<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="rfc2629.xslt"?>
<?rfc toc="yes"?>
<?rfc compact="no"?>
<?rfc subcompact="no"?>
<?rfc symrefs="yes" ?>
<?rfc sortrefs="yes"?>
<?rfc iprnotified="no"?>
<?rfc strict="yes"?>

<!DOCTYPE rfc [
 <!ENTITY nbsp    "&#160;">
 <!ENTITY zwsp   "&#8203;">
 <!ENTITY nbhy   "&#8209;">
 <!ENTITY wj     "&#8288;">
]>

<rfc ipr="trust200902"
     category="std" docName="draft-ietf-netmod-geo-location-11" number="9179" submissionType="IETF" category="std" consensus="true" updates="" obsoletes="" xmlns:xi="http://www.w3.org/2001/XInclude" tocInclude="true" sortRefs="true" symRefs="true" xml:lang="en" version="3">

  <front>
    <title abbrev="A YANG Grouping for Geographic Locations">A YANG Grouping for Geographic Locations</title>
<seriesInfo name="RFC" value="9179"/>
<author initials='C.' surname='Hopps' fullname='Christian Hopps'><organization>LabN Consulting, L.L.C.</organization><address><email>chopps@chopps.org</email></address></author>  <date/><abstract><t>This

<date year="2022" month="February" />

<keyword>geolocation</keyword>

<abstract><t>This document defines a generic geographical location YANG grouping.
The geographical location grouping is intended to be used in YANG
data models for specifying a location on or in reference to Earth or any
other astronomical object.</t></abstract>  </front>  <middle>

<section title="Introduction">
<t>In many applications applications, we would like to specify the location of something
geographically. Some examples of locations in networking might be the location
of data center, centers, a rack in an internet Internet exchange point, a router, a firewall, a
port on some device, or it could be the endpoints of a fiber, or perhaps the
failure point along a fiber.</t>

<t>Additionally, while this location is typically relative to Earth,
it does not need to be. Indeed, it is easy to imagine a network or
device located on The the Moon, on Mars, on Enceladus (the moon of
Saturn)
Saturn), or even on a comet (e.g., 67p/churyumov-gerasimenko).</t>

<t>Finally, one can imagine defining locations using different frames
of reference or even alternate systems (e.g., simulations or
virtual realities).</t>

<t>This document defines a <tt>geo-location</tt> '<tt>geo-location</tt>' YANG grouping that allows for
all the above data to be captured.</t>

<t>This specification conforms to <xref target="ISO.6709.2008"/>.</t>

<t>The YANG data model described in this document conforms to the
Network Management Datastore Architecture (NMDA) defined in <xref target="RFC8342"/>.</t>

<section title="Terminology">
<t>The

        <t>
    The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL
    NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
    "<bcp14>MAY</bcp14>", and
"OPTIONAL" "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as
    described in BCP&nbsp;14 <xref target="RFC2119"/> <xref target="RFC8174"/>
    when, and only when, they appear in all capitals, as shown here.</t> here.
        </t>

</section>

</section>

<section title="The Geo Location Geolocation Object">
<section title="Frame of Reference" anchor="sec-frame-of-reference">
<t>The frame of reference (<tt>reference-frame</tt>) ('<tt>reference-frame</tt>') defines what the
location values refer to and their meaning. The referred to referred-to
object can be any astronomical body. It could be a planet such as
Earth or Mars, a moon such as Enceladus, an asteroid such as
Ceres, or even a comet such as 1P/Halley. This value is specified
in <tt>astronomical-body</tt> '<tt>astronomical-body</tt>' and is defined by the <eref target="http://www.iau.org">International target="http://www.iau.org" brackets="angle">International
Astronomical Union</eref>. The default <tt>astronomical-body</tt> '<tt>astronomical-body</tt>' value is
<tt>earth</tt>.</t>
'<tt>earth</tt>'.</t>

<t>In addition to identifying the astronomical body, we also need to define
the meaning of the coordinates (e.g., latitude and longitude) and the
definition of 0-height. This is done with a
<tt>geodetic-datum</tt> '<tt>geodetic-datum</tt>' value. The
default value for <tt>geodetic-datum</tt> '<tt>geodetic-datum</tt>' is
<tt>wgs-84</tt> '<tt>wgs-84</tt>' (i.e., the World
Geodetic System, System <xref target="WGS84"/>), which is used by the Global
Positioning System (GPS) among many others. We define an IANA registry for
specifying standard values for the
<tt>geodetic-datum</tt>.</t> '<tt>geodetic-datum</tt>'.</t>

<t>In addition to the <tt>geodetic-datum</tt> '<tt>geodetic-datum</tt>' value, we allow overriding the
coordinate and height accuracy using <tt>coord-accuracy</tt> '<tt>coord-accuracy</tt>' and
<tt>height-accuracy</tt>
'<tt>height-accuracy</tt>', respectively. When specified, these values
override the defaults implied by the <tt>geodetic-datum</tt> '<tt>geodetic-datum</tt>' value.</t>

<t>Finally, we define an optional feature which that allows for changing the system
for which the above values are defined. This optional feature adds an <tt>alternate-system</tt>
'<tt>alternate-system</tt>' value to the reference frame.  This value is
normally not present present, which implies the natural universe is the system. The use
of this value is intended to allow for creating virtual realities or perhaps
alternate coordinate systems. The definition of alternate systems is outside
the scope of this document.</t>

</section>

<section title="Location">
<t>This is the location on, or relative to, the astronomical object.  It is
specified using 2 two or 3 coordinates three coordinate values. These values are given either as <tt>latitude</tt>, <tt>longitude</tt>,
'<tt>latitude</tt>', '<tt>longitude</tt>', and an optional
<tt>height</tt>, '<tt>height</tt>', or as
Cartesian coordinates of <tt>x</tt>, <tt>y</tt> '<tt>x</tt>', '<tt>y</tt>', and <tt>z</tt>. '<tt>z</tt>'. For the
standard location choice <tt>latitude</tt> choice, '<tt>latitude</tt>' and <tt>longitude</tt> '<tt>longitude</tt>' are
specified as decimal degrees, and the <tt>height</tt> '<tt>height</tt>' value is in fractions of
meters. For the Cartesian choice <tt>x</tt>, <tt>y</tt> choice, '<tt>x</tt>', '<tt>y</tt>', and
<tt>z</tt> '<tt>z</tt>' are
in fractions of meters. In both choices choices, the exact meanings of all the values
are defined by the <tt>geodetic-datum</tt> '<tt>geodetic-datum</tt>' value in the <xref
target="sec-frame-of-reference"></xref>.</t>

</section>

<section title="Motion">
<t>Support is added for objects in relatively stable motion. For objects in
relatively stable motion motion, the grouping provides a
3-dimensional three-dimensional vector
value. The components of the vector are
<tt>v-north</tt>, <tt>v-east</tt> '<tt>v-north</tt>', '<tt>v-east</tt>', and <tt>v-up</tt>
'<tt>v-up</tt>', which are all given in fractional meters per second. The values <tt>v-north</tt>
'<tt>v-north</tt>' and <tt>v-east</tt> '<tt>v-east</tt>' are relative to true north as defined by
the reference frame for the astronomical body, <tt>v-up</tt> body; '<tt>v-up</tt>' is perpendicular
to the plane defined by <tt>v-north</tt> '<tt>v-north</tt>' and <tt>v-east</tt>, '<tt>v-east</tt>', and is pointed
away from the center of mass.</t>

<t>To derive the 2-dimensional two-dimensional heading and speed speed, one would use the
following formulas:</t>

<artwork><![CDATA[
              ,------------------------------
    speed =  V  v_{north}^{2} + v_{east}^{2}

    heading = arctan(v_{east} / v_{north})
]]></artwork>
<t>For some applications that demand high accuracy, accuracy and where the data is
infrequently updated updated, this velocity vector can track very slow movement such
as continental drift.</t>

<t>Tracking more complex forms of motion is outside the scope of
this work. The intent of the grouping being defined here is to
identify where something is located, and generally this is
expected to be somewhere on, or relative to, Earth (or another
astronomical body).

