<?xmlversion='1.0' encoding='utf-8'?>version="1.0" encoding="UTF-8"?> <!DOCTYPE rfcSYSTEM "rfc2629.dtd"[ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF" category="std" consensus="true" docName="draft-ietf-6lo-plc-12"category="std"> <?rfc compact="yes"?> <?rfc text-list-symbols="o-*+"?> <?rfc subcompact="no"?> <?rfc sortrefs="yes"?> <?rfc symrefs="yes"?> <?rfc strict="yes"?> <?rfc toc="yes"?>number="9354" ipr="trust200902" obsoletes="" updates="" xml:lang="en" sortRefs="true" symRefs="true" tocInclude="true" version="3"> <!-- xml2rfc v2v3 conversion 3.15.0 --> <front> <title abbrev="IPv6 overPLC"> TransmissionPLC">Transmission of IPv6 Packets overPLCPower Line Communication (PLC) Networks</title> <seriesInfo name="RFC" value="9354"/> <author fullname="Jianqiang Hou" initials="J." surname="Hou"><organization> Huawei Technologies </organization><organization>Huawei Technologies</organization> <address> <postal> <street>101 Software Avenue,</street><street>Nanjing 210012</street> <street>China</street><city>Nanjing</city> <code>210012</code> <country>China</country> </postal> <email>houjianqiang@huawei.com</email> </address> </author> <author fullname="Bing Liu" initials="B." surname="Liu"> <organization>Huawei Technologies</organization> <address> <postal> <extaddr>Haidian District</extaddr> <street>No. 156 BeiqingRd. Haidian District,</street> <street>Beijing 100095</street> <street>China</street>Rd.</street> <city>Beijing</city> <code>100095</code> <country>China</country> </postal> <email>remy.liubing@huawei.com</email> </address> </author> <author fullname="Yong-Geun Hong" initials="Y-G." surname="Hong"> <organization>Daejeon University</organization> <address> <postal> <extaddr>Dong-gu</extaddr> <street>62Daehak-ro, Dong-gu</street> <street>Daejeon 34520</street> <street>Korea</street>Daehak-ro</street> <city>Daejeon</city> <code>34520</code> <country>Republic of Korea</country> </postal> <email>yonggeun.hong@gmail.com</email> </address> </author> <author fullname="Xiaojun Tang" initials="X." surname="Tang"> <organization abbrev="SGEPRI"> State Grid Electric Power Research Institute</organization> <address> <postal> <street>19 Chengxin Avenue</street><street>Nanjing 211106</street> <street>China</street><city>Nanjing</city> <code>211106</code> <country>China</country> </postal> <email>itc@sgepri.sgcc.com.cn</email> </address> </author> <author fullname="Charles E. Perkins"initials="C.E."initials="C." surname="Perkins"> <organization>Lupin Lodge</organization> <address> <phone/> <email>charliep@computer.org</email><!-- uri and facsimile elements may also be added --></address> </author> <date year="2023" month="January" /><workgroup>6Lo Working Group</workgroup> <abstract><t><area>int</area> <workgroup>6lo</workgroup> <keyword>6lo</keyword> <keyword>6lowpan</keyword> <keyword>6lo-plc</keyword> <keyword>6loplc</keyword> <keyword>plc</keyword> <abstract> <t> Power Line Communication (PLC), namely usingthe electric-powerelectric power lines for indoor and outdoor communications, has been widely applied to support Advanced Metering Infrastructure (AMI), especially smart meters for electricity. The existing electricity infrastructure facilitates the expansion of PLC deployments due to its potential advantages in terms of cost and convenience. Moreover, a wide variety of accessible devices raises the potential demand of IPv6 for future applications. This document describes how IPv6 packets are transported over constrained PLC networks, such as those described in ITU-T G.9903, IEEE1901.11901.1, and IEEE 1901.2. </t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="Intro">anchor="Intro" numbered="true" toc="default"> <name>Introduction</name> <t> The idea of using power lines for both electricity supply and communication can be traced back to the beginning of the last century. Using the existing power grid to transmit messages, Power Line Communication (PLC) is a good candidate for supporting various service scenarios such as in houses and offices, in trains and vehicles, in smartgridgrids, andadvanced metering infrastructurein Advanced Metering Infrastructure (AMI) <xreftarget="SCENA"/>.target="SCENA" format="default"/>. Thedata acquisitiondata-acquisition devices in these scenarios share common features such as fixed position, largequantity,quantity of nodes, low dataraterate, and low power consumption.</t> <t> Although PLC technology has evolved over several decades, it has not been fully adapted for IPv6-based constrained networks. The resource-constrainedIoT-relatedscenarios related to the Internet of Things (IoT) lie in the low voltage PLC networks with most applications in the area ofAdvanced Metering Infrastructure (AMI), Vehicle-to-GridAMI, vehicle-to-grid communications, in-home energy management, and smart street lighting. IPv6 is important for PLC networks, due to its large address space and efficient addressauto-configuration.autoconfiguration. </t> <t> This document provides a brief overview of PLC technologies. Some of them have LLN(low power(Low-Power andlossy network)Lossy Network) characteristics, i.e., limited power consumption,memorymemory, and processing resources. This document specifies the transmission of IPv6 packets over those"constrained"constrained PLC networks. The general approach is to adapt elements of the 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Network) and 6lo (IPv6 over Networks of Resource-constrained Nodes) specifications, such as those described in <xreftarget="RFC4944"/>,target="RFC4944" format="default"/>, <xreftarget="RFC6282"/>,target="RFC6282" format="default"/>, <xreftarget="RFC6775"/>target="RFC6775" format="default"/>, and <xreftarget="RFC8505"/>target="RFC8505" format="default"/>, to constrained PLC networks. </t> </section> <!-- end section "Introduction" --> <sectiontitle="Requirementsanchor="Term" numbered="true" toc="default"> <name>Requirements Notation andTerminology" anchor="Term">Terminology</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP14BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> <t> This document uses the following acronyms and terminologies:<list hangIndent="6" style="hanging"> <t hangText="6BBR:"></t> <dl newline="false" spacing="normal"> <dt>6BBR:</dt> <dd> 6LoWPAN Backbone Router</t> <t hangText="6LBR:"></dd> <dt>6LBR:</dt> <dd> 6LoWPAN BorderRouter</t> <t hangText="6LoWPAN:">Router</dd> <dt>6lo:</dt> <dd> IPv6 over Networks of Resource-constrained Nodes </dd> <dt>6LoWPAN:</dt> <dd> IPv6 over Low-Power Wireless Personal Area Network</t> <t hangText="6lo:"> IPv6 over Networks of Resource-constrained Nodes </t> <t hangText="6LR:"></dd> <dt>6LR:</dt> <dd> 6LoWPANRouter</t> <t hangText="AMI:">Router</dd> <dt>AMI:</dt> <dd> Advanced Metering Infrastructure</t> <t hangText="BBPLC:"></dd> <dt>BBPLC:</dt> <dd> Broadband Power Line Communication</t> <t hangText="Coordinator:"></dd> <dt>Coordinator:</dt> <dd> A device capable of relayingmessages</t> <t hangText="DAD:">messages</dd> <dt>DAD:</dt> <dd> Duplicate Address Detection</t> <t hangText="IID:"> IPv6 Interface</dd> <dt>EUI:</dt> <dd>Extended Unique Identifier</dd> <dt>IID:</dt> <dd>Interface Identifier</t> <t hangText="LLN:"> Low power</dd> <dt>LLN:</dt> <dd> Low-Power and Lossy Network</t> <t hangText="MTU:"></dd> <dt>MTU:</dt> <dd> Maximum Transmission Unit</t> <t hangText="NBPLC:"></dd> <dt>NBPLC:</dt> <dd> Narrowband Power Line Communication</t> <t hangText="PAN:"></dd> <dt>PAN:</dt> <dd> Personal Area Network</t> <t hangText="PANC:"></dd> <dt>PANC:</dt> <dd> PAN Coordinator, a coordinatorwhichthat also acts as the primary controller of aPAN</t> <t hangText="PLC:">PAN</dd> <dt>PLC:</dt> <dd> Power Line Communication</t> <t hangText="PLC device:"></dd> <dt>PLC device:</dt> <dd> An entity that follows the PLC standards and implements the protocol stack described in thisdraft</t> <t hangText="RPL:"> IPv6 Routingdocument</dd> <dt>RA:</dt> <dd> Router Advertisement </dd> <dt>RPL:</dt> <dd>Routing Protocol for Low-Power and Lossy Networks</t></dd> </dl> <thangText="RA:"> Router Advertisement </t> </list> </t> <texttable anchor="Term_mapping" title="Terminology Mapping between PLC standards"> <preamble>BelowkeepWithNext="true">Below is a mapping table of the terminology between <xreftarget="IEEE_1901.2"/>,target="IEEE_1901.2" format="default"/>, <xreftarget="IEEE_1901.1"/>,target="IEEE_1901.1" format="default"/>, <xreftarget="ITU-T_G.9903"/>target="ITU-T_G.9903" format="default"/>, and thisdocument.