OPSAWG

Internet Engineering Task Force (IETF)                        S. Barguil
Internet-Draft
Request for Comments: 9182                      O. Gonzalez de Dios, Ed.
Intended status:
Category: Standards Track                                     Telefonica
Expires: 11 April 2022
ISSN: 2070-1721                                        M. Boucadair, Ed.
                                                                  Orange
                                                                L. Munoz
                                                                Vodafone
                                                               A. Aguado
                                                                   Nokia
                                                          8 October 2021
                                                           February 2022

               A Layer 3 VPN Network YANG Network Data Model
                     draft-ietf-opsawg-l3sm-l3nm-18 for Layer 3 VPNs

Abstract

   As a complement to the Layer 3 Virtual Private Network Service YANG
   data Model
   (L3SM), which is used for communication between customers and service
   providers, this document defines an L3VPN Network YANG Model (L3NM) that
   can be used for the provisioning of Layer 3 Virtual Private Network (VPN)
   (L3VPN) services within a service provider network.  The model
   provides a network-centric view of L3VPN services.

   The L3NM is meant to be used by a network controller to derive the
   configuration information that will be sent to relevant network
   devices.  The model can also facilitate the communication between a
   service orchestrator and a network controller/orchestrator.

Editorial Note (To be removed by RFC Editor)

   Please update these statements within the document with the RFC
   number to be assigned to this document:

   *  "This version of this YANG module is part of RFC XXXX;"

   *  "RFC XXXX: Layer 3 VPN Network Model";

   *  reference: RFC XXXX

   Please update "RFC UUUU" to the RFC number to be assigned to I-
   D.ietf-opsawg-vpn-common.

   Also, please update the "revision" date of the YANG module.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list  It represents the consensus of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid the IETF community.  It has
   received public review and has been approved for a maximum publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of six months this document, any errata,
   and how to provide feedback on it may be updated, replaced, or obsoleted by other documents obtained at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 11 April 2022.
   https://www.rfc-editor.org/info/rfc9182.

Copyright Notice

   Copyright (c) 2021 2022 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info)
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified Revised BSD License text as described in Section 4.e of the
   Trust Legal Provisions and are provided without warranty as described
   in the Simplified Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   5
   3.  Acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . .   6 and Abbreviations
   4.  L3NM Reference Architecture . . . . . . . . . . . . . . . . .   7
   5.  Relation with other  Relationship to Other YANG Data Models . . . . . . . . . . . . . . .  11
   6.  Sample Uses of the L3NM Data Model  . . . . . . . . . . . . .  12
     6.1.  Enterprise Layer 3 VPN Services . . . . . . . . . . . . .  12
     6.2.  Multi-Domain Resource Management  . . . . . . . . . . . .  13
     6.3.  Management of Multicast Services  . . . . . . . . . . . .  13
   7.  Description of the L3NM YANG Module . . . . . . . . . . . . .  13
     7.1.  Overall Structure of the Module . . . . . . . . . . . . .  14
     7.2.  VPN Profiles  . . . . . . . . . . . . . . . . . . . . . .  15
     7.3.  VPN Services  . . . . . . . . . . . . . . . . . . . . . .  16
     7.4.  VPN Instance Profiles . . . . . . . . . . . . . . . . . .  20
     7.5.  VPN Nodes . . . . . . . . . . . . . . . . . . . . . . . .  22
     7.6.  VPN Network Accesses  . . . . . . . . . . . . . . . . . .  25
       7.6.1.  Connection  . . . . . . . . . . . . . . . . . . . . .  28
       7.6.2.  IP Connection . . . . . . . . . . . . . . . . . . . .  30
       7.6.3.  CE-PE Routing Protocols . . . . . . . . . . . . . . .  33
         7.6.3.1.  Static Routing  . . . . . . . . . . . . . . . . .  35
         7.6.3.2.  BGP . . . . . . . . . . . . . . . . . . . . . . .  37
         7.6.3.3.  OSPF  . . . . . . . . . . . . . . . . . . . . . .  40
         7.6.3.4.  IS-IS . . . . . . . . . . . . . . . . . . . . . .  42
         7.6.3.5.  RIP . . . . . . . . . . . . . . . . . . . . . . .  44
         7.6.3.6.  VRRP  . . . . . . . . . . . . . . . . . . . . . .  45
       7.6.4.  OAM . . . . . . . . . . . . . . . . . . . . . . . . .  47
       7.6.5.  Security  . . . . . . . . . . . . . . . . . . . . . .  48
       7.6.6.  Services  . . . . . . . . . . . . . . . . . . . . . .  49
         7.6.6.1.  Overview  . . . . . . . . . . . . . . . . . . . .  49
         7.6.6.2.  QoS . . . . . . . . . . . . . . . . . . . . . . .  50
     7.7.  Multicast . . . . . . . . . . . . . . . . . . . . . . . .  55
   8.  L3NM YANG Module  . . . . . . . . . . . . . . . . . . . . . .  59
   9.  Security Considerations . . . . . . . . . . . . . . . . . . . 121
   10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 122
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . . 123
     11.1.  Normative References . . . . . . . . . . . . . . . . . . 123
     11.2.  Informative References . . . . . . . . . . . . . . . . . 127
   Appendix A.  L3VPN Examples . . . . . . . . . . . . . . . . . . . 132
     A.1.  4G VPN Provisioning Example . . . . . . . . . . . . . . . 132
     A.2.  Loopback Interface  . . . . . . . . . . . . . . . . . . . 137
     A.3.  Overriding VPN Instance Profile Parameters  . . . . . . . 138
     A.4.  Multicast VPN Provisioning Example  . . . . . . . . . . . 141
   Appendix B.  Implementation Status  . . . . . . . . . . . . . . . 145
     B.1.  Nokia Implementation  . . . . . . . . . . . . . . . . . . 145
     B.2.  Huawei Implementation . . . . . . . . . . . . . . . . . . 145
     B.3.  Infinera Implementation . . . . . . . . . . . . . . . . . 145
     B.4.  Ribbon-ECI Implementation . . . . . . . . . . . . . . . . 145
     B.5.  Juniper Implementation  . . . . . . . . . . . . . . . . . 146
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . 146
   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . . 146
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . . 147

1.  Introduction

   [RFC8299] defines a YANG Layer 3 Virtual Private Network Service YANG data
   Model (L3SM) that can be used for communication between customers and
   service providers.  Such a model focuses on describing the customer
   view of the Virtual Private Network (VPN) services and provides an
   abstracted view of the customer's requested services.  That approach
   limits the usage of the L3SM to the role of a customer service model
   (as per [RFC8309]).

   This document defines a YANG module called L3VPN the "L3VPN Network Model Model"
   (L3NM).  The L3NM is aimed at providing a network-centric view of
   Layer 3 (L3) VPN services.  This data model can be used to facilitate
   communication between the service orchestrator and the network
   controller/orchestrator by allowing for more network-centric information
   to be included.  It enables further capabilities such additional capabilities as resource management
   management, or it serves as a multi-domain orchestration
   interface, interface
   where logical resources (such as route targets or route
   distinguishers) must be coordinated.

   This document uses the common VPN YANG module defined in
   [I-D.ietf-opsawg-vpn-common]. [RFC9181].

   This document does not obsolete [RFC8299].  These two modules are
   used for similar objectives but with different scopes and views.

   The L3NM YANG module was initially built with a prune "prune and extend extend"
   approach, taking as a starting points point the YANG module described in
   [RFC8299].  Nevertheless, the L3NM is not defined as an augment to
   L3SM
   the L3SM, because a specific structure is required to meet network-
   oriented L3 needs.

   Some information captured in the L3SM can be passed by the
   orchestrator in the L3NM (e.g., customer) or be used to feed some
   L3NM attributes (e.g., actual forwarding policies).  Also, some
   information captured in the L3SM may be maintained locally within the
   orchestrator;
   orchestrator, which is in charge of maintaining the correlation
   between a customer view and its network instantiation.  Likewise,
   some information captured and exposed using the L3NM can feed the
   service layer (e.g., capabilities) to drive VPN service order
   handling,
   handling and thus the L3SM.

   Section 5.1 of [RFC8969] illustrates how the L3NM can be used within
   the network management automation architecture.

   The L3NM does not attempt to address all deployment cases, especially
   those where the L3VPN connectivity is supported through the coordination
   of different VPNs in different underlying networks.  More complex
   deployment scenarios involving the coordination of different VPN
   instances and different technologies to provide an end-
   to-end end-to-end VPN
   connectivity are addressed by complementary YANG modules, e.g., [I-D.evenwu-opsawg-yang-composed-vpn].
   [YANG-Composed-VPN].

   The L3NM focuses on BGP Provider Edge (PE) based Layer 3 VPNs based on BGP Provider Edges (PEs) as
   described in [RFC4026][RFC4110][RFC4364] [RFC4026], [RFC4110], and [RFC4364]; and Multicast VPNs
   as described in [RFC6037][RFC6513]. [RFC6037] and [RFC6513].

   The YANG data model in this document conforms to the Network
   Management Datastore Architecture (NMDA) defined in [RFC8342].

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This document assumes that the reader is familiar with the contents
   of [RFC6241], [RFC7950], [RFC8299], [RFC8309], and [RFC8453] and uses
   the terminology defined in those documents.

   This document uses the term "network model" as defined in Section 2.1
   of [RFC8969].

   The meaning meanings of the symbols in the tree diagrams is are defined in
   [RFC8340].

   This document makes use of the following terms:

   Layer 3 VPN Customer Service Model (L3SM):  A YANG module data model that describes
      the service requirements of an L3VPN that interconnects a set of
      sites from the point of view of the customer.  The customer
      service model does not provide details on the service provider
      network.  The L3VPN customer service model is defined in
      [RFC8299].

   Layer 3 VPN Service Network Model (L3NM):  A YANG module data model that describes a
      VPN service in the service provider network.  It contains
      information of on the service provider network and might include
      allocated resources.  It can be used by network controllers to
      manage and control the VPN service configuration in the service
      provider network.  The corresponding YANG module can be consumed used by a
      service orchestrator to request a VPN service to a network
      controller.

   Service orchestrator:  A functional entity that interacts with the
      customer of an L3VPN.  The service orchestrator interacts with the
      customer using the L3SM.  The service orchestrator is responsible
      for the Customer Edge (CE) - to Provider Edge (PE) (CE-PE) attachment
      circuits, the PE selection, and requesting the VPN service to the
      network controller.

   Network orchestrator:  A functional entity that is hierarchically
      intermediate between a service orchestrator and network
      controllers.  A network orchestrator can manage one or several
      network controllers.

   Network controller:  A functional entity responsible for the control
      and management of the service provider network.

   VPN node:  An abstraction that represents a set of policies applied
      on a PE and that belong belonging to a single VPN service.  A VPN service
      involves one or more VPN nodes.  As it is an abstraction, the
      network controller will take on decide how to implement a VPN node.  For
      example, typically, in a BGP-based VPN, a VPN node could typically be mapped
      into
      to a Virtual Routing and Forwarding (VRF). (VRF) instance.

   VPN network access:  An abstraction that represents the network
      interfaces that are associated to with a given VPN node.  Traffic
      coming from the VPN network access belongs to the VPN.  The
      attachment circuits (bearers) between CEs and PEs are terminated
      in the VPN network access.  A reference to the bearer is
      maintained to allow keeping the link between the L3SM and L3NM
      when both models are used in a given deployment.

   VPN site:  A VPN customer's location that is connected to the service
      provider network via a CE-PE link, which can access at least one
      VPN [RFC4176].

   VPN service provider:  A service provider that offers VPN-related
      services [RFC4176].

   Service provider network:  A network that is able to provide VPN-
      related services.

   The

   This document is aimed at modeling BGP PE-based VPNs in a service
   provider network, so the terms defined in [RFC4026] and [RFC4176] are
   used.
   used in this document as well.

3.  Acronyms and Abbreviations

   The following acronyms and abbreviations are used in the this document:

   ACL     Access Control List
   AS      Autonomous System
   ASM     Any-Source Multicast
   ASN     AS Number
   BSR     Bootstrap Router
   BFD     Bidirectional Forwarding Detection
   BGP     Border Gateway Protocol
   BSR     Bootstrap Router
   CE      Customer Edge
   CsC     Carriers' Carriers
   IGMP    Internet Group Management Protocol
   L3NM    L3VPN   Layer 3 Virtual Private Network Model
   L3SM    L3VPN Service Model
   L3NM
   L3VPN   Layer 3 Virtual Private Network Model
   MLD     Multicast Listener Discovery
   MSDP    Multicast Source Discovery Protocol
   MVPN    Multicast VPN
   NAT     Network Address Translation
   OAM     Operations, Administration, and Maintenance
   OSPF    Open Shortest Path First
   PE      Provider Edge
   PIM     Protocol Independent Multicast
   QoS     Quality of Service
   RD      Route Distinguisher
   RP      Rendezvous Point
   RT      Route Target
   SA      Security Association
   SSM     Source-Specific Multicast
   VPN     Virtual Private Network
   VRF     Virtual Routing and Forwarding

4.  L3NM Reference Architecture

   Figure 1 depicts the reference architecture for the L3NM.  The figure
   is an expansion of the architecture presented in Section 5 of
   [RFC8299]; it decomposes the box marked "orchestration" in that
   section into three separate functional components: Service
   Orchestration, Network Orchestration, service
   orchestration, network orchestration, and Domain Orchestration. domain orchestration.

   Although some deployments may choose to construct a monolithic
   orchestration component (covering both service and network matters),
   this document advocates for a clear separation between service and
   network orchestration components for the sake of better flexibility.
   Such a design adheres to the L3VPN reference architecture defined in
   Section 1.3 of [RFC4176].  This separation relies upon a dedicated
   communication interface between these components and appropriate YANG
   modules that reflect network-related information.  Such information
   is hidden to from customers.

   The intelligence for translating customer-facing information into
   network-centric one information (and vice versa) is implementation
   specific.

   The terminology from [RFC8309] is introduced used here to show the distinction
   between the customer service model, the service delivery model, the
   network configuration model, and the device configuration model.  In
   that context, the "Domain Orchestration" "domain orchestration" and "Config Manager" "config manager" roles
   may be performed by "Controllers". "controllers".

                                +---------------+
                                |   Customer    |
                                +-------+-------+
                Customer Service Model  |
                         e.g., l3vpn-svc
                 (e.g., 'l3vpn-svc')    |
                                +-------+-------+
                                |    Service    |
                                | Orchestration |
                                +-------+-------+
               Service Delivery Model   |
                          l3vpn-ntw
                   'l3vpn-ntw'          |
                                +-------+-------+
                                |   Network     |
                                | Orchestration |
                                +-------+-------+
          Network Configuration Model   |
                            +-----------+-----------+
                            |                       |
                   +--------+------+       +--------+------+
                   |    Domain     |       |     Domain    |
                   | Orchestration |       | Orchestration |
                   +---+-----------+       +--------+------+
        Device         |        |                   |
        Configuration  |        |                   |
        Model          |        |                   |
                  +----+----+   |                   |
                  | Config  |   |                   |
                  | Manager |   |                   |
                  +----+----+   |                   |
                       |        |                   |
                       | NETCONF/CLI..................
                       |        |                   |
                +------------------------------------------------+
                                    Network

        NETCONF:  Network Configuration Protocol
        CLI:  Command-Line Interface

                   Figure 1: L3NM Reference Architecture

   The customer may use a variety of means to request a service that may
   trigger the instantiation of an L3NM.  The customer may use the L3SM
   or more abstract models to request a service that relies upon an
   L3VPN service.  For example, the customer may supply an IP
   Connectivity Provisioning Profile (CPP) that characterizes the
   requested service [RFC7297], an enhanced VPN (VPN+) service
   [I-D.ietf-teas-enhanced-vpn],
   [Enhanced-VPN-Framework], or an IETF network slice service
   [I-D.ietf-teas-ietf-network-slices].
   [Network-Slices-Framework].

   Note also that both the L3SM and the L3NM may be used in the context
   of the Abstraction and Control of TE Networks (ACTN) Framework framework
   [RFC8453].  Figure 2 shows the Customer Network Controller (CNC), the
   Multi-Domain Service Coordinator (MDSC), and the Provisioning Network
   Controller (PNC) components components, and the interfaces where L3SM/L3NM the L3SM and
   L3NM are used.

                    +----------------------------------+
                    | Customer                         |
                    | +-----------------------------+  |
                    | |             CNC             |  |
                    | +-----------------------------+  |
                    +----+-----------------------+-----+
                         |                       |
                         | L3SM                  | L3SM
                         |                       |
               +---------+---------+   +---------+---------+
               | MDSC              |   |       MDSC        |
               | +---------------+ |   |     (parent)      |
               | |    Service    | |   +---------+---------+
               | | Orchestration | |             |
               | +-------+-------+ |             | L3NM
               |         |         |             |
               |         | L3NM    |   +---------+---------+
               |         |         |   |       MDSC        |
               | +-------+-------+ |   |      (child)      |
               | |    Network    | |   +---------+---------+
               | | Orchestration | |             |
               | +---------------+ |             |
               +---------+---------+             |
                         |                       |
                         | Network Configuration |
                         |                       |
            +------------+-------+     +---------+------------+
            | Domain             |     |           Domain     |
            | Controller         |     |           Controller |
            |       +---------+  |     |    +---------+       |
            |       |   PNC   |  |     |    |   PNC   |       |
            |       +---------+  |     |    +---------+       |
            +------------+-------+     +---------+------------+
                         |                       |
                         | Device Configuration  |
                         |                       |
                    +----+---+              +----+---+
                    | Device |              | Device |
                    +--------+              +--------+

             Figure 2: L3SM and L3NM in the Context of the ACTN

5.  Relation with other  Relationship to Other YANG Data Models

   The "ietf-vpn-common" module [I-D.ietf-opsawg-vpn-common] [RFC9181] includes a set of identities,
   types, and groupings that are meant to be reused by VPN-related YANG
   modules independently of the layer (e.g., Layer 2, Layer 3) and the
   type of the module (e.g., network model, service
   model) model), including
   future revisions of existing models (e.g., [RFC8299] or [RFC8466]).
   The L3NM reuses these common types and groupings.

   In order to avoid data duplication and to ease passing data between
   layers when required (service layer to network layer and vice versa),
   early versions of the L3NM reused many of the data nodes that are
   defined in [RFC8299].  Nevertheless, that approach was abandoned in
   favor of the "ietf-vpn-common" module because that initial design was
   interpreted as if the deployment of the L3NM depends on the L3SM,
   while this is not the case.  For example, a service provider may
   decide to use the L3NM to build its L3VPN services without exposing
   the L3SM.

   As discussed in Section 4, the L3NM is meant to manage L3VPN services
   within a service provider network.  The module provides a network
   view of the service.  Such a view is only visible within the service
   provider and is not exposed outside (to customers, for example).  The
   following discusses
   items below discuss how the L3NM interfaces with other YANG modules:

   L3SM:  The L3NM is not a customer service model.

      The internal view of the service (i.e., the L3NM) may be mapped to
      an external view which that is visible to customers: the L3VPN Service YANG
      data
      Model (L3SM) [RFC8299].

      The L3NM can be fed with inputs that are requested by customers,
      typically, relying customers.
      Such requests typically rely upon an L3SM template.  Concretely,
      some parts of the L3SM module can be directly mapped into L3NM to the L3NM,
      while other parts are generated as a function of the requested
      service and local guidelines.  Some other parts are local to the
      service provider and do not map directly to the L3SM.

      Note that using the use of L3NM within a service provider does not
      assume
      assume, nor preclude does it preclude, exposing the VPN service via the
      L3SM.  This is deployment-specific. deployment specific.  Nevertheless, the design of
      the L3NM tries to align as much as possible with the features
      supported by the L3SM to ease the grafting of both the L3NM and
      the L3SM for the sake of highly automated VPN service provisioning
      and delivery.

   Network Topology Modules:  An L3VPN involves nodes that are part of a
      topology managed by the service provider network.  The topology
      can be represented using the network topology YANG module defined
      in [RFC8345] or its extension extension, such as a User-Network Interface
      (UNI) topology network YANG module (e.g., [I-D.ogondio-opsawg-uni-topology]). for
      Service Attachment Points (SAPs) [YANG-SAPs].

   Device Modules:  The L3NM is not a device model.

      Once a global VPN service is captured by means of the L3NM, the
      actual activation and provisioning of the VPN service will involve
      a variety of device modules to tweak the required functions for
      the delivery of the service.  These functions are supported by the
      VPN nodes and can be managed using device YANG modules.  A non-
      comprehensive list of such device YANG modules is provided below:

      *  Routing management [RFC8349].

      *  BGP [I-D.ietf-idr-bgp-model]. [BGP-YANG].

      *  PIM [I-D.ietf-pim-yang]. [PIM-YANG].

      *  NAT management [RFC8512].

      *  QoS management [I-D.ietf-rtgwg-qos-model]. [QoS-YANG].

      *  ACLs [RFC8519].

      How the L3NM is used to derive device-specific actions is
      implementation-specific.
      implementation specific.

6.  Sample Uses of the L3NM Data Model

   This section provides a non-exhaustive list of examples to that
   illustrate contexts where the L3NM can be used.

6.1.  Enterprise Layer 3 VPN Services

   Enterprise L3VPNs are one of the most demanded services for carriers,
   and carriers;
   therefore, L3NM can be useful to automate for automating the provisioning and
   maintenance of these VPNs.  Templates and batch processes can be
   built, and as a result many parameters are needed for the creation
   from scratch of a VPN that can be abstracted to the upper Software-
   Defined Networking (SDN) [RFC7149][RFC7426] layer, layer [RFC7149] [RFC7426], but some manual
   intervention will still be required.

   A common function that is supported by VPNs is the addition or
   removal of VPN nodes.  Workflows can use the L3NM in these scenarios
   to add or prune nodes from the network data model as required.

6.2.  Multi-Domain Resource Management

   The implementation of L3VPN services which that span across administratively
   separated domains (i.e., that are under the administration of
   different management systems or controllers) requires some network
   resources to be synchronized between systems.  Particularly,
   resources must be adequately managed in each domain to avoid broken configuration.
   configurations.

   For example, route targets (RTs) shall be synchronized between PEs.
   When all PEs are controlled by the same management system, RT
   allocation can be performed by that management system.  In cases
   where the service spans across multiple management systems, the task of
   allocating RTs has to be aligned across the domains, domains; therefore, the
   network model must provide a way to specify RTs.  In addition, route
   distinguishers (RDs) must also be synchronized to avoid collisions in of
   RD allocation allocations between separate management systems.  An incorrect
   allocation might lead to the same RD and IP prefixes being exported
   by different PEs.

6.3.  Management of Multicast Services

   Multicast services over L3VPN L3VPNs can be implemented using dual PIM
   MVPNs (also known as, Draft Rosen as the draft-rosen model) [RFC6037] or MVPNs based
   on Multiprotocol BGP
   (MP-BGP)-based MVPNs [RFC6513][RFC6514]. (MP-BGP) [RFC6513] [RFC6514].  Both methods are
   supported and equally effective, but the main difference is that MBGP-based
   MVPN does MP-
   BGP-based MVPNs do not require multicast configuration on the service
   provider network.  MBGP  MP-BGP MVPNs employ the intra-autonomous system intra-AS BGP control plane
   and PIM sparse mode Sparse Mode [RFC7761] as the data plane.  The PIM state
   information is maintained between PEs using the same architecture
   that is used for unicast VPNs.

   On the other hand, [RFC6037] has limitations limitations, such as reduced options
   for transport, control plane scalability, availability, operational
   inconsistency, and the need of maintaining to maintain state in the backbone.
   Because of these limitations, MBGP MVPN is MP-BGP MVPNs provide the architectural
   model that has been taken as the base for implementing multicast service
   services in L3VPNs.  In this scenario, BGP is used to auto-discover autodiscover
   MVPN PE members and the customer PIM signaling is sent across the
   provider's core through MP-BGP.  The multicast traffic is transported
   on MPLS
   P2MP LSPs. Point-to-Multipoint (P2MP) Label Switched Paths (LSPs).

7.  Description of the L3NM YANG Module

   The L3NM ('ietf-l3vpn-ntw') ("ietf-l3vpn-ntw") is defined to manage L3VPNs in a service
   provider network.  In particular, the 'ietf-l3vpn-ntw' "ietf-l3vpn-ntw" module can be
   used to create, modify, and retrieve L3VPN services of a network.

   The full tree diagram of the module can be generated using the
   "pyang" tool [PYANG].  That tree is not included here because it is
   too long (Section 3.3 of [RFC8340]).  Instead, subtrees are provided
   for the reader's convenience.

7.1.  Overall Structure of the Module

   The 'ietf-l3vpn-ntw' "ietf-l3vpn-ntw" module uses two main containers: 'vpn-services'
   and 'vpn-profiles'
   and 'vpn-services' (see Figure 3).

   The 'vpn-profiles' container is used by the provider to maintain a
   set of common VPN profiles that apply to one or several VPN services
   (Section 7.2).

   The 'vpn-services' container maintains the set of VPN services
   managed within the service provider network.  The 'vpn-service' is
   the data structure that abstracts a VPN service (Section 7.3).

   module: ietf-l3vpn-ntw
     +--rw l3vpn-ntw
        +--rw vpn-profiles
        |  ...
        +--rw vpn-services
           +--rw vpn-service* [vpn-id]
              ...
              +--rw vpn-nodes
                 +--rw vpn-node* [vpn-node-id]
                    ...
                    +--rw vpn-network-accesses
                       +--rw vpn-network-access* [id]
                          ...

                   Figure 3: Overall L3NM Tree Structure

   Some of the data nodes are keyed by the address-family. address family.  For the sake
   of data representation compactness, It it is RECOMMENDED to use the
   dual-stack address-family address family for data nodes that have the same value for
   both IPv4 and IPv6.  If, for some reasons, reason, a data node is present for
   both dual-stack and IPv4 (or IPv6), the value that is indicated under
   dual-stack takes precedence over the one value that is indicated under
   IPv4 (or IPv6).

7.2.  VPN Profiles

   The 'vpn-profiles' container (Figure 4) allows the VPN service
   provider to define and maintain a set of VPN profiles
   [I-D.ietf-opsawg-vpn-common] [RFC9181] that
   apply to one or several VPN services.

     +--rw l3vpn-ntw
        +--rw vpn-profiles
        |  +--rw valid-provider-identifiers
        |     +--rw external-connectivity-identifier* [id]
        |     |       {external-connectivity}?
        |     |  +--rw id    string
        |     +--rw encryption-profile-identifier* [id]
        |     |  +--rw id    string
        |     +--rw qos-profile-identifier* [id]
        |     |  +--rw id    string
        |     +--rw bfd-profile-identifier* [id]
        |     |  +--rw id    string
        |     +--rw forwarding-profile-identifier* [id]
        |     |  +--rw id    string
        |     +--rw routing-profile-identifier* [id]
        |        +--rw id    string
        +--rw vpn-services
           ...

                  Figure 4: VPN Profiles Subtree Structure

   This document does not make any assumption about the exact definition
   of these profiles.  The exact definition of the profiles is local to
   each VPN service provider.  The model only includes an identifier to for
   these profiles in order to facilitate identifying and binding local
   policies when building a VPN service.  As shown in Figure 4, the
   following identifiers can be included:

   'external-connectivity-identifier':  This identifier refers to a
      profile that defines the external connectivity provided to a VPN
      service (or a subset of VPN sites).  An external  External connectivity may be an
      access to the Internet or a restricted connectivity connectivity, such as access
      to a public/private cloud.

   'encryption-profile-identifier':  An encryption profile refers to a
      set of policies related to the encryption schemes and setup that
      can be applied when building and offering a VPN service.

   'qos-profile-identifier':  A Quality of Service (QoS) profile refers
      to a set of policies policies, such as classification, marking, and actions
      (e.g., [RFC3644]).

   'bfd-profile-identifier':  A Bidirectional Forwarding Detection (BFD)
      profile refers to a set of BFD [RFC5880] policies [RFC5880] that can be
      invoked when building a VPN service.

   'forwarding-profile-identifier':  A forwarding profile refers to the
      policies that apply to the forwarding of packets conveyed within a
      VPN.  Such policies may consist, for example, of applying Access
      Control Lists (ACLs).

   'routing-profile-identifier':  A routing profile refers to a set of
      routing policies that will be invoked (e.g., BGP policies) when
      delivering the VPN service.