At least two options are available to YANG data models that wish to use this
grouping with objects that are changing location frequently in non-simple
ways. They  A data model can either add additional motion data to their its model directly. Or,
directly, or if the application allows, it can require more frequent queries
to keep the location data current.</t> current.

</t>

</section>

<section title="Nested Locations">
<t>When locations are nested (e.g., a building may have a location
which that houses
routers that also have locations) locations), the module using this grouping is free to
indicate in its definition that the
<tt>reference-frame</tt> '<tt>reference-frame</tt>' is inherited from
the containing object so that the <tt>reference-frame</tt> '<tt>reference-frame</tt>' need not be
repeated in every instance of location data.</t>

</section>

<section title="Non-location Attributes">
<t>During the development of this module, the question of whether it
would support data such as orientation arose. These types of
attributes are outside the scope of this grouping because they do
not deal with a location but rather describe something more about
the object that is at the location. Module authors are free to
add these non-location attributes along with their use of this
location grouping.</t>

</section>

<section title="Tree">
<t>The following is the YANG tree diagram <xref target="RFC8340"/> for the
geo-location grouping.</t>

<artwork><![CDATA[

<sourcecode type="yangtree"><![CDATA[
  module: ietf-geo-location
    grouping geo-location geo-location:
      +-- geo-location
         +-- reference-frame
         |  +-- alternate-system?    string {alternate-systems}?
         |  +-- astronomical-body?   string
         |  +-- geodetic-system
         |     +-- geodetic-datum?    string
         |     +-- coord-accuracy?    decimal64
         |     +-- height-accuracy?   decimal64
         +-- (location)?
         |  +--:(ellipsoid)
         |  |  +-- latitude?    decimal64
         |  |  +-- longitude?   decimal64
         |  |  +-- height?      decimal64
         |  +--:(cartesian)
         |     +-- x?           decimal64
         |     +-- y?           decimal64
         |     +-- z?           decimal64
         +-- velocity
         |  +-- v-north?   decimal64
         |  +-- v-east?    decimal64
         |  +-- v-up?      decimal64
         +-- timestamp?         yang:date-and-time
         +-- valid-until?       yang:date-and-time
]]></artwork>
]]></sourcecode>

</section>

</section>

<section title="YANG Module">
<t>This model imports Common YANG Data Types <xref target="RFC6991"/>. It uses YANG
version 1.1 <xref target="RFC7950"/></t>

<sourcecode><![CDATA[
<CODE BEGINS> file "ietf-geo-location@2019-02-17.yang" target="RFC7950"/>.</t>

<sourcecode name="ietf-geo-location@2022-2-7.yang" type="yang" markers="true"><![CDATA[
module ietf-geo-location {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-geo-location";
  prefix geo;
  import ietf-yang-types {
    prefix yang;
    reference "RFC 6991: Common YANG Data Types."; Types";
  }

  organization
    "IETF NETMOD Working Group (NETMOD)";
  contact
   "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
    WG List:  <mailto:netmod@ietf.org>

    Editor:   Christian Hopps
              <mailto:chopps@chopps.org>";

  // RFC Ed.: replace XXXX with actual RFC number or IANA reference
  // and remove this note.

  description
    "This module defines a grouping of a container object for
     specifying a location on or around an astronomical object (e.g.,
     'earth').

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here.

     Copyright (c) 2019 2022 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject to
     the license terms contained in, the Simplified Revised BSD License set
     forth in Section 4.c 4.e of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC XXXX
     (https://www.rfc-editor.org/info/rfcXXXX); 9179
     (https://www.rfc-editor.org/info/rfc9179); see the RFC itself
     for full legal notices.

     // RFC Ed.: replace XXXX with the actual RFC number or IANA
     // reference and remove this note.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here."; notices.";

  revision 2019-02-17 2022-2-7 {
    description
      "Initial Revision";
    reference
      "RFC XXXX: 9179: A YANG Grouping for Geographic Locations";
  }

  feature alternate-systems {
    description
      "This feature means the device supports specifying locations
       using alternate systems for reference frames.";
  }

  grouping geo-location {
    description
      "Grouping to identify a location on an astronomical object.";

    container geo-location {
      description
        "A location on an astronomical body (e.g., 'earth')
         somewhere in a universe.";

      container reference-frame {
        description
          "The Frame of Reference for the location values.";

        leaf alternate-system {
          if-feature alternate-systems; "alternate-systems";
          type string;
          description
            "The system in which the astronomical body and
             geodetic-datum is defined.  Normally, this value is not
             present and the system is the natural universe; however,
             when present present, this value allows for specifying alternate
             systems (e.g., virtual realities).  An alternate-system
             modifies the definition (but not the type) of the other
             values in the reference frame.";
        }
        leaf astronomical-body {
          type string {
            pattern '[ -@\[-\^_-~]*';
          }
          default "earth";
          description
            "An astronomical body as named by the International
             Astronomical Union (IAU) or according to the alternate
             system if specified.  Examples include 'sun' (our star),
             'earth' (our planet), 'moon' (our moon), 'enceladus' (a
             moon of Saturn), 'ceres' (an asteroid), and
             '67p/churyumov-gerasimenko (a comet).  The ASCII value
             SHOULD have upper case uppercase converted to lower case lowercase and not
             include control characters (i.e., values 32..64, and
             91..126).  Any preceding 'the' in the name SHOULD NOT be
             included.";
          reference
            "https://www.iau.org/";
        }
        container geodetic-system {
          description
            "The geodetic system of the location data.";
          leaf geodetic-datum {
            type string {
              pattern '[ -@\[-\^_-~]*';
            }
            description
              "A geodetic-datum defining the meaning of latitude,
               longitude
               longitude, and height.  The default when the
               astronomical body is 'earth' is 'wgs-84' 'wgs-84', which is
               used by the Global Positioning System (GPS).  The
               ASCII value SHOULD have upper case uppercase converted to lower
               case
               lowercase and not include control characters
               (i.e., values 32..64, and 91..126).  The IANA registry
               further restricts the value by converting all spaces
               (' ') to dashes ('-').
               The specification for the geodetic-datum indicates
               how accurately it models the astronomical body in
               question, both for the 'horizontal'
               latitude/longitude coordinates and for height
               coordinates.";
            reference
              "IANA XXXX
              "RFC 9179: A YANG Grouping for Geographic Location Parameters,
               Geodetic System Values"; Locations,
               Section 6.1";
          }
          leaf coord-accuracy {
            type decimal64 {
              fraction-digits 6;
            }
            description
              "The accuracy of the latitude longitude latitude/longitude pair for
               ellipsoidal coordinates, or the X, Y Y, and Z components
               for Cartesian coordinates.  When coord-accuracy is
               specified, it indicates how precisely the coordinates
               in the associated list of locations have been
               determined with respect to the coordinate system
               defined by the geodetic-datum.  For example, there
               might be uncertainty due to measurement error if an
               experimental measurement was made to determine each
               location.";
          }
          leaf height-accuracy {
            type decimal64 {
              fraction-digits 6;
            }
            units "meters";
            description
              "The accuracy of the height value for ellipsoidal
               coordinates,
               coordinates; this value is not used with Cartesian
               coordinates.  When height-accuracy is specified, it
               indicates how precisely the heights in the
               associated list of locations have been determined
               with respect to the coordinate system defined by the
               geodetic-datum.  For example, there might be
               uncertainty due to measurement error if an
               experimental measurement was made to determine each
               location.";
          }
        }
      }
      choice location {
        description
          "The location data either in lat/long latitude/longitude or
           Cartesian values";
        case ellipsoid {
          leaf latitude {
            type decimal64 {
              fraction-digits 16;
            }
            units "decimal degrees";
            description
              "The latitude value on the astronomical body.  The
               definition and precision of this measurement is
               indicated by the reference-frame.";
          }
          leaf longitude {
            type decimal64 {
              fraction-digits 16;
            }
            units "decimal degrees";
            description
              "The longitude value on the astronomical body.  The
               definition and precision of this measurement is
               indicated by the reference-frame.";
          }
          leaf height {
            type decimal64 {
              fraction-digits 6;
            }
            units "meters";
            description
              "Height from a reference 0 value.  The precision and
               '0' value is defined by the reference-frame.";
          }
        }
        case cartesian {
          leaf x {
            type decimal64 {
              fraction-digits 6;
            }
            units "meters";
            description
              "The X value as defined by the reference-frame.";
          }
          leaf y {
            type decimal64 {
              fraction-digits 6;
            }
            units "meters";
            description
              "The Y value as defined by the reference-frame.";
          }
          leaf z {
            type decimal64 {
              fraction-digits 6;
            }
            units "meters";
            description
              "The Z value as defined by the reference-frame.";
          }
        }
      }
      container velocity {
        description
          "If the object is in motion motion, the velocity vector describes
           this motion at the the time given by the timestamp.  For a
           formula to convert these values to speed and heading heading, see
           RFC XXXX."; 9179.";
        reference
          "RFC XXXX: 9179: A YANG Grouping for Geographic Locations";

