<?xml version="1.0"encoding="US-ASCII"?> <!-- This template is for creating an Internet Draft using xml2rfc, which is available here: http://xml.resource.org. -->encoding="UTF-8"?> <!DOCTYPE rfcSYSTEM "rfc2629.dtd"[<!-- One method to get references from the online citation libraries. There has to be one entity for each item to be referenced. An alternate method (rfc include) is described in the references. --><!ENTITYRFC7665 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7665.xml">nbsp " "> <!ENTITYRFC8799 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8799.xml">zwsp "​"> <!ENTITYRFC2119 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml">nbhy "‑"> <!ENTITYRFC8174 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"> <!ENTITY RFC7799 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7799.xml"> <!ENTITY RFC6830 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6830.xml"> <!ENTITY RFC7276 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7276.xml"> <!ENTITY RFC7112 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7112.xml"> <!ENTITY RFC6833 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6833.xml"> <!ENTITY RFC2460 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2460.xml"> <!ENTITY RFC791 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.0791.xml"> <!ENTITY RFC6564 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.6564.xml"> <!ENTITY RFC7820 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7820.xml"> <!ENTITY RFC7821 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7821.xml"> <!ENTITY RFC8126 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8126.xml"> <!ENTITY RFC5905 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5905.xml"> <!ENTITY RFC7384 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7384.xml"> <!ENTITY RFC8300 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8300.xml"> <!ENTITY RFC8877 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8877.xml"> <!ENTITY RFC8899 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8899.xml"> <!ENTITY RFC8926 SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8926.xml"> <!ENTITY I-D.ietf-ippm-ioam-deployment SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-ippm-ioam-deployment.xml"> <!ENTITY I-D.ietf-ippm-ioam-data-integrity SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-ippm-ioam-data-integrity.xml"> <!ENTITY I-D.ietf-spring-segment-routing SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-spring-segment-routing.xml"> <!ENTITY I-D.previdi-isis-segment-routing-extensions SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.previdi-isis-segment-routing-extensions.xml"> <!ENTITY I-D.ietf-ippm-6man-pdm-option SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-ippm-6man-pdm-option.xml"> <!ENTITY I-D.gont-v6ops-ipv6-ehs-in-real-world SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.gont-v6ops-ipv6-ehs-in-real-world.xml"> <!ENTITY I-D.brockners-lisp-sr SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.brockners-lisp-sr.xml"> <!ENTITY I-D.ietf-6man-segment-routing-header SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-6man-segment-routing-header.xml"> <!ENTITY I-D.ietf-nvo3-vxlan-gpe SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-nvo3-vxlan-gpe.xml"> <!ENTITY I-D.lapukhov-dataplane-probe SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.lapukhov-dataplane-probe.xml"> <!ENTITY I-D.spiegel-ippm-ioam-rawexport SYSTEM "http://xml2rfc.tools.ietf.org/public/rfc/bibxml-ids/reference.I-D.spiegel-ippm-ioam-rawexport.xml"> <!ENTITY AFI SYSTEM "http://www.iana.org/assignments/address-family-numbers/address-family-numbers.xml">wj "⁠"> ]><?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?> <!-- used by XSLT processors --> <!-- For a complete list and description of processing instructions (PIs), please see http://xml.resource.org/authoring/README.html. --> <!-- Below are generally applicable Processing Instructions (PIs) that most I-Ds might want to use. (Here they are set differently than their defaults in xml2rfc v1.32) --> <?rfc strict="yes" ?> <!-- give errors regarding ID-nits and DTD validation --> <!-- control the table of contents (ToC) --> <?rfc toc="yes"?> <!-- generate a ToC --> <?rfc tocdepth="4"?> <!-- the number of levels of subsections in ToC. default: 3 --> <!-- control references --> <?rfc symrefs="yes"?> <!-- use symbolic references tags, i.e, [RFC2119] instead of [1] --> <?rfc sortrefs="yes" ?> <!-- sort the reference entries alphabetically --> <!-- control vertical white space (using these PIs as follows is recommended by the RFC Editor) --> <?rfc compact="yes" ?> <!-- do not start each main section on a new page --> <?rfc subcompact="no" ?> <!-- keep one blank line between list items --> <!-- end of list of popular I-D processing instructions --><rfccategory="std"xmlns:xi="http://www.w3.org/2001/XInclude" docName="draft-ietf-ippm-ioam-data-17"ipr="trust200902"> <!-- ipr="full3978"-->number="9197" ipr="trust200902" obsoletes="" updates="" submissionType="IETF" category="std" consensus="true" xml:lang="en" tocInclude="true" tocDepth="4" symRefs="true" sortRefs="true" version="3"> <!--category values: std, bcp, info, exp, and historic ipr values: full3667, noModification3667, noDerivatives3667 you can add the attributes updates="NNNN" and obsoletes="NNNN" they will automatically be output with "(if approved)"xml2rfc v2v3 conversion 3.12.0 --> <!--***** FRONT MATTER ***** -->ipr="full3978"--> <front><!-- The abbreviated title is used in the page header - it is only necessary if the full title is longer than 39 characters --><titleabbrev="In-situabbrev="In Situ OAM Data Fields">Data Fields forIn-situ OAM</title> <!-- add 'role="editor"' below for the editors if appropriate --> <!-- Another author who claims to be an editor -->In Situ Operations, Administration, and Maintenance (IOAM)</title> <seriesInfo name="RFC" value="9197"/> <author fullname="Frank Brockners" initials="F." surname="Brockners" role="editor"> <organization abbrev="Cisco">Cisco Systems, Inc.</organization> <address> <postal> <street>Hansaallee249, 3rd Floor</street> <!-- Reorder these if your country does things differently --> <city>DUESSELDORF</city> <region>NORDRHEIN-WESTFALEN</region>249</street> <extaddr>3rd Floor</extaddr> <city>Duesseldorf</city> <extaddr>Nordhein-Westfalen</extaddr> <code>40549</code> <country>Germany</country> </postal> <email>fbrockne@cisco.com</email><!-- uri and facsimile elements may also be added --></address> </author> <author fullname="Shwetha Bhandari" initials="S." surname="Bhandari" role="editor"> <organization abbrev="Thoughtspot">Thoughtspot</organization> <address> <postal><street>3rd Floor, Indiqube Orion, 24th<extaddr>3rd Floor</extaddr> <extaddr>Indiqube Orion</extaddr> <extaddr>Garden Layout</extaddr> <extaddr>HSR Layout</extaddr> <street>24th MainRd, Garden Layout, HSR Layout</street> <city>Bangalore, KARNATAKARd</street> <city>Bangalore</city> <region>Karnataka</region> <code> 560102</city>102</code> <country>India</country> </postal> <email>shwetha.bhandari@thoughtspot.com</email> </address> </author> <author fullname="Tal Mizrahi" initials="T." surname="Mizrahi" role="editor"><organization abbrev="">Huawei</organization><organization>Huawei</organization> <address> <postal> <street>8-2 Matam</street> <city>Haifa</city> <code>3190501</code> <country>Israel</country> </postal> <email>tal.mizrahi.phd@gmail.com</email> </address> </author> <dateday="13" month="December" year="2021"/> <!-- If the month and year are both specified and are the current ones, xml2rfc will fill in the current day for you. If only the current year is specified, xml2rfc will fill in the current day and month for you. If the year is not the current one, it is necessary to specify at least a month (xml2rfc assumes day="1" if not specified for the purpose of calculating the expiry date). With drafts it is normally sufficient to specify just the year. --> <!-- Meta-data Declarations -->month="May" year="2022"/> <area>tsv</area> <workgroup>ippm</workgroup><!-- WG name at the upperleft corner of the doc, IETF is fine for individual submissions. If this element is not present, the default is "Network Working Group", which is used by the RFC Editor as a nod to the history of the IETF. --><keyword>inband</keyword><keyword>Telemetry, Tracing,</keyword> <!-- Keywords will be incorporated into HTML output files in a meta tag but they have no effect on text or nroff output. If you submit your draft to the RFC Editor, the keywords will be used for the search engine. --><keyword>Telemetry</keyword> <keyword>Tracing,</keyword> <abstract><t>In-situ<t>In situ Operations, Administration, and Maintenance (IOAM)recordscollects operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document discusses the data fields and associated data types forin-situ OAM. In-situ OAM data fieldsIOAM. IOAM-Data-Fields can be encapsulated into a variety ofprotocolsprotocols, such asNSH,Network Service Header (NSH), Segment Routing,Geneve,Generic Network Virtualization Encapsulation (Geneve), or IPv6.In-situ OAMIOAM can be used to complement OAM mechanisms based on, e.g., ICMP or other types of probe packets.</t> </abstract> </front> <middle> <sectiontitle="Introduction" toc="default">toc="default" numbered="true"> <name>Introduction</name> <t>This document defines data fields for"in-situ"In situ Operations, Administration, and Maintenance (IOAM).In-situ OAMIOAM records OAM information within the packet while the packet traverses a particular network domain. The term"in-situ""in situ" refers to the fact that the OAM data is added to the data packets rather than being sent within packets specifically dedicated to OAM. IOAM is used to complementmechanismsmechanisms, such as Ping or Traceroute. In terms of "active" or "passive" OAM,"in-situ" OAMIOAM can be considered a hybrid OAM type."In-situ""In situ" mechanisms do not require extra packets to be sent. IOAM adds information to the already available data packets and therefore cannot be considered passive. In terms of the classification given in <xreftarget="RFC7799"/>,target="RFC7799" format="default"/>, IOAM could be portrayed as Hybrid Type I. IOAM mechanisms can be leveraged where mechanisms using, e.g., ICMP do not apply or do not offer the desired results, such as proving that a certain traffic flow takes apre-definedpredefined path,SLAService Level Agreement (SLA) verification for the data traffic, detailed statistics on traffic distribution paths in networks that distribute traffic across multiple paths, or scenarios in which probe traffic is potentially handled differently from regular data traffic by the network devices.</t> <t> The term "in situ OAM" was originally motivated by the use ofOAM relatedOAM-related mechanisms that add information into a packet. This document uses IOAM as a term defining the IOAM technology. IOAM includes"in-situ" mechanisms,"in situ" mechanisms but also mechanisms that could trigger the creation of additional packets dedicated to OAM. </t> </section> <sectiontitle="Contributors"> <t>This document was the collective effort of several authors. The text and content were contributed by the editors and the co-authors listed below. The contact information of the co-authors appears at the end of this document.</t> <t><list style="symbols"> <t>Carlos Pignataro</t> <t>Mickey Spiegel</t> <t>Barak Gafni</t> <t>Jennifer Lemon</t> <t>Hannes Gredler</t> <t>John Leddy</t> <t>Stephen Youell</t> <t>David Mozes</t> <t>Petr Lapukhov</t> <t>Remy Chang</t> <t>Daniel Bernier</t> </list></t> </section> <sectionanchor="Conventions"title="Conventions">numbered="true" toc="default"> <name>Conventions</name> <t>The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xref target="RFC2119" format="default"/> <xref target="RFC8174" format="default"/> when, and only when, they appear in all capitals, as shown here.</t> <t>Abbreviations and definitions used in this document:</t><t><list hangIndent="11" style="hanging"> <t hangText="E2E:">Edge to Edge</t> <t hangText="Geneve:">Generic<dl newline="false" spacing="normal" indent="15"> <dt>E2E:</dt> <dd>Edge to Edge</dd> <dt>Geneve:</dt> <dd>Generic Network Virtualization Encapsulation <xreftarget="RFC8926"/></t> <t hangText="IOAM:">In-situtarget="RFC8926" format="default"/></dd> <dt>IOAM:</dt> <dd>In situ Operations, Administration, andMaintenance</t> <t hangText="MTU:">Maximum Transmit Unit</t> <t hangText="NSH:">NetworkMaintenance</dd> <dt>MTU:</dt> <dd>Maximum Transmission Unit</dd> <dt>NSH:</dt> <dd>Network Service Header <xreftarget="RFC8300"/></t> <t hangText="OAM:">Operations,target="RFC8300" format="default"/></dd> <dt>OAM:</dt> <dd>Operations, Administration, andMaintenance</t> <t hangText="PMTU:">Path MTU</t> <t hangText="POT:">Proof of Transit</t> <t hangText="Short format:">"Short format" refersMaintenance</dd> <dt>PMTU:</dt> <dd>Path MTU</dd> <dt>POT:</dt> <dd>Proof of Transit</dd> <dt>Short format:</dt> <dd>refers to an IOAM-Data-Fieldwhichthat comprises 4octets.</t> <t hangText="SID:">Segment Identifier</t> <t hangText="SR:">Segment Routing</t> <t hangText="VXLAN-GPE:">Virtualoctets</dd> <dt>SID:</dt> <dd>Segment Identifier</dd> <dt>SR:</dt> <dd>Segment Routing</dd> <dt>VXLAN-GPE:</dt> <dd>Virtual eXtensible Local Area Network, Generic Protocol Extension <xreftarget="I-D.ietf-nvo3-vxlan-gpe"/></t> <t hangText="Wide format:">"Wide format" referstarget="I-D.ietf-nvo3-vxlan-gpe" format="default"/></dd> <dt>Wide format:</dt> <dd>refers to an IOAM-Data-Fieldwhichthat comprises 8octets.</t> </list></t>octets</dd> </dl> </section> <sectiontitle="Scope,anchor="IOAM_scope" numbered="true" toc="default"> <name>Scope, Applicability, andAssumptions" anchor="IOAM_scope">Assumptions</name> <t>IOAM assumes a set of constraints as well as guiding principles and concepts that go hand in hand with the definition of theIOAM data fields.IOAM-Data-Fields. These constraints, guiding principles, and concepts are described in this section. A discussion of howIOAM data fieldsIOAM-Data-Fields and the associated concepts are applied to an IOAM deployment are out of scope for this document. Please refer to <xreftarget="I-D.ietf-ippm-ioam-deployment"/>target="I-D.ietf-ippm-ioam-deployment" format="default"/> for IOAM deploymentconsiderations. </t> <t>Scope: Thisconsiderations.</t> <dl newline="true" spacing="normal"> <dt>Scope:</dt> <dd>This document defines the data fields and associated data types forin-situ OAM.IOAM. Thein-situ OAM data fieldsIOAM-Data-Fields can be encapsulated in a variety of protocols, including NSH, Segment Routing, Geneve, and IPv6. Specification details for these different protocols are outside the scope of this document. It is expected that each such encapsulation would be specified by anRFC,RFC and jointly designed by the working group that develops or maintains the encapsulation protocol and the IETFIPPM working group.</t> <t>Deployment domainIP Performance Measurement (IPPM) Working Group.