<?xml version="1.0" encoding="UTF-8"?>
<!-- <?xml version="1.0" encoding="US-ASCII"?> -->
<!DOCTYPE rfc SYSTEM "rfc2629.dtd">

<?rfc toc="yes"?>
<?rfc rfcedstyle="yes"?>
<?rfc subcompact="no"?>
<?rfc symrefs="yes"?> [
  <!ENTITY nbsp    "&#160;">
  <!ENTITY zwsp   "&#8203;">
  <!ENTITY nbhy   "&#8209;">
  <!ENTITY wj     "&#8288;">
]>

<rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902" submissionType="IETF" category="info"
    docName="draft-ietf-ipwave-vehicular-networking-30"> consensus="true" docName="draft-ietf-ipwave-vehicular-networking-30" number="9365" obsoletes="" updates="" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3">

  <!-- xml2rfc v2v3 conversion 3.15.2 -->
  <front>
    <title abbrev="IPWAVE Problem Statement">
    IPv6 Wireless Access in Vehicular Environments (IPWAVE): Problem Statement and Use Cases
    </title>
    <seriesInfo name="RFC" value="9365"/>
    <author initials="J." surname="Jeong" fullname="Jaehoon Paul Jeong" role="editor">
      <organization abbrev="Sungkyunkwan University">
           Department of Computer Science and Engineering
      </organization>
      <address>
        <postal>
                <street>Sungkyunkwan University</street>
          <extaddr>Sungkyunkwan University</extaddr>
          <street>2066 Seobu-Ro, Jangan-Gu</street>
          <city>Suwon</city>
          <region>Gyeonggi-Do</region>
          <code>16419</code>
          <country>Republic of Korea</country>
        </postal>
        <phone>+82 31 299 4957</phone>
            <facsimile>+82 31 290 7996</facsimile>
        <email>pauljeong@skku.edu</email>
        <uri>http://iotlab.skku.edu/people-jaehoon-jeong.php
        </uri>
      </address>
    </author>
    <date month="October" day="24" year="2022" />

    <area>Internet</area>

    <workgroup>IPWAVE Working Group</workgroup>

<!-- [rfced] Please insert any keywords (beyond those that appear in
     the title) for use on http://www.rfc-editor.org/rfcsearch.html. -->

<keyword>Internet-Draft</keyword> month="March" year="2023"/>
    <area>int</area>
    <workgroup>ipwave</workgroup>

<keyword>IPv6, V2V, V2I, V2X, Neighbor Discovery, Mobility Management, Security, Privacy</keyword>

    <abstract>
      <t>
    This document discusses the problem statement and use cases of
    IPv6-based vehicular networking for Intelligent Transportation Systems (ITS).
    The main scenarios of vehicular communications are vehicle-to-vehicle (V2V),
    vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2X) communications.
    First, this document explains use cases using V2V, V2I, and V2X networking.
    Next, for IPv6-based vehicular networks, it makes a gap analysis of current
    IPv6 protocols (e.g., IPv6 Neighbor Discovery, Mobility Management, mobility management, as well as
    security and
    Security &amp; Privacy). privacy).
      </t>
    </abstract>
  </front>
  <middle>
    <section anchor="section:Introduction" title="Introduction"> anchor="section_Introduction" numbered="true" toc="default">
      <name>Introduction</name>
      <t>
    Vehicular networking studies have mainly focused on improving road
    safety and efficiency, efficiency and also enabling entertainment in vehicular
    networks. To proliferate the use cases of vehicular networks,
    several governments and private organizations have committed to
    allocate
    allocating dedicated spectrum for vehicular communications.
    The Federal Communications Commission (FCC) in the US allocated wireless
    channels for Dedicated Short-Range Communications (DSRC) <xref target="DSRC"/> target="DSRC" format="default"/>
    in the Intelligent Transportation Systems (ITS) with the frequency band of
    5.850 - 5.925 GHz (i.e., 5.9 GHz band). In November 2020, the FCC adjusted
    the lower 45 MHz (i.e., 5.850 - 5.895 GHz) of the 5.9 GHz band for
    unlicensed use instead of DSRC-dedicated use
    <xref target="FCC-ITS-Modification"/>. target="FCC-ITS-Modification" format="default"/>. DSRC-based wireless communications
    can support vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),
    and vehicle-to-everything (V2X) networking.
    The European Union (EU) allocated radio spectrum for safety-related and
    non-safety-related applications of ITS with the frequency band of
    5.875 - 5.905 GHz, as part of the Commission Decision 2008/671/EC
    <xref target="EU-2008-671-EC"/>. target="EU-2008-671-EC" format="default"/>. Most other countries and regions in
    the world have adopted the 5.9 GHz band for vehicular networks, though
    different countries use different ways to divide the band into channels.
      </t>
      <t>
    For direct inter-vehicular wireless connectivity, IEEE has amended
    standard 802.11 (commonly known as Wi-Fi) to enable safe driving services based on DSRC
    for the Wireless Access in Vehicular Environments (WAVE)
    system. The Physical Layer (L1) and Data Link Layer (L2) issues are addressed
    in IEEE 802.11p  <xref target="IEEE-802.11p" /> format="default"/>
    for the PHY and MAC layers of the DSRC, while IEEE Std 1609.2 <xref target="WAVE-1609.2" /> format="default"/>
    covers security aspects, IEEE Std 1609.3 <xref target="WAVE-1609.3" /> format="default"/>
    defines related services at network and transport layers, and IEEE Std 1609.4
    <xref target="WAVE-1609.4" /> format="default"/> specifies the multichannel operation.
    IEEE 802.11p was first a separate amendment, amendment but was later rolled into
    the base 802.11 standard (IEEE Std 802.11-2012) as IEEE 802.11 Outside the Context
    of a Basic Service Set (OCB) in 2012 <xref target="IEEE-802.11-OCB" />. format="default"/>.
      </t>
      <t>
    3GPP has standardized Cellular Vehicle-to-Everything (C-V2X) communications
	to support V2X in LTE mobile networks (called LTE V2X)
    and V2X in 5G mobile networks (called 5G V2X) <xref target="TS-23.285-3GPP" /> format="default"/>
        <xref target="TR-22.886-3GPP" /><xref format="default"/> <xref target="TS-23.287-3GPP" />. format="default"/>.
	With C-V2X,	vehicles can directly communicate with each other without
	relay nodes (e.g., eNodeB in LTE and gNodeB in 5G).
      </t>
      <t>
   	Along with these WAVE standards and C-V2X standards, regardless of a
   	wireless access technology under the IP stack of a vehicle, vehicular
   	networks can operate IP mobility with IPv6 <xref target="RFC8200" /> and
   	format="default"/>, that is, Mobile IPv6
    protocols (e.g., protocols, e.g., Mobile IPv6
   	(MIPv6) <xref target="RFC6275" />, format="default"/>, Proxy MIPv6 Mobile IPv6
   	(PMIPv6) <xref target="RFC5213" />, format="default"/>, Distributed
   	Mobility Management (DMM) <xref target="RFC7333" />, format="default"/>,
   	Network Mobility (NEMO) <xref target="RFC3963" />, format="default"/>, and
   	the Locator/ID Separation Protocol (LISP) <xref target="I-D.ietf-lisp-rfc6830bis" />. target="RFC9300"
   	format="default"/>.  In addition, ISO has approved a standard
   	specifying the IPv6 network protocols and services to be used for
   	Communications Access for Land Mobiles (CALM) <xref
   	target="ISO-ITS-IPv6" /><xref format="default"/> <xref
   	target="ISO-ITS-IPv6-AMD1" />. format="default"/>.
      </t>
      <t>
    This document describes use cases and a problem statement about
    IPv6-based vehicular networking for ITS, which is named IPv6 Wireless Access in
    Vehicular Environments (IPWAVE).
    First, it introduces the use cases for using V2V, V2I, and V2X networking
    in ITS.
    Next, for IPv6-based vehicular networks, it makes a gap analysis of
    current IPv6 protocols (e.g., IPv6 Neighbor Discovery, Mobility
    Management, mobility
    management, as well as security and Security &amp; Privacy) privacy) so that those protocols
    can be tailored to IPv6-based vehicular networking.
    Thus, this document is intended to motivate development of
    key protocols for IPWAVE.
      </t>
    </section>
    <!--  end section "Introduction"  -->

<section anchor="section:Terminology" title="Terminology"> anchor="section_Terminology" numbered="true" toc="default">
      <name>Terminology</name>
      <t>
    This document uses the terminology described in <xref target="RFC8691" />. format="default"/>.
    In addition, the following terms are defined below:
      </t>

    <t>
    <list style="symbols">

    <t>
    Context-Awareness: A

      <dl>
        <dt>Context-Awareness:</dt>
	<dd>A vehicle can be aware of spatial-temporal mobility information
	(e.g., position, speed, direction, and acceleration/deceleration) of
	surrounding vehicles for both safety and non-safety uses through
	sensing or communication <xref target="CASD" />.
    </t>

    <t>
    DMM: "Distributed format="default"/>.</dd>
        <dt>Distributed Mobility Management" Management (DMM):</dt>
	<dd>See <xref target="RFC7333"/><xref target="RFC7429"/>.
    </t>

	<t>
    Edge target="RFC7333" format="default"/> <xref
	target="RFC7429" format="default"/>.</dd>
        <dt>Edge Computing Device (ECD): It (ECD):</dt>
	<dd>This is a computing device (or server) at the edge of the network for vehicles and
	vulnerable road users. It co-locates with or connects to an IP-RSU, IP Roadside Unit (IP-RSU),
	which has a powerful computing capability for different kinds of
	computing tasks, such as image processing and classification.
    </t>

    <t>
    Edge classification.</dd>
        <dt>Edge Network (EN): It (EN):</dt>
	<dd>This is an access network that has an IP-RSU for wireless
	communication with other vehicles having an IP-OBU IP On-Board Unit (IP-OBU) and wired
	communication with other network devices (e.g., routers, IP-RSUs,
	ECDs, servers, and MA). Mobility Anchors (MAs)).  It may have use a global navigation satellite system (GNSS), Global Navigation Satellite
	System (GNSS) such as Global Positioning System (GPS), radio (GPS) with a GNSS receiver for
  its position recognition and the localization service for	the sake of vehicles.
    </t>

    <t>
    IP-OBU: "Internet vehicles.</dd>
	<dt>Evolved Node B (eNodeB):</dt>
	<dd>This is a base station entity that
	supports the Long Term Evolution (LTE) air interface.</dd>
        <dt>Internet Protocol On-Board Unit": An Unit (IP-OBU):</dt>
	<dd>An IP-OBU denotes a computer situated in a vehicle (e.g., car,
	bicycle, autobike, electric bike, motorcycle, and a similar one), or similar), which has a basic
	processing ability and can be driven by a low-power CPU (e.g., ARM).
	It has at least one IP interface that runs in IEEE 802.11-OCB and has
	an "OBU" transceiver.  Also, it may have an IP interface that runs in
	Cellular V2X (C-V2X) <xref target="TS-23.285-3GPP" /> format="default"/>
	<xref target="TR-22.886-3GPP" /><xref format="default"/>
  <xref target="TS-23.287-3GPP" />. format="default"/>.  It can play the
  role of a router connecting multiple computers (or in-vehicle devices)
  inside a vehicle.  See the definition of the term "IP-OBU" in
  <xref	target="RFC8691" />.
    </t>

    <t>
    IP-RSU: "IP format="default"/>.</dd>
        <dt>IP Roadside Unit": An Unit (IP-RSU):</dt>
	<dd>An IP-RSU is situated along the road.  It has at least two
	distinct IP-enabled interfaces.  The wireless PHY/MAC layer of at
	least one of its IP-enabled interfaces is configured to operate in
	802.11-OCB mode. mode <xref target="IEEE-802.11-OCB" format="default"/>.
  An IP-RSU communicates with the IP-OBU over an 802.11 wireless link
  operating in OCB mode.
  One of its IP-enabled interfaces is connected to the wired network
  for wired communication with other network devices (e.g., routers,
  IP-RSUs, ECDs, servers, and MAs).
  Also, it may have a third another	IP-enabled wireless interface running in
  3GPP C-V2X in addition to the IP-RSU defined in
  <xref target="RFC8691" />. format="default"/>.  An IP-RSU is similar to
  an Access Network Router (ANR), defined in
  <xref	target="RFC3753" />, format="default"/>, and a Wireless Termination Point
	(WTP), defined in <xref target="RFC5415" />. format="default"/>.  See the
	definition of the term "IP-RSU" in <xref target="RFC8691" />.
    </t>