7.3.  VPN Services

   The 'vpn-service' is the data structure that abstracts a VPN service
   in the service provider network.  Each 'vpn-service' is uniquely
   identified by an identifier: 'vpn-id'.  Such a 'vpn-id' is only
   meaningful locally (e.g., the network controller).  The subtree of
   the 'vpn-services' is shown in Figure 5.

     +--rw l3vpn-ntw
        +--rw vpn-profiles
        |  ...
        +--rw vpn-services
           +--rw vpn-service* [vpn-id]
              +--rw vpn-id                   vpn-common:vpn-id
              +--rw vpn-name?                string
              +--rw vpn-description?         string
              +--rw customer-name?           string
              +--rw parent-service-id?       vpn-common:vpn-id
              +--rw vpn-type?                identityref
              +--rw vpn-service-topology?    identityref
              +--rw status
              |  +--rw admin-status
              |  |  +--rw status?         identityref
              |  |  +--rw last-change?   yang:date-and-time
              |  +--ro oper-status
              |     +--ro status?         identityref
              |     +--ro last-change?   yang:date-and-time
              +--rw vpn-instance-profiles
              |  ...
              +--rw underlay-transport
              |  +-- (type)?
              |     +--:(abstract)
              |     |  +--  +--rw transport-instance-id?   string
              |     |  +--rw instance-type?           identityref
              |     +--:(protocol)
              |       +--        +--rw protocol*                identityref
              +--rw external-connectivity
              |                   {external-connectivity}                   {vpn-common:external-connectivity}?
              |  +--rw (profile)?
              |     +--:(profile)
              |        +--rw profile-name?            leafref
              +--rw vpn-nodes
                 ...

                  Figure 5: VPN Services Subtree Structure

   The description descriptions of the VPN service data nodes that are depicted in
   Figure 5 are as follows:

   'vpn-id':  Is an  An identifier that is used to uniquely identify the L3VPN
      service within the L3NM scope.

   'vpn-name':  Associates a name with the service in order to
      facilitate the identification of the service.

   'vpn-description':  Includes a textual description of the service.

      The internal structure of a VPN description is local to each VPN
      service provider.

   'customer-name':  Indicates the name of the customer who ordered the
      service.

   'parent-service-id':  Refers to an identifier of the parent service
      (e.g,
      (e.g., L3SM, IETF network slice, VPN+) that triggered the creation
      of the VPN service.  This identifier is used to easily correlate
      the (network) service as built in the network with a service
      order.  A controller can use that correlation to enrich or
      populate some fields (e.g., description fields) as a function of
      local deployments.

   'vpn-type':  Indicates the VPN type.  The values are taken from
      [I-D.ietf-opsawg-vpn-common].
      [RFC9181].  For the L3NM, this is typically set to BGP/MPLS L3VPN, "BGP/MPLS
      L3VPN", but other values may be defined in the future to support specific Layer
      3 VPN capabilities (e.g.,
      [I-D.ietf-bess-evpn-prefix-advertisement]). [RFC9136]).

   'vpn-service-topology':  Indicates the network topology for the
      service: hub-spoke, any-to-any, 'hub-spoke', 'any-to-any', or custom. 'custom'.  The network
      implementation of this attribute is defined by the correct usage
      of import and export profiles targets (Section 4.3.5 of [RFC4364]).

   'status':  Is used  Used to track the service status of a given VPN service.
      Both operational status and administrative status are maintained
      together with a timestamp.  For example, a service can be created, created
      but not put into effect.

      Administrative status and operational status can be used as a
      trigger to detect service anomalies.  For example, a service that
      is declared active at the service layer as being active but is still inactive at
      the network layer may be an indication that network provision
      actions are needed to align the observed service status with the
      expected service status.

   'vpn-instance-profiles':  Defines reusable parameters for the same
      'vpn-service'.

      More details are provided in Section 7.4.

   'underlay-transport':  Describes the preference for the transport
      technology to carry the traffic of the VPN service.  This
      preference is especially useful in networks with multiple domains
      and Network-to-Network Interface (NNI) types.  The underlay
      transport can be expressed as an abstract transport instance
      (e.g., an identifier of a VPN+ instance, a virtual network
      identifier, or a network slice name) or as an ordered list of the
      actual protocols to be enabled in the network.

      A rich set of protocol identifiers that can be used to refer to an
      underlay transport are defined in [I-D.ietf-opsawg-vpn-common]. [RFC9181].

   'external-connectivity':  Indicates whether/how external connectivity
      is provided to the VPN service.  For example, a service provider
      may provide an external connectivity to a VPN customer (e.g., to a
      public cloud).  Such a service may involve tweaking both filtering
      and NAT rules (e.g., bind binding a Virtual Routing and Forwarding
      (VRF) interface with a NAT instance as discussed in Section 2.10
      of [RFC8512]).  These added value value-added features may be bound to all all, or
      a subset of of, network accesses.  Some of these added value value-added features
      may be implemented in a PE or in other nodes other than PEs (e.g., a P
      node or even a dedicated node that hosts the NAT function).

      Only a pointer to a local profile that defines the external external-
      connectivity feature is supported in this document.

   'vpn-node':  Is an  An abstraction that represents a set of policies applied
      to a network node and that belong belonging to a single 'vpn-
      service'. 'vpn-service'.  A VPN
      service is typically built by adding instances of 'vpn-node' to
      the 'vpn-nodes' container.

      A 'vpn-node' contains 'vpn-network-accesses', which are the
      interfaces attached to the VPN by which the customer traffic is
      received.  Therefore, the customer sites are connected to the
      'vpn-network-accesses'.

      Note that, as that because this is a network data model, the information about
      customers
      customers' sites is not required in the model.  Such  Rather, such
      information is
      rather relevant in the L3SM.  Whether that information is
      included in the L3NM, e.g., to populate the various 'description'
      data node nodes, is implementation specific.

      More details are provided in Section 7.5.

7.4.  VPN Instance Profiles

   VPN instance profiles are meant to factorize data nodes that are used
   at many levels of the model.  Generic VPN instance profiles are
   defined at the VPN service level and then called at the VPN node and
   VPN network access levels.  Each VPN instance profile is identified
   by 'profile-id'.  This identifier is then referenced for one or
   multiple VPN nodes (Section 7.5) so that the controller can identify
   generic resources (e.g., RTs and RDs) to be configured for a given
   VRF.
   VRF instance.

   The subtree of 'vpn-instance-profile' the 'vpn-instance-profiles' is shown in Figure 6.

     +--rw l3vpn-ntw
        +--rw vpn-profiles
        |  ...
        +--rw vpn-services
           +--rw vpn-service* [vpn-id]
              +--rw vpn-id                   vpn-common:vpn-id
              ...
              +--rw vpn-instance-profiles
              |  +--rw vpn-instance-profile* [profile-id]
              |     +--rw profile-id                 string
              |     +--rw role?                      identityref
              |     +--rw local-as?                  inet:as-number
              |     |      {vpn-common:rtg-bgp}?
              |     +--rw (rd-choice)?
              |     |  +--:(directly-assigned)
              |     |  |  +--rw rd?
              |     |  |         rt-types:route-distinguisher
              |     |  +--:(directly-assigned-suffix)
              |     |  |  +--rw rd-suffix?           uint16
              |     |  +--:(auto-assigned)
              |     |  |  +--rw rd-auto
              |     |  |     +--rw (auto-mode)?
              |     |  |     |  +--:(from-pool)
              |     |  |     |  |  +--rw rd-pool-name?   string
              |     |  |     |  +--:(full-auto)
              |     |  |     |     +--rw auto?           empty
              |     |  |     +--ro auto-assigned-rd?
              |     |  |          rt-types:route-distinguisher
              |     |  +--:(auto-assigned-suffix)
              |     |  |  +--rw rd-auto-suffix
              |     |  |     +--rw (auto-mode)?
              |     |  |     |  +--:(from-pool)
              |     |  |     |  |  +--rw rd-pool-name?        string
              |     |  |     |  +--:(full-auto)
              |     |  |     |     +--rw auto?                empty
              |     |  |     +--ro auto-assigned-rd-suffix?   uint16
              |     |  +--:(no-rd)
              |     |     +--rw no-rd?               empty
              |     +--rw address-family* [address-family]
              |     |  +--rw address-family          identityref
              |     |  +--rw vpn-targets
              |     |  |  +--rw vpn-target* [id]
              |     |  |  |  +--rw id                  uint8
              |     |  |  |  +--rw route-targets* [route-target]
              |     |  |  |  |  +--rw route-target
              |     |  |  |  |       rt-types:route-target
              |     |  |  |  +--rw route-target-type
              |     |  |  |          rt-types:route-target-type
              |     |  |  +--rw vpn-policies
              |     |  |     +--rw import-policy?   string
              |     |  |     +--rw export-policy?   string
              |     |  +--rw maximum-routes* [protocol]
              |     |     +--rw protocol          identityref
              |     |     +--rw maximum-routes?   uint32
              |     +--rw multicast {vpn-common:multicast}?
              |        ...

            Figure 6: Subtree Structure of VPN Instance Profiles

   The description descriptions of the listed data nodes is are as follows:

   'profile-id':  Is used  Used to uniquely identify a VPN instance profile.

   'role':  Indicates the role of the VPN instance profile in the VPN.
      Role values are defined in [I-D.ietf-opsawg-vpn-common] [RFC9181] (e.g.,
      any-to-any-role, spoke-role, hub-role). 'any-to-any-role',
      'spoke-role', 'hub-role').

   'local-as':  Indicates the Autonomous System Number (ASN) that is
      configured for the VPN node.

   'rd':  As defined in [I-D.ietf-opsawg-vpn-common], [RFC9181], the following RD assignment modes are
      supported: direct assignment, full automatic assignment, automatic
      assignment from a given pool, automatic assignment, and no assignment.  For illustration
      purposes, the following modes can be used in the deployment cases:

      'directly-assigned':  The VPN service provider (service
         orchestrator) assigns explicitly RDs. RDs explicitly.  This case will fit with
         a brownfield scenario where some existing services need to be
         updated by the VPN service provider.

      'full-auto':  The network controller auto-assigns RDs.  This can
         apply for the deployment of new services.

      'no-rd':  The VPN service provider (service orchestrator)
         explicitly wants no RD to be assigned.  This case can be used
         for CE testing within the network or for troubleshooting
         proposes.

      Also, the module accommodates deployments where only the Assigned
      Number subfield of RDs (Section 4.2 of [RFC4364]) is assigned from
      a pool while the Administrator subfield is set to, e.g., for example,
      the Router ID that is assigned to a VPN node.  The module supports
      these modes for managing the Assigned Number subfield: explicit
      assignment, auto-assignment from a pool, and full auto-assignment.

   'address-family':  Includes a set of per-address family data nodes: nodes per address family:

      'address-family':  Identifies the address family.  It can be set
         to IPv4, IPv6, 'ipv4', 'ipv6', or dual-stack. 'dual-stack'.

      'vpn-targets':  Specifies RT import/export rules for the VPN
         service (Section 4.3 of [RFC4364]).

      'maximum-routes':  Indicates the maximum number of prefixes that
         the VPN node can accept for a given routing protocol.  If
         'protocol' is set to 'any', this means that the maximum value
         applies to each active routing protocol.

   'multicast':  Enables multicast traffic in the VPN service.  Refer to
      Section 7.7.

7.5.  VPN Nodes

   The 'vpn-node' is an abstraction that represents a set of common
   policies applied on a given network node (typically, a PE) and belong
   belonging to one L3VPN service.  The 'vpn-node' includes a parameter
   to indicate the network node on which it is applied.  In the case
   that the 'ne-id' points to a specific PE, the 'vpn-node' will likely
   be mapped into to a VRF instance in the node.  However, the model also
   allows pointing to an abstract node.  In this case, the network
   controller will decide how to split the 'vpn-node' into VRFs. VRF
   instances.

   The VPN node subtree structure is shown in Figure 7.

     +--rw l3vpn-ntw
        +--rw vpn-profiles
        |  ...
        +--rw vpn-services
           +--rw vpn-service* [vpn-id]
              ...
              +--rw vpn-nodes
                 +--rw vpn-node* [vpn-node-id]
                    +--rw vpn-node-id                vpn-common:vpn-id
                    +--rw description?               string
                    +--rw ne-id?                     string
                    +--rw local-as?                  inet:as-number
                    |       {vpn-common:rtg-bgp}?
                    +--rw router-id?                 rt-types:router-id
                    +--rw active-vpn-instance-profiles
                    |  +--rw vpn-instance-profile* [profile-id]
                    |     +--rw profile-id                 leafref
                    |     +--rw router-id* [address-family]
                    |     |  +--rw address-family    identityref
                    |     |  +--rw router-id?        inet:ip-address
                    |     +--rw local-as?            inet:as-number
                    |     |     {vpn-common:rtg-bgp}?
                    |     +--rw (rd-choice)?
                    |     |  ....
                    |     +--rw address-family* [address-family]
                    |     |  +--rw address-family          identityref
                    |     |  |  ...
                    |     |  +--rw vpn-targets
                    |     |  |  ...
                    |     |  +--rw maximum-routes* [protocol]
                    |     |     ...
                    |     +--rw multicast {vpn-common:multicast}?
                    |        ...
                    +--rw msdp {msdp}?
                    |  +--rw peer?            inet:ipv4-address
                    |  +--rw local-address?   inet:ipv4-address
                    |  +--rw status
                    |     +--rw admin-status
                    |     |  +--rw status?         identityref
                    |     |  +--rw last-change?   yang:date-and-time
                    |     +--ro oper-status
                    |        +--ro status?         identityref
                    |        +--ro last-change?   yang:date-and-time
                    +--rw groups
                    |  +--rw group* [group-id]
                    |     +--rw group-id    string
                    +--rw status
                    |  +--rw admin-status
                    |  |  +--rw status?         identityref
                    |  |  +--rw last-change?   yang:date-and-time
                    |  +--ro oper-status
                    |     +--ro status?         identityref
                    |     +--ro last-change?   yang:date-and-time
                    +--rw vpn-network-accesses
                       ...

                    Figure 7: VPN Node Subtree Structure

   In reference to the subtree shown in Figure 7, the description

   The descriptions of VPN
   node the 'vpn-node' data nodes is (Figure 7) are as
   follows:

   'vpn-node-id':  Is an  An identifier that uniquely identifies a node that
      enables a VPN network access.

   'description':  Provides a textual description of the VPN node.

   'ne-id':  Includes a unique identifier of the network element where
      the VPN node is deployed.

   'local-autonomous-system':

   'local-as':  Indicates the ASN that is configured for the VPN node.

   'router-id':  Indicates a 32-bit number that is used to uniquely
      identify a router within an Autonomous System. AS.

   'active-vpn-instance-profiles':  Lists the set of active VPN instance
      profiles for this VPN node.  Concretely, one or more VPN instance
      profiles that are defined at the VPN service level can be enabled
      at the VPN node level; each of these profiles is uniquely
      identified by means of 'profile-id'.  The structure of 'active-
      vpn-instance-profiles' is the same as the one structure discussed in
      Section 7.4 7.4, except 'router-id'. that the structure of 'active-vpn-instance-
      profiles' includes 'router-id' but does not include the 'role'
      leaf.  The value of 'router-id' indicated under 'active-vpn-instance-profiles' 'active-vpn-
      instance-profiles' takes precedence over the 'router-id' under the
      'vpn-node' for the indicated address family.  For example, Router
      IDs can be configured per address family.  This capability can be
      used, for example, to configure an IPv6 address as a Router ID
      when such a capability is supported by involved routers.

      Values defined in 'active-vpn-instance-profiles' overrides override the
      ones
      values defined in at the VPN service level.  An example is shown in
      Appendix A.3.

   'msdp':  For redundancy purposes, the Multicast Source Discovery
      Protocol (MSDP) [RFC3618] may be enabled and used to share the state
      information about sources between multiple Rendezvous Points
      (RPs).  The purpose of MSDP in this context is to enhance the
      robustness of the multicast service.  MSDP may be configured on
      non-RP routers, which routers; this is useful in a domain that does not support
      multicast sources, sources but does support multicast transit.

   'groups':  Lists the groups to which a VPN node belongs to
      [I-D.ietf-opsawg-vpn-common].  The [RFC9181].
      For example, the 'group-id' is used to
      associate, e.g., associate redundancy or
      protection constraints with VPN nodes.

   'status':  Tracks the status of a node involved in a VPN service.
      Both operational status and administrative status are maintained.
      A mismatch between the administrative status vs. the operational
      status can be used as a trigger to detect anomalies.

   'vpn-network-accesses':  Represents the point to which sites are
      connected.

      Note that, that unlike in the L3SM, the L3NM does not need to model the
      customer site, site -- only the points where the that receive traffic from the
      site are
      received (i.e., the PE side of PE-CE Provider Edge to Customer Edge (PE-CE)
      connections).  Hence, the VPN network access contains the
      connectivity information between the provider's network and the
      customer premises.  The VPN profiles ('vpn-profiles') have a set
      of routing policies that can be applied during the service
      creation.

      See Section 7.6 for more details.

7.6.  VPN Network Accesses

   The 'vpn-network-access' includes a set of data nodes that describe
   the access information for the traffic that belongs to a particular
   L3VPN (Figure 8).

   ...
   +--rw vpn-nodes
      +--rw vpn-node* [vpn-node-id]
         ...
         +--rw vpn-network-accesses
            +--rw vpn-network-access* [id]
               +--rw id                         vpn-common:vpn-id
               +--rw interface-id?              string
               +--rw description?               string
               +--rw vpn-network-access-type?   identityref
               +--rw vpn-instance-profile?      leafref
               +--rw status
               |  +--rw admin-status
               |  |  +--rw status?         identityref
               |  |  +--rw last-change?   yang:date-and-time
               |  +--ro oper-status
               |     +--ro status?         identityref
               |     +--ro last-change?   yang:date-and-time
               +--rw connection
               |  ...
               +--rw ip-connection
               |  ...
               +--rw routing-protocols
               |  ...
               +--rw oam
               |  ...
               +--rw security
               |  ...
               +--rw service
                  ...

               Figure 8: VPN Network Access Subtree Structure

   In reference to the subtree depicted in Figure 8, a 'vpn-network-
   access'

   A 'vpn-network-access' (Figure 8) includes the following data nodes:

   'id':  Is an  An identifier of the VPN network access.

   'interface-id':  Indicates the physical or logical interface on which
      the VPN network access is bound.

   'description':  Includes a textual description of the VPN network
      access.

   'vpn-network-access-type':  Is used  Used to select the type of network
      interface to be deployed in the devices.  The available defined
      values are: are as follows:

      'point-to-point':  Represents a direct connection between the
         endpoints.  The controller must keep the association between a
         logical or physical interface on the device with the 'id' of
         the 'vpn-network-access'.

      'multipoint':  Represents a multipoint connection between the
         customer site and the PEs.  The controller must keep the
         association between a logical or physical interface on the
         device with the 'id' of the 'vpn-network-access'.

      'irb':  Represents a connection coming from an L2VPN service.  An
         identifier of such a service ('l2vpn-id') may be included in
         the 'connection' container container, as depicted in Figure 9. 9
         (Section 7.6.1).  The controller must keep the relationship
         between the logical tunnels or bridges on the devices with the
         'id' of the' vpn-network-
         access'. the 'vpn-network-access'.

      'loopback':  Represents the creation of a logical interface on a
         device.  An example to illustrate that illustrates how a loopback interface
         can be used in the L3NM is provided in Appendix A.2.

   'vpn-instance-profile':  Provides a pointer to an active VPN instance
      profile at the VPN node level.  Referencing an active VPN instance
      profile implies that all associated data nodes will be inherited
      by the VPN network access.  However, some inherited data nodes
      (e.g., multicast) can be overridden at the VPN network access
      level.  In such a case, adjusted values take precedence over
      inherited ones. values.

   'status':  Indicates both operational status and administrative
      status of a VPN network access.

   'connection':  Represents and groups the set of Layer 2 connectivity
      from where the traffic of the L3VPN in a particular VPN Network network
      access is coming.  See Section 7.6.1.

   'ip-connection':  Contains Layer 3 connectivity information of on a VPN
      network access (e.g., IP addressing).  See Section 7.6.2.

   'routing-protocols':  Includes the CE-PE routing configuration
      information.  See Section 7.6.3.

   'oam':  Specifies the Operations, Administration, and Maintenance
      (OAM) mechanisms used for a VPN network access.  See
      Section 7.6.4.

   'security':  Specifies the authentication and the encryption to be
      applied for a given VPN network access.  See Section 7.6.5.

   'service':  Specifies the service parameters (e.g., QoS, multicast)
      to apply for a given VPN network access.  See Section 7.6.6.

7.6.1.  Connection

   The 'connection' container represents the layer Layer 2 connectivity to the
   L3VPN for a particular VPN network access.  As shown in the tree
   depicted in Figure 9, the 'connection' container defines protocols
   and parameters to enable such connectivity at layer Layer 2.

   The traffic can enter the VPN with or without encapsulation (e.g.,
   VLAN, QinQ).  The 'encapsulation' container specifies the layer Layer 2
   encapsulation to use (if any) and allows to configure the configuration of the
   relevant tags.

   The interface that is attached to the L3VPN is identified by the
   'interface-id' at the 'vpn-network-access' level.  From a network
   model perspective, it is expected that the 'interface-id' is
   sufficient to identify the interface.  However, specific layer Layer 2 sub-
   interfaces may be required to be configured in some implementations/
   deployments.  Such a layer 2 specific Layer-2-specific interface can be included in
   'l2-termination-point'.

   If a layer Layer 2 tunnel is needed to terminate the service in the CE-PE
   connection, the 'l2-tunnel-service' container is used to specify the
   required parameters to set such a tunneling service (e.g., VPLS,
   VXLAN). a Virtual
   Private LAN Service (VPLS) or a Virtual eXtensible Local Area Network
   (VXLAN)).  An identity, identity called 'l2-tunnel-type', 'l2-tunnel-type' is defined for layer Layer 2
   tunnel selection.  The container can also identify the pseudowire
   (Section 6.1 of [RFC8077]).

   As discussed in Section 7.6, 'l2vpn-id' is used to identify the L2VPN
   service that is associated with an IRB Integrated Routing and Bridging
   (IRB) interface.

   To accommodate implementations that require internal bridging, a
   local bridge reference can be specified in 'local-bridge-reference'.
   Such a reference may be a local bridge domain.

   A site, as per [RFC4176] [RFC4176], represents a VPN customer's location that
   is connected to the service provider network via a CE-PE link, which
   can access at least one VPN.  The connection from the site to the
   service provider network is the bearer.  Every site is associated
   with a list of bearers.  A bearer is the layer two Layer 2 connection with the
   site.  In the L3NM, it is assumed that the bearer has been allocated
   by the service provider at the service orchestration stage.  The
   bearer is associated to with a network element and a port.  Hence, a
   bearer is just a 'bearer-reference' to allow the association between
   a service request (e.g., the L3SM) and the L3NM.

   The L3NM can be used to create a LAG Link Aggregation Group (LAG)
   interface for a given L3VPN service ('lag-interface') [IEEE802.1AX].
   Such a LAG interface can be referenced under 'interface-id'
   (Section 7.6).

   ...
   +--rw connection
   |  +--rw encapsulation
   |  |  +--rw type?              identityref
   |  |  +--rw dot1q
   |  |  |  +--rw tag-type?   identityref
   |  |  |  +--rw cvlan-id?   uint16
   |  |  +--rw priority-tagged
   |  |  |  +--rw tag-type?   identityref
   |  |  +--rw qinq
   |  |     +--rw tag-type?   identityref
   |  |     +--rw svlan-id    uint16
   |  |     +--rw cvlan-id    uint16
   |  +--rw (l2-service)?
   |  |  +--:(l2-tunnel-service)
   |  |  |  +--rw l2-tunnel-service
   |  |  |     +--rw type?         identityref
   |  |  |     +--rw pseudowire
   |  |  |     |  +--rw vcid?      uint32
   |  |  |     |  +--rw far-end?   union
   |  |  |     +--rw vpls
   |  |  |     |  +--rw vcid?      uint32
   |  |  |     |  +--rw far-end*   union
   |  |  |     +--rw vxlan
   |  |  |        +--rw vni-id             uint32
   |  |  |        +--rw peer-mode?         identityref
   |  |  |        +--rw peer-ip-address*   inet:ip-address
   |  |  +--:(l2vpn)
   |  |     +--rw l2vpn-id?            vpn-common:vpn-id
   |  +--rw l2-termination-point?      string
   |  +--rw local-bridge-reference?    string
   |  +--rw bearer-reference?          string
   |  |       {vpn-common:bearer-reference}?
   |  +--rw lag-interface {vpn-common:lag-interface}?
   |     +--rw lag-interface-id?   string
   |     +--rw member-link-list
   |        +--rw member-link* [name]
   |           +--rw name    string
   ...

                   Figure 9: Connection Subtree Structure

7.6.2.  IP Connection

   This container is used to group Layer 3 connectivity information,
   particularly the IP addressing information, of a VPN network access.
   The allocated address represents the PE interface address
   configuration.  Note that a distinct layer Layer 3 interface other than the
   one
   interface indicated under the 'connection' container may be needed to
   terminate the layer Layer 3 service.  The identifier of such an interface
   is included in 'l3-termination-point'.  For example, this data node
   can be used to carry the identifier of a bridge domain interface.

   As shown in Figure 10, the 'ip-connection' container can include
   IPv4, IPv6, or both if dual-stack is enabled.

   ...
   +--rw vpn-network-accesses
      +--rw vpn-network-access* [id]
         ...
         +--rw ip-connection
         |  +--rw l3-termination-point?     string
         |  +--rw ipv4 {vpn-common:ipv4}?
         |  |  ...
         |  +--rw ipv6 {vpn-common:ipv6}?
         |     ...
         ...

                 Figure 10: IP Connection Subtree Structure

   For both IPv4 and IPv6, the IP connection supports three IP address
   assignment modes for customer addresses: provider DHCP, DHCP relay,
   and static addressing.  Note that for the IPv6 case, SLAAC Stateless
   Address Autoconfiguration (SLAAC) [RFC4862] can be used.  For both
   IPv4 and IPv6, 'address-allocation-type' is used to indicate the IP
   address allocation mode to activate for a given VPN network access.

   When 'address-allocation-type' is set to 'provider-dhcp', DHCP
   assignments can be made locally or by an external DHCP server.  Such
   as
   behavior is controlled by setting 'dhcp-service-type'.

   Figure 11 shows the structure of the dynamic IPv4 address assignment
   (i.e., by means of DHCP).

   ...
   +--rw ip-connection
   |  +--rw l3-termination-point?     string
   |  +--rw ipv4 {vpn-common:ipv4}?
   |  |  +--rw local-address?             inet:ipv4-address
   |  |  +--rw prefix-length?             uint8
   |  |  +--rw address-allocation-type?   identityref
   |  |  +--rw (allocation-type)?
   |  |     +--:(provider-dhcp)
   |  |     |  +--rw dhcp-service-type?   enumeration
   |  |     |  +--rw (service-type)?
   |  |     |     +--:(relay)
   |  |     |     |  +--rw server-ip-address*
   |  |     |     |          inet:ipv4-address
   |  |     |     +--:(server)
   |  |     |        +--rw (address-assign)?
   |  |     |           +--:(number)
   |  |     |           |  +--rw number-of-dynamic-address?
   |  |     |           |           uint16
   |  |     |           +--:(explicit)
   |  |     |              +--rw customer-addresses
   |  |     |                 +--rw address-pool* [pool-id]
   |  |     |                    +--rw pool-id          string
   |  |     |                    +--rw start-address
   |  |     |                    |           inet:ipv4-address
   |  |     |                    +--rw end-address?
   |  |     |                                inet:ipv4-address
   |  |     +--:(dhcp-relay)
   |  |     |  +--rw customer-dhcp-servers
   |  |     |     +--rw server-ip-address*   inet:ipv4-address
   |  |     +--:(static-addresses)
   |  |        ...
   ...

             Figure 11: IP Connection Subtree Structure (IPv4)

   Figure 12 shows the structure of the dynamic IPv6 address assignment
   (i.e., DHCPv6 and/or SLAAC).  Note that if 'address-allocation-type'
   is set to 'slaac', the Prefix Information option of Router
   Advertisements that will be issued for SLAAC purposes, purposes will carry the
   IPv6 prefix that is determined by 'local-address' and 'prefix-
   length'.  For example, if 'local-address' is set to '2001:db8:0:1::1'
   and 'prefix-length' is set to '64', the IPv6 prefix that will be used
   is '2001:db8:0:1::/64'.

