra SYSTEM "http://xml.resource.org/public/rfc/bibxml3/reference.I-D.ietf-anima-bootstrapping-keyinfra.xml"> <!ENTITY I-D.ietf-tls-dtls13 SYSTEM "http://xml.resource.org/public/rfc/bibxml3/reference.I-D.ietf-tls-dtls13.xml"> <!ENTITY I-D.ietf-tls-dtls-connection-id SYSTEM "https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-tls-dtls-connection-id.xml"> <!ENTITY I-D.moskowitz-ecdsa-pki SYSTEM "https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.moskowitz-ecdsa-pki.xml">[ <!ENTITYI-D.ietf-core-multipart-ct SYSTEM "https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-core-multipart-ct.xml">nbsp " "> <!ENTITYI-D.ietf-lamps-rfc5751-bis SYSTEM "https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-lamps-rfc5751-bis.xml">zwsp "​"> <!ENTITYI-D.draft-ietf-core-resource-directory-19 SYSTEM "https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.draft-ietf-core-resource-directory-19.xml">nbhy "‑"> <!ENTITYI-D.josefsson-sasl-tls-cb SYSTEM "https://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.josefsson-sasl-tls-cb.xml">wj "⁠"> ]><?rfc strict="no" ?> <?rfc toc="yes"?> <?rfc tocdepth="4"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes" ?> <?rfc compact="yes" ?> <?rfc subcompact="no" ?><rfc xmlns:xi="http://www.w3.org/2001/XInclude" consensus="true" category="std" ipr="trust200902"docName="draft-ietf-ace-coap-est-18">docName="draft-ietf-ace-coap-est-18" number="9148" obsoletes="" updates="" submissionType="IETF" xml:lang="en" tocInclude="true" tocDepth="4" symRefs="true" sortRefs="true" version="3"> <front> <titleabbrev="EST-coaps">ESTabbrev="EST-coaps">EST-coaps: Enrollment oversecure CoAP (EST-coaps)</title>Secure Transport with the Secure Constrained Application Protocol</title> <seriesInfo name="RFC" value="9148"/> <author fullname="Peter van der Stok" initials="P." surname="van der Stok"> <organization>Consultant</organization> <address><email>consultancy@vanderstok.org</email><email>stokcons@bbhmail.nl</email> </address> </author> <author fullname="Panos Kampanakis" initials="P" surname="Kampanakis"> <organization>Cisco Systems</organization> <address> <email>pkampana@cisco.com</email> </address> </author><!-- <author initials="S.S." surname="Kumar" fullname="Sandeep S. Kumar"> <organization>Philips Lighting Research</organization> <address> <postal> <street>High Tech Campus 7</street> <city>Eindhoven</city> <region></region> <code>5656 AE</code> <country>NL</country> </postal> <email>ietf@sandeep.de</email> </address> </author> --><author fullname="Michael C. Richardson" initials="M." surname="Richardson"> <organization abbrev="SSW">Sandelman Software Works </organization> <address> <email>mcr+ietf@sandelman.ca</email><uri>http://www.sandelman.ca/</uri> </address> </author> <!-- <author fullname="Martin Furuhed" initials="M" surname="Furuhed"> <organization>Nexus Group</organization> <address> <email>martin.furuhed@nexusgroup.com</email><uri>https://www.sandelman.ca/</uri> </address> </author>--><author fullname="Shahid Raza" initials="S" surname="Raza"> <organization>RISESICS </organization>Research Institutes of Sweden</organization> <address> <postal> <street>Isafjordsgatan 22</street><city>Kista</city> <region>Stockholm</region><city>Kista, Stockholm</city> <code>16440</code> <country>SE</country> </postal><email>shahid@sics.se</email><email>shahid.raza@ri.se</email> </address> </author><date/><date month="March" year="2022"/> <area>Security</area> <workgroup>ACE</workgroup> <keyword>EST</keyword> <keyword>CoAPS</keyword> <keyword>Constrained-Voucher</keyword> <keyword>Constrained-Enrollment</keyword> <keyword>BRSKI</keyword> <abstract> <t>Enrollment over Secure Transport (EST) is used as a certificate provisioning protocol over HTTPS. Low-resource devices often use the lightweight Constrained Application Protocol (CoAP) for message exchanges. This document defines how to transport EST payloads over secure CoAP (EST-coaps), which allows constrained devices to use existing EST functionality for provisioning certificates.<!-- Example low-resource use-cases for EST are: secure bootstrapping and certificate enrollment. --></t> </abstract> </front> <middle> <sectionanchor="changes" title="Change Log"> <t>EDNOTE: Remove this section before publication</t> <t> -18 <list style="empty"> <t>IESG Reviews fixes. </t> <t>Removed spurious lines introduced in v-17 due to xml2rfc v3.</t> </list> </t> <t> -17 <list style="empty"> <t>v16 remnants by Ben K.</t> <t>Typos.</t> </list> </t> <t> -16 <list style="empty"> <t>Updates to address Yaron S.'s Secdir review.</t> <t>Updates to address David S.'s Gen-ART review.</t> </list> </t> <t> -15 <list style="empty"> <t>Updates to addressed Ben's AD follow up feedback.</t> </list> </t> <t> -14 <list style="empty"> <t>Updates to complete Ben's AD review feedback and discussions.</t> </list> </t> <t> -13 <list style="empty"> <t>Updates based on AD's review and discussions </t> <t>Examples redone without password </t> </list> </t> <t> -12 <list style="empty"> <t>Updated section 5 based on Esko's comments and nits identified. </t> <t>Nits and some clarifications for Esko's new review from 5/21/2019. </t> <t>Nits and some clarifications for Esko's new review from 5/28/2019. </t> </list> </t> <t> -11 <list style="empty"> <t>Updated Server-side keygen to simplify motivation and added paragraphs in Security considerations to point out that random numbers are still needed (feedback from Hannes).</t> </list> </t> <t> -10 <list style="empty"> <t>Addressed WGLC comments</t> <t>More consistent request format in the examples. </t> <t>Explained root resource difference when there is resource discovery</t> <t>Clarified when the client is supposed to do discovery</t> <t>Fixed nits and minor Option length inaccurracies in the examples. </t> </list> </t> <t> -09 <list style="empty"> <t> WGLC comments taken into account </t> <t> consensus about discovery of content-format </t> <t> added additional path for content-format selection</t> <t> merged DTLS sections </t> </list> </t> <t> -08 <list style="empty"> <t>added application/pkix-cert Content-Format TBD287.</t> <t> discovery text clarified </t> <t> Removed text on ct negotiation in connection to multipart-core </t> <t> removed text that duplicates or contradicts RFC7252 (thanks Klaus) </t> <t> Stated that well-known/est is compulsory</t> <t> Use of response codes clarified.</t> <t> removed bugs: Max-Age and Content-Format Options in Request</t> <t> Accept Option explained for est/skg and added in enroll example </t> <t> Added second URI /skc for server-side key gen and a simple cert (not PKCS#7)</t> <t> Persistence of DTLS connection clarified. </t> <t> Minor text fixes. </t> </list> </t> <t> -07: <list style="empty"> <t> redone examples from scratch with openssl </t> <t>Updated authors.</t> <t>Added CoAP RST as a MAY for an equivalent to an HTTP 204 message.</t> <t>Added serialization example of the /skg CBOR response. </t> <t>Added text regarding expired IDevIDs and persistent DTLS connection that will start using the Explicit TA Database in the new DTLS connection.</t> <t>Nits and fixes</t> <t>Removed CBOR envelop for binary data</t> <t>Replaced TBD8 with 62. </t> <t>Added RFC8174 reference and text. </t> <t>Clarified MTI for server-side key generation and Content-Formats. Defined the /skg MTI (PKCS#8) and the cases where CMS encryption will be used. </t> <t>Moved Fragmentation section up because it was referenced in sections above it.</t> </list> </t> <t> -06: <list style="empty"> <t>clarified discovery section, by specifying that no discovery may be needed for /.well-known/est URI.</t> <t>added resource type values for IANA</t> <t>added list of compulsory to implement and optional functions. </t> <t>Fixed issues pointed out by the idnits tool.</t> <t>Updated CoAP response codes section with more mappings between EST HTTP codes and EST-coaps CoAP codes.</t> <t>Minor updates to the MTI EST Functions section.</t> <t>Moved Change Log section higher.</t> </list> </t> <t> -05: <list style="empty"> <t>repaired again</t> <t>TBD8 = 62 removed from C-F registration, to be done in CT draft.</t> </list> </t> <t> -04: <list style="empty"> <t> Updated Delayed response section to reflect short and long delay options.</t> </list> </t> <t> -03: <list style="empty"> <t>Removed observe and simplified long waits</t> <t>Repaired Content-Format specification</t> </list> </t> <t> -02: <list style="empty"> <t>Added parameter discussion in section 8</t> <t>Concluded Content-Format specification using multipart-ct draft</t> <t>examples updated </t> </list> </t> <t> -01: <list style="empty"> <t>Editorials done.</t> <t>Redefinition of proxy to Registrar in <xref target="proxy"/>. Explained better the role of https-coaps Registrar, instead of "proxy"</t> <t>Provide "observe" Option examples </t> <t> extended block message example. </t> <t>inserted new server key generation text in <xref target="serverkey"/> and motivated server key generation.</t> <t>Broke down details for DTLS 1.3 </t> <t>New Media-Type uses CBOR array for multiple Content-Format payloads</t> <t>provided new Content-Format tables</t> <t> new media format for IANA </t> </list> </t> <t> -00 <list style="empty"> <t> copied from vanderstok-ace-coap-04</t> </list> </t> </section> <!-- Change Log --> <sectionanchor="intro"title="Introduction">numbered="true" toc="default"> <name>Introduction</name> <t>"Classical" Enrollment over Secure Transport (EST) <xreftarget="RFC7030"/>target="RFC7030" format="default"/> is used for authenticated/authorized endpoint certificate enrollment (and optionally key provisioning) through aCertificateCertification Authority (CA) or Registration Authority (RA). EST transports messages over HTTPS.</t> <t>This document defines a new transport for EST based on the Constrained Application Protocol (CoAP) since some Internet of Things (IoT) devices use CoAP instead of HTTP. Therefore, this specification utilizes DTLS <xreftarget="RFC6347"/>target="RFC6347" format="default"/> and CoAP <xreftarget="RFC7252"/>target="RFC7252" format="default"/> instead of TLS <xreftarget="RFC8446"/>target="RFC8446" format="default"/> and HTTP <xreftarget="RFC7230"/>.target="RFC7230" format="default"/>. </t> <t>EST responses can be relativelylargelarge, and for thisreasonreason, this specification also uses CoAP Block-Wise Transfer <xreftarget="RFC7959"/>target="RFC7959" format="default"/> to offer a fragmentation mechanism of EST messages at the CoAP layer. </t> <t>This document also profiles the use of EST toonlysupport certificate-based clientauthentication.authentication only. Neither HTTP Basicornor Digest authentication (as described inSection 3.2.3 of <xref target="RFC7030"/>) are not supported. </t> <!-- <t>IPv6 over Low-power Wireless Personal Area Networks (6LoWPANs) <xref target="RFC4944" /> on IEEE 802.15.4<xreftarget="ieee802.15.4" /> wireless networks are becoming common in many industry application domains such as lighting controls. Although IEEE 802.15.4 defines how security can be enabled between nodes within a single mesh network, it does not specify the provisioning and management of the keys. Therefore, securing a 6LoWPAN network with devices from multiple manufacturers with different provisioning techniques is often tedious and time consuming. An example use-casetarget="RFC7030" sectionFormat="of" section="3.2.3"/>) isthe application of Bootstrapping of Remote Secure Infrastructures (BRSKI) <xref target="I-D.ietf-anima-bootstrapping-keyinfra"/>supported. </t>--> <!-- <section anchor="scenario" title="EST operational differences"> <t>Only the differences to EST with respect to operational scenarios are described in this section. EST-coaps server differs from EST server as follows: <list style="symbols"> <t>Replacement of TLS by DTLS and HTTP by CoAP, resulting in: <list> <t>DTLS-secured CoAP sessions between EST-coaps client and EST-coaps server.</t> </list></t> <t>Only certificate-based client authentication is supported, which results in: <list> <t>The EST-coaps client does not support HTTP Basic authentication (as described in Section 3.2.3 of <xref target="RFC7030"/>).</t> <t>The EST-coaps client does not support authentication at the application layer (as described in Section 3.2.3 of <xref target="RFC7030"/>).</t> </list></t> </list></t> </section> --> <!-- EST operational differences --></section><!-- Introduction --><section anchor="terminology"title="Terminology"> <t>Thenumbered="true" toc="default"> <name>Terminology</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shownhere.</t>here. </t> <t>Many of the concepts in this document are taken from <xreftarget="RFC7030"/>.target="RFC7030" format="default"/>. Consequently, much text is directly traceable to <xreftarget="RFC7030"/>. </t><!-- The same document structure is followed to point out the differences and commonalities between EST and EST-coaps. -->target="RFC7030" format="default"/>. </t> </section><!-- Terminology --><section anchor="profile7925"title="DTLSnumbered="true" toc="default"> <name>DTLS andconformanceConformance toRFC7925 profiles">RFC 7925 Profiles</name> <t>This section describes how EST-coaps conforms to the profiles of low-resource devices described in <xreftarget="RFC7925"/>.target="RFC7925" format="default"/>. EST-coaps can transport certificates and private keys. Certificates are responses to (re-)enrollment requests or requests for a trusted certificate list. Private keys can be transported as responses to a server-side key generation request as described inSection 4.4 of<xreftarget="RFC7030"/>target="RFC7030" sectionFormat="of" section="4.4"/> (and subsections) and discussed in <xreftarget="serverkey"/>target="serverkey" format="default"/> of this document. </t> <t>EST-coaps depends on a secure transport mechanism that secures the exchanged CoAP messages. DTLS is one such secure protocol. No other changes are necessary regarding the secure transport of EST messages.</t><!-- DTLS handshakes use a retramsit times to handle packet loss in lossy environments. as explained in https://tools.ietf.org/html/rfc6347#section-3.2.1 --></t> <figure align="center"title="EST-coaps protocol layers" anchor="fig-est-coaps-layers"><artwork><![CDATA[anchor="est-coaps-layers"> <name>EST-coaps Protocol Layers</name> <artwork align="center"><![CDATA[ +------------------------------------------------+ | EST request/response messages | +------------------------------------------------+ | CoAP for message transfer and signaling | +------------------------------------------------+ | Secure Transport | +------------------------------------------------+]]></artwork></figure>]]></artwork> </figure> <t> In accordance withsections 3.3Sections <xref target="RFC7925" section="3.3" sectionFormat="bare"/> and4.4<xref target="RFC7925" section="4.4" sectionFormat="bare"/> of <xref target="RFC7925"/>,format="default"/>, the mandatory cipher suite for DTLS in EST-coaps is TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 <xreftarget="RFC7251"/>.target="RFC7251" format="default"/>. Curve secp256r1MUST<bcp14>MUST</bcp14> be supported <xreftarget="RFC8422"/>;target="RFC8422" format="default"/>; this curve is equivalent to the NIST P-256 curve. After the publication of <xref target="RFC7748"/>,format="default"/>, support for Curve25519 will likely be required in the future by (D)TLSProfilesprofiles for the Internet of Things <xref target="RFC7925"/>.format="default"/>. </t><!-- Removed DTLS normative language for DTLS. Keeping lowercase wording just to serve as non-normative reminders --> <!-- <xref target="RFC6090"/> includes a summary of the ECC algorithms.--><t>DTLS 1.2 implementations must use the Supported Elliptic Curves and Supported Point Formats Extensions in <xreftarget="RFC8422"/>.target="RFC8422" format="default"/>. Uncompressed point format must also be supported. DTLS 1.3 <xreftarget="I-D.ietf-tls-dtls13"/>target="RFC9147" format="default"/> implementations differ from DTLS 1.2 because they do not support point format negotiation in favor of a single point format for each curve. Thus, support for DTLS 1.3 does not mandate point format extensions and negotiation. In addition, in DTLS1.31.3, the Supported Elliptic Curves extension has been renamed to Supported Groups. </t> <t>CoAP was designed to avoid IP fragmentation. DTLS is used to secure CoAP messages. However, fragmentation is still possible at the DTLS layer during the DTLS handshake even when usingECC ciphersuites.Elliptic Curve Cryptography (ECC) cipher suites. If fragmentation is necessary, "DTLS provides a mechanism for fragmenting a handshake message overseverala number of records, each of which can be transmitted separately, thus avoiding IP fragmentation" <xreftarget="RFC6347"/>.