
RFC 9221
An Unreliable Datagram Extension to QUIC

Abstract
This document defines an extension to the QUIC transport protocol to add support for sending
and receiving unreliable datagrams over a QUIC connection.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9221
Standards Track
March 2022
2070-1721

 T. Pauly
Apple Inc.

E. Kinnear
Apple Inc.

D. Schinazi
Google LLC

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9221

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Pauly, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/info/rfc9221
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Specification of Requirements

2. Motivation

3. Transport Parameter

4. Datagram Frame Types

5. Behavior and Usage

5.1. Multiplexing Datagrams

5.2. Acknowledgement Handling

5.3. Flow Control

5.4. Congestion Control

6. Security Considerations

7. IANA Considerations

7.1. QUIC Transport Parameter

7.2. QUIC Frame Types

8. References

8.1. Normative References

8.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction
The QUIC transport protocol provides a secure, multiplexed connection for
transmitting reliable streams of application data. QUIC uses various frame types to transmit data
within packets, and each frame type defines whether the data it contains will be retransmitted.
Streams of reliable application data are sent using STREAM frames.

[RFC9000]

RFC 9221 QUIC Datagrams March 2022

Pauly, et al. Standards Track Page 2

Some applications, particularly those that need to transmit real-time data, prefer to transmit
data unreliably. In the past, these applications have built directly upon UDP as a
transport and have often added security with DTLS . Extending QUIC to support
transmitting unreliable application data provides another option for secure datagrams with the
added benefit of sharing the cryptographic and authentication context used for reliable streams.

This document defines two new DATAGRAM QUIC frame types that carry application data
without requiring retransmissions.

[RFC0768]
[RFC6347]

1.1. Specification of Requirements
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Motivation
Transmitting unreliable data over QUIC provides benefits over existing solutions:

Applications that want to use both a reliable stream and an unreliable flow to the same peer
can benefit by sharing a single handshake and authentication context between a reliable
QUIC stream and a flow of unreliable QUIC datagrams. This can reduce the latency required
for handshakes compared to opening both a TLS connection and a DTLS connection.
QUIC uses a more nuanced loss recovery mechanism than the DTLS handshake. This can
allow loss recovery to occur more quickly for QUIC data.
QUIC datagrams are subject to QUIC congestion control. Providing a single congestion
control for both reliable and unreliable data can be more effective and efficient.

These features can be useful for optimizing audio/video streaming applications, gaming
applications, and other real-time network applications.

Unreliable QUIC datagrams can also be used to implement an IP packet tunnel over QUIC, such as
for a Virtual Private Network (VPN). Internet-layer tunneling protocols generally require a
reliable and authenticated handshake followed by unreliable secure transmission of IP packets.
This can, for example, require a TLS connection for the control data and DTLS for tunneling IP
packets. A single QUIC connection could support both parts with the use of unreliable datagrams
in addition to reliable streams.

•

•

•

3. Transport Parameter
Support for receiving the DATAGRAM frame types is advertised by means of a QUIC transport
parameter (name=max_datagram_frame_size, value=0x20). The max_datagram_frame_size
transport parameter is an integer value (represented as a variable-length integer) that represents
the maximum size of a DATAGRAM frame (including the frame type, length, and payload) the
endpoint is willing to receive, in bytes.

RFC 9221 QUIC Datagrams March 2022

Pauly, et al. Standards Track Page 3

The default for this parameter is 0, which indicates that the endpoint does not support
DATAGRAM frames. A value greater than 0 indicates that the endpoint supports the DATAGRAM
frame types and is willing to receive such frames on this connection.