    <t>
    LiDAR: "Light
	format="default"/>.</dd>
        <dt>Light Detection and Ranging". It Ranging (LiDAR):</dt>
	<dd>This is a scanning device
    to measure method for measuring a distance to an object by
	emitting pulsed laser light and measuring the reflected pulsed light.
    </t>

    <t>
    Mobility
	light.</dd>
        <dt>Mobility Anchor (MA): A (MA):</dt>
	<dd>This is a node that maintains IPv6 addresses and mobility
	information of vehicles in a road network to support their IPv6
	address autoconfiguration and mobility management with a binding
	table.  An MA has End-to-End end-to-end (E2E) connections (e.g., tunnels) with
	IP-RSUs under its control for the IPv6 address autoconfiguration and
	mobility management of the vehicles.  This MA is similar to a Local
	Mobility Anchor (LMA) in PMIPv6 <xref target="RFC5213" />
	format="default"/> for network-based mobility management.
    </t>

    <t>
    OCB: "Outside management.</dd>
	      <dt>Next Generation Node B (gNodeB):</dt>
	<dd>This is a base station entity that supports the 5G New Radio (NR) air interface.</dd>
        <dt>Outside the Context of a Basic Service Set - BSS". It BSS (OCB):</dt>
	<dd>This is a mode of operation in which a Station station (STA) is not a
	member of a BSS Basic Service Set (BSS) and does not utilize IEEE Std
	802.11 authentication, association, or data confidentiality <xref
	target="IEEE-802.11-OCB" />.
    </t>

    <t>
    802.11-OCB: It format="default"/>.</dd>
        <dt>802.11-OCB:</dt>
	<dd>This refers to the mode specified in IEEE Std 802.11-2016
	<xref target="IEEE-802.11-OCB" /> format="default"/> when the MIB
	attribute dot11OCBActivited dot11OCBActivated is 'true'.
    </t>

    <t>
    Platooning: Moving 'true'.</dd>
        <dt>Platooning:</dt>
	<dd>Moving vehicles can be grouped together to reduce
    air-resistance air resistance
	for energy efficiency and reduce the number of drivers such that only
	the leading lead vehicle has a driver, and the other vehicles are
	autonomous vehicles without a driver and closely follow the leading lead
	vehicle <xref target="Truck-Platooning" />.
    </t>

    <t>
    Traffic format="default"/>.</dd>
        <dt>Traffic Control Center (TCC): A (TCC):</dt>
	<dd>This is a system that manages road infrastructure nodes (e.g.,
	IP-RSUs, MAs, traffic signals, and loop detectors), detectors) and also maintains
	vehicular traffic statistics (e.g., average vehicle speed and vehicle
	inter-arrival time per road segment) and vehicle information (e.g., a
	vehicle's identifier, position, direction, speed, and trajectory as a
	navigation path).  TCC is part of a vehicular cloud Vehicular Cloud for vehicular networks.
    </t>

    <t>
    Urban
	networks.</dd>
        <dt>Urban Air Mobility (UAM): It (UAM):</dt>
	<dd>This refers to using lower-altitude aircraft to transport passengers
	or cargo in urban and suburban areas. The carriers used for UAM can be
	manned or unmanned vehicles, which can include
    traditional helicopters, electrical
    vertical-takeoff-and-landing aircraft (eVTOL), electric vertical take-off and landing (eVTOL) aircraft,
	and unmanned aerial vehicles (UAV).
    </t>

    <t>
    Vehicle: A Vehicle in this document (UAVs).</dd>
        <dt>Vehicle:</dt>
	<dd>This is a node that has an IP-OBU for
	wireless communication with other vehicles and IP-RSUs.  It has a GNSS
	radio navigation receiver for efficient navigation.  Any device having
	an IP-OBU and a GNSS receiver (e.g., smartphone and tablet PC) can be
	regarded as a vehicle in this document.
    </t>

    <t>
    Vehicular document.</dd>
        <dt>Vehicular Ad Hoc Network (VANET): A (VANET):</dt>
	<dd>This is a network that consists of vehicles interconnected by
	wireless communication.  Two vehicles in a VANET can communicate with
	each other using other vehicles as relays even where they are out of
	one-hop wireless communication range.
    </t>

    <t>
    Vehicular Cloud: A range.</dd>
        <dt>Vehicular Cloud:</dt>
	<dd>This is a cloud infrastructure for vehicular
	networks, having compute nodes, storage nodes, and network forwarding
	elements (e.g., switch and router).
    </t>

    <t>
    V2D: "Vehicle router).</dd>
        <dt>Vehicle to Device". It Device (V2D):</dt>
	<dd>This is the wireless communication between a vehicle and a device
	(e.g., smartphone and IoT device).
    </t>

    <t>
    V2P: "Vehicle (Internet of Things) device).</dd>
        <dt>Vehicle to Pedestrian". It Pedestrian (V2P):</dt>
	<dd>This is the wireless communication between a vehicle and a
	pedestrian's device (e.g., smartphone and IoT device).
    </t>

    <t>
    V2I2V: "Vehicle device).</dd>
        <dt>Vehicle to Infrastructure to Vehicle". It Vehicle (V2I2V):</dt>
	<dd>This is the wireless communication between a vehicle and another
	vehicle via an infrastructure node (e.g., IP-RSU).
    </t>

    <t>
    V2I2X: "Vehicle IP-RSU).</dd>
        <dt>Vehicle to Infrastructure to Everything". It Everything (V2I2X):</dt>
	<dd>This is the wireless communication between a vehicle and another
	entity (e.g., vehicle, smartphone, and IoT device) via an
	infrastructure node (e.g., IP-RSU).
    </t>

    <t>
    V2X: "Vehicle IP-RSU).</dd>
        <dt>Vehicle to Everything". It Everything (V2X):</dt>
	<dd>This is the wireless communication between a vehicle and any entity
	(e.g., vehicle, infrastructure node, smartphone, and IoT device),
	including V2V, V2I, V2D, and V2D.
    </t>

    <t>
    VMM: "Vehicular V2P.</dd>
        <dt>Vehicular Mobility Management". It Management (VMM):</dt>
	<dd>This is an IPv6-based mobility management for vehicular networks.
    </t>

    <t>
    VND: "Vehicular
	networks.</dd>
        <dt>Vehicular Neighbor Discovery". It Discovery (VND):</dt>
	<dd>This is an IPv6 ND (Neighbor Discovery) extension for vehicular networks.
    </t>

    <t>
    VSP: "Vehicular
	networks.</dd>
        <dt>Vehicular Security and Privacy". It Privacy (VSP):</dt>
	<dd>This is an IPv6-based security and privacy term for vehicular networks.
    </t>

    <t>
    WAVE: "Wireless
	networks.</dd>
        <dt>Wireless Access in Vehicular Environments" Environments (WAVE):</dt>
	<dd>See <xref target="WAVE-1609.0" />.
    </t>

    </list>
    </t> format="default"/>.</dd>
      </dl>
    </section>
    <!--  end section "Terminology"  -->

<section anchor="section:Use-Cases" title="Use Cases"> anchor="section_Use-Cases" numbered="true" toc="default">
      <name>Use Cases</name>
      <t>
    This section explains use cases of V2V, V2I, and V2X networking.
    The use cases of the V2X networking exclude the ones of the V2V
    and V2I networking, networking but include Vehicle-to-Pedestrian (V2P) and
    Vehicle-to-Device (V2D).
      </t>
      <t>
    IP is widely used among popular end-user devices (e.g.,
    smartphone and tablet) in the Internet. Applications
    (e.g., navigator application) for those devices can be extended
    such that the V2V use cases in this section can work with IPv6
    as a network layer protocol and IEEE 802.11-OCB as a link layer link-layer
    protocol.  In addition, IPv6 security needs to be extended to
    support those V2V use cases in a safe, secure, privacy-preserving
    way.
      </t>
      <t>
    The use cases presented in this section serve as the description and
    motivation for the need to augment IPv6 and its protocols to facilitate
    "Vehicular IPv6". <xref target="section:Problem-Statement" /> target="section_Problem-Statement" format="default"/>
    summarizes the overall problem statement and IPv6 requirements.
    Note that the adjective "Vehicular" in this document is used to
    represent extensions of existing protocols protocols, such as IPv6 Neighbor
    Discovery, IPv6 Mobility Management (e.g., PMIPv6
    <xref target="RFC5213" /> format="default"/> and DMM <xref target="RFC7429" />), format="default"/>), and
    IPv6 Security and Privacy Mechanisms rather than new
    "vehicular-specific" functions.
      </t>
      <section anchor="subsection:V2V-Use-Cases" title="V2V"> anchor="subsection_V2V-Use-Cases" numbered="true" toc="default">
        <name>V2V</name>
        <t>
    The use cases of V2V networking discussed in this section include
    <list style="symbols">
        <t>Context-aware include:
        </t>
        <ul spacing="normal">
          <li>Context-aware navigation for safe driving safely and collision avoidance;</t>
		<t>Collision avoiding collisions</li>
          <li>Collision avoidance service of end systems of Urban Air Mobility (UAM);</t>
        <t>Cooperative
          (UAM)</li>
          <li>Cooperative adaptive cruise control in on a roadway;</t>
        <t>Platooning in roadway</li>
          <li>Platooning on a highway;</t>
        <t>Cooperative highway</li>
          <li>Cooperative environment sensing.</t>
    </list> sensing</li>
        </ul>
        <t>
    The above use cases are examples for using V2V networking, which can
    be extended to other terrestrial vehicles, river/sea ships,
    railed vehicles, or UAM end systems.
        </t>
        <t>
    A Context-Aware Safety Driving (CASD) navigator <xref target="CASD" /> format="default"/>
    can help drivers to drive safely as a context-aware navigation service
    <xref target="CNP" format="default"/> by alerting them to
    dangerous obstacles and situations. That is, a CASD navigator displays
    obstacles or neighboring vehicles relevant to possible collisions in
    real-time
    real time through V2V networking. CASD provides vehicles with a
    class-based automatic safety action plan, which plan that considers three
    situations, namely, the Line-of-Sight unsafe, Non-Line-of-Sight
    unsafe, and safe situations. This action plan can be put into action
    among multiple vehicles using V2V networking.
        </t>

	<t>
    A

        <t>A service for collision avoidance service of in-air UAM end systems in air can be envisioned
    as a is one
        possible use case in air vehicular environments <xref
        target="I-D.templin-ipwave-uam-its" />. format="default"/>. This use case
        is similar to the that of a context-aware navigator for
        terrestrial vehicles.  Through V2V coordination, those UAM end systems
        (e.g., drones) can avoid a dangerous situation (e.g., collision) in
        three-dimensional space rather than two-dimensional space for
        terrestrial vehicles.  Also, a UAM end systems system (e.g., flying car)
    with car), when
        only a few hundred meters off the ground ground, can communicate with terrestrial
        vehicles with wireless communication technologies (e.g., DSRC, LTE,
        and C-V2X).  Thus, V2V means any vehicle to any vehicle, whether the
        vehicles are
	ground-level ground level or not.
        </t>
        <t>
    Cooperative Adaptive Cruise Control (CACC)
    <xref target="CA-Cruise-Control" /> format="default"/> helps individual vehicles to adapt their
    speed autonomously through V2V communication among vehicles according
    to the mobility of their predecessor and successor vehicles in on an
    urban roadway or a highway. Thus, CACC can help adjacent vehicles to
    efficiently adjust their speed in an interactive way through V2V
    networking in order to avoid a collision.
        </t>

