<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rfc SYSTEM "rfc2629.dtd"> [
  <!ENTITY nbsp    "&#160;">
  <!ENTITY zwsp   "&#8203;">
  <!ENTITY nbhy   "&#8209;">
  <!ENTITY wj     "&#8288;">
]>

<rfc category="info" xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902" docName="draft-smyslov-esp-gost-14">

<?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?>

<?rfc toc="yes" ?>
<?rfc symrefs="yes" ?>
<?rfc sortrefs="no"?>
<?rfc iprnotified="no" ?>
<?rfc strict="yes" ?> docName="draft-smyslov-esp-gost-14" number="9227" obsoletes="" updates="" submissionType="independent" category="info" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="false" version="3">

<!-- xml2rfc v2v3 conversion 3.12.1 -->

<front>
    <title abbrev="GOST ciphers Ciphers in ESP &amp; and IKEv2">Using GOST ciphers Ciphers in ESP the Encapsulating Security Payload (ESP) and IKEv2</title> Internet Key Exchange Version 2 (IKEv2) Protocols</title>
    <seriesInfo name="RFC" value="9227"/>
    <author initials='V.' initials="V." surname="Smyslov" fullname='Valery Smyslov'> fullname="Valery Smyslov">
      <organization>ELVIS-PLUS</organization>
      <address>
        <postal>
          <street>PO Box 81</street>
          <city>Moscow (Zelenograd)</city>
          <code>124460</code>
                    <country>RU</country>
          <country>Russian Federation</country>
        </postal>
        <phone>+7 495 276 0211</phone>
        <email>svan@elvis.ru</email>
      </address>
    </author>
        <date/>
    <date year="2022" month="March" />
    <keyword>AEAD</keyword>
    <keyword>MGM</keyword>
    <abstract>
      <t> This document defines a set of encryption transforms for use in the Encapsulating Security Payload (ESP)
            and in the Internet Key Exchange version 2 (IKEv2) protocols protocols, which are parts of the IP Security (IPsec) protocols protocol suite.
            The transforms are based on the GOST R 34.12-2015 block ciphers (which are named &quot;Magma&quot; "Magma" and &quot;Kuznyechik&quot;) "Kuznyechik")
            in a Multilinear Galois Mode (MGM) and the external re-keying rekeying approach.
      </t>
      <t> This specification is was developed to facilitate implementations that wish to support the GOST algorithms.
            This document does not imply IETF endorsement of the cryptographic algorithms used in this document.
      </t>
    </abstract>
  </front>
  <middle>
    <section title="Introduction" anchor="intro"> anchor="intro" numbered="true" toc="default">
      <name>Introduction</name>
      <t> The IP Security (IPsec) protocols protocol suite consists of several protocols, of which
            the Encapsulating Security Payload (ESP) <xref target="RFC4303" /> format="default"/> and
            the Internet Key Exchange version 2 (IKEv2) <xref target="RFC7296" /> format="default"/> are most widely used.
            This document defines four transforms for ESP and IKEv2 based on Russian cryptographic standard algorithms (often referred to as &quot;GOST&quot; "GOST" algorithms).
            This definition is
            These definitions are based on the Recommendations recommendations <xref target="GOST-ESP" /> format="default"/> established by the Federal Agency on Technical Regulating and Metrology (Rosstandart),
            which describe how Russian cryptographic standard algorithms are used in ESP and IKEv2. Transforms The transforms defined in this document are based
            on two block ciphers from Russian cryptographic standard algorithms -
            &quot;Kuznyechik&quot; --
            "Kuznyechik" <xref target="GOST3412-2015" /><xref format="default"/> <xref target="RFC7801" /> format="default"/>
            and &quot;Magma&quot; "Magma" <xref target="GOST3412-2015" /><xref format="default"/> <xref target="RFC8891" /> format="default"/>
            in Multilinear Galois Mode (MGM) <xref target="GOST-MGM" /><xref format="default"/> <xref target="RFC9058" />. format="default"/>. These transforms
            provide Authenticated Encryption with Associated Data (AEAD). An external re-keying rekeying mechanism, described in <xref target="RFC8645" /> format="default"/>,
            is also used in these transforms to limit the load on session keys.
      </t>
      <t> Because the GOST specification includes the definition of both 128 (&quot;Kuznyechik&quot;) 128-bit ("Kuznyechik") and 64 (&quot;Magma&quot;)
            bit 64-bit ("Magma")
            block ciphers, both are included in this document. Implementers should make themselves aware of the relative security
            and other cost-benefit implications of the two ciphers. See <xref target="security" /> format="default"/> for more details.
      </t>
      <t> This specification is was developed to facilitate implementations that wish to support the GOST algorithms.
            This document does not imply IETF endorsement of the cryptographic algorithms used in this document.
      </t>
    </section>
    <section title="Requirements Language" anchor="req_lang"> anchor="req_lang" numbered="true" toc="default">
      <name>Requirements Language</name>
       <t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
            "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>",
       "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>",
       "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>",
       "<bcp14>SHOULD NOT</bcp14>",
       "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
       "<bcp14>MAY</bcp14>", and
            "OPTIONAL" "<bcp14>OPTIONAL</bcp14>" in this document
       are to be interpreted as described in BCP
            14 BCP&nbsp;14
       <xref target="RFC2119"></xref> target="RFC2119"/> <xref target="RFC8174"></xref> target="RFC8174"/> when, and only
       when, they appear in all capitals, as shown here.</t>
    </section>
    <section title="Overview" anchor="overview"> anchor="overview" numbered="true" toc="default">
      <name>Overview</name>
      <t> Russian cryptographic standard algorithms, often referred to as &quot;GOST&quot; "GOST" algorithms,
            constitute a set of cryptographic algorithms of different types - -- ciphers, hash functions, digital
            signatures, etc. In particular, Russian cryptographic standard <xref target="GOST3412-2015" /> format="default"/>
            defines two block ciphers - &quot;Kuznyechik&quot; -- "Kuznyechik" (also defined in <xref target="RFC7801" />) format="default"/>)
            and &quot;Magma&quot; "Magma" (also defined in <xref target="RFC8891" />). format="default"/>). Both
            ciphers use a 256-bit key. &quot;Kuznyechik&quot; "Kuznyechik" has a block size of 128 bits, while &quot;Magma&quot; "Magma"
            has a 64-bit block.
      </t>
      <t> Multilinear Galois Mode (MGM) is an AEAD mode defined in <xref target="GOST-MGM" /><xref format="default"/> and <xref target="RFC9058" />. format="default"/>.
            It is claimed to provide defense against some attacks on well-known AEAD modes, like Galois Counter Galois/Counter Mode (GCM).
      </t>
      <t> <xref target="RFC8645" /> format="default"/> defines mechanisms that can be used
            to limit the number of times any particular session key is used. One of these mechanisms,
            called external re-keying rekeying with tree-based construction (defined in Section 5.2.3 of <xref target="RFC8645" />), sectionFormat="of" section="5.2.3"/>),
            is used in the defined transforms. For the purpose of deriving subordinate keys
            a keys,
            the Key Derivation Function (KDF) KDF_GOSTR3411_2012_256 KDF_GOSTR3411_2012_256, defined in Section 4.5 of <xref target="RFC7836" />, sectionFormat="of" section="4.5"/>,
 is used. This KDF is based on an HMAC a Hashed Message Authentication Code (HMAC) construction <xref target="RFC2104" /> construction format="default"/> with
            a Russian GOST hash function defined in Russian cryptographic standard <xref target="GOST3411-2012" /> format="default"/> (also defined
            in <xref target="RFC6986" />). format="default"/>).
      </t>
    </section>
    <section title="Transforms Description" anchor="transforms"> anchor="transforms" numbered="true" toc="default">
      <name>Description of Transforms</name>
      <t> This document defines four transforms of Type 1 (Encryption Algorithm) for use in ESP and IKEv2. All of them use MGM as the mode of operation with tree-based
            external re-keying. rekeying. The transforms differ in underlying ciphers and in cryptographic services they provide.
            <list style="symbols">
                <t>ENCR_KUZNYECHIK_MGM_KTREE
      </t>