</preamble> <ttcoldocument.</t> <table anchor="Term_mapping" align="center"> <name>Terminology Mapping between PLC Standards</name> <thead> <tr> <th align="center">IEEE1901.2</ttcol> <ttcol1901.2</th> <th align="center">IEEE1901.1</ttcol> <ttcol1901.1</th> <th align="center">ITU-TG.9903</ttcol> <ttcolG.9903</th> <th align="center">Thisdocument</ttcol> <c>PAN Coordinator</c> <c>Central Coordinator</c> <c>PAN Coordinator</c> <c>PAN Coordinator</c> <c> </c> <c> </c> <c> </c> <c> </c> <c>Coordinator</c> <c>Proxy Coordinator</c> <c>Full-function device</c> <c>Coordinator</c> <c> </c> <c> </c> <c> </c> <c> </c> <c>Device</c> <c>Station</c> <c>PAN Device</c> <c>PLC Device</c> </texttable>document</th> </tr> </thead> <tbody> <tr> <td align="center">PAN Coordinator</td> <td align="center">Central Coordinator</td> <td align="center">PAN Coordinator</td> <td align="center">PAN Coordinator</td> </tr> <tr> <td align="center">Coordinator</td> <td align="center">Proxy Coordinator</td> <td align="center">Full-Function Device</td> <td align="center">Coordinator</td> </tr> <tr> <td align="center">Device</td> <td align="center">Station</td> <td align="center">PAN Device</td> <td align="center">PLC Device</td> </tr> </tbody> </table> </section> <!-- end section "Requirements Notation and Terminology" --> <sectiontitle="Overviewanchor="Overview" numbered="true" toc="default"> <name>Overview ofPLC" anchor="Overview">PLC</name> <t> PLC technology enables convenient two-way communications for home users and utility companies to monitor and controlelectric pluggedelectrically connected devices such as electricity meters and street lights. PLC can also be used in smart home scenarios, such as the control of indoor lights and switches. Due to the large range of communication frequencies, PLC is generally classified into two categories: Narrowband PLC (NBPLC) for automation of sensors (which have a low frequency band and low powercost),cost) and Broadband PLC (BBPLC) for home and industry networking applications. </t> <t> Various standards have been addressed on theMAC and PHY layersMedia Access Control (MAC) and Physical (PHY) layers. For example, standards forthis communication technology, e.g.,BBPLC (1.8-250 MHz)includinginclude IEEE 1901 and ITU-T G.hn, and standards for NBPLC (3-500 kHz)includinginclude ITU-T G.9902 (G.hnem), ITU-T G.9903 (G3-PLC) <xreftarget="ITU-T_G.9903"/>,target="ITU-T_G.9903" format="default"/>, ITU-T G.9904 (PRIME), IEEE 1901.2<xref target="IEEE_1901.2"/>(a combination of G3-PLC and PRIME PLC) <xref target="IEEE_1901.2" format="default"/>, and IEEE 1901.2a<xref target="IEEE_1901.2a"/>(an amendment to IEEE1901.2).1901.2) <xref target="IEEE_1901.2a" format="default"/>. </t> <t>A new PLC standardIEEE 1901.1 <xreftarget="IEEE_1901.1"/>, whichtarget="IEEE_1901.1" format="default"/>, a PLC standard that is aimed at the medium frequency band of less than 12 MHz,has beenwas published by the IEEE standard for Smart Grid Powerline Communication Working Group (SGPLC WG). IEEE 1901.1 balances the needs for bandwidth versus communicationrange,range and is thus a promising option for 6lo applications. </t> <t> This specification is focused on IEEE 1901.1, IEEE 1901.2, and ITU-T G.9903. </t> <sectiontitle="Protocol Stack" anchor="stack">anchor="stack" numbered="true" toc="default"> <name>Protocol Stack</name> <t> The protocol stack for IPv6 over PLC is illustrated in <xreftarget="fig-stack"/>.target="fig-stack" format="default"/>. The PLCMAC/PHY layer correspondsMAC and PLC PHY layers correspond to the layers described in IEEE 1901.1, IEEE1901.21901.2, or ITU-T G.9903. The 6lo adaptation layer for PLC is illustrated in <xreftarget="v6overPLC"/>.target="v6overPLC" format="default"/>. For multihop tree and mesh topologies, a routing protocol is likely to be necessary. The routes can be built in mesh-under mode atlayerLayer 2 or in route-over mode atlayer-3,Layer 3, as explained in Sections <xref target="Routing" format="counter"/> and <xreftarget="Routing"/>.target="nd" format="counter"/>. </t> <figuretitle="PLC Protocol Stack"anchor="fig-stack"><artwork><![CDATA[<name>PLC Protocol Stack</name> <artwork name="" type="" align="left" alt=""><![CDATA[ +----------------------------------------+ | Application Layer | +----------------------------------------+ | Transport Layer | +----------------------------------------+ | | | IPv6 Layer | | | +----------------------------------------+ | AdaptationlayerLayer for IPv6 over PLC | +----------------------------------------+ | PLC MAC Layer | +----------------------------------------+ | PLC PHY Layer | +----------------------------------------+ ]]></artwork> </figure> </section> <!-- end section "Protocol Stack" --> <sectiontitle="Addressing Modes" anchor="Addressing">anchor="Addressing" numbered="true" toc="default"> <name>Addressing Modes</name> <t> Each PLC device has a globally unique long address of48-bits (<xref target="IEEE_1901.1"/>)48 bits <xref target="IEEE_1901.1" format="default"/> or64-bits (<xref target="IEEE_1901.2"/>,64 bits <xref target="IEEE_1901.2" format="default"/> <xreftarget="ITU-T_G.9903"/>)target="ITU-T_G.9903" format="default"/> and a short address of12-bits (<xref target="IEEE_1901.1"/>)12 bits <xref target="IEEE_1901.1" format="default"/> or16-bits (<xref target="IEEE_1901.2"/>,16 bits <xref target="IEEE_1901.2" format="default"/> <xreftarget="ITU-T_G.9903"/>).target="ITU-T_G.9903" format="default"/>. The long address is set by the manufacturer according to the IEEE EUI-48 MAC address or the IEEE EUI-64 address. Each PLC device joins the network by using the long address and communicates with other devices by using the short address after joining the network. Short addresses can be assigned during the onboarding process, by the PANC or the JRC (join registrar/coordinator) in CoJP (Constrained Join Protocol) <xreftarget="I-D.ietf-6tisch-minimal-security"/>.target="RFC9031" format="default"/>. </t> </section> <!-- end section "Addressing Modes" --> <sectiontitle="Maximumanchor="mtu" numbered="true" toc="default"> <name>Maximum TransmissionUnit" anchor="mtu">Unit</name> <t> The Maximum Transmission Unit (MTU) of the MAC layer determines whether fragmentation and reassembly are needed at the adaptation layer of IPv6 over PLC. IPv6 requires an MTU of 1280 octets or greater;thusthus, for a MAC layer with an MTU lower than this limit, fragmentation and reassembly at the adaptation layer are required. </t> <t> The IEEE 1901.1 MAC supportsupper layerupper-layer packets up to 2031 octets. The IEEE 1901.2 MAC layer supports an MTU of 1576 octets (the original value of 1280 bytes was updated in 2015 <xreftarget="IEEE_1901.2a"/>).target="IEEE_1901.2a" format="default"/>). Though these two technologies can support IPv6 originally without fragmentation and reassembly, it is possible to configure a smaller MTU in a high-noise communication environment.ThusThus, the 6lo functions, including header compression,fragmentationfragmentation, and reassembly, are still applicable and useful. </t> <t> The MTU for ITU-T G.9903 is 400 octets, which is insufficient for supporting IPv6's MTU. For this reason, fragmentation and reassemblyisare required for G.9903-based networks to carry IPv6. </t> </section> <!