</dd> <dt>Domain (or scope) ofin-situin situ OAMdeployment: IOAMdeployment:</dt> <dd>IOAM is focused on "limiteddomains"domains", as defined in <xreftarget="RFC8799"/>.target="RFC8799" format="default"/>. For IOAM, a limited domaincouldcould, forexampleexample, be an enterprise campus using physical connections between devices or an overlay network using virtualconnections / tunnelsconnections/tunnels for connectivity between said devices. A limited domainwhichthat uses IOAM may constitute one or multiple"IOAM-domains","IOAM-Domains", each disambiguated through separate namespace identifiers. AnIOAM-domainIOAM-Domain is bounded by its perimeter or edge.IOAM-domainsIOAM-Domains may overlap inside the limited domain. Designers of protocol encapsulations for IOAM specify mechanisms to ensure that IOAM data stays within anIOAM-domain.IOAM-Domain. In addition, the operator of such a domain is expected to put provisions in place to ensure that IOAM data does not leak beyond the edge of anIOAM-domainIOAM-Domain using, for example, packet filtering methods. The operatorSHOULD<bcp14>SHOULD</bcp14> consider the potential operational impact of IOAM tomechanismsmechanisms, such as ECMP processing (e.g., load-balancing schemes based on packet length could be impacted by the increased packet size due to IOAM),path MTUPMTU (i.e., ensure that the MTU of all links within a domain is sufficiently large to support the increased packet size due toIOAM)IOAM), and ICMP message handling (i.e., in case of IPv6, IOAM support for ICMPv6Echo Request/Replyecho request/reply isdesireddesired, which would translate into ICMPv6 extensions to enable IOAM-Data-Fields to be copied from anEcho Requestecho request message to anEcho Reply message).</t> <t>IOAMecho reply message).</dd> <dt>IOAM controlpoints: IOAM-Data-Fieldspoints:</dt> <dd>IOAM-Data-Fields are added to or removed from the user traffic by the deviceswhichthat form the edge of a domain. Deviceswhichthat form an IOAM-Domain can add,updateupdate, or remove IOAM-Data-Fields. Edge devices of an IOAM-Domain can be hosts or networkdevices.</t> <t>Traffic-setsdevices.</dd> <dt>Traffic sets that IOAM is appliedto: IOAMto:</dt> <dd>IOAM can be deployed on all or only on subsets of the user traffic. Using IOAM on a selected set of traffic (e.g., per interface, based on an access control list or flow specification defining a specific set of traffic, etc.) could be useful in deployments where the cost of processing IOAM-Data-Fields by encapsulating, transit, or decapsulatingnode(s)nodes might be a concern from a performance or operational perspective.ThusThus, limiting the amount of traffic IOAM is applied to could be beneficial in somedeployments.</t> <t>Encapsulation independence: Thedeployments.</dd> <dt>Encapsulation independence:</dt> <dd>The definition of IOAM-Data-Fields is independent from the protocols the IOAM-Data-Fields are encapsulated into. IOAM-Data-Fields can be encapsulated into several encapsulatingprotocols.</t> <t>Layering: Ifprotocols.</dd> <dt>Layering:</dt> <dd>If several encapsulation protocols (e.g., in case of tunneling) are stacked on top of each other, IOAM-Data-Fields could be present at multiple layers. The behavior follows theships-in-the-night"ships-in-the-night" model, i.e., IOAM-Data-Fields in one layer are independent from IOAM-Data-Fields in another layer. Layering allows operators to instrument the protocol layer they want to measure. The different layers could, but do not have to, share the same IOAM encapsulationmechanisms.</t> <t>IOAM implementation: Themechanisms.</dd> <dt>IOAM implementation:</dt> <dd>The definition of the IOAM-Data-Fieldstaketakes the specifics of devices with hardware data planes and software data planes intoaccount.</t>account.</dd> </dl> </section> <section anchor="IOAM_option_format"title="IOAMnumbered="true" toc="default"> <name>IOAM Data-Fields, Types,Nodes">and Nodes</name> <t>This section details IOAM-related nomenclature and describes datatypestypes, such as IOAM-Data-Fields, IOAM-Types,IOAM-NamespacesIOAM-Namespaces, as well as the different types of IOAM nodes.</t> <sectiontitle="IOAMnumbered="true" toc="default"> <name>IOAM Data-Fields andOption-Types">Option-Types</name> <t>An IOAM-Data-Field is a set of bits with a defined format and meaning, which can be stored at a certain place in a packet for the purpose of IOAM.</t> <t>To accommodate the different uses of IOAM, IOAM-Data-Fields fall into different categories. In IOAM, these categories are referred to asIOAM-Option-Types."IOAM-Option-Types". A common registry is maintained forIOAM-Option-Types, seeIOAM-Option-Types (see <xreftarget="IOAM-type-registry"/>target="IOAM-type-registry" format="default"/> fordetails.details). Corresponding to these IOAM-Option-Types, different IOAM-Data-Fields are defined.</t> <t>This document defines fourIOAM-Option-Types:<list style="symbols"> <t>Pre-allocatedIOAM-Option-Types:</t> <ul spacing="normal"> <li>Pre-allocated TraceOption-Type</t> <t>IncrementalOption-Type</li> <li>Incremental TraceOption-Type</t> <t>Proof of Transit (POT) Option-Type</t> <t>Edge-to-Edge (E2E) Option-Type</t> </list></t>Option-Type</li> <li>POT Option-Type</li> <li>E2E Option-Type</li> </ul> <t>Future IOAM-Option-Types can be allocated by IANA, as described in <xreftarget="IOAM-type-registry"/>.</t>target="IOAM-type-registry" format="default"/>.</t> </section> <sectiontitle="IOAM-Domainsnumbered="true" toc="default"> <name>IOAM-Domains andtypesTypes of IOAMNodes">Nodes</name> <t><xreftarget="IOAM_scope"/>target="IOAM_scope" format="default"/> already mentioned that IOAM is expected to be deployed in a limited domain <xreftarget="RFC8799"/>.target="RFC8799" format="default"/>. One or more IOAM-Option-Types are added to a packet upon entering an IOAM-Domain and are removed from the packet when exiting the domain. Within the IOAM-Domain, the IOAM-Data-FieldsMAY<bcp14>MAY</bcp14> be updated by network nodes that the packet traverses. An IOAM-Domain consists of "IOAM encapsulating nodes", "IOAM decapsulatingnodes"nodes", and "IOAM transit nodes". The role of a node (i.e., encapsulating, transit, and decapsulating) is defined within an IOAM-Namespace (see below). A node can have different roles in different IOAM-Namespaces.</t> <t>A devicewhichthat adds at least one IOAM-Option-Type to the packet is called an "IOAM encapsulating node", whereas a devicewhichthat removes an IOAM-Option-Type is referred to as an "IOAM decapsulating node". Nodes within the domainwhichthat are aware of IOAM data andread and/or writeread, write, and/or process IOAM data are called "IOAM transit nodes". IOAM nodeswhichthat add or remove the IOAM-Data-Fields can also update the IOAM-Data-Fields at the same time.OrOr, in other words, IOAM encapsulating or decapsulating nodes can also serve as IOAM transit nodes at the same time. Note that not every node in anIOAM-domainIOAM-Domain needs to be an IOAM transit node. For example, a deployment might require that packets traverse a set of firewallswhichthat support IOAM. In that case, only the set of firewall nodes would be IOAM transitnodesnodes, rather than all nodes.</t> <t>An"IOAMIOAM encapsulatingnode"node incorporates one or more IOAM-Option-Types (from the list of IOAM-Types, see <xreftarget="IOAM-type-registry"/>)target="IOAM-type-registry" format="default"/>) into packets that IOAM is enabled for. If IOAM is enabled for a selected subset of the traffic, the IOAM encapsulating node is responsible for applying the IOAM functionality to the selected subset.</t> <t>An"IOAMIOAM transitnode" reads and/or writesnode reads, writes, and/or processes one or more of the IOAM-Data-Fields. If both the Pre-allocated and the Incremental Trace Option-Types are present in the packet, each IOAM transitnodenode, based on configuration and available implementation ofIOAMIOAM, might populate IOAM trace data in either a Pre-allocated or Incremental Trace Option-Type but not both. Note that not populating any of the Trace Option-Types is also valid behavior for an IOAM transit node. A transit nodeMUST<bcp14>MUST</bcp14> ignore IOAM-Option-Types that it does not understand. A transit nodeMUST NOT<bcp14>MUST NOT</bcp14> add new IOAM-Option-Types to a packet,MUST NOT<bcp14>MUST NOT</bcp14> remove IOAM-Option-Types from a packet, andMUST NOT<bcp14>MUST NOT</bcp14> change the IOAM-Data-Fields of an IOAM Edge-to-Edge Option-Type.</t> <t>An"IOAMIOAM decapsulatingnode"node removes IOAM-Option-Type(s) from packets.</t> <t>The role of anIOAM-encapsulating, IOAM-transitIOAM encapsulating, IOAM transit, orIOAM-decapsulatingIOAM decapsulating node is always performed within a specific IOAM-Namespace. This means that an IOAM nodewhichthat is, e.g., anIOAM-decapsulatingIOAM decapsulating node for IOAM-Namespace "A" but not for IOAM-Namespace "B" will only remove the IOAM-Option-Types for IOAM-Namespace "A" from the packet. Note that this applies even for IOAM-Option-Types that the node does not understand, forexampleexample, an IOAM-Option-Type other than the four described above,thatwhich is added in a future revision.</t> <t>IOAM-Namespaces allow for a namespace-specific definition and interpretation of IOAM-Data-Fields. Aninterface-id couldinterface identifier could, forexampleexample, point to a physical interface (e.g., to understand which physical interface of an aggregated link is used when receiving or transmitting apacket) whereaspacket), whereas, in anothercasecase, it could refer to a logical interface (e.g., in case of tunnels). Please refer to <xreftarget="ioam_namespaces"/>target="ioam_namespaces" format="default"/> for details on IOAM-Namespaces.</t> </section> <section anchor="ioam_namespaces"title="IOAM-Namespaces">numbered="true" toc="default"> <name>IOAM-Namespaces</name> <t>IOAM-Namespaces add further context to IOAM-Option-Types and associated IOAM-Data-Fields. The IOAM-Option-Types and associated IOAM-Data-Fields are interpreted as defined in this document, regardless of the value of the IOAM-Namespace. However, IOAM-Namespaces provide a way to group nodes to support different deployment approaches of IOAM (see a few exampleuse-casesuse cases below). IOAM-Namespaces also help to resolve potential issueswhichthat can occur due to IOAM-Data-Fields not being globally unique (e.g., IOAM node identifiers do not have to be globally unique).IOAM-Data-FieldsThe significance of IOAM-Data-Fields is always within a particular IOAM-Namespace. Given that IOAM-Data-Fields are always interpreted as the context of a specific namespace, thenamespace-idNamespace-ID field always needs to be carried along with the IOAM data-fields themselves.</t> <t>An IOAM-Namespace is identified by a 16-bit namespace identifier (Namespace-ID). The IOAM-Namespace field is included in all the IOAM-Option-Types defined in thisdocument,document andMUST<bcp14>MUST</bcp14> be included in all future IOAM-Option-Types. The Namespace-ID value is divided into twosub-ranges:</t> <t><list style="symbols"> <t>Ansubranges:</t> <ul spacing="normal"> <li>an operator-assigned range from 0x0001 to0x7FFF</t> <t>An0x7FFF and</li> <li>an IANA-assigned range from 0x8000 to0xFFFF</t> </list>The0xFFFF.</li> </ul> <t>The IANA-assigned range is intended to allow future extensions to have new and interoperable IOAM functionality, while the operator-assigned range is intended to bedomain-specific,domain specific and managed by the network operator. The Namespace-ID value of 0x0000 is the "Default-Namespace-ID". The Default-Namespace-ID indicates that no specific namespace is associated with theIOAM data fieldsIOAM-Data-Fields in the packet. The Default-Namespace-IDMUST<bcp14>MUST</bcp14> be supported by all nodes implementing IOAM. Ause-caseuse case for the Default-Namespace-ID are deploymentswhichthat do not leverage specific namespaces for some or all of their packets that carryIOAM data fields.</t>IOAM-Data-Fields.</t> <t>Namespace identifiers allow deviceswhichthat are IOAM capable to determine:</t><t><list style="symbols"> <t>whether IOAM-Option-Type(s)<ul spacing="normal"> <li>whether one or more IOAM-Option-Types need to be processed by adevice:device. If the Namespace-ID contained in a packet does not match any Namespace-ID the node is configured to operate on, then the nodeMUST NOT<bcp14>MUST NOT</bcp14> change the contents of theIOAM-Data-Fields.</t> <t>whichIOAM-Data-Fields.</li> <li>which IOAM-Option-Type needs to be processed/updated in case there are multiple IOAM-Option-Types present in the packet. Multiple IOAM-Option-Types can be present in a packet in case of overlapping IOAM-Domains or in case of a layered IOAMdeployment.</t> <t>whether IOAM-Option-Type(s)deployment.</li> <li>whether one or more IOAM-Option-Types have to be removed from the packet, e.g., at a domain edge or domainboundary.</t> </list></t>boundary.</li> </ul> <t>IOAM-Namespaces support several different uses:</t><t><list style="symbols"> <t>IOAM-Namespaces<ul spacing="normal"> <li>IOAM-Namespaces can be used by an operator to distinguish differentIOAM-domains.IOAM-Domains. Devices at edges of anIOAM-domainIOAM-Domain can filter on Namespace-IDs to provide for properIOAM-domain isolation.</t> <t>IOAM-NamespacesIOAM-Domain isolation.</li> <li>IOAM-Namespaces provide additional context for IOAM-Data-Fieldsand thusand, thus, can be used to ensure that IOAM-Data-Fields are unique and are interpreted properly by management stations or network controllers. The node identifier field (node_id, see below) does not need to be unique in a deployment. This could be the case if an operator wishes to use different node identifiers for different IOAM layers, even within the samedevicedevice, or node identifiers might not be unique for other organizational reasons, such as after a merger of two formerly separated organizations. The Namespace-ID can be used as a context identifier, such that the combination of node_id and Namespace-ID will always beunique.</t> <t>unique.</li> <li> Similarly, IOAM-Namespaces can be used to define how certain IOAM-Data-Fields areinterpreted:interpreted; IOAM offers three different timestamp format options. The Namespace-ID can be used to determine the timestamp format. IOAM-Data-Fields (e.g., buffer occupancy)whichthat do not have a unit associated are to be interpreted within the context ofa IOAM-Namespace.</t> <t>IOAM-Namespacesan IOAM-Namespace.</li> <li>IOAM-Namespaces can be used to identify different sets of devices (e.g., different types of devices) in adeployment: Ifdeployment; if an operatordesireswants to insert different IOAM-Data-Fields based on the device, the devices could be grouped into multiple IOAM-Namespaces. This could be due to the fact that the IOAM feature set differs between different sets of devices, or it could be for reasons of optimized space usage in the packet header. It could also stem from hardware or operational limitations on the size of the trace data that can be added and processed, preventing collection of a full trace for aflow.</t> <t>Byflow.</li> <li>By assigning different IOAM Namespace-IDs to different sets of nodes or network partitions and using a separate instance of an IOAM-Option-Type for each Namespace-ID, a full trace for a flow could be collected and constructed via partial traces from each IOAM-Option-Type in each of the packets in the flow.Example: AnFor example, an operator could choose to group the devices of a domain into twoIOAM-Namespaces,IOAM-Namespaces in a way that each IOAM-Namespace is represented by one of two IOAM-Option-Types in the packet. Each node would record data only for the IOAM-Namespace that it belongs to, ignoring the other IOAM-Option-Type withaan IOAM-Namespace to which it doesn't belong. To retrieve a full view of the deployment, the captured IOAM-Data-Fields of the two IOAM-Namespaces need to becorrelated.</t> </list></t>correlated.