   ...
   +--rw ip-connection
   |  +--rw l3-termination-point?     string
   |  +--rw ipv4 {vpn-common:ipv4}?
   |  |  ...
   |  +--rw ipv6 {vpn-common:ipv6}?
   |     +--rw local-address?                 inet:ipv6-address
   |     +--rw prefix-length?                 uint8
   |     +--rw address-allocation-type?       identityref
   |     +--rw (allocation-type)?
   |        +--:(provider-dhcp)
   |        |  +--rw provider-dhcp
   |        |     +--rw dhcp-service-type?
   |        |     |       enumeration
   |        |     +--rw (service-type)?
   |        |        +--:(relay)
   |        |        |  +--rw server-ip-address*
   |        |        |          inet:ipv6-address
   |        |        +--:(server)
   |        |           +--rw (address-assign)?
   |        |              +--:(number)
   |        |              |  +--rw number-of-dynamic-address?
   |        |              |          uint16
   |        |              +--:(explicit)
   |        |                 +--rw customer-addresses
   |        |                    +--rw address-pool*  [pool-id]
   |        |                       +--rw pool-id      string
   |        |                       +--rw start-address
   |        |                       |       inet:ipv6-address
   |        |                       +--rw end-address?
   |        |                               inet:ipv6-address
   |        +--:(dhcp-relay)
   |        |  +--rw customer-dhcp-servers
   |        |     +--rw server-ip-address*
   |        |             inet:ipv6-address
   |        +--:(static-addresses)
   |           ...

             Figure 12: IP Connection Subtree Structure (IPv6)

   In the case of the static addressing (Figure 13), the model supports the
   assignment of several IP addresses in the same 'vpn-network-
   access'. 'vpn-network-access'.
   To identify which of the addresses is the primary address of a
   connection, the 'primary-address' reference MUST be set with the
   corresponding 'address-id'.

   ...
   +--rw ip-connection
   |  +--rw l3-termination-point?     string
   |  +--rw ipv4 {vpn-common:ipv4}?
   |  |  +--rw address-allocation-type?         identityref
   |  |  +--rw (allocation-type)?
   |  |     ...
   |  |     +--:(static-addresses)
   |  |        +--rw primary-address?        -> ../address/address-id
   |  |        +--rw address* [address-id]
   |  |           +--rw address-id          string
   |  |           +--rw customer-address?   inet:ipv4-address
   |  +--rw ipv6 {vpn-common:ipv6}?
   |     +--rw address-allocation-type?         identityref
   |     +--rw (allocation-type)?
   |        ...
   |        +--:(static-addresses)
   |           +--rw primary-address?     -> ../address/address-id
   |           +--rw address* [address-id]
   |              +--rw address-id          string
   |              +--rw customer-address?   inet:ipv6-address
   ...

          Figure 13: IP Connection Subtree Structure (Static Mode)

7.6.3.  CE-PE Routing Protocols

   A VPN service provider can configure one or more routing protocols
   associated with a particular 'vpn-network-access'.  Such routing
   protocols are enabled between the PE and the CE.  Each instance is
   uniquely identified to accommodate scenarios where multiple instances
   of the same routing protocol have to be configured on the same link.

   The subtree of the 'routing-protocols' is shown in Figure 14.

     ...
     +--rw vpn-network-accesses
        +--rw vpn-network-access* [id]
           ...
           +--rw routing-protocols
           |  +--rw routing-protocol* [id]
           |     +--rw id   string
           |     +--rw type?               identityref
           |     +--rw routing-profiles* [id]
           |     |  +--rw id      leafref
           |     |  +--rw type?   identityref
           |     +--rw static
           |     |  ...
           |     +--rw bgp
           |     |  ...
           |     +--rw ospf
           |     |  ...
           |     +--rw isis
           |     |  ...
           |     +--rw rip
           |     |  ...
           |     +--rw vrrp
           |        ...
           +--rw security
               ...

                    Figure 14: Routing Subtree Structure

   Multiple routing instances can be defined; defined, each uniquely identified
   by an 'id'.  The type of routing instance is indicated in 'type'.
   The values of these attributes are those defined in
   [I-D.ietf-opsawg-vpn-common] ('routing-protocol-type' [RFC9181] (the
   'routing-protocol-type' identity).

   Configuring multiple instances of the same routing protocol does not
   automatically imply that, from a device configuration perspective,
   there will be parallel instances (e.g., multiple processes) running
   on the PE-CE link.  It is up to each implementation (typically,
   network orchestration orchestration, as shown in Figure 1) to decide about on the
   appropriate configuration as a function of underlying capabilities
   and service provider operational guidelines.  As an example, when
   multiple BGP peers need to be implemented, multiple instances of BGP
   must be configured as part of this model.  However, from a device
   configuration point of view, this could be implemented as:

   *  Multiple BGP processes with a single neighbor running in each
      process.

   *  A single BGP process with multiple neighbors running.

   *  A combination thereof.

   Routing configuration does not include low-level policies.  Such
   policies are handled at the device configuration level.  Local
   policies of a service provider (e.g., filtering) are implemented as
   part of the device configuration; these are not captured in the L3NM,
   but the model allows local profiles to be associated with routing
   instances ('routing-profiles').  Note that these routing profiles can
   be scoped to capture parameters that are globally applied to all
   L3VPN services within a service provider network, while customized
   L3VPN parameters are captured by means of the L3NM.  The provisioning
   of an L3VPN service will, thus, will thus rely upon the instantiation of these
   global routing profiles and the customized L3NM.

7.6.3.1.  Static Routing

   The L3NM supports the configuration of one or more IPv4/IPv6 static
   routes.  Since the same structure is used for both IPv4 and IPv6, it
   was considered to have
   using one single container to group both static entries independently
   of their address family, family was considered at one time, but that design
   was abandoned to ease the mapping with mapping, using the structure provided in
   [RFC8299].

   The static routing subtree structure is shown in Figure 15.

   ...
   +--rw routing-protocols
   |  +--rw routing-protocol* [id]
   |     ...
   |     +--rw static
   |     |  +--rw cascaded-lan-prefixes
   |     |     +--rw ipv4-lan-prefixes*
   |     |     |       [lan next-hop]
   |     |     |       {vpn-common:ipv4}?
   |     |     |  +--rw lan         inet:ipv4-prefix
   |     |     |  +--rw lan-tag?      string
   |     |     |  +--rw next-hop      union
   |     |     |  +--rw bfd-enable?   boolean
   |     |     |  +--rw metric?       uint32
   |     |     |  +--rw preference?   uint32
   |     |     |  +--rw status
   |     |     |     +--rw admin-status
   |     |     |     |  +--rw status?         identityref
   |     |     |     |  +--rw last-change?   yang:date-and-time
   |     |     |     +--ro oper-status
   |     |     |        +--ro status?         identityref
   |     |     |        +--ro last-change?   yang:date-and-time
   |     |     +--rw ipv6-lan-prefixes*
   |     |             [lan next-hop]
   |     |             {vpn-common:ipv6}?
   |     |        +--rw lan         inet:ipv6-prefix
   |     |        +--rw lan-tag?      string
   |     |        +--rw next-hop      union
   |     |        +--rw bfd-enable?   boolean
   |     |        +--rw metric?       uint32
   |     |        +--rw preference?   uint32
   |     |        +--rw status
   |     |           +--rw admin-status
   |     |           |  +--rw status?         identityref
   |     |           |  +--rw last-change?   yang:date-and-time
   |     |           +--ro oper-status
   |     |              +--ro status?         identityref
   |     |              +--ro last-change?   yang:date-and-time
   ...

                Figure 15: Static Routing Subtree Structure

   As depicted in Figure 15, the following data nodes can be defined for
   a given IP prefix:

   'lan-tag':  Indicates a local tag (e.g., "myfavourite-lan") "myfavorite-lan") that is
      used to enforce local policies.

   'next-hop':  Indicates the next-hop next hop to be used for the static route.
      It can be identified by an IP address, an interface, a predefined next-hop type
      (e.g., 'discard' or 'local-link'), etc.

   'bfd-enable':  Indicates whether BFD is enabled or disabled for this
      static route entry.

   'metric':  Indicates the metric associated with the static route
      entry.  This metric is used when the route is exported into an
      IGP.

   'preference':  Indicates the preference associated with the static
      route entry.  This preference is used to selecting select a preferred route
      among routes to the same destination prefix.

   'status':  Used to convey the status of a static route entry.  This
      data node can also be used to control the (de)activation of
      individual static route entries.

7.6.3.2.  BGP

   The L3NM allows the configuration of a BGP neighbor, including a set
   for
   of parameters that are pertinent to be tweaked at the network level
   for service customization purposes.  The 'bgp' container does not aim
   to include every BGP parameter; a comprehensive set of parameters
   belongs more to the BGP device model.

   The BGP routing subtree structure is shown in Figure 16.

   ...
   +--rw routing-protocols
   |  +--rw routing-protocol* [id]
   |     ...
   |     +--rw bgp
   |     |  +--rw description?               string
   |     |  +--rw local-as?                  inet:as-number
   |     |  +--rw peer-as                    inet:as-number
   |     |  +--rw address-family?            identityref
   |     |  +--rw local-address?             union
   |     |  +--rw neighbor*                  inet:ip-address
   |     |  +--rw multihop?                  uint8
   |     |  +--rw as-override?               boolean
   |     |  +--rw allow-own-as?              uint8
   |     |  +--rw prepend-global-as?         boolean
   |     |  +--rw send-default-route?        boolean
   |     |  +--rw site-of-origin?            rt-types:route-origin
   |     |  +--rw ipv6-site-of-origin?       rt-types:ipv6-route-origin
   |     |  +--rw redistribute-connected* [address-family]
   |     |  |  +--rw address-family    identityref
   |     |  |  +--rw enable?           boolean
   |     |  +--rw bgp-max-prefix
   |     |  |  +--rw max-prefix?          uint32
   |     |  |  +--rw warning-threshold?   decimal64
   |     |  |  +--rw violate-action?      enumeration
   |     |  |  +--rw restart-timer?       uint32
   |     |  +--rw bgp-timers
   |     |  |  +--rw keepalive?   uint16
   |     |  |  +--rw hold-time?   uint16
   |     |  +--rw authentication
   |     |  |  +--rw enable?            boolean
   |     |  |  +--rw keying-material
   |     |  |     +--rw (option)?
   |     |  |        +--:(ao)
   |     |  |        |  +--rw enable-ao?         boolean
   |     |  |        |  +--rw ao-keychain?       key-chain:key-chain-ref
   |     |  |        +--:(md5)
   |     |  |        |  +--rw md5-keychain?      key-chain:key-chain-ref
   |     |  |        +--:(explicit)
   |     |  |        |  +--rw key-id?            uint32
   |     |  |        |  +--rw key?               string
   |     |  |        |  +--rw crypto-algorithm?  identityref
   |     |  |        +--:(ipsec)
   |     |  |           +--rw sa?             string
   |     |  +--rw status
   |     |     +--rw admin-status
   |     |     |  +--rw status?         identityref
   |     |     |  +--rw last-change?   yang:date-and-time
   |     |     +--ro oper-status
   |     |        +--ro status?         identityref
   |     |        +--ro last-change?   yang:date-and-time
   ...

                  Figure 16: BGP Routing Subtree Structure

   The following data nodes are captured in Figure 16.  It is up to the
   implementation (e.g., network orchestrator) to derive the
   corresponding BGP device configuration:

   'description':  Includes a description of the BGP session.

   'local-as':  Indicates a local AS Number (ASN) (ASN), if a distinct ASN is
      required,
      required other than the one ASN configured at the VPN node level.

   'peer-as':  Conveys the customer's ASN.

   'address-family':  Indicates the address-family address family of the peer.  It can
      be set to IPv4, IPv6, 'ipv4', 'ipv6', or dual-stack. 'dual-stack'.

      This address family will be used together with the 'vpn-type' to
      derive the appropriate Address Family Identifiers
      (AFIs)/Subsequent (AFIs) /
      Subsequent Address Family Identifiers (SAFIs) that will be part of
      the derived device configurations (e.g., Unicast unicast IPv4 MPLS L3VPN
      (AFI,SAFI = 1,128) as defined in Section 4.3.4 of [RFC4364]).

   'local-address':  Specifies an address or a reference to an interface
      to use when establishing the BGP transport session.

   'neighbor':  Can indicate two neighbors (each for a given address- address
      family) or one neighbor (if the 'address-family' attribute is set
      to
      dual-stack). 'dual-stack').  A list of IP address(es) of the BGP neighbors neighbor(s)
      can be then be conveyed in this data node.

   'multihop':  Indicates the number of allowed IP hops between a PE and
      its BGP peer.

   'as-override':  If set, this parameter indicates whether ASN override
      is enabled, i.e., replace replacing the ASN of the customer specified in
      the AS_PATH BGP attribute with the ASN identified in the 'local-as' 'local-
      as' attribute.

   'allow-own-as':  Is used  Used in some topologies (e.g., hub-and-spoke) to
      allow the provider's ASN to be included in the AS_PATH BGP
      attribute received from a CE.  Loops are prevented by setting
      'allow-own-as' to a maximum number of the provider's ASN
      occurrences.
      This  By default, this parameter is set by default to '0' (that is,
      reject any AS_PATH attribute that includes the provider's ASN).

   'prepend-global-as':  When distinct ASNs are configured in at the VPN
      node and network access levels, this parameter controls whether
      the ASN provided at the VPN node level is prepended to the AS_PATH
      attribute.

   'send-default-route':  Controls whether default routes can be
      advertised to the peer.

   'site-of-origin':  Is meant  Meant to uniquely identify the set of routes
      learned from a site via a particular CE/PE connection and CE-PE connection.  It is used
      to prevent routing loops (Section 7 of [RFC4364]).  The Site of
      Origin attribute is encoded as a Route Origin Extended Community.

   'ipv6-site-of-origin':  Carries an IPv6 Address Specific BGP Extended
      Community that is used to indicate the Site of Origin for VRF
      information [RFC5701].  It is used to prevent routing loops.

   'redistribute-connected':  Controls whether the PE-CE link is
      advertised to other PEs.

   'bgp-max-prefix':  Controls the behavior when a prefix maximum is
      reached.

      'max-prefix':  Indicates the maximum number of BGP prefixes
         allowed in the BGP session.  If the limit is reached, the
         action indicated in 'violate-action' will be followed.

      'warning-threshold':  A warning notification is triggered when
         this limit is reached.

      'violate-action':  Indicates which action to execute when the
         maximum number of BGP prefixes is reached.  Examples of such
         actions are: send include sending a warning message, discard discarding extra
         paths from the peer, or restart restarting the session.

      'restart-timer':  Indicates, in seconds, the time interval after
         which the BGP session will be reestablished.

   'bgp-timers':  Two timers can be captured in this container: (1)
      'hold-time'
      'hold-time', which is the time interval that will be used for the
      HoldTimer
      Hold Timer (Section 4.2 of [RFC4271]) when establishing a BGP
      session.
      session and (2) 'keepalive' 'keepalive', which is the time interval for the
      KeepAlive timer
      KeepaliveTimer between a PE and a BGP peer (Section 4.4 of
      [RFC4271]).  Both timers are expressed in seconds.

   'authentication':  The module adheres to the recommendations in
      Section 13.2 of [RFC4364] [RFC4364], as it allows enabling TCP-AO the TCP
      Authentication Option (TCP-AO) [RFC5925] and accommodates the
      installed base that makes use of MD5.  In addition, the module
      includes a provision for the use of using IPsec.

      This version of the L3NM assumes that TCP-AO specific parameters specific to the
      TCP-AO are preconfigured as part of the key-chain key chain that is
      referenced in the L3NM.  No assumption is made about how such a key-chain
      key chain is
      pre-configured. preconfigured.  However, the structure of the key-chain key
      chain should cover data nodes beyond those in [RFC8177], mainly
      SendID and RecvID (Section 3.1 of [RFC5925]).

   'status':  Indicates the status of the BGP routing instance.

7.6.3.3.  OSPF

   OSPF can be configured to run as a routing protocol on the 'vpn-
   network-access'.

   The OSPF routing subtree structure is shown in Figure 17.

   ...
   +--rw routing-protocols
   |  +--rw routing-protocol* [id]
   |     ...
   |     +--rw ospf
   |     |  +--rw address-family?   identityref
   |     |  +--rw area-id           yang:dotted-quad
   |     |  +--rw metric?           uint16
   |     |  +--rw sham-links  {vpn-common:rtg-ospf-sham-link}?
   |     |  |  +--rw sham-link* [target-site]
   |     |  |     +--rw target-site
        |     |  |     |       vpn-common:vpn-id    string
   |     |  |     +--rw metric?        uint16
   |     |  +--rw max-lsa?          uint32
   |     |  +--rw authentication
   |     |  |  +--rw enable?            boolean
   |     |  |  +--rw keying-material
   |     |  |     +--rw (option)?
   |     |  |        +--:(auth-key-chain)
   |     |  |        |  +--rw key-chain?
   |     |  |        |          key-chain:key-chain-ref
   |     |  |        +--:(auth-key-explicit)
   |     |  |        |  +--rw key-id?      uint32
   |     |  |        |  +--rw key?         string
   |     |  |        |  +--rw crypto-algorithm?
   |     |  |        |          identityref
   |     |  |        +--:(ipsec)
   |     |  |           +--rw sa?    string
   |     |  +--rw status
   |     |     +--rw admin-status
   |     |     |  +--rw status?        identityref
   |     |     |  +--rw last-change?  yang:date-and-time
   |     |     +--ro oper-status
   |     |        +--ro status?        identityref
   |     |        +--ro last-change?  yang:date-and-time
   ...

                 Figure 17: OPSF OSPF Routing Subtree Structure

   The following data nodes are captured in Figure 17:

   'address-family':  Indicates whether IPv4, IPv6, or both address
      families are to be activated.

      When the IPv4 or dual-stack address-family address family is requested, it is up
      to the implementation (e.g., network orchestrator) to decide
      whether OSPFv2 [RFC4577] or OSPFv3 [RFC6565] is used to announce
      IPv4 routes.  Such a decision will be typically be reflected in the
      device configurations that will be derived to implement the L3VPN.

   'area-id':  Indicates the OSPF Area ID.

   'metric':  Associates a metric with OSPF routes.

   'sham-links':  Is used  Used to create OSPF sham links between two VPN network
      accesses sharing the same area and having a backdoor link
      (Section 4.2.7 of [RFC4577] and Section 5 of [RFC6565]).

   'max-lsa':  Sets the maximum number of LSAs Link State Advertisements
      (LSAs) that the OSPF instance will accept.

   'authentication':  Controls the authentication schemes to be enabled
      for the OSPF instance.  The following options are supported: IPsec
      for OSPFv3 authentication [RFC4552], authentication trailer and the Authentication
      Trailer for OSPFv2 [RFC5709] [RFC7474] and OSPFv3 [RFC7166].

   'status':  Indicates the status of the OSPF routing instance.

7.6.3.4.  IS-IS

   The model (Figure 18) allows the user to configure IS-IS
   [ISO10589][RFC1195][RFC5308] [ISO10589] [RFC1195]
   [RFC5308] to run on the 'vpn-network-access' interface.  See
   Figure 18.

   ...
   +--rw routing-protocols
   |  +--rw routing-protocol* [id]
   |     ...
   |     +--rw isis
   |     |  +--rw address-family?   identityref
   |     |  +--rw area-address      area-address
   |     |  +--rw level?            identityref
   |     |  +--rw metric?           uint16
   |     |  +--rw mode?             enumeration
   |     |  +--rw authentication
   |     |  |  +--rw enable?            boolean
   |     |  |  +--rw keying-material
   |     |  |     +--rw (option)?
   |     |  |        +--:(auth-key-chain)
   |     |  |        |  +--rw key-chain?
   |     |  |        |          key-chain:key-chain-ref
   |     |  |        +--:(auth-key-explicit)
   |     |  |           +--rw key-id?             uint32
   |     |  |           +--rw key?                string
   |     |  |           +--rw crypto-algorithm?   identityref
   |     |  +--rw status
   |     |     +--rw admin-status
   |     |     |  +--rw status?        identityref
   |     |     |  +--rw last-change?  yang:date-and-time
   |     |     +--ro oper-status
   |     |        +--ro status?        identityref
   |     |        +--ro last-change?  yang:date-and-time
   ...

                 Figure 18: IS-IS Routing Subtree Structure

   The following IS-IS data nodes are supported:

   'address-family':  Indicates whether IPv4, IPv6, or both address
      families are to be activated.

   'area-address':  Indicates the IS-IS area address.

   'level':  Indicates the IS-IS level: Level 1, Level 2, or both.

   'metric':  Associates a metric with IS-IS routes.

   'mode':  Indicates the IS-IS interface mode type.  It can be set to
      'active' (that is, send or receive IS-IS protocol control packets)
      or 'passive' (that is, suppress the sending of IS-IS updates
      through the interface).

   'authentication':  Controls the authentication schemes to be enabled
      for the IS-IS instance.  Both the specification of a key-chain key chain
      [RFC8177] and the direct specification of key and authentication
      algorithm
      algorithms are supported.

   'status':  Indicates the status of the IS-IS routing instance.

7.6.3.5.  RIP

   The model (Figure 19) allows the user to configure RIP to run on the
   'vpn-network-access' 'vpn-
   network-access' interface.  See Figure 19.

   ...
   +--rw routing-protocols
   |  +--rw routing-protocol* [id]
   |     ...
   |     +--rw rip
   |     |  +--rw address-family?   identityref
   |     |  +--rw timers
   |     |  |  +--rw update-interval?     uint16
   |     |  |  +--rw invalid-interval?    uint16
   |     |  |  +--rw holddown-interval?   uint16
   |     |  |  +--rw flush-interval?      uint16
   |     |  +--rw neighbor*         inet:ip-address
        |     |  +--rw default-metric?   uint8
   |     |  +--rw authentication
   |     |  |  +--rw enable?            boolean
   |     |  |  +--rw keying-material
   |     |  |     +--rw (option)?
   |     |  |        +--:(auth-key-chain)
   |     |  |        |  +--rw key-chain?
   |     |  |        |          key-chain:key-chain-ref
   |     |  |        +--:(auth-key-explicit)
   |     |  |           +--rw key?                string
   |     |  |           +--rw crypto-algorithm?   identityref
   |     |  +--rw status
   |     |     +--rw admin-status
   |     |     |  +--rw status?        identityref
   |     |     |  +--rw last-change?  yang:date-and-time
   |     |     +--ro oper-status
   |     |        +--ro status?        identityref
   |     |        +--ro last-change?  yang:date-and-time
   ...

                      Figure 19: RIP Subtree Structure

   As shown in Figure 19, the following RIP data nodes are supported:

   'address-family':  Indicates whether IPv4, IPv6, or both address
      families are to be activated.  This parameter is used to determine
      whether RIPv2 [RFC2453] and/or RIPng [RFC2453], RIP Next Generation (RIPng), or both are
      to be enabled [RFC2080].

   'timers':  Indicates the following timers:

      'update-interval':  Is the  The interval at which RIP updates are sent.

      'invalid-interval':  Is the  The interval before a RIP route is declared
         invalid.

      'holddown-interval':  Is the  The interval before better RIP routes are
         released.

      'flush-interval':  Is the  The interval before a route is removed from the
         routing table.

      These timers are expressed in seconds.

   'default-metric':  Sets the default RIP metric.

   'authentication':  Controls the authentication schemes to be enabled
      for the RIP instance.

   'status':  Indicates the status of the RIP routing instance.

7.6.3.6.  VRRP

   The model (Figure 20) allows enabling VRRP the Virtual Router Redundancy Protocol
   (VRRP) on the 'vpn-network-
   access' 'vpn-network-access' interface.  See Figure 20.

   ...
   +--rw routing-protocols
   |  +--rw routing-protocol* [id]
   |     ...
   |     +--rw vrrp
   |        +--rw address-family*   identityref
   |        +--rw vrrp-group?       uint8
   |        +--rw backup-peer?      inet:ip-address
   |        +--rw virtual-ip-address*   inet:ip-address
   |        +--rw priority?         uint8
   |        +--rw ping-reply?       boolean
   |        +--rw status
   |           +--rw admin-status
   |           |  +--rw status?        identityref
   |           |  +--rw last-change?  yang:date-and-time
   |           +--ro oper-status
   |              +--ro status?        identityref
   |              +--ro last-change?  yang:date-and-time
   ...

                     Figure 20: VRRP Subtree Structure

   The following data nodes are supported:

   'address-family':  Indicates whether IPv4, IPv6, or both address
      families are to be activated.  Note that VRRP version 3 [RFC5798]
      supports both IPv4 and IPv6.

   'vrrp-group':  Is used  Used to identify the VRRP group.

   'backup-peer':  Carries the IP address of the peer.

   'virtual-ip-address':  Includes virtual IP addresses for a single
      VRRP group.

   'priority':  Assigns the VRRP election priority for the backup
      virtual router.

   'ping-reply':  Controls whether the VRRP speaker should reply to ping requests can be replied to.
      requests.

   'status':  Indicates the status of the VRRP instance.

   Note that no authentication data node is included for VRRP VRRP, as there
   isn't currently any type of VRRP authentication at this time (see Section 9 of
   [RFC5798]).

7.6.4.  OAM

   This container (Figure 21) defines the Operations, Administration,
   and Maintenance (OAM) mechanisms used for a VPN network access.  In
   the current version of the L3NM, only BFD is supported.

   ...
   +--rw oam
   |  +--rw bfd {vpn-common:bfd}?
   |     +--rw session-type?               identityref
   |     +--rw desired-min-tx-interval?    uint32
   |     +--rw required-min-rx-interval?   uint32
   |     +--rw local-multiplier?           uint8
   |     +--rw holdtime?                   uint32
   |     +--rw profile?                    leafref
   |     +--rw authentication!
   |     |  +--rw key-chain?    key-chain:key-chain-ref
   |     |  +--rw meticulous?   boolean
   |     +--rw status
   |        +--rw admin-status
   |           |  +--rw status?         identityref
   |           |  +--rw last-change?   yang:date-and-time
   |           +--ro oper-status
   |              +--ro status?         identityref
   |              +--ro last-change?   yang:date-and-time
   ...

              Figure 21: IP Connection Subtree Structure (OAM)

   The following OAM data nodes can be specified:

   'session-type':  Indicates which BFD flavor is used to set up the
      session (e.g., classic BFD [RFC5880], Seamless BFD [RFC7880]).  By
      default, it is assumed that the BFD session is assumed to will follow the
      behavior specified in [RFC5880].

   'desired-min-tx-interval':  Is the  The minimum interval, in microseconds,
      that a PE would like to use when transmitting BFD Control packets packets,
      less any jitter applied.

   'required-min-rx-interval':  Is the  The minimum interval, in microseconds,
      between received BFD Control packets that a PE is capable of
      supporting, less any jitter applied by the sender.

   'local-multiplier':  The negotiated transmit interval, multiplied by
      this value, provides the detection time for the peer.

   'holdtime':  Is used  Used to indicate the expected BFD holddown time, in
      milliseconds.  This value may be inherited from the service
      request (see Section 6.3.2.2.2 of [RFC8299]).

   'profile':  Refers to a BFD profile (Section 7.2).  Such a profile
      can be set by the provider or inherited from the service request
      (see Section 6.3.2.2.2 of [RFC8299]).

   'authentication':  Includes the required information to enable the
      BFD authentication modes discussed in Section 6.7 of [RFC5880].
      In particular particular, 'meticulous' controls the activation of the meticulous
      mode as discussed in Sections 6.7.3 and 6.7.4 of [RFC5880].

   'status':  Indicates the status of BFD.

7.6.5.  Security

   The 'security' container specifies the authentication and the
   encryption to be applied to traffic for a given VPN network access traffic. access.
   As depicted in the subtree shown in Figure 22, the L3NM can be used
   to directly control the encryption to put in place be applied (e.g., Layer 2 or
   Layer 3 encryption) or invoke a local encryption profile.