        leaf v-north {
          type decimal64 {
            fraction-digits 12;
          }
          units "meters per second";
          description
            "v-north is the rate of change (i.e., speed) towards
             truth
             true north as defined by the geodetic-system.";
        }

        leaf v-east {
          type decimal64 {
            fraction-digits 12;
          }
          units "meters per second";
          description
            "v-east is the rate of change (i.e., speed) perpendicular
             to the right of true north as defined by
             the geodetic-system.";
        }

        leaf v-up {
          type decimal64 {
            fraction-digits 12;
          }
          units "meters per second";
          description
            "v-up is the rate of change (i.e., speed) away from the
             center of mass.";
        }
      }
      leaf timestamp {
        type yang:date-and-time;
        description
          "Reference time when location was recorded.";
      }
      leaf valid-until {
        type yang:date-and-time;
        description
          "The timestamp for which this geo-location is valid until.
           If unspecified unspecified, the geo-location has no specific
           expiration time.";
      }
    }
  }
}
<CODE ENDS>
]]></sourcecode>

</section>

<section title="ISO 6709:2008 Conformance">
<t><xref target="ISO.6709.2008"/> provides an appendix with a set of tests for
conformance to the standard. The tests and results are given in the
following table along with an explanation of non-applicable inapplicable tests.</t>

<table>
<name>Conformance Test Results</name>
<thead><tr><th>Test</th><th>Description</th><th>Pass Explanation</th></tr>
</thead>
<tbody><tr><td>A.1.2.1</td><td>elements reqd. required for a geo. geographic point location</td><td>CRS is always indicated</td></tr>
<tr><td>A.1.2.2</td><td>Description
<tr><td>A.1.2.2</td><td>description of a CRS from a register</td><td>CRS register is defined</td></tr>
<tr><td>A.1.2.3</td><td>definition of CRS</td><td>N/A - Don't define CRS</td></tr>
<tr><td>A.1.2.4</td><td>representation of horizontal position</td><td>lat/long position</td><td>latitude/longitude values conform</td></tr>
<tr><td>A.1.2.5</td><td>representation of vertical position</td><td>height value conforms</td></tr>
<tr><td>A.1.2.6</td><td>text string representation</td><td>N/A - No string format</td></tr>
</tbody>
</table>

<t>For test <tt>A.1.2.1</tt> '<tt>A.1.2.1</tt>', the YANG geo location geo-location object either includes a
Coordinate Reference System (CRS) (<tt>reference-frame</tt>) ('<tt>reference-frame</tt>') or has a
default defined (<xref target="WGS84"/>).</t> <xref target="WGS84"/>.</t>

<t>For <tt>A.1.2.3</tt> '<tt>A.1.2.3</tt>', we do not define our own CRS, and doing so is not
required for conformance.</t>

<t>For <tt>A.1.2.6</tt> '<tt>A.1.2.6</tt>', we do not define a text string representation, which is
also not required for conformance.</t>

</section>

<section title="Usability">
<t>The geo-location object defined in this document and YANG module have has
been designed to be usable in a very broad set of applications.
This includes the ability to locate things on astronomical bodies
other than Earth, and to utilize entirely different coordinate
systems and realities.</t>

<section title="Portability">
<t>In order to verify portability while developing this module module, the
following standards and standard APIs were considered.</t>

<section title="IETF URI Value">
<t><xref target="RFC5870"/> defines a standard URI value for geographic
location data. It includes the ability to specify the <tt>geodetic-value</tt> '<tt>geodetic-value</tt>'
(it calls this
<tt>crs</tt>) '<tt>crs</tt>') with the default being <tt>wgs-84</tt> '<tt>wgs-84</tt>' <xref
target="WGS84"/>. For the location data data, it allows 2 two to 3 three coordinates defined
by the <tt>crs</tt> '<tt>crs</tt>' value. For accuracy, it has a single <tt>u</tt> '<tt>u</tt>' parameter
for specifying uncertainty. The <tt>u</tt> '<tt>u</tt>' value is in fractions of meters and
applies to all the location values. As the URI is a string, all values are
specified as strings and so are capable of as much precision as required.</t>

<t>URI values can be mapped to and from the YANG grouping, grouping with the
caveat that some loss of precision (in the extremes) may occur due to
the YANG grouping using decimal64 values rather than strings.</t>

</section>

<section title="W3C">
<t>W3C Defines defines a geo-location geolocation API in <xref target="W3CGEO"/>. We show a snippet of
code below which that defines the geo-location geolocation data for this API. This is
used by many applications (e.g., Google Maps API).</t>

<figure><name>Snippet Showing Geo-Location Definition</name><sourcecode><![CDATA[ Geolocation Definition</name><sourcecode type=""><![CDATA[
interface GeolocationPosition {
  readonly attribute GeolocationCoordinates coords;
  readonly attribute DOMTimeStamp timestamp;
};

interface GeolocationCoordinates {
  readonly attribute double latitude;
  readonly attribute double longitude;
  readonly attribute double? altitude;
  readonly attribute double accuracy;
  readonly attribute double? altitudeAccuracy;
  readonly attribute double? heading;
  readonly attribute double? speed;
};
]]></sourcecode></figure>