      <ul spacing="normal">
        <li>ENCR_KUZNYECHIK_MGM_KTREE (Transform ID 32) is an AEAD transform based on &quot;Kuznyechik&quot; the "Kuznyechik" algorithm; it provides
                confidentiality and message authentication and thus can be used in both ESP and IKEv2</t>
                <t>ENCR_MAGMA_MGM_KTREE IKEv2.</li>
        <li>ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based on &quot;Magma&quot; the "Magma" algorithm; it provides
                confidentiality and message authentication and thus can be used in both ESP and IKEv2</t>
                <t>ENCR_KUZNYECHIK_MGM_MAC_KTREE IKEv2.</li>
        <li>ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only transform based on &quot;Kuznyechik&quot; the "Kuznyechik" algorithm; it provides
                no confidentiality and thus can only be used in ESP, but not in IKEv2</t>
                <t>ENCR_MAGMA_MGM_MAC_KTREE IKEv2.</li>
        <li>ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform based on &quot;Magma&quot; the "Magma" algorithm; it provides
                no confidentiality and thus can only be used in ESP, but not in IKEv2</t>
            </list> IKEv2.</li>
      </ul>
      <t>
            Note that transforms ENCR_KUZNYECHIK_MGM_MAC_KTREE and ENCR_MAGMA_MGM_MAC_KTREE don't provide any confidentiality,
            but they are defined as Type 1 (Encryption Algorithm) transforms because of the need to include an Initialization Vector, Vector (IV),
            which is impossible for Type 3 (Integrity Algorithm) transforms.
      </t>
      <section title="Tree-based anchor="key" numbered="true" toc="default">
        <name>Tree-Based External Re-Keying" anchor="key"> Rekeying</name>
        <t> All four transforms use the same tree-based external re-keying rekeying mechanism. The idea is that
                the key that is provided for the transform is not directly used to protect messages. Instead, a tree of keys is derived using this key as a root.
                This tree may have several levels. The leaf keys are used for message protection, while intermediate nodes intermediate-node keys are used to derive
                lower-level keys, including leaf keys.
 See Section 5.2.3 of <xref target="RFC8645" /> sectionFormat="of" section="5.2.3"/> for more details.
                This construction allows us to protect a large amount of data, at the same time providing a bound on a number of times any particular key
                in the tree is used, thus defending against some side channel side-channel attacks and also increasing the key lifetime limitations based on combinatorial properties.
        </t>
        <t> The transforms defined in this document use a three-level tree. The leaf key that protects a message is computed
                as follows:

                <figure>
                    <preamble></preamble>

        </t>
        <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
K_msg = KDF (KDF (KDF (K, l1, 0x00 | i1), l2, i2), l3, i3)
                  ]]></artwork>
                  </figure>
        <t>

                where:
                <list style="hanging" hangIndent="16">
                    <t hangText="KDF
        </t>
        <dl newline="false" spacing="normal" indent="16">
          <dt>KDF (k, l, s)" >Key s)</dt>
          <dd>Key Derivation Function KDF_GOSTR3411_2012_256 defined (defined in Section 4.5 of <xref target="RFC7836" />, sectionFormat="of" section="4.5"/>), which
                    accepts three input parameters - -- a key (k), a label (l) (l), and a seed (s) -- and provides a new key as an output;
                    </t>
                    <t hangText="K">the output
                    </dd>
          <dt>K</dt>
          <dd>the root key for the tree (see <xref target="keymat" />);
                    </t>
                    <t hangText="l1, format="default"/>)
                    </dd>
          <dt>l1, l2, l3">labels l3</dt>
          <dd>
            <t>labels defined as 6 octet 6-octet ASCII strings without null termination:
                        <list>
                            <t>l1 = &quot;level1&quot;</t>
                            <t>l2
            </t>
            <dl newline="false" spacing="normal">
              <dt>l1 =</dt>
              <dd>"level1"</dd>
              <dt>l2 = &quot;level2&quot;</t>
                            <t>l3 </dt>
              <dd>"level2"</dd>
              <dt>l3 = &quot;level3&quot;</t>
                        </list>
                    </t>
                    <t hangText="i1, </dt>
              <dd>"level3"</dd>
            </dl>
          </dd>
          <dt>i1, i2, i3">parameters i3</dt>
          <dd>parameters that determine which keys out of the tree are used on each level,
                    altogether level.
                    Together, they determine a leaf key that is used for message protection; the length of i1 is one octet, and
                    i2 and i3 are two octet two-octet integers in network byte order;
                    </t>
                    <t hangText="|">indicates concatenation;
                    </t>
                </list> order
                    </dd>
          <dt>|</dt>
          <dd>indicates concatenation
                    </dd>
        </dl>
        <t>
                This construction allows us to generate up to 2^8 2<sup>8</sup> keys on level 1 and up to 2^16 2<sup>16</sup> keys on levels 2 and 3.
                So, the total number of possible leaf keys generated from a single SA Security Association (SA) key is 2^40. 2<sup>40</sup>.
        </t>
        <t>This specification doesn't impose any requirements on the frequency of which the how frequently external re-keying rekeying takes place.
                It is expected that the sending application will follow its own policy dictating how many times the keys on each level must be used.
        </t>
      </section>
      <section title="Initialization anchor="iv" numbered="true" toc="default">
        <name>Initialization Vector Format" anchor="iv"> Format</name>
        <t> Each message protected by the defined transforms MUST <bcp14>MUST</bcp14> contain an Initialization Vector (IV). IV.
                The IV has a size of 64 bits and consists of the four fields, three of which are fields. The fields i1, i2 i2, and i3 are
                parameters that determine the particular leaf key this message was protected with (see <xref target="key"/>),
                and the target="key" format="default"/>).
                The fourth field is a counter, representing the message number for this key.