An endpoint send DATAGRAM frames until it has received the
max_datagram_frame_size transport parameter with a non-zero value during the handshake (or
during a previous handshake if 0-RTT is used). An endpoint send DATAGRAM frames
that are larger than the max_datagram_frame_size value it has received from its peer. An
endpoint that receives a DATAGRAM frame when it has not indicated support via the transport
parameter terminate the connection with an error of type PROTOCOL_VIOLATION.
Similarly, an endpoint that receives a DATAGRAM frame that is larger than the value it sent in its
max_datagram_frame_size transport parameter terminate the connection with an error of
type PROTOCOL_VIOLATION.

For most uses of DATAGRAM frames, it is to send a value of 65535 in the
max_datagram_frame_size transport parameter to indicate that this endpoint will accept any
DATAGRAM frame that fits inside a QUIC packet.

The max_datagram_frame_size transport parameter is a unidirectional limit and indication of
support of DATAGRAM frames. Application protocols that use DATAGRAM frames choose to
only negotiate and use them in a single direction.

When clients use 0-RTT, they store the value of the server's max_datagram_frame_size
transport parameter. Doing so allows the client to send DATAGRAM frames in 0-RTT packets.
When servers decide to accept 0-RTT data, they send a max_datagram_frame_size
transport parameter greater than or equal to the value they sent to the client in the connection
where they sent them the NewSessionTicket message. If a client stores the value of the
max_datagram_frame_size transport parameter with their 0-RTT state, they validate that
the new value of the max_datagram_frame_size transport parameter sent by the server in the
handshake is greater than or equal to the stored value; if not, the client terminate the
connection with error PROTOCOL_VIOLATION.

Application protocols that use datagrams define how they react to the absence of the
max_datagram_frame_size transport parameter. If datagram support is integral to the
application, the application protocol can fail the handshake if the max_datagram_frame_size
transport parameter is not present.

MUST NOT

MUST NOT

MUST

MUST

RECOMMENDED

MAY

MAY

MUST

MUST

MUST

MUST

4. Datagram Frame Types
DATAGRAM frames are used to transmit application data in an unreliable manner. The Type field
in the DATAGRAM frame takes the form 0b0011000X (or the values 0x30 and 0x31). The least
significant bit of the Type field in the DATAGRAM frame is the LEN bit (0x01), which indicates
whether there is a Length field present: if this bit is set to 0, the Length field is absent and the
Datagram Data field extends to the end of the packet; if this bit is set to 1, the Length field is
present.

DATAGRAM frames are structured as follows:

RFC 9221 QUIC Datagrams March 2022

Pauly, et al. Standards Track Page 4

Length:

Datagram Data:

DATAGRAM frames contain the following fields:

A variable-length integer specifying the length of the Datagram Data field in bytes. This
field is present only when the LEN bit is set to 1. When the LEN bit is set to 0, the Datagram
Data field extends to the end of the QUIC packet. Note that empty (i.e., zero-length) datagrams
are allowed.

The bytes of the datagram to be delivered.

Figure 1: DATAGRAM Frame Format

DATAGRAM Frame {
 Type (i) = 0x30..0x31,
 [Length (i)],
 Datagram Data (..),
}

5. Behavior and Usage
When an application sends a datagram over a QUIC connection, QUIC will generate a new
DATAGRAM frame and send it in the first available packet. This frame be sent as soon as
possible (as determined by factors like congestion control, described below) and be
coalesced with other frames.

When a QUIC endpoint receives a valid DATAGRAM frame, it deliver the data to the
application immediately, as long as it is able to process the frame and can store the contents in
memory.

Like STREAM frames, DATAGRAM frames contain application data and be protected with
either 0-RTT or 1-RTT keys.

Note that while the max_datagram_frame_size transport parameter places a limit on the
maximum size of DATAGRAM frames, that limit can be further reduced by the
max_udp_payload_size transport parameter and the Maximum Transmission Unit (MTU) of the
path between endpoints. DATAGRAM frames cannot be fragmented; therefore, application
protocols need to handle cases where the maximum datagram size is limited by other factors.