        <t>
    Platooning <xref target="Truck-Platooning" /> format="default"/> allows a series (or group) of
    vehicles (e.g., trucks) to follow each other very closely.
    Trucks
    Vehicles can use V2V communication in addition to
    forward sensors in order to maintain constant clearance between two
    consecutive vehicles at very short gaps (from 3 meters to 10 meters).
    Platooning can maximize the throughput of vehicular traffic in on
    a highway and reduce the gas consumption because the leading lead vehicle
    can help the following vehicles to experience less air resistance.
        </t>
        <t>
    Cooperative-environment-sensing use cases suggest that vehicles can
    share environmental information (e.g., air pollution, hazards/obstacles, hazards, obstacles,
    slippery areas by snow or rain, road accidents, traffic congestion,
    and driving behaviors of neighboring vehicles) from various
    vehicle-mounted sensors, such as radars, LiDARs, LiDAR systems, and cameras, with other
    vehicles and pedestrians.
    <xref target="Automotive-Sensing"/> target="Automotive-Sensing" format="default"/> introduces millimeter-wave
    vehicular communication for massive automotive sensing.
    A lot of data can be generated by those sensors, and
    these data typically need to be routed to different destinations.
    In addition, from the perspective of driverless vehicles, it is
    expected that driverless vehicles can be mixed with driver-operated
    vehicles. Through cooperative environment sensing, driver-operated
    vehicles can use environmental information sensed by driverless vehicles
    for better interaction with the other vehicles and environment.
    Vehicles can also share their intended maneuvering information (e.g.,
    lane change, speed change, ramp in-and-out, cut-in, and abrupt braking)
    with neighboring vehicles.
	Thus, this information sharing can help the vehicles behave as more
    efficient traffic flows and minimize unnecessary acceleration and
    deceleration to achieve the best ride comfort.
        </t>
        <t>
    To support applications of these V2V use cases, the required functions of
    IPv6 include (a) IPv6-based packet exchange in both control and data planes, planes
    and (b) secure, safe communication between two vehicles.  For the support of
    V2V under multiple radio technologies (e.g., DSRC and 5G V2X), refer to
    <xref target="appendix:Support-of-Multiple-Radio-Technologies-for-V2V"/>. target="appendix_Support-of-Multiple-Radio-Technologies-for-V2V"
    format="default"/>.
        </t>
      </section>
      <!--  end subsection "V2V Use Cases"  -->

    <section anchor="subsection:V2I-Use-Cases" title="V2I"> anchor="subsection_V2I-Use-Cases" numbered="true" toc="default">
        <name>V2I</name>
        <t>
        The use cases of V2I networking discussed in this section include
        <list style="symbols">
            <t>Navigation service;</t>
            <t>Energy-efficient include:
        </t>
        <ul spacing="normal">
          <li>Navigation service</li>
          <li>Energy-efficient speed recommendation service;</t>
            <t>Accident service</li>
          <li>Accident notification service;</t>
            <t>Electric vehicle service</li>
          <li>Electric Vehicle (EV) charging service;</t>
            <t>UAM service</li>
          <li>UAM navigation service with efficient battery charging.</t>
        </list>
    </t> charging</li>
        </ul>
        <t>
    A navigation service, for service (for example, the Self-Adaptive Interactive
    Navigation Tool (SAINT) <xref target="SAINT" />, using format="default"/>) that uses
    V2I networking interacts with a TCC for the large-scale/long-range road
    traffic optimization and can guide individual vehicles along appropriate
    navigation paths in real time.  The enhanced version of SAINT <xref
    target="SAINTplus" /> format="default"/> can give fast moving fast-moving paths to
    emergency vehicles (e.g., ambulance and fire engine) to let them reach an
    accident spot while redirecting other vehicles near the accident spot into
    efficient detour paths.
        </t>
        <t>
    Either a TCC or an ECD can recommend an energy-efficient speed to a vehicle
    that depends on its traffic environment and traffic signal scheduling
    <xref target="SignalGuru"/>. target="SignalGuru" format="default"/>. For example, when a vehicle approaches
    an intersection area and a red traffic light for the vehicle becomes
    turned on, it needs to reduce its speed to save fuel consumption. In
    this case, either a TCC or an ECD, which has the up-to-date
    trajectory of the vehicle and the traffic light schedule, can notify
    the vehicle of an appropriate speed for fuel efficiency.
    <xref target="Fuel-Efficient"/> studies target="Fuel-Efficient" format="default"/> covers fuel-efficient route
    and speed plans for platooned trucks.
        </t>

        <t>
    The emergency communication between accident vehicles in an accident (or emergency emergency-response
    vehicles) and a TCC can be performed via either IP-RSU, IP-RSUs or 4G-LTE or
    5G networks.
    The First Responder Network Authority (FirstNet)
    <xref target="FirstNet" /> format="default"/> is provided by the US government to
    establish, operate, and maintain an interoperable public safety
    broadband network for safety and security network services, e.g.,
    emergency calls. The construction of the nationwide FirstNet network
    requires each state in the US to have a Radio Access Network (RAN)
    that will connect to the FirstNet's network core.
    The current RAN is mainly constructed using 4G-LTE for the communication
    between a vehicle and an infrastructure node (i.e., V2I)
    <xref target="FirstNet-Report"/>, target="FirstNet-Report" format="default"/>, but it is expected that DSRC-based vehicular
    networks <xref target="DSRC"/> target="DSRC" format="default"/> will be available for V2I and V2V in the near future.
    An equivalent project in Europe is called Public Safety Communications
    Europe (PSCE) <xref target="PSCE"/>, target="PSCE" format="default"/>, which is developing a network for
    emergency communications.
        </t>
        <t>
    An EV charging service with V2I can facilitate the efficient battery
    charging of EVs. In the case where an EV charging station is connected to
    an IP-RSU, an EV can be guided toward the deck of the EV charging station
    or be notified that the charging station is out of service
    through a battery charging server connected to the IP-RSU. In addition to
    this EV charging service, other value-added services (e.g.,
    firmware/software update over-the-air and media streaming)
    can be provided to an EV
    while it is charging its battery at the EV charging station.
    For a UAM navigation service, an efficient battery charging plan can
    improve the battery charging schedule of UAM end systems (e.g., drone) drones)
    for long-distance flying <xref target="CBDN"/>. target="CBDN" format="default"/>.
    For this battery charging schedule, a UAM end system can communicate with
    a cloud server via an infrastructure node (e.g., IP-RSU).
    This cloud server can coordinate the battery charging
    schedules of multiple UAM end systems for their efficient navigation path,
    considering flight time from their current position to a battery charging
    station, waiting time in a waiting queue at the station, and battery
    charging time at the station.
        </t>
        <t>
    In some scenarios scenarios, such as vehicles moving in on highways or staying in parking
    lots, a V2V2I network is necessary for vehicles to access the Internet
    since some vehicles may not be covered by an IP-RSU. For those vehicles,
    a few relay vehicles can help to build the Internet access. For the
    nested NEMO described in
    <xref target="RFC4888" />, format="default"/>, hosts inside a vehicle shown in
    <xref target="fig:v2v-internetworking"/> target="fig_v2v-internetworking" format="default"/>
    for the case of V2V2I may have the same issue in the nested NEMO scenario.
        </t>
        <t>
    To better support these use cases, the existing IPv6 protocol must be
    augmented either through protocol changes or by including a new adaptation
    layer in the architecture that efficiently maps IPv6 to a diversity of
    link layer
    link-layer technologies.
    Augmentation is necessary to support wireless multihop V2I communications
    in
    on a highway where RSUs are sparsely deployed, deployed so that a vehicle can reach the
    wireless coverage of an IP-RSU through the multihop data forwarding of
    intermediate vehicles as packet forwarders.  Thus, IPv6 needs to be extended for multihop V2I
    communications.
        </t>
        <t>
    To support applications of these V2I use cases, the required functions
    of IPv6 include IPv6 communication enablement with neighborhood discovery
    and IPv6 address management, management; reachability with adapted network models and
    routing methods, methods; transport-layer session continuity, continuity; and secure, safe
    communication between a vehicle and an infrastructure node (e.g., IP-RSU)
    in the vehicular network.
        </t>
      </section>
      <!--  end subsection "V2I Use Cases"  -->

    <section anchor="subsection:V2X-Use-Cases" title="V2X"> anchor="subsection_V2X-Use-Cases" numbered="true" toc="default">
        <name>V2X</name>
        <t>
    The use case of V2X networking discussed in this section is
    for a protection service for a vulnerable road user (VRU) (e.g., (VRU), e.g.,
    a pedestrian and cyclist)
    protection service. or cyclist.
    Note that the application area of this use case is currently limited
    to a specific environment, such as construction sites, plants, and
    factories, since not every VRU (e.g., children) in a public area
    (e.g., streets)
    is equipped with a smart device (e.g., not every child on a road
    has a smartphone, smart watch, and or tablet).
        </t>
        <t>
    A VRU protection service, such as the Safety-Aware Navigation Application (SANA)
    <xref target="SANA" />, format="default"/>, using V2I2P networking can
    reduce the collision of a vehicle and a pedestrian carrying a smartphone
    equipped with a network device for wireless communication (e.g., Wi-Fi,
    DSRC, 4G/5G V2X, and BLE) Bluetooth Low Energy (BLE)) with an IP-RSU.
    Vehicles and pedestrians can also communicate with each other via an IP-RSU.
    An edge computing device ECD behind the IP-RSU can collect the mobility information from vehicles and
    pedestrians, and then compute wireless communication scheduling for the sake of
    them. This scheduling can save the battery of each pedestrian's smartphone
    by allowing it to work in sleeping mode before the communication with
    vehicles, considering their mobility.  The location information of a VRU
    from a smart device (e.g., smartphone) is multicasted only to the nearby
    vehicles.  The true identifiers of a VRU's smart device shall be
    protected, and only the type of the VRU, such as pedestrian, cyclist, and or
    scooter, is disclosed to the nearby vehicles.
    </t> vehicles.</t>
        <t>
    For Vehicle-to-Pedestrian (V2P), a vehicle can directly communicate
    with a pedestrian's smartphone by V2X without IP-RSU relaying.
    Light-weight mobile nodes nodes, such as bicycles bicycles, may also communicate
    directly with a vehicle for collision avoidance using V2V. Note that
    it is true that either a pedestrian or a cyclist may have a higher risk of
    being hit by a vehicle if they are not with a smartphone in the current
    setting. For this
    case, other human sensing human-sensing technologies (e.g., moving object moving-object detection
    in images and wireless signal-based human movement detection
    <xref target="LIFS" /><xref format="default"/> <xref target="DFC" />) format="default"/>) can be
    used to provide the motion information of them to vehicles. A vehicle
    by V2V2I networking can obtain the a VRU's motion information of a VRU
    via an IP-RSU that either employs or connects to a human
    sensing human-sensing technology.
        </t>
        <t>
    The existing IPv6 protocol must be augmented through protocol changes
    in order to support wireless multihop V2X or V2I2X communications in an
    urban road network where RSUs are deployed at intersections, intersections so that a vehicle
    (or a pedestrian's smartphone) can reach the wireless coverage of an IP-RSU
    through the multihop data forwarding of intermediate vehicles (or
    pedestrians' smartphones) as packet forwarders.  Thus, IPv6 needs to be
    extended for multihop V2X or V2I2X communications.
        </t>
        <t>
    To support applications of these V2X use cases, the required functions
    of IPv6 include IPv6-based packet exchange, exchange; transport-layer session
    continuity, and
    continuity; secure, safe communication between a vehicle and a
    pedestrian either directly or indirectly via an IP-RSU, IP-RSU; and the
    protection of identifiers of either a vehicle or smart device (such as
    MAC the
    Media Access Control (MAC) address and IPv6 address), which is discussed in detail in
    <xref target="section:Other-Threats" />. target="section_Other-Threats" format="default"/>.
        </t>
      </section>
      <!--  end subsection "V2X Use Cases"  -->