        </t>
        <figure title="IV Format" anchor="iv_format">
                    <preamble></preamble>
          <name>IV Format</name>
          <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      i1       |               i2              |      i3       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   i3 (cont)   |                     pnum                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  ]]></artwork>
        </figure>
        <t>
                where:
                <list style="symbols">
                    <t>i1
        </t>
        <dl spacing="normal">
          <dt>i1 (1 octet), i2 (2 octets), i3 (2 octets) - parameters, determining octets):</dt><dd>parameters that  determine the particular key used to protect this message;
                    2-octets
                    2-octet parameters are integers in network byte order</t>
                    <t>pnum order</dd>
          <dt>pnum (3 octets) - message octets):</dt><dd>message counter in network byte order for the leaf key protecting this message; up to 2^24 2<sup>24</sup> messages may be protected using
                    a single leaf key</t>
                </list> key</dd>
	</dl>
        <t>
                For any given SA SA, the IV MUST NOT <bcp14>MUST NOT</bcp14> be used more than once, but there is no requirement that IV is be unpredictable.
        </t>
      </section>
      <section title="Nonce anchor="mgm_nonce" numbered="true" toc="default">
        <name>Nonce Format for MGM" anchor="mgm_nonce"> MGM</name>
        <t> MGM requires a per-message nonce (called the Initial Counter Nonce, ICN, or ICN in the <xref target="RFC9058" />) format="default"/>)
                that MUST <bcp14>MUST</bcp14> be unique in the context of any leaf key. The size of the ICN
                is n-1 bits, where n is the block size of the underlying cipher. The two ciphers used in the
                transforms defined in this document have different block sizes, so two different formats for the ICN are defined.
        </t>
        <t> MGM specification requires that the nonce be n-1 bits in size, where n is the block size of the underlying cipher.
                This document defines MGM nonces having n bits (the block size of the underlying cipher) in size.
                Since the n is always a multiple of 8 bits, this makes MGM nonces having a whole number of octets.
                When used inside MGM MGM, the most significant bit of the first octet of the nonce (represented as an octet string) is
                dropped, making the effective size of the nonce equal to n-1 bits. Note that the dropped bit is a part of zero the "zero" field
                (see <xref Figures&nbsp;<xref target="nonce_kuznyechik_format" /> format="counter"/> and <xref target="nonce_magma_format" />) format="counter"/>), which is always set to 0,
                so no information is lost when it is dropped.
        </t>
        <section title="MGM anchor="nonce_kuznyechik" numbered="true" toc="default">
          <name>MGM Nonce Format for &quot;Kuznyechik&quot; based Transforms" anchor="nonce_kuznyechik"> Transforms Based on the "Kuznyechik" Cipher</name>
          <t> For transforms based on &quot;Kuznyechik&quot; the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE) ENCR_KUZNYECHIK_MGM_MAC_KTREE),
                    the ICN consists of a zero octet, "zero" octet; a 24-bit message counter counter; and a 96-bit secret salt, that which is fixed for the SA and is not transmitted.
          </t>
          <figure title="Nonce format for &quot;Kuznyechik&quot; based transforms" anchor="nonce_kuznyechik_format">
                    <preamble></preamble>
            <name>Nonce Format for Transforms Based on the "Kuznyechik" Cipher</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     zero      |                     pnum                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                             salt                              |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                      ]]></artwork>
          </figure>
          <t>
                    where:
                    <list style="symbols">
                        <t>zero
          </t>
          <dl spacing="normal">
            <dt>zero (1 octet) - set octet):</dt><dd>set to 0</t>
                        <t>pnum 0</dd>
            <dt>pnum (3 octets) - the octets):</dt><dd>the counter for the messages protected by the given leaf key; this field MUST <bcp14>MUST</bcp14> be equal to the pnum field in the IV</t>
                        <t>salt IV</dd>
            <dt>salt (12 octets) - secret salt</t>
                    </list>
                    </t> octets):</dt><dd>secret salt. The salt is a string of bits that are formed when the SA is created (see <xref target="keymat"/> for details).  The salt does not change during the SA's lifetime and is not transmitted on the wire.  Every SA will have its own salt.</dd>
	  </dl>
        </section>
        <section title="MGM anchor="nonce_magma" numbered="true" toc="default">
          <name>MGM Nonce Format for &quot;Magma&quot; based Transforms" anchor="nonce_magma"> Transforms Based on the "Magma" Cipher</name>
          <t> For transforms based on &quot;Magma&quot; the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE) ENCR_MAGMA_MGM_MAC_KTREE),
                    the ICN consists of a zero octet, "zero" octet; a 24-bit message counter counter; and a 32-bit secret salt, that which is fixed for the SA and is not transmitted.

          </t>
          <figure title="Nonce format for &quot;Magma&quot; based transforms" anchor="nonce_magma_format">
                    <preamble></preamble>
            <name>Nonce Format for Transforms Based on the "Magma" Cipher</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     zero      |                     pnum                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             salt                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    ]]></artwork>
          </figure>
          <t>