        ...
        +--rw vpn-services
           +--rw vpn-service* [vpn-id]
              ...
              +--rw vpn-nodes
                 +--rw vpn-node* [vpn-node-id]
                    ...
                    +--rw vpn-network-accesses
                       +--rw vpn-network-access* [id]
                          ...
                          +--rw security
                          |  +--rw encryption {vpn-common:encryption}?
                          |  |  +--rw enabled?   boolean
                          |  |  +--rw layer?     enumeration
                          |  +--rw encryption-profile
                          |     +--rw (profile)?
                          |        +--:(provider-profile)
                          |        |  +--rw profile-name?        leafref
                          |        +--:(customer-profile)
                          |           +--rw customer-key-chain?
                          |                   kc:key-chain-ref                   key-chain:key-chain-ref
                          +--rw service
                              ...

                   Figure 22: Security Subtree Structure

7.6.6.  Services

7.6.6.1.  Overview

   The 'service' container specifies the service parameters to apply for
   a given VPN network access (Figure 23).

   ...
   +--rw vpn-network-accesses
      +--rw vpn-network-access* [id]
         ...
         +--rw service
            +--rw inbound-bandwidth? pe-to-ce-bandwidth?   uint64 {vpn-common:inbound-bw}?
            +--rw outbound-bandwidth? ce-to-pe-bandwidth?   uint64 {vpn-common:outbound-bw}?
            +--rw mtu?                  uint32
            +--rw qos {vpn-common:qos}?
            |  ...
            +--rw carriers-carrier
            |       {vpn-common:carriers-carrier}?
            |  +--rw signaling-type?   enumeration
            +--rw ntp
            |  +--rw broadcast?        enumeration
            |  +--rw auth-profile
            |  |  +--rw profile-id?    string
            |  +--rw status
            |     +--rw admin-status
            |     |  +--rw status?         identityref
            |     |  +--rw last-change?   yang:date-and-time
            |     +--ro oper-status
            |        +--ro status?         identityref
            |        +--ro last-change?   yang:date-and-time
            +--rw multicast {vpn-common:multicast}?
               ...

                   Figure 23: Services Subtree Structure

   The following data nodes are defined:

   'inbound-bandwidth':

   'pe-to-ce-bandwidth':  Indicates, in bits per second (bps), the
      inbound bandwidth of the connection (i.e., the download bandwidth
      from the service provider to the site).

   'outbound-bandwidth':

   'ce-to-pe-bandwidth':  Indicates, in bps, the outbound bandwidth of
      the connection (i.e., the upload bandwidth from the site to the
      service provider).

   'mtu':  Indicates the MTU at the service level.

   'qos':  Is used  Used to define a set of QoS policies to apply on a given
      connection (refer to Section 7.6.6.2 for more details).

   'carriers-carrier':  Groups a set of parameters that are used when
      Carriers' Carriers (CsC) is enabled enabled, such the use of as using BGP for
      signaling purposes [RFC8277].

   'ntp':  Time synchronization may be needed in some VPNs VPNs, such as
      infrastructure and management VPNs.  This container is used to
      enable the NTP service [RFC5905].

   'multicast':  Specifies the multicast mode and other data nodes nodes, such
      as the address-family. address family.  Refer to Section 7.7.

7.6.6.2.  QoS

   The 'qos' container is used to define a set of QoS policies to apply
   on a given connection (Figure 24).  A QoS policy may be a
   classification or an action policy.  For example, a QoS action can be
   defined to
   rate limit rate-limit inbound/outbound traffic of a given class of
   service.

   ...
   +--rw qos {vpn-common:qos}?
   |  +--rw qos-classification-policy
   |  |  +--rw rule* [id]
   |  |     +--rw id             string
   |  |     +--rw (match-type)?
   |  |     |  +--:(match-flow)
   |  |     |  |  +--rw (l3)?
   |  |     |  |  |  +--:(ipv4)
   |  |     |  |  |  |  ...
   |  |     |  |  |  +--:(ipv6)
   |  |     |  |  |     ...
   |  |     |  |  +--rw (l4)?
   |  |     |  |     +--:(tcp)
   |  |     |  |     |  ...
   |  |     |  |     +--:(udp)
   |  |     |  |        ...
   |  |     |  +--:(match-application)
   |  |     |     +--rw match-application?
   |  |     |             identityref
   |  |     +--rw target-class-id?
              |  |    string
   |  +--rw qos-action
   |  |  +--rw rule* [id]
   |  |     +--rw id                     string
   |  |     +--rw target-class-id?       string
   |  |     +--rw inbound-rate-limit?    decimal64
   |  |     +--rw outbound-rate-limit?   decimal64
   |  +--rw qos-profile
   |     +--rw qos-profile* [profile]
   |        +--rw profile      leafref
   |        +--rw direction?   identityref
   ...

                  Figure 24: Services Overall QoS Subtree Structure

   QoS classification can be based on many criteria criteria, such as: as the
   following:

   Layer 3:  As shown in Figure 25, classification can be based on any
      IP header field or a combination thereof.  Both IPv4 and IPv6 are
      supported.

   +--rw qos {vpn-common:qos}?
   |  +--rw qos-classification-policy
   |  |  +--rw rule* [id]
   |  |     +--rw id           string
   |  |     +--rw (match-type)?
   |  |     |  +--:(match-flow)
   |  |     |  |  +--rw (l3)?
   |  |     |  |  |  +--:(ipv4)
   |  |     |  |  |  |  +--rw ipv4
   |  |     |  |  |  |     +--rw dscp?              inet:dscp
   |  |     |  |  |  |     +--rw ecn?               uint8
   |  |     |  |  |  |     +--rw length?            uint16
   |  |     |  |  |  |     +--rw ttl?               uint8
   |  |     |  |  |  |     +--rw protocol?          uint8
   |  |     |  |  |  |     +--rw ihl?               uint8
   |  |     |  |  |  |     +--rw flags?             bits
   |  |     |  |  |  |     +--rw offset?            uint16
   |  |     |  |  |  |     +--rw identification?    uint16
   |  |     |  |  |  |     +--rw (destination-network)?
   |  |     |  |  |  |     |  +--:(destination-ipv4-network)
   |  |     |  |  |  |     |     +--rw destination-ipv4-network?
   |  |     |  |  |  |     |             inet:ipv4-prefix
   |  |     |  |  |  |     +--rw (source-network)?
   |  |     |  |  |  |        +--:(source-ipv4-network)
   |  |     |  |  |  |           +--rw source-ipv4-network?
   |  |     |  |  |  |  inet:ipv4-prefix
   |  |     |  |  |  +--:(ipv6)
   |  |     |  |  |     +--rw ipv6
   |  |     |  |  |        +--rw dscp?              inet:dscp
   |  |     |  |  |        +--rw ecn?               uint8
   |  |     |  |  |        +--rw length?            uint16
   |  |     |  |  |        +--rw ttl?               uint8
   |  |     |  |  |        +--rw protocol?          uint8
   |  |     |  |  |        +--rw (destination-network)?
   |  |     |  |  |        |  +--:(destination-ipv6-network)
   |  |     |  |  |        |     +--rw destination-ipv6-network?
   |  |     |  |  |        |             inet:ipv6-prefix
   |  |     |  |  |        +--rw (source-network)?
   |  |     |  |  |        |  +--:(source-ipv6-network)
   |  |     |  |  |        |     +--rw source-ipv6-network?
   |  |     |  |  |        |             inet:ipv6-prefix
   |  |     |  |  |        +--rw flow-label?
   |  |     |  |  |                   inet:ipv6-flow-label
   ...

                   Figure 25: QoS Subtree Structure (L3)

   Layer 4:  As discussed in [I-D.ietf-opsawg-vpn-common], [RFC9181], any layer Layer 4 protocol can be
      indicated in the 'protocol' data node under 'l3' (Figure 25), but
      only TCP TCP- and UDP specific UDP-specific match criteria are elaborated in this version
      version, as these protocols are widely used in the context of VPN
      services.  Augmentations can be considered in the future to add
      other Layer 4 specific Layer-4-specific data nodes, if needed.

   TCP

      TCP- or UDP-related match criteria can be specified in the L3NM L3NM,
      as shown in Figure 26.

      As discussed in [I-D.ietf-opsawg-vpn-common], [RFC9181], some transport protocols use existing
      protocols (e.g., TCP or UDP) as the substrate.  The match criteria
      for such protocols may rely upon the 'protocol' setting under
      'l3', TCP/UDP match criteria as shown in Figure 26, part of the
      TCP/UDP payload, or a combination thereof.  This version of the
      module does not support such advanced match criteria.  Future
      revisions of the VPN common module or augmentations to the L3NM
      may consider adding match criteria based on the transport protocol
      payload (e.g., by means of a bitmask match).

   +--rw qos {vpn-common:qos}?
   |  +--rw qos-classification-policy
   |  |  +--rw rule* [id]
   |  |     +--rw id           string
   |  |     +--rw (match-type)?
   |  |     |  +--:(match-flow)
   |  |     |  |  +--rw (l3)?
   |  |     |  |  |  ...
   |  |     |  |  +--rw (l4)?
   |  |     |  |     +--:(tcp)
   |  |     |  |     |  +--rw tcp
   |  |     |  |     |     +--rw sequence-number?          uint32
   |  |     |  |     |     +--rw acknowledgement-number?   uint32
   |  |     |  |     |     +--rw data-offset?              uint8
   |  |     |  |     |     +--rw reserved?                 uint8
   |  |     |  |     |     +--rw flags?                    bits
   |  |     |  |     |     +--rw window-size?              uint16
   |  |     |  |     |     +--rw urgent-pointer?           uint16
   |  |     |  |     |     +--rw options?                  binary
   |  |     |  |     |     +--rw (source-port)?
   |  |     |  |     |     |  +--:(source-port-range-or-operator)
   |  |     |  |     |     |     +--rw source-port-range-or-operator
   |  |     |  |     |     |        +--rw (port-range-or-operator)?
   |  |     |  |     |     |           +--:(range)
   |  |     |  |     |     |           |  +--rw lower-port
   |  |     |  |     |     |           |  |       inet:port-number
   |  |     |  |     |     |           |  +--rw upper-port
   |  |     |  |     |     |           |          inet:port-number
   |  |     |  |     |     |           +--:(operator)
   |  |     |  |     |     |              +--rw operator? operator
   |  |     |  |     |     |              +--rw port
   |  |     |  |     |     |                      inet:port-number
   |  |     |  |     |     +--rw (destination-port)?
   |  |     |  |     |        +--:(destination-port-range-or-operator)
   |  |     |  |     |          +--rw destination-port-range-or-operator
   |  |     |  |     |             +--rw (port-range-or-operator)?
   |  |     |  |     |                +--:(range)
   |  |     |  |     |                |  +--rw lower-port
   |  |     |  |     |                |  |       inet:port-number
   |  |     |  |     |                |  +--rw upper-port
   |  |     |  |     |                |          inet:port-number
   |  |     |  |     |                +--:(operator)
   |  |     |  |     |                   +--rw operator? operator
   |  |     |  |     |                   +--rw port
   |  |     |  |     |                           inet:port-number
   |  |     |  |     +--:(udp)
   |  |     |  |        +--rw udp
   |  |     |  |           +--rw length?                    uint16
   |  |     |  |           +--rw (source-port)?
   |  |     |  |           |  +--:(source-port-range-or-operator)
   |  |     |  |           |     +--rw source-port-range-or-operator
   |  |     |  |           |        +--rw (port-range-or-operator)?
   |  |     |  |           |           +--:(range)
   |  |     |  |           |           |  +--rw lower-port
   |  |     |  |           |           |  |       inet:port-number
   |  |     |  |           |           |  +--rw upper-port
   |  |     |  |           |           |          inet:port-number
   |  |     |  |           |           +--:(operator)
   |  |     |  |           |              +--rw operator?  operator
   |  |     |  |           |              +--rw port
   |  |     |  |           |                      inet:port-number
   |  |     |  |           +--rw (destination-port)?
   |  |     |  |              +--:(destination-port-range-or-operator)
   |  |     |  |                +--rw destination-port-range-or-operator
   |  |     |  |                    +--rw (port-range-or-operator)?
   |  |     |  |                       +--:(range)
   |  |     |  |                       |  +--rw lower-port
   |  |     |  |                       |  |       inet:port-number
   |  |     |  |                       |  +--rw upper-port
   |  |     |  |                       |          inet:port-number
   |  |     |  |                       +--:(operator)
   |  |     |  |                          +--rw operator?   operator
   |  |     |  |                          +--rw port
   |  |     |  |                                  inet:port-number
   ...

                   Figure 26: QoS Subtree Structure (L4)

   Application match:  Relies upon application-specific classification. classification
      (Figure 24).

7.7.  Multicast

   Multicast may be enabled for a particular VPN at the VPN node and VPN
   network access levels (see Figure 27).  Some data nodes (e.g., max-
   groups)
   groups (Figure 28)) can be controlled at various levels: VPN service,
   VPN node level, or VPN network access.

        ...
        +--rw vpn-services
           +--rw vpn-service* [vpn-id]
              ...
              +--rw vpn-instance-profiles
              |  +--rw vpn-instance-profile* [profile-id]
              |     ....
              |     +--rw multicast {vpn-common:multicast}?
              |        ...
              +--rw vpn-nodes
                 +--rw vpn-node* [vpn-node-id]
                    ...
                    +--rw active-vpn-instance-profiles
                    |  +--rw vpn-instance-profile* [profile-id]
                    |     ...
                    |     +--rw multicast {vpn-common:multicast}?
                    |        ...
                    +--rw vpn-network-accesses
                       +--rw vpn-network-access* [id]
                          ...
                          +--rw service
                             ...
                             +--rw multicast {vpn-common:multicast}?
                                ...

               Figure 27: Overall Multicast Subtree Structure

   Multicast-related data nodes at the VPN instance profile level has have
   the structure that is shown in Figure 30. 28.

   ...
   +--rw vpn-services
      +--rw vpn-service* [vpn-id]
         ...
         +--rw vpn-instance-profiles
         |  +--rw vpn-instance-profile* [profile-id]
         |     ....
         |     +--rw multicast {vpn-common:multicast}?
         |        +--rw tree-flavor?   identityref
         |        +--rw rp
         |        |  +--rw rp-group-mappings
         |        |  |  +--rw rp-group-mapping* [id]
         |        |  |     +--rw id                  uint16
         |        |  |     +--rw provider-managed
         |        |  |     |  +--rw enabled?                   boolean
         |        |  |     |  +--rw rp-redundancy?             boolean
         |        |  |     |  +--rw optimal-traffic-delivery?  boolean
         |        |  |     |  +--rw anycast
         |        |  |     |     +--rw local-address?    inet:ip-address
         |        |  |     |     +--rw rp-set-address*   inet:ip-address
         |        |  |     +--rw rp-address          inet:ip-address
         |        |  |     +--rw groups
         |        |  |        +--rw group* [id]
         |        |  |           +--rw id                     uint16
         |        |  |           +--rw (group-format)
         |        |  |              +--:(group-prefix)
         |        |  |              |  +--rw group-address?
         |        |  |              |          inet:ip-prefix
         |        |  |              +--:(startend)
         |        |  |                 +--rw group-start?
         |        |  |                 |       inet:ip-address
         |        |  |                 +--rw group-end?
         |        |  |                 |       inet:ip-address
         |        |  +--rw rp-discovery
         |        |     +--rw rp-discovery-type?   identityref
         |        |     +--rw bsr-candidates
         |        |        +--rw bsr-candidate-address*
         |        |        |       inet:ip-address
         |        +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?
         |        |  +--rw static-group* [group-addr]
         |        |  |  +--rw group-addr
         |        |  |  |       rt-types:ipv4-multicast-group-address
         |        |  |  +--rw source-addr?
         |        |  |          rt-types:ipv4-multicast-source-address
         |        |  +--rw max-groups?     uint32
         |        |  +--rw max-entries?    uint32
         |        |  +--rw version?        identityref
         |        +--rw mld {vpn-common:mld and vpn-common:ipv6}?
         |        |  +--rw static-group* [group-addr]
         |        |  |  +--rw group-addr
         |        |  |  |       rt-types:ipv6-multicast-group-address
         |        |  |  +--rw source-addr?
         |        |  |          rt-types:ipv6-multicast-source-address
         |        |  +--rw max-groups?     uint32
         |        |  +--rw max-entries?    uint32
         |        |  +--rw version?        identityref
         |        +--rw pim {vpn-common:pim}?
         |           +--rw hello-interval?
         |           |       rt-types:timer-value-seconds16
         |           +--rw dr-priority?      uint32
              ...

    Figure 28: Multicast Subtree Structure (VPN Instance Profile Level)

   The model supports a single type of tree per VPN access ('tree-
   flavor'): Any-Source Multicast (ASM), Source-Specific Multicast
   (SSM), or bidirectional.

   When ASM is used, the model supports the configuration of Rendezvous
   Points (RPs).  RP discovery may be 'static', 'bsr-rp', or 'auto-rp'.
   When set to 'static', RP to multicast grouping RP-to-multicast-group mappings MUST be
   configured as part of the 'rp-group-mappings' container.  The RP MAY
   be a provider node or a customer node.  When the RP is a customer
   node, the RP address must be configured using the 'rp-address' leaf.

   The model supports RP redundancy through the 'rp-redundancy' leaf.
   How the redundancy is achieved is out of scope.

   When a particular VPN using ASM requires a more optimal traffic delivery that is
   more optimal (e.g., requested using per the guidance in [RFC8299]), 'optimal-traffic-
   delivery'
   'optimal-traffic-delivery' can be set.  When set to 'true', the
   implementation must use any mechanism to provide a more optimal traffic delivery
   that is more optimal for the customer.  For example, anycast is one
   of the mechanisms to enhance
   RPs for enhancing RP redundancy, providing resilience
   against failures, and to recover recovering from failures quickly.

   The

   When configuring multicast-related parameters at the VPN node level
   (Figure 29), the same structure as the one structure depicted in
   Figure 30 is used when
   configuring multicast-related parameters at the VPN node level. used.  When defined at the VPN node level (Figure 29), level, Internet
   Group Management Protocol (IGMP) [RFC1112][RFC2236][RFC3376], parameters [RFC1112] [RFC2236]
   [RFC3376], Multicast Listener Discovery (MLD) [RFC2710][RFC3810], parameters [RFC2710]
   [RFC3810], and Protocol Independent Multicast (PIM) [RFC7761] parameters
   [RFC7761] are applicable to all VPN network accesses of that VPN node
   unless corresponding nodes are overridden at the VPN network access
   level.

   ...
   +--rw vpn-nodes
      +--rw vpn-node* [vpn-node-id]
         ...
         +--rw active-vpn-instance-profiles
         |  +--rw vpn-instance-profile* [profile-id]
         |     ...
         |     +--rw multicast {vpn-common:multicast}?
         |        +--rw tree-flavor*   identityref
         |        +--rw rp
         |        |  ...
         |        +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?
         |        |  ...
         |        +--rw mld {vpn-common:mld and vpn-common:ipv6}?
         |        |  ...
         |        +--rw pim {vpn-common:pim}?
         |           ...

          Figure 29: Multicast Subtree Structure (VPN Node Level)

   Multicast-related data nodes at the VPN network access level are
   shown in Figure 30.  The values configured at the VPN network access
   level override the values configured for the corresponding data nodes
   in
   at other levels.

   ...
   +--rw vpn-network-accesses
      +--rw vpn-network-access* [id]
         ...
         +--rw service
            ...
            +--rw multicast {vpn-common:multicast}?
               +--rw access-type?      enumeration
               +--rw address-family?   identityref
               +--rw protocol-type?    enumeration
               +--rw remote-source?    boolean
               +--rw igmp  {vpn-common:igmp}?
               |  +--rw static-group* [group-addr]
               |  |  +--rw group-addr
               |  |          rt-types:ipv4-multicast-group-address
               |  |  +--rw source-addr?
               |  |          rt-types:ipv4-multicast-source-address
               |  +--rw max-groups?          uint32
               |  +--rw max-entries?         uint32
               |  +--rw max-group-sources?   uint32
               |  +--rw version?             identityref
               |  +--rw status
               |     +--rw admin-status
               |     |  +--rw status?         identityref
               |     |  +--rw last-change?   yang:date-and-time
               |     +--ro oper-status
               |        +--ro status?         identityref
               |        +--ro last-change?   yang:date-and-time
               +--rw mld {vpn-common:mld}?
               |  +--rw static-group* [group-addr]
               |  |  +--rw group-addr
               |  |          rt-types:ipv6-multicast-group-address
               |  |  +--rw source-addr?
               |  |          rt-types:ipv6-multicast-source-address
               |  +--rw max-groups?          uint32
               |  +--rw max-entries?         uint32
               |  +--rw max-group-sources?   uint32
               |  +--rw version?             identityref
               |  +--rw status
               |     +--rw admin-status
               |     |  +--rw status?         identityref
               |     |  +--rw last-change?   yang:date-and-time
               |     +--ro oper-status
               |        +--ro status?         identityref
               |        +--ro last-change?   yang:date-and-time
               +--rw pim {vpn-common:pim}?
                  +--rw hello-interval?   rt-types:timer-value-seconds16
                  +--rw dr-priority?      uint32
                  +--rw status
                     +--rw admin-status
                     |  +--rw status?         identityref
                     |  +--rw last-change?   yang:date-and-time
                     +--ro oper-status
                        +--ro status?         identityref
                        +--ro last-change?   yang:date-and-time

     Figure 30: Multicast Subtree Structure (VPN Network Access Level)

8.  L3NM YANG Module

   This module uses types defined in [RFC6991] [RFC6991], [RFC8343], and [RFC8343].
   [RFC9181].  It also uses groupings defined in [RFC8519], [RFC8177],
   and [RFC8294].

   <CODE BEGINS> file "ietf-l3vpn-ntw@2021-09-28.yang" "ietf-l3vpn-ntw@2022-01-19.yang"
   module ietf-l3vpn-ntw {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw";
     prefix l3nm;

     import ietf-vpn-common {
       prefix vpn-common;
       reference
         "RFC UUUU: 9181: A Layer 2/3 VPN Common YANG Model"; Data Model for Layer 2 and Layer 3
                    VPNs";
     }
     import ietf-inet-types {
       prefix inet;
       reference
         "RFC 6991: Common YANG Data Types, Section 4";
     }
     import ietf-yang-types {
       prefix yang;
       reference
         "RFC 6991: Common YANG Data Types, Section 3";
     }
     import ietf-key-chain {
       prefix key-chain;
       reference
         "RFC 8177: YANG Data Model for Key Chain."; Chains";
     }
     import ietf-routing-types {
       prefix rt-types;
       reference
         "RFC 8294: Common YANG Data Types for the Routing Area";
     }
     import ietf-interfaces {
       prefix if;
       reference
         "RFC 8343: A YANG Data Model for Interface Management";
     }

     organization
       "IETF OPSAWG (Operations and Management Area Working Group)";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
        WG List:  <mailto:opsawg@ietf.org>

        Author:   Samier Barguil
                  <mailto:samier.barguilgiraldo.ext@telefonica.com>
        Editor:   Oscar Gonzalez de Dios
                  <mailto:oscar.gonzalezdedios@telefonica.com>
        Editor:   Mohamed Boucadair
                  <mailto:mohamed.boucadair@orange.com>
        Author:   Luis Angel Munoz
                  <mailto:luis-angel.munoz@vodafone.com>
        Author:   Alejandro Aguado
                  <mailto:alejandro.aguado_martin@nokia.com>";
     description
       "This YANG module defines a generic network-oriented model
        for the configuration of Layer 3 Virtual Private Networks.

        Copyright (c) 2021 2022 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified Revised BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX; 9182; see the
        RFC itself for full legal notices.";

     revision 2021-09-28 2022-01-19 {
       description
         "Initial revision.";
       reference
         "RFC XXXX: 9182: A YANG Network Data Model for Layer 3 VPN Network YANG Model"; VPNs";
     }

     /* Features */

     feature msdp {
       description
         "This feature indicates that Multicast Source Discovery
          Protocol (MSDP) capabilities are supported by the VPN.";
       reference
         "RFC 3618: Multicast Source Discovery Protocol (MSDP)";
     }

     /* Identities */

     identity address-allocation-type {
       description
         "Base identity for address allocation type in the
          Provider Edge (PE)-Customer to Customer Edge (CE) (PE-CE) link.";
     }

     identity provider-dhcp {
       base address-allocation-type;
       description
         "The Provider's provider's network provides a DHCP service to the
          customer.";
     }

     identity provider-dhcp-relay {
       base address-allocation-type;
       description
         "The Provider's provider's network provides a DHCP relay service to the
          customer.";
     }

     identity provider-dhcp-slaac {
       if-feature "vpn-common:ipv6";
       base address-allocation-type;
       description
         "The Provider's provider's network provides a DHCP service to the
          customer as well as IPv6 Stateless Address
          Autoconfiguration (SLAAC).";
       reference
         "RFC 4862: IPv6 Stateless Address Autoconfiguration";
     }

     identity static-address {
       base address-allocation-type;
       description
         "The Provider's provider's network provides static IP addressing to the
          customer.";
     }

     identity slaac {
       if-feature "vpn-common:ipv6";
       base address-allocation-type;
       description
         "The Provider's provider's network uses IPv6 SLAAC to provide
          addressing to the customer.";
       reference
         "RFC 4862: IPv6 Stateless Address Autoconfiguration";
     }

     identity local-defined-next-hop {
       description
         "Base identity of local defined next-hops."; next hops.";
     }

     identity discard {
       base local-defined-next-hop;
       description
         "Indicates an action to discard traffic for the
          corresponding destination.
          For example, this can be used to blackhole black-hole traffic.";
     }

     identity local-link {
       base local-defined-next-hop;
       description
         "Treat traffic towards addresses within the specified
          next-hop prefix as though they are connected to a local
          link.";
     }

     identity l2-tunnel-type {
       description
         "Base identity for layer-2 Layer 2 tunnel selection under the VPN
          network access.";
     }

     identity pseudowire {
       base l2-tunnel-type;
       description
         "Pseudowire tunnel termination in the VPN network access.";
     }

     identity vpls {
       base l2-tunnel-type;
       description
         "Virtual Private LAN Service (VPLS) tunnel termination in
          the VPN network access.";
     }

     identity vxlan {
       base l2-tunnel-type;
       description
         "Virtual eXtensible Local Area Network (VXLAN) tunnel
          termination in the VPN network access.";
     }

     /* Typedefs */

     typedef predefined-next-hop {
       type identityref {
         base local-defined-next-hop;
       }
       description
         "Pre-defined
         "Predefined next-hop designation for locally generated
          routes.";
     }

     typedef area-address {
       type string {
         pattern '[0-9A-Fa-f]{2}(\.[0-9A-Fa-f]{4}){0,6}';
       }
       description
         "This type defines the area address format.";
     }