</section>
    <!--  end section "Use Cases"  -->

<section anchor="section:Vehicular-Networks" title="Vehicular Networks"> anchor="section_Vehicular-Networks" numbered="true" toc="default">
      <name>Vehicular Networks</name>
      <t>
    This section describes the context for vehicular networks
    supporting V2V, V2I, and V2X communications.
    It communications and
    describes an internal network within a vehicle or an edge network
    (called EN). It Edge Network
    (EN). Additionally, this section explains not only the internetworking between the
    internal networks of a vehicle and an EN via wireless links, links but also
    the internetworking between the internal networks of two vehicles
    via wireless links.
      </t>
      <figure anchor="fig:vehicular-network-architecture"
        title="An anchor="fig_vehicular-network-architecture">
        <name>An Example Vehicular Network Architecture for V2I and V2V">
        <artwork><![CDATA[ V2V</name>
        <artwork name="" type="" align="left" alt=""><![CDATA[
                     Traffic Control Center in Vehicular Cloud
                    *******************************************
+-------------+    *                                           *
|Correspondent|   *             +-----------------+             *
|    Node     |<->*             | Mobility Anchor |             *
+-------------+   *             +-----------------+             *
                  *                      ^                      *
                  *                      |                      *
                   *                     v                     *
                    *******************************************
                    ^                   ^                     ^
                    |                   |                     |
                    |                   |                     |
                    v                   v                     v
              +---------+           +---------+           +---------+
              | IP-RSU1 |<--------->| IP-RSU2 |<--------->| IP-RSU3 |
              +---------+           +---------+           +---------+
                  ^                     ^                    ^
                  :                     :                    :
           +-----------------+ +-----------------+   +-----------------+
           |      : V2I      | |        : V2I    |   |       : V2I     |
           |      v          | |        v        |   |       v         |
+--------+ |   +--------+    | |   +--------+    |   |   +--------+    |
|Vehicle1|===> |Vehicle2|===>| |   |Vehicle3|===>|   |   |Vehicle4|===>|
+--------+<...>+--------+<........>+--------+    |   |   +--------+    |
           V2V     ^         V2V        ^        |   |        ^        |
           |       : V2V     | |        : V2V    |   |        : V2V    |
           |       v         | |        v        |   |        v        |
           |  +--------+     | |   +--------+    |   |    +--------+   |
           |  |Vehicle5|===> | |   |Vehicle6|===>|   |    |Vehicle7|==>|
           |  +--------+     | |   +--------+    |   |    +--------+   |
           +-----------------+ +-----------------+   +-----------------+
                 Subnet1              Subnet2              Subnet3
                (Prefix1)            (Prefix2)            (Prefix3)

        <----> Wired Link   <....> Wireless Link   ===> Moving Direction
]]></artwork>
      </figure>
      <section anchor="subsection:GP-Vehicular-Network-Architecture"
	        title="Vehicular anchor="subsection_GP-Vehicular-Network-Architecture" numbered="true" toc="default">
        <name>Vehicular Network Architecture"> Architecture</name>
        <t>
    <xref target="fig:vehicular-network-architecture" /> target="fig_vehicular-network-architecture" format="default"/> shows an
    example vehicular network architecture for V2I and V2V in
    a road network.
    The vehicular network architecture contains vehicles
    (including IP-OBU), IP-RSUs, Mobility Anchor, Traffic Control
    Center, and Vehicular Cloud as components.
    These components are not mandatory, and they can be deployed
    into vehicular networks in various ways. Some of them (e.g.,
    Mobility Anchor, Traffic Control Center, and Vehicular Cloud) may
    not be needed for the vehicular networks according to target use
    cases in <xref target="section:Use-Cases" />. target="section_Use-Cases" format="default"/>.
        </t>
        <t>
    Existing network architectures, such as the network architectures of
    PMIPv6 <xref target="RFC5213" />, format="default"/>, RPL (IPv6 Routing
    Protocol for Low-Power and Lossy Networks) <xref target="RFC6550" />,
    format="default"/>, Automatic Extended Route Optimization <xref
    target="I-D.templin-intarea-aero" format="default"/>, and AERO/OMNI Overlay
    Multilink Network Interface <xref target="I-D.templin-6man-aero"/><xref target="I-D.templin-6man-omni"/>, target="I-D.templin-intarea-omni"
    format="default"/>, can be extended to a vehicular network architecture
    for multihop V2V, V2I, and V2X, as shown in <xref target="fig:vehicular-network-architecture" />.
    target="fig_vehicular-network-architecture" format="default"/>.  Refer to
    <xref target="appendix:Support-of-Multihop-V2X" /> target="appendix_Support-of-Multihop-V2X" format="default"/> for the
    detailed discussion on multihop V2X networking by RPL and OMNI.  Also,
    refer to <xref target="appendix:Support-of-Multiple-Radio-Technologies-for-V2V" />
    target="appendix_Support-of-Multiple-Radio-Technologies-for-V2V"
    format="default"/> for the description of how OMNI is designed to support
    the use of multiple radio technologies in V2X.  Note that though AERO/OMNI
    is not actually deployed in the industry, this AERO/OMNI is mentioned as a
    possible approach for vehicular networks in this document.
        </t>
        <t>
    As shown in <xref target="fig:vehicular-network-architecture" />, target="fig_vehicular-network-architecture" format="default"/>, IP-RSUs as
    routers and vehicles with IP-OBU
    have wireless media interfaces for VANET.
    The three IP-RSUs (IP-RSU1, IP-RSU2, and IP-RSU3) are deployed in the road
    network and are connected with each other through the wired networks
    (e.g., Ethernet).
    A Traffic Control Center (TCC) is connected to the Vehicular Cloud for
    the management of IP-RSUs and vehicles in the road network.
    A Mobility Anchor (MA) may be located in the TCC as a mobility management
    controller.
    Vehicle2, Vehicle3, and Vehicle4 are wirelessly connected to IP-RSU1,
    IP-RSU2, and IP-RSU3, respectively.
    The three wireless networks of IP-RSU1, IP-RSU2, and IP-RSU3 can belong to three
    different subnets (i.e., Subnet1, Subnet2, and Subnet3), respectively.
    Those three subnets use three different prefixes (i.e., Prefix1, Prefix2,
    and Prefix3).
        </t>
        <t>

    </t>

	<t>
    Multiple vehicles under the coverage of an IP-RSU share a prefix just as
    mobile nodes share a prefix of a Wi-Fi access point in a wireless
    LAN. This is a natural characteristic in infrastructure-based wireless
    networks.

For example, in <xref target="fig:vehicular-network-architecture" />, target="fig_vehicular-network-architecture" format="default"/>,
    two vehicles (i.e., Vehicle2, Vehicle2 and Vehicle5) can use Prefix 1 Prefix1 to configure
    their IPv6 global addresses for V2I communication.
    Alternatively, mobile nodes two vehicles can employ a "Bring-Your-Own-Addresses "Bring Your Own Addresses (BYOA)"
    (or "Bring-Your-Own-Prefix "Bring Your Own Prefix (BYOP)") technique using their own IPv6 Unique Local Addresses (ULAs)
    <xref target="RFC4193" /> format="default"/> over the wireless network.
        </t>
        <t>
    In wireless subnets in vehicular networks (e.g., Subnet1 and Subnet2
    in <xref target="fig:vehicular-network-architecture" />), target="fig_vehicular-network-architecture" format="default"/>), vehicles can
    construct a connected VANET (with an arbitrary graph topology) and can
    communicate with each other via V2V communication.
    Vehicle1 can communicate with Vehicle2 via V2V communication, and
    Vehicle2 can communicate with Vehicle3 via V2V communication because
    they are within the wireless communication range of each other.
    On the other hand, Vehicle3 can communicate with
    Vehicle4 via the vehicular infrastructure (i.e., IP-RSU2 and IP-RSU3)
    by employing V2I (i.e., V2I2V) communication because they are not
    within the wireless communication range of each other.
        </t>
        <t>
    As a basic definition for IPv6 packets transported over IEEE 802.11-OCB,
    <xref target="RFC8691"/> target="RFC8691" format="default"/> specifies several details, including
    Maximum Transmission Unit (MTU), frame format, link-local address,
    address mapping for unicast and multicast, stateless autoconfiguration, and
    subnet structure.
        </t>
        <t>
    An IPv6 mobility solution is needed for the guarantee of communication
    continuity in vehicular networks so that a vehicle's TCP session can be
    continued,
    continued or that UDP packets can be delivered to a vehicle as a
    destination without loss while it moves from an IP-RSU's wireless coverage
    to another IP-RSU's wireless coverage.  In <xref target="fig:vehicular-network-architecture" />,
    target="fig_vehicular-network-architecture" format="default"/>, assuming
    that Vehicle2 has a TCP session (or a UDP session) with a correspondent
    node in the vehicular cloud, Vehicular Cloud, Vehicle2 can move from IP-RSU1's wireless
    coverage to IP-RSU2's wireless coverage. In this case, a handover for
    Vehicle2 needs to be performed by either a host-based mobility management
    scheme (e.g., MIPv6 <xref target="RFC6275" />) format="default"/>) or a
    network-based mobility management scheme (e.g., PMIPv6 <xref
    target="RFC5213" />, format="default"/>, NEMO <xref target="RFC3963"/> target="RFC3963"
    format="default"/> <xref target="RFC4885"/> target="RFC4885" format="default"/> <xref target="RFC4888"/>,
    target="RFC4888" format="default"/>, and AERO <xref target="I-D.templin-6man-aero" />).
    target="I-D.templin-intarea-aero" format="default"/>).  This document
    describes issues in mobility management for vehicular networks in <xref target="subsection:Mobility-Management"/>.
    target="subsection_Mobility-Management" format="default"/>.  For improving
    TCP session continuity or successful UDP packet delivery, the
    multi-path Multipath
    TCP (MPTCP) <xref target="RFC8684"/> target="RFC8684" format="default"/> or QUIC protocol
    <xref target="RFC9000"/> target="RFC9000" format="default"/> can also be used. IP-OBUs,
    however, may still experience more session time-out and re-establishment
    procedures due to lossy connections among vehicles caused by the high
    mobility dynamics of them.
        </t>
      </section>
      <section anchor="subsection:GP-V2I-based-Internetworking"
        title="V2I-based Internetworking"> anchor="subsection_GP-V2I-based-Internetworking" numbered="true" toc="default">
        <name>V2I-Based Internetworking</name>
        <t>
    This section discusses the internetworking between a vehicle's
    internal network (i.e., mobile network) and an EN's internal
    network (i.e., fixed network) via V2I communication.
    The internal network of a vehicle is nowadays constructed with
    Ethernet by many automotive vendors <xref target="In-Car-Network" />. format="default"/>.
    Note that an EN can accommodate multiple routers (or switches)
    and servers (e.g., ECDs, navigation server, and DNS server)
    in its internal network.
        </t>
        <t>
    A vehicle's internal network often uses Ethernet to interconnect
    Electronic Control Units (ECUs) in the vehicle.  The internal network can
    support Wi-Fi and Bluetooth to accommodate a driver's and passenger's
    mobile devices (e.g., smartphone or tablet).  The network topology and
    subnetting depend on each vendor's network configuration for a vehicle and
    an EN.  It is reasonable to consider interactions between the internal
    network of a vehicle and that of another vehicle or an EN.  Note that it
    is dangerous if the internal network of a vehicle is controlled by a
    malicious party. These dangers can include unauthorized driving control
    input and unauthorized driving information disclosure to an unauthorized
    third party. A malicious party can be a group of hackers, a criminal
    group, and a competitor for industrial espionage or sabotage.  To minimize
    this kind of risk, an augmented identification and verification protocol,
    which has an extra means, shall be implemented based on a basic identity
    verification process.

   These extra means can be certificate-based, biometric, credit-based,
    and one-time passcode (OTP) could include approaches based on certificates,
   biometrics, credit, or One-Time Passwords (OTPs)
   in addition to a used approach Host Identity Protocol certificates <xref target="RFC8002" />. format="default"/>.
    The parties of the verification protocol can be from a built-in
    verification protocol in the current vehicle, which is pre-installed by a
    vehicle vendor.  The parties can also be from any verification authorities
    that have the database of authenticated users.  The security properties
    provided by a verification protocol can be identity-related information,
    such as the genuineness of an identity, the authenticity of an identity,
    and the ownership of an identity <xref target="RFC7427" />.
    format="default"/>.
        </t>
        <t>
    The augmented identification and verification protocol with extra means can
    support security properties such as the identification and verification of
    a vehicle, driver, and passenger.