</li> </ul> </section> <section anchor="IOAM_tracing_option"title="IOAMnumbered="true" toc="default"> <name>IOAM TraceOption-Types">Option-Types</name> <t> In a typical deployment, all nodes in an IOAM-Domain would participate inIOAM and thusIOAM; thus, they would be IOAM transit nodes, IOAM encapsulating nodes, or IOAM decapsulating nodes. If not all nodes within a domain support IOAM functionality as defined in this document, IOAM tracing information (i.e., node data, see below) can only be collected on those nodeswhichthat support IOAM functionality as defined in this document. Nodeswhichthat do not support IOAM functionality as defined in this document will forward the packet without any changes to the IOAM-Data-Fields. The maximum number of hops and the minimumpath MTUPMTU of theIOAM-domainIOAM-Domain is assumed to be known. An overflow indicator (O-bit) is defined as one of the ways to deal with situations where the PMTU was underestimated, i.e., where the number of hopswhichthat are IOAM capable exceeds the available space in the packet.</t> <t>To optimize hardware and software implementations, IOAM tracing is defined as two separate options. A deployment can choose to configure and support one or both of the following options.</t><t><list style="hanging"> <t hangText="Pre-allocated Trace-Option:">This<dl newline="true" spacing="normal"> <dt>Pre-allocated Trace-Option:</dt> <dd>This trace option is defined as a container of node data fields (see below) with pre-allocated space for each node to populate its information. This option is useful for implementations where it is efficient to allocate the space once and index into the array to populate the data during transit (e.g., software forwarders often fall into this class). The IOAM encapsulating node allocates space for the Pre-allocated Trace Option-Type in the packet and sets corresponding fields in this IOAM-Option-Type. The IOAM encapsulating node allocates an arraywhichthat is used to store operational data retrieved from every node while the packet traverses the domain. IOAM transit nodes update the content of thearray,array and possibly update the checksums of outer headers. A pointerwhichthat is part of the IOAM tracedata,data points to the next empty slot in the array. An IOAM transit node that updates the content of thepre-allocated optionPre-allocated Trace-Option also updates the value of the pointer, which specifies where the next IOAM transit node fills in its data. The "node data list" array (see below) in the packet is populated iteratively as the packet traverses the network, starting with the last entry of the array, i.e., "node data list [n]" is the first entry to be populated, "node data list [n-1]" is the second one,etc.</t> <t hangText="Incremental Trace-Option:">Thisetc.</dd> <dt>Incremental Trace-Option:</dt> <dd>This trace option is defined as a container of node datafieldsfields, where each node allocates and pushes its node data immediately following the option header. This type of trace recording is useful for some of the hardwareimplementationsimplementations, as it eliminates the need for the transit network elements to read the full array in the option and allows for as arbitrarily long packets as the MTU allows. The IOAM encapsulating node allocates space for the Incremental Trace Option-Type. Based on the operational state and configuration, the IOAM encapsulating node sets the fields in the Option-Type that control what IOAM-Data-Fields have to be collected and how large the node data list can grow. IOAM transit nodes push their node data to the node data list subject to any protocol constraints of the encapsulating layer. They then decrease the remaining length available to subsequent nodes and adjust the lengths and possibly checksums in outerheaders.</t> </list></t>headers.</dd> </dl> <t>IOAM encapsulating nodes and IOAM decapsulating nodeswhichthat support tracingMUST<bcp14>MUST</bcp14> support bothTrace-Option-Types.Trace Option-Types. For IOAM transitnodesnodes, it is sufficient to support one of theTrace-Option-Types.Trace Option-Types. In the event that both options are utilized in a deployment at the same time, the Incremental Trace-OptionMUST<bcp14>MUST</bcp14> be placed before the Pre-allocated Trace-Option. Deploymentswhichthat mix devices with either the Incremental Trace-Option or the Pre-allocated Trace-Option could result in both Option-Types being present in a packet. Given that the operator knows which equipment is deployed in a particularIOAM-domain,IOAM-Domain, the operator will decide by means of configuration which type(s) of trace options will be used for a particular domain.</t> <t>Every node data entry holds information for a particular IOAM transit node that is traversed by a packet. The IOAM decapsulating node removes theIOAM-Option-Type(s)IOAM-Option-Types and processes and/or exports the associated data. Like all IOAM-Data-Fields, the IOAM-Data-Fields of theIOAM-Trace-Option-TypesIOAM Trace Option-Types are defined in the context of an IOAM-Namespace.</t> <t>IOAM tracing can collect the following types of information:</t><t><list style="symbols"> <t>Identification<ul spacing="normal"> <li>Identification of the IOAM node. An IOAM node identifier can match to a device identifier or a particular control point or subsystem within adevice.</t> <t>Identificationdevice.</li> <li>Identification of the interface that a packet was received on, i.e., ingressinterface.</t> <t>Identificationinterface.</li> <li>Identification of the interface that a packet was sent out on, i.e., egressinterface.</t> <t>Timeinterface.</li> <li>Time of day when the packet was processed by thenodenode, as well as the transit delay. Different definitions of processing time are feasible and expected, though it is important that all devices of anIOAM-domainIOAM-Domain follow the samedefinition.</t> <t>Generic data: Format-freedefinition.</li> <li>Generic data, i.e., format-free information where syntax andsemanticsemantics of the information is defined by the operator in a specific deployment. For a specific IOAM-Namespace, all IOAM nodes have to interpret the generic data the same way. Examples for generic IOAM data includegeo-locationgeolocation information (location of the node at the time the packet was processed), buffer queue fill level or cache fill level at the time the packet was processed, or even abattery charge level.</t> <t>Informationbattery-charge level.</li> <li>Information to detect whether IOAM trace data was added at every hop or whether certain hops in the domain weren't IOAM transitnodes.</t> </list></t>nodes.</li> </ul> <t>It should be noted that the semantics of some of the node data fields that are defined below, such as the queue depth and buffer occupancy, are implementation specific. This approach is intended to allow IOAM nodes with various different architectures.</t> <section anchor="TraceOptionDef"title="Pre-allocatednumbered="true" toc="default"> <name>Pre-allocated and Incremental TraceOption-Types">Option-Types</name> <t>The IOAM Pre-allocated Trace-Option and the IOAM Incremental Trace-Option have similar formats. Except where noted below, the internal formats and fields of the two trace options are identical. BothTrace-Optionstrace options consist of afixed sizefixed-size "trace option header" and a variable data space to store gathered data, i.e., the "node data list". An IOAM transit node (thatisis, not an IOAM encapsulating node or IOAM decapsulating node)MUST NOT<bcp14>MUST NOT</bcp14> modify any of the fields in thefixed size “tracefixed-size "trace optionheader”,header", other than“flags”Flags" and“RemainingLen”,"RemainingLen", i.e., an IOAM transit nodeMUST NOT<bcp14>MUST NOT</bcp14> modify the Namespace-ID, NodeLen,IOAM-Trace-Type,IOAM Trace-Type, or Reserved fields.</t><t><figure> <artwork><![CDATA[<t>The Pre-allocated andincremental trace option headers:Incremental Trace-Option headers:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Namespace-ID |NodeLen | Flags | RemainingLen| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |IOAM-Trace-TypeIOAM Trace-Type | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+The]]></artwork> <t>The trace option dataMUST<bcp14>MUST</bcp14> be4-octet aligned:alligned by 4 octets:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | | | | node data list [0] | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ D | | a | node data list [1] | t | | a +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ ... ~ S +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ p | | a | node data list [n-1] | c | | e +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | | node data list [n] | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ ]]></artwork></figure> <list style="hanging"> <t hangText="Namespace-ID:">16-bit<dl newline="true" spacing="normal"> <dt>Namespace-ID:</dt> <dd>16-bit identifier of an IOAM-Namespace. The Namespace-ID value of 0x0000 is defined as the "Default-Namespace-ID" (see <xreftarget="ioam_namespaces"/>)target="ioam_namespaces" format="default"/>) andMUST<bcp14>MUST</bcp14> be known to all the nodes implementing IOAM. For any other Namespace-ID value that does not match any Namespace-ID the node is configured to operate on, the nodeMUST NOT<bcp14>MUST NOT</bcp14> change the contents of theIOAM-Data-Fields.</t> <t hangText="NodeLen:">5-bitIOAM-Data-Fields.</dd> <dt>NodeLen:</dt> <dd> <t>5-bit unsigned integer. This field specifies the length of data added by each node in multiples of4-octets,4 octets, excluding the length of the "Opaque State Snapshot" field.<vspace blankLines="1"/>If IOAM-Trace-Type bit</t> <t>If IOAM Trace-Type Bit 22 is not set, then NodeLen specifies the actual length added by each node. IfIOAM-Trace-Type bitIOAM Trace-Type Bit 22 is set, then the actual length added by a node would be (NodeLen + length of the "Opaque State Snapshot" field) in4 octet4-octet units.<vspace blankLines="1"/>For</t> <t>For example, if 3IOAM-Trace-TypeIOAM Trace-Type bits are set and none of them are in wide format, then NodeLen would be 3. If 3IOAM-Trace-TypeIOAM Trace-Type bits are set and 2 of them are wide, then NodeLen would be 5.<vspace blankLines="1"/>An</t> <t>An IOAM encapsulating nodeMUST<bcp14>MUST</bcp14> set NodeLen.<vspace blankLines="1"/>A</t> <t>A node receiving an IOAM Pre-allocated or Incremental Trace-Option relies on the NodeLen value.</t><t anchor="TraceFlags" hangText="Flags">4-bit</dd> <dt>Flags:</dt> <dd anchor="TraceFlags"> <t>4-bit field. Flags are allocated by IANA, as specified in <xreftarget="Flags-Registry-Sec"/>.target="Flags-Registry-Sec" format="default"/>. This document allocates a single flag as follows:<list style="hanging"> <t hangText="Bit 0">"Overflow"</t> <dl newline="true" spacing="normal"> <dt>Bit 0:</dt> <dd>"Overflow" (O-bit) (most significant bit). In case a network element is supposed to add node data to apacket,packet but detects that there are not enough octets left to record the node data, the network elementMUST NOT<bcp14>MUST NOT</bcp14> add any fields andMUST<bcp14>MUST</bcp14> set the overflow "O-bit" to "1" in theIOAM-Trace-OptionIOAM Trace-Option header. This is useful for transit nodes to ignore further processing of theoption.</t> </list></t> <t hangText="RemainingLen:">7-bitoption.</dd> </dl> </dd> <dt>RemainingLen:</dt> <dd>7-bit unsigned integer. This field specifies the data space in multiples of4-octets4 octets remaining for recording the nodedata,data before the node data list is considered to have overflowed. The senderMUST<bcp14>MUST</bcp14> assign the initial value of the RemainingLen field. The senderMAY<bcp14>MAY</bcp14> calculate the value of the RemainingLen field by computing the number of node data bytes allowed before exceeding thepath MTU (PMTU),PMTU, given that the PMTU is known to the sender. Subsequent nodes can carry out a simple comparison between RemainingLen and NodeLen, along with the length of the "Opaque StateSnapshot"Snapshot", if applicable, to determine whether or not data can be added by this node. When node data is added, the nodeMUST<bcp14>MUST</bcp14> decrease RemainingLen by the amount of data added. In thepre-allocated trace option,Pre-allocated Trace-Option, RemainingLen is used to derive the offset in data space to record the node data element. Specifically, the recording of the node data element would start from RemainingLen - NodeLen -sizeof(opaquesize of (opaque snapshot) in4 octet4-octet units. If RemainingLen in apre-allocated trace optionPre-allocated Trace-Option exceeds the length of the option, as specified in thelower layerlower-layer header (which is not within the scope of this document), then the nodeMUST NOT<bcp14>MUST NOT</bcp14> add anyfields. </t> <t anchor="IOAMTraceType" hangText="IOAM-Trace-Type:">A 24-bitfields.</dd> <dt>IOAM Trace-Type:</dt> <dd anchor="IOAMTraceType"> <t>24-bit identifierwhichthat specifies which data types are used in this node data list.</t><t hangText=" ">The IOAM-Trace-Type<t>The IOAM Trace-Type value is a bit field. The following bits are defined in this document, with details on each bit described inthe<xreftarget="trace-node-data-element"/>.target="trace-node-data-element" format="default"/>. The order of packing the data fields in each node data element follows the bit order of theIOAM-Trace-Type field,IOAM Trace-Type field asfollows:<list hangIndent="9" style="hanging"> <t hangText="Bit 0">(Mostfollows:</t> <dl newline="false" spacing="normal" indent="10"> <dt>Bit 0</dt> <dd>Most significantbit)bit. When set, indicates the presence of Hop_Lim and node_id (short format) in the nodedata.</t> <t hangText="Bit 1">Whendata.</dd> <dt>Bit 1</dt> <dd>When set, indicates the presence of ingress_if_id and egress_if_id (short format) in the nodedata.</t> <t hangText="Bit 2">Whendata.</dd> <dt>Bit 2</dt> <dd>When set, indicates the presence of timestamp seconds in the nodedata.</t> <t hangText="Bit 3">Whendata.</dd> <dt>Bit 3</dt> <dd>When set, indicates the presence of timestamp fraction in the nodedata.</t> <t hangText="Bit 4">Whendata.</dd> <dt>Bit 4</dt> <dd>When set, indicates the presence of transit delay in the nodedata.</t> <t hangText="Bit 5">Whendata.</dd> <dt>Bit 5</dt> <dd>When set, indicates the presence ofIOAM-Namespace specificIOAM-Namespace-specific data(short format)in short format in the nodedata.</t> <t hangText="Bit 6">Whendata.</dd> <dt>Bit 6</dt> <dd>When set, indicates the presence of queue depth in the nodedata.</t> <t hangText="Bit 7">Whendata.</dd> <dt>Bit 7</dt> <dd>When set, indicates the presence of the Checksum Complement nodedata.</t> <t hangText="Bit 8">Whendata.</dd> <dt>Bit 8</dt> <dd>When set, indicates the presence of Hop_Lim and node_id in wide format in the nodedata.</t> <t hangText="Bit 9">Whendata.</dd> <dt>Bit 9</dt> <dd>When set, indicates the presence of ingress_if_id and egress_if_id in wide format in the nodedata.</t> <t hangText="Bit 10">Whendata.</dd> <dt>Bit 10</dt> <dd>When set, indicates the presence ofIOAM-Namespace specificIOAM-Namespace-specific data in wide format in the nodedata.</t> <t hangText="Bit 11">Whendata.</dd> <dt>Bit 11</dt> <dd>When set, indicates the presence of buffer occupancy in the nodedata.</t> <t hangText="Bit 12-21">Undefined.data.</dd> <dt>Bits 12-21</dt> <dd> <t>Undefined. These values are available for future assignment in the IOAM Trace-Type Registry (<xreftarget="ioam-trace-type-registry"/>).target="ioam-trace-type-registry" format="default"/>). Every future node data field corresponding to one of these bitsMUST<bcp14>MUST</bcp14> be4-octets4 octets long. An IOAM encapsulating nodeMUST<bcp14>MUST</bcp14> set the value of each undefined bit to 0. If an IOAM transit node receives a packet with one or more of these bits set to 1, itMUST<bcp14>MUST</bcp14> either:<list style="numbers"> <t>Add</t> <ol spacing="normal" type="1"> <li>add corresponding node data filled with the reserved value0xFFFFFFFF,0xFFFFFFFF after the node data fields for theIOAM-Trace-TypeIOAM Trace-Type bits defined above, such that the total node data added by this node in units of4-octets4 octets is equal toNodeLen, or</t> <t>NotNodeLen or</li> <li>not add any node data fields to the packet, even for theIOAM-Trace-TypeIOAM Trace-Type bits definedabove.