<section title="Compare title="Comparison with YANG Data Model">
<table>

<thead><tr><th>Field</th><th>Type</th><th>YANG</th><th>Type</th></tr>
</thead>
<tbody><tr><td>accuracy</td><td>double</td><td>coord-accuracy</td><td>dec64 fr 6</td></tr>
<tr><td>altitude</td><td>double</td><td>height</td><td>dec64 fr 6</td></tr>
<tr><td>altitudeAccuracy</td><td>double</td><td>height-accuracy</td><td>dec64 fr 6</td></tr>
<tr><td>heading</td><td>double</td><td>v-north, v-east</td><td>dec64 fr 12</td></tr>
<tr><td>latitude</td><td>double</td><td>latitude</td><td>dec64 fr 16</td></tr>
<tr><td>longitude</td><td>double</td><td>longitude</td><td>dec64 fr 16</td></tr>
<tr><td>speed</td><td>double</td><td>v-north, v-east</td><td>dec64 fr 12</td></tr>
<tr><td>timestamp</td><td>DOMTimeStamp</td><td>timestamp</td><td>string</td></tr>
</tbody>
</table>

<dl>
<dt>accuracy (double)</dt><dd><t>Accuracy (double):</dt><dd><t>Accuracy of <tt>latitude</tt> '<tt>latitude</tt>' and <tt>longitude</tt>
'<tt>longitude</tt>' values in meters.</t></dd>
<dt>altitude (double)</dt><dd><t>Optional (double):</dt><dd><t>Optional height in meters above the <xref target="WGS84"/> ellipsoid.</t></dd>
<dt>altitudeAccuracy (double)</dt><dd><t>Optional (double):</dt><dd><t>Optional accuracy of <tt>altitude</tt> '<tt>altitude</tt>' value
in meters.</t></dd>
<dt>heading (double)</dt><dd><t>Optional Direction (double):</dt><dd><t>Optional direction in decimal deg degrees from true
north increasing clock-wise.</t></dd> clockwise.</t></dd>
<dt>latitude, longitude (double)</dt><dd><t>Standard lat/long (double):</dt><dd><t>Standard latitude/longitude values in decimal degrees.</t></dd>
<dt>speed (double)</dt><dd><t>Speed (double):</dt><dd><t>Speed along the heading in meters per second.</t></dd>
<dt>timestamp (DOMTimeStamp)</dt><dd><t>Specifies (DOMTimeStamp):</dt><dd><t>Specifies milliseconds since the Unix
EPOCH UNIX
Epoch in 64 bit a 64-bit unsigned integer. The YANG data model defines the
timestamp with arbitrarily large precision by using a string
which
that encompasses all representable values of this timestamp
value.</t></dd>
</dl>

<t>W3C API values can be mapped to the YANG grouping, grouping with the caveat
that some loss of precision (in the extremes) may occur due to the
YANG grouping using decimal64 values rather than doubles.</t>

<t>Conversely, only YANG values for Earth using the default
<tt>wgs-84</tt> '<tt>wgs-84</tt>'
<xref target="WGS84"/> as the <tt>geodetic-datum</tt>, '<tt>geodetic-datum</tt>' can be directly mapped
to the W3C values, values as W3C does not provide the extra features necessary to map
the broader set of values supported by the YANG grouping.</t>

</section>

</section>

<section title="Geography Markup Language (GML)">

<t>ISO adopted the Geography Markup Language (GML) defined by OGC 07-036 <xref target="OGC"/>
as <xref target="ISO.19136.2007"/>. GML defines, among many other things, a position
type <tt>gml:pos</tt> '<tt>gml:pos</tt>', which is a sequence of <tt>double</tt> '<tt>double</tt>' values. This sequence
of values represents coordinates in a given CRS. The CRS is either
inherited from containing elements or directly specified as
attributes <tt>srsName</tt> '<tt>srsName</tt>' and optionally <tt>srsDimension</tt> '<tt>srsDimension</tt>' on the <tt>gml:pos</tt>.</t> '<tt>gml:pos</tt>'.</t>

<t>GML defines an Abstract CRS type from which Concrete CRS types derive
from. are derived.
This allows for many types of CRS definitions. We are concerned
with the Geodetic CRS type type, which can have either ellipsoidal or
Cartesian coordinates. We believe that other non-Earth based CRS non-Earth-based CRSs as
well as virtual CRS CRSs should also be representable by the GML CRS types.</t>

<t>Thus, GML <tt>gml:pos</tt> '<tt>gml:pos</tt>' values can be mapped directly to the YANG
grouping,
grouping with the caveat that some loss of precision (in the
extremes) may occur due to the YANG grouping using decimal64 values
rather than doubles.</t>

<t>Conversely,

<t>
Conversely, mapping YANG grouping values can be mapped to GML as directly as
the GML CRS available definitions allow with a minimum of is fully supported for
Earth-based geodetic systems fully supported.</t> systems.</t>

<t>GML also defines an observation value in <tt>gml:Observation</tt> '<tt>gml:Observation</tt>', which
includes a timestamp value <tt>gml:validTime</tt> '<tt>gml:validTime</tt>' in addition to other
components such as <tt>gml:using</tt> <tt>gml:target</tt> '<tt>gml:using</tt>', '<tt>gml:target</tt>', and <tt>gml:resultOf</tt>.
'<tt>gml:resultOf</tt>'. Only the timestamp is mappable to and from the YANG
grouping. Furthermore,
<tt>gml:validTime</tt> '<tt>gml:validTime</tt>' can either be an Instantaneous instantaneous
measure
(<tt>gml:TimeInstant</tt>) ('<tt>gml:TimeInstant</tt>') or a time period (<tt>gml:TimePeriod</tt>).
('<tt>gml:TimePeriod</tt>'). The instantaneous <tt>gml:TimeInstant</tt> '<tt>gml:TimeInstant</tt>' is
mappable to and from the YANG grouping <tt>timestamp</tt> '<tt>timestamp</tt>' value, and values
down to the resolution of seconds for <tt>gml:TimePeriod</tt> '<tt>gml:TimePeriod</tt>' can be mapped
using the <tt>valid-until</tt> '<tt>valid-until</tt>' node of the YANG grouping.</t>

</section>

<section title="KML">
<t>KML 2.2 <xref target="KML22"/> (formerly Keyhole Markup Language) was
submitted by Google to the <eref target="https://www.opengeospatial.org/">Open
Geospatial Consortium,</eref> Consortium</eref> and was adopted. The latest version as of this
writing is KML 2.3 <xref target="KML23"/>. This schema includes geographic
location data in some of its objects (e.g., <tt>kml:Point</tt> '<tt>kml:Point</tt>' or
<tt>kml:Camera</tt>
'<tt>kml:Camera</tt>' objects). This data is provided in string format and
corresponds to the values specified in <xref target="W3CGEO"/> values. target="W3CGEO"/>. The timestamp value is also
specified as a string as in our YANG grouping.</t>

<t>KML has some special handling for the height value that is useful for
visualization software, <tt>kml:altitudeMode</tt>. These '<tt>kml:altitudeMode</tt>'.

The values for
<tt>kml:altitudeMode</tt> '<tt>kml:altitudeMode</tt>' include indicating '<tt>clampToGround</tt>', which
indicates the height is ignored
(<tt>clampToGround</tt>), in relation ignored; '<tt>relativeToGround</tt>', which indicates the
height value is relative to the location's ground level
(<tt>relativeToGround</tt>), level; or in relation to '<tt>absolute</tt>', which
indicates the height value is an absolute value within the geodetic datum
(<tt>absolute</tt>). datum.