                    where:
                    <list style="symbols">
                        <t>zero
          </t>
          <dl spacing="normal">
            <dt>zero (1 octet) - set octet):</dt><dd>set to 0</t>
                        <t>pnum 0</dd>
            <dt>pnum (3 octets) - the octets):</dt><dd>the counter for the messages protected by the given leaf key; this field MUST <bcp14>MUST</bcp14> be equal to the pnum field in the IV</t>
                        <t>salt IV</dd>
            <dt>salt (4 octets) - secret salt</t>
                    </list>
                    </t> octets):</dt><dd>secret salt. The salt is a string of bits that are formed when the SA is created (see <xref target="keymat"/> for details).  The salt does not change during the SA's lifetime and is not transmitted on the wire.  Every SA will have its own salt.</dd>
	  </dl>
        </section>
      </section>
      <section title="Keying Material" anchor="keymat"> anchor="keymat" numbered="true" toc="default">
        <name>Keying Material</name>
        <t>We'll refer as "transform key" to call a string of bits that are is used to initialize the transforms
   defined in this specification. specification a "transform key". The transform key is a composite entity consisting of the root key for the tree and the secret salt.
        </t>
        <t>The transform key for the ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits (44 octets), of which
                the first 256 bits is a root key for the tree (denoted as K in <xref target="key" />) format="default"/>) and the remaining
                96 bits is a secret salt (see <xref target="nonce_kuznyechik" />). format="default"/>).
        </t>
        <t>The transform key for the ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE transforms consists of 288 bits (36 octets), of which
                the first 256 bits is a root key for the tree (denoted as K in <xref target="key" />) format="default"/>) and the remaining
                32 bits is a secret salt (see <xref target="nonce_magma" />). format="default"/>).
        </t>
        <t>In the case of ESP ESP, the transform keys are extracted from the KEYMAT as defined in Section 2.17 of <xref target="RFC7296" />. sectionFormat="of" section="2.17"/>.
                In the case of IKEv2 IKEv2, the transform keys are either SK_ei or SK_er, which are generated as defined in Section 2.14 of <xref target="RFC7296" />. sectionFormat="of" section="2.14"/>.
                Note that since these transforms provide authenticated encryption, no additional keys are needed
                for authentication. It This means that that, in the case of IKEv2 IKEv2, the keys SK_ai/SK_ar are not used and MUST <bcp14>MUST</bcp14> be treated as
                having zero length.</t>
      </section>
      <section title="Integrity anchor="icv" numbered="true" toc="default">
        <name>Integrity Check Value" anchor="icv"> Value</name>
        <t> The length of the authentication tag  that MGM can compute is in the range from 32 bits to the block size of the underlying cipher.
                Section 4 of the
                <xref target="RFC9058" /> sectionFormat="of" section="4"/> states that the authentication tag length must <bcp14>MUST</bcp14> be fixed for a particular protocol.
                For &quot;Kuznyechik&quot; based transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE) ENCR_KUZNYECHIK_MGM_MAC_KTREE), the resulting
                Integrity Check Value (ICV) length is set to 96 bits. For &quot;Magma&quot; based transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE) ENCR_MAGMA_MGM_MAC_KTREE),
                the full ICV length is set to the block size (64 bits).
        </t>
      </section>
      <section title="Plaintext Padding" anchor="padding">
                <t>Transforms anchor="padding" numbered="true" toc="default">
        <name>Plaintext Padding</name>
        <t>The transforms defined in this document don't require any plaintext padding,
                as specified in <xref target="RFC9058" />. It means, format="default"/>. This means that only those
                padding requirements that are imposed by the protocol are applied (4 bytes for ESP,
                no padding for IKEv2).
        </t>
      </section>
      <section title="AAD Construction"> numbered="true" toc="default">
        <name>AAD Construction</name>
        <section title="ESP AAD" anchor="esp_aad"> anchor="esp_aad" numbered="true" toc="default">
          <name>ESP AAD</name>
          <t> Additional Authenticated Data (AAD) in ESP is constructed differently differently, depending on the
                    transform being used and whether the Extended Sequence Number (ESN) is in use or not.
                    The ENCR_KUZNYECHIK_MGM_KTREE and ENCR_MAGMA_MGM_KTREE transforms
                    provide confidentiality, so the content of the ESP body is encrypted and the AAD
                    consists of the ESP SPI Security Parameter Index (SPI) and (E)SN.
 The AAD is constructed similarly to the one AAD in <xref target="RFC4106" />. format="default"/>.
          </t>
          <t> On the other hand hand, the ENCR_KUZNYECHIK_MGM_MAC_KTREE and ENCR_MAGMA_MGM_MAC_KTREE transforms
                    don't provide confidentiality, confidentiality; they provide only message authentication.
                    For this purpose purpose, the IV and the part of the ESP packet that is normally encrypted are included
                    in the AAD. For these transforms transforms, the encryption capability provided by MGM
                    is not used. The AAD is constructed similarly to the one AAD in <xref target="RFC4543" />. format="default"/>.

          </t>
          <figure title="AAD anchor="aad_aead_32">
            <name>AAD for AEAD transforms Transforms with 32-bit SN" anchor="aad_aead_32">
                    <preamble></preamble> 32-Bit SN</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               SPI                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     32-bit Sequence Number                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    ]]></artwork>
          </figure>
          <figure title="AAD anchor="aad_aead_64">
            <name>AAD for AEAD transforms Transforms with 64-bit ESN" anchor="aad_aead_64">
                    <preamble></preamble> 64-Bit ESN</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               SPI                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 64-bit Extended Sequence Number               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    ]]></artwork>
          </figure>
          <figure title="AAD anchor="aad_mac_32">
            <name>AAD for authentication only transforms Authentication-Only Transforms with 32-bit SN" anchor="aad_mac_32">
                    <preamble></preamble> 32-Bit SN</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               SPI                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     32-bit Sequence Number                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               IV                              |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
~                     Payload Data (variable)                   ~
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Padding (0-255 bytes)                      |
+                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               |  Pad Length   | Next Header   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    ]]></artwork>
          </figure>
          <figure title="AAD anchor="aad_mac_64">
            <name>AAD for authentication only transforms Authentication-Only Transforms with 64-bit ESN" anchor="aad_mac_64">
                    <preamble></preamble> 64-Bit ESN</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               SPI                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 64-bit Extended Sequence Number               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               IV                              |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
~                     Payload Data (variable)                   ~
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Padding (0-255 bytes)                      |
+                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               |  Pad Length   | Next Header   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    ]]></artwork>
          </figure>

                    </t>
        </section>
        <section title="IKEv2 AAD" anchor="ikev2_aad"> anchor="ikev2_aad" numbered="true" toc="default">
          <name>IKEv2 AAD</name>
          <t> For IKEv2 IKEv2, the AAD consists of the IKEv2 Header,
                    any unencrypted payloads following it (if present) present), and either the Encrypted
                    (or payload header (<xref target="RFC7296" sectionFormat="of" section="3.14"/>)
                    or the Encrypted Fragment) Fragment payload header. (<xref target="RFC7383" sectionFormat="of" section="2.5"/>), depending on whether IKE fragmentation is used.
 The AAD is constructed
                    similar
                    similarly to the one AAD in <xref target="RFC5282" />. format="default"/>.

          </t>
          <figure title="AAD anchor="aad_ikev2_encr_payload_format">
            <name>AAD for IKEv2" anchor="aad_ikev2_format">
                    <preamble></preamble> IKEv2 in the Case of the Encrypted Payload</name>
            <artwork align="center"><![CDATA[ align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                         IKEv2 Header                          ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                   Unencrypted IKE Payloads                    ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Payload  |C|  RESERVED   |         Payload Length        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    ]]></artwork>
          </figure>