   First, a credit-based means method is to let when a vehicle classify classifies the received messages sent by it received
   from another host to different
    severity into various levels for based on their potential
   effects on driving safety in order to calculate the credit for the of that sender.
   Based on an accumulated credit, a correspondent node can verify
    the other party to see whether it is genuine or not.  Second, a
     certificate-based means method includes a user certificate (e.g., X.509
     certificate <xref target="RFC5280" />) format="default"/>) to authenticate a vehicle or its
     driver.  Third, a biometric means method includes a fingerprint, face face, or voice to
     authenticate a driver or passenger.  Lastly, one-time passcode (called
     OTP) means an OTP-based method lets another already-authenticated device (e.g., smartphone and
     tablet) of a driver or passenger be used to authenticate a driver or
     passenger.
        </t>
        <figure anchor="fig:v2i-internetworking"
        title="Internetworking anchor="fig_v2i-internetworking">
          <name>Internetworking between Vehicle and Edge Network">
        <artwork><![CDATA[ Network</name>
          <artwork name="" type="" align="left" alt=""><![CDATA[
                                                 +-----------------+
                        (*)<........>(*)  +----->| Vehicular Cloud |
     (2001:db8:1:1::/64) |            |   |      +-----------------+
+------------------------------+  +---------------------------------+
|                        v     |  |   v   v                         |
| +-------+          +-------+ |  | +-------+          +-------+    |
| | Host1 |          |IP-OBU1| |  | |IP-RSU1|          | Host3 |    |
| +-------+          +-------+ |  | +-------+          +-------+    |
|     ^                  ^     |  |     ^                  ^        |
|     |                  |     |  |     |                  |        |
|     v                  v     |  |     v                  v        |
| ---------------------------- |  | ------------------------------- |
| 2001:db8:10:1::/64 ^         |  |     ^ 2001:db8:20:1::/64        |
|                    |         |  |     |                           |
|                    v         |  |     v                           |
| +-------+      +-------+     |  | +-------+ +-------+   +-------+ |
| | Host2 |      |Router1|     |  | |Router2| |Server1|...|ServerN| |
| +-------+      +-------+     |  | +-------+ +-------+   +-------+ |
|     ^              ^         |  |     ^         ^           ^     |
|     |              |         |  |     |         |           |     |
|     v              v         |  |     v         v           v     |
| ---------------------------- |  | ------------------------------- |
|      2001:db8:10:2::/64      |  |       2001:db8:20:2::/64        |
+------------------------------+  +---------------------------------+
   Vehicle1 (Mobile Network1)            EN1 (Fixed Network1)

   <----> Wired Link   <....> Wireless Link   (*) Antenna
]]></artwork>
        </figure>
        <t>
    As shown in <xref target="fig:v2i-internetworking" />, target="fig_v2i-internetworking" format="default"/>, as internal
    networks, a vehicle's mobile network and an EN's fixed network
    are self-contained networks having multiple subnets and having
    an edge router (e.g., IP-OBU and IP-RSU) for the communication with
    another vehicle or another EN.
    The internetworking between two internal networks via V2I communication
    requires the exchange of the network parameters and the network
    prefixes of the internal networks. For the efficiency, the network
    prefixes of the internal networks (as a mobile network) in a
    vehicle need to be delegated and configured automatically. Note
    that a mobile network's network prefix can be called a Mobile
    Network Prefix (MNP) <xref target="RFC3963" />. format="default"/>.
        </t>
        <t>
    <xref target="fig:v2i-internetworking" /> target="fig_v2i-internetworking" format="default"/> also shows the internetworking
    between the vehicle's mobile network and the EN's fixed network.
    There exists an internal network (Mobile Network1) inside Vehicle1.
    Vehicle1 has two hosts (Host1 and Host2), Host2) and two routers (IP-OBU1
    and Router1).  There exists another internal network (Fixed Network1)
    inside EN1.  EN1 has one host (Host3), two routers (IP-RSU1 and
    Router2), and the collection of servers (Server1 to ServerN) for
    various services in the road networks, such as the emergency
    notification and navigation.  Vehicle1's IP-OBU1 (as a mobile router)
    and EN1's IP-RSU1 (as a fixed router) use 2001:db8:1:1::/64 for an
    external link (e.g., DSRC) for V2I networking.
    Thus, a host (Host1) in Vehicle1 can communicate with a server
    (Server1) in EN1 for a vehicular service through Vehicle1's moving mobile
    network, a wireless link between IP-OBU1 and IP-RSU1, and EN1's fixed
    network.
        </t>
        <t>
   	For the IPv6 communication between an IP-OBU and an IP-RSU or between
    two neighboring IP-OBUs, they need to know the network parameters,
    which include MAC layer and IPv6 layer information.
    The MAC layer information includes wireless link layer link-layer parameters,
    transmission power level, and the MAC address of an external network
    interface for the internetworking with another IP-OBU or IP-RSU.
    The IPv6 layer information includes the IPv6 address and network
    prefix of an external network interface for the internetworking with
    another IP-OBU or IP-RSU.
        </t>
        <t>
    Through the mutual knowledge of the network parameters of
    internal networks, packets can be transmitted between the vehicle's moving mobile
    network and the EN's fixed network. Thus, V2I requires an efficient
    protocol for the mutual knowledge of network parameters. Note that
    from a security point of view, a perimeter-based policy enforcement
    <xref target="RFC9099" format="default"/>
    can be applied to protect parts of the internal network of a vehicle.
        </t>
        <t>
    As shown in <xref target="fig:v2i-internetworking" />, target="fig_v2i-internetworking" format="default"/>, the addresses
    used for IPv6 transmissions over the wireless link interfaces for
    IP-OBU and IP-RSU can be link-local IPv6 link-local addresses, ULAs, or global IPv6 global
    addresses. When IPv6 addresses are used, wireless interface
    configuration and control overhead for DAD Duplicate Address Detection (DAD) <xref target="RFC4862" /> format="default"/> and
    Multicast Listener Discovery (MLD) <xref target="RFC2710" /><xref format="default"/> <xref target="RFC3810" /> format="default"/>
    should be minimized to support V2I and V2X communications for vehicles
    moving fast along roadways.
        </t>
        <t>
    Let us consider the upload/download time of a ground vehicle when it passes
    through the wireless communication coverage of an IP-RSU.
    For a given typical setting where 1km 1 km is the maximum DSRC communication
    range <xref target="DSRC"/> target="DSRC" format="default"/> and 100km/h 100 km/h is the speed limit in highway on highways for
    ground vehicles, the dwelling time can be calculated to be 72 seconds
    by dividing the diameter
    of the 2km 2 km (i.e., two times of the DSRC communication range where an IP-RSU
    is located in the center of the circle of wireless communication) by
    the speed limit of 100km/h 100 km/h (i.e., about 28m/s). 28 m/s). For the 72 seconds, a
    vehicle passing through the coverage of an IP-RSU can upload and download
    data packets to/from the IP-RSU.
    For special cases cases, such as emergency vehicles moving above the speed limit,
    the dwelling time is relatively shorter than that of other vehicles.
    For cases of airborne vehicles, vehicles (i.e., aircraft), considering a higher
    flying speed and a higher altitude, the dwelling time can be much shorter.
        </t>
      </section>
      <!--  end section "V2I-based Internetworking"  -->

    <section anchor="subsubsubsection:GP-V2V-based-Internetworking"
        title="V2V-based Internetworking"> anchor="subsubsubsection_GP-V2V-based-Internetworking" numbered="true" toc="default">
        <name>V2V-Based Internetworking</name>
        <t>
    This section discusses the internetworking between the moving mobile
    networks of two neighboring vehicles via V2V communication.
        </t>
        <figure anchor="fig:v2v-internetworking"
    title="Internetworking anchor="fig_v2v-internetworking">
          <name>Internetworking between Two Vehicles">
        <artwork><![CDATA[ Vehicles</name>
          <artwork name="" type="" align="left" alt=""><![CDATA[
                        (*)<..........>(*)
     (2001:db8:1:1::/64) |              |
+------------------------------+  +------------------------------+
|                        v     |  |     v                        |
| +-------+          +-------+ |  | +-------+          +-------+ |
| | Host1 |          |IP-OBU1| |  | |IP-OBU2|          | Host3 | |
| +-------+          +-------+ |  | +-------+          +-------+ |
|     ^                  ^     |  |     ^                  ^     |
|     |                  |     |  |     |                  |     |
|     v                  v     |  |     v                  v     |
| ---------------------------- |  | ---------------------------- |
| 2001:db8:10:1::/64 ^         |  |         ^ 2001:db8:30:1::/64 |
|                    |         |  |         |                    |
|                    v         |  |         v                    |
| +-------+      +-------+     |  |     +-------+      +-------+ |
| | Host2 |      |Router1|     |  |     |Router2|      | Host4 | |
| +-------+      +-------+     |  |     +-------+      +-------+ |
|     ^              ^         |  |         ^              ^     |
|     |              |         |  |         |              |     |
|     v              v         |  |         v              v     |
| ---------------------------- |  | ---------------------------- |
|      2001:db8:10:2::/64      |  |       2001:db8:30:2::/64     |
+------------------------------+  +------------------------------+
   Vehicle1 (Mobile Network1)        Vehicle2 (Mobile Network2)

   <----> Wired Link   <....> Wireless Link   (*) Antenna
]]></artwork>
        </figure>
        <t>
    <xref target="fig:v2v-internetworking" /> target="fig_v2v-internetworking" format="default"/> shows the internetworking
    between the mobile networks of two neighboring vehicles.  There
    exists an internal network (Mobile Network1) inside Vehicle1.
    Vehicle1 has two hosts (Host1 and Host2), Host2) and two routers
    (IP-OBU1 and Router1).  There exists another internal network
    (Mobile Network2) inside Vehicle2.  Vehicle2 has two hosts
    (Host3 and Host4), Host4) and two routers (IP-OBU2 and Router2).
    Vehicle1's IP-OBU1 (as a mobile router) and Vehicle2's IP-OBU2
    (as a mobile router) use 2001:db8:1:1::/64 for an external link
    (e.g., DSRC) for V2V networking. Thus, a host (Host1) in Vehicle1
    can communicate with another host (Host3) in Vehicle2 for a vehicular
    service through Vehicle1's mobile network, a wireless link between
    IP-OBU1 and IP-OBU2, and Vehicle2's mobile network.
        </t>
        <t>
    As a V2V use case in <xref target="subsection:V2V-Use-Cases" />, target="subsection_V2V-Use-Cases" format="default"/>,
    <xref target="fig:multihop-v2v-internetworking" /> target="fig_multihop-v2v-internetworking" format="default"/> shows the a
    linear network topology of platooning vehicles for V2V communications
    where Vehicle3 is the leading lead vehicle with a driver, and Vehicle2 and
    Vehicle1 are the following vehicles without drivers.
    From a security point of view, before vehicles can be platooned,
    they shall be mutually authenticated to reduce possible security risks.
        </t>
        <figure anchor="fig:multihop-v2v-internetworking"
    title="Multihop anchor="fig_multihop-v2v-internetworking">
          <name>Multihop Internetworking between Two Vehicle Networks">
        <artwork><![CDATA[ Networks</name>
          <artwork name="" type="" align="left" alt=""><![CDATA[
     (*)<..................>(*)<..................>(*)
      |                      |                      |
+-----------+          +-----------+          +-----------+
|           |          |           |          |           |
| +-------+ |          | +-------+ |          | +-------+ |
| |IP-OBU1| |          | |IP-OBU2| |          | |IP-OBU3| |
| +-------+ |          | +-------+ |          | +-------+ |
|     ^     |          |     ^     |          |     ^     |
|     |     |=====>    |     |     |=====>    |     |     |=====>
|     v     |          |     v     |          |     v     |
| +-------+ |          | +-------+ |          | +-------+ |
| | Host1 | |          | | Host2 | |          | | Host3 | |
| +-------+ |          | +-------+ |          | +-------+ |
|           |          |           |          |           |
+-----------+          +-----------+          +-----------+
   Vehicle1               Vehicle2               Vehicle3