-- end section "Maximum Transmission Unit" --> <sectiontitle="Routing Protocol" anchor="Routing">anchor="Routing" numbered="true" toc="default"> <name>Routing Protocol</name> <t> Routing protocols suitable for use in PLC networks include:<list style="symbols"> <t> RPL</t> <ul spacing="normal"> <li>RPL (Routing Protocol for Low-Power and Lossy Networks) <xreftarget="RFC6550"/>target="RFC6550" format="default"/> is alayer-3Layer 3 routing protocol. AODV-RPL <xreftarget="I-D.ietf-roll-aodv-rpl"/>target="I-D.ietf-roll-aodv-rpl" format="default"/> updates RPL to include reactive, point-to-point, and asymmetric routing. IEEE 1901.2 specifies Information Elements (IEs) with MAC layer metrics, which can be provided toL3a Layer 3 routing protocol for parentselection. </t> <t> IEEEselection.</li> <li>IEEE 1901.1 supports the mesh-under routing scheme. Each PLC node maintains a routing table, in which each route entry comprises the short addresses of the destination and the related next hop. The route entries are built during the network establishment via a pair of association request/confirmation messages. The route entries can be changed via a pair of proxy change request/confirmation messages. These association and proxy change messages must be approved by the central coordinator (PANC in this document).</t> <t> LOADng (The Lightweight</li> <li>LOADng (Lightweight On-demand Ad hoc Distance vector routing protocol, Next Generation) is a reactive protocol operating atlayer-2Layer 2 orlayer-3.Layer 3. Currently, LOADng is supported in ITU-T G.9903 <xreftarget="ITU-T_G.9903"/>,target="ITU-T_G.9903" format="default"/>, and the IEEE 1901.2 standard refers to ITU-T G.9903 for LOAD-based networks.</t> </list> </t></li> </ul> </section> <!-- end section "Routing Protocol" --> </section> <!-- end section "Overview of PLC" --> <sectiontitle="IPv6anchor="v6overPLC" numbered="true" toc="default"> <name>IPv6 overPLC" anchor="v6overPLC">PLC</name> <t> A PLC node distinguishes between an IPv6 PDU and a non-IPv6 PDU based on the equivalent ofa EtherTypean Ethertype in alayer-2Layer 2 PLC PDU. <xreftarget="RFC7973"/>target="RFC7973" format="default"/> definesaan Ethertype of "A0ED" for LoWPAN encapsulation, and this information can be carried in the IE field in the MAC header of <xreftarget="IEEE_1901.2"/>target="IEEE_1901.2" format="default"/> or <xreftarget="ITU-T_G.9903"/>.target="ITU-T_G.9903" format="default"/>. And regarding <xreftarget="IEEE_1901.1"/>,target="IEEE_1901.1" format="default"/>, the IP packet type has been defined with the corresponding MAC Service Data Unit (MSDU) type value 49. And the 4-bit Internet Protocol version number in the IP header helps to distinguish between an IPv4 PDU and an IPv6 PDU. </t> <t> 6LoWPAN and 6lostandardsstandards, as described in <xreftarget="RFC4944"/>,target="RFC4944" format="default"/>, <xreftarget="RFC6282"/>,target="RFC6282" format="default"/>, <xreftarget="RFC6775"/>,target="RFC6775" format="default"/>, and <xreftarget="RFC8505"/>target="RFC8505" format="default"/>, provide usefulfunctionalityfunctionality, including link-local IPv6 addresses, stateless addressauto-configuration,autoconfiguration, neighbor discovery, header compression, fragmentation, and reassembly. However, due to the different characteristics of the PLC media, the 6LoWPAN adaptation layer, as it is, cannot perfectly fulfill the requirements of PLC environments. These considerations suggest the need for a dedicated adaptation layer for PLC, which is detailed in the following subsections.</t> <sectiontitle="Statelessanchor="slaac" numbered="true" toc="default"> <name>Stateless AddressAutoconfiguration" anchor="slaac">Autoconfiguration</name> <t> To obtain an IPv6 Interface Identifier (IID), a PLC device performs stateless address autoconfiguration <xreftarget="RFC4944"/>.target="RFC4944" format="default"/>. The autoconfiguration can be based on either a long or short link-layer address. </t> <t> The IID can be based on the device's 48-bit MAC address or its EUI-64 identifier <xreftarget="EUI-64"/>.target="EUI-64" format="default"/>. A 48-bit MAC addressMUST<bcp14>MUST</bcp14> first be extended to a 64-bitInterface IDIID by inserting 0xFFFE at the fourth and fifth octets as specified in <xreftarget="RFC2464"/>.target="RFC2464" format="default"/>. The IPv6 IID is derived from the 64-bitInterface IDIID by inverting the U/L (Universal/Local) bit <xreftarget="RFC4291"/>.target="RFC4291" format="default"/>. </t> <t> For IEEE 1901.2 and ITU-T G.9903, a 48-bit "pseudo-address" is formed by the 16-bit PAN ID, 16 zerobitsbits, and the 16-bit short address as follows: </t><t> <list hangIndent="4" style="hanging"> <t><t indent="3"> 16_bit_PAN:0000:16_bit_short_address </t></list> </t><t> Then, the 64-bitInterface ID MUSTIID <bcp14>MUST</bcp14> be derived by inserting the 16-bit 0xFFFE into as follows: </t><t> <list hangIndent="4" style="hanging"> <t><t indent="3"> 16_bit_PAN:00FF:FE00:16_bit_short_address </t></list> </t><t> For the 12-bit short addresses used by IEEE 1901.1, the 48-bit pseudo-address is formed by a 24-bit NID (NetworkIDentifier,Identifier, YYYYYY), 12 zerobitsbits, and a 12-bit TEI (Terminal Equipment Identifier, XXX) as follows:<list hangIndent="4" style="hanging"> <t></t> <t indent="3"> YYYY:YY00:0XXX </t></list><t> The 64-bitInterface ID MUSTIID <bcp14>MUST</bcp14> be derived by inserting the 16-bit 0xFFFE into this 48-bit pseudo-address as follows:<list hangIndent="4" style="hanging"> <t></t> <t indent="3"> YYYY:YYFF:FE00:0XXX </t></list><t> As investigated in <xreftarget="RFC7136"/>, besidestarget="RFC7136" format="default"/>, aside from the method discussed in <xreftarget="RFC4291"/>, sometarget="RFC4291" format="default"/>, otherIID generationIID-generation methods definedinby the IETF do not imply any additional semantics for the"Universal/Local"Universal/Local (U/L) bit (bit 6) and the Individual/Group bit (bit7), so that7). Therefore, these two bits are not reliableindicators for their original meanings. Thusindicators. Thus, when using an IID derived by a short address, the operators of the PLC network can choose whether or not to comply with the original meaning of these twobits or not.bits. Ifso,they choose to comply with the original meaning, these two bits <bcp14>MUST</bcp14> both be set to zero, since the IID derived from the short address is notglobal, these two bits MUST both be set to zero.global. In order to avoid any ambiguity in the derivedInterface ID,IID, these two bitsMUST NOT<bcp14>MUST NOT</bcp14> be a valid part of thePANIDPAN ID (for IEEE 1901.2 and ITU-T G.9903) or NID (for IEEE 1901.1). For example, thePANIDPAN ID or NID must always be chosen so that the two bits arezeros;zeros or the high6six bits inPANIDPAN ID or NID are left shifted by2two bits. Ifnot,they choose not to comply with the original meaning, the operator must be aware that these two bits are not reliable indicators, and the IID cannot be transformed back into a shortlink layerlink-layer address via a reverse operation of the mechanism presented above. However, the short address can still be obtained via the Unicast Address Mapping mechanism described in <xreftarget="unicast-map"/>.target="unicast-map" format="default"/>. </t> <t> For privacy reasons, the IID derived from the MAC address (with padding and bit clamping)SHOULD<bcp14>SHOULD</bcp14> only be used for link-local address configuration. A PLC hostSHOULD<bcp14>SHOULD</bcp14> use the IID derived from thelink-layershort link-layer address to configure IPv6 addresses used for communication with the public network; otherwise, the host's MAC address is exposed. As per <xreftarget="RFC8065"/>,target="RFC8065" format="default"/>, when short addresses are used on PLC links, a shared secret key or version number from the Authoritative Border Router Option <xreftarget="RFC6775"/>target="RFC6775" format="default"/> can be used to improve the entropy of the hashinput, thusinput. Thus, the generated IID can be spread out to the full range of the IID address space while stateless address compression is still allowed.TheBy default, the hash algorithmby default of the implementations SHOULD<bcp14>SHOULD</bcp14> be SHA256, using the version number, thePANID/NIDPAN ID or NID, and the short address as the input arguments, and the256-bits256-bit hash output is truncated into the IID by taking the high 64 bits. </t> </section> <!