     /* Groupings */

     grouping vpn-instance-profile {
       description
         "Grouping for data nodes that may be factorized
          among many levels of the model.  The grouping can
          be used to define generic profiles at the VPN service
          level and then referenced at the VPN node and VPN
          network access levels.";
       leaf local-as {
         if-feature "vpn-common:rtg-bgp";
         type inet:as-number;
         description
           "Provider's Autonomous System (AS) number.  Used if the
            customer requests BGP routing.";
       }
       uses vpn-common:route-distinguisher;
       list address-family {
         key "address-family";
         description
           "Set of per-address family parameters."; parameters per address family.";
         leaf address-family {
           type identityref {
             base vpn-common:address-family;
           }
           description
             "Indicates the address family (IPv4 and/or IPv6).";
         }
         container vpn-targets {
           description
             "Set of route targets to match for import and export
              routes to/from VRF.";
           uses vpn-common:vpn-route-targets;
         }
         list maximum-routes {
           key "protocol";
           description
             "Defines the maximum number of routes for the VRF.";
           leaf protocol {
             type identityref {
               base vpn-common:routing-protocol-type;
             }
             description
               "Indicates the routing protocol. 'any'  A value of 'any'
                can be used to identify a limit that will apply for
                each active routing protocol.";
           }
           leaf maximum-routes {
             type uint32;
             description
               "Indicates the maximum number of prefixes that the VRF can
                accept for this address family and protocol.";
           }
         }
       }
       container multicast {
         if-feature "vpn-common:multicast";
         description
           "Global multicast parameters.";
         leaf tree-flavor {
           type identityref {
             base vpn-common:multicast-tree-type;
           }
           description
             "Type of the multicast tree to be used.";
         }
         container rp {
           description
             "Rendezvous Point (RP) parameters.";
           container rp-group-mappings {
             description
               "RP-to-group mappings mapping parameters.";
             list rp-group-mapping {
               key "id";
               description
                 "List of RP-to-group mappings.";
               leaf id {
                 type uint16;
                 description
                   "Unique identifier for the mapping.";
               }
               container provider-managed {
                 description
                   "Parameters for a provider-managed RP.";
                 leaf enabled {
                   type boolean;
                   default "false";
                   description
                     "Set to true 'true' if the Rendezvous Point (RP) RP must be a
                      provider-managed node.  Set to
                      false 'false' if it is
                      a customer-managed node.";
                 }
                 leaf rp-redundancy {
                   type boolean;
                   default "false";
                   description
                     "If set to true, 'true', it indicates that a
                      redundancy mechanism for the RP is required.";
                 }
                 leaf optimal-traffic-delivery {
                   type boolean;
                   default "false";
                   description
                     "If set to true, 'true', the service provider (SP)
                      must ensure that the traffic uses an optimal
                      path.  An SP may use Anycast RP or
                      RP-tree-to-SPT ('SPT' is 'shortest path tree')
                      switchover architectures.";
                 }
                 container anycast {
                   when "../rp-redundancy = 'true' and
                         ../optimal-traffic-delivery = 'true'" {
                     description
                       "Only applicable if both RP redundancy and
                        delivery through an optimal path are
                        activated.";
                   }
                   description
                     "PIM Anycast-RP parameters.";
                   leaf local-address {
                     type inet:ip-address;
                     description
                       "IP local address for the PIM RP. Usually, it  Usually
                        corresponds to the Router ID or the
                        primary address.";
                   }
                   leaf-list rp-set-address {
                     type inet:ip-address;
                     description
                       "Specifies the IP address of other RP routers
                        that share the same RP IP address.";
                   }
                 }
               }
               leaf rp-address {
                 when "../provider-managed/enabled = 'false'" {
                   description
                     "Relevant when the RP is not
                      provider-managed."; managed by the
                      provider.";
                 }
                 type inet:ip-address;
                 mandatory true;
                 description
                   "Defines the address of the RP.
                    Used if the RP is customer-managed."; managed by the customer.";
               }
               container groups {
                 description
                   "Multicast groups associated with the RP.";
                 list group {
                   key "id";
                   description
                     "List of multicast groups.";
                   leaf id {
                     type uint16;
                     description
                       "Identifier for the group.";
                   }
                   choice group-format {
                     mandatory true;
                     description
                       "Choice for multicast group format.";
                     case group-prefix {
                       leaf group-address {
                         type inet:ip-prefix;
                         description
                           "A single multicast group prefix.";
                       }
                     }
                     case startend {
                       leaf group-start {
                         type inet:ip-address;
                         description
                           "The first multicast group address in
                            the multicast group address range.";
                       }
                       leaf group-end {
                         type inet:ip-address;
                         description
                           "The last multicast group address in
                            the multicast group address range.";
                       }
                     }
                   }
                 }
               }
             }
           }
           container rp-discovery {
             description
               "RP discovery parameters.";
             leaf rp-discovery-type {
               type identityref {
                 base vpn-common:multicast-rp-discovery-type;
               }
               default "vpn-common:static-rp";
               description
                 "Type of RP discovery used.";
             }
             container bsr-candidates {
               when "derived-from-or-self(../rp-discovery-type, "
                  + "'vpn-common:bsr-rp')" {
                 description
                   "Only applicable if the discovery type
                    is BSR-RP."; 'bsr-rp'.";
               }
               description
                 "Container for the customer Bootstrap Router (BSR)
                  candidate's addresses.";
               leaf-list bsr-candidate-address {
                 type inet:ip-address;
                 description
                   "Specifies the address of the candidate BSR.";
               }
             }
           }
         }
         container igmp {
           if-feature "vpn-common:igmp and vpn-common:ipv4";
           description
             "Includes IGMP-related parameters.";
           list static-group {
             key "group-addr";
             description
               "Multicast static source/group associated to with the
                IGMP session.";
             leaf group-addr {
               type rt-types:ipv4-multicast-group-address;
               description
                 "Multicast group IPv4 address.";
             }
             leaf source-addr {
               type rt-types:ipv4-multicast-source-address;
               description
                 "Multicast source IPv4 address.";
             }
           }
           leaf max-groups {
             type uint32;
             description
               "Indicates the maximum number of groups.";
           }
           leaf max-entries {
             type uint32;
             description
               "Indicates the maximum number of IGMP entries.";
           }
           leaf version {
             type identityref {
               base vpn-common:igmp-version;
             }
             default "vpn-common:igmpv2";
             description
               "Indicates the IGMP version.";
             reference
               "RFC 1112: Host Extensions for IP Multicasting
                RFC 2236: Internet Group Management Protocol,
                          Version 2
                RFC 3376: Internet Group Management Protocol,
                          Version 3";
           }
         }
         container mld {
           if-feature "vpn-common:mld and vpn-common:ipv6";
           description
             "Includes MLD-related parameters.";
           list static-group {
             key "group-addr";
             description
               "Multicast static source/group associated with the
                MLD session.";
             leaf group-addr {
               type rt-types:ipv6-multicast-group-address;
               description
                 "Multicast group IPv6 address.";
             }
             leaf source-addr {
               type rt-types:ipv6-multicast-source-address;
               description
                 "Multicast source IPv6 address.";
             }
           }
           leaf max-groups {
             type uint32;
             description
               "Indicates the maximum number of groups.";
           }
           leaf max-entries {
             type uint32;
             description
               "Indicates the maximum number of MLD entries.";
           }
           leaf version {
             type identityref {
               base vpn-common:mld-version;
             }
             default "vpn-common:mldv2";
             description
               "Indicates the MLD protocol version.";
             reference
               "RFC 2710: Multicast Listener Discovery (MLD) for IPv6
                RFC 3810: Multicast Listener Discovery Version 2
                          (MLDv2) for IPv6";
           }
         }
         container pim {
           if-feature "vpn-common:pim";
           description
             "Only applies when the protocol type is PIM."; 'pim'.";
           leaf hello-interval {
             type rt-types:timer-value-seconds16;
             default "30";
             description
               "PIM hello-messages interval.
               "Interval between PIM Hello messages.  If set to
                'infinity' or 'not-set', no periodic Hello messages
                are sent.";
             reference
               "RFC 7761: Protocol Independent Multicast - Sparse
                          Mode (PIM-SM): Protocol Specification
                          (Revised), Section 4.11"; 4.11
                RFC 8294: Common YANG Data Types for the Routing
                          Area";
           }
           leaf dr-priority {
             type uint32;
             default "1";
             description
               "Indicates the preference in associated with the
                Designated Router (DR) election process.  A larger
                value has a higher priority over a smaller value.";
             reference
               "RFC 7761: Protocol Independent Multicast - Sparse
                          Mode (PIM-SM): Protocol Specification
                          (Revised), Section 4.3.2";
           }
         }
       }
     }

     /* Main Blocks */
     /* Main l3vpn-ntw */

     container l3vpn-ntw {
       description
         "Main container for L3VPN services management."; management of Layer 3 Virtual Private
          Network (L3VPN) services.";
       container vpn-profiles {
         description
           "Contains a set of valid VPN profiles to reference
            in the VPN service.";
         uses vpn-common:vpn-profile-cfg;
       }
       container vpn-services {
         description
           "Container for the VPN services.";
         list vpn-service {
           key "vpn-id";
           description
             "List of VPN services.";
           uses vpn-common:vpn-description;
           leaf parent-service-id {
             type vpn-common:vpn-id;
             description
               "Pointer to the parent service, if any.
                A parent service can be an L3SM, a slice request,
                a VPN+ service, etc.";
           }
           leaf vpn-type {
             type identityref {
               base vpn-common:service-type;
             }
             description
               "Indicates the service type.";
           }
           leaf vpn-service-topology {
             type identityref {
               base vpn-common:vpn-topology;
             }
             default "vpn-common:any-to-any";
             description
               "VPN service topology.";
           }
           uses vpn-common:service-status;
           container vpn-instance-profiles {
             description
               "Container for a list of VPN instance profiles.";
             list vpn-instance-profile {
               key "profile-id";
               description
                 "List of VPN instance profiles.";
               leaf profile-id {
                 type string;
                 description
                   "VPN instance profile identifier.";
               }
               leaf role {
                 type identityref {
                   base vpn-common:role;
                 }
                 default "vpn-common:any-to-any-role";
                 description
                   "Role of the VPN node in the VPN.";
               }
               uses vpn-instance-profile;
             }
           }
           container underlay-transport {
             description
               "Container for the underlay transport.";
             uses vpn-common:underlay-transport;
           }
           container external-connectivity {
             if-feature "vpn-common:external-connectivity";
             description
               "Container for external connectivity.";
             choice profile {
               description
                 "Choice for the external connectivity profile.";
               case profile {
                 leaf profile-name {
                   type leafref {
                     path "/l3vpn-ntw/vpn-profiles"
                        + "/valid-provider-identifiers"
                        + "/external-connectivity-identifier/id";
                   }
                   description
                     "Name of the service provider's profile to be
                      applied at the VPN service level.";
                 }
               }
             }
           }
           container vpn-nodes {
             description
               "Container for VPN nodes.";
             list vpn-node {
               key "vpn-node-id";
               description
                 "Includes a list of VPN nodes.";
               leaf vpn-node-id {
                 type vpn-common:vpn-id;
                 description
                   "An identifier of the VPN node.";
               }
               leaf description {
                 type string;
                 description
                   "Textual description of the VPN node.";
               }
               leaf ne-id {
                 type string;
                 description
                   "Unique identifier of the network element where
                    the VPN node is deployed.";
               }
               leaf local-as {
                 if-feature "vpn-common:rtg-bgp";
                 type inet:as-number;
                 description
                   "Provider's AS number in case number.  Used if the customer
                    requests BGP routing.";
               }
               leaf router-id {
                 type rt-types:router-id;
                 description
                   "A 32-bit number in the dotted-quad format that is
                    used to uniquely identify a node within an autonomous
                    system. AS.
                    This identifier is used for both IPv4 and IPv6.";
               }
               container active-vpn-instance-profiles {
                 description
                   "Container for active VPN instance profiles.";
                 list vpn-instance-profile {
                   key "profile-id";
                   description
                     "Includes a list of active VPN instance
                      profiles.";
                   leaf profile-id {
                     type leafref {
                       path "/l3vpn-ntw/vpn-services/vpn-service"
                          + "/vpn-instance-profiles/vpn-instance-profile" "/vpn-instance-profiles"
                          + "/profile-id"; "/vpn-instance-profile/profile-id";
                     }
                     description
                       "Node's active VPN instance profile.";
                   }
                   list router-id {
                     key "address-family";
                     description
                       "Router-id
                       "Router ID per address family.";
                     leaf address-family {
                       type identityref {
                         base vpn-common:address-family;
                       }
                       description
                         "Indicates the address family for which the
                          Router-ID
                          Router ID applies.";
                     }
                     leaf router-id {
                       type inet:ip-address;
                       description
                         "The router-id 'router-id' information can be an IPv4
                          or IPv6 address.  This can be used,
                          for example, to configure an IPv6 address
                          as a router-id Router ID when such a capability is
                          supported by underlay routers.  In such a
                          case, the configured value overrides the
                          generic one value defined at the VPN node
                          level.";
                     }
                   }
                   uses vpn-instance-profile;
                 }
               }
               container msdp {
                 if-feature "msdp";
                 description
                   "Includes MSDP-related parameters.";
                 leaf peer {
                   type inet:ipv4-address;
                   description
                     "Indicates the IPv4 address of the MSDP peer.";
                 }
                 leaf local-address {
                   type inet:ipv4-address;
                   description
                     "Indicates the IPv4 address of the local end.
                      This local address must be configured on
                      the node.";
                 }
                 uses vpn-common:service-status;
               }
               uses vpn-common:vpn-components-group;
               uses vpn-common:service-status;
               container vpn-network-accesses {
                 description
                   "List of network accesses.";
                 list vpn-network-access {
                   key "id";
                   description
                     "List of network accesses.";
                   leaf id {
                     type vpn-common:vpn-id;
                     description
                       "Identifier for the network access.";
                   }
                   leaf interface-id {
                     type string;
                     description
                       "Identifier for the physical or logical
                        interface.
                        The identification of the sub-interface
                        is provided at the connection level and/or
                        the IP connection levels."; level.";
                   }
                   leaf description {
                     type string;
                     description
                       "Textual description of the network access.";
                   }
                   leaf vpn-network-access-type {
                     type identityref {
                       base vpn-common:site-network-access-type;
                     }
                     default "vpn-common:point-to-point";
                     description
                       "Describes the type of connection, e.g.,
                        point-to-point.";
                        point to point.";
                   }
                   leaf vpn-instance-profile {
                     type leafref {
                       path "/l3vpn-ntw/vpn-services/vpn-service/vpn-nodes" "/l3vpn-ntw/vpn-services/vpn-service"
                          + "/vpn-nodes/vpn-node"
                          + "/vpn-node/active-vpn-instance-profiles" "/active-vpn-instance-profiles"
                          + "/vpn-instance-profile/profile-id";
                     }
                     description
                       "An identifier of an active VPN instance
                        profile.";
                   }
                   uses vpn-common:service-status;
                   container connection {
                     description
                       "Defines layer Layer 2 protocols and parameters that
                        are required to enable connectivity between
                        the PE and the CE.";
                     container encapsulation {
                       description
                         "Container for layer Layer 2 encapsulation.";
                       leaf type {
                         type identityref {
                           base vpn-common:encapsulation-type;
                         }
                         default "vpn-common:priority-tagged";
                         description
                           "Encapsulation type.  By default, the type
                            of the tagged interface is
                            'priority-tagged'.";
                       }
                       container dot1q {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:dot1q')" {
                           description
                             "Only applies when the type of the
                              tagged interface is 'dot1q'.";
                         }
                         description
                           "Tagged interface.";
                         leaf tag-type {
                           type identityref {
                             base vpn-common:tag-type;
                           }
                           default "vpn-common:c-vlan";
                           description
                             "Tag type.  By default, the tag type is
                              'c-vlan'.";
                         }
                         leaf cvlan-id {
                           type uint16 {
                             range "1..4094";
                           }
                           description
                             "VLAN identifier.";
                         }
                       }
                       container priority-tagged {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:priority-tagged')" {
                           description
                             "Only applies when the type of
                              the tagged interface is
                              'priority-tagged'.";
                         }
                         description
                           "Priority tagged.";
                         leaf tag-type {
                           type identityref {
                             base vpn-common:tag-type;
                           }
                           default "vpn-common:c-vlan";
                           description
                             "Tag type.  By default, the tag type is
                              'c-vlan'.";
                         }
                       }
                       container qinq {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:qinq')" {
                           description
                             "Only applies when the type of the
                              tagged interface is QinQ."; 'qinq'.";
                         }
                         description
                           "Includes QinQ parameters.";
                         leaf tag-type {
                           type identityref {
                             base vpn-common:tag-type;
                           }
                           default "vpn-common:s-c-vlan";
                           description
                             "Tag type. By default, the tag type is
                              'c-s-vlan'."; type.";
                         }
                         leaf svlan-id {
                           type uint16;
                           mandatory true;
                           description
                             "S-VLAN
                             "Service VLAN (S-VLAN) identifier.";
                         }
                         leaf cvlan-id {
                           type uint16;
                           mandatory true;
                           description
                             "C-VLAN
                             "Customer VLAN (C-VLAN) identifier.";
                         }
                       }
                     }
                     choice l2-service {
                       description
                         "The layer Layer 2 connectivity service can be
                          provided by indicating a pointer to an
                          L2VPN or by specifying a layer Layer 2 tunnel
                          service.";
                       container l2-tunnel-service {
                         description
                           "Defines a layer Layer 2 tunnel termination.
                            It is only applicable when a tunnel is
                            required.  The supported values are:
                            pseudowire, VPLS, are
                            'pseudowire', 'vpls', and VXLAN. 'vxlan'.  Other
                            values may be defined, if needed.";
                         leaf type {
                           type identityref {
                             base l2-tunnel-type;
                           }
                           description
                             "Selects the tunnel termiantion termination option
                              for each vpn-network-access."; VPN network access.";
                         }
                         container pseudowire {
                           when "derived-from-or-self(../type, "
                              + "'pseudowire')" {
                             description
                               "Only applies when the type of the layer Layer 2 service
                                type is pseudowire ."; 'pseudowire'.";
                           }
                           description
                             "Includes pseudowire termination
                              parameters.";
                           leaf vcid {
                             type uint32;
                             description
                               "Indicates a PW pseudowire (PW) or VC
                                virtual circuit (VC) identifier.";
                           }
                           leaf far-end {
                             type union {
                               type uint32;
                               type inet:ip-address;
                             }
                             description
                               "Neighbor reference.";
                             reference
                               "RFC 8077: Pseudowire Setup and
                                          Maintenance Using the Label
                                          Distribution Protocol
                                          (LDP), Section 6.1";
                           }
                         }
                         container vpls {
                           when "derived-from-or-self(../type, "
                              + "'vpls')" {
                             description
                               "Only applies when the type of the layer Layer 2 service
                                type is VPLS."; 'vpls'.";
                           }
                           description
                             "VPLS termination parameters.";
                           leaf vcid {
                             type uint32;
                             description
                               "VC Identifier."; identifier.";
                           }
                           leaf-list far-end {
                             type union {
                               type uint32;
                               type inet:ip-address;
                             }
                             description
                               "Neighbor reference.";
                           }
                         }
                         container vxlan {
                           when "derived-from-or-self(../type, "
                              + "'vxlan')" {
                             description
                               "Only applies when the type of the layer Layer 2 service
                                type is VXLAN."; 'vxlan'.";
                           }
                           description
                             "VXLAN termination parameters.";
                           leaf vni-id {
                             type uint32;
                             mandatory true;
                             description
                               "VXLAN Network Identifier (VNI).";
                           }
                           leaf peer-mode {
                             type identityref {
                               base vpn-common:vxlan-peer-mode;
                             }
                             default "vpn-common:static-mode";
                             description
                               "Specifies the VXLAN access mode.  By
                                default, the peer mode is set to
                                'static-mode'.";
                           }
                           leaf-list peer-ip-address {
                             type inet:ip-address;
                             description
                               "List of a peer's IP addresses.";
                           }
                         }
                       }
                       case l2vpn {
                         leaf l2vpn-id {
                           type vpn-common:vpn-id;
                           description
                             "Indicates the L2VPN service associated
                              with an Integrated Routing and Bridging
                              (IRB) interface.";
                         }
                       }
                     }
                     leaf l2-termination-point {
                       type string;
                       description
                         "Specifies a reference to a local layer Layer 2
                          termination point point, such as a layer Layer 2
                          sub-interface.";
                     }
                     leaf local-bridge-reference {
                       type string;
                       description
                         "Specifies a local bridge reference to
                          accommodate, for example, implementations
                          that require internal bridging.
                          A reference may be a local bridge domain.";
                     }
                     leaf bearer-reference {
                       if-feature "vpn-common:bearer-reference";
                       type string;
                       description
                         "This is an internal reference for the
                          service provider to identify the bearer
                          associated with this VPN.";
                     }
                     container lag-interface {
                       if-feature "vpn-common:lag-interface";
                       description
                         "Container for configuration of LAG Link
                          Aggregation Group (LAG) interface attributes
                          configuration.";
                          attributes.";
                       leaf lag-interface-id {
                         type string;
                         description
                           "LAG interface identifier.";
                       }
                       container member-link-list {
                         description
                           "Container of Member for the member link list.";
                         list member-link {
                           key "name";
                           description
                             "Member link.";
                           leaf name {
                             type string;
                             description
                               "Member link name.";
                           }
                         }
                       }
                     }
                   }
                   container ip-connection {
                     description
                       "Defines IP connection parameters.";
                     leaf l3-termination-point {
                       type string;
                       description
                         "Specifies a reference to a local layer Layer 3
                          termination point point, such as a bridge domain
                          interface.";
                     }
                     container ipv4 {
                       if-feature "vpn-common:ipv4";
                       description
                         "IPv4-specific parameters.";
                       leaf local-address {
                         type inet:ipv4-address;
                         description
                           "The IP address used at the provider's
                            interface.";
                       }
                       leaf prefix-length {
                         type uint8 {
                           range "0..32";
                         }
                         description
                           "Subnet prefix length expressed in bits.
                            It is applied to both local and customer
                            addresses.";
                       }
                       leaf address-allocation-type {
                         type identityref {
                           base address-allocation-type;
                         }
                         must "not(derived-from-or-self(current(), "
                            + "'slaac') or derived-from-or-self(current()," "
                            + "derived-from-or-self(current(), " 'provider-dhcp-slaac'))"
                            + "'provider-dhcp-slaac'))" {
                           error-message "SLAAC is only applicable to "
                                       + "to IPv6.";
                         }
                         description
                           "Defines how addresses are allocated to
                            the peer site.

                            If there is no value for the address
                            allocation type, then IPv4 addressing
                            is not enabled.";
                       }
                       choice allocation-type {
                         description
                           "Choice of the IPv4 address allocation.";
                         case provider-dhcp {
                           description
                             "DHCP allocated addresses
                             "Parameters related
                              parameters. to DHCP-allocated
                              addresses.  IP addresses are allocated
                              by DHCP that DHCP, which is operated provided by the provider";
                              operator.";
                           leaf dhcp-service-type {
                             type enumeration {
                               enum server {
                                 description
                                   "Local DHCP server.";
                               }
                               enum relay {
                                 description
                                   "Local DHCP relay.  DHCP requests
                                    are relayed to a provider's
                                    server.";
                               }
                             }
                             description
                               "Indicates the type of DHCP service to
                                be enabled on this access.";
                           }
                           choice service-type {
                             description
                               "Choice based on the DHCP service
                                type.";
                             case relay {
                               description
                                 "Container for a list of the
                                  provider's DHCP servers (i.e., dhcp-service-type
                                  'dhcp-service-type' is set to relay).";
                                  'relay').";
                               leaf-list server-ip-address {
                                 type inet:ipv4-address;
                                 description
                                   "IPv4 addresses of the provider's
                                    DHCP
                                    server to server, for use by the local
                                    DHCP relay.";
                               }
                             }
                             case server {
                               description
                                 "A choice about for how addresses are
                                  assigned when a local DHCP server
                                  is enabled.";
                               choice address-assign {
                                 default "number";
                                 description
                                   "Choice
                                   "A choice for how IPv4 addresses
                                    are assigned.";
                                 case number {
                                   leaf number-of-dynamic-address {
                                     type uint16;
                                     default "1";
                                     description
                                       "Specifies the number of IP
                                        addresses to be assigned to
                                        the customer on this
                                        access.";
                                   }
                                 }
                                 case explicit {
                                   container customer-addresses {
                                     description
                                       "Container for customer
                                        addresses to be allocated
                                        using DHCP.";
                                     list address-pool {
                                       key "pool-id";
                                       description
                                         "Describes IP addresses to
                                          be allocated by DHCP.

                                          When only start-address 'start-address'
                                          is present, it represents a
                                          single address.

                                          When both start-address 'start-address'
                                          and
                                          end-address 'end-address' are
                                          specified, it implies a
                                          range inclusive of both
                                          addresses.";
                                       leaf pool-id {
                                         type string;
                                         description
                                           "A pool identifier for the
                                            address range from start-
                                            address
                                            'start-address' to end-address.";
                                            'end-address'.";
                                       }
                                       leaf start-address {
                                         type inet:ipv4-address;
                                         mandatory true;
                                         description
                                           "Indicates the first
                                            address in the pool.";
                                       }
                                       leaf end-address {
                                         type inet:ipv4-address;
                                         description
                                           "Indicates the last
                                            address in the pool.";
                                       }
                                     }
                                   }
                                 }
                               }
                             }
                           }
                         }
                         case dhcp-relay {
                           description
                             "DHCP
                             "The DHCP relay is provided by the
                              operator.";
                           container customer-dhcp-servers {
                             description
                               "Container for a list of the
                                customer's DHCP servers.";
                             leaf-list server-ip-address {
                               type inet:ipv4-address;
                               description
                                 "IPv4 addresses of the customer's
                                  DHCP server.";
                             }
                           }
                         }
                         case static-addresses {
                           description
                             "Lists the IPv4 addresses that are
                              used.";
                           leaf primary-address {
                             type leafref {
                               path "../address/address-id";
                             }
                             description
                               "Primary address of the connection.";
                           }
                           list address {
                             key "address-id";
                             description
                               "Lists the IPv4 addresses that are
                                used.";
                             leaf address-id {
                               type string;
                               description
                                 "An identifier of the static IPv4
                                  address.";
                             }
                             leaf customer-address {
                               type inet:ipv4-address;
                               description
                                 "IPv4 address at of the customer
                                  side.";
                             }
                           }
                         }
                       }
                     }
                     container ipv6 {
                       if-feature "vpn-common:ipv6";
                       description
                         "IPv6-specific parameters.";
                       leaf local-address {
                         type inet:ipv6-address;
                         description
                           "IPv6 address of the provider side.";
                       }
                       leaf prefix-length {
                         type uint8 {
                           range "0..128";
                         }
                         description
                           "Subnet prefix length expressed in bits.
                            It is applied to both local and customer
                            addresses.";
                       }
                       leaf address-allocation-type {
                         type identityref {
                           base address-allocation-type;
                         }
                         description
                           "Defines how addresses are allocated.
                            If there is no value for the address
                            allocation type, then IPv6 addressing is
                            disabled.";
                       }
                       choice allocation-type {
                         description
                           "A choice based on the IPv6 allocation
                            type.";
                         container provider-dhcp {
                           when "derived-from-or-self(../address-allo"
                              + "cation-type, 'provider-dhcp') or "
                              + "or derived-from-or-self(../address-allo" "derived-from-or-self(../address-allo"
                              + "cation-type, 'provider-dhcp-slaac')" {
                             description
                               "Only applies when addresses are
                                allocated by DHCPv6 as provided by
                                the operator.";
                           }
                           description
                             "DHCPv6 allocated addresses
                             "Parameters related
                              parameters."; to DHCP-allocated
                              addresses.";
                           leaf dhcp-service-type {
                             type enumeration {
                               enum server {
                                 description
                                   "Local DHCPv6 server.";
                               }
                               enum relay {
                                 description
                                   "DHCPv6 relay.";
                               }
                             }
                             description
                               "Indicates the type of the DHCPv6
                                service to be enabled on this
                                access.";
                           }
                           choice service-type {
                             description
                               "Choice based on the DHCPv6 service
                                type.";
                             case relay {
                               leaf-list server-ip-address {
                                 type inet:ipv6-address;
                                 description
                                   "IPv6 addresses of the provider's
                                    DHCPv6 server.";
                               }
                             }
                             case server {
                               choice address-assign {
                                 default "number";
                                 description
                                   "Choice about for how IPv6 prefixes are
                                    assigned by the DHCPv6 server.";
                                 case number {
                                   leaf number-of-dynamic-address {
                                     type uint16;
                                     default "1";
                                     description
                                       "Describes the number of IPv6
                                        prefixes that are allocated
                                        to the customer on this
                                        access.";
                                   }
                                 }
                                 case explicit {
                                   container customer-addresses {
                                     description
                                       "Container for customer IPv6
                                        addresses allocated by
                                        DHCPv6.";
                                     list address-pool {
                                       key "pool-id";
                                       description
                                         "Describes IPv6 addresses
                                          allocated by DHCPv6.

                                          When only start-address 'start-address'
                                          is present, it represents a
                                          single address.