The YANG grouping can directly map the ignored and
absolute cases, cases but not the relative to ground relative-to-ground case.</t>

<t>In addition to the <tt>kml:altitudeMode</tt> '<tt>kml:altitudeMode</tt>', KML also defines two seafloor
height values using <tt>kml:seaFloorAltitudeMode</tt>. '<tt>kml:seaFloorAltitudeMode</tt>'. One value is to
ignore the height value (<tt>clampToSeaFloor</tt>) ('<tt>clampToSeaFloor</tt>') and the other is relative
(<tt>relativeToSeaFloor</tt>).
('<tt>relativeToSeaFloor</tt>'). As with the <tt>kml:altitudeMode</tt> '<tt>kml:altitudeMode</tt>' value, the
YANG grouping supports the ignore case but not the relative case.</t>

<t>The

<t>
The KML location values use a geodetic datum defined in Annex A by
the GML Coordinate Reference System (CRS) of
<xref target="ISO.19136.2007"/> with identifier <tt>LonLat84_5773</tt>. '<tt>LonLat84_5773</tt>'.

The altitude value for KML absolute height
mode is measured from the vertical datum specified by <xref
target="WGS84"/>.</t>

<t>Thus, the YANG grouping and KML values can be directly mapped in both
directions (when using a supported altitude mode) with the caveat
that some loss of precision (in the extremes) may occur due to the
YANG grouping using decimal64 values rather than strings. For the
relative height cases, the application doing the transformation is
expected to have the data available to transform the relative height
into an absolute height, which can then be expressed using the YANG
grouping.</t>

</section>

</section>

</section>

<section title="IANA Considerations">
<section title="Geodetic System Values Registry">
<t>IANA is asked to create a new registry has created the "Geodetic System Values" registry under
a new protocol category group
the "YANG Geographic Location Parameters".</t> Parameters" registry.</t>

<t>This registry allocates names for standard geodetic systems. Often Often, these
values are referred to using multiple names (e.g., full names or multiple
acronyms). The intent of this registry is to provide a single standard value
for any given geodetic system.</t>

<t>The values SHOULD <bcp14>SHOULD</bcp14> use an acronym when available, they MUST
<bcp14>MUST</bcp14> be converted to lower case, lowercase, and spaces MUST <bcp14>MUST</bcp14>
be changed to dashes "-".</t>

<t>Each entry should be sufficient to define the 2 two coordinate values, values and to
define height if height is required. So, for example, the
<tt>wgs-84</tt> '<tt>wgs-84</tt>' is
defined as WGS-84 with the geoid updated by at least <xref target="EGM96"/>
for height values. Specific entries for <xref target="EGM96"/> and <xref
target="EGM08"/> are present if a more precise definition of the data is
required.</t>

<t>It should be noted that <xref target="RFC5870"/> also creates created a registry
for Geodetic
Systems (it calls CRS); geodetic systems (the "'geo' URI 'crs' Parameter Values" registry); however, this registry has a very strict
modification policy. The authors of <xref target="RFC5870"/> have the stated
goal of making CRS registration hard to avoid proliferation of CRS values. As
our module defines alternate systems and has a broader (beyond Earth)
scope, scope (i.e., beyond Earth),
the registry defined below is meant to be more easily modified.</t>

<t>The allocation policy for this registry is First Come, Come First Served, Served <xref target="RFC8126"/>
target="RFC8126"/>, as the intent is simply to avoid duplicate values.</t>

<t>The Reference value can either be a document or a contact person as
defined in <xref target="RFC8126"/>. The Change Control Controller (i.e., Owner) is also defined
by <xref target="RFC8126"/>.</t>

<t>The initial values for this registry are as follows. They include the
non-Earth based
non-Earth-based geodetic-datum value for the moon Moon based on <xref target="ME"/>.</t> target="MEAN-EARTH"/>.</t>

<table>

<thead><tr><th>Name</th><th>Description</th><th>Reference</th><th>Change</th></tr>
<tr><th>&#xa0;</th><th>&#xa0;</th><th>/Contact</th><th>Control</th></tr>

<thead><tr><th>Name</th><th>Description</th><th>Reference</th><th>Change Controller</th></tr>

</thead>

<tbody><tr><td>me</td><td>Mean Earth/Polar Axis (Moon)</td><td>this</td><td>IESG</td></tr> (Moon)</td><td>RFC 9179</td><td>IETF</td></tr>
<tr><td>wgs-84-96</td><td>World Geodetic System 1984</td><td>this</td><td>IESG</td></tr> 1984</td><td>RFC 9179</td><td>IETF</td></tr>
<tr><td>wgs-84-08</td><td>World Geodetic System 1984</td><td>this</td><td>IESG</td></tr> 1984</td><td>RFC 9179</td><td>IETF</td></tr>
<tr><td>wgs-84</td><td>World Geodetic System 1984</td><td>this</td><td>IESG</td></tr> 1984</td><td>RFC 9179</td><td>IETF</td></tr>
</tbody>
</table>

</section>

<section title="Updates to the IETF XML Registry">
<t>This document registers a URI in the "IETF XML Registry" <xref target="RFC3688"/>.
Following the format in <xref target="RFC3688"/>, the following registration has been
made:</t>

<dl>
<dt>URI</dt><dd><t>urn:ietf:params:xml:ns:yang:ietf-geo-location</t></dd>

<dl spacing="compact">
<dt>URI:</dt><dd><t>urn:ietf:params:xml:ns:yang:ietf-geo-location</t></dd>
<dt>Registrant Contact</dt><dd><t>The Contact:</dt><dd><t>The IESG.</t></dd>
<dt>XML</dt><dd><t>N/A;
<dt>XML:</dt><dd><t>N/A; the requested URI is an XML namespace.</t></dd>
</dl>

</section>

<section title="Updates to the YANG Module Names Registry">
<t>This document registers one YANG module in the "YANG Module Names"
registry <xref target="RFC6020"/>. Following the format in <xref target="RFC6020"/>, the following
registration has been made:</t>

<dl>
<dt>name</dt><dd><t>ietf-geo-location</t></dd>
<dt>namespace</dt><dd><t>urn:ietf:params:xml:ns:yang:ietf-geo-location</t></dd>
<dt>prefix</dt><dd><t>geo</t></dd>
<dt>reference</dt><dd><t>RFC XXXX (RFC Ed.: replace XXXX with RFC number and remove this note.)</t></dd>

<dl spacing="compact">
<dt>Name:</dt><dd><t>ietf-geo-location</t></dd>
<dt>Maintained by IANA:</dt><dd><t>N</t></dd>
<dt>Namespace:</dt><dd><t>urn:ietf:params:xml:ns:yang:ietf-geo-location</t></dd>
<dt>Prefix:</dt><dd><t>geo</t></dd>
<dt>Reference:</dt><dd><t>RFC 9179</t></dd>
</dl>

</section>

</section>

<section title="Security Considerations">
<t>The YANG module specified in this document defines a schema for data that
is designed to be accessed via network management protocols such as NETCONF the
Network Configuration Protocol (NETCONF) <xref target="RFC6241"/> or RESTCONF
<xref target="RFC8040"/>.  The lowest NETCONF layer is the secure transport
layer, and the mandatory-to-implement secure transport is Secure Shell (SSH)
<xref target="RFC6242"/>.  The lowest RESTCONF layer is HTTPS, and the
mandatory-to-implement secure transport is TLS <xref target="RFC8446"/>.</t>

<t>The NETCONF access control model <xref target="RFC8341"/> provides the means to
restrict access for particular NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.</t>