-- end section "Stateless Address Autoconfiguration" --> <sectiontitle="IPv6 Link Local Address" anchor="link-local">anchor="link-local" numbered="true" toc="default"> <name>IPv6 Link-Local Address</name> <t> The IPv6 link-local address <xreftarget="RFC4291"/>target="RFC4291" format="default"/> for a PLC interface is formed by appending the IID, as defined above, to the prefix FE80::/64 (see <xreftarget="fig-link-local"/>).target="fig-link-local" format="default"/>). </t> <figuretitle="IPv6 Link Localanchor="fig-link-local"> <name>IPv6 Link-Local Address for a PLCinterface" anchor="fig-link-local"> <artwork><![CDATA[Interface</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 10 bits 54 bits 64 bits +----------+-----------------------+----------------------------+ |1111111010| (zeros) | Interface Identifier | +----------+-----------------------+----------------------------+ ]]></artwork> </figure> </section> <!-- end section "IPv6 Link Local Address" --> <sectiontitle="Unicastanchor="unicast-map" numbered="true" toc="default"> <name>Unicast AddressMapping" anchor="unicast-map">Mapping</name> <t> Theaddress resolutionaddress-resolution procedure for mapping IPv6 unicast addresses into PLC link-layer addresses follows the general description insection 7.2 of<xreftarget="RFC4861"/>.target="RFC4861" sectionFormat="of" section="7.2"/>. <xreftarget="RFC6775"/>target="RFC6775" format="default"/> improves this procedure by eliminating usage of multicastNS.NS (Neighbor Solicitation). The resolution is realized by the NCEs (neighbor cacheentry)entries) created during the address registration at the routers. <xreftarget="RFC8505"/>target="RFC8505" format="default"/> further improves the registration procedure by enabling multiple LLNs to form an IPv6subnet,subnet and by inserting a link-local address registration to better serve proxy registration of new devices. </t> <sectiontitle="Unicastanchor="Unicast-1901.1" numbered="true" toc="default"> <name>Unicast Address Mapping for IEEE1901.1" anchor="Unicast-1901.1">1901.1</name> <t> TheSource/Target Link-layerSource Link-Layer Address and Target Link-Layer Address options for IEEE_1901.1 used in theNeighbor SolicitationNS and Neighbor Advertisement (NA) have the following form. </t> <figuretitle="Unicastanchor="fig-unicast-1901.1"> <name>Unicast Address Mapping for IEEE1901.1" anchor="fig-unicast-1901.1"> <artwork> <![CDATA[1901.1</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length=1 | NID : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ :NID (continued)| Padding (all zeros) | TEI |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+]]> </artwork>+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> </figure></t><t> Option fields:<list hangIndent="6" style="hanging"> <t hangText="Type:"> 1</t> <dl newline="false" spacing="normal"> <dt>Type:</dt> <dd>1 for SourceLink-layerLink-Layer Address and 2 for TargetLink-layerLink-Layer Address.</t> <t hangText="Length:"> The</dd> <dt>Length:</dt> <dd>The length of this option (includingtypeType andlengthLength fields) in units of 8 octets. The value of this field is 1 for the 12-bit IEEE 1901.1 PLC short addresses.</t> <t hangText="NID:"> 24-bit</dd> <dt>NID:</dt> <dd>24-bit NetworkIDentifier </t> <t hangText="Padding:"> 12Identifier</dd> <dt>Padding:</dt> <dd>12 zero bits</t> <t hangText="TEI:"> 12-bit</dd> <dt>TEI:</dt> <dd>12-bit Terminal EquipmentIdentifier </t> </list> </t>Identifier</dd> </dl> </section> <!-- end "Unicast Address Mapping for IEEE 1901.1" --> <sectiontitle="Unicastanchor="Unicast-1901.2" numbered="true" toc="default"> <name>Unicast Address Mapping for IEEE 1901.2 and ITU-TG.9903" anchor="Unicast-1901.2">G.9903</name> <t> TheSource/Target Link-layerSource Link-Layer Address and Target Link-Layer Address options for IEEE_1901.2 and ITU-T G.9903 used in theNeighbor SolicitationNS andNeighbor AdvertisementNA have the following form. </t> <figuretitle="Unicastanchor="fig-unicast-1901.2"> <name>Unicast Address Mapping for IEEE1901.2" anchor="fig-unicast-1901.2"> <artwork><![CDATA[1901.2</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length=1 | PAN ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Padding (all zeros) | Short Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> </figure></t> <t> Option<t>Option fields:<list hangIndent="6" style="hanging"> <t hangText="Type:"> 1</t> <dl newline="false" spacing="normal"> <dt>Type:</dt> <dd>1 for SourceLink-layerLink-Layer Address and 2 for TargetLink-layer Address. </t> <t hangText="Length:"> TheLink-Layer Address.</dd> <dt>Length:</dt> <dd>The length of this option (includingtypeType andlengthLength fields) in units of 8 octets. The value of this field is 1 for the 16-bit IEEE 1901.2 PLC short addresses.</t> <t hangText="PAN ID:"> 16-bit</dd> <dt>PAN ID:</dt> <dd>16-bit PANIDentifier </t> <t hangText="Padding:"> 16IDentifier</dd> <dt>Padding:</dt> <dd>16 zerobits </t> <t hangText="Short Address:"> 16-bitbits</dd> <dt>Short Address:</dt> <dd>16-bit shortaddress </t> </list> </t>address</dd> </dl> </section> <!-- end "Unicast Address Mapping for IEEE 1901.2" --> </section> <sectiontitle="Neighbor Discovery" anchor="nd">anchor="nd" numbered="true" toc="default"> <name>Neighbor Discovery</name> <t> Neighbor discovery procedures for 6LoWPAN networks are described inNeighbor Discovery Optimization for 6LoWPANs<xreftarget="RFC6775"/>target="RFC6775" format="default"/> and <xreftarget="RFC8505"/>.target="RFC8505" format="default"/>. These optimizations support the registration of sleeping hosts. Although PLC devices are electrically powered, sleeping modeSHOULD<bcp14>SHOULD</bcp14> still be used for power saving. </t> <t> For IPv6 prefix dissemination, Router Solicitations(RS)(RSs) and Router Advertisements(RA) MAY(RAs) <bcp14>MAY</bcp14> be used as per <xreftarget="RFC6775"/>.target="RFC6775" format="default"/>. If the PLC network usesroute-over,route-over mode, the IPv6 prefixMAY<bcp14>MAY</bcp14> be disseminated by thelayer-3Layer 3 routing protocol, such as RPL, which may include the prefix in the DIO (DODAG Information Object) message. As per <xreftarget="RFC9010"/>,target="RFC9010" format="default"/>, it is possible to have PLC devices configured asRPL-unaware-leaves,RPL-unaware leaves, which do not participate in RPL at all, along with RPL-aware PLC devices. In this case, the prefix disseminationSHOULD<bcp14>SHOULD</bcp14> use the RS/RA messages. </t> <t> For dissemination of contextinformation dissemination, Router Advertisements (RA) MUSTinformation, RAs <bcp14>MUST</bcp14> be used as per <xreftarget="RFC6775"/>.target="RFC6775" format="default"/>. The 6LoWPAN context option (6CO)MUST<bcp14>MUST</bcp14> be included in the RA to disseminate the Context IDs used for prefix and/or address compression. </t> <t> For address registration in route-over mode, a PLC deviceMUST<bcp14>MUST</bcp14> register its addresses by sending a unicast link-localNeighbor SolicitationNS to the 6LR. If the registered address islink-local,link local, the 6LRSHOULD NOT<bcp14>SHOULD NOT</bcp14> further register it to the registrar(6LBR,(6LBR or 6BBR). Otherwise, the addressMUST<bcp14>MUST</bcp14> be