</t>target="RFC6347" format="default"/>.</t> <t>The authentication of the EST-coaps server by the EST-coaps client is based on certificate authentication in the DTLS handshake. The EST-coaps clientMUST<bcp14>MUST</bcp14> be configured with at least an ImplicitTA databaseTrust Anchor database, which will enable the authentication of the server the first time before updating its trust anchor (Explicit TA) <xreftarget="RFC7030"/>.</t>target="RFC7030" format="default"/>.</t> <t>The authentication of the EST-coaps clientMUST<bcp14>MUST</bcp14> be with a client certificate in the DTLS handshake. This can eitherbe <list style="symbols"> <t>abe: </t> <ul spacing="normal"> <li>A previously issued client certificate (e.g., an existing certificate issued by the EST CA); this could be a common case for simple re-enrollment of clients.</t> <t>a</li> <li>A previously installed certificate (e.g., manufacturer IDevID <xreftarget="ieee802.1ar"/>target="IEEE802.1AR" format="default"/> or a certificate issued by some other party). IDevID's are expected to have a very long life, as long as the device, but under some conditions could expire. In that case, the serverMAY<bcp14>MAY</bcp14> authenticate a client certificate against its trust storealthoughthough the certificate is expired (<xreftarget="sec"/>). </t> </list></t>target="sec" format="default"/>). </li> </ul> <t>EST-coaps supports the certificate types andTrust Anchors (TA)TAs that are specified for EST inSection 3 of<xreftarget="RFC7030"/>.target="RFC7030" sectionFormat="of" section="3"/>. </t> <t>As described inSection 2.1 of<xreftarget="RFC5272"/>target="RFC5272" sectionFormat="of" section="2.1"/>, proof-of-identity refers to a value that can be used to prove that anend-entityend entity or client is in the possession of and can use the private key corresponding to the certified public key. Additionally, channel-binding information can link proof-of-identity with an established connection. Connection-based proof-of-possession isOPTIONAL<bcp14>OPTIONAL</bcp14> for EST-coaps clients and servers. When proof-of-possession is desired, a set of actions are required regarding the use of tls-unique, described inSection 3.5 in<xreftarget="RFC7030"/>.target="RFC7030" sectionFormat="of" section="3.5"/>. The tls-unique information consists of the contents of the first"Finished"Finished message in the (D)TLS handshake between server and client <xreftarget="RFC5929"/>.target="RFC5929" format="default"/>. The client adds the"Finished"Finished message as aChallengePasswordchallengePassword in the attributes section of thePKCS#10 RequestPKCS #10 CertificationRequest <xreftarget="RFC5967"/>target="RFC5967" format="default"/> to prove that the client is indeed in control of the private key at the time of the (D)TLS session establishment.</t> <t>InIn the case of handshake message fragmentation, if proof-of-possession is desired, the Finished message added as theChallengePasswordchallengePassword in theCSRCertificate Signing Request (CSR) is calculated as specified bythe DTLS standards.(D)TLS. We summarize it here for convenience. For DTLS 1.2, in the event of handshake message fragmentation, theHashhash of the handshake messages used in theMACMessage Authentication Code (MAC) calculation of the Finished message must be computed on each reassembled message, as if each message had not been fragmented(Section 4.2.6 of <xref target="RFC6347"/>).(<xref target="RFC6347" sectionFormat="of" section="4.2.6"/>). The Finished message is calculated as shown inSection 7.4.9 of<xreftarget="RFC5246"/>. Similarly, for DTLStarget="RFC5246" sectionFormat="of" section="7.4.9"/>. </t> <t>For (D)TLS 1.3, <xref target="RFC8446" sectionFormat="of" section="C.5"/> describes theFinished message mustlack of channel bindings similar to tls-unique. <xref target="I-D.ietf-kitten-tls-channel-bindings-for-tls13" format="default"/> can becomputedused instead to derive a 32-byte tls-exporter binding from the (D)TLS 1.3 master secret by using a PRF negotiated in the (D)TLS 1.3 handshake, "EXPORTER-Channel-Binding" with no terminating NUL asif each handshake message had been sentthe label, the ClientHello.random and ServerHello.random, and a zero-length context string. When proof-of-possession is desired, the client adds the tls-exporter value as asingle fragment (Section 5.8challengePassword in the attributes section of the PKCS #10 CertificationRequest <xreftarget="I-D.ietf-tls-dtls13"/>) followingtarget="RFC5967" format="default"/> to prove that thealgorithm describedclient is indeed in4.4.4control of<xref target="RFC8446"/>.the private key at the time of the (D)TLS session establishment. </t><!--<figure align="left"><artwork><![CDATA[ PRF(master_secret, finished_label, Hash(handshake_messages)) [0..verify_data_length-1]; ]]></artwork></figure> --> <!-- <figure align="left"><artwork><![CDATA[ HMAC(finished_key, Transcript-Hash(Handshake Context, Certificate*, CertificateVerify*)) * Only included if present. ]]></artwork></figure> --><t>In a constrained CoAP environment, endpoints can't always afford to establish a DTLS connection for every EST transaction. An EST-coaps DTLS connectionMAY<bcp14>MAY</bcp14> remain open for sequential EST transactions, which was not the case with <xreftarget="RFC7030"/>.target="RFC7030" format="default"/>. For example, if a /crts request is followed by a /sen request, both can use the same authenticated DTLS connection. However, when a /crts request is included in the set of sequential EST transactions, some additional security considerations apply regarding the use of the Implicit and Explicit TA database as explained in <xreftarget="sec-est"/>.</t>target="sec-est" format="default"/>.</t> <t>Given that after a successful enrollment, it is more likely that a new EST transaction will not take place for a significant amount of time, the DTLS connectionsSHOULD<bcp14>SHOULD</bcp14> only be kept alive for EST messages that are relatively close to each other. These could include a /senimmediatellyimmediately following a /crts when a device is getting bootstrapped. In some cases, like NAT rebinding, keeping the state of a connection is not possible when devices sleep for extended periods of time. In such occasions, <xreftarget="I-D.ietf-tls-dtls-connection-id"/>target="RFC9146" format="default"/> negotiates a connection ID that can eliminate the need for a new handshake and its additional cost;oror, DTLS session resumption provides a less costly alternative thanre-doingredoing a full DTLS handshake. </t> </section><!-- 7925 profile --><section anchor="design"title="Protocol Design">numbered="true" toc="default"> <name>Protocol Design</name> <t>EST-coaps uses CoAP to transfer EST messages, aided by Block-Wise Transfer <xreftarget="RFC7959"/>target="RFC7959" format="default"/>, to avoid IP fragmentation. The use ofBlocksblocks for the transfer of larger EST messages is specified in <xreftarget="fragment"/>.target="fragment" format="default"/>. <xreftarget="fig-est-coaps-layers"/>target="est-coaps-layers" format="default"/> shows the layered EST-coaps architecture.</t> <t>The EST-coaps protocol design follows closely the EST design. The supported message types in EST-coaps are:<list style="symbols"> <t>CA</t> <ul spacing="normal"> <li>CA certificate retrieval needed to receive the complete set of CA certificates.</t> <t>Simple</li> <li>Simple enroll and re-enroll for a CA to sign client identity publickey.</t> <t>Certificatekeys.</li> <li>Certificate Signing Request (CSR) attribute messages that informs the client of the fields to include in aCSR.</t> <t>Server-sideCSR.</li> <li>Server-side key generation messages to provide a client identity private key when the client chooses so.</t> </list></t></li> </ul> <t> While <xref target="RFC7030"/>format="default"/> permits a number of the EST functions to be used without authentication, this specification requires that the clientMUST<bcp14>MUST</bcp14> be authenticated for all functions.</t><!-- because allowing unauthenticated requests introduces security concerns and amplification attacks --></t> <section anchor="discovery"title = "Discoverynumbered="true" toc="default"> <name>Discovery andURIs">URIs</name> <t>EST-coaps is targeted for low-resource networks with small packets. Two types of installations are possible: (1) a rigidones,one, where the address and the supported functions of the EST server(s) are known, and (2) a flexible one, where the EST server and its supported functions need to be discovered.</t> <t>For both types of installations, saving header space is important and short EST-coaps URIs are specified in this document. These URIs are shorter than the ones in <xreftarget="RFC7030"/>.target="RFC7030" format="default"/>. Two example EST-coaps resource path names are: </t><figure align="left"><artwork><![CDATA[<artwork><![CDATA[ coaps://example.com:<port>/.well-known/est/<short-est> coaps://example.com:<port>/.well-known/est/ArbitraryLabel/<short-est>]]></artwork></figure> <!-- The ArbitraryLabel path-segment, if used, SHOULD be of the shortest length possible (Sections 3.1 and 3.2.2 of <xref target="RFC7030"/>. -->]]></artwork> <t>The short-est strings are defined in <xreftarget="est-uri"/>.target="est-uri" format="default"/>. Arbitrary Labels are usually defined and used by EST CAs in order to route client requests to the appropriate certificate profile. Implementers should consider using short labels to minimize transmission overhead.</t> <t>The EST-coaps server URIs, obtained through discovery of the EST-coaps resource(s) as shown below, are of the form: </t><figure align="left"><artwork><![CDATA[<artwork><![CDATA[ coaps://example.com:<port>/<root-resource>/<short-est> coaps://example.com:<port>/<root-resource>/ArbitraryLabel/<short-est>]]></artwork></figure>]]></artwork> <t>Figure 5 inSection 3.2.2 of<xreftarget="RFC7030"/>target="RFC7030" sectionFormat="of" section="3.2.2"/> enumerates the operations and corresponding pathswhichthat are supported by EST. <xreftarget="est-uri"/>target="est-uri" format="default"/> provides the mapping from the EST URI path to the shorter EST-coaps URI path.</t><texttable<table anchor="est-uri"title="Shortalign="center"> <name>Short EST-coaps URIpath"> <ttcol align="left">EST</ttcol> <ttcol align="left">EST-coaps</ttcol> <c>Path</name> <thead> <tr> <th align="left">EST</th> <th align="left">EST-coaps</th> </tr> </thead> <tbody> <tr> <td align="left"> /cacerts</c> <c></td> <td align="left"> /crts</c> <c></td> </tr> <tr> <td align="left"> /simpleenroll</c> <c></td> <td align="left"> /sen</c> <c></td> </tr> <tr> <td align="left"> /simplereenroll</c> <c></td> <td align="left"> /sren</c> <c></td> </tr> <tr> <td align="left"> /serverkeygen</c> <c></td> <td align="left"> /skg(PKCS#7) </c> <c>(PKCS #7) </td> </tr> <tr> <td align="left"> /serverkeygen</c> <c></td> <td align="left"> /skc(application/pkix-cert)</c> <c>(application/pkix-cert)</td> </tr> <tr> <td align="left"> /csrattrs</c> <c></td> <td align="left"> /att</c> </texttable></td> </tr> </tbody> </table> <t>The /skg message is the EST /serverkeygen equivalent where the client requests a certificate inPKCS#7PKCS #7 format and a private key. If the client prefers a single application/pkix-cert certificate instead ofPKCS#7,PKCS #7, it will make an /skc request. In both cases (i.e., /skg,/skc)/skc), a private keyMUST<bcp14>MUST</bcp14> be returned.</t> <t>Clients and serversMUST<bcp14>MUST</bcp14> support the short resource EST-coaps URIs. </t><!-- Panos: Commented this out after a review from Carsten that pointed out that we can't make our minds what to use and we let the implementers use what they want. So we decided to be more specific and pick short URIs only. --> <!--The corresponding longer URIs from <xref target="RFC7030"/> MAY be supported.--> <!-- Upon success, the return payload will contain the root resource of the EST resources. The server MAY return all available resource paths and the used content types. This is useful when multiple content types are supported by the EST-coaps server and optional functions are available. --><t>In the context of CoAP, the presence and location of (path to) the EST resources are discovered by sending a GET request to "/.well-known/core" including a resource type (RT) parameter with the value "ace.est*" <xreftarget="RFC6690"/>.target="RFC6690" format="default"/>. The example below shows the discovery over CoAPS of the presence and location of EST-coaps resources. Linefeeds are included only for readability.</t><figure><artwork align="left"><![CDATA[<sourcecode type="core-link-format"><![CDATA[ REQ: GET /.well-known/core?rt=ace.est* RES: 2.05 Content </est/crts>;rt="ace.est.crts";ct="281TBD287",287", </est/sen>;rt="ace.est.sen";ct="281TBD287",287", </est/sren>;rt="ace.est.sren";ct="281TBD287",287", </est/att>;rt="ace.est.att";ct=285, </est/skg>;rt="ace.est.skg";ct=62, </est/skc>;rt="ace.est.skc";ct=62]]></artwork> </figure> <!-- Used quotes when multiple cts are returned as shown in draft-ietf-core-resource-directory-19 -->]]></sourcecode> <t>The first three lines, describing ace.est.crts, ace.est.sen, and ace.est.sren, of the discovery response aboveMUST<bcp14>MUST</bcp14> be returned if the server supports resource discovery. The last three lines are only included if the corresponding EST functions are implemented (see <xreftarget="est-implementation"/>).target="est-implementation" format="default"/>). The Content-Formats in the response allow the client to request one that is supported by the server. These are the values that would be sent in the client request with an Acceptoption. </t><!--This approach allows future servers to incorporate currently not specified content-formats and resources.--> <!--Port numbers, not returned in the example, are assumed to be the default numbers 5683 and 5684 for CoAP and CoAPS respectively (Sections 12.6 and 12.7 of <xref target="RFC7252"/>). -->Option. </t> <t>Discoverable port numbers can be returned in the response payload. An example response payload for non-default CoAPS server port 61617 follows below. Linefeeds are included only for readability.</t><figure><artwork align="left"><![CDATA[<sourcecode type="core-link-format"><![CDATA[ REQ: GET /.well-known/core?rt=ace.est* RES: 2.05 Content <coaps://[2001:db8:3::123]:61617/est/crts>;rt="ace.est.crts"; ct="281TBD287",287", <coaps://[2001:db8:3::123]:61617/est/sen>;rt="ace.est.sen"; ct="281TBD287",287", <coaps://[2001:db8:3::123]:61617/est/sren>;rt="ace.est.sren"; ct="281TBD287",287", <coaps://[2001:db8:3::123]:61617/est/att>;rt="ace.est.att"; ct=285, <coaps://[2001:db8:3::123]:61617/est/skg>;rt="ace.est.skg"; ct=62, <coaps://[2001:db8:3::123]:61617/est/skc>;rt="ace.est.skc"; ct=62]]></artwork> </figure> <!--on port 5684-->]]></sourcecode> <t>The serverMUST<bcp14>MUST</bcp14> support the default /.well-known/est root resource. The serverSHOULD<bcp14>SHOULD</bcp14> support resource discovery when it supports non-default URIs (like /est or /est/ArbitraryLabel) or ports. The clientSHOULD<bcp14>SHOULD</bcp14> use resource discovery when it is unaware of the available EST-coapsresources.</t><!-- or considers sending two Uri-Path Options to convey the resource wasteful.-->resources.</t> <t>Throughout thisdocumentdocument, the example root resource of /est is used.</t> </section><!-- discovery and URIs --><section anchor="implementation"title="Mandatory/optionalnumbered="true" toc="default"> <name>Mandatory/Optional ESTFunctions">Functions</name> <t> This specification contains a set of required-to-implement functions, optional functions, andnot specifiednot-specified functions. The unspecified functions are deemed too expensive for low-resource devices in payload and calculation times.