<t>Since the modules defined in this document only define groupings,
these considerations are primarily for the designers of other modules
that use these groupings.</t>

<t>All the data nodes defined in this YANG module are
writable/creatable/deletable (i.e., "config true", which is the
default).</t>

<t>None of the writable/creatable/deletable data nodes in the YANG
module defined in this document are by themselves considered more
sensitive or vulnerable than standard configuration.</t>

<t>Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments.  It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes.</t>

<t>Since the grouping defined in this module identifies locations,
authors using this grouping SHOULD <bcp14>SHOULD</bcp14> consider any privacy issues
that may arise when the data is readable (e.g., customer device
locations, etc).</t>

</section>

</middle>
<back>
<references title="Normative References">

<reference anchor="EGM08">
<front>
<title>An Earth Gravitational Model to Degree 2160: EGM08.</title>
<author initials='N.K.' initials='N.' surname='Pavlis' fullname='N. K. Pavlis'><organization/></author>
<author initials='S.A.' initials='S.' surname='Holmes' fullname='S. A. Holmes'><organization/></author>
<author initials='S.C.' initials='S.' surname='Kenyon' fullname='S. C. Kenyon'><organization/></author>
<author initials='J.K.' initials='J.' surname='Factor' fullname='J. K. Factor'><organization/></author>
<date year="2008"/> year="2008" month="April"/>
</front><refcontent>Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Arpil13-18, 2008</refcontent> Vienna</refcontent>
</reference>

<reference anchor="EGM96">
<front>
<title>The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96.</title>
<author initials='F.G.' initials='F.' surname='Lemoine' fullname='F. G. Lemoine'><organization/></author>
<author initials='S.C.' initials='S.' surname='Kenyon' fullname='S. C. Kenyon'><organization/></author>
<author initials='J.K.' initials='J.' surname='Factor' fullname='J. K. Factor'><organization/></author>
<author initials='R.G.' initials='R.' surname='Trimmer' fullname='R. G. Trimmer'><organization/></author>
<author initials='N.K.' initials='N.' surname='Pavlis' fullname='N. K. Pavlis'><organization/></author>
<author initials='D.S.' initials='D.' surname='Chinn' fullname='D. S. Chinn'><organization/></author>
<author initials='C.M.' initials='C.' surname='Cox' fullname='C. M. Cox'><organization/></author>
<author initials='S.M.' initials='S.' surname='Klosko' fullname='S. M. Klosko'><organization/></author>
<author initials='S.B.' initials='S.' surname='Luthcke' fullname='S. B. Luthcke'><organization/></author>
<author initials='M.H.' initials='M.' surname='Torrence' fullname='M. H. Torrence'><organization/></author>
<author initials='Y.M.' initials='Y.' surname='Wang' fullname='Y. M. Wang'><organization/></author>
<author initials='R.G.' initials='R.' surname='Williamson' fullname='R. G. Williamson'><organization/></author>
<author initials='E.C.' initials='E.' surname='Pavlis' fullname='E. C. Pavlis'><organization/></author>
<author initials='R.H.' initials='R.' surname='Rapp' fullname='R. H. Rapp'><organization/></author>
<author initials='T.R.' initials='T.' surname='Olson' fullname='T. R. Olson'><organization/></author>
<date year="1998"/>
</front><refcontent>Technical Report NASA/TP-1998-206861, NASA, Greenbelt.</refcontent> year="1998" month="July"/>
</front><refcontent>NASA/TP-1998-206861</refcontent>
</reference>

<reference anchor="ISO.6709.2008">
<front>
<title>ISO 6709:2008 Standard
<title>Standard representation of geographic point location by coordinates.</title> coordinates</title>
<author><organization>International Organization for Standardization</organization></author>
<date year="2008"/>
</front>
<seriesInfo name="ISO" value="6709:2008"/>
</reference>

<reference anchor="ME"> anchor="MEAN-EARTH">
<front>
<title>A Standardized Lunar Coordinate System for the Lunar Reconnaissance Orbiter, Version 4.</title>
<author><organization>National Aeronautics and Space Administration, Goddard Space Flight Center.</organization></author> Orbiter</title>
<author><organization>NASA</organization></author>
<date day="14" month="5" month="May" year="2008"/>
</front>
<refcontent>Version 4, Goddard Space Flight Center</refcontent>
</reference>

<reference  anchor='RFC2119' target='https://www.rfc-editor.org/info/rfc2119'>
<front>
<title>Key words for use in RFCs to Indicate Requirement Levels</title>
<author initials='S.' surname='Bradner' fullname='S. Bradner'><organization /></author>
<date year='1997' month='March' />
<abstract><t>In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t></abstract>
</front>
<seriesInfo name='BCP' value='14'/>
<seriesInfo name='RFC' value='2119'/>
<seriesInfo name='DOI' value='10.17487/RFC2119'/>
</reference>

<reference  anchor='RFC6991' target='https://www.rfc-editor.org/info/rfc6991'>
<front>
<title>Common YANG Data Types</title>
<author initials='J.' surname='Schoenwaelder' fullname='J. Schoenwaelder' role='editor'><organization /></author>
<date year='2013' month='July' />
<abstract><t>This document introduces a collection of common data types to be used with the YANG data modeling language.  This document obsoletes RFC 6021.</t></abstract>
</front>
<seriesInfo name='RFC' value='6991'/>
<seriesInfo name='DOI' value='10.17487/RFC6991'/>
</reference>

<reference  anchor='RFC8174' target='https://www.rfc-editor.org/info/rfc8174'>
<front>
<title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title>
<author initials='B.' surname='Leiba' fullname='B. Leiba'><organization /></author>
<date year='2017' month='May' />
<abstract><t>RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.</t></abstract>
</front>
<seriesInfo name='BCP' value='14'/>
<seriesInfo name='RFC' value='8174'/>
<seriesInfo name='DOI' value='10.17487/RFC8174'/>
</reference>

<reference  anchor='RFC8126' target='https://www.rfc-editor.org/info/rfc8126'>
<front>
<title>Guidelines for Writing an IANA Considerations Section in RFCs</title>
<author initials='M.' surname='Cotton' fullname='M. Cotton'><organization /></author>
<author initials='B.' surname='Leiba' fullname='B. Leiba'><organization /></author>
<author initials='T.' surname='Narten' fullname='T. Narten'><organization /></author>
<date year='2017' month='June' />
<abstract><t>Many protocols make use of points of extensibility that use constants to identify various protocol parameters.  To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper.  For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).</t><t>To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed.  This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.</t><t>This is the third edition of this document; it obsoletes RFC 5226.</t></abstract>
</front>
<seriesInfo name='BCP' value='26'/>
<seriesInfo name='RFC' value='8126'/>
<seriesInfo name='DOI' value='10.17487/RFC8126'/>
</reference>

<reference  anchor='RFC8342' target='https://www.rfc-editor.org/info/rfc8342'>
<front>
<title>Network Management Datastore Architecture (NMDA)</title>
<author initials='M.' surname='Bjorklund' fullname='M. Bjorklund'><organization /></author>
<author initials='J.' surname='Schoenwaelder' fullname='J. Schoenwaelder'><organization /></author>
<author initials='P.' surname='Shafer' fullname='P. Shafer'><organization /></author>
<author initials='K.' surname='Watsen' fullname='K. Watsen'><organization /></author>
<author initials='R.' surname='Wilton' fullname='R. Wilton'><organization /></author>
<date year='2018' month='March' />
<abstract><t>Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model.  This document updates RFC 7950.</t></abstract>
</front>
<seriesInfo name='RFC' value='8342'/>
<seriesInfo name='DOI' value='10.17487/RFC8342'/>
</reference>