                                          When both start-address 'start-address'
                                          and
                                          end-address 'end-address' are
                                          specified, it implies a
                                          range inclusive of both
                                          addresses.";
                                       leaf pool-id {
                                         type string;
                                         description
                                           "Pool
                                           "A pool identifier for the
                                            address range from identified by start-
                                            address and end-address.";
                                            'start-address' to
                                            'end-address'.";
                                       }
                                       leaf start-address {
                                         type inet:ipv6-address;
                                         mandatory true;
                                         description
                                           "Indicates the first
                                            address.";
                                       }
                                       leaf end-address {
                                         type inet:ipv6-address;
                                         description
                                           "Indicates the last
                                            address.";
                                       }
                                     }
                                   }
                                 }
                               }
                             }
                           }
                         }
                         case dhcp-relay {
                           description
                             "DHCPv6 relay provided by the
                              operator.";
                           container customer-dhcp-servers {
                             description
                               "Container for a list of customer the
                                customer's DHCP servers.";
                             leaf-list server-ip-address {
                               type inet:ipv6-address;
                               description
                                 "Contains the IP addresses of the customer
                                  customer's DHCPv6 server.";
                             }
                           }
                         }
                         case static-addresses {
                           description
                             "IPv6-specific parameters for static
                              allocation.";
                           leaf primary-address {
                             type leafref {
                               path "../address/address-id";
                             }
                             description
                               "Principal address of the connection";
                                connection.";
                           }
                           list address {
                             key "address-id";
                             description
                               "Describes IPv6 addresses that are
                                used.";
                             leaf address-id {
                               type string;
                               description
                                 "An identifier of an IPv6 address.";
                             }
                             leaf customer-address {
                               type inet:ipv6-address;
                               description
                                 "An IPv6 address of the customer
                                  side.";
                             }
                           }
                         }
                       }
                     }
                   }
                   container routing-protocols {
                     description
                       "Defines routing protocols.";
                     list routing-protocol {
                       key "id";
                       description
                         "List of routing protocols used on the CE/PE
                          CE-PE link.  This list can be augmented.";
                       leaf id {
                         type string;
                         description
                           "Unique identifier for the routing
                            protocol.";
                       }
                       leaf type {
                         type identityref {
                           base vpn-common:routing-protocol-type;
                         }
                         description
                           "Type of routing protocol.";
                       }
                       list routing-profiles {
                         key "id";
                         description
                           "Routing profiles.";
                         leaf id {
                           type leafref {
                             path "/l3vpn-ntw/vpn-profiles"
                                + "/valid-provider-identifiers"
                                + "/routing-profile-identifier/id";
                           }
                           description
                             "Routing profile to be used.";
                         }
                         leaf type {
                           type identityref {
                             base vpn-common:ie-type;
                           }
                           description
                             "Import, export, or both.";
                         }
                       }
                       container static {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:static-routing')" {
                           description
                             "Only applies when the protocol is static."; a
                              static routing protocol.";
                         }
                         description
                           "Configuration specific to static
                            routing.";
                         container cascaded-lan-prefixes {
                           description
                             "LAN prefixes from the customer.";
                           list ipv4-lan-prefixes {
                             if-feature "vpn-common:ipv4";
                             key "lan next-hop";
                             description
                               "List of LAN prefixes for the site.";
                             leaf lan {
                               type inet:ipv4-prefix;
                               description
                                 "LAN prefixes.";
                             }
                             leaf lan-tag {
                               type string;
                               description
                                 "Internal tag to be used in VPN
                                  policies.";
                             }
                             leaf next-hop {
                               type union {
                                 type inet:ip-address;
                                 type predefined-next-hop;
                               }
                               description
                                 "The next-hop next hop that is to be used
                                  for the static route.  This may be
                                  specified as an IP address or a
                                  pre-defined
                                  predefined next-hop type (e.g.,
                                  discard
                                  'discard' or local-link)."; 'local-link').";
                             }
                             leaf bfd-enable {
                               if-feature "vpn-common:bfd";
                               type boolean;
                               description
                                 "Enables BFD."; Bidirectional Forwarding
                                  Detection (BFD).";
                             }
                             leaf metric {
                               type uint32;
                               description
                                 "Indicates the metric associated
                                  with the static route.";
                             }
                             leaf preference {
                               type uint32;
                               description
                                 "Indicates the preference of associated
                                  with the static
                                  routes."; route.";
                             }
                             uses vpn-common:service-status;
                           }
                           list ipv6-lan-prefixes {
                             if-feature "vpn-common:ipv6";
                             key "lan next-hop";
                             description
                               "List of LAN prefixes for the site.";
                             leaf lan {
                               type inet:ipv6-prefix;
                               description
                                 "LAN prefixes.";
                             }
                             leaf lan-tag {
                               type string;
                               description
                                 "Internal tag to be used in VPN
                                  policies.";
                             }
                             leaf next-hop {
                               type union {
                                 type inet:ip-address;
                                 type predefined-next-hop;
                               }
                               description
                                 "The next-hop next hop that is to be used for
                                  the static route.  This may be
                                  specified as an IP address or a pre-defined
                                  predefined next-hop type (e.g., discard
                                  'discard' or local-link)."; 'local-link').";
                             }
                             leaf bfd-enable {
                               if-feature "vpn-common:bfd";
                               type boolean;
                               description
                                 "Enables BFD.";
                             }
                             leaf metric {
                               type uint32;
                               description
                                 "Indicates the metric associated
                                  with the static route.";
                             }
                             leaf preference {
                               type uint32;
                               description
                                 "Indicates the preference associated
                                  with the static route.";
                             }
                             uses vpn-common:service-status;
                           }
                         }
                       }
                       container bgp {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:bgp-routing')" {
                           description
                             "Only applies when the protocol is
                              BGP.";
                         }
                         description
                           "BGP-specific configuration.";
                           "Configuration specific to BGP.";
                         leaf description {
                           type string;
                           description
                             "Includes a description of the BGP
                              session.

                              This description is meant to be used
                              for
                              diagnosis diagnostic purposes.  The semantic
                              of the description is local to an
                              implementation.";
                         }
                         leaf local-as {
                           type inet:as-number;
                           description
                             "Indicates a local AS Number (ASN) (ASN), if a
                              distinct
                              an ASN than distinct from the one ASN configured
                              at the VPN node level is needed.";
                         }
                         leaf peer-as {
                           type inet:as-number;
                           mandatory true;
                           description
                             "Indicates the customer's ASN when
                              the customer requests BGP routing.";
                         }
                         leaf address-family {
                           type identityref {
                             base vpn-common:address-family;
                           }
                           description
                             "This node contains the address families
                              to be activated. Dual-stack  'dual-stack' means
                              that both IPv4 and IPv6 will be
                              activated.";
                         }
                         leaf local-address {
                           type union {
                             type inet:ip-address;
                             type if:interface-ref;
                           }
                           description
                             "Set
                             "Sets the local IP address to use for
                              the BGP transport session.  This may be
                              expressed as either an IP address or a
                              reference to an interface.";
                         }
                         leaf-list neighbor {
                           type inet:ip-address;
                           description
                             "IP address(es) of the BGP neighbor.
                              IPv4 and IPv6 neighbors may be
                              indicated if two sessions will be used
                              for IPv4 and IPv6.";
                         }
                         leaf multihop {
                           type uint8;
                           description
                             "Describes the number of IP hops allowed
                              between a given BGP neighbor and
                              the PE.";
                         }
                         leaf as-override {
                           type boolean;
                           default "false";
                           description
                             "Defines whether ASN override is
                              enabled, i.e., replace replacing the ASN of
                              the customer specified in the AS_Path AS_PATH
                              attribute with the local ASN.";
                         }
                         leaf allow-own-as {
                           type uint8;
                           default "0";
                           description
                             "Specifies
                             "If set, specifies the maximum number of
                              occurrences of the provider's ASN that can occur
                              are permitted within the AS_PATH
                              before it is rejected.";
                         }
                         leaf prepend-global-as {
                           type boolean;
                           default "false";
                           description
                             "In some situations, the ASN that is
                              provided at the VPN node level may be
                              distinct from the one ASN configured at the
                              VPN network access level.  When such
                              ASNs are provided, they are both
                              prepended to the BGP route updates
                              for this access.  To disable that
                              behavior, the prepend-global-as 'prepend-global-as'
                              must be set to 'false'.  In such a
                              case, the ASN that is provided at
                              the VPN node level is not prepended
                              to the BGP route updates for
                              this access.";
                         }
                         leaf send-default-route {
                           type boolean;
                           default "false";
                           description
                             "Defines whether default routes can be
                              advertised to its a peer.  If set, the
                              default routes are advertised to its a
                              peer.";
                         }
                         leaf site-of-origin {
                           when "../address-family = 'vpn-common:ipv4' or "
                              + "'vpn-common:dual-stack'" "or 'vpn-common:dual-stack'" {
                             description
                               "Only applies if IPv4 is activated.";
                           }
                           type rt-types:route-origin;
                           description
                             "The Site of Origin attribute is encoded
                              as a Route Origin Extended Community.
                              It is meant to uniquely identify the
                              set of routes learned from a site via a
                              particular CE/PE CE-PE connection and is used
                              to prevent routing loops.";
                           reference
                             "RFC 4364: BGP/MPLS IP Virtual Private
                                        Networks (VPNs), Section 7";
                         }
                         leaf ipv6-site-of-origin {
                           when "../address-family = 'vpn-common:ipv6' or "
                              + "'vpn-common:dual-stack'" "or 'vpn-common:dual-stack'" {
                             description
                               "Only applies if IPv6 is activated.";
                           }
                           type rt-types:ipv6-route-origin;
                           description
                             "IPv6 Route Origins are
                             "The IPv6 Address Specific
                              BGP Site of Origin attribute is
                              encoded as an IPv6 Route Origin
                              Extended that are Community.  It is meant to
                              uniquely identify the Site set of
                              Origin for routes
                              learned from a site via VRF
                              information.";
                           reference
                             "RFC 5701: IPv6 Address Specific BGP
                                        Extended Community
                                        Attribute";
                         }
                         list redistribute-connected {
                           key "address-family";
                           description
                             "Indicates
                             "Indicates, per address family, the per-AF
                              policy to follow for connected
                              routes.";
                           leaf address-family {
                             type identityref {
                               base vpn-common:address-family;
                             }
                             description
                               "Indicates the address family.";
                           }
                           leaf enable {
                             type boolean;
                             description
                               "Enables to redistribute the redistribution of
                                connected routes.";
                           }
                         }
                         container bgp-max-prefix {
                           description
                             "Controls the behavior when a prefix
                              maximum is reached.";
                           leaf max-prefix {
                             type uint32;
                             default "5000";
                             description
                               "Indicates the maximum number of BGP
                                prefixes allowed in the BGP session.

                                It allows control of how many
                                prefixes can be received from a
                                neighbor.

                                If the limit is exceeded, the action
                                indicated in violate-action 'violate-action' will be
                                followed.";
                             reference
                               "RFC 4271: A Border Gateway Protocol 4
                                          (BGP-4), Section 8.2.2";
                           }
                           leaf warning-threshold {
                             type decimal64 {
                               fraction-digits 5;
                               range "0..100";
                             }
                             units "percent";
                             default "75";
                             description
                               "When this value is reached, a warning
                                notification will be triggered.";
                           }
                           leaf violate-action {
                             type enumeration {
                               enum warning {
                                 description
                                   "Only a warning message is sent to
                                    the peer when the limit is
                                    exceeded.";
                               }
                               enum discard-extra-paths {
                                 description
                                   "Discards extra paths when the
                                    limit is exceeded.";
                               }
                               enum restart {
                                 description
                                   "The BGP session restarts after
                                    a
                                    the indicated time interval.";
                               }
                             }
                             description
                               "BGP
                               "If the BGP neighbor max-prefix violate
                                action."; 'max-prefix'
                                limit is reached, the action
                                indicated in 'violate-action'
                                will be followed.";
                           }
                           leaf restart-timer {
                             type uint32;
                             units "seconds";
                             description
                               "Time interval after which the BGP
                                session will be reestablished.";
                           }
                         }
                         container bgp-timers {
                           description
                             "Includes two BGP timers that can be
                              customized when building a VPN service
                              with BGP used as the CE-PE routing
                              protocol.";
                           leaf keepalive {
                             type uint16 {
                               range "0..21845";
                             }
                             units "seconds";
                             default "30";
                             description
                               "This timer indicates the KEEPALIVE
                                messages' frequency between a PE
                                and a BGP peer.

                                If set to '0', it indicates that
                                KEEPALIVE messages are disabled.

                                It is suggested that the maximum
                                time between KEEPALIVE messages would be
                                one third
                                one-third of the Hold Time
                                interval.";
                             reference
                               "RFC 4271: A Border Gateway Protocol 4
                                          (BGP-4), Section 4.4";
                           }
                           leaf hold-time {
                             type uint16 {
                               range "0 | 3..65535";
                             }
                             units "seconds";
                             default "90";
                             description
                               "It indicates
                               "Indicates the maximum number of
                                seconds that may elapse between the
                                receipt of successive KEEPALIVE
                                and/or UPDATE messages from the peer.

                                The Hold Time must be either zero or
                                at least three seconds.";
                             reference
                               "RFC 4271: A Border Gateway Protocol 4
                                          (BGP-4), Section 4.2";
                           }
                         }
                         container authentication {
                           description
                             "Container for BGP authentication
                              parameters between a PE and a CE.";
                           leaf enable {
                             type boolean;
                             default "false";
                             description
                               "Enables or disables authentication.";
                           }
                           container keying-material {
                             when "../enable = 'true'";
                             description
                               "Container for describing how a BGP
                                routing session is to be secured
                                between a PE and a CE.";
                             choice option {
                               description
                                 "Choice of authentication options.";
                               case ao {
                                 description
                                   "Uses TCP-Authentication the TCP Authentication
                                    Option (TCP-AO).";
                                 reference
                                   "RFC 5925: The TCP Authentication
                                              Option.";
                                              Option";
                                 leaf enable-ao {
                                   type boolean;
                                   description
                                     "Enables the TCP-AO.";
                                 }
                                 leaf ao-keychain {
                                   type key-chain:key-chain-ref;
                                   description
                                     "Reference to the TCP-AO key
                                      chain.";
                                   reference
                                     "RFC 8177: YANG Data Model for
                                                Key Chain."; Chains";
                                 }
                               }
                               case md5 {
                                 description
                                   "Uses MD5 to secure the session.";
                                 reference
                                   "RFC 4364: BGP/MPLS IP Virtual
                                              Private Networks
                                              (VPNs), Section 13.2";
                                 leaf md5-keychain {
                                   type key-chain:key-chain-ref;
                                   description
                                     "Reference to the MD5 key
                                      chain.";
                                   reference
                                     "RFC 8177: YANG Data Model for
                                                Key Chain"; Chains";
                                 }
                               }
                               case explicit {
                                 leaf key-id {
                                   type uint32;
                                   description
                                     "Key Identifier."; identifier.";
                                 }
                                 leaf key {
                                   type string;
                                   description
                                     "BGP authentication key.
                                      This model only supports the
                                      subset of keys that are
                                      representable as ASCII
                                      strings.";
                                 }
                                 leaf crypto-algorithm {
                                   type identityref {
                                     base key-chain:crypto-algorithm;
                                   }
                                   description
                                     "Indicates the cryptographic
                                      algorithm associated with the
                                      key.";
                                 }
                               }
                               case ipsec {
                                 description
                                   "Specifies a reference to an IKE
                                    Internet Key Exchange Protocol
                                    (IKE) Security Association
                                    (SA).";
                                 leaf sa {
                                   type string;
                                   description
                                     "Indicates the
                                      administrator-assigned name
                                      of the SA.";
                                 }
                               }
                             }
                           }
                         }
                         uses vpn-common:service-status;
                       }
                       container ospf {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:ospf-routing')" {
                           description
                             "Only applies when the protocol is
                              OSPF.";
                         }
                         description
                           "OSPF-specific configuration.";
                           "Configuration specific to OSPF.";
                         leaf address-family {
                           type identityref {
                             base vpn-common:address-family;
                           }
                           description
                             "Indicates whether IPv4, IPv6, or
                              both are to be activated.";
                         }
                         leaf area-id {
                           type yang:dotted-quad;
                           mandatory true;
                           description
                             "Area ID.";
                           reference
                             "RFC 4577: OSPF as the Provider/Customer
                                        Edge Protocol for BGP/MPLS IP
                                        Virtual Private Networks
                                        (VPNs), Section 4.2.3
                              RFC 6565: OSPFv3 as a Provider Edge to
                                        Customer Edge (PE-CE) Routing
                                        Protocol, Section 4.2";
                         }
                         leaf metric {
                           type uint16;
                           default "1";
                           description
                             "Metric of the PE-CE link.  It is used
                              in the routing state calculation and
                              path selection.";
                         }
                         container sham-links {
                           if-feature "vpn-common:rtg-ospf-sham-link";
                           description
                             "List of sham links.";
                           reference
                             "RFC 4577: OSPF as the Provider/Customer
                                        Edge Protocol for BGP/MPLS IP
                                        Virtual Private Networks
                                        (VPNs), Section 4.2.7
                              RFC 6565: OSPFv3 as a Provider Edge to
                                        Customer Edge (PE-CE) Routing
                                        Protocol, Section 5";
                           list sham-link {
                             key "target-site";
                             description
                               "Creates a sham link with another
                                site.";
                             leaf target-site {
                               type string;
                               description
                                 "Target site for the sham link
                                  connection.  The site is referred
                                  to by its identifier.";
                             }
                             leaf metric {
                               type uint16;
                               default "1";
                               description
                                 "Metric of the sham link.  It is
                                  used in the routing state
                                  calculation and path selection.
                                  The default value is set to 1."; '1'.";
                               reference
                                 "RFC 4577: OSPF as the
                                            Provider/Customer Edge
                                            Protocol for BGP/MPLS IP
                                            Virtual Private Networks
                                            (VPNs), Section 4.2.7.3
                                  RFC 6565: OSPFv3 as a Provider Edge
                                            to Customer Edge (PE-CE)
                                            Routing Protocol,
                                            Section 5.2";
                             }
                           }
                         }
                         leaf max-lsa {
                           type uint32 {
                             range "1..4294967294";
                           }
                           description
                             "Maximum number of allowed LSAs OSPF."; Link State
                              Advertisements (LSAs) that the OSPF
                              instance will accept.";
                         }
                         container authentication {
                           description
                             "Authentication configuration.";
                           leaf enable {
                             type boolean;
                             default "false";
                             description
                               "Enables or disables authentication.";
                           }
                           container keying-material {
                             when "../enable = 'true'";
                             description
                               "Container for describing how an OSPF
                                session is to be secured between a CE
                                and a PE.";
                             choice option {
                               description
                                 "Options for OSPF authentication.";
                               case auth-key-chain {
                                 leaf key-chain {
                                   type key-chain:key-chain-ref;
                                   description
                                     "key-chain name.";
                                     "Name of the key chain.";
                                 }
                               }
                               case auth-key-explicit {
                                 leaf key-id {
                                   type uint32;
                                   description
                                     "Key identifier.";
                                 }
                                 leaf key {
                                   type string;
                                   description
                                     "OSPF authentication key.
                                      This model only supports the
                                      subset of keys that are
                                      representable as ASCII
                                      strings.";
                                 }
                                 leaf crypto-algorithm {
                                   type identityref {
                                     base key-chain:crypto-algorithm;
                                   }
                                   description
                                     "Indicates the cryptographic
                                      algorithm associated with the
                                      key.";
                                 }
                               }
                               case ipsec {
                                 leaf sa {
                                   type string;
                                   description
                                     "Indicates the
                                      administrator-assigned name
                                      of the SA.";
                                   reference
                                     "RFC 4552: Authentication
                                                /Confidentiality Authentication/
                                                Confidentiality for
                                                OSPFv3";
                                 }
                               }
                             }
                           }
                         }
                         uses vpn-common:service-status;
                       }
                       container isis {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:isis-routing')" {
                           description
                             "Only applies when the protocol is
                              IS-IS.";
                         }
                         description
                           "IS-IS
                           "Configuration specific configuration."; to IS-IS.";
                         leaf address-family {
                           type identityref {
                             base vpn-common:address-family;
                           }
                           description
                             "Indicates whether IPv4, IPv6, or both
                              are to be activated.";
                         }
                         leaf area-address {
                           type area-address;
                           mandatory true;
                           description
                             "Area address.";
                         }
                         leaf level {
                           type identityref {
                             base vpn-common:isis-level;
                           }
                           description
                             "Can be level-1, level-2, 'level-1', 'level-2', or level-1-2.";
                              'level-1-2'.";
                           reference
                             "RFC 9181: A Common YANG Data Model for
                                        Layer 2 and Layer 3 VPNs";
                         }
                         leaf metric {
                           type uint16;
                           default "1";
                           description
                             "Metric of the PE-CE link.  It is used
                              in the routing state calculation and
                              path selection.";
                         }
                         leaf mode {
                           type enumeration {
                             enum active {
                               description
                                 "Interface
                                 "The interface sends or receives
                                  IS-IS protocol control packets.";
                             }
                             enum passive {
                               description
                                 "Suppresses the sending of IS-IS
                                  updates through the specified
                                  interface.";
                             }
                           }
                           default "active";
                           description
                             "IS-IS interface mode type.";
                         }
                         container authentication {
                           description
                             "Authentication configuration.";
                           leaf enable {
                             type boolean;
                             default "false";
                             description
                               "Enables or disables authentication.";
                           }
                           container keying-material {
                             when "../enable = 'true'";
                             description
                               "Container for describing how an IS-IS
                                session is to be secured between a CE
                                and a PE.";
                             choice option {
                               description
                                 "Options for IS-IS authentication.";
                               case auth-key-chain {
                                 leaf key-chain {
                                   type key-chain:key-chain-ref;
                                   description
                                     "key-chain name.";
                                     "Name of the key chain.";
                                 }
                               }
                               case auth-key-explicit {
                                 leaf key-id {
                                   type uint32;
                                   description
                                     "Key Identifier."; identifier.";
                                 }
                                 leaf key {
                                   type string;
                                   description
                                     "IS-IS authentication key.
                                      This model only supports the
                                      subset of keys that are
                                      representable as ASCII
                                      strings.";
                                 }
                                 leaf crypto-algorithm {
                                   type identityref {
                                     base key-chain:crypto-algorithm;
                                   }
                                   description
                                     "Indicates the cryptographic
                                      algorithm associated with the
                                      key.";
                                 }
                               }
                             }
                           }
                         }
                         uses vpn-common:service-status;
                       }
                       container rip {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:rip-routing')" {
                           description
                             "Only applies when the protocol is RIP.
                              For IPv4, the model assumes that RIP
                              version 2 is used.";
                         }
                         description
                           "Configuration specific to RIP routing.";
                         leaf address-family {
                           type identityref {
                             base vpn-common:address-family;
                           }
                           description
                             "Indicates whether IPv4, IPv6, or both
                              address families are to be activated.";
                         }
                         container timers {
                           description
                             "Indicates the RIP timers.";
                           reference
                             "RFC 2453: RIP Version 2";
                           leaf update-interval {
                             type uint16 {
                               range "1..32767";
                             }
                             units "seconds";
                             default "30";
                             description
                               "Indicates the RIP update time.
                                That is, time, i.e.,
                                the amount of time for which RIP
                                updates are sent.";
                           }
                           leaf invalid-interval {
                             type uint16 {
                               range "1..32767";
                             }
                             units "seconds";
                             default "180";
                             description
                               "Is the
                               "The interval before a route is
                                declared invalid after no updates are
                                received.  This value is at least
                                three times the value for the update-interval
                                'update-interval' argument.";
                           }
                           leaf holddown-interval {
                             type uint16 {
                               range "1..32767";
                             }
                             units "seconds";
                             default "180";
                             description
                               "Specifies the interval before better
                                routes are released.";
                           }
                           leaf flush-interval {
                             type uint16 {
                               range "1..32767";
                             }
                             units "seconds";
                             default "240";
                             description
                               "Indicates the RIP flush timer. That is, timer, i.e.,
                                the amount of time that must elapse
                                before a route is removed from the
                                routing table.";
                           }
                         }
                         leaf default-metric {
                           type uint8 {
                             range "0..16";
                           }
                           default "1";
                           description
                             "Sets the default metric.";
                         }
                         container authentication {
                           description
                             "Authentication configuration.";
                           leaf enable {
                             type boolean;
                             default "false";
                             description
                               "Enables or disables authentication.";
                           }
                           container keying-material {
                             when "../enable = 'true'";
                             description
                               "Container for describing how a RIP
                                session is to be secured between a CE
                                and a PE.";
                             choice option {
                               description
                                 "Specifies the authentication
                                  scheme.";
                               case auth-key-chain {
                                 leaf key-chain {
                                   type key-chain:key-chain-ref;
                                   description
                                     "key-chain name.";
                                     "Name of the key chain.";
                                 }
                               }
                               case auth-key-explicit {
                                 leaf key {
                                   type string;
                                   description
                                     "RIP authentication key.
                                      This model only supports the
                                      subset of keys that are
                                      representable as ASCII
                                      strings.";
                                 }
                                 leaf crypto-algorithm {
                                   type identityref {
                                     base key-chain:crypto-algorithm;
                                   }
                                   description
                                     "Indicates the cryptographic
                                      algorithm associated with the
                                      key.";
                                 }
                               }
                             }
                           }
                         }
                         uses vpn-common:service-status;
                       }
                       container vrrp {
                         when "derived-from-or-self(../type, "
                            + "'vpn-common:vrrp-routing')" {
                           description
                             "Only applies when the protocol is VRRP."; the
                              Virtual Router Redundancy Protocol
                              (VRRP).";
                         }
                         description
                           "Configuration specific to VRRP.";
                         reference
                           "RFC 5798: Virtual Router Redundancy
                                      Protocol (VRRP) Version 3 for
                                      IPv4 and IPv6";
                         leaf address-family {
                           type identityref {
                             base vpn-common:address-family;
                           }
                           description
                             "Indicates whether IPv4, IPv6, or both
                              address families are to be enabled.";
                         }
                         leaf vrrp-group {
                           type uint8 {
                             range "1..255";
                           }
                           description
                             "Includes the VRRP group identifier.";
                         }
                         leaf backup-peer {
                           type inet:ip-address;
                           description
                             "Indicates the IP address of the peer.";
                         }
                         leaf-list virtual-ip-address {
                           type inet:ip-address;
                           description
                             "Virtual IP addresses for a single VRRP
                              group.";
                           reference
                             "RFC 5798: Virtual Router Redundancy
                                        Protocol (VRRP) Version 3 for
                                        IPv4 and IPv6,
                                        Sections 1.2 and 1.3";
                         }
                         leaf priority {
                           type uint8 {
                             range "1..254";
                           }
                           default "100";
                           description
                             "Sets the local priority of the VRRP
                              speaker.";
                         }
                         leaf ping-reply {
                           type boolean;
                           default "false";
                           description
                             "Controls whether the VRRP speaker
                              should
                              answer reply to ping requests.";
                         }
                         uses vpn-common:service-status;
                       }
                     }
                   }
                   container oam {
                     description
                       "Defines the Operations, Administration,
                        and Maintenance (OAM) mechanisms used.

                        BFD is set as a fault detection mechanism,
                        but other mechanisms can be defined in the
                        future.";
                     container bfd {
                       if-feature "vpn-common:bfd";
                       description
                         "Container for BFD.";
                       leaf session-type {
                         type identityref {
                           base vpn-common:bfd-session-type;
                         }
                         default "vpn-common:classic-bfd";
                         description
                           "Specifies the BFD session type.";
                       }
                       leaf desired-min-tx-interval {
                         type uint32;
                         units "microseconds";
                         default "1000000";
                         description
                           "The minimum interval between transmission
                            transmissions of BFD control packets that Control packets, as
                            desired by the operator
                            desires."; operator.";
                         reference
                           "RFC 5880: Bidirectional Forwarding
                                      Detection (BFD),
                                      Section 6.8.7";
                       }
                       leaf required-min-rx-interval {
                         type uint32;
                         units "microseconds";
                         default "1000000";
                         description
                           "The minimum interval between received BFD
                            control
                            Control packets that the PE should
                            support.";
                         reference
                           "RFC 5880: Bidirectional Forwarding
                                      Detection (BFD),
                                      Section 6.8.7";
                       }
                       leaf local-multiplier {
                         type uint8 {
                           range "1..255";
                         }
                         default "3";
                         description
                           "Specifies the detection multiplier that
                            is transmitted to a BFD peer.

                            The detection interval for the receiving
                            BFD peer is calculated by multiplying the
                            value of the negotiated transmission
                            interval by the received detection
                            multiplier value.";
                         reference
                           "RFC 5880: Bidirectional Forwarding
                                      Detection (BFD),
                                      Section 6.8.7";
                       }
                       leaf holdtime {
                         type uint32;
                         units "milliseconds";
                         description
                           "Expected BFD holdtime.

                            The customer may impose some fixed
                            values for the holdtime period if the
                            provider allows the customer to use of
                            this function.

                            If the provider doesn't allow the
                            customer to use this function,
                            the fixed-value
                            fixed values will not be set.";
                         reference
                           "RFC 5880: Bidirectional Forwarding
                                      Detection (BFD),
                                      Section 6.8.18";
                       }
                       leaf profile {
                         type leafref {
                           path "/l3vpn-ntw/vpn-profiles"
                              + "/valid-provider-identifiers"
                              + "/bfd-profile-identifier/id";
                         }
                         description
                           "Well-known service provider profile name.