                    </t>

          <figure anchor="aad_ikev2_encr_frag_payload_format">
            <name>AAD for IKEv2 in the Case of the Encrypted Fragment Payload</name>
            <artwork align="center" name="" type="" alt=""><![CDATA[
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                         IKEv2 Header                          ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                   Unencrypted IKE Payloads                    ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Payload  |C|  RESERVED   |         Payload Length        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        Fragment Number        |        Total Fragments        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    ]]></artwork>
          </figure>
        </section>
      </section>
      <section title="Using Transforms" anchor="use"> anchor="use" numbered="true" toc="default">
        <name>Using Transforms</name>
        <t>When the SA is established established, the i1, i2 i2, and i3 parameters are set to 0 by the sender and a leaf key is calculated.
                The pnum parameter starts from 0 and is incremented with each message protected by the same leaf key.
                When the sender decides that the leaf should be changed, it increments the i3 parameter and generates a new leaf key.
                The pnum parameter for the new leaf key is reset to 0 0, and the process continues. If the sender decides, decides
                that a third-level key corresponding to i3 is used enough times, it increments i2, resets i3 to 0 0,
                and calculates a new leaf key. The pnum is reset to 0 (as with every new leaf key) key), and the process continues.
                Similar
                A similar procedure is used when a second-level key needs to be changed.
        </t>
        <t>A combination of i1, i2, i3 i3, and pnum MUST NOT <bcp14>MUST NOT</bcp14> repeat for any particular SA.
                This means that the wrapping around of these counters is not allowed: when i2, i3 i3, or pnum reach their reaches its respective maximum values, value,
                a procedure of for changing a leaf key key, described above above, is executed, and if all four parameters reach their maximum values,
                the IPsec SA becomes unusable.
        </t>
        <t>There may be other reasons to recalculate leaf keys beside besides reaching maximum values for the counters.
                For example, as described in <xref target="security" />, format="default"/>, it is RECOMMENDED <bcp14>RECOMMENDED</bcp14> that the sender count the number of
                octets protected by a particular leaf key and generate a new key when some threshold is reached, and at the latest when
                reaching the octet limits stated in <xref target="security" /> format="default"/> for each of the ciphers.
        </t>
        <t>The receiver always uses i1, i2 i2, and i3 from the received message. If they differ from the values in previously received packets,
                a new leaf key is calculated. The pnum parameter is always used from the
                received packet. To improve performance performance, implementations may cache recently used leaf key. keys.
                When a new leaf key is calculated (based on the values from the received message) message),
                the old key may be kept for some time to improve performance in the case of possible packet reordering
                (when packets protected by the old leaf key are delayed and arrive later).
        </t>
      </section>
    </section>
    <section anchor="security" title="Security Considerations"> numbered="true" toc="default">
      <name>Security Considerations</name>
      <t> The most important security consideration for MGM is that the nonce MUST NOT <bcp14>MUST NOT</bcp14> repeat
            for a given key. For this reason reason, the transforms defined in this document MUST NOT <bcp14>MUST NOT</bcp14> be used with manual keying.
      </t>
      <t> Excessive use of the same key can give an attacker advantages in breaking security properties of the
            transforms defined in this document. For this reason reason, the amount of data that any particular key is used to protect
            should be limited. This is especially important for algorithms with a 64-bit block size (like &quot;Magma&quot;), "Magma"),
            which currently are generally considered insecure after protecting a relatively
            small amount of data. For example, Section 3.4 of <xref target="SP800-67" /> format="default"/> limits the number of blocks
            that are allowed to be encrypted with the Triple DES cipher by 2^20 to 2<sup>20</sup> (8 Mbytes MB of data).
            This document defines a rekeying mechanism that allows to mitigate a the mitigation of  weak security of a 64-bit block cipher
            by frequent frequently changing of the encryption key.
      </t>
      <t> For transforms defined in this document, <xref target="GOST-ESP" /> format="default"/> recommends
            limiting the number of octets protected with a single Kmsg K_msg key by the following values:
            <list style="symbols">
              <t>for
      </t>
      <ul>
        <li>2<sup>41</sup> octets for transforms based on &quot;Kuznyechik&quot; the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE) - 2^41 octets;</t>
              <t>for ENCR_KUZNYECHIK_MGM_MAC_KTREE)</li>
        <li>2<sup>28</sup> octets for transforms based on &quot;Magma&quot; the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE) - 2^28 octets;</t>
            </list> ENCR_MAGMA_MGM_MAC_KTREE)</li>
      </ul>
      <t>
            These values are based on combinatorial properties and may be further restricted if side channels side-channel attacks are taken into considerations. consideration.
            Note that the limit for &quot;Kuznyechik&quot; based transforms based on the "Kuznyechik" cipher is unreachable because because, due to transforms the construction of the transforms,
            the number of protected messages is limited to 2^24 2<sup>24</sup> and each message (either IKEv2 message messages or ESP datagram) datagrams) is limited to 2^16 2<sup>16</sup> octets in size,
            giving 2^40 2<sup>40</sup> octets as the maximum amount of data that can be protected with a single Kmsg. K_msg.
      </t>

            <t>Section 4 of <xref
      <t><xref target="RFC9058" /> sectionFormat="of" section="4"/> discusses the possibility of truncating authentication tags in MGM
            as a trade-off between message expansion and the forgery probability. probability of forgery. This specification truncates an authentication
            tag length for &quot;Kuznyechik&quot; based transforms based on the "Kuznyechik" cipher to 96 bits. This decreases message expansion while still providing a very low forgery probability of 2^-96. forgery: 2<sup>-96</sup>.
      </t>
      <t>An attacker can send a lot of packets with arbitrary arbitrarily chosen i1, i2, and i3 parameters. This will
            1) force a recepient recipient to recalculate the leaf key for every received packet if i1, i2, and i3 are different from the previous one, these values in previously received packets,
            thus consuming CPU resources and 2) force a recepient recipient to make verification attempts (that would fail) on a large amount of data,
            thus allowing the attacker for a deeper analyzing analysis of the underlying cryptographic primitive (see <xref target="I-D.irtf-cfrg-aead-limits" />). target="AEAD-USAGE-LIMITS" format="default"/>).
            Implementations MAY <bcp14>MAY</bcp14> initiate re-keying rekeying if they deem that they receive too many packets with an invalid ICV.
      </t>
      <t> Security properties of MGM are discussed in <xref target="MGM-SECURITY" />. format="default"/>.
      </t>
    </section>
    <section anchor="iana" title="IANA Considerations"> numbered="true" toc="default">
      <name>IANA Considerations</name>
      <t> IANA maintains a registry of called "Internet Key Exchange Version 2 (IKEv2) Parameters" with a sub-registry of subregistry called "Transform Type Values".
            IANA has assigned added the following four Transform IDs in to the "Transform Type 1 - Encryption Algorithm Transform IDs" registry and is requested
            to update their references to this document (where RFCXXXX is this document):
            </t>

            <figure>
                <preamble></preamble>
                <artwork align="center"><![CDATA[
Number   Name                          ESP Reference  IKEv2 Reference
---------------------------------------------------------------------
 32    ENCR_KUZNYECHIK_MGM_KTREE       [RFCXXXX]       [RFCXXXX]
 33    ENCR_MAGMA_MGM_KTREE            [RFCXXXX]       [RFCXXXX]
 34    ENCR_KUZNYECHIK_MGM_MAC_KTREE   [RFCXXXX]      Not allowed
 35    ENCR_MAGMA_MGM_MAC_KTREE        [RFCXXXX]      Not allowed
              ]]></artwork>
              </figure>

        </section>

        <section title="Acknowledgments" anchor="acknowledgments">
          <t>Author wants to thank Adrian Farrel, Russ Housley, Yaron Sheffer and Stanislav Smyshlyaev for valuable input
          in the process of publication this document. subregistry.
      </t>