</t> </list></t> <t hangText="Bit 22">Whenabove.</li> </ol> </dd> <dt>Bit 22</dt> <dd>When set, indicates the presence ofvariable lengththe variable-length Opaque State Snapshotfield.</t> <t hangText="Bit 23">Reserved: MUSTfield.</dd> <dt>Bit 23</dt> <dd>Reserved; <bcp14>MUST</bcp14> be set to zero upon transmission and be ignored upon receipt. This bit is reserved to allow for future extensions of theIOAM-Trace-TypeIOAM Trace-Type bitfield.</t> </list></t> <t hangText=" "><xref target="trace-node-data-element"/>field.</dd> </dl> <t><xref target="trace-node-data-element" format="default"/> describes the IOAM-Data-Types and their formats. Within anIOAM-DomainIOAM-Domain, possible combinations of these bits making theIOAM-Trace-TypeIOAM Trace-Type can be restricted by configurationknobs.</t> <t hangText="Reserved:">8-bits.knobs.</t></dd> <dt>Reserved:</dt> <dd>8 bits. An IOAM encapsulating nodeMUST<bcp14>MUST</bcp14> set the value to zero upon transmission. IOAM transit nodesMUST<bcp14>MUST</bcp14> ignore the receivedvalue.</t> <t hangText="Nodevalue.</dd> <dt>Node data List[n]:">Variable-length[n]:</dt> <dd>Variable-length field. This is a list of node data elements where the content of each node data element is determined by theIOAM-Trace-Type.IOAM Trace-Type. The order of packing the data fields in each node data element follows the bit order of theIOAM-Trace-TypeIOAM Trace-Type field. Each nodeMUST<bcp14>MUST</bcp14> prepend its node data element in front of the node data elements that it received, such that the transmitted node data list begins with this node's data element as the first populated element in the list. The last node data element in this list is the node data of the firstIOAM capableIOAM-capable node in the path. Populating the node data list in this way ensures that the order of the node data list is the same forincrementalIncremental andpre-allocated trace options.Pre-allocated Trace-Options. In thepre-allocated trace option,Pre-allocated Trace-Option, the index contained in RemainingLen identifies the offset for current active node data to bepopulated.</t> </list></t>populated.</dd> </dl> </section> <section anchor="trace-node-data-element"title="IOAM node data fieldsnumbered="true" toc="default"> <name>IOAM Node Data Fields andassociated formats">Associated Formats</name> <t>All the IOAM-Data-FieldsMUST<bcp14>MUST</bcp14> be4-octet aligned.aligned by 4 octets. If a nodewhichthat is supposed to update an IOAM-Data-Field is not capable of populating the value of a field set in theIOAM-Trace-Type,IOAM Trace-Type, the field valueMUST<bcp14>MUST</bcp14> be set to 0xFFFFFFFF for 4-octet fields or 0xFFFFFFFFFFFFFFFF for 8-octet fields, indicating that the value is not populated, except when explicitly specified in the field description below.</t> <t>Some IOAM-Data-Fields defined below, such as interface identifiers orIOAM-Namespace specificIOAM-Namespace-specific data, are defined in both "short format"as well asand "wide format". The use of "short format" or "wide format" is not mutually exclusive. A deployment could choose to leverage both. For example, ingress_if_id_(short format) could be an identifier for the physical interface, whereas ingress_if_id_(wide format) could be an identifier for a logical sub-interface of that physical interface.</t> <t>Data fields and associated data types for each of the IOAM-Data-Fields are specified in the following sections. The definition of IOAM-Data-Fields focuses on the syntax of thedata-fieldsdata fields and avoids specifying the semantics where feasible. This is why no units are defined fordata-fields likedata fields, e.g., like "buffer occupancy" or "queue depth". With this approach, nodes can supply the information in theirnativeoriginal format and are not required to perform unit or format conversions. Systems that further process IOAM information,likee.g., like a network managementsystemsystem, are assumed to also handle unit conversions as part of theirIOAM data-fieldsIOAM-Data-Fields processing. The combination of a particulardata-fielddata field and thenamespace-idNamespace-ID provides for the context to interpret the provided data appropriately. </t> <section anchor="Hop_Lim"title="Hop_Limnumbered="true" toc="default"> <name>Hop_Lim and node_idshort format">Short</name> <t>The "Hop_Lim and node_idshort format"short" field is a 4-octet field that is defined as follows:<figure> <artwork><![CDATA[</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure><list style="hanging"> <t hangText="Hop_Lim:">1-octet+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> <dl newline="true" spacing="normal"> <dt>Hop_Lim:</dt> <dd>1-octet unsigned integer. It is set to the Hop Limit value in the packet at egress from the node that records this data. Hop Limit information is used to identify the location of the node in the communication path. This is copied from the lower layer, e.g., TTL value in IPv4 header orhop limitHop Limit field from IPv6 header of the packet when the packet is ready for transmission. The semantics of the Hop_Lim field depend on thelower layerlower-layer protocol that IOAM is encapsulatedinto, and thereforeinto; therefore, its specific semantics are outside the scope of this memo. The value of this fieldMUST<bcp14>MUST</bcp14> be set to 0xff when the lower level does not have aTTL/Hop limitfield equivalentfield.</t> <t hangText="node_id:">3-octetto TTL / Hop Limit.</dd> <dt>node_id:</dt> <dd>3-octet unsigned integer.NodeA node identifier field to uniquely identify a node within the IOAM-Namespace and associated IOAM-Domain. The procedure to allocate,managemanage, and map the node_ids is beyond the scope of this document. See <xreftarget="I-D.ietf-ippm-ioam-deployment"/>target="I-D.ietf-ippm-ioam-deployment" format="default"/> for a discussion ofdeployment relateddeployment-related aspects of the node_id.</t> </list></t></dd> </dl> </section> <sectiontitle="ingress_if_idnumbered="true" toc="default"> <name>ingress_if_id andegress_if_id">egress_if_id Short</name> <t>The "ingress_if_id and egress_if_id" field is a 4-octet field that is defined as follows:<figure> <artwork><![CDATA[</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ingress_if_id | egress_if_id |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure><list style="hanging"> <t hangText="ingress_if_id:">2-octet+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> <dl newline="true" spacing="normal"> <dt>ingress_if_id:</dt> <dd>2-octet unsigned integer.InterfaceAn interface identifier to record the ingress interface the packet was receivedon.</t> <t hangText="egress_if_id:">2-octeton.</dd> <dt>egress_if_id:</dt> <dd>2-octet unsigned integer.InterfaceAn interface identifier to record the egress interface the packet is forwarded outof.</t> </list>Noteof.</dd> </dl> <t>Note that due to the fact that IOAM uses its own IOAM-Namespaces for IOAM-Data-Fields, datafieldsfields, like interfaceidentifiersidentifiers, can be used in a flexible way to represent system resources that are associated with ingressing or egressing packets, i.e., ingress_if_id could represent a physical interface, a virtual or logical interface, or even a queue.</t> </section> <sectiontitle="timestamp seconds">numbered="true" toc="default"> <name>Timestamp Seconds</name> <t>The "timestamp seconds" field is a 4-octet unsigned integer field. It contains the absolute timestamp in seconds that specifies the time at which the packet was received by the node. This field has three possibleformats;formats, based on eitherPTPthe Precision Time Protocol (PTP) (see e.g., <xreftarget="RFC8877"/>),target="RFC8877" format="default"/>), NTP <xreftarget="RFC5905"/>,target="RFC5905" format="default"/>, or POSIX <xreftarget="POSIX"/>.target="POSIX" format="default"/>. The three timestamp formats are specified in <xreftarget="TimestampSec"/>.target="TimestampSec" format="default"/>. In all three cases, theTimestamp Secondstimestamp seconds field contains the 32 most significant bits of the timestamp format that is specified in <xreftarget="TimestampSec"/>.target="TimestampSec" format="default"/>. If a node is not capable of populating this field, it assigns the value 0xFFFFFFFF. Note that this is a legitimate value that is valid for 1 second in approximately 136 years; the analyzer has to correlate several packets or compare the timestamp value to its owntime-of-daytime of day in order to detect the error indication.</t> </section> <sectiontitle="timestamp fraction">numbered="true" toc="default"> <name>Timestamp Fraction</name> <t>The "timestamp fraction" field is a 4-octet unsigned integer field. Fraction specifies the fractional portion of the number of seconds since the NTP epoch <xreftarget="RFC8877"/>.target="RFC8877" format="default"/>. The field specifies the time at which the packet was received by the node. This field has three possibleformats;formats, based on either PTP (see e.g., <xreftarget="RFC8877"/>),target="RFC8877" format="default"/>), NTP <xreftarget="RFC5905"/>,target="RFC5905" format="default"/>, or POSIX <xreftarget="POSIX"/>.target="POSIX" format="default"/>. The three timestamp formats are specified in <xreftarget="TimestampSec"/>.target="TimestampSec" format="default"/>. In all three cases, theTimestamptimestamp fraction field contains the 32 least significant bits of the timestamp format that is specified in <xreftarget="TimestampSec"/>.target="TimestampSec" format="default"/>. If a node is not capable of populating this field, it assigns the value 0xFFFFFFFF. Note that this is a legitimate value in the NTP format, valid for approximately 233 picoseconds in every second. If the NTP format isusedused, the analyzer has to correlate several packets in order to detect the error indication.</t> </section> <sectiontitle="transit delay">numbered="true" toc="default"> <name>Transit Delay</name> <t>The "transit delay" field is a 4-octet unsigned integer in the range 0 to2^31-1.2<sup>31</sup>-1. It is the time in nanoseconds the packet spent in the transit node. This can serve as an indication of the queuing delay at the node. If the transit delay exceeds2^31-1 nanoseconds2<sup>31</sup>-1 nanoseconds, then the top bit 'O' is set to indicate overflow and value set to 0x80000000. When this field is part of the data field but a node populating the field is not able to fill it, the field position in the fieldMUST<bcp14>MUST</bcp14> be filled with value 0xFFFFFFFF to mean notpopulated.<figure> <artwork><![CDATA[populated.</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |O| transit delay |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure></t>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> </section> <sectiontitle="namespace specific data">numbered="true" toc="default"> <name>Namespace-Specific Data</name> <t>The"namespace specific"namespace-specific data" field is a 4-octet fieldwhichthat can be used by the node to addIOAM-Namespace specificIOAM-Namespace-specific data. This represents a "free-format" 4-octet bit field with its semantics defined in the context of a specificIOAM-Namespace.<figure> <artwork><![CDATA[IOAM-Namespace.</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |namespace specificnamespace-specific data |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure></t>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> </section> <sectiontitle="queue depth">numbered="true" toc="default"> <name>Queue Depth</name> <t>The "queue depth" field is a 4-octet unsigned integer field. This field indicates the current length of the egress interface queue of the interface from where the packet is forwarded out. The queue depth is expressed as the current amount of memory buffers used by the queue (a packet could consume one or more memory buffers, depending on its size).<figure> <artwork><![CDATA[</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | queue depth |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure></t>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> </section> <sectiontitle="Checksum Complement">numbered="true" toc="default"> <name>Checksum Complement</name> <t>The "Checksum Complement" field is a 4-octet node datawhichthat containsa 4-octetthe Checksum Complementfield.value. The Checksum Complement is useful when IOAM is transported over encapsulations that make use of a UDP transport, such as VXLAN-GPE or Geneve. Without the Checksum Complement, nodes adding IOAM node data update the UDP Checksum field following the recommendation of the encapsulation protocols. When the Checksum Complement is present, an IOAM encapsulating node or IOAM transit node adding node dataMUST<bcp14>MUST</bcp14> carry out one of the following two alternatives in order to maintain the correctness of the UDP Checksumvalue: <list style="numbers"> <t>Recomputevalue:</t> <ol spacing="normal" type="1"> <li>recompute the UDP Checksumfield.</t> <t>Usefield or</li> <li>use the Checksum Complement to make a checksum-neutral update in the UDP payload; the Checksum Complement is assigned a value that complements the rest of the node data fields that were added by the current node, causing the existing UDP Checksum field to remaincorrect.</t> </list>correct.</li> </ol> <t> IOAM decapsulating nodesMUST<bcp14>MUST</bcp14> recompute the UDP Checksum field, since they do not know whether previous hops modified the UDP Checksum field or the Checksum Complementfield. <vspace blankLines="1"/>field.</t> <t> Checksum Complement fields are used in a similar manner in <xreftarget="RFC7820"/>target="RFC7820" format="default"/> and <xreftarget="RFC7821"/>. <figure> <artwork><![CDATA[target="RFC7821" format="default"/>. </t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum Complement |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure></t>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> </section> <sectiontitle="Hop_Limnumbered="true" toc="default"> <name>Hop_Lim and node_idwide">Wide</name> <t>The "Hop_Lim and node_id wide" field is an 8-octet field defined as follows:<figure> <artwork><![CDATA[</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ node_id (contd) |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure><list style="hanging"> <t hangText="Hop_Lim:">1-octet+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> <dl newline="true" spacing="normal"> <dt>Hop_Lim:</dt> <dd>1-octet unsigned integer. See <xreftarget="Hop_Lim"/>target="Hop_Lim" format="default"/> for the definition of thefield.</t> <t hangText="node_id:">7-octetfield.</dd> <dt>node_id:</dt> <dd>7-octet unsigned integer.NodeIt is a node identifier field to uniquely identify a node within the IOAM-Namespace and associated IOAM-Domain. The procedure to allocate,managemanage, and map the node_ids is beyond the scope of thisdocument.</t> </list></t>document.</dd> </dl> </section> <sectiontitle="ingress_if_idnumbered="true" toc="default"> <name>ingress_if_id and egress_if_idwide">Wide</name> <t>The "ingress_if_id and egress_if_id wide" field is an 8-octetfieldfield, which is defined as follows:<figure> <artwork><![CDATA[</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ingress_if_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | egress_if_id |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure><list style="hanging"> <t hangText="ingress_if_id:">4-octet+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> <dl newline="true" spacing="normal"> <dt>ingress_if_id:</dt> <dd>4-octet unsigned integer.InterfaceIt is an interface identifier to record the ingress interface the packet was receivedon.