 <----> Wired Link   <....> Wireless Link   ===> Moving Direction
 (*) Antenna
]]></artwork>
        </figure>
        <t>
    As shown in <xref target="fig:multihop-v2v-internetworking" />, target="fig_multihop-v2v-internetworking" format="default"/>,
    multihop internetworking is feasible among the mobile networks of
    three vehicles in the same VANET. For example, Host1 in Vehicle1 can
    communicate with Host3 in Vehicle3 via IP-OBU1 in Vehicle1, IP-OBU2 in
    Vehicle2, and IP-OBU3 in Vehicle3 in the VANET, as shown in
    the figure.
        </t>
        <t>
    In this section, the link between two vehicles is assumed to be stable
    for single-hop wireless communication regardless of the sight relationship relationship,
    such as line of sight Line-of-Sight and non-line of sight, Non-Line-of-Sight, as shown in
    <xref target="fig:v2v-internetworking" />. target="fig_v2v-internetworking" format="default"/>.
    Even in <xref target="fig:multihop-v2v-internetworking" />, target="fig_multihop-v2v-internetworking" format="default"/>, the three
    vehicles are connected to each other with a linear topology, however,
    multihop V2V communication can accommodate any network topology (i.e.,
    an arbitrary graph) over VANET routing protocols.
        </t>
        <figure anchor="fig:multihop-v2i2v-internetworking"
    title="Multihop anchor="fig_multihop-v2i2v-internetworking">
          <name>Multihop Internetworking between Two Vehicle Networks via IP-RSU (V2I2V)">
        <artwork><![CDATA[ (V2I2V)</name>
          <artwork name="" type="" align="left" alt=""><![CDATA[
     (*)<..................>(*)<..................>(*)
      |                      |                      |
+-----------+          +-----------+          +-----------+
|           |          |           |          |           |
| +-------+ |          | +-------+ |          | +-------+ |
| |IP-OBU1| |          | |IP-RSU1| |          | |IP-OBU3| |
| +-------+ |          | +-------+ |          | +-------+ |
|     ^     |          |     ^     |          |     ^     |
|     |     |=====>    |     |     |          |     |     |=====>
|     v     |          |     v     |          |     v     |
| +-------+ |          | +-------+ |          | +-------+ |
| | Host1 | |          | | Host2 | |          | | Host3 | |
| +-------+ |          | +-------+ |          | +-------+ |
|           |          |           |          |           |
+-----------+          +-----------+          +-----------+
   Vehicle1                 EN1                  Vehicle3

 <----> Wired Link   <....> Wireless Link   ===> Moving Direction
 (*) Antenna
]]></artwork>
        </figure>
        <t>
    As shown in <xref target="fig:multihop-v2i2v-internetworking" />, target="fig_multihop-v2i2v-internetworking" format="default"/>,
    multihop internetworking between two vehicles is feasible via
    an infrastructure node (i.e., (e.g., IP-RSU) with wireless connectivity
    among the mobile networks of two vehicles and the fixed network of
    an edge network (denoted as EN1) in the same VANET. For example,
    Host1 in Vehicle1 can communicate with Host3 in Vehicle3 via
    IP-OBU1 in Vehicle1, IP-RSU1 in EN1, and IP-OBU3 in Vehicle3 in
    the VANET, as shown in the figure.
        </t>
        <t>
	For the reliability required in V2V networking, the ND optimization
	defined in MANET the Mobile Ad Hoc Network (MANET) <xref target="RFC6130" /> format="default"/>
          <xref target="RFC7466" /> format="default"/> improves the classical IPv6 ND in terms
	of tracking neighbor information with up to two hops and introducing
	several extensible Information Bases, which Bases. This improvement serves the MANET routing
	protocols
	protocols, such as the different versions of Optimized Link State
	Routing Protocol (OLSR) <xref target="RFC3626" /> format="default"/>
          <xref target="RFC7181" />, format="default"/>, Open Shortest Path First (OSPF) derivatives
    (e.g., <xref target="RFC5614" />), format="default"/>), and Dynamic Link Exchange Protocol (DLEP)
    <xref target="RFC8175" /> format="default"/> with its extensions <xref target="RFC8629" /> format="default"/>
          <xref target="RFC8757" />. format="default"/>.
    In short, the MANET ND mainly deals with
	maintaining extended network neighbors to enhance the link reliability.
    However, an ND protocol in
	vehicular networks shall consider more about the geographical mobility
	information of vehicles as an important resource for serving various
	purposes to improve the reliability, e.g., vehicle driving safety,
	intelligent transportation implementations, and advanced mobility
    services. For a more reliable V2V networking, some redundancy
    mechanisms should be provided in L3 in cases of the failure of L2.
    For different use cases, the optimal solution to improve V2V networking
    reliability may vary. For example, a group of vehicles in platooning vehicles may
    have stabler neighbors than freely moving vehicles, as described in
    <xref target="subsection:V2V-Use-Cases"/>. target="subsection_V2V-Use-Cases" format="default"/>.
        </t>
      </section>
      <!--  end subsubsubsection "V2V-based Internetworking"  -->

</section>
    <!--  end subsection "Vehicular Networks"  -->

<section anchor="section:Problem-Statement"
    title="Problem Statement"> anchor="section_Problem-Statement" numbered="true" toc="default">
      <name>Problem Statement</name>
      <t>
    In order to specify protocols using the architecture mentioned in
    <xref target="subsection:GP-Vehicular-Network-Architecture" />, target="subsection_GP-Vehicular-Network-Architecture" format="default"/>,
    IPv6 core protocols have to be adapted to overcome certain
    challenging aspects of vehicular networking.  Since the vehicles are
    likely to be moving at great speed, protocol exchanges need to be
    completed in a relatively short time compared to the lifetime of a
    link between a vehicle and an IP-RSU, IP-RSU or between two vehicles.
    In these cases, vehicles may not have enough time either to build
    link-layer connections with each other and may rely more on
    connections with infrastructure.
    In other cases, the relative speed between vehicles
    may be low when vehicles move toward the same direction or
    are platooned.
    For those cases, vehicles can have more time to build and maintain
    connections with each other.
      </t>
      <t>
    For safe driving, vehicles need to exchange application messages
    every 0.5 second seconds <xref target="NHTSA-ACAS-Report" /> format="default"/> to let drivers
    take an action to avoid a dangerous situation (e.g., vehicle collision),
    so the IPv6 control plane (e.g., ND procedure and DAD) needs
    to support this order of magnitude for application message exchanges.
    Also, considering the communication range of DSRC (up to 1km) 1 km) and
    100km/h
    100 km/h as the speed limit in highway on highways (some countries can have much
    higher speed limit limits or even no limit, e.g., Germany),
    the lifetime of a link between
    a vehicle and an IP-RSU is in the order of a minute (e.g., about
    72 seconds), and the lifetime of a link
    between two vehicles is about a half minute.
    Note that if two vehicles are moving in the opposite directions in
    a roadway, the relative speed of this case is two times the relative
    speed of a vehicle passing through an IP-RSU.

    This relative speed leads causes the half lifetime of the wireless link lifetime between the vehicle and the IP-RSU. IP-RSU to be halved.
    In reality, the DSRC communication range is around 500m, 500 m, so the link
    lifetime will be a half of the maximum time.
    The time constraint of a wireless link between two nodes (e.g., vehicle
    and IP-RSU) needs to be considered because it may affect the lifetime
    of a session involving the link.
    The lifetime of a session varies depending on the session's type type,
    such as a web surfing, a voice call over IP, a DNS query, and or
    context-aware navigation (in <xref target="subsection:V2V-Use-Cases" />). target="subsection_V2V-Use-Cases" format="default"/>).
    Regardless of a session's type, to guide all the IPv6 packets to
    their destination host(s), IP mobility should be supported for the
    session. In a V2V scenario (e.g., context-aware navigation), navigation
    <xref target="CNP" format="default"/>), the IPv6
    packets of a vehicle should be delivered to relevant vehicles efficiently
    (e.g., multicasting).
    With this observation, IPv6 protocol exchanges need to be done performed as
    short
    quickly as possible to support the message exchanges of various
    applications in vehicular networks.
      </t>
      <t>
    Therefore, the time constraint of a wireless link has a major impact on
    IPv6 Neighbor Discovery (ND). Mobility Management (MM) is also
    vulnerable to disconnections that occur before the completion of
    identity verification and tunnel management.  This is especially
    true given the unreliable nature of wireless communication.
    Meanwhile, the bandwidth of the wireless link determined by the
    lower layers (i.e., link and PHY and link layers) can affect the transmission
    time of control messages of the upper layers (e.g., IPv6) and the
    continuity of sessions in the higher layers (e.g., IPv6, TCP, and UDP).
    Hence, the bandwidth selection according to the Modulation and Coding Scheme
    (MCS) also affects the vehicular network connectivity. Note that usually
    the higher bandwidth gives the shorter communication range and the
    higher packet error rate at the receiving side, which may reduce the
    reliability of control message exchanges of the higher layers (e.g.,
    IPv6). This section presents key topics topics, such as neighbor discovery and
    mobility management for links and sessions in IPv6-based vehicular
    networks.
    Note that the detailed discussion on the transport-layer session
    mobility and usage of available bandwidth to fulfill the use cases
    is left as potential future work.
      </t>
      <section anchor="subsection:Neighbor-Discovery"
        title="Neighbor Discovery"> anchor="subsection_Neighbor-Discovery" numbered="true" toc="default">
        <name>Neighbor Discovery</name>
        <t>
    IPv6 ND <xref target="RFC4861" /><xref format="default"/> <xref target="RFC4862" /> format="default"/>
    is a core part of the IPv6 protocol suite. IPv6 ND is designed
    for link types including point-to-point, multicast-capable (e.g.,
    Ethernet)
    Ethernet), and Non-Broadcast Multiple Access (NBMA).
    It assumes the efficient and reliable support of multicast and
    unicast from the link layer for various network operations operations,
    such as MAC Address Resolution (AR), DAD, MLD MLD, and Neighbor
    Unreachability Detection (NUD). (NUD)
    <xref target="RFC4861" format="default"/> <xref target="RFC4862" format="default"/>
    <xref target="RFC2710" format="default"/> <xref target="RFC3810" format="default"/>.
        </t>
        <t>
    Vehicles move quickly within the communication coverage of any
    particular vehicle or IP-RSU.  Before the vehicles can exchange
    application messages with each other, they need IPv6 addresses
    to run IPv6 ND.
        </t>
        <t>
    The requirements for IPv6 ND for vehicular networks are efficient
    DAD and NUD operations. An efficient DAD is required to reduce
    the overhead of DAD packets during a vehicle's travel in a
    road network, which can guarantee the uniqueness of a vehicle's
    global IPv6 address. An efficient NUD is required to reduce the
    overhead of the NUD packets during a vehicle's travel in a road
    network, which can guarantee the accurate neighborhood information
    of a vehicle in terms of adjacent vehicles and RSUs. IP-RSUs.
        </t>
        <t>
    The legacy DAD assumes that a node with an IPv6 address can reach any
    other node with the scope of its address at the time it claims its address,
    and can hear any future claim for that address by another party within
    the scope of its address for the duration of the address ownership.
    However, the partitioning and merging of VANETs makes this assumption
    be
    not valid frequently in vehicular networks.
    The merging and partitioning and merging of VANETs frequently occurs in vehicular
    networks.
    This merging and partitioning and merging should be considered for the
    IPv6 ND ND, such as IPv6 Stateless Address Autoconfiguration (SLAAC)
    <xref target="RFC4862" />. format="default"/>.
    SLAAC is not compatible with merging the partitioning and partitioning, merging, and additional
    work is needed for ND to operate properly under those circumstances.
    Due to the merging of VANETs, two IPv6 addresses may conflict with
    each other though they were unique before the merging. An address
    lookup operation may be conducted by an MA or IP-RSU (as Registrar in
    RPL) to check the uniqueness of an IPv6 address that will be
    configured by a vehicle as DAD.
    Also, the partitioning of a VANET may make vehicles with the same
    prefix be physically unreachable. An address lookup operation may be
    conducted by an MA or IP-RSU (as Registrar in RPL) to check the
    existence of a vehicle under the network coverage of the MA or IP-RSU
    as NUD.
    Thus, SLAAC needs to prevent IPv6 address duplication due to the
    merging of VANETs, and IPv6 ND needs to detect unreachable neighboring
    vehicles due to the partitioning of a VANET.
    According to the merging partitioning and partitioning, merging, a destination vehicle
    (as an IPv6 host) needs to be distinguished as a host that is either an
    on-link host or a not-onlink host not on-link even though the source vehicle can use the
    same prefix as the destination vehicle <xref target="I-D.ietf-intarea-ippl" />. format="default"/>.
        </t>
        <t>
    To efficiently prevent IPv6 address duplication due (due to the VANET
    partitioning and merging merging) from happening in vehicular networks, the
    vehicular networks need to support a vehicular-network-wide DAD by
    defining a scope that is compatible with the legacy DAD. In this case,
    two vehicles can communicate with each other when there exists a
    communication path over VANET or a combination of VANETs and IP-RSUs,
    as shown in <xref target="fig:vehicular-network-architecture" />. target="fig_vehicular-network-architecture" format="default"/>.
    By using the vehicular-network-wide DAD, vehicles can assure that
    their IPv6 addresses are unique in the vehicular network whenever
    they are connected to the vehicular infrastructure or become
    disconnected from it in the form of VANET.
        </t>
        <t>
    For vehicular networks with high mobility and density, DAD
    needs to be performed efficiently with minimum overhead so that
    the vehicles can exchange driving safety messages (e.g.,
    collision avoidance and accident notification) with each other
    with a short interval as suggested by
    NHTSA (National
    the National Highway Traffic Safety Administration) Administration (NHTSA) of the U.S.
    <xref target="NHTSA-ACAS-Report" />. format="default"/>.
    Since the partitioning and merging of vehicular networks may
    require re-perform re-performing the DAD process repeatedly, the link scope
    of vehicles may be limited to a small area, which may delay
    the exchange of driving safety messages. Driving safety
    messages can include a vehicle's mobility information (i.e., (e.g.,
    position, speed, direction, and acceleration/deceleration)
    that is critical to other vehicles.  The exchange interval of
    this message is recommended to be less than 0.5 second, seconds, which is required
    for a driver to avoid an emergency situation, such as a rear-end crash.
        </t>
        <t>
    ND time-related parameters parameters, such as router lifetime and Neighbor
    Advertisement (NA) interval interval, need to be adjusted for vehicle speed
    and vehicle density.