<table anchor="iana-table">
  <name>Transform IDs</name>
  <thead>
    <tr>
      <th>Number</th>
      <th>Name</th>
      <th>ESP Reference</th>
      <th>IKEv2 Reference</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>32</td>
      <td>ENCR_KUZNYECHIK_MGM_KTREE</td>
      <td>RFC 9227</td>
      <td>RFC 9227</td>
    </tr>
    <tr>
      <td>33</td>
      <td>ENCR_MAGMA_MGM_KTREE</td>
      <td>RFC 9227</td>
      <td>RFC 9227</td>
    </tr>
    <tr>
      <td>34</td>
      <td>ENCR_KUZNYECHIK_MGM_MAC_KTREE</td>
      <td>RFC 9227</td>
      <td>Not allowed</td>
    </tr>
    <tr>
      <td>35</td>
      <td>ENCR_MAGMA_MGM_MAC_KTREE</td>
      <td>RFC 9227</td>
      <td>Not allowed</td>
    </tr>
  </tbody>
</table>
    </section>
  </middle>
  <back>
        <references title='Normative References'>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4303.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7296.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6986.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7801.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8891.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9058.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7836.xml" ?>
    <references>
      <name>References</name>
      <references>
        <name>Normative References</name>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4303.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7296.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7383.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6986.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7801.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8891.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9058.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7836.xml"/>
      </references>

        <references title='Informative References'>
      <references>
        <name>Informative References</name>

        <reference anchor="GOST3411-2012">
          <front>
            <title>Information technology. Cryptographic Data Security. Hashing data security. Hash function</title>
            <author>
              <organization>Federal Agency on Technical Regulating and Metrology</organization>
            </author>
            <date month="August" year="2012"/>
          </front>
          <seriesInfo name="GOST R" value="34.11-2012"/>
          <annotation>(In Russian)</annotation>
        </reference>
        <reference anchor="GOST3412-2015">
          <front>
            <title>Information technology. Cryptographic data security. Block ciphers</title>
            <author>
              <organization>Federal Agency on Technical Regulating and Metrology</organization>
            </author>
            <date month="June" year="2015"/>
          </front>
          <seriesInfo name="GOST R" value="34.12-2015"/>
          <annotation>(In Russian)</annotation>
        </reference>

        <reference anchor="GOST-MGM">
          <front>
            <title>Information technology. Cryptographic data information security. Block Cipher Modes Implementing Authenticated encryption block cipher operation modes</title> Encryption</title>
            <author>
              <organization>Federal Agency on Technical Regulating and Metrology</organization>
            </author>
            <date month="September" year="2019"/>
          </front>
          <seriesInfo name="R" value="1323565.1.026-2019"/>
          <annotation>(In Russian)</annotation>
        </reference>

        <reference anchor="GOST-ESP">
          <front>
            <title>Information technology. Cryptographic data security. Using information protection. The use of Russian cryptographic algorithms in data security protocol ESP</title> the ESP information protection protocol</title>
            <author>
              <organization>Federal Agency on Technical Regulating and Metrology</organization>
            </author>
            <date month="January" year="2021"/>
          </front>
          <seriesInfo name="R" value="1323565.1.035-2021"/>
          <annotation>(In Russian)</annotation>
        </reference>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2104.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4106.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4543.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5282.xml" ?>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8645.xml" ?>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2104.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4106.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4543.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5282.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8645.xml"/>

        <reference anchor="MGM-SECURITY" target="https://eprint.iacr.org/2019/123.pdf">
          <front>
            <title>Security of Multilinear Galois Mode (MGM)</title>
            <author fullname="Liliya Akhmetzyanova" /> Akhmetzyanova"/>
            <author fullname="Evgeny Alekseev" /> Alekseev"/>
            <author fullname="Grigory Karpunin" /> Karpunin"/>
            <author fullname="Vladislav Nozdrunov" /> Nozdrunov"/>
            <date year="2019"/>
          </front>
        </reference>

        <reference anchor="SP800-67" target="https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf">
          <front>
            <title>Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher</title>
                    <author >
            <author>
              <organization>National Institute of Standards and Technology</organization>
            </author>
            <date month="November" year="2017"/>
          </front>
         <seriesInfo name="DOI" value="10.6028/NIST.SP.800-67r2"/>
        </reference>
            <?rfc include="https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.irtf-cfrg-aead-limits.xml" ?>

<!-- draft-irtf-cfrg-aead-limits (I-D Exists) ("Long way" to fix author initials) -->
<reference anchor="AEAD-USAGE-LIMITS">
   <front>
      <title>Usage Limits on AEAD Algorithms</title>
      <author fullname="Felix Günther">
	 <organization>ETH Zurich</organization>
      </author>
      <author fullname="Martin Thomson">
	 <organization>Mozilla</organization>
      </author>
      <author fullname="Christopher A. Wood" initials="C.A.">
	 <organization>Cloudflare</organization>
      </author>
      <date month="March" day="7" year="2022" />
   </front>
   <seriesInfo name="Internet-Draft" value="draft-irtf-cfrg-aead-limits-04" />
</reference>