</t> <t hangText="egress_if_id:">4-octeton.</dd> <dt>egress_if_id:</dt> <dd>4-octet unsigned integer.InterfaceIt is an interface identifier to record the egress interface the packet is forwarded outof.</t> </list></t>of.</dd> </dl> </section> <sectiontitle="namespace specific data wide">numbered="true" toc="default"> <name>Namespace-Specific Data Wide</name> <t>The"namespace specific"namespace-specific data wide" field is an 8-octet fieldwhichthat can be used by the node to addIOAM-Namespace specificIOAM-Namespace-specific data. This represents a "free-format" 8-octet bit field with its semantics defined in the context of a specificIOAM-Namespace.<figure> <artwork><![CDATA[IOAM-Namespace.</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |namespace specificnamespace-specific data ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~namespace specificnamespace-specific data (contd) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure></t></section> <sectiontitle="buffer occupancy">numbered="true" toc="default"> <name>Buffer Occupancy</name> <t>The "buffer occupancy" field is a 4-octet unsigned integer field. This field indicates the current status of the occupancy of the common buffer pool used by a set of queues. The units of this field are implementation specific. Hence, the units are interpreted within the context of an IOAM-Namespace and/ornode-idnode identifier if used. The authors acknowledgethatthat, in some operationalcasescases, there is a need for the units to be consistent across a packet path through thenetwork, hencenetwork; hence, it is recommended for implementations to use standardunitsunits, such asBytes. <figure> <artwork><![CDATA[bytes. </t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | buffer occupancy |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure></t>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> </section> <sectiontitle="Opaquenumbered="true" toc="default"> <name>Opaque StateSnapshot">Snapshot</name> <t>The "Opaque State Snapshot" field is avariable lengthvariable-length field and follows thefixed lengthfixed-length IOAM-Data-Fields defined above. It allows the network element to store an arbitrary state in the node datafield,field without apre-definedpredefined schema. The schema is to be defined within the context of an IOAM-Namespace. The schema needs to be made known to the analyzer by some out-of-band mechanism. The specification of this mechanism is beyond the scope of this document. A 24-bit "SchemaId"ID" field, interpreted within the context of an IOAM-Namespace, indicates which particular schema isused,used and has to be configured on the network element by theoperator.<figure> <artwork><![CDATA[operator.</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Length | Schema ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | | Opaque data | ~ ~ . . . .+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]></artwork> </figure><list style="hanging"> <t hangText="Length:">1-octet+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> <dl newline="true" spacing="normal"> <dt>Length:</dt> <dd>1-octet unsigned integer. It is the length in multiples of4-octets4 octets of the Opaque data field that follows SchemaId.</t> <t hangText="Schema ID:">3-octetID.</dd> <dt>Schema ID:</dt> <dd>3-octet unsigned integer identifying the schema of Opaquedata.</t> <t hangText="Opaque data:">Variable lengthdata.</dd> <dt>Opaque data:</dt> <dd>Variable-length field. This field is interpreted as specified by the schema identified by the SchemaID.</t> </list>WhenID.</dd> </dl> <t>When this field is part of the datafieldfield, but a node populating the field has no opaque state data to report, the LengthMUST<bcp14>MUST</bcp14> be set to 0 and the Schema IDMUST<bcp14>MUST</bcp14> be set to 0xFFFFFF to mean no schema.</t> </section> </section> <section anchor="trace-type-node-data"title=" Examplesnumbered="true" toc="default"> <name>Examples of IOAMnode data">Node Data</name> <t>The format used for the entries in a packet's "node data list" array can vary from packet to packet and deployment todeployment".deployment. Some deployments might only be interested in recording the node identifiers, whereas others might be interested in recording node identifiers and timestamps. This section provides example entries of the "node datalist".</t> <t><list style="hanging"> <t hangText="0xD40000:">IOAM-Trace-Typelist" array.</t> <dl newline="false" spacing="normal"> <dt>0xD40000:</dt> <dd><t>If the IOAM Trace-Type is 0xD40000(0b110101000000000000000000)(0b110101000000000000000000), then the format of node datais:<figure> <artwork><![CDATA[is:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ingress_if_id | egress_if_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp fraction | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |namespace specificnamespace-specific data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure></t> <t hangText="0xC00000:">IOAM-Trace-Type</dd> <dt>0xC00000:</dt> <dd><t>If the IOAM Trace-Type is 0xC00000(0b110000000000000000000000)(0b110000000000000000000000), then the formatis:<figure> <artwork><![CDATA[is:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ingress_if_id | egress_if_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure></t> <t hangText="0x900000:">IOAM-Trace-Type</dd> <dt>0x900000:</dt> <dd><t>If the IOAM Trace-Type is 0x900000(0b100100000000000000000000)(0b100100000000000000000000), then the format is:<figure> <artwork><![CDATA[</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp fraction | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure></t> <t hangText="0x840000:">IOAM-Trace-Type</dd> <dt>0x840000:</dt> <dd><t>If the IOAM Trace-Type is 0x840000(0b100001000000000000000000)(0b100001000000000000000000), then the formatis:<figure> <artwork><![CDATA[is:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |namespace specificnamespace-specific data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure></t> <t hangText="0x940000:">IOAM-Trace-Type</dd> <dt>0x940000:</dt> <dd><t>If the IOAM Trace-Type is 0x940000(0b100101000000000000000000)(0b100101000000000000000000), then the formatis:<figure> <artwork><![CDATA[is:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp fraction | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |namespace specificnamespace-specific data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure></t> <t hangText="0x308002:">IOAM-Trace-Type</dd> <dt>0x308002:</dt> <dd><t>If the IOAM Trace-Type is 0x308002(0b001100001000000000000010)(0b001100001000000000000010), then the formatis:<figure> <artwork><![CDATA[is:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp seconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp fraction | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | node_id(contd) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Length | SchemaIdID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | | Opaque data | ~ ~ . . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure></t> </list></t></dd> </dl> </section> </section> <section anchor="IOAM_proof_of_transit_option"title="IOAMnumbered="true" toc="default"> <name>IOAM Proof of TransitOption-Type"> <t>IOAMOption-Type</name> <t>The IOAM Proof of Transit Option-Type is used to support path or service function chain <xreftarget="RFC7665"/>target="RFC7665" format="default"/> verification use cases, i.e., prove that traffic transited a defined path. While the details on how the IOAM data for theProof-of-transit optionProof of Transit Option-Type is processed at IOAM encapsulating,decapsulatingdecapsulating, and transit nodes are outside the scope of the document,proofProof oftransitTransit approaches share the need to uniquely identify apacketpacket, as well as iteratively operate on a set of information that is handed from node to node. Correspondingly, two pieces of information are added as IOAM-Data-Fields to the packet:</t><t><list style="symbols"> <t>PktID: Unique<dl newline="true" spacing="normal"> <dt>PktID:</dt> <dd>unique identifier for thepacket.</t> <t>Cumulative: Information whichpacket</dd> <dt>Cumulative:</dt> <dd>information that is handed from node to node and updated by every node according to a verificationalgorithm.</t> </list>Thealgorithm</dd> </dl> <t>The IOAMProof-of-TransitProof of Transit Option-Type consist of afixed sizefixed-size "IOAMproofProof oftransit optionTransit Option header" and "IOAMproofProof oftransit optionTransit Option data fields":</t><t><figure> <artwork><![CDATA[ IOAM proof<t>IOAM Proof oftransit option header:Transit Option header:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Namespace-ID |IOAMPOT TypePOT-Type | IOAM POT flags| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+IOAM proof]]></artwork> <t>IOAM Proof oftransitTransit Option-Type IOAM-Data-FieldsMUST<bcp14>MUST</bcp14> be4-octet aligned:aligned by 4 octets:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | POT Option data field determined byIOAM-POT-TypeIOAM POT-Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure><list style="hanging"> <t hangText="Namespace-ID:">16-bit<dl newline="true" spacing="normal"> <dt>Namespace-ID:</dt> <dd>16-bit identifier of an IOAM-Namespace. The Namespace-ID value of 0x0000 is defined as the "Default-Namespace-ID" (see <xreftarget="ioam_namespaces"/>)target="ioam_namespaces" format="default"/>) andMUST<bcp14>MUST</bcp14> be known to all the nodes implementing IOAM. For any other Namespace-ID value that does not match any Namespace-ID the node is configured to operate on, the nodeMUST NOT<bcp14>MUST NOT</bcp14> change the contents of theIOAM-Data-Fields.</t> <t hangText="IOAM POT Type:">8-bitIOAM-Data-Fields.</dd> <dt>IOAM POT-Type:</dt> <dd> <t>8-bit identifier of a particular POT variant that specifies the POT data that is included. This document definesPOT Type 0:<list style="hanging"> <t hangText="0:">POTIOAM POT-Type 0:</t> <dl newline="false" spacing="normal"> <dt>0:</dt> <dd>POT data is a16 Octet16-octet field to carry data associated to POTprocedures.</t> </list>procedures.</dd> </dl> <t> If a node receives an IOAMPOT TypePOT-Type value that it does not understand, the nodeMUST NOT<bcp14>MUST NOT</bcp14> change, add to, or remove the contents of theOAM-Data-Fields.</t> <t hangText="IOAMIOAM-Data-Fields.</t> </dd> <dt>IOAM POTflags:">8-bit.flags:</dt> <dd>8 bits. This document does not define any flags. Bits 0-7These bitsare available forassignment, seeassignment (see <xreftarget="pot-flags-sec"/>.target="pot-flags-sec" format="default"/>). Bitswhichthat have not been assignedMUST<bcp14>MUST</bcp14> be set to zero upon transmission and be ignored uponreceipt.</t> <t hangText="POTreceipt.</dd> <dt>POT Optiondata:">Variable-lengthdata:</dt> <dd>Variable-length field. The type of which is determined by theIOAM-POT-Type.</t> </list></t>IOAM POT-Type.</dd> </dl> <sectiontitle="IOAMnumbered="true" toc="default"> <name>IOAM Proof of Transit Type0"> <t><figure> <artwork><![CDATA[ IOAM proof0</name> <t>IOAM Proof oftransit optionTransit Option of IOAMPOT Type 0:POT-Type 0:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Namespace-ID |IOAMPOT Type=0|RPOT-Type=0|R R R R R R R R| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | PktID | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ P | PktID (contd) | O +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ T | Cumulative | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Cumulative (contd) | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ ]]></artwork></figure><list style="hanging"> <t hangText="Namespace-ID:">16-bit<dl newline="true" spacing="normal"> <dt>Namespace-ID:</dt> <dd>16-bit identifier of an IOAM-Namespace (see <xreftarget="IOAM_proof_of_transit_option"/> above).</t> <t hangText="IOAM POT Type:">8-bittarget="ioam_namespaces" format="default"/> above).</dd> <dt>IOAM POT-Type:</dt> <dd>8-bit identifier of a particular POT variant that specifies the POT data that is included (see <xreftarget="IOAM_proof_of_transit_option"/>target="IOAM_proof_of_transit_option" format="default"/> above). For this case here, IOAMPOT TypePOT-Type is set to the value0.</t> <t hangText="Bit 0-7:">Undefined0.</dd> <dt>Bit 0-7:</dt> <dd>Undefined (see <xreftarget="IOAM_proof_of_transit_option"/> above).</t> <t hangText="PktID:">64-bit packet identifier.</t> <t hangText="Cumulative:">64-bittarget="IOAM_proof_of_transit_option" format="default"/> above).</dd> <dt>PktID:</dt> <dd>64-bit packet identifier.</dd> <dt>Cumulative:</dt> <dd>64-bit Cumulative that is updated at specific nodes by processing per packet PktID field and configuredparameters.</t> </list>Note:parameters.</dd> </dl> <aside><t>Note: Larger or smaller sizes of "PktID" and "Cumulative" data are feasible and could be required for certain deployments, e.g., in case of space constraints in the encapsulation protocols used. Future documents could introduce different sizes of data for"proof"Proof oftransit".</t>Transit".</t></aside> </section> </section> <section anchor="IOAM_edge_to_edge_opt"title="IOAMnumbered="true" toc="default"> <name>IOAM Edge-to-EdgeOption-Type">Option-Type</name> <t>The IOAM Edge-to-Edge Option-Typeis to carrycarries data that is added by the IOAM encapsulating node and interpreted by the IOAM decapsulating node. The IOAM transit nodesMAY<bcp14>MAY</bcp14> process the data butMUST NOT<bcp14>MUST NOT</bcp14> modify it.</t> <t>The IOAM Edge-to-Edge Option-Type consist of afixed sizefixed-size "IOAM Edge-to-Edge Option-Type header" and "IOAM Edge-to-Edge Option-Type data fields":</t><t><figure> <artwork><![CDATA[ IOAM<t>IOAM Edge-to-Edge Option-Typeheader:header:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Namespace-ID |IOAM-E2E-TypeIOAM E2E-Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> <t>The IOAM Edge-to-Edge Option-Type IOAM-Data-FieldsMUST<bcp14>MUST</bcp14> be4-octet aligned:aligned by 4 octets:</t> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | E2E Option data field determined by IOAM-E2E-Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure><list style="hanging"> <t hangText="Namespace-ID:">16-bit<dl newline="true" spacing="normal"> <dt>Namespace-ID:</dt> <dd>16-bit identifier of an IOAM-Namespace. The Namespace-ID value of 0x0000 is defined as the "Default-Namespace-ID" (see <xreftarget="ioam_namespaces"/>)target="ioam_namespaces" format="default"/>) andMUST<bcp14>MUST</bcp14> be known to all the nodes implementing IOAM. For any other Namespace-ID value that does not match any Namespace-ID the node is configured to operate on,thenthe nodeMUST NOT<bcp14>MUST NOT</bcp14> change the contents of theIOAM-Data-Fields.</t> <t hangText="IOAM-E2E-Type:">A 16-bitIOAM-Data-Fields.</dd> <dt>IOAM-E2E-Type:</dt> <dd> <t>16-bit identifierwhichthat specifies which data types are used in the E2EoptionOption data. The IOAM-E2E-Type value is a bit field. The order of packing the E2EoptionOption data field elements follows the bit order of theIOAM-E2E-Type field,IOAM E2E-Type field asfollows:<list hangIndent="9" style="hanging"> <t hangText="Bit 0">(Mostfollows:</t> <dl newline="false" spacing="normal" indent="9"> <dt>Bit 0</dt> <dd>Most significantbit)bit. Whensetset, it indicates the presence of a 64-bit sequence number added to a specific "packet group"whichthat is used to detect packet loss, packet reordering, or packet duplication within the group. The "packet group" is deployment dependent and defined at the IOAM encapsulating node, e.g., byn-tuple basedn-tuple-based classification of packets. When this bit is set, "Bit 1" (for a 32-bit sequence number, see below)MUST<bcp14>MUST</bcp14> bezero.