SHOULD
MAY

SHOULD

MUST

5.1. Multiplexing Datagrams
DATAGRAM frames belong to a QUIC connection as a whole and are not associated with any
stream ID at the QUIC layer. However, it is expected that applications will want to differentiate
between specific DATAGRAM frames by using identifiers, such as for logical flows of datagrams or
to distinguish between different kinds of datagrams.

Defining the identifiers used to multiplex different kinds of datagrams or flows of datagrams is
the responsibility of the application protocol running over QUIC. The application defines the
semantics of the Datagram Data field and how it is parsed.

RFC 9221 QUIC Datagrams March 2022

Pauly, et al. Standards Track Page 5

If the application needs to support the coexistence of multiple flows of datagrams, one
recommended pattern is to use a variable-length integer at the beginning of the Datagram Data
field. This is a simple approach that allows a large number of flows to be encoded using minimal
space.

QUIC implementations present an API to applications to assign relative priorities to
DATAGRAM frames with respect to each other and to QUIC streams.

SHOULD

5.2. Acknowledgement Handling
Although DATAGRAM frames are not retransmitted upon loss detection, they are ack-eliciting
(). Receivers support delaying ACK frames (within the limits specified by
max_ack_delay) in response to receiving packets that only contain DATAGRAM frames, since the
sender takes no action if these packets are temporarily unacknowledged. Receivers will continue
to send ACK frames when conditions indicate a packet might be lost, since the packet's payload is
unknown to the receiver, and when dictated by max_ack_delay or other protocol components.

As with any ack-eliciting frame, when a sender suspects that a packet containing only
DATAGRAM frames has been lost, it sends probe packets to elicit a faster acknowledgement as
described in .

If a sender detects that a packet containing a specific DATAGRAM frame might have been lost, the
implementation notify the application that it believes the datagram was lost.

Similarly, if a packet containing a DATAGRAM frame is acknowledged, the implementation
notify the sender application that the datagram was successfully transmitted and received. Due
to reordering, this can include a DATAGRAM frame that was thought to be lost but, at a later point,
was received and acknowledged. It is important to note that acknowledgement of a DATAGRAM
frame only indicates that the transport-layer handling on the receiver processed the frame and
does not guarantee that the application on the receiver successfully processed the data. Thus, this
signal cannot replace application-layer signals that indicate successful processing.

[RFC9002] SHOULD

Section 6.2.4 of [RFC9002]

MAY

MAY

5.3. Flow Control
DATAGRAM frames do not provide any explicit flow control signaling and do not contribute to
any per-flow or connection-wide data limit.

The risk associated with not providing flow control for DATAGRAM frames is that a receiver
might not be able to commit the necessary resources to process the frames. For example, it might
not be able to store the frame contents in memory. However, since DATAGRAM frames are
inherently unreliable, they be dropped by the receiver if the receiver cannot process them.MAY

5.4. Congestion Control
DATAGRAM frames employ the QUIC connection's congestion controller. As a result, a connection
might be unable to send a DATAGRAM frame generated by the application until the congestion
controller allows it . The sender either delay sending the frame until the controller[RFC9002] MUST

RFC 9221 QUIC Datagrams March 2022

Pauly, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc9002#section-6.2.4

allows it or drop the frame without sending it (at which point it notify the application).
Implementations that use packet pacing () can also delay the sending of
DATAGRAM frames to maintain consistent packet pacing.

Implementations can optionally support allowing the application to specify a sending expiration
time beyond which a congestion-controlled DATAGRAM frame ought to be dropped without
transmission.

MAY
Section 7.7 of [RFC9002]

6. Security Considerations
The DATAGRAM frame shares the same security properties as the rest of the data transmitted
within a QUIC connection, and the security considerations of apply accordingly. All
application data transmitted with the DATAGRAM frame, like the STREAM frame, be
protected either by 0-RTT or 1-RTT keys.

Application protocols that allow DATAGRAM frames to be sent in 0-RTT require a profile that
defines acceptable use of 0-RTT; see .