      </references>
    </references>
    <section title="Test Vectors" anchor="testvec"> anchor="testvec" numbered="true" toc="default">
      <name>Test Vectors</name>
      <t> In the following test vectors vectors, binary data is represented in hexadecimal format.
            The numbers in square bracket brackets indicate the size of the corresponding data in decimal format.
                <list style="numbers">
                    <t>ENCR_KUZNYECHIK_MGM_KTREE, example 1:
                        <figure>
                        <preamble></preamble>
                        <artwork align="left"><![CDATA[
      </t>
      <ol spacing="normal" type="1"><li>
          <t>ENCR_KUZNYECHIK_MGM_KTREE (Example 1):
          </t>
          <sourcecode name="" type="test-vectors"><![CDATA[
transform key [44]:
    b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
    e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
    7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
K [32]:
    b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
    e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
salt [12]:
    7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
    2f f1 c9 0e de 78 6e 06 1e 17 b3 74 d7 82 af 7b
    d8 80 bd 52 7c 66 a2 ba dc 3e 56 9a ab 27 1d a4
nonce [16]:
    00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
IV [8]:
    00 00 00 00 00 00 00 00
AAD [8]:
    51 46 53 6b 00 00 00 01
plaintext [64]:
    45 00 00 3c 23 35 00 00 7f 01 ee cc 0a 6f 0a c5
    0a 6f 0a 1d 08 00 f3 5b 02 00 58 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
    18 9d 12 88 b7 18 f9 ea be 55 4b 23 9b ee 65 96
    c6 d4 ea fd 31 64 96 ef 90 1c ac 31 60 05 aa 07
    62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e 7b 9d eb 31
    85 ff e9 17 9c a9 bf 0b db af c2 3e ae 4d a5 6f
ESP ICV [12]:
    50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
ESP packet [112]:
    45 00 00 70 00 4d 00 00 ff 32 91 4f 0a 6f 0a c5
    0a 6f 0a 1d 51 46 53 6b 00 00 00 01 00 00 00 00
    00 00 00 00 18 9d 12 88 b7 18 f9 ea be 55 4b 23
    9b ee 65 96 c6 d4 ea fd 31 64 96 ef 90 1c ac 31
    60 05 aa 07 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e
    7b 9d eb 31 85 ff e9 17 9c a9 bf 0b db af c2 3e
    ae 4d a5 6f 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
                        ]]></artwork>
                        </figure>
                        ]]></sourcecode>
        </li>
        <li>
          <t>ENCR_KUZNYECHIK_MGM_KTREE (Example 2):
          </t>
                    <t>ENCR_KUZNYECHIK_MGM_KTREE, example 2:
                        <figure>
                        <preamble></preamble>
                        <artwork align="left"><![CDATA[
          <sourcecode name="" type="test-vectors"><![CDATA[
transform key [44]:
    b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
    e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
    7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
K [32]:
    b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
    e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
salt [12]:
    7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
K_msg [32]:
    9a ba c6 57 78 18 0e 6f 2a f6 1f b8 d5 71 62 36
    66 c2 f5 13 0d 54 e2 11 6c 7d 53 0e 6e 7d 48 bc
nonce [16]:
    00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
IV [8]:
    00 00 01 00 01 00 00 00
AAD [8]:
    51 46 53 6b 00 00 00 10
plaintext [64]:
    45 00 00 3c 23 48 00 00 7f 01 ee b9 0a 6f 0a c5
    0a 6f 0a 1d 08 00 e4 5b 02 00 67 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
    78 0a 2c 62 62 32 15 7b fe 01 76 32 f3 2d b4 d0
    a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b ac 1d fc 4b
    15 4b 69 03 4d c2 1d ef 20 90 6d 59 62 81 12 7c
    ff 72 56 ab f0 0b a1 22 bb 5e 6c 71 a4 d4 9a 4d
ESP ICV [12]:
    c2 2f 87 40 83 8e 3d fa ce 91 cc b8
ESP packet [112]:
    45 00 00 70 00 5c 00 00 ff 32 91 40 0a 6f 0a c5
    0a 6f 0a 1d 51 46 53 6b 00 00 00 10 00 00 01 00
    01 00 00 00 78 0a 2c 62 62 32 15 7b fe 01 76 32
    f3 2d b4 d0 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b
    ac 1d fc 4b 15 4b 69 03 4d c2 1d ef 20 90 6d 59
    62 81 12 7c ff 72 56 ab f0 0b a1 22 bb 5e 6c 71
    a4 d4 9a 4d c2 2f 87 40 83 8e 3d fa ce 91 cc b8
                        ]]></artwork>
                        </figure>
                        ]]></sourcecode>
        </li>
        <li>
          <t>ENCR_MAGMA_MGM_KTREE (Example 1):
          </t>
                    <t>ENCR_MAGMA_MGM_KTREE, example 1:
                        <figure>
                        <preamble></preamble>
                        <artwork align="left"><![CDATA[
          <sourcecode name="" type="test-vectors"><![CDATA[
transform key [36]:
    5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
    22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
    cf 36 63 12
K [32]:
    5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
    22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
salt [4]:
    cf 36 63 12
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
    25 65 21 e2 70 b7 4a 16 4d fc 26 e6 bf 0c ca 76
    5e 9d 41 02 7d 4b 7b 19 76 2b 1c c9 01 dc de 7f
nonce [8]:
    00 00 00 00 cf 36 63 12
IV [8]:
    00 00 00 00 00 00 00 00
AAD [8]:
    c8 c2 b2 8d 00 00 00 01
plaintext [64]:
    45 00 00 3c 24 2d 00 00 7f 01 ed d4 0a 6f 0a c5
    0a 6f 0a 1d 08 00 de 5b 02 00 6d 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
    fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c 4a 91 7e 0c
    d8 6f 8e 61 04 03 87 64 6b b9 df bd 91 50 3f 4a
    f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc 99 ac ee 9e
    32 43 e2 3b a4 d1 1e 84 5c 91 a7 19 15 52 cc e8
ESP ICV [8]:
    5f 4a fa 8b 02 94 0f 5c
ESP packet [108]:
    45 00 00 6c 00 62 00 00 ff 32 91 3e 0a 6f 0a c5
    0a 6f 0a 1d c8 c2 b2 8d 00 00 00 01 00 00 00 00
    00 00 00 00 fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c
    4a 91 7e 0c d8 6f 8e 61 04 03 87 64 6b b9 df bd
    91 50 3f 4a f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc
    99 ac ee 9e 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19
    15 52 cc e8 5f 4a fa 8b 02 94 0f 5c
                        ]]></artwork>
                        </figure>
                        ]]></sourcecode>
        </li>
        <li>
          <t>ENCR_MAGMA_MGM_KTREE (Example 2):
          </t>
                    <t>ENCR_MAGMA_MGM_KTREE, example 2:
                        <figure>
                        <preamble></preamble>
                        <artwork align="left"><![CDATA[
          <sourcecode name="" type="test-vectors"><![CDATA[
transform key [36]:
    5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
    22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
    cf 36 63 12
K [32]:
    5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
    22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
salt [4]:
    cf 36 63 12
i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
K_msg [32]:
    20 e0 46 d4 09 83 9b 23 f0 66 a5 0a 7a 06 5b 4a
    39 24 4f 0e 29 ef 1e 6f 2e 5d 2e 13 55 f5 da 08
nonce [8]:
    00 00 00 00 cf 36 63 12
IV [8]:
    00 00 01 00 01 00 00 00
AAD [8]:
    c8 c2 b2 8d 00 00 00 10
plaintext [64]:
    45 00 00 3c 24 40 00 00 7f 01 ed c1 0a 6f 0a c5
    0a 6f 0a 1d 08 00 cf 5b 02 00 7c 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
    7a 71 48 41 a5 34 b7 58 93 6a 8e ab 26 91 40 a8
    25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c 9b 88 db 72
    1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b d7 7a 07 1d
    4b 93 78 bd 08 97 6c 33 ed 9a 01 91 bf fe a1 dd
ESP ICV [8]:
    dd 5d 50 9a fd b8 09 98
ESP packet [108]:
    45 00 00 6c 00 71 00 00 ff 32 91 2f 0a 6f 0a c5
    0a 6f 0a 1d c8 c2 b2 8d 00 00 00 10 00 00 01 00