</t> <t hangText="Bit 1">When setzero.</dd> <dt>Bit 1</dt> <dd>When set, it indicates the presence of a 32-bit sequence number added to a specific "packet group"whichthat is used to detect packet loss, packet reordering, or packet duplication within that group. The "packet group" is deployment dependent and defined at the IOAM encapsulating node, e.g., byn-tuple basedn-tuple-based classification of packets. When this bit is set, "Bit 0" (for a 64-bit sequence number, see above)MUST<bcp14>MUST</bcp14> bezero.</t> <t hangText="Bit 2">When setzero.</dd> <dt>Bit 2</dt> <dd>When set, it indicates the presence of timestamp seconds, representing the time at which the packet entered theIOAM-domain.IOAM-Domain. Within the IOAM encapsulating node, the time that the timestamp is retrieved can depend on the implementation. Some possibilitiesare:are 1) the time at which the packet was received by the node, 2) the time at which the packet was transmitted by the node, or 3) when a tunnel encapsulation is used, the point at which the packet is encapsulated into the tunnel. Each implementation has to document when the E2E timestamp that is going to be put in the packet is retrieved. This 4-octet field has three possibleformats;formats, based on either PTP (see e.g., <xreftarget="RFC8877"/>),target="RFC8877" format="default"/>), NTP <xreftarget="RFC5905"/>,target="RFC5905" format="default"/>, or POSIX <xreftarget="POSIX"/>.target="POSIX" format="default"/>. The three timestamp formats are specified in <xreftarget="TimestampSec"/>.target="TimestampSec" format="default"/>. In all three cases, theTimestamp Secondstimestamp seconds field contains the 32 most significant bits of the timestamp format that is specified in <xreftarget="TimestampSec"/>.target="TimestampSec" format="default"/>. If a node is not capable of populating this field, it assigns the value 0xFFFFFFFF. Note that this is a legitimate value that is valid for 1 second in approximately 136 years; the analyzer has to correlate several packets or compare the timestamp value to its owntime-of-daytime of day in order to detect the errorindication.</t> <t hangText="Bit 3">When setindication.</dd> <dt>Bit 3</dt> <dd>When set, it indicates the presence of timestamp fraction, representing the time at which the packet entered theIOAM-domain.IOAM-Domain. This 4-octet field has three possibleformats;formats, based on either PTP (see e.g., <xreftarget="RFC8877"/>),target="RFC8877" format="default"/>), NTP <xreftarget="RFC5905"/>,target="RFC5905" format="default"/>, or POSIX <xreftarget="POSIX"/>.target="POSIX" format="default"/>. The three timestamp formats are specified in <xreftarget="TimestampSec"/>.target="TimestampSec" format="default"/>. In all three cases, theTimestamptimestamp fraction field contains the 32 least significant bits of the timestamp format that is specified in <xreftarget="TimestampSec"/>.target="TimestampSec" format="default"/>. If a node is not capable of populating this field, it assigns the value 0xFFFFFFFF. Note that this is a legitimate value in the NTP format, valid for approximately 233 picoseconds in every second. If the NTP format isusedused, the analyzer has to correlate several packets in order to detect the errorindication.</t> <t hangText="Bit 4-15">Undefined.indication.</dd> <dt>Bit 4-15</dt> <dd>Undefined. An IOAM encapsulating nodeMUST<bcp14>MUST</bcp14> set the value of these bits to zero upon transmission and ignore them uponreceipt.</t> </list></t> <t hangText="E2Ereceipt.</dd> </dl> </dd> <dt>E2E Optiondata:">Variable-lengthdata:</dt> <dd>Variable-length field. The type of which is determined by theIOAM-E2E-Type.</t> </list></t>IOAM E2E-Type.</dd> </dl> </section> </section> <section anchor="TimestampSec"title="Timestamp Formats">numbered="true" toc="default"> <name>Timestamp Formats</name> <t>The IOAM-Data-Fields include a timestamp fieldwhichthat is represented in one of three possible timestamp formats. It is assumed that the management plane is responsible for determining which timestamp format is used.</t> <section anchor="PTPFromatSec"title="PTPnumbered="true" toc="default"> <name>PTP Truncated TimestampFormat">Format</name> <t>The Precision Time Protocol (PTP) uses an 80-bit timestamp format. The truncated timestamp format is a 64-bit field, which is the 64 least significant bits of the 80-bit PTP timestamp. The PTP truncated format is specified inSection 4.3 of<xreftarget="RFC8877"/>,target="RFC8877" section="4.3" sectionFormat="of" format="default"/>, and the details are presented below for the sake of completeness.</t><figure align="center" anchor="PTPFormat" title="PTP Truncated Timestamp Format"><artworkalign="left"><![CDATA[align="left" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Seconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Nanoseconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure> <t>Timestamp field format: <list hangIndent="10" style="empty"> <t>Seconds: specifies<dl newline="true" spacing="normal"> <dt>Timestamp field format:</dt> <dd> <dl newline="false" spacing="normal"> <dt>Seconds:</dt> <dd><t>Specifies the integer portion of the number of seconds since the PTPepoch.</t> <t>+ Size: 32 bits.</t> <t>+ Units: seconds.</t> <t>Nanoseconds: specifiesepoch</t> <dl newline="false" spacing="normal"> <dt>Size:</dt> <dd>32 bits</dd> <dt>Units:</dt> <dd>seconds</dd> </dl></dd> <dt>Nanoseconds:</dt> <dd><t>Specifies the fractional portion of the number of seconds since the PTPepoch.</t> <t>+ Size: 32 bits.</t> <t>+ Units: nanoseconds.epoch</t> <dl newline="false" spacing="normal"> <dt>Size:</dt> <dd>32 bits</dd> <dt>Units:</dt> <dd>nanoseconds. The value of this field is in the range 0 to(10^9)-1.</t> </list></t> <t>Epoch: <list hangIndent="10" style="empty"> <t>PTP(10<sup>9</sup>)-1.</dd> </dl></dd> </dl></dd> <dt>Epoch: </dt> <dd>PTP epoch. Fordetailsdetails, see e.g., <xreftarget="RFC8877"/>.</t> </list></t> <t>Resolution: <list hangIndent="10" style="empty"> <t>Thetarget="RFC8877" format="default"/>.</dd> <dt>Resolution: </dt> <dd>The resolution is 1nanosecond.</t> </list></t> <t>Wraparound: <list hangIndent="10" style="empty"> <t>Thisnanosecond.</dd> <dt>Wraparound:</dt> <dd>This time format wraps around every2^322<sup>32</sup> seconds, which is roughly 136 years. The next wraparound will occur in the year2106.</t> </list></t> <t>Synchronization2106.</dd> <dt>Synchronization Aspects:<list hangIndent="10" style="empty"> <t>It</dt> <dd>It is assumed that the nodes that run this protocol are synchronized among themselves. NodesMAY<bcp14>MAY</bcp14> be synchronized to a global reference time. Note that if PTP is used for synchronization, the timestampMAY<bcp14>MAY</bcp14> be derived from the PTP-synchronized clock, allowing the timestamp to be measured with respect to the clock ofana PTP Grandmasterclock.</t> </list></t>clock.</dd> </dl> </section> <section anchor="NTPFormatSec"title="NTP 64-bitnumbered="true" toc="default"> <name>NTP 64-Bit TimestampFormat">Format</name> <t>The Network Time Protocol (NTP) <xreftarget="RFC5905"/>target="RFC5905" format="default"/> timestamp format is 64 bits long. This specification uses the NTP timestamp format that is specified inSection 4.2.1 of<xreftarget="RFC8877"/>,target="RFC8877" section="4.2.1" sectionFormat="of" format="default"/>, and the details are presented below for the sake of completeness.</t><figure align="center" anchor="NTPFormat" title="NTP [RFC5905] 64-bit Timestamp Format"><artworkalign="left"><![CDATA[align="left" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Seconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Fraction | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure> <t>Timestamp<dl newline="true" spacing="normal"> <dt>Timestamp field format:<list hangIndent="10" style="empty"> <t>Seconds: specifies</dt> <dd> <dl newline="false" spacing="normal"> <dt>Seconds:</dt> <dd><t>specifies the integer portion of the number of seconds since the NTPepoch.</t> <t>+ Size: 32 bits.</t> <t>+ Units: seconds.</t> <t>Fraction: specifiesepoch</t> <dl newline="false" spacing="normal"> <dt>Size:</dt> <dd>32 bits</dd> <dt>Units:</dt> <dd>seconds</dd> </dl></dd> <dt>Fraction:</dt> <dd><t>specifies the fractional portion of the number of seconds since the NTPepoch.</t> <t>+ Size: 32 bits.</t> <t>+ Units: theepoch</t> <dl newline="false" spacing="normal"> <dt>Size:</dt> <dd>32 bits</dd> <dt>Units:</dt> <dd>the unit is2^(-32)2<sup>(-32)</sup> seconds, which is roughly equal to 233picoseconds.</t> </list></t> <t>Epoch: <list hangIndent="10" style="empty"> <t>NTP Epoch.picoseconds.</dd> </dl></dd> </dl></dd> <dt>Epoch: </dt> <dd>NTP epoch. Fordetailsdetails, see <xreftarget="RFC5905"/>.</t> </list></t> <t>Resolution: <list hangIndent="10" style="empty"> <t>Thetarget="RFC5905" format="default"/>.</dd> <dt>Resolution:</dt> <dd>The resolution is2^(-32) seconds.</t> </list></t> <t>Wraparound: <list hangIndent="10" style="empty"> <t>This2<sup>(-32)</sup> seconds.</dd> <dt>Wraparound:</dt> <dd>This time format wraps around every2^322<sup>32</sup> seconds, which is roughly 136 years. The next wraparound will occur in the year2036.</t> </list></t> <t>Synchronization Aspects: <list hangIndent="10" style="empty"> <t>Nodes2036.</dd> <dt>Synchronization Aspects:</dt> <dd>Nodes that use this timestamp format will typically be synchronized to UTC using NTP <xreftarget="RFC5905"/>.target="RFC5905" format="default"/>. Thus, the timestampMAY<bcp14>MAY</bcp14> be derived from the NTP-synchronized clock, allowing the timestamp to be measured with respect to the clock of an NTPserver.</t> </list></t>server.</dd> </dl> </section> <section anchor="POSIXFormatSec"title="POSIX-basednumbered="true" toc="default"> <name>POSIX-Based TimestampFormat">Format</name> <t>This timestamp format is based on the POSIX time format <xreftarget="POSIX"/>.target="POSIX" format="default"/>. The detailed specification of the timestamp format used in this document is presented below.</t><figure align="center" anchor="POSIXFormat" title="POSIX-based Timestamp Format"><artworkalign="left"><![CDATA[align="left" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Seconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Microseconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork></figure> <t>Timestamp field format: <list hangIndent="10" style="empty"> <t>Seconds: specifies<dl newline="true" spacing="normal"> <dt>Timestamp field format:</dt> <dd> <dl newline="false" spacing="normal"> <dt>Seconds:</dt> <dd><t>specifies the integer portion of the number of seconds since the POSIXepoch.</t> <t>+ Size: 32 bits.</t> <t>+ Units: seconds.</t> <t>Microseconds: specifiesepoch</t> <dl newline="false" spacing="normal"> <dt>Size:</dt> <dd>32 bits</dd> <dt>Units:</dt> <dd>seconds</dd> </dl></dd> <dt>Microseconds:</dt> <dd><t>specifies the fractional portion of the number of seconds since the POSIXepoch.</t> <t>+ Size: 32 bits.</t> <t>+ Units: theepoch</t> <dl newline="false" spacing="normal"> <dt>Size:</dt> <dd>32 bits</dd> <dt>Units:</dt> <dd>the unit is microseconds. The value of this field is in the range 0 to(10^6)-1.</t> </list></t> <t>Epoch: <list hangIndent="10" style="empty"> <t>POSIX(10<sup>6</sup>)-1.</dd> </dl></dd> </dl></dd> <dt>Epoch:</dt> <dd>POSIX epoch. For details, see <xreftarget="POSIX"/>, appendix A.4.16.</t> </list></t> <t>Resolution: <list hangIndent="10" style="empty"> <t>Thetarget="POSIX" format="default"/>, Appendix A.4.16.</dd> <dt>Resolution:</dt> <dd>The resolution is 1microsecond.</t> </list></t> <t>Wraparound: <list hangIndent="10" style="empty"> <t>Thismicrosecond.</dd> <dt>Wraparound: </dt> <dd>This time format wraps around every2^322<sup>32</sup> seconds, which is roughly 136 years. The next wraparound will occur in the year2106.</t> </list></t> <t>Synchronization2106.</dd> <dt>Synchronization Aspects:<list hangIndent="10" style="empty"> <t>It</dt> <dd>It is assumed that nodes that use this timestamp format run the Linux operatingsystem,system and hence use the POSIX time. In somecasescases, nodesMAY<bcp14>MAY</bcp14> be synchronized to UTC using a synchronization mechanism that is outside the scope of this document, such as NTP <xreftarget="RFC5905"/>.target="RFC5905" format="default"/>. Thus, the timestampMAY<bcp14>MAY</bcp14> be derived from the NTP-synchronized clock, allowing the timestamp to be measured with respect to the clock of an NTPserver.</t> </list></t>server.</dd> </dl> </section> </section> <section anchor="export"title="IOAMnumbered="true" toc="default"> <name>IOAM DataExport">Export</name> <t>IOAM nodes collect information for packets traversing a domain that supports IOAM. IOAM decapsulatingnodesnodes, as well as IOAM transitnodesnodes, can choose to retrieve IOAM information from the packet, process the informationfurtherfurther, and export the information using e.g.,IPFIX.IP Flow Information Export (IPFIX). The mechanisms and associated data formats for exporting IOAM dataisare outside the scope of this document.</t> <t>A way to perform raw data export of IOAM data using IPFIX is discussed in <xreftarget="I-D.spiegel-ippm-ioam-rawexport"/>.</t>target="I-D.spiegel-ippm-ioam-rawexport" format="default"/>.</t> </section> <section anchor="IANA"title="IANA Considerations"> <t>This document requests the following IANA Actions.</t>numbered="true" toc="default"> <name>IANA Considerations</name> <t>IANAis requested to definehas defined a registry group named"In-Situ"In Situ OAM(IOAM) Protocol Parameters".</t>(IOAM)".</t> <t>This groupwill includeincludes the following registries:</t><t><list style="empty"> <t>IOAM Option-Type</t> <t>IOAM Trace-Type</t> <t>IOAM Trace-Flags</t> <t>IOAM POT-Type</t> <t>IOAM POT-Flags</t> <t>IOAM E2E-Type</t> <t>IOAM Namespace-ID</t> </list></t><ul empty="true" spacing="normal"> <li>IOAM Option-Type</li> <li>IOAM Trace-Type</li> <li>IOAM Trace-Flags</li> <li>IOAM POT-Type</li> <li>IOAM POT-Flags</li> <li>IOAM E2E-Type</li> <li>IOAM Namespace-ID</li> </ul> <t>The subsequentsub-sectionssubsections detail the registrieshereintherein contained.</t> <section anchor="IOAM-type-registry"title="IOAMnumbered="true" toc="default"> <name>IOAM Option-TypeRegistry">Registry</name> <t>This registry defines 128 code points for the IOAM Option-Type field for identifyingIOAM Option-TypesIOAM-Option-Types, as explained in <xreftarget="IOAM_option_format"/>.target="IOAM_option_format" format="default"/>. The following code points are defined in thisdraft:</t> <t><list style="hanging"> <t hangText="0">IOAMdocument:</t> <dl newline="false" spacing="normal"> <dt>0:</dt> <dd>IOAM Pre-allocated TraceOption-Type</t> <t hangText="1">IOAMOption-Type</dd> <dt>1:</dt> <dd>IOAM Incremental TraceOption-Type</t> <t hangText="2">IOAMOption-Type</dd> <dt>2:</dt> <dd>IOAM POTOption-Type</t> <t hangText="3">IOAMOption-Type</dd> <dt>3:</dt> <dd>IOAM E2EOption-Type</t> </list>4 - 127Option-Type</dd> </dl> <t>Code points 4-127 are available for assignment via the "IETF Review"processprocess, as per <xreftarget="RFC8126"/>.</t>target="RFC8126" format="default"/>.</t> <t>New registration requestsMUST<bcp14>MUST</bcp14> use the following template:</t><t><list style="hanging"> <t hangText="Name:">Name<dl newline="false" spacing="normal"> <dt>Name:</dt> <dd>name of the newly registeredOption-Type.</t> <t hangText="Code point:">DesiredOption-Type</dd> <dt>Code point:</dt> <dd>desired value of the requested codepoint.</t> <t hangText="Description:">Briefpoint</dd> <dt>Description:</dt> <dd>brief description of the newly registeredOption-Type.</t> <t hangText="Reference:">ReferenceOption-Type</dd> <dt>Reference:</dt> <dd>reference to the document that defines the newOption-Type.