</t> <t> <xreftarget="est-implementation"/>target="est-implementation" format="default"/> specifies the mandatory-to-implement or optional implementation of the EST-coaps functions. Discovery of the existence of optional functions is described in <xreftarget="discovery"/>.</t> <texttabletarget="discovery" format="default"/>.</t> <table anchor="est-implementation"title="Listalign="center"> <name>List of EST-coapsfunctions"> <ttcolFunctions</name> <thead> <tr> <th align="left">ESTFunctions</ttcol> <ttcolFunctions</th> <th align="left">EST-coapsimplementation</ttcol> <c>Implementation</th> </tr> </thead> <tbody> <tr> <td align="left"> /cacerts</c> <c> MUST </c> <c></td> <td align="left"> <bcp14>MUST</bcp14> </td> </tr> <tr> <td align="left"> /simpleenroll</c> <c> MUST </c> <c></td> <td align="left"> <bcp14>MUST</bcp14> </td> </tr> <tr> <td align="left"> /simplereenroll</c> <c> MUST </c> <c></td> <td align="left"> <bcp14>MUST</bcp14> </td> </tr> <tr> <td align="left"> /fullcmc</c> <c></td> <td align="left"> Not specified</c> <c></td> </tr> <tr> <td align="left"> /serverkeygen</c> <c> OPTIONAL </c> <c></td> <td align="left"> <bcp14>OPTIONAL</bcp14> </td> </tr> <tr> <td align="left"> /csrattrs</c> <c> OPTIONAL </c> </texttable></td> <td align="left"> <bcp14>OPTIONAL</bcp14> </td> </tr> </tbody> </table> </section><!-- Required/optional Functions --><section anchor="format"title ="Payload formats">numbered="true" toc="default"> <name>Payload Formats</name> <t>EST-coaps is designed for low-resourcedevices and hencedevices; hence, it does not need to send Base64-encoded data. Simple binary is more efficient (30% smaller payload for DER-encoded ASN.1) and well supported by CoAP. Thus, the payload for a givenMedia-Typemedia type follows the ASN.1 structure of theMedia-Typemedia type and is transported in binary format.</t><!-- <xref target="cborpair"/> <xref target="format"/> specifies the payload structure when multiple Media-Types are present in the payload.--><t>The Content-Format (HTTP Content-Type equivalent) of the CoAP message determines which EST message is transported in the CoAP payload. TheMedia-Typesmedia types specified in the HTTP Content-Type header field(Section 3.2.2 of <xref target="RFC7030"/>)(<xref target="RFC7030" sectionFormat="of" section="3.2.4"/>) are specified by the Content-Format Option (12) of CoAP. The combination of URI-Path and Content-Format in EST-coapsMUST<bcp14>MUST</bcp14> map to an allowed combination of URI andMedia-Typemedia type in EST. The required Content-Formats for these requests and response messages are defined in <xreftarget="Content-Formats"/>.target="Content-Formats" format="default"/>. The CoAP response codes are defined in <xreftarget="codes"/>.</t> <!-- CoAP doesn't have a mechanism for negotiating the content formats of representations embedded in application/multipart-core representations. -->target="codes" format="default"/>.</t> <t>Content-FormatTBD287287 can be used in place of 281 to carry a single certificate instead of aPKCS#7PKCS #7 container in a /crts, /sen,/sren/sren, or /skg response. Content-Format 281MUST<bcp14>MUST</bcp14> be supported by EST-coaps servers. ServersMAY<bcp14>MAY</bcp14> also support Content-FormatTBD287.287. It is up to the client to support only Content-Format 281,TBD287287 or both. The client will use aCOAPCoAP Accept Option in the request to express the preferred response Content-Format. If an Accept Option is not included in the request, the client is not expressing any preference and the serverSHOULD<bcp14>SHOULD</bcp14> choose format 281.</t><!--If the preferred Content-Format cannot be returned, the server MUST send a 4.06 (Not Acceptable) response, unless another error code takes precedence for the response <xref target="RFC7252"/>. --><t>Content-Format 286 is used in /sen,/sren/sren, and /skg requests and 285 in /att responses. </t><!-- <Section anchor="cborpair" title="Content-Format application/multipart-core"> --> <!-- <t><spanx style="strong">application/multipart-core</spanx> </t>--> <!--The collection is encoded as a <xref target="RFC7049">CBOR array</xref> with an even number of elements. The second, fourth, sixth, etc. element is a binary string containing a representation. The first, third, fifth, etc. element is an unsigned integer specifying the Content-Format identifier of the consecutive representation. --><t> A representation with Content-Format identifier 62 contains a collection of representations along with their respective Content-Format. The Content-Format identifies theMedia-Typemedia type application/multipart-core specified in <xreftarget="I-D.ietf-core-multipart-ct"/>.target="RFC8710" format="default"/>. For example, a collection, containing two representations in response toaan EST-coaps server-side key generation /skg request, could include a private key inPKCS#8PKCS #8 <xreftarget="RFC5958"/>target="RFC5958" format="default"/> with Content-Format identifier 284 (0x011C) and a single certificate in aPKCS#7PKCS #7 container with Content-Format identifier 281 (0x0119). Such a collection would look like [284,h'0123456789abcdef', 281,h'fedcba9876543210'] in diagnosticCBORConcise Binary Object Representation (CBOR) notation. The serialization of such CBOR content wouldbe </t> <figure title="Multipartbe:</t> <figure> <name>Multipart /skgresponse serialization"><artwork> <![CDATA[Response Serialization</name> <sourcecode type="cbor-pretty"><![CDATA[ 84 # array(4) 19 011C # unsigned(284) 48 # bytes(8) 0123456789ABCDEF # "\x01#Eg\x89\xAB\xCD\xEF" 19 0119 # unsigned(281) 48 # bytes(8) FEDCBA9876543210 # "\xFE\xDC\xBA\x98vT2\x10"]]></artwork></figure>]]></sourcecode> </figure> <t>When the client makes an /skcrequestrequest, the certificate returned with the private key is a single X.509 certificate (not aPKCS#7PKCS #7 container) with Content-Format identifierTBD287287 (0x011F) instead of 281. In cases where the private key is encrypted withCMSCryptographic Message Syntax (CMS) (as explained in <xreftarget="serverkey"/>)target="serverkey" format="default"/>), the Content-Format identifier is 280 (0x0118) instead of 284. Thecontent formatContent-Format used in the response is summarized in <xreftarget="skg-skc"/>.</t> <texttabletarget="skg-skc" format="default"/>.</t> <table anchor="skg-skc"title="response content formatsalign="center"> <name>Response Content-Formats forskg/skg andskc"> <ttcol align="left">Function</ttcol> <ttcol align="left">Response part 1</ttcol> <ttcol align="left">Response part 2</ttcol> <c>/skc</name> <thead> <tr> <th align="left">Function</th> <th align="left">Response, Part 1</th> <th align="left">Response, Part 2</th> </tr> </thead> <tbody> <tr> <td align="left"> /skg</c> <c></td> <td align="left"> 284</c> <c> 281</c> <c></td> <td align="left"> 281</td> </tr> <tr> <td align="left"> /skc</c> <c></td> <td align="left"> 280</c> <c> TBD287</c> </texttable></td> <td align="left"> 287</td> </tr> </tbody> </table> <t>The key and certificate representations are DER-encoded ASN.1, in itsnativebinary form. An example is shown in <xreftarget="appskg"/>.</t> <!-- </section> --> <!--Content-Format application/multipart-core -->target="appskg" format="default"/>.</t> </section><!-- Payload format --><sectiontitle="Message Bindings">numbered="true" toc="default"> <name>Message Bindings</name> <t>The general EST-coaps message characteristics are:<list style="symbols"> <!-- <t>The Ver, TKL, Token, and Message ID values of the CoAP header are not affected by EST.</t> --> <t>EST-coaps</t> <ul spacing="normal"> <li>EST-coaps servers sometimes need to provide delayedresponsesresponses, which are preceded by an immediately returned empty ACK or an ACK containing response code 5.03 as explained in <xreftarget="pending"/>.target="pending" format="default"/>. Thus, it isRECOMMENDED<bcp14>RECOMMENDED</bcp14> for implementers to send EST-coaps requests inconfirmable CONConfirmable (CON) CoAPmessages.</t> <t>Themessages.</li> <li>The CoAP Options used are Uri-Host, Uri-Path, Uri-Port, Content-Format, Block1, Block2, and Accept. These CoAP Options are used to communicate the HTTP fields specified in the EST REST messages. The Uri-host and Uri-Port Options can be omitted from theCOAPCoAP message sent on the wire. When omitted, they are logically assumed to be the transport protocol destination address andportport, respectively. Explicit Uri-Host and Uri-Port Options are typically used when an endpoint hosts multiple virtual servers and uses the Options to route the requests accordingly. OtherCOAPCoAP Options should be handled in accordance with <xreftarget="RFC7252"/>.</t> <!-- Alternatively, if a UDP port to a server is blocked, someone could send the DTLS packets to a known open port on the server and use the Uri-Port to convey the intended port he is attempting to reach. --> <t>ESTtarget="RFC7252" format="default"/>.</li> <li>EST URLs are HTTPS based(https://),(https://); inCoAPCoAP, these are assumed to be translated to CoAPS(coaps://)</t> </list></t>(coaps://).</li> </ul> <t><xreftarget="est-uri"/>target="est-uri" format="default"/> provides the mapping from the EST URI path to the EST-coaps URI path. <xreftarget="messagebindings"/>target="messagebindings" format="default"/> includes some practical examples of EST messages translated to CoAP.</t> </section><!-- Message bindings --><section anchor="codes"title="CoAP response codes"> <t>Section 5.9 of <xref target="RFC7252"/>numbered="true" toc="default"> <name>CoAP Response Codes</name> <t><xref target="RFC7252" sectionFormat="of" section="5.9"/> andSection 7 of<xreftarget="RFC8075"/>target="RFC8075" sectionFormat="of" section="7"/> specify the mapping of HTTP response codes to CoAP response codes. The success code in response to an EST-coaps GET request (/crts,/att),/att) is 2.05. Similarly, 2.04 is used in successful response to EST-coaps POST requests (/sen, /sren, /skg, /skc).</t><!--2.01 Making 2.04 based on comment from Esko https://github.com/SanKumar2015/EST-coaps/issues/145#issuecomment-497029846 --> <!-- Removing because we now use 2.04 based on comment from Esko https://github.com/SanKumar2015/EST-coaps/issues/145#issuecomment-497029846 Section 7 of <xref target="RFC8075"/> maps 2.02 (Deleted) or 2.04 (Changed) to an HTTP 200 OK response, but 2.01 (Created) is more suitable for the creation of certificates in the context of EST-coaps. --><t>EST makes use of HTTP 204 or 404 responses when a resource is not available for the client. InEST-coapsEST-coaps, 2.04 is used in response to a POST (/sen, /sren, /skg, /skc). 4.04 is used when the resource is not available for the client. </t> <t>HTTP response code 202 with a Retry-After header field in <xreftarget="RFC7030"/>target="RFC7030" format="default"/> has no equivalent in CoAP. HTTP 202 with Retry-After is used in EST for delayed server responses. <xreftarget="pending"/>target="pending" format="default"/> specifies how EST-coaps handles delayed messages with 5.03 responses with a Max-Age Option.</t><!-- In case a CoAP Option is unrecognized and critical, the server is expected to return a 4.02 (Bad Option). Moreover, if the Content-Format requested in the client Accept Option, is not supported the server MUST return a 4.06 (Not Acceptable), unless another error code takes precedence for the response.--><t>Additionally, EST's HTTP 400, 401, 403,404404, and 503 status codes have their equivalent CoAP 4.00, 4.01, 4.03,4.044.04, and 5.03 response codes in EST-coaps. <xreftarget="estcoaps-codes"/>target="estcoaps-codes" format="default"/> summarizes the EST-coaps response codes. </t><texttable<table anchor="estcoaps-codes"title="EST-coaps response codes"> <ttcol align="left">operation</ttcol> <ttcolalign="center"> <name>EST-coaps Response Codes</name> <thead> <tr> <th align="left">Operation</th> <th align="left">EST-coapsresponse code</ttcol> <ttcol align="left">Description</ttcol> <c>/crts, /att</c> <c>2.05</c> <c>Success.Response Code</th> <th align="left">Description</th> </tr> </thead> <tbody> <tr> <td align="left">/crts, /att</td> <td align="left">2.05</td> <td align="left">Success. Certs included in the responsepayload.</c> <c> </c> <c>4.xxpayload.</td> </tr> <tr> <td align="left"> </td> <td align="left">4.xx /5.xx</c> <c>Failure.</c> <c>/sen,5.xx</td> <td align="left">Failure.</td> </tr> <tr> <td align="left">/sen, /skg, /sren,/skc</c> <c>2.04 <!-- 2.01 Making 2.04 based on comment from Esko https://github.com/SanKumar2015/EST-coaps/issues/145#issuecomment-497029846 --> </c> <c>Success./skc</td> <td align="left">2.04 </td> <td align="left">Success. Cert included in the responsepayload.</c> <!-- Removing because we now always use 2.04 based on comment from Esko https://github.com/SanKumar2015/EST-coaps/issues/145#issuecomment-497029846 <c> </c> <c>2.04</c> <c>Success. Cert included in the delayed separate response payload. </c> --> <c> </c> <c>5.03</c> <c>Retrypayload.</td> </tr> <tr> <td align="left"> </td> <td align="left">5.03</td> <td align="left">Retry in Max-Age Optiontime.</c> <c> </c> <c>4.xxtime.</td> </tr> <tr> <td align="left"> </td> <td align="left">4.xx /5.xx</c> <c>Failure.</c> </texttable>5.xx</td> <td align="left">Failure.</td> </tr> </tbody> </table> </section><!-- CoAP response codes --><section anchor="fragment"title="Message fragmentation">numbered="true" toc="default"> <name>Message Fragmentation</name> <t>DTLS defines fragmentation only for the handshake and not for secure data exchange (DTLS records). <xreftarget="RFC6347"/>target="RFC6347" format="default"/> states that to avoid using IP fragmentation, which involves error-prone datagram reconstitution, invokers of the DTLS record layer should size DTLS records so that they fit within any Path MTU estimates obtained from the record layer. In addition, invokers residing ona6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) over IEEE 802.15.4 networks <xreftarget="ieee802.15.4"/> networktarget="IEEE802.15.4" format="default"/> are recommended to size CoAP messages such that each DTLS record will fit within one or two IEEE 802.15.4 frames.</t><!-- From <xref target="RFC0791"/> follows that the absolute minimum value of the IP MTU for IPv4 is as low as 68 bytes, which would leave only 40 bytes minus security overhead for a UDP payload. --><t>That is not always possible in EST-coaps. Even though ECC certificates are small in size, they can vary greatly based on signature algorithms, key sizes, and Object Identifier (OID) fields used. For 256-bit curves, commonECDSAElliptic Curve Digital Signature Algorithm (ECDSA) cert sizes are 500-1000bytesbytes, which could fluctuate further based on the algorithms, OIDs, Subject Alternative Names(SAN)(SANs), and cert fields. For 384-bit curves, ECDSA certificates increase in size and can sometimes reach 1.5KB. Additionally, there are times when the EST cacerts response from the server can include multiple certificates that amount to large payloads.Section 4.6 of CoAP<xreftarget="RFC7252"/>target="RFC7252" sectionFormat="of" section="4.6"/> (CoAP) describes the possible payload sizes: "if nothing is known about the size of the headers, good upper bounds are 1152 bytes for the message size and 1024 bytes for the payload size".Section 4.6 of<xreftarget="RFC7252"/>target="RFC7252" sectionFormat="of" section="4.6"/> also suggests that IPv4 implementations may want to limit themselves to more conservative IPv4 datagram sizes such as 576 bytes. Even with ECC, EST-coaps messages can still exceed MTU sizes on the Internet or 6LoWPAN <xreftarget="RFC4919"/> (Section 2 of <xref target="RFC7959"/>).target="RFC4919" format="default"/> (<xref target="RFC7959" sectionFormat="of" section="2"/>). EST-coaps needs to be able to fragment messages into multiple DTLS datagrams.</t> <t>To perform fragmentation in CoAP, <xreftarget="RFC7959"/>target="RFC7959" format="default"/> specifies the Block1 Option for fragmentation of the request payload and the Block2 Option for fragmentation of the return payload of a CoAP flow. As explained inSection 1 of<xreftarget="RFC7959"/>,target="RFC7959" sectionFormat="of" section="1"/>, block-wise transfers should be used in Confirmable CoAP messages to avoid the exacerbation of lost blocks. EST-coaps serversMUST<bcp14>MUST</bcp14> implement Block1 and Block2. EST-coaps clientsMUST<bcp14>MUST</bcp14> implement Block2. EST-coaps clientsMUST<bcp14>MUST</bcp14> implement Block1 only if they are expecting to send EST-coaps requests with a packet size that exceeds thePathpath MTU.