<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6241.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6242.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6991.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8126.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8341.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8040.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8342.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/>

<reference anchor="WGS84">
<front>
<title>National Imagery and Mapping Agency Technical Report 8350.2, Third Edition.</title>
<title>Department of Defense World Geodetic System 1984</title>
<author><organization>National Imagery and Mapping Agency.</organization></author> Agency</organization></author>
<date day="3" month="1"  month="January" year="2000"/>
</front>
<refcontent>NIMA TR8350.2, Third Edition</refcontent>
</reference>
</references>

<references title="Informative References">

<reference anchor="OGC" target="https://portal.ogc.org/files/?artifact_id=20509">
<front>
<title>OpenGISĀ® Geography Markup Language (GML) Encoding Standard</title>
<author><organization>OpenGIS</organization></author>
<date month="August" year="2007"/>
</front>
<refcontent>Version: 3.2.1</refcontent>
<refcontent>OGC 07-036</refcontent>

</reference>

<reference anchor="ISO.19136.2007">
<front>
<title>ISO 19136:2007 Geographic
<title>Geographic information -- Geography Markup Language (GML)</title>
<author><organization>International Organization for Standardization</organization></author>
<date/>
</front>
<seriesInfo name="ISO" value="19136:2007"/>
</reference>

<reference anchor="KML22" target='http://portal.opengeospatial.org/files/?artifact_id=27810'> target='https://portal.opengeospatial.org/files/?artifact_id=27810' >
<front>
<title>OGC KML (Version 2.2)</title> KML</title>
<author role='editor' initials='T.' surname='Wilson' fullname='Tim Wilson'><organization>Open Geospatial Consortium</organization></author> Consortium Inc.</organization></author>
<date day="14" month="4"  month="April" year="2008"/>
</front>
<refcontent>Version 2.2</refcontent>
</reference>

<reference anchor="KML23" target='http://docs.opengeospatial.org/is/12-007r2/12-007r2.html'> target='https://docs.opengeospatial.org/is/12-007r2/12-007r2.html'>
<front>
<title>OGC KML 2.3</title> KML</title>
<author role='editor' initials='D.' surname='Burggraf' fullname='David Burggraf'><organization>Open Geospatial Consortium</organization></author> Consortium Inc.</organization></author>
<date day="4" month="8" month="August" year="2015"/>
</front>
<refcontent>Version 2.3</refcontent>
</reference>

<reference  anchor='RFC3688' target='https://www.rfc-editor.org/info/rfc3688'>
<front>
<title>The IETF XML Registry</title>
<author initials='M.' surname='Mealling' fullname='M. Mealling'><organization /></author>
<date year='2004' month='January' />
<abstract><t>This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.</t></abstract>
</front>
<seriesInfo name='BCP' value='81'/>
<seriesInfo name='RFC' value='3688'/>
<seriesInfo name='DOI' value='10.17487/RFC3688'/>
</reference>

<reference  anchor='RFC5870' target='https://www.rfc-editor.org/info/rfc5870'>
<front>
<title>A Uniform Resource Identifier for Geographic Locations ('geo' URI)</title>
<author initials='A.' surname='Mayrhofer' fullname='A. Mayrhofer'><organization /></author>
<author initials='C.' surname='Spanring' fullname='C. Spanring'><organization /></author>
<date year='2010' month='June' />
<abstract><t>This document specifies a Uniform Resource Identifier (URI) for geographic locations using the 'geo\' scheme name.  A 'geo' URI identifies a physical location in a two- or three-dimensional coordinate reference system in a compact, simple, human-readable, and protocol-independent way.  The default coordinate reference system used is the World Geodetic System 1984 (WGS-84).  [STANDARDS-TRACK]</t></abstract>
</front>
<seriesInfo name='RFC' value='5870'/>
<seriesInfo name='DOI' value='10.17487/RFC5870'/>
</reference>

<reference  anchor='RFC6020' target='https://www.rfc-editor.org/info/rfc6020'>
<front>
<title>YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)</title>
<author initials='M.' surname='Bjorklund' fullname='M. Bjorklund' role='editor'><organization /></author>
<date year='2010' month='October' />
<abstract><t>YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]</t></abstract>
</front>
<seriesInfo name='RFC' value='6020'/>
<seriesInfo name='DOI' value='10.17487/RFC6020'/>
</reference>

<reference  anchor='RFC6241' target='https://www.rfc-editor.org/info/rfc6241'>
<front>
<title>Network Configuration Protocol (NETCONF)</title>
<author initials='R.' surname='Enns' fullname='R. Enns' role='editor'><organization /></author>
<author initials='M.' surname='Bjorklund' fullname='M. Bjorklund' role='editor'><organization /></author>
<author initials='J.' surname='Schoenwaelder' fullname='J. Schoenwaelder' role='editor'><organization /></author>
<author initials='A.' surname='Bierman' fullname='A. Bierman' role='editor'><organization /></author>
<date year='2011' month='June' />
<abstract><t>The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices.  It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages.  The NETCONF protocol operations are realized as remote procedure calls (RPCs).  This document obsoletes RFC 4741.  [STANDARDS-TRACK]</t></abstract>
</front>
<seriesInfo name='RFC' value='6241'/>
<seriesInfo name='DOI' value='10.17487/RFC6241'/>
</reference>

<reference  anchor='RFC6242' target='https://www.rfc-editor.org/info/rfc6242'>
<front>
<title>Using the NETCONF Protocol over Secure Shell (SSH)</title>
<author initials='M.' surname='Wasserman' fullname='M. Wasserman'><organization /></author>
<date year='2011' month='June' />
<abstract><t>This document describes a method for invoking and running the Network Configuration Protocol (NETCONF) within a Secure Shell (SSH) session as an SSH subsystem.  This document obsoletes RFC 4742.  [STANDARDS-TRACK]</t></abstract>
</front>
<seriesInfo name='RFC' value='6242'/>
<seriesInfo name='DOI' value='10.17487/RFC6242'/>
</reference>

<reference  anchor='RFC7950' target='https://www.rfc-editor.org/info/rfc7950'>
<front>
<title>The YANG 1.1 Data Modeling Language</title>
<author initials='M.' surname='Bjorklund' fullname='M. Bjorklund' role='editor'><organization /></author>
<date year='2016' month='August' />
<abstract><t>YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols.  This document describes the syntax and semantics of version 1.1 of the YANG language.  YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification.  There are a small number of backward incompatibilities from YANG version 1.  This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).</t></abstract>
</front>
<seriesInfo name='RFC' value='7950'/>
<seriesInfo name='DOI' value='10.17487/RFC7950'/>
</reference>

<reference  anchor='RFC8040' target='https://www.rfc-editor.org/info/rfc8040'>
<front>
<title>RESTCONF Protocol</title>
<author initials='A.' surname='Bierman' fullname='A. Bierman'><organization /></author>
<author initials='M.' surname='Bjorklund' fullname='M. Bjorklund'><organization /></author>
<author initials='K.' surname='Watsen' fullname='K. Watsen'><organization /></author>
<date year='2017' month='January' />
<abstract><t>This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).</t></abstract>
</front>
<seriesInfo name='RFC' value='8040'/>
<seriesInfo name='DOI' value='10.17487/RFC8040'/>
</reference>