    For example, the NA interval needs to be dynamically adjusted
    according to a vehicle's speed so that the vehicle can maintain
    its position relative to its neighboring vehicles in a stable way,
    considering the collision probability with the NA messages sent
    by other vehicles. The ND time-related parameters can be an operational
    setting or an optimization point particularly for vehicular networks.
    Note that the link-scope multicast messages in the ND protocol may cause
    the
    a performance issue in vehicular networks. <xref target="RFC9119" /> format="default"/>
    suggests several optimization approaches for the issue.
        </t>
        <t>
    For IPv6-based safety applications (e.g., context-aware navigation,
    adaptive cruise control, and platooning) in vehicular networks,
    the delay-bounded data delivery is critical. IPv6 ND needs to
    work to support those IPv6-based safety applications efficiently.
    <xref target="I-D.jeong-ipwave-vehicular-neighbor-discovery"/> target="I-D.jeong-ipwave-vehicular-neighbor-discovery" format="default"/> introduces
    a Vehicular Neighbor Discovery (VND) process as an extension of IPv6 ND
    for IP-based vehicular networks.
        </t>
        <t>
    From the interoperability point of view, in IPv6-based vehicular
    networking, IPv6 ND should have minimum changes with from the legacy
    IPv6 ND used in the Internet, including DAD and NUD operations,
    so that IPv6-based vehicular networks can be seamlessly connected
    to other intelligent transportation elements (e.g., traffic signals,
    pedestrian wearable devices, electric scooters, and bus stops) that
    use the standard IPv6 network settings.

        </t>
        <section anchor="subsubsection:Link-Model"
        title="Link Model"> anchor="subsubsection_Link-Model" numbered="true" toc="default">
          <name>Link Model</name>
          <t>
    A subnet model for a vehicular network needs to facilitate the
    communication between two vehicles with the same prefix regardless
    of the vehicular network topology as long as there exist
    bidirectional E2E paths between them in the vehicular
    network including VANETs and IP-RSUs.
    This subnet model allows vehicles with the same prefix to
    communicate with each other via a combination of multihop V2V and
    multihop V2I with VANETs and IP-RSUs.
    <xref target="I-D.thubert-6man-ipv6-over-wireless"/> target="I-D.thubert-6man-ipv6-over-wireless" format="default"/> introduces other issues in an IPv6
    subnet model.
          </t>
          <t>
    IPv6 protocols work under certain assumptions that do not necessarily
    hold for vehicular wireless access link types
    <xref target="VIP-WAVE" /><xref format="default"/> <xref target="RFC5889" />. format="default"/>.
    For instance, some IPv6 protocols protocols, such as NUD <xref target="RFC4861" /> format="default"/> and MIPv6 <xref target="RFC6275" /> format="default"/>,
    assume symmetry in the connectivity among neighboring interfaces.
    However, radio interference and different levels of transmission power
    may cause asymmetric links to appear in vehicular wireless links
    <xref target="RFC6250" />. format="default"/>.
    As a result, a new vehicular link model needs to consider the asymmetry
    of dynamically changing vehicular wireless links.
          </t>
          <t>
    There is a relationship between a link and a prefix, besides the
    different scopes that are expected from the link-local, unique-local,
    and global types
    of IPv6 addresses. In an IPv6 link, it is defined that all interfaces
    which
    that are configured with the same subnet prefix and with the on-link bit
    set can communicate with each other on an IPv6 link.  However, the
    vehicular link model needs to define the relationship between a link
    and a prefix, considering the dynamics of wireless links and the
    characteristics of VANET.
          </t>
          <t>
    A VANET can have a single link between each vehicle pair within
    the wireless communication range, as shown in
    <xref target="fig:multihop-v2v-internetworking" />. target="fig_multihop-v2v-internetworking" format="default"/>.  When two vehicles
    belong to the same VANET, but they are out of wireless communication
    range, they cannot communicate directly with each other.  Suppose that
    a global-scope IPv6 prefix (or an IPv6 ULA prefix) is assigned to
   	VANETs in vehicular networks.
    Considering that two vehicles in the same VANET configure their IPv6
    addresses with the same IPv6 prefix, if they are not connected in one hop (that is, they have the
    multihop network connectivity between them), then they may
    not be able to communicate with each other.
    Thus, in this case, the concept of
    an on-link IPv6 prefix does not hold because two vehicles with the
    same on-link IPv6 prefix cannot communicate directly with each other.
    Also, when two vehicles are located in two different VANETs with the
    same IPv6 prefix, they cannot communicate with each other.  When
    On the other hand, when these two VANETs converge to one VANET,
    the two vehicles can communicate with each other in a multihop fashion,
    for example, when they are Vehicle1 and Vehicle3, as shown in
    <xref target="fig:multihop-v2v-internetworking" />. target="fig_multihop-v2v-internetworking" format="default"/>.
          </t>
          <t>
    From the previous observation, a vehicular link model should consider
    the frequent partitioning and merging of VANETs due to vehicle mobility.
    Therefore, the vehicular link model needs to use an on-link a prefix that is on-link and
    not-onlink
    a prefix that is not on-link according to the network topology of vehicles vehicles, such as
    a one-hop reachable network and a multihop reachable network (or
    partitioned networks).  If the vehicles with the same prefix are
    reachable from each other in one hop, the prefix should be on-link.
    On the other hand, if some of the vehicles with the same prefix are not
    reachable from each other in one hop due to either the multihop
    topology in the VANET or multiple partitions, the prefix should not be
    not-onlink.
    on-link. In most cases in vehicular networks, due to the partitioning
    and merging of VANETs, VANETs and the multihop network topology of VANETS,
    not-onlink VANETs,
    prefixes that are not on-link will be used for vehicles as default.
          </t>
          <t>
    The vehicular link model needs to support multihop routing in a
    connected VANET where the vehicles with the same global-scope IPv6
    prefix (or the same IPv6 ULA prefix) are connected in one hop or
    multiple hops.  It also needs to support the multihop routing in
    multiple connected VANETs through infrastructure nodes (e.g., IP-RSU)
    where they are connected to the infrastructure.  For example, in
    <xref target="fig:vehicular-network-architecture" />, target="fig_vehicular-network-architecture" format="default"/>, suppose that
    Vehicle1, Vehicle2, and Vehicle3 are configured with their IPv6
    addresses based on the same global-scope IPv6 prefix.  Vehicle1 and
    Vehicle3 can also communicate with each other via either multihop
    V2V or multihop V2I2V. When Vehicle1 and Vehicle3 are connected in
    a VANET, it will be more efficient for them to communicate with each
    other directly via VANET rather than indirectly via IP-RSUs. On the
    other hand, when Vehicle1 and Vehicle3 are far away from farther apart than the direct
    communication range in two separate VANETs and under two different
    IP-RSUs, they can communicate with each other through the relay of
    IP-RSUs via V2I2V.
    Thus, the two separate VANETs can merge into one network via IP-RSU(s).
    Also, newly arriving vehicles can merge the two separate VANETs into
    one VANET if they can play the role of a relay node for those VANETs.
          </t>
          <t>
    Thus, in IPv6-based vehicular networking, the vehicular link model
    should have minimum changes for interoperability with standard IPv6
    links efficiently to support IPv6 DAD, MLD MLD, and NUD
    operations.
          </t>
        </section>
        <!--  end subsubsection "Link Model"  -->

    <section anchor="subsubsection:MAC-Address-Pseudonym"
        title="MAC anchor="subsubsection_MAC-Address-Pseudonym" numbered="true" toc="default">
          <name>MAC Address Pseudonym"> Pseudonym</name>
          <t>
    For the protection of drivers' privacy, a pseudonym of a MAC
    address of a vehicle's network interface should be used, used so that
    the MAC address can be changed periodically.  However, although
    such a pseudonym of a MAC address can protect to some extent the
    privacy of a vehicle, it may not be able to resist attacks on
    vehicle identification by other fingerprint information, for example,
    the	scrambler seed embedded in IEEE 802.11-OCB frames
    <xref target="Scrambler-Attack" />. format="default"/>.
    Note that <xref target="I-D.ietf-madinas-mac-address-randomization"/> target="I-D.ietf-madinas-mac-address-randomization" format="default"/>
    discusses more about MAC address randomization, and
    <xref target="I-D.ietf-madinas-use-cases"/> target="I-D.ietf-madinas-use-cases" format="default"/> describes several use cases
    for MAC address randomization.
          </t>
          <t>
    In the ETSI standards, for the sake of security and privacy, an
    ITS station (e.g., vehicle) can use pseudonyms for its network
    interface identities (e.g., MAC address) and the corresponding
    IPv6 addresses <xref target="Identity-Management" />. format="default"/>.  Whenever
    the network interface identifier changes, the IPv6 address based
    on the network interface identifier needs to be updated, and the
    uniqueness of the address needs to be checked through a DAD
    procedure.
          </t>
        </section>
        <!--  end subsubsection "MAC Address Pseudonym"  -->