</t><!-- <xref target="RFC7959"/> defines SZX in the Block Option fields. SZX is used to convey the size of the blocks in the requests or responses. The EST-coaps client MAY specify the Block1 and Block2 sizes for the server and MAY process Block2 sizes from the server. The EST-coaps server MAY specify the Block2 size for the client and MAY process Block1 and Block2 sizes from the client.--></t> <t><xreftarget="RFC7959"/>target="RFC7959" format="default"/> also defines Size1 and Size2 Options to provide size information about the resource representation in a request and response.EST-clientThe EST-coaps client and serverMAY<bcp14>MAY</bcp14> support Size1 and Size2 Options.</t><!-- A Size1 response MAY be parsed by the EST-coaps client as a size indication of the resource in the server Block2 responses or by the server as a request for a size estimate by the client. Similarly, the Size2 Option defined in <xref target="RFC7959"/> MAY be parsed by the server as an indication of the size of the resource carried in Block1 Options and by the client in the 4.13 (Request Entity Too Large) response as a maximum request size expected by the server.--></t> <t>Examples of fragmented EST-coaps messages are shown in <xreftarget="blockexamples"/>.</t>target="blockexamples" format="default"/>.</t> </section><!-- Message fragmentation --><section anchor="pending"title="Delayed Responses">numbered="true" toc="default"> <name>Delayed Responses</name> <t>Server responses can sometimes be delayed. According toSection 5.2.2 of<xref target="RFC7252"/>,sectionFormat="of" section="5.2.2"/>, a slow server can acknowledge the request and respond later with the requested resource representation. In particular, a slow server can respond to an EST-coaps enrollment request with an empty ACK with code0.00,0.00 before sending the certificate to the client after a short delay. If the certificate response is large, the server will need more than one Block2 block to transfer it. </t> <t>This situation is shown in <xreftarget="fig-est-short-wait"/>.target="fig-est-short-wait" format="default"/>. The client sends an enrollment request that uses N1+1 Block1 blocks. The server uses an empty 0.00 ACK to announce the delayedresponseresponse, which is provided later with 2.04 messages containing N2+1 Block2 Options. The first 2.04 is aconfirmableConfirmable message that is acknowledged by the client. Onwards, the client acknowledges all subsequent Block2 blocks. The notation of <xreftarget = "fig-est-short-wait"/>target="fig-est-short-wait" format="default"/> is explained in <xreftarget="cacertsblock"/>.</t>target="cacertsblock" format="default"/>.</t> <figuretitle="EST-COAP enrollmentanchor="fig-est-short-wait"> <name>EST-coaps Enrollment withshort wait" anchor="fig-est-short-wait"><artwork> <![CDATA[Short Wait</name> <artwork name="" type="" align="left" alt=""><![CDATA[ POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)} --> <-- (ACK) (1:0/1/256) (2.31 Continue) POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} --> <-- (ACK) (1:1/1/256) (2.31 Continue) . . . POST[2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR[2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256) {CSR (frag# N1+1)}--> <-- (0.00 empty ACK) | ... Short delay before the certificate is ready ... | <-- (CON) (1:N1/0/256)(2:0/1/256)(2.04 Changed) {Cert resp (frag# 1)} (ACK) --> POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256) --> <-- (ACK) (2:1/1/256) (2.04 Changed) {Cert resp (frag# 2)} . . . POST [2001:db8::2:1]:61616/est/sen (CON)(2:N2/0/256) --> <-- (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}]]></artwork></figure>]]></artwork> </figure> <t>If the server is very slow (for example, manual intervention isrequiredrequired, which would take minutes), itSHOULD<bcp14>SHOULD</bcp14> respond with an ACK containing response code 5.03 (Service unavailable) and a Max-Age Option to indicate the time the clientSHOULD<bcp14>SHOULD</bcp14> wait before sending another request to obtain the content. After a delay of Max-Age, the clientSHOULD<bcp14>SHOULD</bcp14> resend the identical CSR to the server. As long as the server continues to respond with response code 5.03 (Service Unavailable) with a Max-Age Option, the client will continue to delay for Max-Age and then resend the enrollment request until the server responds with the certificate or the client abandons the requestfordue to policy or other reasons. </t> <t>To demonstrate this scenario, <xreftarget="fig-est-long-wait"/>target="fig-est-long-wait" format="default"/> shows a client sending an enrollment request that uses N1+1 Block1 blocks to send the CSR to the server. The server needs N2+1 Block2 blocks torespond,respond but also needs to take a long delay (minutes) to provide the response. Consequently, the server uses a 5.03 ACK response with a Max-Age Option. The client waits for a period of Max-Age as many times as it receives the same 5.03 response and retransmits the enrollment request until it receives a certificate in a fragmented 2.04 response. </t><!-- 2.01 Making 2.04 based on comment from Esko https://github.com/SanKumar2015/EST-coaps/issues/145#issuecomment-497029846 --><figuretitle="EST-COAP enrollmentanchor="fig-est-long-wait"> <name>EST-coaps Enrollment withlong wait" anchor="fig-est-long-wait"><artwork> <![CDATA[Long Wait</name> <artwork name="" type="" align="left" alt=""><![CDATA[ POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)} --> <-- (ACK) (1:0/1/256) (2.31 Continue) POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} --> <-- (ACK) (1:1/1/256) (2.31 Continue) . . . POST[2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR[2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256) {CSR (frag# N1+1)}--> <-- (ACK) (1:N1/0/256) (5.03 Service Unavailable) (Max-Age) | | ... Client tries again after Max-Age with identical payload ... | | POST[2001:db8::2:1]:61616/est/sen(CON)(1:0/1/256){CSR[2001:db8::2:1]:61616/est/sen(CON)(1:0/1/256) {CSR (frag# 1)}--> <-- (ACK) (1:0/1/256) (2.31 Continue) POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} --> <-- (ACK) (1:1/1/256) (2.31 Continue) . . . POST[2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR[2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256) {CSR (frag# N1+1)}--> | ... Immediate response when certificate is ready ... | <-- (ACK) (1:N1/0/256) (2:0/1/256) (2.04Changed){CertChanged) {Cert resp (frag# 1)} POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256) --> <-- (ACK) (2:1/1/256) (2.04 Changed) {Cert resp (frag# 2)} . . . POST [2001:db8::2:1]:61616/est/sen (CON)(2:N2/0/256) --> <-- (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}]]></artwork></figure> <!-- <t>Comparing <xref target="fig-est-multiple-block"/> with <xref target="fig-est-long-wait"/> we can see all the extra requests in the latter case after the Max-Age wait-time.</t> -->]]></artwork> </figure> </section><!-- Delayed Responses --><section anchor="serverkey"title="Server-sidenumbered="true" toc="default"> <name>Server-Side KeyGeneration">Generation</name> <t>Private keys can be generated on the server to support scenarios whereserer-sideserver-side key generation is needed. Such scenarios include those where it is considered more secure to generate the long-lived, random private key that identifies the client at the server, or where the resources spent to generate a random private key at the client are considered scarce, or where the security policy requires that the certificate public and corresponding private keys are centrally generated and controlled. As always, it is necessary to use proper random numbers in various protocols such as (D)TLS (<xreftarget="sec-est"/>).</t>target="sec-est" format="default"/>).</t> <t>When requesting server-side key generation, the client asks for the server or proxy to generate the private key and the certificate, which are transferred back to the client in the server-side key generation response. In all respects, the server treats the CSR as it would treat any enroll or re-enroll CSR; the only distinction here is that the serverMUST<bcp14>MUST</bcp14> ignore the public key values and signature in the CSR. These are included in the request only to allowre-usereuse of existing codebases for generating and parsing such requests.</t> <t>The client /skg request is for a certificate in aPKCS#7PKCS #7 container and private key in two application/multipart-core elements. Respectively, an /skc request is for a single application/pkix-cert certificate and a private key. The private key Content-Format requested by the client is indicated in thePKCS#10PKCS #10 CSR request. If the request contains SMIMECapabilities and DecryptKeyIdentifier orAsymmetricDecryptKeyIdentifierAsymmetricDecryptKeyIdentifier, the client is expecting Content-Format 280 for the private key.ThenThen, this private key is encrypted symmetrically or asymmetricallyasper <xref target="RFC7030"/>.format="default"/>. The symmetric key or the asymmetric keypair establishment method is out of scope of this specification.AAn /skg or /skc request with a CSR without SMIMECapabilities expects an application/multipart-core with an unencryptedPKCS#8PKCS #8 private key with Content-Format 284.</t> <t> The EST-coaps server-side key generation response is returned with Content-Format application/multipart-core <xreftarget="I-D.ietf-core-multipart-ct"/>target="RFC8710" format="default"/> containing a CBOR array with four items (<xreftarget="format"/>).target="format" format="default"/>). The two representations (each consisting of two CBOR array items) do not have to be in a particular order since each representation is preceded by its Content-Format ID. Depending on the request, the private key can be in unprotectedPKCS#8 <xref target="RFC5958"/>PKCS #8 format <xref target="RFC5958" format="default"/> (Content-Format 284) or protected inside of CMS SignedData (Content-Format 280). The SignedData, placed in the outermost container, is signed by the party that generated the private key, which may be the EST server or the EST CA. SignedData placed within the Enveloped Data does not need additional signing as explained inSection 4.4.2 of<xref target="RFC7030"/>.sectionFormat="of" section="4.4.2"/>. In summary, the symmetrically encrypted key is included in the encryptedKey attribute in a KEKRecipientInfo structure. In the case where the asymmetric encryption key is suitable for transport keyoperationsoperations, the generated private key is encrypted with a symmetric key. The symmetric key itself is encrypted by the client-defined (in the CSR) asymmetric public key and is carried in an encryptedKey attribute in a KeyTransRecipientInfo structure. Finally, if the asymmetric encryption key is suitable for key agreement, the generated private key is encrypted with a symmetric key. The symmetric key itself is encrypted by the client defined (in the CSR) asymmetric public key and is carried inana recipientEncryptedKeys attribute in a KeyAgreeRecipientInfo. </t><!-- The EnvelopedData is returned in the response as an "application/pkcs7-mime" or "application-pkix_cert" part with an smime-type parameter of "server-generated-key" and a Content- Transfer-Encoding of "Base64". --><t><xref target="RFC7030"/>format="default"/> recommends the use of additional encryption of the returned private key. For the context of this specification, clients and servers that choose to support server-side key generationMUST<bcp14>MUST</bcp14> support unprotected(PKCS#8)(PKCS #8) private keys (Content-Format 284). Symmetric or asymmetric encryption of the private key (CMS EnvelopedData, Content-Format 280)SHOULD<bcp14>SHOULD</bcp14> be supported for deployments where end-to-end encryption is needed between the client and a server. Such cases could include architectures where an entity between the client and the CA terminates the DTLS connection (Registrar in <xreftarget="RAfig"/>). Althoughtarget="RAfig" format="default"/>). Though <xreftarget="RFC7030"/>target="RFC7030" format="default"/> strongly recommends that clients request the use of CMS encryption on top of the TLS channel's protection, this document does not make such a recommendation; CMS encryption can still be used when mandated by theuse-case.use case. </t><!-- Panos: Commented this out. EST mandated two layers of encryption but did not say how the extra encryption can be established. It is counter-intuitive to say we don't trust the DTLS connection and we require more encryption on top of it. Due to how hard it is to establish the keys for the extra encryption and that if the DTLS channel is not secure we have bigger problems, I do not agree this paragraph should be here. --> <!--<t>Following <xref target="RFC7030"/>: "It is strongly RECOMMENDED that the clients request that the returned private key be afforded the additional security of the Cryptographic Message Syntax (CMS) EnvelopedData in addition to the TLS-provided security to protect against unauthorized disclosure."</t> --></section><!-- Server-side Key Generation --></section><!-- protocol design--><section anchor="proxy"title="HTTPS-CoAPS Registrar">numbered="true" toc="default"> <name>HTTPS-CoAPS Registrar</name> <t>In real-world deployments, the EST server will not always reside within the CoAP boundary. The EST server can exist outside the constrainednetworknetwork, in which case it will support TLS/HTTP instead of CoAPS. In suchenvironmentsenvironments, EST-coaps is used by the client within the CoAP boundary and TLS is used to transport the EST messages outside the CoAP boundary. A Registrar at the edge is required to operate between the CoAP environment and the external HTTP network as shown in <xreftarget="RAfig"/>.target="RAfig" format="default"/>. </t><!-- <t>When not explicitly needed, it is RECOMMENDED to use direct connections between EST server and client</t> --><figurealign="left" anchor="RAfig" title="EST-coaps-to-HTTPSanchor="RAfig"> <name>EST-coaps-to-HTTPS Registrar at the CoAPboundary."><artwork><![CDATA[Boundary</name> <artwork name="" type="" align="center" alt=""><![CDATA[ Constrained Network .------. .----------------------------. | CA | |.--------------------------.| '------' || || | || || .------. HTTP.-----------------..------------------. CoAPS .-----------. || | EST |<------->|EST-coaps-to-HTTPS|<------->| EST Client| || |Server|over TLS | Registrar | '-----------' || '------''-----------------''------------------' || || || |'--------------------------'| '----------------------------']]></artwork></figure>]]></artwork> </figure> <t>The EST-coaps-to-HTTPS RegistrarMUST<bcp14>MUST</bcp14> terminate EST-coaps downstream and initiate EST connections over TLS upstream. The RegistrarMUST<bcp14>MUST</bcp14> authenticate and optionally authorize the client requests while itMUST<bcp14>MUST</bcp14> be authenticated by the EST server or CA. The trust relationship between the Registrar and the EST serverSHOULD<bcp14>SHOULD</bcp14> be pre-established for the Registrar to proxy these connections on behalf of various clients.</t> <t>When enforcing Proof-of-Possession(PoP)(POP) linking, theDTLStls-unique or tls-exporter value of the(D)TLSsession for DTLS 1.2 and DTLS 1.3, respectively, is used to prove that the private key corresponding to the public key is in the possession of the client and was used to establish the connection as explained in <xreftarget="profile7925"/>.target="profile7925" format="default"/>. ThePoPPOP linking information is lost between the EST-coaps client and the EST server when a Registrar is present. The EST server becomes aware of the presence of a Registrar from its TLS client certificate that includes the id-kp-cmcRA<xref target="RFC6402"/>extended key usage (EKU) extension(EKU).<xref target="RFC6402" format="default"/>. As explained inSection 3.7 of<xreftarget="RFC7030"/>,target="RFC7030" sectionFormat="of" section="3.7"/>, the "EST serverSHOULD<bcp14>SHOULD</bcp14> applyanauthorization policy consistent witha Registrar client. For example, itan RA client ... the EST server could be configured to acceptPoPPOP linking information that does not match the current TLS session because the authenticated EST clientRegistrarRA has verified this information when acting as an EST server".