</t> </list></t>Option-Type</dd> </dl> <t>The evaluation of a new registration requestMUST<bcp14>MUST</bcp14> also include checking whether the newIOAM Option-TypeIOAM-Option-Type includes an IOAM-Namespace field and that the IOAM-Namespace field is the first field in the newly defined header of the new Option-Type.</t> </section> <section anchor="ioam-trace-type-registry"title="IOAMnumbered="true" toc="default"> <name>IOAM Trace-TypeRegistry">Registry</name> <t>This registry defines codepointpoints for each bit in the 24-bitIOAM-Trace-TypeIOAM Trace-Type field for the Pre-allocatedTrace-Option-TypeTrace Option-Type and IncrementalTrace-Option-TypeTrace Option-Type defined in <xreftarget="IOAM_tracing_option"/>. The meaning oftarget="IOAM_tracing_option" format="default"/>. Bits0 - 11 is0-11 are defined in this document in <xreftarget="IOAMTraceType"/>target="IOAMTraceType" format="none">Paragraph 5</xref> of <xreftarget="TraceOptionDef"/>:</t> <t><list style="hanging"> <t hangText="Bit 0">hop_Limtarget="TraceOptionDef" format="default"/>:</t> <dl newline="false" spacing="normal"> <dt>Bit 0:</dt> <dd>hop_Lim and node_id in shortformat</t> <t hangText="Bit 1">ingress_if_idformat</dd> <dt>Bit 1:</dt> <dd>ingress_if_id and egress_if_id in shortformat</t> <t hangText="Bit 2">timestamp seconds</t> <t hangText="Bit 3">timestamp fraction</t> <t hangText="Bit 4">transit delay</t> <t hangText="Bit 5">namespace specificformat</dd> <dt>Bit 2:</dt> <dd>timestamp seconds</dd> <dt>Bit 3:</dt> <dd>timestamp fraction</dd> <dt>Bit 4:</dt> <dd>transit delay</dd> <dt>Bit 5:</dt> <dd>namespace-specific data in shortformat</t> <t hangText="Bit 6">queue depth</t> <t hangText="Bit 7">checksum complement</t> <t hangText="Bit 8">hop_Limformat</dd> <dt>Bit 6:</dt> <dd>queue depth</dd> <dt>Bit 7:</dt> <dd>checksum complement</dd> <dt>Bit 8:</dt> <dd>hop_Lim and node_id in wideformat</t> <t hangText="Bit 9">ingress_if_idformat</dd> <dt>Bit 9:</dt> <dd>ingress_if_id and egress_if_id in wideformat</t> <t hangText="Bit 10">namespace specificformat</dd> <dt>Bit 10:</dt> <dd>namespace-specific data in wideformat</t> <t hangText="Bit 11">buffer occupancy</t> <t hangText="Bit 22">variable lengthformat</dd> <dt>Bit 11:</dt> <dd>buffer occupancy</dd> <dt>Bit 22:</dt> <dd>variable-length Opaque StateSnapshot</t> <t hangText="Bit 23">reserved</t> </list> The meaning for Bits 12 - 21Snapshot</dd> <dt>Bit 23:</dt> <dd>reserved</dd> </dl> <t>Bits 12-21 are available for assignment via the "IETF Review"processprocess, as per <xreftarget="RFC8126"/>.</t>target="RFC8126" format="default"/>.</t> <t>New registration requestsMUST<bcp14>MUST</bcp14> use the following template:</t><t><list style="hanging"> <t hangText="Bit:">Desired<dl newline="false" spacing="normal"> <dt>Bit:</dt> <dd>desired bit to be allocated in the 24-bit IOAMTrace-Option-TypeTrace Option-Type field for the Pre-allocatedTrace-Option-TypeTrace Option-Type and IncrementalTrace-Option-Type.</t> <t hangText="Description:">BriefTrace Option-Type</dd> <dt>Description:</dt> <dd>brief description of the newly registeredbit.</t> <t hangText="Reference:">Referencebit</dd> <dt>Reference:</dt> <dd>reference to the document that defines the newbit.</t> </list></t>bit</dd> </dl> </section> <section anchor="Flags-Registry-Sec"title="IOAMnumbered="true" toc="default"> <name>IOAM Trace-FlagsRegistry">Registry</name> <t>This registry defines code points for each bit in the4 bit4-bit flags for the Pre-allocatedtrace optionTrace-Option andfor theIncrementaltrace optionTrace-Option defined in <xreftarget="IOAM_tracing_option"/>.target="IOAM_tracing_option" format="default"/>. The meaning of Bit 0 (the most significant bit) for trace flags is defined in this document in <xreftarget="TraceFlags"/> of <xref target="TraceOptionDef"/>:</t> <t><list style="hanging"> <t hangText="Bit 0">"Overflow" (O-bit)</t> </list>Bit 1 - 3target="TraceFlags" format="none">Paragraph 3</xref> of <xref target="TraceOptionDef" format="default"/>:</t> <dl newline="false" spacing="normal"> <dt>Bit 0:</dt> <dd>"Overflow" (O-bit)</dd> </dl> <t>Bits 1-3 are available for assignment via the "IETF Review"processprocess, as per <xreftarget="RFC8126"/>.</t>target="RFC8126" format="default"/>.</t> <t>New registration requestsMUST<bcp14>MUST</bcp14> use the following template:</t><t><list style="hanging"> <t hangText="Bit:">Desired<dl newline="false" spacing="normal"> <dt>Bit:</dt> <dd>desired bit to be allocated in the8 bit8-bit flags field of the Pre-allocatedTrace-Option-TypeTrace Option-Type andfor theIncrementalTrace-Option-Type.</t> <t hangText="Description:">BriefTrace Option-Type</dd> <dt>Description:</dt> <dd>brief description of the newly registeredbit.</t> <t hangText="Reference:">Referencebit</dd> <dt>Reference:</dt> <dd>reference to the document that defines the newbit.</t> </list></t>bit</dd> </dl> </section> <sectiontitle="IOAMnumbered="true" toc="default"> <name>IOAM POT-TypeRegistry">Registry</name> <t>This registry defines 256 code points to define the IOAMPOT TypePOT-Type for the IOAMproofProof oftransit option <xref target="IOAM_proof_of_transit_option"/>.Transit Option (<xref target="IOAM_proof_of_transit_option" format="default"/>). The code point value 0 is defined in this document:</t><t><list style="hanging"> <t hangText="0:">16 Octet<dl newline="false" spacing="normal"> <dt>0:</dt> <dd>16-Octet POTdata</t> </list> 1 - 255data</dd> </dl> <t>Code points 1-255 are available for assignment via the "IETF Review"processprocess, as per <xreftarget="RFC8126"/>.</t>target="RFC8126" format="default"/>.</t> <t>New registration requestsMUST<bcp14>MUST</bcp14> use the following template:</t><t><list style="hanging"> <t hangText="Name:">Name<dl newline="false" spacing="normal"> <dt>Name:</dt> <dd>name of the newly registeredPOT-Type.</t> <t hangText="Code point:">DesiredPOT-Type</dd> <dt>Code point:</dt> <dd>desired value of the requested codepoint.</t> <t hangText="Description:">Briefpoint</dd> <dt>Description:</dt> <dd>brief description of the newly registeredPOT-Type.</t> <t hangText="Reference:">ReferencePOT-Type</dd> <dt>Reference:</dt> <dd>reference to the document that defines the newPOT-Type.</t> </list></t>POT-Type</dd> </dl> </section> <section anchor="pot-flags-sec"title="IOAMnumbered="true" toc="default"> <name>IOAM POT-FlagsRegistry">Registry</name> <t>This registry defines code points for each bit in the8 bit8-bit flags for the IOAM POT Option-Type defined in <xreftarget="IOAM_proof_of_transit_option"/>.target="IOAM_proof_of_transit_option" format="default"/>. </t><t>The meaning for Bits 0 - 7<t>Bits 0-7 are available for assignment via the "IETF Review"processprocess, as per <xreftarget="RFC8126"/>.</t>target="RFC8126" format="default"/>.</t> <t>New registration requestsMUST<bcp14>MUST</bcp14> use the following template:</t><t><list style="hanging"> <t hangText="Bit:">Desired<dl newline="false" spacing="normal"> <dt>Bit:</dt> <dd>desired bit to be allocated in the8 bit8-bit flags field of the IOAM POTOption-Type.</t> <t hangText="Description:">BriefOption-Type</dd> <dt>Description:</dt> <dd>brief description of the newly registeredbit.</t> <t hangText="Reference:">Referencebit</dd> <dt>Reference:</dt> <dd>reference to the document that defines the newbit.</t> </list></t>bit</dd> </dl> </section> <sectiontitle="IOAMnumbered="true" toc="default"> <name>IOAM E2E-TypeRegistry">Registry</name> <t>This registry defines code points for each bit in the16 bit IOAM-E2E-Type16-bit IOAM E2E-Type field for the IOAM E2Eoption <xref target="IOAM_edge_to_edge_opt"/>. The meaning of Bit 0 - 3Option (<xref target="IOAM_edge_to_edge_opt" format="default"/>). Bits 0-3 are defined in this document:</t><t><list style="hanging"> <t hangText="Bit 0">64-bit<dl newline="false" spacing="normal"> <dt>Bit 0:</dt> <dd>64-bit sequencenumber</t> <t hangText="Bit 1">32-bitnumber</dd> <dt>Bit 1:</dt> <dd>32-bit sequencenumber</t> <t hangText="Bit 2">timestamp seconds</t> <t hangText="Bit 3">timestamp fraction</t> </list> The meaning of Bits 4 - 15number</dd> <dt>Bit 2:</dt> <dd>timestamp seconds</dd> <dt>Bit 3:</dt> <dd>timestamp fraction</dd> </dl> <t>Bits 4-15 are available for assignment via the "IETF Review"processprocess, as per <xreftarget="RFC8126"/>.</t>target="RFC8126" format="default"/>.</t> <t>New registration requestsMUST<bcp14>MUST</bcp14> use the following template:</t><t><list style="hanging"> <t hangText="Bit:">Desired<dl newline="false" spacing="normal"> <dt>Bit:</dt> <dd>desired bit to be allocated in the16 bit IOAM-E2E-Type field.</t> <t hangText="Description:">Brief16-bit IOAM E2E-Type field</dd> <dt>Description:</dt> <dd>brief description of the newly registeredbit.</t> <t hangText="Reference:">Referencebit</dd> <dt>Reference:</dt> <dd>reference to the document that defines the newbit.</t> </list></t>bit</dd> </dl> </section> <sectiontitle="IOAMnumbered="true" toc="default"> <name>IOAM Namespace-IDRegistry ">Registry</name> <t>IANAis requested tohas set upanthe "IOAMNamespace-ID Registry", containingNamespace-ID" registry that contains 16-bit values andfollowingfollows the template for requests shown below. The meaning of 0x0000 is defined in this document. IANAis requested to reservehas reserved the values 0x0001 to 0x7FFF for private use (managed by operators), as specified in <xreftarget="ioam_namespaces"/>target="ioam_namespaces" format="default"/> ofthe currentthis document. Registry entries for the values 0x8000 to 0xFFFF are to be assigned via the "Expert Review"policy defined inpolicy, as per <xreftarget="RFC8126"/>.target="RFC8126" format="default"/>. </t> <t>Upon receiving a new allocation request, a designated expert will perform thefollowing:<list style="symbols"> <t>Reviewfollowing:</t> <ul spacing="normal"> <li>Review whether the request is complete, i.e., the registration template has been filled in. The expert will send incomplete requests back to therequestor.</t> <t>Checkrequester.</li> <li>Check whether the request is neither a duplicate of nor conflicting with either an already existing allocation or a pending allocation. In case of duplicates or conflicts, the expert will ask therequestorrequester to update the allocation requestaccordingly.</t> <t>Solicitaccordingly.</li> <li>Solicit feedback from relevant working groups and communities to ensure that the new allocation request has been properly reviewed and that rough consensus on the request exists. At a minimum, the expert will solicit feedback from the IPPMworking group in the IETFWorking Group by posting the request to the ippm@ietf.org mailing list. The expert will allow for a 3-week review period on the mailing lists. If the feedback received from the relevant working groups and communities within the review period indicates rough consensus on the request, the expert will approve the request and ask IANAfor allocatingto allocate the new Namespace-ID. In case the expert senses a lack of consensus from the feedback received, the expert will ask therequestorrequester to engage with the corresponding working groups and communities to further review and refine therequest.</t> </list></t>request.</li> </ul> <t> It is intended that any allocation will be accompanied by a published RFC. In order to allow for the allocation of code points prior to the RFC being approved for publication, the designated expert can approve allocations once it seems clear that an RFC will be published.</t><t><list style="hanging"> <t hangText="0x0000:">default<dl newline="false" spacing="normal"> <dt>0x0000:</dt> <dd>default namespace (known to all IOAMnodes)</t> <t hangText="0x0001nodes)</dd> <dt>0x0001 -0x7FFF:">reserved0x7FFF:</dt> <dd>reserved for privateuse</t> <t hangText="0x8000use</dd> <dt>0x8000 -0xFFFF:">unassigned</t> </list></t>0xFFFF:</dt> <dd>unassigned</dd> </dl> <t>New registration requestsMUST<bcp14>MUST</bcp14> use the following template:</t><t><list style="hanging"> <t hangText="Name:">Name<dl newline="false" spacing="normal"> <dt>Name:</dt> <dd>name of the newly registeredNamespace-ID.</t> <t hangText="Code point:">DesiredNamespace-ID</dd> <dt>Code point:</dt> <dd>desired value of the requestedNamespace-ID.</t> <t hangText="Description:">BriefNamespace-ID</dd> <dt>Description:</dt> <dd>brief description of the newly registeredNamespace-ID.</t> <t hangText="Reference:">ReferenceNamespace-ID</dd> <dt>Reference:</dt> <dd>reference to the document that defines the newNamespace-ID.</t> <t hangText="StatusNamespace-ID</dd> <dt>Status of theregistration:"> Statusregistration:</dt> <dd>Status can be either "permanent" or "provisional". Namespace-ID registrations following a successful expert review will have the status "provisional". Once theRFC, whichRFC that defines the new Namespace-ID is published, the status is changed to"permanent".</t> </list></t>"permanent".</dd> </dl> </section> </section> <sectiontitle="Managementnumbered="true" toc="default"> <name>Management and DeploymentConsiderations">Considerations</name> <t>This document defines the structure and use ofIOAM data fields.IOAM-Data-Fields. This document does not define the encapsulation ofIOAM data fieldsIOAM-Data-Fields into different protocols. Management and deployment aspects for IOAM have to be considered within the context of the protocolIOAM data fieldsIOAM-Data-Fields are encapsulated intoandand, as such, are out of scope for this document. For a discussion of IOAM deployment, please also refer to <xreftarget="I-D.ietf-ippm-ioam-deployment"/>,target="I-D.ietf-ippm-ioam-deployment" format="default"/>, which outlines a framework for IOAM deployment and provides best current practices.</t> </section> <section anchor="Security"title="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t>As discussed in <xreftarget="RFC7276"/>,target="RFC7276" format="default"/>, a successful attack on an OAM protocol in general, and specifically on IOAM, can prevent the detection of failures oranomalies,anomalies or create a false illusion of nonexistent ones. In particular, these threats are applicable by compromising the integrity of IOAM data, either by maliciously modifying IOAM options intransit,transit or by injecting packets with maliciously generated IOAM options. All nodes in the path ofa IOAM carryingan IOAM-carrying packet can perform such anattack. </t>attack.</t> <t>The Proof of Transit Option-Type (see <xreftarget="IOAM_proof_of_transit_option"/>)target="IOAM_proof_of_transit_option" format="default"/>) is used for verifying the path of data packets, i.e., proving that packets transited through a defined set of nodes.</t> <t>In case an attacker gains access to several nodes in a network and would be able to change the system software of these nodes,IOAM data fieldsIOAM-Data-Fields could be misused and repurposed for a use different from what is specified in this document. One type of misuse is the implementation of a covert channel between networknodes. </t>nodes.</t> <t>From a confidentiality perspective, although IOAM options are not expected to contain user data, they can be used for network reconnaissance, allowing attackers to collect information about network paths, performance, queue states, bufferoccupancy and other information.occupancy, etc. Moreover, if IOAM data leaks from theIOAM-domainIOAM-Domain, it could enable reconnaissance beyond the scope of theIOAM-domain.IOAM-Domain. One possible application of such reconnaissance is to gauge the effectiveness of an ongoing attack, e.g., if buffers and queues are overflowing. </t> <t>IOAM can be used as a means for implementingDenial of ServiceDenial-of-Service (DoS)attacks,attacks or for amplifying them. For example, a malicious attacker can add an IOAM header to packets in order to consume the resources of network devices that take part in IOAM or entities that receive,collectcollect, or analyze the IOAM data. Another example is a packet lengthattack,attack in which an attacker pushes headers associated withIOAM Option-TypesIOAM-Option-Types into data packets, causing these packets to be increased beyond the MTU size, resulting in fragmentation or in packet drops. In case POT is used, an attacker could corrupt the POT data fields in the packet, resulting in a verification failure of the POT data, even if the packet followed the correct path.