registered via an ARO (Address Registration Option) or EARO (Extended Address Registration Option) included in the DAR(<xref target="RFC6775"/>)(Duplicate Address Request) <xref target="RFC6775" format="default"/> or EDAR(<xref target="RFC8505"/>)(Extended Duplicate Address Request) <xref target="RFC8505" format="default"/> messages. ForRFC8505 compliantPLCdevices,devices compliant with <xref target="RFC8505"/>, the 'R' flag in the EAROMUST<bcp14>MUST</bcp14> be set when sendingNeighbor SolicitationsNSs in order to extract the status information in the repliedNeighbor AdvertisementsNAs from the 6LR. If DHCPv6 is used to assign addresses or the IPv6 address is derived from the unique long or shortlink layerlink-layer address, Duplicate Address Detection (DAD)SHOULD NOT<bcp14>SHOULD NOT</bcp14> be utilized. Otherwise,theDADMUST<bcp14>MUST</bcp14> be performed at the 6LBR (as per <xreftarget="RFC6775"/>)target="RFC6775" format="default"/>) or proxied by the routing registrar (as per <xreftarget="RFC8505"/>).target="RFC8505" format="default"/>). The registration status is fed back via the DAC (Duplicate Address Confirmation) or EDAC (Extended Duplicate Address Confirmation) message from the 6LBR and theNeighbor Advertisement (NA)NA from the 6LR.The section 6 of<xreftarget="RFC8505"/>target="RFC8505" sectionFormat="of" section="6"/> shows howRFC6775-onlydevices that only behave as specified in <xref target="RFC6775"/> can work withRFC8505-updated devices.devices that have been updated per <xref target="RFC8505"/>. </t> <t> For address registration in mesh-under mode, since all the PLC devices are link-local neighbors to the 6LBR, DAR/DAC or EDAR/EDAC messages are not required. A PLC deviceMUST<bcp14>MUST</bcp14> register its addresses by sending a unicast NS message with an ARO or EARO. The registration status is fed back via the NA message from the 6LBR. </t> </section> <!-- end section "Neighbor Discovery" --> <sectiontitle="Header Compression" anchor="Compression">anchor="Compression" numbered="true" toc="default"> <name>Header Compression</name> <t>The compression ofIPv6datagrams withinheader compression in PLCMAC frames refers tois based on <xreftarget="RFC6282"/>, whichtarget="RFC6282" format="default"/> (which updates <xreftarget="RFC4944"/>. Header compression as defined intarget="RFC4944" format="default"/>). <xreftarget="RFC6282"/> whichtarget="RFC6282" format="default"/> specifies the compression format for IPv6 datagrams on top of IEEE802.15.4,802.15.4; therefore, this format isthe basisused forIPv6 headercompressionin PLC.of IPv6 datagrams within PLC MAC frames. For situations when the PLC MAC MTU cannot support the 1280-octet IPv6 packet, the headersMUST<bcp14>MUST</bcp14> be compressed according to<xref target="RFC6282"/>the encodingformats,formats specified in <xref target="RFC6282" format="default"/>, including the Dispatch Header, theLOWPAN_IPHCLOWPAN_IPHC, and the compressionresiduresidue carriedin-line.inline. </t> <t> For IEEE 1901.2 and ITU-T G.9903, the IP header compression follows the instruction in <xreftarget="RFC6282"/>.target="RFC6282" format="default"/>. However, additional adaptationMUST<bcp14>MUST</bcp14> be considered for IEEE 1901.1 since it has a short address of 12 bits instead of 16 bits. The only modification is the semantics of the "Source Address Mode" and the "Destination Address Mode" when set as "10" inthe section 3.1 of<xreftarget="RFC6282"/>,target="RFC6282" sectionFormat= "of" section="3.1"/>, which is illustrated asfollowing.follows. </t><t> SAM:<t>SAM: Source AddressMode: </t> <t> IfMode:</t> <t>If SAC=0: Statelesscompression <list hangIndent="6" style="hanging"> <t hangText="10:"> 16compression</t> <dl newline="false" spacing="normal" indent="6"> <dt>10:</dt> <dd>16 bits. The first 112 bits of the address are elided. The value of the first 64 bits is the link-local prefix padded with zeros. The following 64 bits are 0000:00ff:fe00:0XXX, where 0XXX are the 16 bits carriedin-line,inline, in which the first 4 bits are zero.</t> </list> </t> <t> If</dd> </dl> <t>If SAC=1:statefulStateful context-basedcompression <list hangIndent="6" style="hanging"> <t hangText="10:"> 16compression</t> <dl newline="false" spacing="normal" indent="6"> <dt>10:</dt> <dd>16 bits. The address is derived using context information and the 16 bits carriedin-line.inline. Bits covered by context information are always used. Any IID bits not covered by context information are taken directly from their corresponding bits in the mapping between the 16-bittoshort address and the IIDmapping givenas provided by 0000:00ff:fe00:0XXX, where 0XXX are the 16 bits carriedin-line,inline, in which the first 4 bits are zero. Any remaining bits are zero.</t> </list> </t> <t> DAM:</dd> </dl> <t>DAM: Destination AddressMode: </t> <t> IfMode:</t> <t>If M=0 and DAC=0: Statelesscompression <list hangIndent="6" style="hanging"> <t hangText="10:"> 16compression</t> <dl newline="false" spacing="normal" indent="6"> <dt>10:</dt> <dd>16 bits. The first 112 bits of the address are elided. The value of the first 64 bits is the link-local prefix padded with zeros. The following 64 bits are0000:00ff: fe00:0XXX,0000:00ff:fe00:0XXX, where 0XXX are the 16 bits carriedin-line,inline, in which the first 4 bits are zero.</t> </list> </t> <t> If</dd> </dl> <t>If M=0 and DAC=1:statefulStateful context-basedcompression <list hangIndent="6" style="hanging"> <t hangText="10:"> 16compression</t> <dl newline="false" spacing="normal" indent="6"> <dt>10:</dt> <dd>16 bits. The address is derived using context information and the 16 bits carriedin-line.inline. Bits covered by context information are always used. Any IID bits not covered by context information are taken directly from their corresponding bits in the mapping between the 16-bittoshort address and the IIDmapping givenas provided by 0000:00ff:fe00:0XXX, where 0XXX are the 16 bits carriedin- line,inline, in which the first 4 bits are zero. Any remaining bits are zero.</t> </list> </t></dd> </dl> </section> <!-- end section "Header Compression" --> <sectiontitle="Fragmentationanchor="frag" numbered="true" toc="default"> <name>Fragmentation andReassembly" anchor="frag">Reassembly</name> <t> The constrained PLC MAC layer provides thefunctionfunctions of fragmentation and reassembly. However, fragmentation and reassemblyisare still required at the adaptationlayer,layer if the MAC layer cannot support the minimum MTU demanded by IPv6, which is 1280 octets. </t> <t> In IEEE 1901.1 and IEEE 1901.2, the MAC layer supports payloads as big as 2031 octets and 1576octetsoctets, respectively. However, when the channel condition is noisy, smaller packets have a higher transmission success rate, and the operator can choose to configure smaller MTU at the MAC layer. If the configured MTU is smaller than 1280 octets, the fragmentation and reassembly defined in <xreftarget="RFC4944"/> MUSTtarget="RFC4944" format="default"/> <bcp14>MUST</bcp14> be used. </t> <t> In ITU-T G.9903, the maximum MAC payload size is fixed to 400 octets, so to cope with the required MTU of 1280 octets by IPv6, fragmentation and reassembly at the 6lo adaptation layerMUST<bcp14>MUST</bcp14> be provided as specified in <xreftarget="RFC4944"/>.target="RFC4944" format="default"/>. </t> <t> <xreftarget="RFC4944"/>target="RFC4944" format="default"/> uses a 16-bit datagram tag to identify the fragments of the same IP packet. <xreftarget="RFC4963"/>target="RFC4963" format="default"/> specifies that at high data rates, the 16-bit IP identification field is not large enough to prevent frequent incorrectly assembled IP fragments. For constrained PLC, the data rate is much lower than the situation mentioned inRFC4963, thus<xref target="RFC4963"/>; thus, the 16-bit tag is sufficient to assemble the fragments correctly. </t> </section> <!