</t> <t><xreftarget="est-uri"/>target="est-uri" format="default"/> contains the URI mappings between EST-coaps and EST that the RegistrarMUST<bcp14>MUST</bcp14> adhere to. <xreftarget="codes"/>target="codes" format="default"/> of this specification andSection 7 of<xreftarget="RFC8075"/>target="RFC8075" sectionFormat="of" section="7"/> define the mappings between EST-coaps and HTTP responsecodes,codes that determine how the RegistrarMUST<bcp14>MUST</bcp14> translate CoAP response codes from/to HTTP status codes. The mapping from CoAP Content-Format to HTTP Content-Type is defined in <xreftarget="Content-Formats"/>.target="Content-Formats" format="default"/>. Additionally, a conversion from CBOR major type 2 to Base64 encodingMUST<bcp14>MUST</bcp14> take place at the Registrar. If CMS end-to-end encryption is employed for the private key, the encrypted CMS EnvelopedData blobMUST<bcp14>MUST</bcp14> be converted at the Registrar to binary CBOR type 2 downstream to the client. This is a format conversion that does not require decryption of the CMS EnvelopedData.</t> <t>A deviation from the mappings in <xreftarget="est-uri"/>target="est-uri" format="default"/> could take place if clients that leverage server-side key generation preferred for the enrolled keys to be generated by the Registrar in the case the CA does not support server-side key generation. Such a Registrar is responsible for generating a new CSR signed by a new keywhichthat will be returned to the client along with the certificate from the CA. In these cases, the RegistrarMUST<bcp14>MUST</bcp14> use random number generation with proper entropy. </t> <t>Due to fragmentation of large messages into blocks, an EST-coaps-to-HTTP RegistrarMUST<bcp14>MUST</bcp14> reassemble theBLOCKsblocks before translating the binary content toBase64,Base64 and consecutively relay the message upstream. </t> <t>The EST-coaps-to-HTTP RegistrarMUST<bcp14>MUST</bcp14> support resource discovery according to the rules in <xreftarget="discovery"/>. </t><!-- The available actions of the Registrars MUST be announced with as many resource paths necessary. --> <!-- The discovery of the EST server in the HTTP environment follow the rules specified in <xref target="RFC7030"/> --> <!-- Next paragraph should be removed because e2e encryption is possible. No need for the registrar to decrypt --> <!-- <t>When server-side key generation is used, if the private key is protected using symmetric keys then the Registrar needs to encrypt the private key down to the client with one symmetric key and decrypt it from the server with another. If no private key encryption takes place the Registrar will be able to see the key as it establishes a separate connection to the server. In the case of asymmetrically encrypted private key, the Registrar may not be able to decrypt it if the server encrypted it with a public key that corresponds to a private key that belongs to the client.target="discovery" format="default"/>. </t>--></section> <sectiontitle="Parameters">numbered="true" toc="default"> <name>Parameters</name> <t>This section addresses transmission parameters described insections 4.7Sections <xref target="RFC7252" sectionFormat="bare" section="4.7"/> and4.8<xref target="RFC7252" sectionFormat="bare" section="4.8"/> of <xref target="RFC7252"/>. EST does not impose any unique values on the CoAP parameters in <xreftarget="RFC7252"/>,target="RFC7252" format="default"/>, but the setting of the CoAP parameter values may have consequence for the setting of the EST parameter values. </t><!-- <figure align="center"><artwork><![CDATA[ ACK_TIMEOUT | 2 seconds | ACK_RANDOM_FACTOR | 1.5 | MAX_RETRANSMIT | 4 | NSTART | 1 | DEFAULT_LEISURE | 5 seconds | PROBING_RATE | 1 byte/second | ]]></artwork></figure> --> <!-- using Nexus Certificate Manager with Californium for CoAP support, communicating with a ContikiOS and tinyDTLS based client, from RISE SICS, --><t> Implementations should follow the default CoAP configuration parameters <xreftarget="RFC7252"/>.target="RFC7252" format="default"/>. However, depending on the implementation scenario, retransmissions and timeouts can also occur on other networking layers, governed by other configuration parameters. When a change in a server parameter has taken place, the parameter values in the communicating endpointsMUST<bcp14>MUST</bcp14> be adjusted as necessary. Examples of how parameters could be adjusted includehigher layerhigher-layer congestion protocols, provisioningagentsagents, and configurations included in firmware updates.</t> <t>Some further comments about some specific parameters, mainly from Table 2 in <xreftarget="RFC7252"/>: <list style="symbols"> <t>NSTART: Atarget="RFC7252" format="default"/>, include the following: </t> <dl> <dt>NSTART: </dt> <dd>A parameter that controls the number of simultaneous outstanding interactions that a client maintains to a given server. An EST-coaps client is expected to control at most one interaction with a given server, which is the default NSTART value defined in <xreftarget="RFC7252"/>.</t> <t>DEFAULT_LEISURE: Thistarget="RFC7252" format="default"/>. </dd> <dt>DEFAULT_LEISURE: </dt> <dd>A setting that is only relevant in multicastscenarios,scenarios and is outside the scope ofEST-coaps.</t> <t>PROBING_RATE: AEST-coaps. </dd> <dt>PROBING_RATE: </dt> <dd>A parameterwhichthat specifies the rate ofre-sending non-confirmableresending Non-confirmable messages. In the rare situations thatnon-confirmableNon-confirmable messages are used, the default PROBING_RATE value defined in <xreftarget="RFC7252"/> applies.</t> </list></t>target="RFC7252" format="default"/> applies. </dd> </dl> <t>Finally, the Table 3 parameters in <xreftarget="RFC7252"/>target="RFC7252" format="default"/> are mainly derived from Table 2. Directly changing parameters on one table would affect parameters on the other.</t> </section> <section anchor="deploy-limit"title = "Deployment limitations">numbered="true" toc="default"> <name>Deployment Limitations</name> <t>Although EST-coaps paves the way for the utilization of EST by constrained devices in constrained networks, some classes of devices <xref target="RFC7228"/>format="default"/> will not have enough resources to handle the payloads that come with EST-coaps. The specification of EST-coaps is intended to ensure that EST works for networks of constrained devices that choose to limit their communications stack to DTLS/CoAP. It is up to the network designer to decide which devices execute the EST protocol and which do not.</t> </section><!-- Deployment limits --><section anchor="iana"title="IANA Considerations">numbered="true" toc="default"> <name>IANA Considerations</name> <section anchor="Content-Formats"title="Content-Format Registry"> <t>Additions tonumbered="true" toc="default"> <name>Content-Formats Registry</name> <t>IANA has registered the following Content-Formats given in <xref target="Content-Format" format="default"/> in thesub-registry"CoAPContent-Formats",Content-Formats" subregistry within the "CoRE Parameters" registry <xreftarget="COREparams"/> are specified in <xref target="Content-Format"/>.target="CORE-PARAMS" format="default"/>. These have been registeredprovisionallyin the IETF Review or IESG Approval range (256-9999).</t><texttable<table anchor="Content-Format"title="Newalign="center"> <name>New CoAPContent-Formats"> <ttcol align="left">HTTP Content-Type</ttcol> <ttcol align="right">ID</ttcol> <ttcol align="left">Reference</ttcol> <c>application/pkcs7-mime; smime-type=server-generated-key</c><c>280</c> <c><xref target="RFC7030"/> <xref target="I-D.ietf-lamps-rfc5751-bis"/> [ThisRFC]</c> <c>application/pkcs7-mime; smime-type=certs-only</c> <c>281</c> <c><xref target="I-D.ietf-lamps-rfc5751-bis"/> [ThisRFC]</c> <c>application/pkcs8</c> <c>284</c> <c><xref target="RFC5958"/> <xref target="I-D.ietf-lamps-rfc5751-bis"/> [ThisRFC]</c> <c>application/csrattrs</c> <c>285</c> <c><xref target="RFC7030"/> </c> <c>application/pkcs10</c> <c>286</c> <c><xref target="RFC5967"/> <xref target="I-D.ietf-lamps-rfc5751-bis"/> [ThisRFC]</c> <c>application/pkix-cert</c> <c>TBD287</c> <c> <xref target="RFC2585"/> [ThisRFC]</c> </texttable> <t>It is suggested that 287 is allocated to TBD287.</t>Content-Formats</name> <thead> <tr> <th align="left">Media Type</th> <th align="right">ID</th> <th align="left">Reference</th> </tr> </thead> <tbody> <tr> <td align="left">application/pkcs7-mime; smime-type=server-generated-key</td> <td align="right">280</td> <td align="left"> <xref target="RFC7030" format="default"/> <xref target="RFC8551" format="default"/> RFC 9148</td> </tr> <tr> <td align="left">application/pkcs7-mime; smime-type=certs-only</td> <td align="right">281</td> <td align="left"> <xref target="RFC8551" format="default"/> RFC 9148</td> </tr> <tr> <td align="left">application/pkcs8</td> <td align="right">284</td> <td align="left"> <xref target="RFC5958" format="default"/> <xref target="RFC8551" format="default"/> RFC 9148</td> </tr> <tr> <td align="left">application/csrattrs</td> <td align="right">285</td> <td align="left"> <xref target="RFC7030" format="default"/> RFC 9148</td> </tr> <tr> <td align="left">application/pkcs10</td> <td align="right">286</td> <td align="left"> <xref target="RFC5967" format="default"/> <xref target="RFC8551" format="default"/> RFC 9148</td> </tr> <tr> <td align="left">application/pkix-cert</td> <td align="right">287</td> <td align="left"> <xref target="RFC2585" format="default"/> RFC 9148</td> </tr> </tbody> </table> </section><!-- Content-Format registry --><section anchor="resource-type"title="Resourcenumbered="true" toc="default"> <name>Resource Typeregistry"> <t>This memo registers newRegistry</name> <t>IANA has registered the following Resource Type (rt=) Link Target Attributes given in <xref target="rt-table"/> in the "Resource Type (rt=) Link Target Attribute Values" subregistry under the "Constrained RESTful Environments (CoRE) Parameters" registry.<list style="symbols"> <t>rt="ace.est.crts". This</t> <table anchor="rt-table"> <name>New Resource Type (rt=) Link Target Attributes</name> <thead> <tr> <th>Value</th> <th>Description</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>ace.est.crts</td> <td>This resource depicts the support of ESTget cacerts.</t> <t>rt="ace.est.sen". ThisGET cacerts.</td> <td>RFC 9148</td> </tr> <tr> <td>ace.est.sen</td> <td>This resource depicts the support of EST simpleenroll.</t> <t>rt="ace.est.sren". Thisenroll.</td> <td>RFC 9148</td> </tr> <tr> <td>ace.est.sren</td> <td>This resource depicts the support of EST simplereenroll.</t> <t>rt="ace.est.att". Thisreenroll.</td> <td>RFC 9148</td> </tr> <tr> <td>ace.est.att</td> <td>This resource depicts the support of ESTgetGET CSRattributes.</t> <t>rt="ace.est.skg". Thisattributes.</td> <td>RFC 9148</td> </tr> <tr> <td>ace.est.skg</td> <td>This resource depicts the support of EST server-side key generation with the returned certificate in aPKCS#7 container.</t> <t>rt="ace.est.skc". ThisPKCS #7 container.</td> <td>RFC 9148</td> </tr> <tr> <td>ace.est.skc</td> <td>This resource depicts the support of EST server-side key generation with the returned certificate in application/pkix-certformat.</t> </list> </t> <t></t>format.</td> <td>RFC 9148</td> </tr> </tbody> </table> </section><!-- Resource Type registry --><section anchor="well-known-uris"title="Well-Knownnumbered="true" toc="default"> <name>Well-Known URIsRegistry"> <t>A newRegistry</name> <t>IANA has added an additional referenceis requested forto the est URI in theWell-Known URIs"Well-Known URIs" registry: </t><texttable> <ttcol align='center'>URI Suffix</ttcol> <ttcol align='center'>Change Controller</ttcol> <ttcol align='center'>References</ttcol> <ttcol align='center'>Status</ttcol> <ttcol align='center'>Related Information</ttcol> <ttcol align='center'>Date Registered</ttcol> <ttcol align='center'>Date Modified</ttcol> <c>est</c> <c>IETF</c> <c>[RFC7030] [THIS RFC]</c> <c>permanent</c> <c></c> <c>2013-08-16</c> <c>[THIS RFC's publication date]</c> </texttable><dl> <dt>URI Suffix:</dt> <dd>est</dd> <dt>Change Controller:</dt> <dd>IETF</dd> <dt>References:</dt> <dd><xref target="RFC7030" format="default"/> RFC 9148</dd> <dt>Status:</dt> <dd>permanent</dd> <dt>Related Information:</dt> <dd></dd> <dt>Date Registered:</dt> <dd>2013-08-16</dd> <dt>Date Modified:</dt> <dd>2020-04-29</dd> </dl> </section><!-- Well Known URIs registry --></section><!-- IANA consideration --><section anchor="sec"title="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <section anchor="sec-est"title="EST server considerations">numbered="true" toc="default"> <name>EST Server Considerations</name> <t>The security considerationsof Section 6 ofin <xreftarget="RFC7030"/>target="RFC7030" sectionFormat="of" section="6"/> are only partially valid for the purposes of this document. As HTTP Basic Authentication is not supported, the considerations expressed for using passwords do not apply. The other portions of the security considerationsofin <xreftarget="RFC7030"/>target="RFC7030" format="default"/> continue to apply.</t> <t>Modern security protocols require random numbers to be available during the protocol run, forexampleexample, for nonces and ephemeral (EC) Diffie-Hellman key generation. This capability to generate random numbers is also needed when the constrained device generates the private key (that corresponds to the public key enrolled in the CSR). When server-side key generation is used, the constrained device depends on the server to generate the private key randomly, but it still needs locally generated random numbers for use in security protocols, as explained inSection 12 of<xreftarget="RFC7925"/>.target="RFC7925" sectionFormat="of" section="12"/>. Additionally, the transport of keys generated at the server is inherently risky. For those deploying server-side key generation, analysisSHOULD<bcp14>SHOULD</bcp14> be done to establish whether server-side key generation increases or decreases the probability of digital identity theft.</t> <t>It is important to note that, as pointed out in <xreftarget="PsQs"/>,target="PsQs" format="default"/>, sources contributing to the randomness pool used to generate random numbers on laptops or desktop PCs, such as mouse movement, timing of keystrokes, or air turbulence on the movement of hard drive heads, are not available on many constrained devices. Other sources have to be used or dedicated hardware has to be added. Selecting hardware for an IoT device that is capable of producing high-quality random numbers is therefore important <xreftarget="RSAfact"/>.</t> <!--Remark that the initial /crts request uses the implicit database, and that a compromised implicit database has as consequence that all subsequent exchanges from that client are jeopardized. -->target="RSA-FACT" format="default"/>.</t> <t>As discussed inSection 6 of<xreftarget="RFC7030"/>,target="RFC7030" sectionFormat="of" section="6"/>, it is"RECOMMENDED</t> <blockquote> <bcp14>RECOMMENDED</bcp14> that the Implicit Trust Anchor database used for EST server authenticationisbe carefully managed to reduce the chance of a third-party CA with poor certification practicesjeopardizing authentication.from being trusted. Disabling the Implicit Trust Anchor database aftersuccessfulysuccessfully receiving the Distribution of CA certificates response(Section 4.1.3)(<xref target="RFC7030" format="default" sectionFormat="comma" section="6"/>) limits anyriskvulnerability to the first TLSexchange".exchange. </blockquote> <t> Alternatively, in a case where a /sen request immediately follows a /crts, a clientMAY<bcp14>MAY</bcp14> choose to keep the connection authenticated by the Implicit TA open for efficiency reasons (<xreftarget="profile7925"/>).target="profile7925" format="default"/>). A client that interleaves EST-coaps /crts request with other requests in the same DTLS connectionSHOULD<bcp14>SHOULD</bcp14> revalidate the server certificate chain against the updated Explicit TA from the /crts response before proceeding with the subsequent requests. If the server certificate chain does not authenticate against the database, the clientSHOULD<bcp14>SHOULD</bcp14> close the connection without completing the rest of the requests. The updated Explicit TAMUST<bcp14>MUST</bcp14> continue to be used in new DTLS connections.