The use of DATAGRAM frames might be detectable by an adversary on path that is capable of
dropping packets. Since DATAGRAM frames do not use transport-level retransmission,
connections that use DATAGRAM frames might be distinguished from other connections due to
their different response to packet loss.

[RFC9000]
MUST

Section 5.6 of [RFC9001]

7. IANA Considerations

Value:
Parameter Name:
Status:
Specification:

7.1. QUIC Transport Parameter
This document registers a new value in the "QUIC Transport Parameters" registry maintained at

.

0x20
max_datagram_frame_size

permanent
RFC 9221

<https://www.iana.org/assignments/quic>

Value:
Frame Name:
Status:
Specification:

7.2. QUIC Frame Types
This document registers two new values in the "QUIC Frame Types" registry maintained at

.

0x30-0x31
DATAGRAM

permanent
RFC 9221

<https://www.iana.org/assignments/quic>

RFC 9221 QUIC Datagrams March 2022

Pauly, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc9002#section-7.7
https://www.rfc-editor.org/rfc/rfc9001#section-5.6
https://www.iana.org/assignments/quic
https://www.iana.org/assignments/quic

[RFC2119]

[RFC8174]

[RFC9000]

[RFC9001]

[RFC9002]

[RFC0768]

[RFC6347]

8. References

8.1. Normative References

, , ,
, , March 1997,
.

, , ,
, , May 2017,
.

 and ,
, , , May 2021,

.

 and , , ,
, May 2021, .

 and , ,
, , May 2021,
.

8.2. Informative References

, , , , , August
1980, .

 and , ,
, , January 2012,
.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and Secure
Transport" RFC 9000 DOI 10.17487/RFC9000 <https://www.rfc-
editor.org/info/rfc9000>

Thomson, M., Ed. S. Turner, Ed. "Using TLS to Secure QUIC" RFC 9001 DOI
10.17487/RFC9001 <https://www.rfc-editor.org/info/rfc9001>

Iyengar, J., Ed. I. Swett, Ed. "QUIC Loss Detection and Congestion Control"
RFC 9002 DOI 10.17487/RFC9002 <https://www.rfc-editor.org/info/
rfc9002>

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768
<https://www.rfc-editor.org/info/rfc768>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Acknowledgments
The original proposal for this work came from .

This document had reviews and input from many contributors in the IETF QUIC Working Group,
with substantive input from , , , ,

, and .

Ian Swett

Nick Banks Lucas Pardue Rui Paulo Martin Thomson Victor
Vasiliev Chris Wood

RFC 9221 QUIC Datagrams March 2022

Pauly, et al. Standards Track Page 8

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347

Authors' Addresses
Tommy Pauly
Apple Inc.
One Apple Park Way

, Cupertino CA 95014
United States of America

 tpauly@apple.com Email:

Eric Kinnear
Apple Inc.
One Apple Park Way

, Cupertino CA 95014
United States of America

 ekinnear@apple.com Email:

David Schinazi
Google LLC
1600 Amphitheatre Parkway

, Mountain View CA 94043
United States of America

 dschinazi.ietf@gmail.com Email:

RFC 9221 QUIC Datagrams March 2022

Pauly, et al. Standards Track Page 9

mailto:tpauly@apple.com
mailto:ekinnear@apple.com
mailto:dschinazi.ietf@gmail.com

	RFC 9221
	An Unreliable Datagram Extension to QUIC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Specification of Requirements

	2. Motivation
	3. Transport Parameter
	4. Datagram Frame Types
	5. Behavior and Usage
	5.1. Multiplexing Datagrams
	5.2. Acknowledgement Handling
	5.3. Flow Control
	5.4. Congestion Control

	6. Security Considerations
	7. IANA Considerations
	7.1. QUIC Transport Parameter
	7.2. QUIC Frame Types

	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Authors' Addresses