</t> <t>Since IOAM options can include timestamps, if network devices use synchronizationprotocolsprotocols, then any attack on the time protocol <xreftarget="RFC7384"/>target="RFC7384" format="default"/> can compromise the integrity of the timestamp-related data fields.</t> <t>At the management plane, attacks can be set up by misconfiguring or by maliciously configuring IOAM-enabled nodes in a way that enables other attacks. IOAM configuration should only be managed by authorized processes or users. </t> <t>IETF protocols require features to ensure their security. WhileIOAM data fieldsIOAM-Data-Fields don't represent a protocol by themselves, theIOAM data fieldsIOAM-Data-Fields add to the protocol that theIOAM data fieldsIOAM-Data-Fields are encapsulated into. Any specification that defines howIOAM data fieldsIOAM-Data-Fields carried in an encapsulating protocolMUST<bcp14>MUST</bcp14> provide for a mechanism for cryptographic integrity protection of theIOAM data fields.IOAM-Data-Fields. Cryptographic integrity protection could beeitherachieved through a mechanism of the encapsulatingprotocolprotocol, or it could incorporate the mechanisms specified in <xreftarget="I-D.ietf-ippm-ioam-data-integrity"/>.target="I-D.ietf-ippm-ioam-data-integrity" format="default"/>. </t> <t>The current document does not define a specific IOAM encapsulation. It has to be noted that some IOAM encapsulation types can introduce specific security considerations. A specification that defines an IOAM encapsulation is expected to address the respective encapsulation-specific security considerations.</t> <t>Notably, IOAM is expected to be deployed in limited domains, thus confining the potential attack vectors to within the limited domain. A limited administrative domain provides the operator with the means to select, monitor, and control the access of all the network devices, making these devices trusted by the operator. Indeed, in order to limit the scope of threats mentioned above to within the current limiteddomaindomain, the network operator is expected to enforce policies that prevent IOAM traffic from leaking outside of theIOAM domain,IOAM-Domain and prevent IOAM data from outside the domain to be processed and used within the domain.</t> <t>This document does not define the data contents of customfieldsfields, like "Opaque State Snapshot" and"namespace specific"namespace-specific data"IOAM data fields.IOAM-Data-Fields. These custom data fields will have security considerations corresponding to their defined data contents that need to be described where those formats are defined.</t> <t>IOAM deploymentswhichthat leverage both IOAM Trace Option-Types, i.e., the Pre-allocated Trace Option-Type and Incremental TraceOption-TypeOption-Type, can suffer from incomplete visibility if the information gathered via the two Trace Option-Types is not correlated and aggregated appropriately. If IOAM transit nodes leverage theIOAM data fieldsIOAM-Data-Fields in the packet for further actions or insights, then IOAM transit nodeswhichthat only support one IOAM Trace Option-Type in an IOAM deploymentwhichthat leverages both TraceOption-Types,Option-Types have limited visibility and thus can draw inappropriate conclusions or take wrongactions. </t>actions.</t> <t>The security considerations of a system that deploys IOAM, much like any system, has to be reviewed on a per-deployment-scenariobasis,basis based on a systems-specific threat analysis, which can lead to specific security solutions that are beyond the scope of the current document. Specifically, in an IOAM deployment that is not confined to a singleLAN,LAN but spans multiple inter-connected sites (for example, using an overlay network), the inter-site links can be secured (e.g., by IPsec) in order to avoid external threats.</t> <t>IOAM deployment considerations, including approaches to mitigate the above discussed threads and potentialattacksattacks, are outside the scope of this document. IOAM deployment considerations are discussed in <xreftarget="I-D.ietf-ippm-ioam-deployment"/>. </t>target="I-D.ietf-ippm-ioam-deployment" format="default"/>.</t> </section> </middle> <back> <displayreference target="I-D.kitamura-ipv6-record-route" to="IPV6-RECORD-ROUTE"/> <displayreference target="I-D.ietf-nvo3-vxlan-gpe" to="NVO3-VXLAN-GPE"/> <displayreference target="I-D.spiegel-ippm-ioam-rawexport" to="IPPM-IOAM-RAWEXPORT"/> <displayreference target="I-D.ietf-ippm-ioam-deployment" to="IPPM-IOAM-DEPLOYMENT"/> <displayreference target="I-D.ietf-ippm-ioam-data-integrity" to="IPPM-IOAM-DATA-INTEGRITY"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5905.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8126.xml"/> <reference anchor="POSIX" target="https://standards.ieee.org/ieee/1003.1/7101/"> <front> <title>IEEE/Open Group 1003.1-2017 - IEEE Standard for Information Technology--Portable Operating System Interface (POSIX(TM)) Base Specifications, Issue 7</title> <author> <organization>IEEE</organization> </author> <date year="2018" month="January"/> </front> <seriesInfo name="IEEE Std" value="1003.1-2017"/> </reference> </references> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7665.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7799.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8877.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7820.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7821.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7384.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7276.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.kitamura-ipv6-record-route.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8300.xml"/> <reference anchor="I-D.ietf-nvo3-vxlan-gpe"> <front> <title>Generic Protocol Extension for VXLAN (VXLAN-GPE)</title> <author fullname="Fabio Maino" role="editor"> <organization>Cisco Systems</organization> </author> <author fullname="Larry Kreeger" role="editor"> <organization>Arrcus</organization> </author> <author fullname="Uri Elzur" role="editor"> <organization>Intel</organization> </author> <date month="September" day="22" year="2021"/> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-nvo3-vxlan-gpe-12"/> </reference> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8926.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8799.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.spiegel-ippm-ioam-rawexport.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-ippm-ioam-deployment.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-ippm-ioam-data-integrity.xml"/> </references> </references> <sectiontitle="Acknowledgements">numbered="false" toc="default"> <name>Acknowledgements</name> <t>The authors would like to thankEric Vyncke, Nalini Elkins, Srihari Raghavan, Ranganathan<contact fullname="Éric Vyncke"/>, <contact fullname="Nalini Elkins"/>, <contact fullname="Srihari Raghavan"/>, <contact fullname="Ranganathan TS, KarthikS"/>, <contact fullname="Karthik Babu HarichandraBabu, Akshaya Nadahalli, LJ Wobker, Erik Nordmark, VengadaBabu"/>, <contact fullname="Akshaya Nadahalli"/>, <contact fullname="LJ Wobker"/>, <contact fullname="Erik Nordmark"/>, <contact fullname="Vengada PrasadGovindan, Andrew Yourtchenko, Aviv Kfir, Tianran Zhou, Zhenbin (Robin) and Greg MirskyGovindan"/>, <contact fullname="Andrew Yourtchenko"/>, <contact fullname="Aviv Kfir"/>, <contact fullname="Tianran Zhou"/>, <contact fullname="Zhenbin (Robin)"/>, and <contact fullname="Greg Mirsky"/> for the comments and advice.</t> <t>This document leverages and builds on top of several concepts described in <xreftarget="I-D.kitamura-ipv6-record-route"/>.target="I-D.kitamura-ipv6-record-route" format="default"/>. The authors would like to acknowledge the work done by the authorHiroshi Kitamura<contact fullname="Hiroshi Kitamura"/> and people involved in writing it.</t> <t>The authors would like to gracefully acknowledge useful review and insightful comments received fromJoe Clarke, Al Morton, Tom Herbert, Carlos Bernardos, Haoyu Song, Mickey Spiegel, Roman Danyliw, Benjamin Kaduk, Murray<contact fullname="Joe Clarke"/>, <contact fullname="Al Morton"/>, <contact fullname="Tom Herbert"/>, <contact fullname="Carlos J. Bernardos"/>, <contact fullname="Haoyu Song"/>, <contact fullname="Mickey Spiegel"/>, <contact fullname="Roman Danyliw"/>, <contact fullname="Benjamin Kaduk"/>, <contact fullname="Murray S.Kucherawy, Ian Swett, Martin Duke, Francesca Palombini, Lars Eggert, Alvaro Retana, Erik Kline, Robert Wilton, Zaheduzzaman Sarker, Dan Romascanu and Barak Gafni.</t>Kucherawy"/>, <contact fullname="Ian Swett"/>, <contact fullname="Martin Duke"/>, <contact fullname="Francesca Palombini"/>, <contact fullname="Lars Eggert"/>, <contact fullname="Alvaro Retana"/>, <contact fullname="Erik Kline"/>, <contact fullname="Robert Wilton"/>, <contact fullname="Zaheduzzaman Sarker"/>, <contact fullname="Dan Romascanu"/>, and <contact fullname="Barak Gafni"/>.</t> </section></middle> <!-- *****BACK MATTER ***** --> <back> <!-- References split into informative and normative --> <!-- There are 2 ways to insert reference entries from the citation libraries: 1. define an ENTITY at<section numbered="false" toc="default"> <name>Contributors</name> <t>This document was thetop,collective effort of several authors. The text anduse "ampersand character"RFC2629; here (as shown) 2. simply use a PI "less than character"?rfc include="reference.RFC.2119.xml"?> here (for I-Ds: include="reference.I-D.narten-iana-considerations-rfc2434bis.xml") Both are cited textually in the same manner: by using xref elements. If you use the PI option, xml2rfc will,content were contributed bydefault, try to find included files in the same directory as the including file. You can also define the XML_LIBRARY environment variable with a value containing a set of directories to search. These can be either inthelocal filing system or remote ones accessed by http (http://domain/dir/... ).--> <references title="Normative References"> &RFC2119; &RFC8174; &RFC5905; &RFC8126; <reference anchor="POSIX" target="https://standards.ieee.org/findstds/standard/1003.1-2017.html"> <front> <title>IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2017) - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(TM) Base Specifications, Issue 7)</title> <author> <organization>Institute of Electricaleditors andElectronics Engineers</organization> </author> <date year="2017"/> </front> <seriesInfo name="" value="IEEE Std 1003.1-2017"/> </reference> </references> <references title="Informative References"> &RFC7665; &RFC7799; &RFC8877; &RFC7820; &RFC7821; &RFC7384; &RFC7276; <reference anchor="I-D.kitamura-ipv6-record-route"> <front> <title>Record Route for IPv6 (PR6) Hop-by-Hop Option Extension</title> <author fullname="Hiroshi Kitamura" initials="H" surname="Kitamura"/> <date month="November" year="2000"/> </front> <seriesInfo name="Internet-Draft" value="draft-kitamura-ipv6-record-route-00"/> <format target="https://tools.ietf.org/id/draft-kitamura-ipv6-record-route-00.txt" type="TXT"/> </reference> &RFC8300; &I-D.ietf-nvo3-vxlan-gpe; &RFC8926; &RFC8799; &I-D.spiegel-ippm-ioam-rawexport; &I-D.ietf-ippm-ioam-deployment; &I-D.ietf-ippm-ioam-data-integrity; </references> <section numbered="no" title="Contributors' Addresses"> <t><figure> <artwork><![CDATA[ Carlos Pignataro Ciscothe coauthors listed below.</t> <contact fullname="Carlos Pignataro"> <organization>Cisco Systems,Inc. 7200-11Inc.</organization> <address> <postal> <street>7200-11 Kit CreekRoad ResearchRoad</street> <extaddr>Research TrianglePark, NC 27709 UnitedPark</extaddr> <region>NC</region> <code>27709</code> <country>United StatesEmail: cpignata@cisco.com Mickey Spiegel Barefootof America</country> </postal> <email>cpignata@cisco.com</email> </address> </contact> <contact fullname="Mickey Spiegel"> <organization>Barefoot Networks, an Intelcompany 4750 Patrick Henry Drive Santa Clara, CA 95054 US Email: mickey.spiegel@intel.com Barak Gafni Nvidia 350company</organization> <address> <postal> <street>101 Innovation Drive</street> <city>San Jose</city> <region>CA</region> <code>95134-1941</code> <country>United States of America</country> </postal> <email>mickey.spiegel@intel.com</email> </address> </contact> <contact fullname="Barak Gafni"> <organization>Nvidia</organization> <address> <postal> <street>350 OakmeadParkway, Suite 100 Sunnyvale, CA 94085 U.S.A. Email: gbarak@nvidia.com Jennifer Lemon Broadcom 270Parkway</street> <extaddr>Suite 100</extaddr> <city>Sunnyvale</city> <region>CA</region> <code>94085</code> <country>United States of America</country> </postal> <email>gbarak@nvidia.com</email> </address> </contact> <contact fullname="Jennifer Lemon"> <organization>Broadcom</organization> <address> <postal> <street>270 InnovationDrive San Jose, CA 95134 US Email: jennifer.lemon@broadcom.com Hannes Gredler RtBrick Inc. Email: hannes@rtbrick.com John Leddy UnitedDrive</street> <city>San Jose</city> <region>CA</region> <code>95134</code> <country>United StatesEmail: john@leddy.net Stephen Youell JPof America</country> </postal> <email>jennifer.lemon@broadcom.com</email> </address> </contact> <contact fullname="Hannes Gredler"> <organization>RtBrick Inc.</organization> <address> <email>hannes@rtbrick.com</email> </address> </contact> <contact fullname="John Leddy"> <address> <postal> <country>United States of America</country> </postal> <email>john@leddy.net</email> </address> </contact> <contact fullname="Stephen Youell"> <organization>JP MorganChase 25Chase</organization> <address> <postal> <street>25 BankStreet London E14 5JP United Kingdom Email: stephen.youell@jpmorgan.com David Mozes Email: mosesster@gmail.com Petr Lapukhov Facebook 1Street</street> <city>London</city> <code>E14 5JP</code> <country>United Kingdom</country> </postal> <email>stephen.youell@jpmorgan.com</email> </address> </contact> <contact fullname="David Mozes"> <address> <email>mosesster@gmail.com</email> </address> </contact> <contact fullname="Petr Lapukhov"> <organization>Facebook</organization> <address> <postal> <street>1 HackerWay Menlo Park, CA 94025 US Email: petr@fb.com Remy Chang Barefoot Networks 4750 Patrick Henry Drive Santa Clara, CA 95054 US Email: remy@barefootnetworks.com Daniel Bernier Bell Canada Canada Email: daniel.bernier@bell.ca ]]></artwork> </figure></t>Way</street> <city>Menlo Park</city> <region>CA</region> <code>94025</code> <country>United States of America</country> </postal> <email>petr@fb.com</email> </address> </contact> <contact fullname="Remy Chang"> <organization>Barefoot Networks, an Intel company</organization> <address> <postal> <street>101 Innovation Drive</street> <city>San Jose</city> <region>CA</region> <code>95134-1941</code> <country>United States of America</country> </postal> <email>remy.chang@intel.com</email> </address> </contact> <contact fullname="Daniel Bernier"> <organization>Bell Canada</organization> <address> <postal> <country>Canada</country> </postal> <email>daniel.bernier@bell.ca</email> </address> </contact> </section> </back> </rfc>