    01 00 00 00 7a 71 48 41 a5 34 b7 58 93 6a 8e ab
    26 91 40 a8 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c
    9b 88 db 72 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b
    d7 7a 07 1d 4b 93 78 bd 08 97 6c 33 ed 9a 01 91
    bf fe a1 dd dd 5d 50 9a fd b8 09 98
                        ]]></artwork>
                        </figure>
                        ]]></sourcecode>
        </li>
        <li>
          <t>ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 1):
          </t>
                    <t>ENCR_KUZNYECHIK_MGM_MAC_KTREE, example 1:
                        <figure>
                        <preamble></preamble>
                        <artwork align="left"><![CDATA[
          <sourcecode name="" type="test-vectors"><![CDATA[
transform key [44]:
    98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
    88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
    6c 51 cb ac 93 c4 5b ea 99 62 79 1d
K [32]:
    98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
    88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
salt [12]:
    6c 51 cb ac 93 c4 5b ea 99 62 79 1d
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
    98 f1 03 01 81 0a 04 1c da dd e1 bd 85 a0 8f 21
    8b ac b5 7e 00 35 e2 22 c8 31 e3 e4 f0 a2 0c 8f
nonce [16]:
    00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
IV [8]:
    00 00 00 00 00 00 00 00
AAD [80]:
    3d ac 92 6a 00 00 00 01 00 00 00 00 00 00 00 00
    45 00 00 3c 0c f1 00 00 7f 01 05 11 0a 6f 0a c5
    0a 6f 0a 1d 08 00 48 5c 02 00 03 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [12]:
    ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
ESP packet [112]:
    45 00 00 70 00 01 00 00 ff 32 91 9b 0a 6f 0a c5
    0a 6f 0a 1d 3d ac 92 6a 00 00 00 01 00 00 00 00
    00 00 00 00 45 00 00 3c 0c f1 00 00 7f 01 05 11
    0a 6f 0a c5 0a 6f 0a 1d 08 00 48 5c 02 00 03 00
    61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
    71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
    01 02 02 04 ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
                        ]]></artwork>
                        </figure>
                        ]]></sourcecode>
        </li>
        <li>
          <t>ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 2):
          </t>
                    <t>ENCR_KUZNYECHIK_MGM_MAC_KTREE, example 2:
                        <figure>
                        <preamble></preamble>
                        <artwork align="left"><![CDATA[
          <sourcecode name="" type="test-vectors"><![CDATA[
transform key [44]:
    98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
    88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
    6c 51 cb ac 93 c4 5b ea 99 62 79 1d
K [32]:
    98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
    88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
salt [12]:
    6c 51 cb ac 93 c4 5b ea 99 62 79 1d
i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
K_msg [32]:
    02 c5 41 87 7c c6 23 f3 f1 35 91 9a 75 13 b6 f8
    a8 a1 8c b2 63 99 86 2f 50 81 4f 52 91 01 67 84
nonce [16]:
    00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
IV [8]:
    00 00 00 00 01 00 00 00
AAD [80]:
    3d ac 92 6a 00 00 00 06 00 00 00 00 01 00 00 00
    45 00 00 3c 0c fb 00 00 7f 01 05 07 0a 6f 0a c5
    0a 6f 0a 1d 08 00 43 5c 02 00 08 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [12]:
    ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
ESP packet [112]:
    45 00 00 70 00 06 00 00 ff 32 91 96 0a 6f 0a c5
    0a 6f 0a 1d 3d ac 92 6a 00 00 00 06 00 00 00 00
    01 00 00 00 45 00 00 3c 0c fb 00 00 7f 01 05 07
    0a 6f 0a c5 0a 6f 0a 1d 08 00 43 5c 02 00 08 00
    61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
    71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
    01 02 02 04 ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
                        ]]></artwork>
                        </figure>
                        ]]></sourcecode>
        </li>
        <li>
          <t>ENCR_MAGMA_MGM_MAC_KTREE (Example 1):
          </t>
                    <t>ENCR_MAGMA_MGM_MAC_KTREE, example 1:
                        <figure>
                        <preamble></preamble>
                        <artwork align="left"><![CDATA[
          <sourcecode name="" type="test-vectors"><![CDATA[
transform key [36]:
    d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
    2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
    88 79 8f 29
K [32]:
    d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
    2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
salt [4]:
    88 79 8f 29
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
    4c 61 45 99 a0 a0 67 f1 94 87 24 0a e1 00 e1 b7
    ea f2 3e da f8 7e 38 73 50 86 1c 68 3b a4 04 46
nonce [8]:
    00 00 00 00 88 79 8f 29
IV [8]:
    00 00 00 00 00 00 00 00
AAD [80]:
    3e 40 69 9c 00 00 00 01 00 00 00 00 00 00 00 00
    45 00 00 3c 0e 08 00 00 7f 01 03 fa 0a 6f 0a c5
    0a 6f 0a 1d 08 00 36 5c 02 00 15 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [8]:
    4d d4 25 8a 25 35 95 df
ESP packet [108]:
    45 00 00 6c 00 13 00 00 ff 32 91 8d 0a 6f 0a c5
    0a 6f 0a 1d 3e 40 69 9c 00 00 00 01 00 00 00 00
    00 00 00 00 45 00 00 3c 0e 08 00 00 7f 01 03 fa
    0a 6f 0a c5 0a 6f 0a 1d 08 00 36 5c 02 00 15 00
    61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
    71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
    01 02 02 04 4d d4 25 8a 25 35 95 df
                        ]]></artwork>
                        </figure>
                        ]]></sourcecode>
        </li>
        <li>
          <t>ENCR_MAGMA_MGM_MAC_KTREE (Example 2):
          </t>
                    <t>ENCR_MAGMA_MGM_MAC_KTREE, example 2:
                        <figure>
                        <preamble></preamble>
                        <artwork align="left"><![CDATA[
          <sourcecode name="" type="test-vectors"><![CDATA[
transform key [36]:
    d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
    2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
    88 79 8f 29
K [32]:
    d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
    2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
salt [4]:
    88 79 8f 29
i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
K_msg [32]:
    b4 f3 f9 0d c4 87 fa b8 c4 af d0 eb 45 49 f2 f0
    e4 36 32 b6 79 19 37 2e 1e 96 09 ea f0 b8 e2 28
nonce [8]:
    00 00 00 00 88 79 8f 29
IV [8]:
    00 00 00 00 01 00 00 00
AAD [80]:
    3e 40 69 9c 00 00 00 06 00 00 00 00 01 00 00 00
    45 00 00 3c 0e 13 00 00 7f 01 03 ef 0a 6f 0a c5
    0a 6f 0a 1d 08 00 31 5c 02 00 1a 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [8]:
    84 84 a9 23 30 a0 b1 96
ESP packet [108]:
    45 00 00 6c 00 18 00 00 ff 32 91 88 0a 6f 0a c5
    0a 6f 0a 1d 3e 40 69 9c 00 00 00 06 00 00 00 00
    01 00 00 00 45 00 00 3c 0e 13 00 00 7f 01 03 ef
    0a 6f 0a c5 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00
    61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
    71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
    01 02 02 04 84 84 a9 23 30 a0 b1 96
                        ]]></artwork>
                        </figure>
                    </t>
                </list>
                        ]]></sourcecode>
        </li>
      </ol>
    </section>
    <section anchor="acknowledgments" numbered="false" toc="default">
      <name>Acknowledgments</name>
      <t>The author wants to thank <contact fullname="Adrian Farrel"/>, <contact fullname="Russ Housley"/>, <contact fullname="Yaron Sheffer"/>, and <contact fullname="Stanislav Smyshlyaev"/> for valuable input during the
          publication process for this document.
      </t>
    </section>
  </back>
</rfc>