                            The provider can propose some profiles
                            to the customer, depending on the
                            service level the customer wants to
                            achieve.";
                       }
                       container authentication {
                         presence "Enables BFD authentication";
                         description
                           "Parameters for BFD authentication.";
                         leaf key-chain {
                           type key-chain:key-chain-ref;
                           description
                             "Name of the key-chain."; key chain.";
                         }
                         leaf meticulous {
                           type boolean;
                           description
                             "Enables meticulous mode.";
                           reference
                             "RFC 5880: Bidirectional Forwarding
                                        Detection (BFD),
                                        Section 6.7";
                         }
                       }
                       uses vpn-common:service-status;
                     }
                   }
                   container security {
                     description
                       "Site-specific security parameters.";
                     container encryption {
                       if-feature "vpn-common:encryption";
                       description
                         "Container for CE-PE security encryption.";
                       leaf enabled {
                         type boolean;
                         default "false";
                         description
                           "If true, set to 'true', traffic encryption on
                            the connection is required.  Otherwise,
                            it is disabled.";
                       }
                       leaf layer {
                         when "../enabled = 'true'" {
                           description
                             "It is included
                             "Included only when encryption
                              is enabled.";
                         }
                         type enumeration {
                           enum layer2 {
                             description
                               "Encryption occurs at Layer 2.";
                           }
                           enum layer3 {
                             description
                               "Encryption occurs at Layer 3.
                                For example, IPsec may be used when
                                a customer requests Layer 3
                                encryption.";
                           }
                         }
                         description
                           "Indicates the layer on which encryption
                            is applied.";
                       }
                     }
                     container encryption-profile {
                       when "../encryption/enabled = 'true'" {
                         description
                           "Indicates the layer on which encryption
                            is enabled.";
                       }
                       description
                         "Container for the encryption profile.";
                       choice profile {
                         description
                           "Choice for the encryption profile.";
                         case provider-profile {
                           leaf profile-name {
                             type leafref {
                               path "/l3vpn-ntw/vpn-profiles"
                                  + "/valid-provider-identifiers"
                                  + "/encryption-profile-identifier/id";
                             }
                             description
                               "Name of the service provider's
                                profile to be applied.";
                           }
                         }
                         case customer-profile {
                           leaf customer-key-chain {
                             type key-chain:key-chain-ref;
                             description
                               "Customer-supplied key chain.";
                           }
                         }
                       }
                     }
                   }
                   container service {
                     description
                       "Service parameters of the attachment.";
                     leaf inbound-bandwidth pe-to-ce-bandwidth {
                       if-feature "vpn-common:inbound-bw";
                       type uint64;
                       units "bps";
                       description
                         "From the customer site's perspective, the
                          service inbound bandwidth of the connection
                          or download bandwidth from the SP to the
                          site.  Note that the L3SM uses 'input-
                          -bandwidth'
                          'input-bandwidth' to refer to the same
                          concept.";
                     }
                     leaf outbound-bandwidth ce-to-pe-bandwidth {
                       if-feature "vpn-common:outbound-bw";
                       type uint64;
                       units "bps";
                       description
                         "From the customer site's perspective,
                          the service outbound bandwidth of the
                          connection or upload bandwidth from
                          the site to the SP.  Note that the L3SM
                          uses 'output-bandwidth' to refer to the
                          same concept.";
                     }
                     leaf mtu {
                       type uint32;
                       units "bytes";
                       description
                         "MTU at the service level.  If the service
                          is IP, it refers to the IP MTU.  If
                          Carriers' Carriers (CsC) is enabled, the
                          requested MTU will refer to the MPLS
                          maximum labeled packet size and not to the
                          IP MTU.";
                     }
                     container qos {
                       if-feature "vpn-common:qos";
                       description
                         "QoS configuration.";
                       container qos-classification-policy {
                         description
                           "Configuration of the traffic
                            classification policy.";
                         uses vpn-common:qos-classification-policy;
                       }
                       container qos-action {
                         description
                           "List of QoS action policies.";
                         list rule {
                           key "id";
                           description
                             "List of QoS actions.";
                           leaf id {
                             type string;
                             description
                               "An identifier of the QoS action
                                rule.";
                           }
                           leaf target-class-id {
                             type string;
                             description
                               "Identification of the class of
                                service.  This identifier is internal
                                to the administration.";
                           }
                           leaf inbound-rate-limit {
                             type decimal64 {
                               fraction-digits 5;
                               range "0..100";
                             }
                             units "percent";
                             description
                               "Specifies whether/how to rate-limit
                                the inbound traffic matching this QoS
                                policy.  It is expressed as a percent
                                of the value that is indicated in
                                'input-bandwidth'.";
                           }
                           leaf outbound-rate-limit {
                             type decimal64 {
                               fraction-digits 5;
                               range "0..100";
                             }
                             units "percent";
                             description
                               "Specifies whether/how to rate-limit
                                the outbound traffic matching this
                                QoS policy.  It is expressed as a
                                percent of the value that is
                                indicated in 'output-bandwidth'.";
                           }
                         }
                       }
                       container qos-profile {
                         description
                           "QoS profile configuration.";
                         list qos-profile {
                           key "profile";
                           description
                             "QoS profile.
                              Can be a standard profile or
                              a customized profile.";
                           leaf profile {
                             type leafref {
                               path "/l3vpn-ntw/vpn-profiles"
                                  + "/valid-provider-identifiers"
                                  + "/qos-profile-identifier/id";
                             }
                             description
                               "QoS profile to be used.";
                           }
                           leaf direction {
                             type identityref {
                               base vpn-common:qos-profile-direction;
                             }
                             default "vpn-common:both";
                             description
                               "The direction to which the QoS
                                profile is applied.";
                           }
                         }
                       }
                     }
                     container carriers-carrier {
                       if-feature "vpn-common:carriers-carrier";
                       description
                         "This container is used when the customer
                          provides MPLS-based services.  This is
                          only used in the case of CsC (i.e., a
                          customer builds an MPLS service using an
                          IP VPN to carry its traffic).";
                       leaf signaling-type {
                         type enumeration {
                           enum ldp {
                             description
                               "Use
                               "Uses LDP as the signaling protocol
                                between the PE and the CE.  In this
                                case, an IGP routing protocol must
                                also be configured.";
                           }
                           enum bgp {
                             description
                               "Use
                               "Uses BGP as the signaling protocol
                                between the PE and the CE.
                                In this case, BGP must also be
                                configured as the routing protocol.";
                             reference
                               "RFC 8277: Using BGP to Bind MPLS
                                          Labels to Address
                                          Prefixes";
                           }
                         }
                         default "bgp";
                         description
                           "MPLS signaling type.";
                       }
                     }
                     container ntp {
                       description
                         "Time synchronization may be needed in some
                          VPNs
                          VPNs, such as infrastructure and Management management
                          VPNs.  This container includes parameters
                          to enable the NTP service.";
                       reference
                         "RFC 5905: Network Time Protocol Version 4:
                                    Protocol and Algorithms
                                    Specification";
                       leaf broadcast {
                         type enumeration {
                           enum client {
                             description
                               "The VPN node will listen to NTP
                                broadcast messages on this VPN
                                network access.";
                           }
                           enum server {
                             description
                               "The VPN node will behave as a
                                broadcast server.";
                           }
                         }
                         description
                           "Indicates the NTP broadcast mode to use
                            for the VPN network access.";
                       }
                       container auth-profile {
                         description
                           "Pointer to a local profile.";
                         leaf profile-id {
                           type string;
                           description
                             "A pointer to a local authentication
                              profile on the VPN node is provided.";
                         }
                       }
                       uses vpn-common:service-status;
                     }
                     container multicast {
                       if-feature "vpn-common:multicast";
                       description
                         "Multicast parameters for the network
                          access.";
                       leaf access-type {
                         type enumeration {
                           enum receiver-only {
                             description
                               "The peer site only has receivers.";
                           }
                           enum source-only {
                             description
                               "The peer site only has sources.";
                           }
                           enum source-receiver {
                             description
                               "The peer site has both sources and
                                receivers.";
                           }
                         }
                         default "source-receiver";
                         description
                           "Type of multicast site.";
                       }
                       leaf address-family {
                         type identityref {
                           base vpn-common:address-family;
                         }
                         description
                           "Indicates the address family.";
                       }
                       leaf protocol-type {
                         type enumeration {
                           enum host {
                             description
                               "Hosts are directly connected to the
                                provider network.

                                Host protocols protocols, such as IGMP or MLD MLD,
                                are required.";
                           }
                           enum router {
                             description
                               "Hosts are behind a customer router.
                                PIM will be implemented.";
                           }
                           enum both {
                             description
                               "Some hosts are behind a customer
                                router, and some others are directly
                                connected to the provider network.
                                Both host and routing protocols must
                                be used.

                                Typically, IGMP and PIM will be
                                implemented.";
                           }
                         }
                         default "both";
                         description
                           "Multicast protocol type to be used with
                            the customer site.";
                       }
                       leaf remote-source {
                         type boolean;
                         default "false";
                         description
                           "A remote multicast source is a source
                            that is not on the same subnet as the
                            vpn-network-access.
                            VPN network access.  When set to 'true',
                            the multicast traffic from a remote
                            source is accepted.";
                       }
                       container igmp {
                         when "../protocol-type = 'host' and "
                            + "../address-family = 'vpn-common:ipv4' or "
                            + "'vpn-common:dual-stack'"; "or 'vpn-common:dual-stack'";
                         if-feature "vpn-common:igmp";
                         description
                           "Includes IGMP-related parameters.";
                         list static-group {
                           key "group-addr";
                           description
                             "Multicast static source/group
                              associated to with the IGMP session"; session.";
                           leaf group-addr {
                             type rt-types:ipv4-multicast-group-address;
                             description
                               "Multicast group IPv4 address.";
                           }
                           leaf source-addr {
                             type rt-types:ipv4-multicast-source-address; rt-types:ipv4-multicast-source\
                                           -address;
                             description
                               "Multicast source IPv4 address.";
                           }
                         }
                         leaf max-groups {
                           type uint32;
                           description
                             "Indicates the maximum number of
                              groups.";
                         }
                         leaf max-entries {
                           type uint32;
                           description
                             "Indicates the maximum number of IGMP
                              entries.";
                         }
                         leaf max-group-sources {
                           type uint32;
                           description
                             "The maximum number of group sources.";
                         }
                         leaf version {
                           type identityref {
                             base vpn-common:igmp-version;
                           }
                           default "vpn-common:igmpv2";
                           description
                             "Version of
                             "Indicates the IGMP."; IGMP version.";
                         }
                         uses vpn-common:service-status;
                       }
                       container mld {
                         when "../protocol-type = 'host' and "
                            + "../address-family = 'vpn-common:ipv6' or "
                            + "'vpn-common:dual-stack'"; "or 'vpn-common:dual-stack'";
                         if-feature "vpn-common:mld";
                         description
                           "Includes MLD-related parameters.";
                         list static-group {
                           key "group-addr";
                           description
                             "Multicast static source/group associated to
                              with the MLD session"; session.";
                           leaf group-addr {
                             type rt-types:ipv6-multicast-group-address;
                             description
                               "Multicast group IPv6 address.";
                           }
                           leaf source-addr {
                             type rt-types:ipv6-multicast-source-address; rt-types:ipv6-multicast-source\
                                           -address;
                             description
                               "Multicast source IPv6 address.";
                           }
                         }
                         leaf max-groups {
                           type uint32;
                           description
                             "Indicates the maximum number of
                              groups.";
                         }
                         leaf max-entries {
                           type uint32;
                           description
                             "Indicates the maximum number of MLD
                              entries.";
                         }
                         leaf max-group-sources {
                           type uint32;
                           description
                             "The maximum number of group sources.";
                         }
                         leaf version {
                           type identityref {
                             base vpn-common:mld-version;
                           }
                           default "vpn-common:mldv2";
                           description
                             "Version of
                             "Indicates the MLD protocol."; protocol version.";
                         }
                         uses vpn-common:service-status;
                       }
                       container pim {
                         when "../protocol-type = 'router'";
                         if-feature "vpn-common:pim";
                         description
                           "Only applies when the protocol type is PIM.";
                            'pim'.";
                         leaf hello-interval {
                           type rt-types:timer-value-seconds16;
                           default "30";
                           description
                             "PIM hello-messages interval.
                             "Interval between PIM Hello messages.
                              If set to 'infinity' or 'not-set',
                              no periodic Hello messages are sent.";
                           reference
                             "RFC 7761: Protocol Independent
                                        Multicast - Sparse Mode
                                        (PIM-SM): Protocol
                                        Specification (Revised),
                                        Section 4.11"; 4.11
                              RFC 8294: Common YANG Data Types for
                                        the Routing Area";
                         }
                         leaf dr-priority {
                           type uint32;
                           default "1";
                           description
                             "Indicates the preference in associated
                              with the DR election process.  A larger
                              value has a higher priority over a
                              smaller value.";
                           reference
                             "RFC 7761: Protocol Independent
                                        Multicast - Sparse Mode
                                        (PIM-SM): Protocol
                                        Specification (Revised),
                                        Section 4.3.2";
                         }
                         uses vpn-common:service-status;
                       }
                     }
                   }
                 }
               }
             }
           }
         }
       }
     }
   }
   <CODE ENDS>

9.  Security Considerations

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC8446].

   The Network Configuration Access Control Model (NACM) [RFC8341]
   provides the means to restrict access for particular NETCONF or
   RESTCONF users to a preconfigured subset of all available NETCONF or
   RESTCONF protocol operations and content.

   There are a number of data nodes defined in this YANG module that are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   and delete operations to these data nodes without proper protection
   or authentication can have a negative effect on network operations.
   These are the subtrees and data nodes and their sensitivity/
   vulnerability in the "ietf-l3vpn-ntw" module:

   *

   'vpn-profiles':  This container includes a set of sensitive data that
      influence how the L3VPN service is delivered.  For example, an
      attacker who has access to these data nodes may be able to
      manipulate routing policies, QoS policies, or encryption
      properties.  These data nodes are defined with "nacm:default-deny-
      write" tagging [I-D.ietf-opsawg-vpn-common].

   * [RFC9181].

   'vpn-services':  An attacker who is able to access network nodes can
      undertake various attacks, such as deleting a running L3VPN
      service, interrupting all the traffic of a client.  In addition,
      an attacker may modify the attributes of a running service (e.g.,
      QoS, bandwidth, routing protocols, keying material), leading to
      malfunctioning of the service and therefore to SLA Service Level
      Agreement (SLA) violations.  In addition, an attacker could
      attempt to create an L3VPN service or add a new network access.
      In addition to using NACM to prevent
      authorized unauthorized access, such
      activity can be detected by adequately monitoring and tracking
      network configuration changes.

   Some of the readable data nodes in this YANG module may be considered
   sensitive or vulnerable in some network environments.  It is thus
   important to control read access (e.g., via get, get-config, or
   notification) to these data nodes.  These are the subtrees and data
   nodes and their sensitivity/vulnerability:

   *

   'customer-name' and 'ip-connection':  An attacker can retrieve
      privacy-related information information, which can be used to track a
      customer.  Disclosing such information may be considered as a
      violation of the customer-provider trust relationship.

   *

   'keying-material':  An attacker can retrieve the cryptographic keys
      protecting the underlying VPN service (CE-PE routing, in
      particular).  These keys could be used to inject spoofed routing
      advertisements.

   Several data nodes ('bgp', 'ospf', 'isis', 'rip', and 'bfd') rely
   upon [RFC8177] for authentication purposes.  Therefore, this module
   inherits the security considerations discussed in Section 5 of
   [RFC8177].  Also, these data nodes support supplying explicit keys as
   strings in ASCII format.  The use of keys in hexadecimal string
   format would afford greater key entropy with the same number of key-
   string octets.  However, such a format is not included in this
   version of the L3NM L3NM, because it is not supported by the underlying
   device modules (e.g., [RFC8695]).

   As discussed in Section 7.6.3, the module supports MD5 to basically
   accommodate the installed BGP base.  MD5 suffers from the security
   weaknesses discussed in Section 2 of [RFC6151] or and Section 2.1 of
   [RFC6952].

   [RFC8633] describes best current practices to be considered in VPNs
   making use of NTP.  Moreover, a mechanism to provide cryptographic
   security for NTP is specified in [RFC8915].

10.  IANA Considerations

   This document requests

   IANA to register has registered the following URI in the "ns" subregistry within
   the "IETF XML Registry" [RFC3688]:

   URI:  urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
   Registrant Contact:  The IESG.
   XML:  N/A; the requested URI is an XML namespace.

   This document requests

   IANA to register has registered the following YANG module in the "YANG Module
   Names" subregistry [RFC6020] within the "YANG Parameters" registry.

         name:

   Name:  ietf-l3vpn-ntw
         namespace: urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
         maintained
   Maintained by IANA: IANA?  N
         prefix:
   Namespace:  urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
   Prefix:  l3nm
         reference:
   Reference:  RFC XXXX 9182

11.  References

11.1.  Normative References

   [I-D.ietf-opsawg-vpn-common]
              Barguil, S., Dios, O. G. D., Boucadair, M., and Q. Wu, "A
              Layer 2/3 VPN Common YANG Model", Work in Progress,
              September 2021, <https://www.ietf.org/archive/id/draft-
              ietf-opsawg-vpn-common-11.txt>.

   [ISO10589] ISO, "Intermediate "Information technology - Telecommunications and
              information exchange between systems - Intermediate System
              to Intermediate System intra-
              domain intra-domain routeing information
              exchange protocol for use in conjunction with the protocol
              for providing the connectionless-mode network service (ISO
              8473)", 2002,
              <International Standard ISO/IEC 10589:2002, Second Edition>. 2002,
              <https://www.iso.org/standard/30932.html>.

   [RFC1112]  Deering, S., "Host extensions for IP multicasting", STD 5,
              RFC 1112, DOI 10.17487/RFC1112, August 1989,
              <https://www.rfc-editor.org/info/rfc1112>.

   [RFC1195]  Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
              dual environments", RFC 1195, DOI 10.17487/RFC1195,
              December 1990, <https://www.rfc-editor.org/info/rfc1195>.

   [RFC2080]  Malkin, G. and R. Minnear, "RIPng for IPv6", RFC 2080,
              DOI 10.17487/RFC2080, January 1997,
              <https://www.rfc-editor.org/info/rfc2080>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC2236]  Fenner, W., "Internet Group Management Protocol, Version
              2", RFC 2236, DOI 10.17487/RFC2236, November 1997,
              <https://www.rfc-editor.org/info/rfc2236>.

   [RFC2453]  Malkin, G., "RIP Version 2", STD 56, RFC 2453,
              DOI 10.17487/RFC2453, November 1998,
              <https://www.rfc-editor.org/info/rfc2453>.

   [RFC2710]  Deering, S., Fenner, W., and B. Haberman, "Multicast
              Listener Discovery (MLD) for IPv6", RFC 2710,
              DOI 10.17487/RFC2710, October 1999,
              <https://www.rfc-editor.org/info/rfc2710>.

   [RFC3376]  Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
              Thyagarajan, "Internet Group Management Protocol, Version
              3", RFC 3376, DOI 10.17487/RFC3376, October 2002,
              <https://www.rfc-editor.org/info/rfc3376>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC3810]  Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
              Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
              DOI 10.17487/RFC3810, June 2004,
              <https://www.rfc-editor.org/info/rfc3810>.

   [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
              Border Gateway Protocol 4 (BGP-4)", RFC 4271,
              DOI 10.17487/RFC4271, January 2006,
              <https://www.rfc-editor.org/info/rfc4271>.

   [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
              Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
              2006, <https://www.rfc-editor.org/info/rfc4364>.

   [RFC4552]  Gupta, M. and N. Melam, "Authentication/Confidentiality
              for OSPFv3", RFC 4552, DOI 10.17487/RFC4552, June 2006,
              <https://www.rfc-editor.org/info/rfc4552>.

   [RFC4577]  Rosen, E., Psenak, P., and P. Pillay-Esnault, "OSPF as the
              Provider/Customer Edge Protocol for BGP/MPLS IP Virtual
              Private Networks (VPNs)", RFC 4577, DOI 10.17487/RFC4577,
              June 2006, <https://www.rfc-editor.org/info/rfc4577>.

   [RFC5308]  Hopps, C., "Routing IPv6 with IS-IS", RFC 5308,
              DOI 10.17487/RFC5308, October 2008,
              <https://www.rfc-editor.org/info/rfc5308>.

   [RFC5701]  Rekhter, Y., "IPv6 Address Specific BGP Extended Community
              Attribute", RFC 5701, DOI 10.17487/RFC5701, November 2009,
              <https://www.rfc-editor.org/info/rfc5701>.

   [RFC5709]  Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,
              Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic
              Authentication", RFC 5709, DOI 10.17487/RFC5709, October
              2009, <https://www.rfc-editor.org/info/rfc5709>.

   [RFC5798]  Nadas, S., Ed., "Virtual Router Redundancy Protocol (VRRP)
              Version 3 for IPv4 and IPv6", RFC 5798,
              DOI 10.17487/RFC5798, March 2010,
              <https://www.rfc-editor.org/info/rfc5798>.

   [RFC5880]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
              (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
              <https://www.rfc-editor.org/info/rfc5880>.

   [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <https://www.rfc-editor.org/info/rfc5905>.

   [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
              Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
              June 2010, <https://www.rfc-editor.org/info/rfc5925>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC6513]  Rosen, E., Ed. and R. Aggarwal, Ed., "Multicast in MPLS/
              BGP IP VPNs", RFC 6513, DOI 10.17487/RFC6513, February
              2012, <https://www.rfc-editor.org/info/rfc6513>.

   [RFC6514]  Aggarwal, R., Rosen, E., Morin, T., and Y. Rekhter, "BGP
              Encodings and Procedures for Multicast in MPLS/BGP IP
              VPNs", RFC 6514, DOI 10.17487/RFC6514, February 2012,
              <https://www.rfc-editor.org/info/rfc6514>.

   [RFC6565]  Pillay-Esnault, P., Moyer, P., Doyle, J., Ertekin, E., and
              M. Lundberg, "OSPFv3 as a Provider Edge to Customer Edge
              (PE-CE) Routing Protocol", RFC 6565, DOI 10.17487/RFC6565,
              June 2012, <https://www.rfc-editor.org/info/rfc6565>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7166]  Bhatia, M., Manral, V., and A. Lindem, "Supporting
              Authentication Trailer for OSPFv3", RFC 7166,
              DOI 10.17487/RFC7166, March 2014,
              <https://www.rfc-editor.org/info/rfc7166>.

   [RFC7474]  Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
              "Security Extension for OSPFv2 When Using Manual Key
              Management", RFC 7474, DOI 10.17487/RFC7474, April 2015,
              <https://www.rfc-editor.org/info/rfc7474>.

   [RFC7761]  Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,
              Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent
              Multicast - Sparse Mode (PIM-SM): Protocol Specification
              (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March
              2016, <https://www.rfc-editor.org/info/rfc7761>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8177]  Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J.
              Zhang, "YANG Data Model for Key Chains", RFC 8177,
              DOI 10.17487/RFC8177, June 2017,
              <https://www.rfc-editor.org/info/rfc8177>.

   [RFC8294]  Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
              "Common YANG Data Types for the Routing Area", RFC 8294,
              DOI 10.17487/RFC8294, December 2017,
              <https://www.rfc-editor.org/info/rfc8294>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
              <https://www.rfc-editor.org/info/rfc8343>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [RFC8466]  Wen, B., Fioccola, G., Ed., Xie, C., and L. Jalil, "A YANG
              Data Model for Layer 2 Virtual Private Network (L2VPN)
              Service Delivery", RFC 8466, DOI 10.17487/RFC8466, October
              2018, <https://www.rfc-editor.org/info/rfc8466>.

   [RFC8519]  Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
              "YANG Data Model for Network Access Control Lists (ACLs)",
              RFC 8519, DOI 10.17487/RFC8519, March 2019,
              <https://www.rfc-editor.org/info/rfc8519>.

11.2.  Informative References

   [I-D.evenwu-opsawg-yang-composed-vpn]
              Even, R., Wu, B., Wu, Q.,

   [RFC9181]  Barguil, S., Gonzalez de Dios, O., Ed., Boucadair, M.,
              Ed., and YingCheng, "YANG Q. Wu, "A Common YANG Data Model for Composed VPN Service Delivery", Work in Progress,
              Internet-Draft, draft-evenwu-opsawg-yang-composed-vpn-03,
              8 March 2019, <https://www.ietf.org/archive/id/draft-
              evenwu-opsawg-yang-composed-vpn-03.txt>.

   [I-D.ietf-bess-evpn-prefix-advertisement]
              Rabadan, J., Henderickx, W., Drake, J. E., Lin, W., Layer 2 and A.
              Sajassi, "IP Prefix Advertisement in EVPN", Work in
              Progress, Internet-Draft, draft-ietf-bess-evpn-prefix-
              advertisement-11, 18 May 2018,
              <https://www.ietf.org/archive/id/draft-ietf-bess-evpn-
              prefix-advertisement-11.txt>.

   [I-D.ietf-idr-bgp-model]
              Layer 3 VPNs", RFC 9181, DOI 10.17487/RFC9181, February
              2022, <https://www.rfc-editor.org/info/rfc9181>.

11.2.  Informative References

   [BGP-YANG] Jethanandani, M., Patel, K., Hares, S., and J. Haas, "BGP
              YANG Model for Service Provider Networks", Work in
              Progress, Internet-Draft, draft-ietf-idr-bgp-model-11, 11
              July 2021, <https://www.ietf.org/archive/id/draft-ietf-
              idr-bgp-model-11.txt>.

   [I-D.ietf-pim-yang]
              Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
              Y., and F. Hu, "A YANG Data Model for Protocol Independent
              Multicast (PIM)", Work in Progress, Internet-Draft, draft-
              ietf-pim-yang-17, 19 May 2018,
              <https://www.ietf.org/archive/id/draft-ietf-pim-yang-
              17.txt>.

   [I-D.ietf-rtgwg-qos-model]
              Choudhary, A., Jethanandani, M., Strahle, N., Aries, E.,
              and I. Chen, "A YANG Data Model for Quality of Service
              (QoS)", Work in Progress, Internet-Draft, draft-ietf-
              rtgwg-qos-model-04, 12 July draft-ietf-idr-bgp-model-12, 25
              October 2021,
              <https://www.ietf.org/archive/id/draft-ietf-rtgwg-qos-
              model-04.txt>.

   [I-D.ietf-teas-enhanced-vpn] <https://datatracker.ietf.org/doc/html/
              draft-ietf-idr-bgp-model-12>.

   [Enhanced-VPN-Framework]
              Dong, J., Bryant, S., Li, Z., Miyasaka, T., and Y. Lee, "A
              Framework for Enhanced Virtual Private Network (VPN+)
              Services", Work in Progress, Internet-Draft, draft-ietf-
              teas-enhanced-vpn-08, 12 July
              teas-enhanced-vpn-09, 25 October 2021,
              <https://www.ietf.org/archive/id/draft-ietf-teas-enhanced-
              vpn-08.txt>.

   [I-D.ietf-teas-ietf-network-slices]
              <https://datatracker.ietf.org/doc/html/draft-ietf-teas-
              enhanced-vpn-09>.

   [IEEE802.1AX]
              IEEE, "802.1AX-2020 - IEEE Standard for Local and
              Metropolitan Area Networks--Link Aggregation", IEEE Std
              802.1AX-2020,
              <https://ieeexplore.ieee.org/document/9105034>.

   [Network-Slices-Framework]
              Farrel, A., Ed., Gray, E., Drake, J., Rokui, R., Homma,
              S., Makhijani, K., Contreras, L. M., LM., and J. Tantsura,
              "Framework for IETF Network Slices", Work in Progress,
              August
              October 2021, <https://www.ietf.org/archive/id/draft-ietf-
              teas-ietf-network-slices-04.txt>.

   [I-D.ogondio-opsawg-uni-topology]
              Dios, O. G. D., Barguil, S., Wu, Q., <https://datatracker.ietf.org/doc/html/
              draft-ietf-teas-ietf-network-slices-05>.

   [PIM-YANG] Liu, X., McAllister, P., Peter, A., Sivakumar, M., Liu,
              Y., and M. Boucadair, F. Hu, "A YANG Data Model for User-Network Interface (UNI) Topologies", Protocol Independent
              Multicast (PIM)", Work in Progress, Internet-Draft, draft-ogondio-opsawg-
              uni-topology-01, 2 April 2020,
              <https://www.ietf.org/archive/id/draft-ogondio-opsawg-uni-
              topology-01.txt>.