-- end section "Fragmentation and Reassembly" --> </section> <!-- end section "IPv6 over Narrowband PLC" --> <sectiontitle="Internetanchor="Topologies" numbered="true" toc="default"> <name>Internet Connectivity Scenarios andTopologies" anchor="Topologies">Topologies</name> <t> The PLC network model can be simplified to two kinds of networkdevice:devices: PAN Coordinator (PANC) and PLCDevice.device. The PANC is the primary coordinator of the PLC subnet and can be seen as a primary node; PLCDevicesdevices are typically PLC meters and sensors. The address registration and DAD features can also be deployed on the PANC, forexampleexample, the 6LBR <xreftarget="RFC6775"/>target="RFC6775" format="default"/> or the routing registrarin<xreftarget="RFC8505"/>.target="RFC8505" format="default"/>. IPv6 over PLC networks are built astrees, meshestree, mesh, orstars topologystar topologies according to the use cases. Generally, each PLC network has one PANC. In some cases, the PLC network can have alternate coordinators to replace the PANC when the PANC leaves the network for some reason. Note that the PLC topologies in this section are based on logical connectivity, not physical links. The term "PLC subnet" refers to a multilink subnet, in which the PLC devices share the same address prefix. </t> <t> The star topology is common in current PLC scenarios. In single-hop star topologies, communication at the link layer only takes place between a PLCDevicedevice and a PANC. The PANC typically collects data (e.g., a meter reading) from the PLCdevices,devices and then concentrates and uploads the data through Ethernet orCellularcellular networks (see <xreftarget="fig-plc-star"/>).target="fig-plc-star" format="default"/>). The collected data is transmitted by the smart meters through PLC, aggregated by a concentrator, and sent to the utility and then to a Meter Data Management System for data storage,analysisanalysis, and billing. This topology has been widely applied in the deployment of smart meters, especially in apartment buildings. </t> <figuretitle="PLCanchor="fig-plc-star"> <name>PLC Star NetworkconnectedConnected to theInternet" anchor="fig-plc-star"> <artwork><![CDATA[Internet</name> <artwork name="" type="" align="left" alt=""><![CDATA[ PLC Device PLC Device \ / +--------- \ / / \ / + \ / | PLC Device ------ PANC ===========+ Internet / \ | / \ + / \ \ / \ +--------- PLC Device PLC Device <----------------------> PLC subnet (IPv6 over PLC) ]]></artwork> </figure> <t> A tree topology is useful when the distance between a device A and the PANC is beyond thePLC allowedPLC-allowed limit and there is another device B in between able to communicate with both sides. Device B in this case actsbothas both a PLCDevicedevice and a Coordinator. For this scenario, thelink layerlink-layer communications take place between device A and device B, and between device B and PANC. An example of a PLC tree network is depicted in <xreftarget="fig-plc-tree"/>.target="fig-plc-tree" format="default"/>. This topology can be applied in smart street lighting, where the lights adjust the brightness to reduce energy consumption while sensors are deployed on thestreet-lightsstreet lights to provide information such as light intensity, temperature, and humidity. Thedata transmissiondata-transmission distance in the street lighting scenario is normally above severalkilometers, thuskilometers; thus, a PLC tree network is required. A more sophisticated AMI network may also be constructed into the tree topologywhichthat is depicted in <xreftarget="RFC8036"/>.target="RFC8036" format="default"/>. A tree topology is suitable for AMI scenarios that require large coverage but low density, e.g., the deployment of smart meters in rural areas. RPL is suitable for maintenance of a tree topology in which there is no need for communication directly between PAN devices. </t> <figuretitle="PLCanchor="fig-plc-tree"> <name>PLC Tree NetworkconnectedConnected to theInternet" anchor="fig-plc-tree"> <artwork><![CDATA[Internet</name> <artwork name="" type="" align="left" alt=""><![CDATA[ PLC Device \ +--------- PLC Device A \ / \ \ + \ \ | PLC Device B -- PANC ===========+ Internet / / | / / + PLC Device---PLC Device / \ / +--------- PLC Device---PLC Device <-------------------------> PLC subnet (IPv6 over PLC) ]]></artwork> </figure> <t> Mesh networking in PLCis of greathas many potential applications and has been studied for several years. By connecting all nodes with their neighbors in communication range (see <xreftarget="fig-plc-mesh"/>),target="fig-plc-mesh" format="default"/>), a mesh topology dramatically enhances the communication efficiency and thus expands the size of PLC networks. A simple use case is the smart home scenario where the ON/OFF state of air conditioning is controlled by the state of home lights (ON/OFF) and doors (OPEN/CLOSE). AODV-RPL(<xref target="I-D.ietf-roll-aodv-rpl"/>)<xref target="I-D.ietf-roll-aodv-rpl" format="default"/> enables direct communication between PLCdevice to PLC device communication,devices, without being obliged to transmit frames through the PANC, which is a requirement often cited for the AMI infrastructure. </t> <figuretitle="PLCanchor="fig-plc-mesh"> <name>PLC Mesh NetworkconnectedConnected to theInternet" anchor="fig-plc-mesh"> <artwork><![CDATA[Internet</name> <artwork name="" type="" align="left" alt=""><![CDATA[ PLC Device---PLC Device / \ / \ +--------- / \ / \ / / \ / \ + / \ / \ | PLC Device--PLC Device---PANC ===========+ Internet \ / \ / | \ / \ / + \ / \ / \ \ / \ / +--------- PLC Device---PLC Device <-------------------------------> PLC subnet (IPv6 over PLC) ]]></artwork> </figure> </section> <sectiontitle="Operationsanchor="OAM" numbered="true" toc="default"> <name>Operations and ManageabilityConsiderations" anchor="OAM">Considerations</name> <t>The constrainedConstrained PLC networks are not managed in the same way asanenterprisenetworknetworks oracarriernetwork.networks. Constrained PLC networks, like the other IoT networks, are designed to be self-organized and self-managed. The software or firmware is flashed into the devices before deployment by the vendor or operator. And during the deployment process, the devices are bootstrapped, and no extra configuration is needed to get the devices connected to each other. Once a device becomes offline, it goes back to the bootstrapping stage and tries to rejoin the network. The onboarding status of the devices and the topology of the PLC network can be visualized via the PANC. Therecently-formed iotopsrecently formed IOTOPS WG in the IETFis aimingaims to identify the requirements in IoT network management, and operational practices will be published. Developers and operators of PLC networks should be able to learn operational experiences from this WG. </t> </section> <sectiontitle="IANA Considerations" anchor="IANA">anchor="IANA" numbered="true" toc="default"> <name>IANA Considerations</name> <t>There areThis document has no IANAconsiderations related to this document.actions. </t> </section> <sectiontitle="Security Considerations" anchor="Security">anchor="Security" numbered="true" toc="default"> <name>Security Considerations</name> <t> Due to the high accessibility of power grids, PLC might be susceptible to eavesdropping within its communication coverage, e.g., one apartment tenant may have the chance to monitor the other smart meters in the same apartment building.Link layerLink-layer security mechanisms, such as payload encryption anddevciedevice authentication, are designed in the PLC technologies mentioned in this document. Additionally, an on-path malicious PLC device could eavesdrop or modify packets sent through it if appropriate confidentiality and integrity mechanisms are not implemented. </t> <t> Malicious PLC devices