</t> <t>In cases where theIDevIDInitial Device Identifier (IDevID) used to authenticate the client isexpiredexpired, the serverMAY<bcp14>MAY</bcp14> still authenticate the client because IDevIDs are expected to live as long as the device itself (<xreftarget="profile7925"/>).target="profile7925" format="default"/>). In such occasions, checking the certificate revocation status or authorizing the client using another method is important for the server to raise its confidence that the client can be trusted. </t> <t>In accordance with <xreftarget="RFC7030"/>,target="RFC7030" format="default"/>, TLS cipher suites that include "_EXPORT_" and "_DES_" in their namesMUST NOT<bcp14>MUST NOT</bcp14> be used. More recommendations for secure use of TLS and DTLS are included in <xreftarget="BCP195"/>.</t><!--<xref target="RFC7525"/>-->target="BCP195" format="default"/>.</t> <t>As described inCMC, Section 6.7 ofCertificate Management over CMS (CMC), <xreftarget="RFC5272"/>,target="RFC5272" sectionFormat="of" section="6.7"/>, "For keys that can be used as signature keys, signing the certification request with the private key serves as aPoPPOP on that key pair".TheIn (D)TLS 1.2, the inclusion of tls-unique in the certificate request links the proof-of-possession to theTLS(D)TLS proof-of-identity. This implies but does not prove that only the authenticated client currently has access to the private key.</t> <t>What's more, CMCPoPPOP linking uses tls-unique as it is defined in <xreftarget="RFC5929"/>.target="RFC5929" format="default"/>. The 3SHAKE attack <xreftarget="tripleshake"/>target="TRIPLESHAKE" format="default"/> poses a risk by allowinga man-in-the-middlean on-path active attacker to leverage session resumption and renegotiation to injecthimselfitself between a client and server even when channel binding is in use. Implementers should use the Extended Master Secret Extension in DTLS <xreftarget="RFC7627"/>target="RFC7627" format="default"/> to prevent such attacks. In the context of this specification, an attacker could invalidate the purpose of thePoPPOP linkingChallengePasswordchallengePassword in the client request by resuming an EST-coaps connection. Even though the practical risk of such an attack to EST-coaps is not devastating, we would rather use a more securechannel bindingchannel-binding mechanism.Such a mechanism could include an updated tls-unique value generation like the tls-unique-prf defined in <xref target="I-D.josefsson-sasl-tls-cb"/> by using a TLS exporter <xref target="RFC5705"/> in TLS 1.2 or TLS 1.3's updated exporter (Section 7.5 of <xref target="RFC8446"/>) value in place of the tls-unique value in the CSR. Such mechanism has not been standardized yet. Adopting a channel binding value generated from an exporter would break backwards compatibility for an RA that proxies through to a classic EST server. Thus, inIn thisspecificationspecification, we still depend on the tls-unique mechanism defined in <xreftarget="RFC5929"/>, especially sincetarget="RFC5929" format="default"/> for DTLS 1.2 because a 3SHAKE attack does not expose messages exchanged withEST-coaps.</t>EST-coaps. But for DTLS 1.3, <xref target="I-D.ietf-kitten-tls-channel-bindings-for-tls13" format="default"/> is used instead to derive a 32-byte tls-exporter binding in place of the tls-unique value in the CSR. That would alleviate the risks from the 3SHAKE attack <xref target="TRIPLESHAKE" format="default"/>. </t> <t>Interpreters of ASN.1 structures should be aware of the use of invalid ASN.1 length fields and should take appropriate measures to guard against buffer overflows, stack overruns in particular, and malicious content in general.</t> </section><!-- EST server considerations --><section anchor="sec-proxy"title="HTTPS-CoAPSnumbered="true" toc="default"> <name>HTTPS-CoAPS Registrarconsiderations">Considerations</name> <t>The Registrar proposed in <xreftarget="proxy"/>target="proxy" format="default"/> must be deployed withcare,care and only when direct client-server connections are not possible. WhenPoPPOP linking isusedused, the Registrar terminating the DTLS connection establishes a new TLS connection with the upstream CA. Thus, it is impossible forPoPPOP linking to be enforcedend-to-endend to end for the EST transaction. The EST server could be configured to acceptPoPPOP linking information that does not match the current TLS session because the authenticated EST Registrar is assumed to have verifiedPoPPOP linking downstream to the client.</t> <t>The introduction of an EST-coaps-to-HTTP Registrar assumes the client can authenticate the Registrar using its implicit or explicit TA database. It also assumes the Registrar has a trust relationship with the upstream EST server in order to act on behalf of the clients. When a client uses the Implicit TA database for certificate validation, itSHOULD<bcp14>SHOULD</bcp14> confirm if the server is acting as an RA by the presence of the id-kp-cmcRA EKU <xreftarget="RFC6402"/>target="RFC6402" format="default"/> in the server certificate.</t><!-- If the server certificate does not include the EKU, it is RECOMMENDED that the client includes Identity and PoP Information" (<xref target="profile7925"/>) in requests.--></t> <t>In a server-side key generation case, if no end-to-end encryption is used, the Registrar may be able see the private key as it acts as aman-in-the-middle.man in the middle. Thus, the client puts its trust on the Registrar not exposing the private key. </t> <t>Clients that leverage server-side key generation without end-to-end encryption of the private key (<xreftarget="serverkey"/>)target="serverkey" format="default"/>) have no knowledgeifas to whether the Registrar will be generating the private key and enrolling the certificates with the CA or if the CA will be responsible for generating the key. In such cases, the existence of a Registrar requires the client to put its trust on theregistrarRegistrar when it is generating the private key. </t> </section><!-- proxy considerations --> </section> <!-- Security considerations --> <section anchor="contrib" title="Contributors"> <!-- Nexus has participated in interoperability tests which resulted in new insights that were added in the draft. --> <t>Martin Furuhed contributed to the EST-coaps specification by providing feedback based on the Nexus EST over CoAPS server implementation that started in 2015. Sandeep Kumar kick-started this specification and was instrumental in drawing attention to the importance of the subject. </t> </section> <!-- Contributors --> <section anchor="ack" title="Acknowledgements"> <t>The authors are very grateful to Klaus Hartke for his detailed explanations on the use of Block with DTLS and his support for the Content-Format specification. The authors would like to thank Esko Dijk and Michael Verschoor for the valuable discussions that helped in shaping the solution. They would also like to thank Peter Panburana for his feedback on technical details of the solution. Constructive comments were received from Benjamin Kaduk, Eliot Lear, Jim Schaad, Hannes Tschofenig, Julien Vermillard, John Manuel, Oliver Pfaff, Pete Beal and Carsten Bormann.</t> <t>Interop tests were done by Oliver Pfaff, Thomas Werner, Oskar Camezind, Bjorn Elmers and Joel Hoglund.</t> <t>Robert Moskowitz provided code to create the examples.</t></section><!-- Acknowledgements --></middle> <back><references title="Normative References"> &RFC2119; &RFC2585; &RFC5246; &RFC5958; &RFC5967; &RFC6347; &RFC6690; &RFC7030; <!--&RFC7049;--> &RFC7252; &RFC7925; &RFC7959; &RFC8075; &RFC8174; &RFC8422; &RFC8446; &I-D.ietf-tls-dtls13; &I-D.ietf-core-multipart-ct; &I-D.ietf-lamps-rfc5751-bis; </references> <references title="Informative References"> <!-- &RFC0791; --> &RFC5272; <!-- &RFC4944; --> <!--&RFC5273;--> &RFC5705; <!-- &RFC6090;<displayreference target="I-D.ietf-kitten-tls-channel-bindings-for-tls13" to="TLS13-CHANNEL-BINDINGS"/> <displayreference target="I-D.moskowitz-ecdsa-pki" to="PKI-GUIDE"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2585.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5246.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5958.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5967.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6347.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6690.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7030.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7252.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7925.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7959.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8075.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8422.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/> <!-- reference.I-D.ietf-tls-dtls13 RFC 9147 -->&RFC6402; &RFC7230; <!-- &RFC7231; --> &RFC7228; &RFC7251; &RFC7299; &RFC7627; &RFC4919; &RFC5929; &RFC7748; <!-- &RFC7525; --> <!-- &I-D.ietf-anima-bootstrapping-keyinfra; --> &I-D.ietf-tls-dtls-connection-id; <!-- &I-D.draft-ietf-core-resource-directory-19; --> &I-D.moskowitz-ecdsa-pki; &I-D.josefsson-sasl-tls-cb;<referenceanchor="BCP195" target="https://www.rfc-editor.org/info/bcp195"><front> <title>Recommendations for Secure Use of Transport Layer Security (TLS) andanchor="RFC9147" target="https://www.rfc-editor.org/info/rfc9147"> <front> <title>The Datagram Transport Layer Security(DTLS)</title>(DTLS) Protocol Version 1.3</title> <authorinitials="Y." surname="Sheffer" fullname="Yaron Sheffer"/>initials='E' surname='Rescorla' fullname='Eric Rescorla'/> <authorinitials="R." surname="Holz" fullname="Ralph Holz"/>initials='H' surname='Tschofenig' fullname='Hannes Tschofenig'/> <authorinitials="P." surname="Saint-Andre" fullname="Saint-Andre"/>initials='N' surname='Modadugu' fullname='Nagendra Modadugu'/> <dateyear="2015" month="May"/> </front><seriesInfo name="BCP" value="195"/><seriesInfomonth='August' year='2021'/> </front> <seriesInfo name="RFC"value="7525"/></reference>value="9147"/> <seriesInfo name="DOI" value="10.17487/RFC9147"/> </reference> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8710.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8551.xml"/> </references> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5272.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6402.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7230.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7228.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7251.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7299.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7627.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4919.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5929.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7748.xml"/> <!-- I-D.ietf-tls-dtls-connection-id companion document RFC 9146 --> <referenceanchor="ieee802.15.4">anchor="RFC9146" target="https://www.rfc-editor.org/info/rfc9146"> <front> <title>Connection Identifiers for DTLS 1.2</title> <author initials='E' surname='Rescorla' fullname='Eric Rescorla' role="editor"/> <author initials='H' surname='Tschofenig' fullname='Hannes Tschofenig' role="editor"/> <author initials='T' surname='Fossati' fullname='Thomas Fossati'/> <author initials='A' surname='Kraus' fullname='Achim Kraus'/> <date month='August' year='2021'/> </front> <seriesInfo name="RFC" value="9146"/> <seriesInfo name="DOI" value="10.17487/RFC9146"/> </reference> <!-- I-D.moskowitz-ecdsa-pki expired 2021 Aug 4. Explicit verion number used to get author initials correct. --> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.moskowitz-ecdsa-pki-10.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-kitten-tls-channel-bindings-for-tls13.xml"/> <referencegroup anchor="BCP195" target="https://www.rfc-editor.org/info/bcp195"> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7525.xml"/> </referencegroup> <reference anchor="IEEE802.15.4"> <front> <title>IEEE 802.15.4-2020 - IEEE Standard802.15.4-2006</title> <author surname="Institute of Electrical and Electronics Engineers">for Low-Rate Wireless Networks</title> <author> <organization>IEEE</organization> </author> <datemonth="" year="2006" />month="May" year="2020"/> </front> </reference> <referenceanchor="ieee802.1ar">anchor="IEEE802.1AR"> <front> <title>IEEE802.1ARStandard for Local and metropolitan area networks - Secure DeviceIdentifier</title> <author surname="Institute of Electrical and Electronics Engineers">Identity</title> <author> <organization>IEEE </organization> </author> <date month="December"year="2009" />year="2009"/> </front> </reference> <reference anchor="PsQs"> <front> <title>Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices</title> <authorsurname="Nadia Heninger, Zakir Durumeric, Eric Wustrow, J.initials="N." surname="Heninger" fullname="Nadia Heninger"/> <author initials="Z." surname="Durumeric" fullname="Zakir Durumeric"/> <author initials="E." surname="Wustrow" fullname="Eric Wustrow"/> <author initials="J." surname="Alex Halderman" fullname="J. AlexHalderman"> </author>Halderman"/> <date month="August"year="2012" />year="2012"/> </front><seriesInfo name="USENIX<refcontent>USENIX Security Symposium2012" value="ISBN 978-931971-95-9"/>2012</refcontent> <seriesInfo name="ISBN" value="978-931971-95-9"/> </reference> <referenceanchor="tripleshake">anchor="TRIPLESHAKE"> <front> <title>Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS</title> <authorsurname="Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric Fournet, Alfredo Pironti, Pierre-Yves Strub"> </author>initials="B." surname="Bhargavan" fullname="Karthikeyan Bhargavan"/> <author initials="A." surname="Delignat-Lavaud" fullname="Antoine Delignat-Lavaud"/> <author initials="C." surname="Fournet" fullname="Cedric Fournet"/> <author initials="A." surname="Pironti" fullname="Alfredo Pironti"/> <author initials="P." surname="Strub" fullname="Pierre-Yves Strub"/> <date month="May"year="2014" />year="2014"/> </front> <seriesInfoname="IEEE Security and Privacy" value="ISBN 978-1-4799-4686-0"/>name="ISBN" value="978-1-4799-4686-0"/> <seriesInfo name="DOI" value="10.1109/SP.2014.14"/> </reference> <referenceanchor="RSAfact">anchor="RSA-FACT"> <front> <title>Factoring RSA keys from certified smart cards: Coppersmith in the wild</title> <authorsurname="Danielinitials="D." surname="Bernstein" fullname="Daniel J.Bernstein1, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia Heninger, Tanja Lange, NickoBernstein"/> <author initials="Y." surname="Chang" fullname="Yun-An Chang"/> <author initials="C." surname="Cheng" fullname="Chen-Mou Cheng"/> <author initials="L." surname="Chou" fullname="Li-Ping Chou"/> <author initials="N." surname="Heninger" fullname="Nadia Heninger"/> <author initials="T." surname="Lange" fullname="Tanja Lange"/> <author initials="N." surname="Someren" fullname="Nicko vanSomeren"> </author>Someren"/> <date month="August"year="2013" />year="2013"/> </front><seriesInfo name="Advances<refcontent>Advances in Cryptology -" value="ASIACRYPT 2013"/>ASIACRYPT 2013</refcontent> </reference> <referenceanchor="COREparams" target="https://www.iana.org/assignments/core-parameters/core-parameters.xhtml">anchor="CORE-PARAMS" target="https://www.iana.org/assignments/core-parameters/"> <front> <title>Constrained RESTful Environments (CoRE) Parameters</title><author surname="IANA"/> <date/><author> <organization>IANA</organization> </author> </front> </reference> </references> </references> <section anchor="messagebindings"title="EST messagesnumbered="true" toc="default"> <name>EST Messages toEST-coaps">EST-coaps</name> <t>This section shows similar examples to the ones presented inAppendix A of<xreftarget="RFC7030"/>.target="RFC7030" sectionFormat="of" section="A"/>. The payloads in the examples are thehex encodedhex-encoded binary, generated with 'xxd -p', of the PKI certificates created following <xreftarget="I-D.moskowitz-ecdsa-pki"/>.target="I-D.moskowitz-ecdsa-pki" format="default"/>. Hex is used for visualization purposes because a binary representation cannot be rendered well in text. The hexadecimal representations would not be transported in hex, but in binary. The payloads are shown unencrypted. Inpracticepractice, the message content would be transferred over an encrypted DTLS channel. </t><!