<reference  anchor='RFC8340' target='https://www.rfc-editor.org/info/rfc8340'>
<front>
<title>YANG Tree Diagrams</title>
<author initials='M.' surname='Bjorklund' fullname='M. Bjorklund'><organization /></author>
<author initials='L.' surname='Berger' fullname='L. Berger' role='editor'><organization /></author>
<date year='2018' month='March' />
<abstract><t>This document captures the current syntax used in YANG module tree diagrams.  The purpose of this document is to provide a single location for this definition.  This syntax may be updated from time to time based on the evolution of the YANG language.</t></abstract>
</front>
<seriesInfo name='BCP' value='215'/>
<seriesInfo name='RFC' value='8340'/>
<seriesInfo name='DOI' value='10.17487/RFC8340'/>
</reference>

<reference  anchor='RFC8341' target='https://www.rfc-editor.org/info/rfc8341'>
<front>
<title>Network Configuration Access Control Model</title>
<author initials='A.' surname='Bierman' fullname='A. Bierman'><organization /></author>
<author initials='M.' surname='Bjorklund' fullname='M. Bjorklund'><organization /></author>
<date year='2018' month='March' />
<abstract><t>The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability.  There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.  This document defines such an access control model.</t><t>This document obsoletes RFC 6536.</t></abstract>
</front>
<seriesInfo name='STD' value='91'/>
<seriesInfo name='RFC' value='8341'/>
<seriesInfo name='DOI' value='10.17487/RFC8341'/>
</reference>

<reference  anchor='RFC8446' target='https://www.rfc-editor.org/info/rfc8446'>
<front>
<title>The Transport Layer Security (TLS) Protocol Version 1.3</title>
<author initials='E.' surname='Rescorla' fullname='E. Rescorla'><organization /></author>
<date year='2018' month='August' />
<abstract><t>This document specifies version 1.3 of the Transport Layer Security (TLS) protocol.  TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.</t><t>This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961.  This document also specifies new requirements for TLS 1.2 implementations.</t></abstract>
</front>
<seriesInfo name='RFC' value='8446'/>
<seriesInfo name='DOI' value='10.17487/RFC8446'/>
</reference>

<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3688.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5870.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6020.xml"/>
<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7950.xml"/>

<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8340.xml"/>

<reference anchor="W3CGEO" target='https://www.w3.org/TR/2016/REC-geolocation-API-20161108/'>
<front>
<title>Geolocation API Specification</title>
<author initials='A.' surname='Popescu' fullname='Andrei Popescu'><organization/></author>
<date day="8" month="11"  month="November" year="2016"/>
</front>
<refcontent>2nd Edition</refcontent>
</reference>

</references>
<section title="Examples">
<t>Below is a fictitious module that uses the geo-location grouping.</t>

<figure><name>Example YANG module using geo location.</name><sourcecode><![CDATA[ Module Using Geolocation</name><sourcecode type="yang"><![CDATA[
module example-uses-geo-location {
  namespace
    "urn:example:example-uses-geo-location";
  prefix ugeo;
  import ietf-geo-location { prefix geo; }
  organization "Empty Org";
  contact "Example Author <eauthor@example.com>";
  description
    "Example use of geo-location";
  revision 2019-02-02 2022-2-7 { reference "None"; }
  container locatable-items {
    description "container
      "The container of locatable items";
    list locatable-item {
      key name;
      description
        "A locatable item";
      leaf name {
        type string;
        description "name
          "The name of locatable item";
      }
      uses geo:geo-location;
    }
  }
}
]]></sourcecode></figure>

<t>Below is the YANG tree for the fictitious module that uses the
geo-location grouping.</t>

<artwork><![CDATA[
<figure><name>Example YANG Tree Using Geolocation</name>
<sourcecode type="yangtree"><![CDATA[
  module: example-uses-geo-location
    +--rw locatable-items
       +--rw locatable-item* [name]
          +--rw name            string
          +--rw geo-location
             +--rw reference-frame
             |  +--rw alternate-system?    string
             |  |       {alternate-systems}?
             |  +--rw astronomical-body?   string
             |  +--rw geodetic-system
             |     +--rw geodetic-datum?    string
             |     +--rw coord-accuracy?    decimal64
             |     +--rw height-accuracy?   decimal64
             +--rw (location)?
             |  +--:(ellipsoid)
             |  |  +--rw latitude?    decimal64
             |  |  +--rw longitude?   decimal64
             |  |  +--rw height?      decimal64
             |  +--:(cartesian)
             |     +--rw x?           decimal64
             |     +--rw y?           decimal64
             |     +--rw z?           decimal64
             +--rw velocity
             |  +--rw v-north?   decimal64
             |  +--rw v-east?    decimal64
             |  +--rw v-up?      decimal64
             +--rw timestamp?         yang:date-and-time
             +--rw valid-until?       yang:date-and-time
]]></artwork>
]]></sourcecode>
</figure>
<t>Below is some example YANG XML data for the fictitious module that
uses the geo-location grouping.</t>

<figure><name>Example XML data Data of geo location use.</name><sourcecode><![CDATA[ Geolocation Use</name><sourcecode type="xml"><![CDATA[
<locatable-items xmlns="urn:example:example-uses-geo-location">
  <locatable-item>
    <name>Gaetana's</name>
    <geo-location>
      <latitude>40.73297</latitude>
      <longitude>-74.007696</longitude>
    </geo-location>
  </locatable-item>
  <locatable-item>
    <name>Pont des Arts</name>
    <geo-location>
      <timestamp>2012-03-31T16:00:00Z</timestamp>
      <latitude>48.8583424</latitude>
      <longitude>2.3375084</longitude>
      <height>35</height>
    </geo-location>
  </locatable-item>
  <locatable-item>
    <name>Saint Louis Cathedral</name>
    <geo-location>
      <timestamp>2013-10-12T15:00:00-06:00</timestamp>
      <latitude>29.9579735</latitude>
      <longitude>-90.0637281</longitude>
    </geo-location>
  </locatable-item>
  <locatable-item>
    <name>Apollo 11 Landing Site</name>
    <geo-location>
      <timestamp>1969-07-21T02:56:15Z</timestamp>
      <reference-frame>
        <astronomical-body>moon</astronomical-body>
        <geodetic-system>
          <geodetic-datum>me</geodetic-datum>
        </geodetic-system>
      </reference-frame>
      <latitude>0.67409</latitude>
      <longitude>23.47298</longitude>
    </geo-location>
  </locatable-item>
  <locatable-item>
    <name>Reference Frame Only</name>
    <geo-location>
      <reference-frame>
        <astronomical-body>moon</astronomical-body>
        <geodetic-system>
          <geodetic-datum>me</geodetic-datum>
        </geodetic-system>
      </reference-frame>
    </geo-location>
  </locatable-item>
</locatable-items>
]]></sourcecode></figure>

</section>

<section title="Acknowledgments"> title="Acknowledgments" numbered="false">
<t>We would like to thank Jim Biard and Ben Koziol <contact fullname="Jim Biard"/> and <contact
fullname="Ben Koziol"/> for their reviews and suggested improvements. We would
also like to thank Peter Lothberg <contact fullname="Peter Lothberg"/> for the motivation as
well as help in defining a broadly useful geographic location object, and Acee Lindem and Qin Wu object as well
as <contact fullname="Acee Lindem"/> and <contact fullname="Qin Wu"/> for
their work on a geographic location object that led to this documents' document's
creation. We would also like to thank the document shepherd Kent
Watsen.</t> Document Shepherd <contact
fullname="Kent Watsen"/>.</t>

</section>
  </back>
</rfc>