could paralyze the whole network viaDOSDoS attacks, e.g., keep joining and leaving the networkfrequently,frequently or sending multicast routing messages containing fake metrics. A device may also inadvertently join a wrong or even malicious network, exposing its data to malicious users. When communicating with a device outside the PLC network, the traffic has to go through the PANC.ThusThus, the PANC must be a trusted entity. Moreover, the PLC network must prevent malicious devicesto join infrom joining the network.Thus MutualThus, mutual authentication of a PLC network and a new device is important, and it can be conducted during the onboarding process of the new device. Methods include protocols such as the TLS/DTLS Profile <xreftarget="RFC7925"/>target="RFC7925" format="default"/> (exchanging pre-installed certificates over DTLS), the Constrained Join Protocol (CoJP) <xreftarget="I-D.ietf-6tisch-minimal-security"/>target="RFC9031" format="default"/> (which uses pre-shared keys), and Zero-Touch Secure Join <xreftarget="I-D.ietf-6tisch-dtsecurity-zerotouch-join"/> (atarget="I-D.ietf-6tisch-dtsecurity-zerotouch-join" format="default"/> (an IoT version ofBRSKI,the Bootstrapping Remote Secure Key Infrastructure (BRSKI), which usesIDevIDan Initial Device Identifier (IDevID) andMASAa Manufacturer Authorized Signing Authority (MASA) service to facilitate authentication). It is also possible to useEAPExtensible Authentication Protocol (EAP) methods such as the one defined in <xreftarget="I-D.ietf-emu-eap-noob"/>target="RFC9140" format="default"/> via transports likePANAProtocol for Carrying Authentication for Network Access (PANA) <xreftarget="RFC5191"/>.target="RFC5191" format="default"/>. No specific mechanism is specified by this document, as an appropriate mechanism will depend upon deployment circumstances. In some cases, the PLC devices can be deployed in uncontrolled places, where the devices may be accessed physically and be compromised via key extraction.Since theThe compromised device may be still able to join in the network since its credentials are still valid. When group-shared symmetric keys are used in the network, the consequence is even more severe, i.e., the whole network or a large part of the network is at risk.ThusThus, in scenarios wherethephysical attacksisare considered to be relatively highly possible,per deviceper-device credentialsSHOULD<bcp14>SHOULD</bcp14> be used. Moreover, additional end-to-end securityservices" is aservices are complementary to thenetwork sidenetwork-side security mechanisms, e.g., if adevicesdevice is compromised andithas joined in the network, and then it claims itself as the PANC andtrytries to make the rest of the devices join its network. In this situation, the real PANC can send an alarm to the operator to acknowledge the risk. Otherbehavior analysisbehavior-analysis mechanisms can be deployed torecoginizerecognize the malicious PLC devices by inspecting the packets and the data. </t> <t> IP addresses may be used to track devices on the Internet; such devices can often in turn be linked to individuals and their activities. Depending on the application and the actual use pattern, this may be undesirable. To impede tracking, globally unique and non-changing characteristics of IP addresses should be avoided, e.g., by frequently changing the global prefix and avoiding unique link-layer derived IIDs in addresses. <xreftarget="RFC8065"/>target="RFC8065" format="default"/> discusses the privacy threats wheninterface identifiers (IID) arean IID is generated without sufficient entropy, including correlation of activities over time, location tracking, device-specific vulnerability exploitation, and address scanning. And an effective way to deal with these threats is to have enough entropy in the IIDcompairingcompared to the link lifetime. Consider a PLC network with 1024 devices anditsa link lifetime is 8 years, according to the formula inRFC8065,<xref target="RFC8065" format="default"/>, an entropy of 40 bits is sufficient. Padding the short address (12 or 16 bits) to generate the IID of a routable IPv6 address in the public network may be vulnerable to deal with address scans.ThusThus, assuggestsuggested inthe section 4.1,<xref target="slaac"/>, a hash function can be used to generate a64 bits64-bit IID. When the version number of the PLC network is changed, the IPv6 addresses can be changed as well. Other schemes such as limited lease period in DHCPv6 <xreftarget="RFC8415"/>,target="RFC8415" format="default"/>, Cryptographically Generated Addresses (CGAs) <xreftarget="RFC3972"/>,target="RFC3972" format="default"/>, Temporary Address Extensions <xreftarget="RFC8981"/>,target="RFC8981" format="default"/>, Hash-Based Addresses (HBAs) <xreftarget="RFC5535"/>,target="RFC5535" format="default"/>, or semantically opaque addresses <xreftarget="RFC7217"/> SHOULDtarget="RFC7217" format="default"/> <bcp14>SHOULD</bcp14> be used to enhance the IID privacy. </t> </section><section title="Acknowledgements" anchor="Ack"> <t> <!-- CEP: Was it intended to specifically acknowledge the 6LoWPAN working group, which has since been closed? --> We gratefully acknowledge suggestions from the members of the IETF 6lo working group. Great thanks to Samita Chakrabarti and Gabriel Montenegro for their feedback and support in connecting the IEEE and ITU-T sides. The authors thank Scott Mansfield, Ralph Droms, and Pat Kinney for their guidance in the liaison process. The authors wish to thank Stefano Galli, Thierry Lys, Yizhou Li, Yuefeng Wu, and Michael Richardson for their valuable comments and contributions. The authors wish to thank Carles Gomez for shephering this document. The authors also thank Paolo Volpato for delegating the presentation at IETF 113. Sincere acknoledgements to the valuable comments from reviewers: Dave Thaler, Dan Romascanu, Murray Kucherawy, Benjamin Kaduk, Alvaro Retana, Éric Vyncke, Meral Shirazipour, Roman Danyliw and Lars Eggert. </t> </section></middle> <back><references title="Normative References"><displayreference target="I-D.ietf-roll-aodv-rpl" to="AODV-RPL"/> <displayreference target="I-D.ietf-6tisch-dtsecurity-zerotouch-join" to="ZEROTOUCH"/> <references> <name>References</name> <references> <name>Normative References</name> <reference anchor="IEEE_1901.2"target="https://standards.ieee.org/findstds/standard/1901.2-2013.html">target="https://ieeexplore.ieee.org/document/6679210"> <front> <title> IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line Communications for Smart Grid Applications </title> <author><organization> IEEE-SA Standards Board </organization><organization>IEEE</organization> </author> <datemonth="October"month="December" year="2013"/> </front> <seriesInfoname="IEEE"name="DOI" value="10.1109/IEEESTD.2013.6679210"/> <seriesInfo name="IEEE Std" value="1901.2"/> </reference> <reference anchor="ITU-T_G.9903" target="https://www.itu.int/rec/T-REC-G.9903"> <front><title> Narrowband<title>Narrowband orthogonal frequency division multiplexing power line communication transceivers for G3-PLC networks </title> <author><organization> International Telecommunication Union</organization><organization>ITU-T</organization> </author> <date month="August" year="2017"/> </front> <seriesInfoname="ITU-T"name="ITU-T Recommendation" value="G.9903"/> </reference><?rfc include='reference.RFC.2119.xml'?> <?rfc include='reference.RFC.2464.xml'?> <?rfc include='reference.RFC.4291.xml'?> <?rfc include='reference.RFC.4861.xml'?> <?rfc include='reference.RFC.4944.xml'?> <?rfc include='reference.RFC.6282.xml'?> <?rfc include='reference.RFC.7136.xml'?> <?rfc include='reference.RFC.6550.xml'?> <?rfc include='reference.RFC.6775.xml'?> <?rfc include='reference.RFC.8174.xml'?> <?rfc include='reference.RFC.8505.xml'?><xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2464.