   [IEEE802.1AX]
              "Link Aggregation", IEEE Std 802.1AX-2020, 2020. draft-
              ietf-pim-yang-17, 19 May 2018,
              <https://datatracker.ietf.org/doc/html/draft-ietf-pim-
              yang-17>.

   [PYANG]    "pyang", November 2020, commit 524cf61, December 2021,
              <https://github.com/mbj4668/pyang>.

   [QoS-YANG] Choudhary, A., Jethanandani, M., Aries, E., and I. Chen,
              "A YANG Data Model for Quality of Service (QoS)", Work in
              Progress, Internet-Draft, draft-ietf-rtgwg-qos-model-06, 8
              November 2021, <https://datatracker.ietf.org/doc/html/
              draft-ietf-rtgwg-qos-model-06>.

   [RFC3618]  Fenner, B., Ed. and D. Meyer, Ed., "Multicast Source
              Discovery Protocol (MSDP)", RFC 3618,
              DOI 10.17487/RFC3618, October 2003,
              <https://www.rfc-editor.org/info/rfc3618>.

   [RFC3644]  Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., and B.
              Moore, "Policy Quality of Service (QoS) Information
              Model", RFC 3644, DOI 10.17487/RFC3644, November 2003,
              <https://www.rfc-editor.org/info/rfc3644>.

   [RFC4026]  Andersson, L. and T. Madsen, "Provider Provisioned Virtual
              Private Network (VPN) Terminology", RFC 4026,
              DOI 10.17487/RFC4026, March 2005,
              <https://www.rfc-editor.org/info/rfc4026>.

   [RFC4110]  Callon, R. and M. Suzuki, "A Framework for Layer 3
              Provider-Provisioned Virtual Private Networks (PPVPNs)",
              RFC 4110, DOI 10.17487/RFC4110, July 2005,
              <https://www.rfc-editor.org/info/rfc4110>.

   [RFC4176]  El Mghazli, Y., Ed., Nadeau, T., Boucadair, M., Chan, K.,
              and A. Gonguet, "Framework for Layer 3 Virtual Private
              Networks (L3VPN) Operations and Management", RFC 4176,
              DOI 10.17487/RFC4176, October 2005,
              <https://www.rfc-editor.org/info/rfc4176>.

   [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
              Address Autoconfiguration", RFC 4862,
              DOI 10.17487/RFC4862, September 2007,
              <https://www.rfc-editor.org/info/rfc4862>.

   [RFC6037]  Rosen, E., Ed., Cai, Y., Ed., and IJ. Wijnands, "Cisco
              Systems' Solution for Multicast in BGP/MPLS IP VPNs",
              RFC 6037, DOI 10.17487/RFC6037, October 2010,
              <https://www.rfc-editor.org/info/rfc6037>.

   [RFC6151]  Turner, S. and L. Chen, "Updated Security Considerations
              for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
              RFC 6151, DOI 10.17487/RFC6151, March 2011,
              <https://www.rfc-editor.org/info/rfc6151>.

   [RFC6952]  Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
              BGP, LDP, PCEP, and MSDP Issues According to the Keying
              and Authentication for Routing Protocols (KARP) Design
              Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
              <https://www.rfc-editor.org/info/rfc6952>.

   [RFC7149]  Boucadair, M. and C. Jacquenet, "Software-Defined
              Networking: A Perspective from within a Service Provider
              Environment", RFC 7149, DOI 10.17487/RFC7149, March 2014,
              <https://www.rfc-editor.org/info/rfc7149>.

   [RFC7297]  Boucadair, M., Jacquenet, C., and N. Wang, "IP
              Connectivity Provisioning Profile (CPP)", RFC 7297,
              DOI 10.17487/RFC7297, July 2014,
              <https://www.rfc-editor.org/info/rfc7297>.

   [RFC7426]  Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
              Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
              Defined Networking (SDN): Layers and Architecture
              Terminology", RFC 7426, DOI 10.17487/RFC7426, January
              2015, <https://www.rfc-editor.org/info/rfc7426>.

   [RFC7880]  Pignataro, C., Ward, D., Akiya, N., Bhatia, M., and S.
              Pallagatti, "Seamless Bidirectional Forwarding Detection
              (S-BFD)", RFC 7880, DOI 10.17487/RFC7880, July 2016,
              <https://www.rfc-editor.org/info/rfc7880>.

   [RFC7942]  Sheffer, Y. and A. Farrel, "Improving Awareness of Running
              Code: The Implementation Status Section", BCP 205,
              RFC 7942, DOI 10.17487/RFC7942, July 2016,
              <https://www.rfc-editor.org/info/rfc7942>.

   [RFC8077]  Martini, L., Ed. and G. Heron, Ed., "Pseudowire Setup and
              Maintenance Using the Label Distribution Protocol (LDP)",
              STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017,
              <https://www.rfc-editor.org/info/rfc8077>.

   [RFC8277]  Rosen, E., "Using BGP to Bind MPLS Labels to Address
              Prefixes", RFC 8277, DOI 10.17487/RFC8277, October 2017,
              <https://www.rfc-editor.org/info/rfc8277>.

   [RFC8299]  Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
              "YANG Data Model for L3VPN Service Delivery", RFC 8299,
              DOI 10.17487/RFC8299, January 2018,
              <https://www.rfc-editor.org/info/rfc8299>.

   [RFC8309]  Wu, Q., Liu, W., and A. Farrel, "Service Models
              Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
              <https://www.rfc-editor.org/info/rfc8309>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC8345]  Clemm, A., Medved, J., Varga, R., Bahadur, N.,
              Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
              Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
              2018, <https://www.rfc-editor.org/info/rfc8345>.

   [RFC8349]  Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
              Routing Management (NMDA Version)", RFC 8349,
              DOI 10.17487/RFC8349, March 2018,
              <https://www.rfc-editor.org/info/rfc8349>.

   [RFC8453]  Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
              Abstraction and Control of TE Networks (ACTN)", RFC 8453,
              DOI 10.17487/RFC8453, August 2018,
              <https://www.rfc-editor.org/info/rfc8453>.

   [RFC8512]  Boucadair, M., Ed., Sivakumar, S., Jacquenet, C.,
              Vinapamula, S., and Q. Wu, "A YANG Module for Network
              Address Translation (NAT) and Network Prefix Translation
              (NPT)", RFC 8512, DOI 10.17487/RFC8512, January 2019,
              <https://www.rfc-editor.org/info/rfc8512>.

   [RFC8633]  Reilly, D., Stenn, H., and D. Sibold, "Network Time
              Protocol Best Current Practices", BCP 223, RFC 8633,
              DOI 10.17487/RFC8633, July 2019,
              <https://www.rfc-editor.org/info/rfc8633>.

   [RFC8695]  Liu, X., Sarda, P., and V. Choudhary, "A YANG Data Model
              for the Routing Information Protocol (RIP)", RFC 8695,
              DOI 10.17487/RFC8695, February 2020,
              <https://www.rfc-editor.org/info/rfc8695>.

   [RFC8792]  Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
              "Handling Long Lines in Content of Internet-Drafts and
              RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
              <https://www.rfc-editor.org/info/rfc8792>.

   [RFC8915]  Franke, D., Sibold, D., Teichel, K., Dansarie, M., and R.
              Sundblad, "Network Time Security for the Network Time
              Protocol", RFC 8915, DOI 10.17487/RFC8915, September 2020,
              <https://www.rfc-editor.org/info/rfc8915>.

   [RFC8969]  Wu, Q., Ed., Boucadair, M., Ed., Lopez, D., Xie, C., and
              L. Geng, "A Framework for Automating Service and Network
              Management with YANG", RFC 8969, DOI 10.17487/RFC8969,
              January 2021, <https://www.rfc-editor.org/info/rfc8969>.

   [RFC9136]  Rabadan, J., Ed., Henderickx, W., Drake, J., Lin, W., and
              A. Sajassi, "IP Prefix Advertisement in Ethernet VPN
              (EVPN)", RFC 9136, DOI 10.17487/RFC9136, October 2021,
              <https://www.rfc-editor.org/info/rfc9136>.

   [YANG-Composed-VPN]
              Even, R., Wu, B., Wu, Q., and Y. Cheng, "YANG Data Model
              for Composed VPN Service Delivery", Work in Progress,
              Internet-Draft, draft-evenwu-opsawg-yang-composed-vpn-03,
              8 March 2019, <https://datatracker.ietf.org/doc/html/
              draft-evenwu-opsawg-yang-composed-vpn-03>.

   [YANG-SAPs]
              Gonzalez de Dios, O., Barguil, S., Wu, Q., Boucadair, M.,
              and V. Lopez, "A Network YANG Model for Service Attachment
              Points", Work in Progress, Internet-Draft, draft-ietf-
              opsawg-sap-00, 25 January 2022,
              <https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
              sap-00>.

Appendix A.  L3VPN Examples

A.1.  4G VPN Provisioning Example

   L3VPNs are widely used to deploy 3G/4G, fixed, and enterprise
   services
   services, mainly because several traffic discrimination policies can
   be applied within the network to deliver to the mobile customers a
   service that meets the SLA requirements.

   As it is

   Typically, and as shown in the Figure 31, typically, an eNodeB (CE) is directly
   connected to the access routers of the mobile backhaul and their
   logical interfaces (one or many many, according to the service type) are
   configured in a VPN that transports the packets to the mobile core
   platforms.  In this example, a 'vpn-node' is created with two
   'vpn-network-accesses'. 'vpn-
   network-accesses'.

           +-------------+                  +------------------+
           |             |                  | PE               |
           |             |                  |  198.51.100.1    |
           |   eNodeB    |>--------/------->|...........       |
           |             |          vlan 1  |          |       |
           |             |>--------/------->|......    |       |
           |             |          vlan 2  |     |    |       |
           |             | Direct           |  +-------------+ |
           +-------------+ Routing          |  | vpn-node-id | |
                                            |  | 44          | |
                                            |  +-------------+ |
                                            |                  |
                                            +------------------+

                     Figure 31: Mobile Backhaul Example

   To create an L3VPN service using the L3NM, the following steps can be
   followed.

   First: Create

   First, create the 4G VPN service (Figure 32).

   POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/vpn-services
   Host: example.com
   Content-Type: application/yang-data+json

   {
    "ietf-l3vpn-ntw:vpn-services": {
      "vpn-service": [
        {
          "vpn-id": "4G",
             "customer-name": "mycustomer",
             "vpn-service-topology": "custom",
          "vpn-description": "VPN to deploy 4G services",
          "customer-name": "mycustomer",
          "vpn-service-topology": "custom",
          "vpn-instance-profiles": {
            "vpn-instance-profile": [
              {
                "profile-id": "simple-profile",
                "local-as": 65550,
                "rd": "0:65550:1",
                "address-family": [
                  {
                    "address-family": "ietf-vpn-common:dual-stack",
                    "vpn-targets": {
                      "vpn-target": [
                        {
                          "id": 1,
                          "route-targets": [
                            {
                              "route-target": "0:65550:1"
                            }
                          ],
                          "route-target-type": "both"
                        }
                      ]
                    }
                  }
                ]
              }
            ]
          }
        }
      ]
    }
   }

                       Figure 32: Create VPN Service

   Second: Create

   Second, create a VPN node node, as depicted in Figure 33.  In this type of
   service, the VPN node is equivalent to the VRF configured in the physical
   device ('ne-id'=198.51.100.1).

   ===============  NOTE: '\' line wrapping in Figures 33
   and 34 is implemented per RFC 8792 ================ [RFC8792].

   POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\
         vpn-services/vpn-service=4G
   Host: example.com
   Content-Type: application/yang-data+json

   {
     "ietf-l3vpn-ntw:vpn-nodes": {
       "vpn-node": [
         {
           "vpn-node-id": "44",
           "ne-id": "198.51.100.1",
           "active-vpn-instance-profiles": {
             "vpn-instance-profile": [
               {
                 "profile-id": "simple-profile"
               }
             ]
           }
         }
       ]
     }
   }

                         Figure 33: Create VPN Node

   Finally, two VPN network accesses are created using the same physical
   port ('interface-id'=1/1/1).  Each 'vpn-network-access' has a
   particular VLAN (1,2) to differentiate the traffic between: Sync interface (1,2): "SYNC" and
   data "DATA" (Figure 34).

   =============== NOTE: '\' line wrapping per RFC 8792 ================
   These interfaces differentiate the traffic between them.

   POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\
         vpn-services/vpn-service=4G/vpn-nodes/vpn-node=44
   content-type: application/yang-data+json

   {
     "ietf-l3vpn-ntw:vpn-network-accesses": {
       "vpn-network-access": [
         {
           "id": "1/1/1.1",
           "interface-id": "1/1/1",
           "description": "Interface SYNC to eNODE-B",
           "vpn-network-access-type": "ietf-vpn-common:point-to-point",
           "vpn-instance-profile": "simple-profile",
           "status": {
             "admin-status": {
               "status": "ietf-vpn-common:admin-up"
             }
           },
           "connection": {
             "encapsulation": {
               "type": "ietf-vpn-common:dot1q",
               "dot1q": {
                 "cvlan-id": 1
               }
             }
           },
           "ip-connection": {
             "ipv4": {
               "local-address": "192.0.2.1",
               "prefix-length": 30,
               "address-allocation-type": "static-address",
               "static-addresses": {
                 "primary-address": "1",
                 "address": [
                   {
                     "address-id": "1",
                     "customer-address": "192.0.2.2"
                   }
                 ]
               }
             },
             "ipv6": {
               "local-address": "2001:db8::1",
               "prefix-length": 64,
               "address-allocation-type": "static-address",
               "primary-address": "1",
               "address": [
                 {
                   "address-id": "1",
                   "customer-address": "2001:db8::2"
                 }
               ]
             }
           },
           "routing-protocols": {
             "routing-protocol": [
               {
                 "id": "1",
                 "type": "ietf-vpn-common:direct"
               }
             ]
           }
         },
         {
           "id": "1/1/1.2",
           "interface-id": "1/1/1",
           "description": "Interface DATA to eNODE-B",
           "vpn-network-access-type": "ietf-vpn-common:point-to-point",
           "vpn-instance-profile": "simple-profile",
           "status": {
             "admin-status": {
               "status": "ietf-vpn-common:admin-up"
             }
           },
           "connection": {
             "encapsulation": {
               "type": "ietf-vpn-common:dot1q",
               "dot1q": {
                 "cvlan-id": 2
               }
             }
           },
           "ip-connection": {
             "ipv4": {
               "local-address": "192.0.2.1",
               "prefix-length": 30,
               "address-allocation-type": "static-address",
               "static-addresses": {
                 "primary-address": "1",
                 "address": [
                   {
                     "address-id": "1",
                     "customer-address": "192.0.2.2"
                   }
                 ]
               }
             },
             "ipv6": {
               "local-address": "2001:db8::1",
               "prefix-length": 64,
               "address-allocation-type": "static-address",
               "primary-address": "1",
               "address": [
                 {
                   "address-id": "1",
                   "customer-address": "2001:db8::2"
                 }
               ]
             }
           },
           "routing-protocols": {
             "routing-protocol": [
               {
                 "id": "1",
                 "type": "ietf-vpn-common:direct"
               }
             ]
           }
         }
       ]
     }
   }

                    Figure 34: Create VPN Network Access

A.2.  Loopback Interface

   An example of a loopback interface is depicted in Figure 35.

   {
     "ietf-l3vpn-ntw:vpn-network-accesses": {
       "vpn-network-access": [
         {
           "id": "vpn-access-loopback",
           "interface-id": "Loopback1",
           "description": "An example of a loopback interface.",
           "vpn-network-access-type": "ietf-vpn-common:loopback",
           "status": {
             "admin-status": {
               "status": "ietf-vpn-common:admin-up"
             }
           },
           "ip-connection": {
             "ipv6": {
               "local-address": "2001:db8::4",
               "prefix-length": 128
             }
           }
         }
       ]
     }
   }

      Figure 35: VPN Network Access with a Loopback Interface (Message
                                   Body)

A.3.  Overriding VPN Instance Profile Parameters

   Figure 36 shows a simplified example to illustrate how some
   information that is provided at the VPN service level (particularly
   as part of the 'vpn-instance-profiles') can be overridden by the one
   information configured at the VPN node level.  In this example, PE3
   and PE4 inherit the 'vpn-instance-profiles' parameters that are
   specified at the VPN service level, but PE1 and PE2 are provided with "maximum-
   routes"
   "maximum-routes" values at the VPN node level that override the ones
   values that are specified at the VPN service level.

   {
     "ietf-l3vpn-ntw:vpn-services": {
       "vpn-service": [
         {
           "vpn-id": "override-example",
           "vpn-service-topology": "ietf-vpn-common:hub-spoke",
           "vpn-instance-profiles": {
             "vpn-instance-profile": [
               {
                 "profile-id": "HUB",
                 "role": "ietf-vpn-common:hub-role",
                 "local-as": 64510,
                 "rd-suffix": 1001,
                 "address-family": [
                   {
                     "address-family": "ietf-vpn-common:dual-stack",
                     "maximum-routes": [
                       {
                         "protocol": "ietf-vpn-common:any",
                         "maximum-routes": 100
                       }
                     ]
                   }
                 ]
               },
               {
                 "profile-id": "SPOKE",
                 "role": "ietf-vpn-common:spoke-role",
                 "local-as": 64510,
                 "address-family": [
                   {
                     "address-family": "ietf-vpn-common:dual-stack",
                     "maximum-routes": [
                       {
                         "protocol": "ietf-vpn-common:any",
                         "maximum-routes": 1000
                       }
                     ]
                   }
                 ]
               }
             ]
           },
           "vpn-nodes": {
             "vpn-node": [
               {
                 "vpn-node-id": "PE1",
                 "ne-id": "pe1",
                 "router-id": "198.51.100.1",
                 "active-vpn-instance-profiles": {
                   "vpn-instance-profile": [
                     {
                       "profile-id": "HUB",
                       "rd": "1:198.51.100.1:1001",
                       "address-family": [
                         {
                           "address-family":
                                    "ietf-vpn-common:dual-stack",
                           "maximum-routes": [
                             {
                               "protocol": "ietf-vpn-common:any",
                               "maximum-routes": 10
                             }
                           ]
                         }
                       ]
                     }
                   ]
                 }
               },
               {
                 "vpn-node-id": "PE2",
                 "ne-id": "pe2",
                 "router-id": "198.51.100.2",
                 "active-vpn-instance-profiles": {
                   "vpn-instance-profile": [
                     {
                       "profile-id": "SPOKE",
                       "address-family": [
                         {
                           "address-family":
                                    "ietf-vpn-common:dual-stack",
                           "maximum-routes": [
                             {
                               "protocol": "ietf-vpn-common:any",
                               "maximum-routes": 100
                             }
                           ]
                         }
                       ]
                     }
                   ]
                 }
               },
               {
                 "vpn-node-id": "PE3",
                 "ne-id": "pe3",
                 "router-id": "198.51.100.3",
                 "active-vpn-instance-profiles": {
                   "vpn-instance-profile": [
                     {
                       "profile-id": "SPOKE"
                     }
                   ]
                 }
               },
               {
                 "vpn-node-id": "PE4",
                 "ne-id": "pe4",
                 "router-id": "198.51.100.4",
                 "active-vpn-instance-profiles": {
                   "vpn-instance-profile": [
                     {
                       "profile-id": "SPOKE"
                     }
                   ]
                 }
               }
             ]
           }
         }
       ]
     }
   }

           Figure 36: VPN Instance Profile Example (Message Body)

A.4.  Multicast VPN Provisioning Example

   IPTV is mainly distributed through multicast over the LANs.  In the
   following example, PIM-SM PIM - Sparse Mode (PIM-SM) is enabled and
   functional between the PE and the CE.  The PE receives multicast
   traffic from a CE that is directly connected to the multicast source.
   The signaling between the PE and the CE is achieved using BGP.  Also,
   the RP is statically configured for a multicast group.

          +-----------+   +------+     +------+    +-----------+
          | Multicast |---|  CE  |--/--|  PE  |----|  Backbone |
          |  source   |   +------+     +------+    |   IP/MPLS |
          +-----------+                            +-----------+

                 Figure 37: Multicast L3VPN Service Example

   An example is provided below to illustrate

   Figure 38 illustrates how to configure a multicast L3VPN service
   using the L3NM.

   First, the multicast service is created together with a generic VPN
   instance profile (see the excerpt of the request message body shown
   in Figure 38) 38).

   {
     "ietf-l3vpn-ntw:vpn-services": {
       "vpn-service": [
         {
           "vpn-id": "Multicast-IPTV",
           "vpn-description": "Multicast IPTV VPN service",
           "customer-name": "a-name",
           "vpn-service-topology": "ietf-vpn-common:hub-spoke",
           "vpn-instance-profiles": {
             "vpn-instance-profile": [
               {
                 "profile-id": "multicast",
                 "role": "ietf-vpn-common:hub-role",
                 "local-as": 65536,
                 "multicast": {
                   "rp": {
                     "rp-group-mappings": {
                       "rp-group-mapping": [
                         {
                           "id": 1,
                           "rp-address": "203.0.113.17",
                           "groups": {
                             "group": [
                               {
                                 "id": 1,
                                 "group-address": "239.130.0.0/15"
                               }
                             ]
                           }
                         }
                       ]
                     },
                     "rp-discovery": {
                       "rp-discovery-type": "ietf-vpn-common:static-rp"
                     }
                   }
                 }
               }
             ]
           }
         }
       ]
     }
   }

      Figure 38: Create Multicast VPN Service (Excerpt of the Message
                               Request Body)

   Then, the VPN nodes are created (see the excerpt of the request
   message body shown in Figure 39).  In this example, the VPN node will
   represent VRF configured in the physical device.

   {
     "ietf-l3vpn-ntw:vpn-node": [
       {
         "vpn-node-id": "500003105",
         "description": "VRF-IPTV-MULTICAST",
         "ne-id": "198.51.100.10",
         "router-id": "198.51.100.10",
         "active-vpn-instance-profiles": {
           "vpn-instance-profile": [
             {
               "profile-id": "multicast",
               "rd": "65536:31050202"
             }
           ]
         }
       }
     ]
   }

        Figure 39: Create Multicast VPN Node (Excerpt of the Message
                               Request Body)

   Finally, create the VPN network access with multicast enabled (see
   the excerpt of the request message body shown in Figure 40).

   {
     "ietf-l3vpn-ntw:vpn-network-access": {
       "id": "1/1/1",
       "description": "Connected-to-source",
       "vpn-network-access-type": "ietf-vpn-common:point-to-point",
       "vpn-instance-profile": "multicast",
       "status": {
         "admin-status": {
           "status": "vpn-common:admin-up" "ietf-vpn-common:admin-up"
         },
         "ip-connection": {
           "ipv4": {
             "local-address": "203.0.113.1",
             "prefix-length": 30,
             "address-allocation-type": "static-address",
             "static-addresses": {
               "primary-address": "1",
               "address": [
                 {
                   "address-id": "1",
                   "customer-address": "203.0.113.2"
                 }
               ]
             }
           }
         },
         "routing-protocols": {
           "routing-protocol": [
             {
               "id": "1",
               "type": "ietf-vpn-common:bgp-routing",
               "bgp": {
                 "description": "Connected to CE",
                 "peer-as": "65537",
                 "address-family": "ietf-vpn-common:ipv4",
                 "neighbor": "203.0.113.2"
               }
             }
           ]
         },
         "service": {
           "inbound-bandwidth":
           "pe-to-ce-bandwidth": "100000000",
           "outbound-bandwidth":
           "ce-to-pe-bandwidth": "100000000",
           "mtu": 1500,
           "multicast": {
             "access-type": "source-only",
             "address-family": "ietf-vpn-common:ipv4",
             "protocol-type": "router",
             "pim": {
               "hello-interval": 30,
               "status": {
                 "admin-status": {
                   "status": "ietf-vpn-common:admin-up"
                 }
               }
             }
           }
         }
       }
     }
   }

        Figure 40: Create VPN Network Access (Excerpt of the Message
                               Request Body)

Appendix B.  Implementation Status

   This section records the status of known implementations of the YANG
   module defined by this specification at the time of posting of this
   document and is based on a proposal described in [RFC7942].  The
   description of implementations in this section is intended to assist
   the IETF in its decision processes in progressing drafts to RFCs.
   Please note that the listing of any individual implementation here
   does not imply endorsement by the IETF.  Furthermore, no effort has
   been spent to verify the information presented here that was supplied
   by IETF contributors.  This is not intended as, and must not be
   construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may
   exist.

   According to [RFC7942], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".

   Note to the RFC Editor: As per [RFC7942] guidelines, please remove
   this Implementation Status apendix prior publication.

B.1.  Nokia Implementation

   Details can be found at: https://github.com/IETF-OPSAWG-
   WG/l3nm/blob/master/Implementattion/Nokia.txt

B.2.  Huawei Implementation

   Details can be found at: https://github.com/IETF-OPSAWG-
   WG/l3nm/blob/master/Implementattion/Huawei.txt

B.3.  Infinera Implementation

   Details can be found at: https://github.com/IETF-OPSAWG-
   WG/l3nm/blob/master/Implementattion/Infinera.txt

B.4.  Ribbon-ECI Implementation

   Details can be found at: https://github.com/IETF-OPSAWG-
   WG/l3nm/blob/master/Implementattion/Ribbon-ECI.txt

B.5.  Juniper Implementation

   https://github.com/IETF-OPSAWG-WG/lxnm/blob/master/Implementattion/
   Juniper

Acknowledgements

   During the discussions of this work, helpful comments, suggestions,
   and reviews were received from (listed alphabetically): alphabetically) Raul Arco,
   Miguel Cros Cecilia, Joe Clarke, Dhruv Dhody, Adrian Farrel, Roque
   Gagliano, Christian Jacquenet, Kireeti Kompella, Julian Lucek, Greg
   Mirsky, and Tom Petch.  Many thanks to them.  Thanks to Philip Eardly
   Eardley for the review of an early draft version of the document.

   Daniel King, Daniel Voyer, Luay Jalil, and Stephane Litkowski
   contributed to early version draft versions of the individual submission. this document.  Many thanks to
   Robert Wilton for the AD review.  Thanks to Andrew Malis for the
   routing directorate review, Rifaat Shekh-Yusef for the security
   directorate review, Qin Wu for the opsdir review, and Pete Resnick
   for the genart directorate review.  Thanks to Michael Scharf for the
   discussion on the TCP-AO.  Thanks to Martin Duke, Lars Eagert, Eggert,
   Zaheduzzaman Sarker, Roman Danyliw, Erik Kline, Benjamin Kaduk,
   Francesca Palombini, and Eric Éric Vyncke for the IESG review.

   This work was supported in part by the European Commission funded Commission-funded
   H2020-ICT-2016-2 METRO-HAUL project (G.A. 761727) and Horizon 2020
   Secured autonomic traffic management for a Tera of SDN flows
   (Teraflow) project (G.A. 101015857).

Contributors

   Victor Lopez
   Telefonica
   Nokia
   Madrid
   Spain

   Email: victor.lopezalvarez@telefonica.com victor.lopez@nokia.com

   Qin Wu
   Huawei

   Email: bill.wu@huawei.com> bill.wu@huawei.com

   Manuel Julian Lopez
   Vodafone
   Spain

   Email: manuel-julian.lopez@vodafone.com

   Lucia Oliva Ballega
   Telefonica

   Email: lucia.olivaballega.ext@telefonica.com

   Erez Segev
   ECI Telecom
   Ribbon Communications

   Email: erez.segev@ecitele.com> erez.segev@rbbn.com

   Paul Sherratt
   Gamma Telecom

   Email: paul.sherratt@gamma.co.uk

Authors' Addresses

   Samier Barguil
   Telefonica
   Madrid
   Spain

   Email: samier.barguilgiraldo.ext@telefonica.com

   Oscar Gonzalez de Dios (editor)
   Telefonica
   Madrid
   Spain

   Email: oscar.gonzalezdedios@telefonica.com

   Mohamed Boucadair (editor)
   Orange
   Rennes
   35000 Rennes
   France

   Email: mohamed.boucadair@orange.com

   Luis Angel Munoz
   Vodafone
   Spain

   Email: luis-angel.munoz@vodafone.com

   Alejandro Aguado
   Nokia
   Madrid
   Spain

   Email: alejandro.aguado_martin@nokia.com