-- [EDNOTE: No need for these details of how these were generated from I-D.moskowitz-ecdsa-pki. ] In particular, the shell scripts from section 4.2 (create root certificate), section 6.2 (Create the 802.1AR intermediate certificate) and section 6.3 (Create an 802.1AR IdevID certificate) have been used. The 802.1AR IdevID certificate is signed by the 802.1AR intermediate certificate that is signed by the auto-signed root certificate.--><t>The certificate responses included in the examples contain Content-Format 281 (application/pkcs7). If the client had requested Content-FormatTBD287 (application/pkix-cert) by querying /est/skc,287 (application/pkix-cert), the server would respond with a single DER binary certificate. That certificate would be inthea multipart-corecontainer.</t>container specifically in the case of a response to a /est/skc query.</t> <t>These examples assume a short resource path of "/est". Even though omitted from the examples for brevity, before making the EST-coaps requests, a client would learn about the server supported EST-coaps resources with a GET request for /.well-known/core?rt=ace.est* as explained in <xreftarget="discovery"/>.</t>target="discovery" format="default"/>.</t> <t>The corresponding CoAP headers are only shown in <xreftarget="cacerts"/>.target="cacerts" format="default"/>. Creating CoAP headers is assumed to be generally understood.</t> <t>The message contentbreakdownis presented in plain text in <xreftarget="cont_breakdown"/>.</t>target="cont_breakdown" format="default"/>.</t> <sectiontitle="cacerts" anchor="cacerts">anchor="cacerts" numbered="true" toc="default"> <name>cacerts</name> <t>In EST-coaps, a cacerts message canbe:</t> <figure align="left"><artwork><![CDATA[be the following:</t> <artwork><![CDATA[ GET example.com:9085/est/crts (Accept: 281)]]></artwork></figure>]]></artwork> <t>The corresponding CoAP header fields are shown below. The use of block and DTLS areworked outshown in <xreftarget= "blockexamples"/>.</t> <figure><artwork> <![CDATA[target="blockexamples" format="default"/>.</t> <sourcecode type="coap"><![CDATA[ Ver = 1 T = 0 (CON) Code = 0x01 (0.01 is GET) Token = 0x9a (client generated) Options Option (Uri-Host) Option Delta = 0x3 (option# 3) Option Length = 0xB Option Value = "example.com" Option (Uri-Port) Option Delta = 0x4 (option# 3+4=7) Option Length = 0x2 Option Value = 9085 Option (Uri-Path) Option Delta = 0x4 (option# 7+4=11) Option Length = 0x3 Option Value = "est" Option (Uri-Path) Option Delta = 0x0 (option# 11+0=11) Option Length = 0x4 Option Value = "crts" Option (Accept) Option Delta = 0x6 (option# 11+6=17) Option Length = 0x2 Option Value = 281 Payload = [Empty]]]></artwork></figure>]]></sourcecode> <t>As specified inSection 5.10.1 of<xreftarget="RFC7252"/>,target="RFC7252" sectionFormat="of" section="5.10.1"/>, the Uri-Host and Uri-Port Options can be omitted if they coincide with the transport protocol destination address andportport, respectively.</t><!-- The Uri-Host and Uri-Port Options can be omitted if they coincide with the transport protocol destination address and port respectively. Explicit Uri-Host and Uri-Port Options are typically used when an endpoint hosts multiple virtual servers and uses the Options to route the requests accordingly. Alternatively, if a UDP port to a server is blocked, someone could send the DTLS packets to a known open port on the server and use the Uri-Port to convey the intended port he is attempting to reach.--><t>A 2.05 Content response with a cert in EST-coaps will then be</t> <figure align="left"><artwork><![CDATA[the following:</t> <artwork><![CDATA[ 2.05 Content (Content-Format: 281) {payload with certificate in binary format}]]></artwork></figure> <t>with]]></artwork> <t>With the following CoAPfields </t> <figure><artwork> <![CDATA[fields:</t> <sourcecode type="coap"><![CDATA[ Ver = 1 T = 2 (ACK) Code = 0x45 (2.05 Content) Token = 0x9a (copied from request by server) Options Option (Content-Format) Option Delta = 0xC (option# 12) Option Length = 0x2 Option Value = 281 [ The hexadecimal representation below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] Payload = 3082027a06092a864886f70d010702a082026b308202670201013100300b 06092a864886f70d010701a082024d30820249308201efa0030201020208 0b8bb0fe604f6a1e300a06082a8648ce3d0403023067310b300906035504 0613025553310b300906035504080c024341310b300906035504070c024c 4131143012060355040a0c0b4578616d706c6520496e6331163014060355 040b0c0d63657274696669636174696f6e3110300e06035504030c07526f 6f74204341301e170d3139303133313131323730335a170d333930313236 3131323730335a3067310b3009060355040613025553310b300906035504 080c024341310b300906035504070c024c4131143012060355040a0c0b45 78616d706c6520496e6331163014060355040b0c0d636572746966696361 74696f6e3110300e06035504030c07526f6f742043413059301306072a86 48ce3d020106082a8648ce3d030107034200040c1b1e82ba8cc72680973f 97edb8a0c72ab0d405f05d4fe29b997a14ccce89008313d09666b6ce375c 595fcc8e37f8e4354497011be90e56794bd91ad951ab45a3818430818130 1d0603551d0e041604141df1208944d77b5f1d9dcb51ee244a523f3ef5de 301f0603551d230418301680141df1208944d77b5f1d9dcb51ee244a523f 3ef5de300f0603551d130101ff040530030101ff300e0603551d0f0101ff 040403020106301e0603551d110417301581136365727469667940657861 6d706c652e636f6d300a06082a8648ce3d040302034800304502202b891d d411d07a6d6f621947635ba4c43165296b3f633726f02e51ecf464bd4002 2100b4be8a80d08675f041fbc719acf3b39dedc85dc92b3035868cb2daa8 f05db196a1003100]]></artwork></figure>]]></sourcecode> <t>Thebreakdown of thepayload is shown in plain text in <xreftarget="cacertsdis"/>.target="cacertsdis" format="default"/>. </t> </section><!-- cacerts --><sectiontitle="enrollnumbered="true" toc="default"> <name>enroll /reenroll">reenroll</name> <t> During the (re-)enrollexchangeexchange, the EST-coaps client uses a CSR (Content-Format 286) request in the POST request payload. The AcceptoptionOption tells the server that the client is expecting Content-Format 281(PKCS#7)(PKCS #7) in the response. As shown in <xreftarget="enrolldis"/>,target="enrolldis" format="default"/>, the CSR contains aChallengePasswordchallengePassword, which is used forPoPPOP linking (<xreftarget="profile7925"/>).target="profile7925" format="default"/>). </t><figure align="left"><artwork><![CDATA[<artwork><![CDATA[ POST [2001:db8::2:321]:61616/est/sen (Token: 0x45) (Accept: 281) (Content-Format: 286) [ The hexadecimal representation below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] 3082018b30820131020100305c310b3009060355040613025553310b3009 06035504080c024341310b300906035504070c024c413114301206035504 0a0c0b6578616d706c6520496e63310c300a060355040b0c03496f54310f 300d060355040513065774313233343059301306072a8648ce3d02010608 2a8648ce3d03010703420004c8b421f11c25e47e3ac57123bf2d9fdc494f 028bc351cc80c03f150bf50cff958d75419d81a6a245dffae790be95cf75 f602f9152618f816a2b23b5638e59fd9a073303406092a864886f70d0109 0731270c2576437630292a264a4b4a3bc3a2c280c2992f3e3c2e2c3d6b6e 7634332323403d204e787e60303b06092a864886f70d01090e312e302c30 2a0603551d1104233021a01f06082b06010505070804a013301106092b06 010401b43b0a01040401020304300a06082a8648ce3d0403020348003045 02210092563a546463bd9ecff170d0fd1f2ef0d3d012160e5ee90cffedab ec9b9a38920220179f10a3436109051abad17590a09bc87c4dce5453a6fc 1135a1e84eed754377]]></artwork></figure>]]></artwork> <t> After verification of the CSR by the server, a 2.04 Changed response with the issued certificate will be returned to the client. </t><figure align="left"><artwork><![CDATA[<artwork><![CDATA[ 2.04 Changed (Token: 0x45) (Content-Format: 281) [ The hexadecimal representation below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] 3082026e06092a864886f70d010702a082025f3082025b0201013100300b 06092a864886f70d010701a08202413082023d308201e2a0030201020208 7e7661d7b54e4632300a06082a8648ce3d040302305d310b300906035504 0613025553310b300906035504080c02434131143012060355040a0c0b45 78616d706c6520496e6331163014060355040b0c0d636572746966696361 74696f6e3113301106035504030c0a3830322e3141522043413020170d31 39303133313131323931365a180f39393939313233313233353935395a30 5c310b3009060355040613025553310b300906035504080c024341310b30 0906035504070c024c4131143012060355040a0c0b6578616d706c652049 6e63310c300a060355040b0c03496f54310f300d06035504051306577431 3233343059301306072a8648ce3d020106082a8648ce3d03010703420004 c8b421f11c25e47e3ac57123bf2d9fdc494f028bc351cc80c03f150bf50c ff958d75419d81a6a245dffae790be95cf75f602f9152618f816a2b23b56 38e59fd9a3818a30818730090603551d1304023000301d0603551d0e0416 041496600d8716bf7fd0e752d0ac760777ad665d02a0301f0603551d2304 183016801468d16551f951bfc82a431d0d9f08bc2d205b1160300e060355 1d0f0101ff0404030205a0302a0603551d1104233021a01f06082b060105 05070804a013301106092b06010401b43b0a01040401020304300a06082a 8648ce3d0403020349003046022100c0d81996d2507d693f3c48eaa5ee94 91bda6db214099d98117c63b361374cd86022100a774989f4c321a5cf25d 832a4d336a08ad67df20f1506421188a0ade6d349236a1003100]]></artwork></figure>]]></artwork> <t>Thebreakdown of therequest and response is shown in<xref target="enrolldis"/>.</t> <!-- <t>As describedplain text in <xreftarget="pending" />, if the server is not able to provide a response immediately, it sends an empty ACK with response code 5.03 (Service Unavailable) and the Max-Age Option. See <xref target="fig-est-long-wait"/> for an example exchange.</t> -->target="enrolldis" format="default"/>.</t> </section><!-- enroll / reenroll --><section anchor="appskg"title="serverkeygen">numbered="true" toc="default"> <name>serverkeygen</name> <t>In a serverkeygenexchangeexchange, the CoAP POST request looks like</t> <figure align="left"><artwork><![CDATA[the following:</t> <artwork><![CDATA[ POST 192.0.2.1:8085/est/skg (Token: 0xa5) (Accept: 62) (Content-Format: 286) [ The hexadecimal representation below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] 3081d03078020100301631143012060355040a0c0b736b67206578616d70 6c653059301306072a8648ce3d020106082a8648ce3d03010703420004c8 b421f11c25e47e3ac57123bf2d9fdc494f028bc351cc80c03f150bf50cff 958d75419d81a6a245dffae790be95cf75f602f9152618f816a2b23b5638 e59fd9a000300a06082a8648ce3d040302034800304502207c553981b1fe 349249d8a3f50a0346336b7dfaa099cf74e1ec7a37a0a760485902210084 79295398774b2ff8e7e82abb0c17eaef344a5088fa69fd63ee611850c34b 0a]]></artwork></figure>]]></artwork> <t>The response would follow <xreftarget="I-D.ietf-core-multipart-ct"/>target="RFC8710" format="default"/> and could look like</t> <figure align="left"><artwork><![CDATA[the following:</t> <artwork><![CDATA[ 2.04 Changed (Token: 0xa5) (Content-Format: 62) [ The hexadecimal representations below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] 84 # array(4) 19 011C # unsigned(284) 58 8A # bytes(138) 308187020100301306072a8648ce3d020106082a8648ce3d030107046d30 6b020101042061336a86ac6e7af4a96f632830ad4e6aa0837679206094d7 679a01ca8c6f0c37a14403420004c8b421f11c25e47e3ac57123bf2d9fdc 494f028bc351cc80c03f150bf50cff958d75419d81a6a245dffae790be95 cf75f602f9152618f816a2b23b5638e59fd9 19 0119 # unsigned(281) 59 01D3 # bytes(467) 308201cf06092a864886f70d010702a08201c0308201bc0201013100300b 06092a864886f70d010701a08201a23082019e30820144a0030201020209 00b3313e8f3fc9538e300a06082a8648ce3d040302301631143012060355 040a0c0b736b67206578616d706c65301e170d3139303930343037343430 335a170d3339303833303037343430335a301631143012060355040a0c0b 736b67206578616d706c653059301306072a8648ce3d020106082a8648ce 3d03010703420004c8b421f11c25e47e3ac57123bf2d9fdc494f028bc351 cc80c03f150bf50cff958d75419d81a6a245dffae790be95cf75f602f915 2618f816a2b23b5638e59fd9a37b307930090603551d1304023000302c06 096086480186f842010d041f161d4f70656e53534c2047656e6572617465 64204365727469666963617465301d0603551d0e0416041496600d8716bf 7fd0e752d0ac760777ad665d02a0301f0603551d2304183016801496600d 8716bf7fd0e752d0ac760777ad665d02a0300a06082a8648ce3d04030203 48003045022100e95bfa25a08976652246f2d96143da39fce0dc4c9b26b9 cce1f24164cc2b12b602201351fd8eea65764e3459d324e4345ff5b2a915 38c04976111796b3698bf6379ca1003100]]></artwork></figure>]]></artwork> <t>The private key in the response above is without CMS EnvelopedData and has no additional encryption beyond DTLS (<xreftarget="serverkey"/>).</t>target="serverkey" format="default"/>).</t> <t>Thebreakdown of therequest and response is shown in plain text in <xreftarget="disskgrequest"/></t>target="disskgrequest" format="default"/>.</t> </section><!-- serverkeygen --><sectiontitle="csrattrs"> <t>Belownumbered="true" toc="default"> <name>csrattrs</name> <t>The following is a csrattrsexchange </t> <figure align="left"><artwork><![CDATA[exchange:</t> <artwork><![CDATA[ REQ: GET example.com:61616/est/att RES: 2.05 Content (Content-Format: 285) [ The hexadecimal representation below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] 307c06072b06010101011630220603883701311b131950617273652053455 420617320322e3939392e31206461746106092a864886f70d010907302c06 0388370231250603883703060388370413195061727365205345542061732 0322e3939392e32206461746106092b240303020801010b06096086480165 03040202]]></artwork></figure>]]></artwork> <t>A 2.05 Content response should contain attributeswhichthat are relevant for the authenticated client. This example is copied fromSection A.2 in<xreftarget="RFC7030"/>,target="RFC7030" sectionFormat="of" section="A.2"/>, where the base64 representation is replaced with a hexadecimal representation of the equivalent binary format. The EST-coaps server returns attributes that the client can ignore if they are unknown tohim.</t>the client.</t> </section><!-- csrattrs --></section><!-- EST messages to EST-coaps --><section anchor="blockexamples"title="EST-coapsnumbered="true" toc="default"> <name>EST-coaps Blockmessage examples">Message Examples</name> <t>Two examples are presented in this section:<list style="numbers"> <t>a</t> <ol spacing="normal" type="1"> <li>A cacerts exchange shows the use of Block2 and the blockheaders</t> <t>anheaders.</li> <li>An enroll exchange shows the Block1 and Block2 size negotiation for request and responsepayloads.</t> </list> </t>payloads.</li> </ol> <t>The payloads are shown unencrypted. Inpracticepractice, the message contents would be binary formatted and transferred over an encrypted DTLS tunnel. The corresponding CoAP headers are only shown in <xreftarget="cacertsblock"/>.target="cacertsblock" format="default"/>. Creating CoAP headers is assumed to be generally known.</t> <section anchor="cacertsblock"title="cacerts">numbered="true" toc="default"> <name>cacerts</name> <t>This section provides a detailed example of the messages using DTLS andBLOCK optionCoAP Option Block2. The example block length is taken as6464, which gives an SZX value of 2.</t> <t>The following is an example of a cacerts exchange over DTLS. The content length of the cacerts response inappendix A.1 of<xreftarget="RFC7030"/>target="RFC7030" sectionFormat="of" section="A.1"/> contains 639 bytes in binary in this example. The CoAP message adds around 10 bytes in thisexmple,example, and the DTLS record around 29 bytes. To avoid IP fragmentation, the CoAP Block Option is used and an MTU of 127 is assumed to stay within one IEEE 802.15.4 packet. To stay below the MTU of 127, the payload is split in 9 packets with a payload of 64 bytes each, followed by a last tenth packet of 63 bytes. The client sends an IPv6 packet containing a UDP datagram with DTLS record protection that encapsulates a CoAP request 10 times (one fragment of the request per block). The server returns an IPv6 packet containing a UDP datagram with the DTLS record that encapsulates the CoAP response. The CoAP request-response exchange with block option is shown below. Block Option is shown in a decomposed way (block-option:NUM/M/size) indicating the kind of Block Option (2 in this case) followed by a colon, and then the block number (NUM), the more bit (M = 0 in Block2 response means it is last block), and block size with exponent(2**(SZX+4))(2<sup>(SZX+4)</sup>) separated by slashes. The Length 64 is used with SZX=2. The CoAP Request is sentconfirmable (CON)Confirmable (CON), and the Content-Format of the response, even though not shown, is 281 (application/pkcs7-mime; smime-type=certs-only). The transfer of the 10 blocks with partially filled block NUM=9 is shownbelow </t> <figure align="left"><artwork><![CDATA[below.