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4291.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4861.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4944.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6282.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7136.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6550.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6775.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8505.xml"/> <reference anchor="IEEE_1901.1" target="https://ieeexplore.ieee.org/document/8360785"> <front><title><title>IEEE Standard for Medium Frequency (less than1512 MHz) Power Line Communications for Smart Grid Applications </title> <author><organization> IEEE-SA Standards Board </organization><organization>IEEE</organization> </author> <date month="May" year="2018"/> </front> <seriesInfoname="IEEE"name="DOI" value="10.1109/IEEESTD.2018.8360785"/> <seriesInfo name="IEEE Std" value="1901.1"/> </reference> </references><references title="Informative References"><references> <name>Informative References</name> <reference anchor="IEEE_1901.2a"target="https://standards.ieee.org/findstds/standard/1901.2a-2015.html">target="https://ieeexplore.ieee.org/document/7286946"> <front><title> IEEE<title>IEEE Standard for Low-Frequency (less than 500 kHz) Narrowband Power Line Communications for Smart Grid Applications - Amendment 1 </title> <author><organization>IEEE-SA Standards Board</organization><organization>IEEE</organization> </author> <datemonth="September"month="October" year="2015"/> </front> <seriesInfoname="IEEE"name="DOI" value="10.1109/IEEESTD.2013.6679210"/> <seriesInfo name="IEEE Std" value="1901.2a"/> </reference><?rfc include='reference.RFC.8415.xml'?> <?rfc include='reference.RFC.3972.xml'?><xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8415.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3972.xml"/> <reference anchor="EUI-64"target="https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf">target="https://standards.ieee.org/wp-content/uploads/import/documents/tutorials/eui.pdf"> <front> <title> Guidelines for64-bit GlobalUse of Extended Unique Idenfier (EUI), Organizationally Unique Identifier(EUI-64) Registration Authority(OUI), and Company ID (CID) </title> <author><organization>IEEE-SA<organization>IEEE StandardsBoard</organization>Association</organization> </author> <datemonth="March" year="1997"/>month="August" year="2017"/> </front> </reference> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8981.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4963.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5535.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7217.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7973.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8036.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8065.xml"/> <!-- [I-D.ietf-roll-aodv-rpl] IESG state AD is watching. Changed to long format because Anand's initials were incorrect in the output --> <reference anchor="I-D.ietf-roll-aodv-rpl" target="https://datatracker.ietf.org/doc/html/draft-ietf-roll-aodv-rpl-15"> <front> <title>Supporting Asymmetric Links in Low Power Networks: AODV-RPL</title> <author initials="C. E." surname="Perkins" fullname="Charles E. Perkins"> <organization>Lupin Lodge</organization> </author> <author initials="S.V.R." surname="Anand" fullname="S.V.R Anand"> <organization>Indian Institute of Science</organization> </author> <author initials="S." surname="Anamalamudi" fullname="Satish Anamalamudi"> <organization>SRM University-AP</organization> </author> <author initials="B." surname="Liu" fullname="Bing Liu"> <organization>Huawei Technologies</organization> </author> <date month="September" day="30" year="2022"/> </front> <seriesInfoname="IEEE" value="EUI-64"/>name="Internet-Draft" value="draft-ietf-roll-aodv-rpl-15"/> </reference><?rfc include='reference.RFC.8981.xml'?> <?rfc include='reference.RFC.4963.xml'?> <?rfc include='reference.RFC.5535.xml'?> <?rfc include='reference.RFC.7217.xml'?> <?rfc include='reference.RFC.7973.xml'?> <?rfc include='reference.RFC.8036.xml'?> <?rfc include='reference.RFC.8065.xml'?> <?rfc include='reference.I-D.ietf-roll-aodv-rpl'?> <?rfc include='reference.I-D.ietf-6tisch-minimal-security'?> <?rfc include='reference.RFC.9010'?> <?rfc include='reference.RFC.7925.xml'?> <?rfc include='reference.RFC.5191.xml'?> <?rfc include='reference.I-D.ietf-6tisch-dtsecurity-zerotouch-join'?> <?rfc include='reference.I-D.ietf-emu-eap-noob'?><!-- [I-D.ietf-6tisch-minimal-security] Published as RFC 9031 --> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9031.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9010.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7925.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5191.xml"/> <!-- [I-D.ietf-6tisch-dtsecurity-zerotouch-join] IESG state Expired --> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-ietf-6tisch-dtsecurity-zerotouch-join.xml"/> <!-- [I-D.ietf-emu-eap-noob] Published as RFC 9140 --> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9140.xml"/> <reference anchor="SCENA" target="https://ieeexplore.ieee.org/document/7467440"> <front> <title> State of the Art in Power Line Communications: From the Applications to the Medium </title> <author initials="C." surname="Cano" fullname="Cristina Cano"> <organization>IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS</organization> </author> <author initials="A." surname="Pittolo" fullname="Alberto Pittolo"> <organization>IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS</organization> </author> <author initials="D." surname="Malone" fullname="David Malone"> <organization>IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS</organization> </author> <author initials="L." surname="Lampe" fullname="Lutz Lampe"> <organization>IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS</organization> </author> <author initials="A." surname="Tonello" fullname="Andrea M. Tonello"> <organization></organization> </author> <author initials="A." surname="Dabak" fullname="Anand G. Dabak"> <organization></organization> </author> <date month="July" year="2016"/> </front> <seriesInfo name="DOI" value="10.1109/JSAC.2016.2566018"/> <refcontent>IEEE Journal on Selected Areas in Communications, Volume 34, Issue 7</refcontent> </reference> </references> </references> <section anchor="Ack" numbered="false" toc="default"> <name>Acknowledgements</name> <t> We gratefully acknowledge suggestions from the members of the IETF 6lo Working Group. Great thanks to <contact fullname="Samita Chakrabarti"/> and <contact fullname="Gabriel Montenegro"/> for their feedback and support in connecting the IEEE and ITU-T sides. The authors thank <contact fullname="Scott Mansfield"/>, <contact fullname="Ralph Droms"/>, and <contact fullname="Pat Kinney"/> for their guidance in the liaison process. The authors wish to thank <contact fullname="Stefano Galli"/>, <contact fullname="Thierry Lys"/>, <contact fullname="Yizhou Li"/>, <contact fullname="Yuefeng Wu"/>, and <contact fullname="Michael Richardson"/> for their valuable comments and contributions. The authors wish to thank <contact fullname="Carles Gomez"/> for shepherding this document. The authors also thank <contact fullname="Paolo Volpato"/> for delivering the presentation at IETF 113. Sincere acknowledgements to the valuable comments from the following reviewers: <contact fullname="Dave Thaler"/>, <contact fullname="Dan Romascanu"/>, <contact fullname="Murray Kucherawy"/>, <contact fullname="Benjamin Kaduk"/>, <contact fullname="Alvaro Retana"/>, <contact fullname="Éric Vyncke"/>, <contact fullname="Meral Shirazipour"/>, <contact fullname="Roman Danyliw"/>, and <contact fullname="Lars Eggert"/>. </t> </section> </back> </rfc>