</t> <sourcecode type="coap"><![CDATA[ GET example.com:9085/est/crts (2:0/0/64) --> <-- (2:0/1/64) 2.05 Content GET example.com:9085/est/crts (2:1/0/64) --> <-- (2:1/1/64) 2.05 Content | | | GET example.com:9085/est/crts (2:9/0/64) --> <-- (2:9/0/64) 2.05 Content]]></artwork></figure>]]></sourcecode> <t>The header of the GET request lookslike</t> <figure><artwork> <![CDATA[like the following:</t> <sourcecode type="coap"><![CDATA[ Ver = 1 T = 0 (CON) Code = 0x01 (0.1 GET) Token = 0x9a (client generated) Options Option (Uri-Host) Option Delta = 0x3 (option# 3) Option Length = 0xB Option Value = "example.com" Option (Uri-Port) Option Delta = 0x4 (option# 3+4=7) Option Length = 0x2 Option Value = 9085 Option (Uri-Path) Option Delta = 0x4 (option# 7+4=11) Option Length = 0x3 Option Value = "est" Option (Uri-Path)Uri-Path) Option Delta = 0x0 (option# 11+0=11) Option Length = 0x4 Option Value = "crts" Option (Accept) Option Delta = 0x6 (option# 11+6=17) Option Length = 0x2 Option Value = 281 Payload = [Empty]]]></artwork></figure>]]></sourcecode> <t>The Uri-Host and Uri-Port Options can be omitted if they coincide with the transport protocol destination address andportport, respectively. Explicit Uri-Host and Uri-Port Options are typically used when an endpoint hosts multiple virtual servers and uses the Options to route the requests accordingly. </t><!-- Alternatively, if a UDP port to a server is blocked, someone could send the DTLS packets to a known open port on the server and use the Uri-Port to convey the intended port he is attempting to reach.--> <t>For<t>To provide furtherdetailingdetails on the CoAP headers, the first two and the last blocks are written out below. The header of the first Block2 response lookslike</t> <figure><artwork> <![CDATA[like the following:</t> <sourcecode type="coap"><![CDATA[ Ver = 1 T = 2 (ACK) Code = 0x45 (2.05 Content) Token = 0x9a (copied from request by server) Options Option Option Delta = 0xC (option# 12 Content-Format) Option Length = 0x2 Option Value = 281 Option Option Delta = 0xB (option# 12+11=23 Block2) Option Length = 0x1 Option Value = 0x0A (block#=0, M=1, SZX=2) [ The hexadecimal representation below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] Payload = 3082027b06092a864886f70d010702a082026c308202680201013100300b 06092a864886f70d010701a082024e3082024a308201f0a0030201020209 009189bc]]></artwork></figure>]]></sourcecode> <t>The header of the secondBlock2:</t> <figure><artwork> <![CDATA[Block2 response looks like the following:</t> <sourcecode type="coap"><![CDATA[ Ver = 1 T = 2 (means ACK) Code = 0x45 (2.05 Content) Token = 0x9a (copied from request by server) Options Option Option Delta = 0xC (option# 12 Content-Format) Option Length = 0x2 Option Value = 281 Option Option Delta = 0xB (option 12+11=23 Block2) Option Length = 0x1 Option Value = 0x1A (block#=1, M=1, SZX=2) [ The hexadecimal representation below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] Payload = df9c99244b300a06082a8648ce3d0403023067310b300906035504061302 5553310b300906035504080c024341310b300906035504070c024c413114 30120603]]></artwork></figure>]]></sourcecode> <t>The10thheader of the tenth and finalBlock2:</t> <figure><artwork> <![CDATA[Block2 response looks like the following:</t> <sourcecode type="coap"><![CDATA[ Ver = 1 T = 2 (means ACK) Code = 0x45 (2.05 Content) Token = 0x9a (copied from request by server) Options Option Option Delta = 0xC (option# 12 Content-Format) Option Length = 0x2 Option Value = 281 Option Option Delta = 0xB (option# 12+11=23 Block2 ) Option Length = 0x1 Option Value = 0x92 (block#=9, M=0, SZX=2) [ The hexadecimal representation below would NOT be transported in hex, but in binary. Hex is used because a binary representation cannot be rendered well in text. ] Payload = 2ec0b4af52d46f3b7ecc9687ddf267bcec368f7b7f1353272f022047a28a e5c7306163b3c3834bab3c103f743070594c089aaa0ac870cd13b902caa1 003100]]></artwork></figure>]]></sourcecode> </section><!-- cacerts block example --><section anchor="enrollblock"title="enrollnumbered="true" toc="default"> <name>enroll /reenroll">reenroll</name> <t> In this example, the requested Block2 size of 256 bytes, required by the client, is transferred to the server in the very first request message. The block size256=(2**(SZX+4))of 256 is equal to (2<sup>(SZX+4)</sup>), which gives SZX=4. The notation for block numbering is the same as in <xreftarget="cacertsblock"/>.target="cacertsblock" format="default"/>. The header fields and the payload are omitted for brevity. </t> <figuretitle="EST-COAP enrollmentanchor="fig-est-multiple-block"> <name>EST-coaps Enrollment withmultiple blocks" anchor="fig-est-multiple-block"><artwork> <![CDATA[Multiple Blocks</name> <artwork name="" type="" align="left" alt=""><![CDATA[ POST [2001:db8::2:1]:61616/est/sen (CON)(1:0/1/256) {CSR (frag# 1)} --> <-- (ACK) (1:0/1/256) (2.31 Continue) POST [2001:db8::2:1]:61616/est/sen (CON)(1:1/1/256) {CSR (frag# 2)} --> <-- (ACK) (1:1/1/256) (2.31 Continue) . . . POST [2001:db8::2:1]:61616/est/sen(CON)(1:N1/0/256){CSR(frag#(CON)(1:N1/0/256) {CSR(frag# N1+1)}--> | ...........Immediate response ......... | <-- (ACK) (1:N1/0/256)(2:0/1/256)(2.04Changed){CertChanged) {Cert resp (frag# 1)} POST [2001:db8::2:1]:61616/est/sen (CON)(2:1/0/256) --> <-- (ACK) (2:1/1/256)(2.04 Changed) {Cert resp (frag# 2)} . . . POST [2001:db8::2:321]:61616/est/sen (CON)(2:N2/0/256) --> <-- (ACK) (2:N2/0/256) (2.04 Changed) {Cert resp (frag# N2+1)}]]></artwork></figure>]]></artwork> </figure> <t>N1+1 blocks have been transferred from client tothe serverserver, and N2+1 blocks have been transferred from server to client.</t> </section><!-- enroll block example --></section><!-- EST-coaps Block message examples --><section anchor="cont_breakdown"title="Message content breakdown">numbered="true" toc="default"> <name>Message Content Breakdown</name> <t>This appendix presents thebreakdown of thehexadecimal dumps of the binary payloads in plain text shown in <xreftarget="messagebindings"/>.target="messagebindings" format="default"/>. </t> <section anchor="cacertsdis"title="cacerts">numbered="true" toc="default"> <name>cacerts</name> <t>Thebreakdown ofcacerts response containing one root CA certificate is presented in plain text in the following: </t><figure align="left"><artwork><![CDATA[<sourcecode type="asn.1"><![CDATA[ Certificate: Data: Version: 3 (0x2) Serial Number: 831953162763987486 (0xb8bb0fe604f6a1e) Signature Algorithm: ecdsa-with-SHA256 Issuer: C=US, ST=CA, L=LA, O=Example Inc, OU=certification, CN=Root CA Validity Not Before: Jan 31 11:27:03 2019 GMT Not After : Jan 26 11:27:03 2039 GMT Subject: C=US, ST=CA, L=LA, O=Example Inc, OU=certification, CN=Root CA Subject Public Key Info: Public Key Algorithm: id-ecPublicKey Public-Key: (256 bit) pub: 04:0c:1b:1e:82:ba:8c:c7:26:80:97:3f:97:ed:b8: a0:c7:2a:b0:d4:05:f0:5d:4f:e2:9b:99:7a:14:cc: ce:89:00:83:13:d0:96:66:b6:ce:37:5c:59:5f:cc: 8e:37:f8:e4:35:44:97:01:1b:e9:0e:56:79:4b:d9: 1a:d9:51:ab:45 ASN1 OID: prime256v1 NIST CURVE: P-256 X509v3 extensions: X509v3 Subject Key Identifier: 1D:F1:20:89:44:D7:7B:5F:1D:9D:CB:51:EE:24:4A:52:3F:3E:F5:DE X509v3 Authority Key Identifier: keyid: 1D:F1:20:89:44:D7:7B:5F:1D:9D:CB:51:EE:24:4A:52:3F:3E:F5:DE X509v3 Basic Constraints: critical CA:TRUE X509v3 Key Usage: critical Certificate Sign, CRL Sign X509v3 Subject Alternative Name: email:certify@example.com Signature Algorithm: ecdsa-with-SHA256 30:45:02:20:2b:89:1d:d4:11:d0:7a:6d:6f:62:19:47:63:5b: a4:c4:31:65:29:6b:3f:63:37:26:f0:2e:51:ec:f4:64:bd:40: 02:21:00:b4:be:8a:80:d0:86:75:f0:41:fb:c7:19:ac:f3:b3: 9d:ed:c8:5d:c9:2b:30:35:86:8c:b2:da:a8:f0:5d:b1:96]]></artwork></figure>]]></sourcecode> </section><!-- cacerts payload breakdown --><section anchor="enrolldis"title="enrollnumbered="true" toc="default"> <name>enroll /reenroll">reenroll</name> <t>Thebreakdown of theenrollment request is</t> <figure align="left"><artwork><![CDATA[presented in plain text in the following:</t> <sourcecode type="asn.1"><![CDATA[ Certificate Request: Data: Version: 0 (0x0) Subject: C=US, ST=CA, L=LA, O=example Inc, OU=IoT/serialNumber=Wt1234 Subject Public Key Info: Public Key Algorithm: id-ecPublicKey Public-Key: (256 bit) pub: 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d: 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5: 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90: be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b: 56:38:e5:9f:d9 ASN1 OID: prime256v1 NIST CURVE: P-256 Attributes: challengePassword: <256-bitPoPPOP linking value> Requested Extensions: X509v3 Subject Alternative Name: othername:<unsupported> Signature Algorithm: ecdsa-with-SHA256 30:45:02:21:00:92:56:3a:54:64:63:bd:9e:cf:f1:70:d0:fd: 1f:2e:f0:d3:d0:12:16:0e:5e:e9:0c:ff:ed:ab:ec:9b:9a:38: 92:02:20:17:9f:10:a3:43:61:09:05:1a:ba:d1:75:90:a0:9b: c8:7c:4d:ce:54:53:a6:fc:11:35:a1:e8:4e:ed:75:43:77]]></artwork></figure>]]></sourcecode> <t>The CSR contains aChallengePasswordchallengePassword, which is used forPoPPOP linking (<xreftarget="profile7925"/>).target="profile7925" format="default"/>). The CSR also contains an id-on-hardwareModuleName hardware identifier to customize the returned certificate to the requesting device (See <xreftarget ="RFC7299"/>target="RFC7299" format="default"/> and <xreftarget="I-D.moskowitz-ecdsa-pki"/>).</t>target="I-D.moskowitz-ecdsa-pki" format="default"/>).</t> <t>Thebreakdown of theissued certificateis </t> <figure align="left"><artwork><![CDATA[presented in plain text in the following:</t> <sourcecode type="asn.1"><![CDATA[ Certificate: Data: Version: 3 (0x2) Serial Number: 9112578475118446130 (0x7e7661d7b54e4632) Signature Algorithm: ecdsa-with-SHA256 Issuer: C=US, ST=CA, O=Example Inc, OU=certification, CN=802.1AR CA Validity Not Before: Jan 31 11:29:16 2019 GMT Not After : Dec 31 23:59:59 9999 GMT Subject: C=US, ST=CA, L=LA, O=example Inc, OU=IoT/serialNumber=Wt1234 Subject Public Key Info: Public Key Algorithm: id-ecPublicKey Public-Key: (256 bit) pub: 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d: 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5: 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90: be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b: 56:38:e5:9f:d9 ASN1 OID: prime256v1 NIST CURVE: P-256 X509v3 extensions: X509v3 Basic Constraints: CA:FALSE X509v3 Subject Key Identifier: 96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0 X509v3 Authority Key Identifier: keyid: 68:D1:65:51:F9:51:BF:C8:2A:43:1D:0D:9F:08:BC:2D:20:5B:11:60 X509v3 Key Usage: critical Digital Signature, Key Encipherment X509v3 Subject Alternative Name: othername:<unsupported> Signature Algorithm: ecdsa-with-SHA256 30:46:02:21:00:c0:d8:19:96:d2:50:7d:69:3f:3c:48:ea:a5: ee:94:91:bd:a6:db:21:40:99:d9:81:17:c6:3b:36:13:74:cd: 86:02:21:00:a7:74:98:9f:4c:32:1a:5c:f2:5d:83:2a:4d:33: 6a:08:ad:67:df:20:f1:50:64:21:18:8a:0a:de:6d:34:92:36]]></artwork></figure>]]></sourcecode> </section><!-- Re-enroll message breakdown --><section anchor="disskgrequest"title="serverkeygen">numbered="true" toc="default"> <name>serverkeygen</name> <t>The following is thebreakdown of theserver-side key generationrequest.</t> <figure align="left"><artwork><![CDATA[request presented in plain text:</t> <sourcecode type="asn.1"><![CDATA[ Certificate Request: Data: Version: 0 (0x0) Subject: O=skg example Subject Public Key Info: Public Key Algorithm: id-ecPublicKey Public-Key: (256 bit) pub: 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d: 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5: 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90: be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b: 56:38:e5:9f:d9 ASN1 OID: prime256v1 NIST CURVE: P-256 Attributes: a0:00 Signature Algorithm: ecdsa-with-SHA256 30:45:02:20:7c:55:39:81:b1:fe:34:92:49:d8:a3:f5:0a:03: 46:33:6b:7d:fa:a0:99:cf:74:e1:ec:7a:37:a0:a7:60:48:59: 02:21:00:84:79:29:53:98:77:4b:2f:f8:e7:e8:2a:bb:0c:17: ea:ef:34:4a:50:88:fa:69:fd:63:ee:61:18:50:c3:4b:0a]]></artwork></figure> <t>Following]]></sourcecode> <t>The following is thebreakdown of theprivate key content of the server-side key generationresponse.response presented in plain text: </t><figure align="left"><artwork><![CDATA[<artwork><![CDATA[ Private-Key: (256 bit) priv: 61:33:6a:86:ac:6e:7a:f4:a9:6f:63:28:30:ad:4e: 6a:a0:83:76:79:20:60:94:d7:67:9a:01:ca:8c:6f: 0c:37 pub: 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d: 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5: 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90: be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b: 56:38:e5:9f:d9 ASN1 OID: prime256v1 NIST CURVE: P-256]]></artwork></figure>]]></artwork> <t>The following is thebreakdown of thecertificate in the server-side key generation responsepayload.</t> <figure align="left"><artwork><![CDATA[payload presented in plain text:</t> <sourcecode type="asn.1"><![CDATA[ Certificate: Data: Version: 3 (0x2) Serial Number: b3:31:3e:8f:3f:c9:53:8e Signature Algorithm: ecdsa-with-SHA256 Issuer: O=skg example Validity Not Before: Sep 4 07:44:03 2019 GMT Not After : Aug 30 07:44:03 2039 GMT Subject: O=skg example Subject Public Key Info: Public Key Algorithm: id-ecPublicKey Public-Key: (256 bit) pub: 04:c8:b4:21:f1:1c:25:e4:7e:3a:c5:71:23:bf:2d: 9f:dc:49:4f:02:8b:c3:51:cc:80:c0:3f:15:0b:f5: 0c:ff:95:8d:75:41:9d:81:a6:a2:45:df:fa:e7:90: be:95:cf:75:f6:02:f9:15:26:18:f8:16:a2:b2:3b: 56:38:e5:9f:d9 ASN1 OID: prime256v1 NIST CURVE: P-256 X509v3 extensions: X509v3 Basic Constraints: CA:FALSE Netscape Comment: OpenSSL Generated Certificate X509v3 Subject Key Identifier: 96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0 X509v3 Authority Key Identifier: keyid: 96:60:0D:87:16:BF:7F:D0:E7:52:D0:AC:76:07:77:AD:66:5D:02:A0 Signature Algorithm: ecdsa-with-SHA256 30:45:02:21:00:e9:5b:fa:25:a0:89:76:65:22:46:f2:d9:61: 43:da:39:fc:e0:dc:4c:9b:26:b9:cc:e1:f2:41:64:cc:2b:12: b6:02:20:13:51:fd:8e:ea:65:76:4e:34:59:d3:24:e4:34:5f: f5:b2:a9:15:38:c0:49:76:11:17:96:b3:69:8b:f6:37:9c]]></artwork></figure>]]></sourcecode> </section><!-- serverkey generation breakdown --></section><!-- Message Content Brakdown --><section anchor="ack" numbered="false" toc="default"> <name>Acknowledgements</name> <t>The authors are very grateful to <contact fullname="Klaus Hartke"/> for his detailed explanations on the use of Block with DTLS and his support for the Content-Format specification. The authors would like to thank <contact fullname="Esko Dijk"/> and <contact fullname="Michael Verschoor"/> for the valuable discussions that helped in shaping the solution. They would also like to thank <contact fullname="Peter Panburana"/> for his feedback on technical details of the solution. Constructive comments were received from <contact fullname="Benjamin Kaduk"/>, <contact fullname="Eliot Lear"/>, <contact fullname="Jim Schaad"/>, <contact fullname="Hannes Tschofenig"/>, <contact fullname="Julien Vermillard"/>, <contact fullname="John Manuel"/>, <contact fullname="Oliver Pfaff"/>, <contact fullname="Pete Beal"/>, and <contact fullname="Carsten Bormann"/>.</t> <t>Interop tests were done by <contact fullname="Oliver Pfaff"/>, <contact fullname="Thomas Werner"/>, <contact fullname="Oskar Camezind"/>, <contact fullname="Bjorn Elmers"/>, and <contact fullname="Joel Hoglund"/>.</t> <t><contact fullname="Robert Moskowitz"/> provided code to create the examples.</t> </section> <section anchor="contrib" numbered="false" toc="default"> <name>Contributors</name> <t><contact fullname="Martin Furuhed"/> contributed to the EST-coaps specification by providing feedback based on the Nexus EST-over-CoAPS server implementation that started in 2015. <contact fullname="Sandeep Kumar"/> kick-started this specification and was instrumental in drawing attention to the importance of the subject. </t> </section> </back> </rfc>