    <section anchor="subsubsection:Routing"
        title="Routing"> anchor="subsubsection_Routing" numbered="true" toc="default">
          <name>Routing</name>
          <t>
    For multihop V2V communications in either a VANET or VANETs via
    IP-RSUs, a vehicular Mobile Ad Hoc Networks (MANET)
    routing protocol may be required to support both unicast and
    multicast in the links of the subnet with the same IPv6
    prefix.  However, it will be costly to run both vehicular ND
    and a vehicular ad hoc routing protocol in terms of control
    traffic overhead <xref target="RFC9119" />. format="default"/>.
          </t>
          <t>
    A routing protocol for a VANET may cause redundant wireless
    frames in the air to check the neighborhood of each vehicle
    and compute the routing information in a VANET with a dynamic
    network topology because the IPv6 ND is used to check the
    neighborhood of each vehicle. Thus, the vehicular routing
    needs to take advantage of the IPv6 ND to minimize its control
    overhead.
          </t>
          <t>
	  RPL <xref target="RFC6550" /> format="default"/> defines a routing protocol for low-power
	and lossy networks,
    LLN protocol, which constructs and maintains Destination-Oriented
    Directed Acyclic Graphs (DODAGs) optimized by an Objective Function (OF).
    A defined OF provides route selection and optimization within an RPL
    topology.
    The RPL nodes use an anisotropic Distance Vector (DV) approach to
    form a DODAG by discovering and aggressively maintaining the upward
    default route toward the root of the DODAG. Downward routes follow
    the same DODAG, with lazy maintenance and stretched Peer-to-Peer peer-to-peer
    (P2P) routing in the so-called storing mode.
    It is well-designed to reduce the topological knowledge and routing
    state that needs to be exchanged.
    As a result, the routing protocol overhead is minimized, which allows
    either highly constrained stable networks or less constrained, highly
    dynamic networks. Refer to <xref target="appendix:Support-of-Multihop-V2X" /> target="appendix_Support-of-Multihop-V2X" format="default"/>
    for the detailed description of RPL for multihop V2X networking.
          </t>

<t>
    An address registration extension for 6LoWPAN (IPv6 over Low-Power
    Wireless Personal Area Network) in <xref target="RFC8505" />
    format="default"/> can support light-weight mobility for nodes moving
    through different parents.
    The extension described in <xref target="RFC8505" />, as opposed to <xref target="RFC4861" />, /> is stateful
    and proactively installs the ND cache entries, which entries; this saves broadcasts
    and provides deterministic presence information for IPv6 addresses.
    Mainly
    Mainly, it updates the Address Registration Option (ARO) of ND
    defined in <xref target="RFC6775" /> to include a status field that (which can indicate
    the movement of a node node) and optionally a Transaction ID (TID) field, i.e., field
    (which is a sequence number that can be used to determine the most
    recent location of a node. node).

    Thus, RPL can use the information provided by
    the Extended ARO (EARO) defined in <xref target="RFC8505" />
    format="default"/> to deal with a certain level of node mobility.  When a
    leaf node moves to the coverage of another parent node, it should
    de-register its addresses to with the previous parent node and register itself
    with a new parent node along with an incremented TID.
          </t>
          <t>
    RPL can be used in IPv6-based vehicular networks, but it is primarily
    designed for low-power networks, which puts energy efficiency first.
    For using it in IPv6-based vehicular networks, there have not been
    actual experiences and practical implementations, though it was tested in
    IoT low-power Low-Power and lossy networks Lossy Network (LLN) scenarios.
    Another concern is that RPL may generate excessive topology discovery
    messages in a highly moving environment environment, such as vehicular networks.
    This issue can be an operational or optimization point for a practitioner.
          </t>
          <t>
    Moreover, due to bandwidth and energy constraints, RPL does not suggest
    using a proactive mechanism (e.g., keepalive) to maintain accurate routing
    adjacencies
    adjacencies, such as Bidirectional Forwarding Detection
    <xref target="RFC5881" /> format="default"/>
    and MANET Neighborhood Discovery Protocol <xref target="RFC6130" />. format="default"/>.
    As a result, due to the mobility of vehicles, network fragmentation may
    not be detected quickly quickly, and the routing of packets between vehicles
    or between a vehicle and an infrastructure node may fail.
          </t>
        </section>
        <!--  end subsubsection "Routing"  -->

    </section>
      <!--  end subsection "Neighbor Discovery"  -->

    <section anchor="subsection:Mobility-Management" title="Mobility Management"> anchor="subsection_Mobility-Management" numbered="true" toc="default">
        <name>Mobility Management</name>
        <t>
    The seamless connectivity and timely data exchange between
    two end points endpoints requires efficient mobility management
    including location management and handover.
    Most vehicles are equipped with a GNSS receiver as part of
    a dedicated navigation system or a corresponding smartphone
    App.
    app.  Note that the GNSS receiver may not provide vehicles with
    accurate location information in adverse environments environments, such as
    a building area or a tunnel.  The location precision can be
    improved with assistance of the IP-RSUs or a cellular system
    with a GNSS receiver for location information.
        </t>
        <t>
    With a GNSS navigator, efficient mobility management can
    be performed with the help of vehicles periodically reporting
    their current position and trajectory (i.e., navigation path) to
    the vehicular infrastructure (having IP-RSUs and an MA in TCC).
    This vehicular infrastructure can predict the future positions
    of the vehicles from their mobility information (i.e., (e.g., the current
    position, speed, direction, and trajectory) for efficient mobility
    management (e.g., proactive handover).  For a better proactive
    handover, link-layer parameters, such as the signal strength of a
    link-layer frame (e.g., Received Channel Power Indicator (RCPI)
    <xref target="VIP-WAVE" />), format="default"/>), can be used to determine the
    moment of a handover between IP-RSUs along with mobility
    information.
        </t>
        <t>
    By predicting a vehicle's mobility, the vehicular infrastructure
    needs to better support IP-RSUs to perform efficient SLAAC, data
    forwarding, horizontal handover (i.e., handover in wireless links
    using a homogeneous radio technology), and vertical handover
    (i.e., handover in wireless links using heterogeneous radio
    technologies) in advance along with the movement of the vehicle.
        </t>
        <t>
    For example, as shown in <xref target="fig:vehicular-network-architecture" />, target="fig_vehicular-network-architecture" format="default"/>,
    when a vehicle (e.g., Vehicle2) is moving from the coverage of an
    IP-RSU (e.g., IP-RSU1) into the coverage of another IP-RSU (e.g.,
    IP-RSU2) belonging to a different subnet, the IP-RSUs can
    proactively support the IPv6 mobility of the vehicle, vehicle while
    performing the SLAAC, data forwarding, and handover for the sake
    of the vehicle.
        </t>
        <t>
    For a mobility management scheme in a domain, where the
    wireless subnets of multiple IP-RSUs share the same prefix,
    an efficient vehicular-network-wide DAD is required.
    On the other hand, for a mobility
    management scheme with a unique prefix per mobile node (e.g., PMIPv6
    <xref target="RFC5213" />), format="default"/>),
    DAD is not required because the IPv6 address of a vehicle's external
    wireless interface is guaranteed to be unique. There is a trade-off
    between the prefix usage efficiency and DAD overhead. Thus, the IPv6
    address autoconfiguration for vehicular networks needs to consider
    this trade-off to support efficient mobility management.
        </t>
        <t>
   Even though the SLAAC with classic ND costs a DAD overhead during
   mobility management, the SLAAC with the registration extension
   specified in <xref target="RFC8505" /> target="RFC8505"/> and/or with AERO/OMNI
    do does not cost a DAD. DAD overhead.
    SLAAC for vehicular networks needs to consider the
    minimization of the cost of DAD with the help of an infrastructure
    node (e.g., IP-RSU and MA). Using an infrastructure prefix over VANET
    allows direct routability to the Internet through the multihop V2I toward
    an IP-RSU. On the other hand, a BYOA does not allow such direct
    routability to the Internet since the BYOA is not topologically
    correct, that is, not routable in the Internet. In addition, a
    vehicle configured with a BYOA needs a tunnel home (e.g., IP-RSU)
    connected to the Internet, and the vehicle needs to know which
    neighboring vehicle is reachable inside the VANET toward the tunnel
    home. There is non-negligible control overhead to set up and
    maintain routes to such a tunnel home <xref target="RFC4888" /> format="default"/> over the VANET.
        </t>
        <t>
    For the case of a multihomed network, a vehicle can follow the
    first-hop router selection rule described in <xref target="RFC8028" />. format="default"/>.
    For example, an IP-OBU inside a vehicle may connect to an IP-RSU that
    has multiple routers behind. In this scenario, because the IP-OBU
    can have multiple prefixes from those routers, the default router
    selection, source address selection, and packet redirect process
    should follow the guidelines in <xref target="RFC8028" />. format="default"/>.
    That is, the vehicle should select its default router for each prefix
    by preferring the router that advertised the prefix.
        </t>
        <t>
    Vehicles can use the TCC as their Home Network having a home agent
    for mobility management as in MIPv6 <xref target="RFC6275" />, format="default"/>,
    PMIPv6 <xref target="RFC5213" />, format="default"/>, and NEMO <xref target="RFC3963" />, format="default"/>, so the TCC (or an MA inside the
    TCC) maintains the mobility information of vehicles for location
    management. Also, in vehicular networks,
    asymmetric links sometimes exist and must be considered for
    wireless communications communications, such as V2V and V2I.
    <xref target="I-D.jeong-ipwave-vehicular-mobility-management" /> format="default"/> discusses
    a Vehicular Mobility Management (VMM) scheme to proactively do handover
    for vehicles.
        </t>
        <t>
    Therefore, for the proactive and seamless IPv6 mobility of vehicles,
    the vehicular infrastructure (including IP-RSUs and MA) needs to
    efficiently perform the mobility management of the vehicles with
    their mobility information and link-layer information.
    Also, in IPv6-based vehicular networking, IPv6 mobility management
    should have minimum changes for the interoperability with the
    legacy IPv6 mobility management schemes schemes, such as PMIPv6, DMM, LISP,
    and AERO.
        </t>
      </section>
      <!--  end section "Mobility Management"  -->

</section>
    <!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->

<section anchor="section:Security-Considerations"
    title="Security Considerations"> anchor="section_Security-Considerations" numbered="true" toc="default">
      <name>Security Considerations</name>
      <t>
    This section discusses security and privacy for IPv6-based vehicular
    networking. Security and privacy are paramount in V2I, V2V, and V2X
    networking along with neighbor discovery and mobility
    management.
      </t>
      <t>
    Vehicles and infrastructure must be authenticated to each other by
    a password, a key, and/or a fingerprint
    in order to participate in vehicular networking.
    For the authentication in vehicular networks, vehicular cloud the Vehicular Cloud
    needs to support a Public Key Infrastructure (PKI) efficiently, as either
    a dedicated or a co-located component inside a TCC.
    To provide safe interaction between vehicles
    or between a vehicle and infrastructure, only authenticated
    nodes (i.e., vehicle and infrastructure node) nodes) can participate
    in vehicular networks.
    Also, in-vehicle devices (e.g., ECU) ECUs) and a driver/passenger's mobile
    devices (e.g., smartphone smartphones and tablet PC) PCs) in a vehicle need to
    securely communicate with other in-vehicle devices and devices, another
    driver/passenger's mobile devices in another vehicle, or other
    servers behind an IP-RSU securely. IP-RSU.

    Even though a vehicle is perfectly authenticated by another entity
    and legitimate to use the data generated by another vehicle,
    it may be hacked for running by malicious applications to that track and
    collect its and other vehicles' information.  In this case, an
    attack mitigation process may be required to reduce the aftermath of
    malicious behaviors.
    Note that when a driver/passenger's mobile devices are connected to a
    vehicle's internal network, the vehicle may be more vulnerable to possible
    attacks from external networks due to the exposure of its
    in-flight traffic packets.
    <xref target="I-D.jeong-ipwave-security-privacy"/> target="I-D.jeong-ipwave-security-privacy" format="default"/>
    discusses several types of threats for Vehicular Security and Privacy (VSP).
      </t>
      <t>
    For secure V2I communication, a secure channel (e.g., IPsec) between
    a mobile router (i.e., IP-OBU) in a vehicle and a fixed router
    (i.e., IP-RSU) in an EN needs to be established, as shown in
    <xref target="fig:v2i-internetworking" /> target="fig_v2i-internetworking" format="default"/>
        <xref target="RFC4301" /><xref format="default"/> <xref target="RFC4302" /> format="default"/>
        <xref target="RFC4303" /><xref format="default"/> <xref target="RFC4308" /> format="default"/>
        <xref target="RFC7296" />. format="default"/>.
    Also, for secure V2V communication, a secure channel (e.g., IPsec)
    between a mobile router (i.e., IP-OBU) in a vehicle and a mobile
    router (i.e., IP-OBU) in another vehicle needs to be established, as
    shown in <xref target="fig:v2v-internetworking" />. target="fig_v2v-internetworking" format="default"/>.
      </t>
      <t>
	  For secure V2I/V2V communication, an element in a vehicle (e.g., an
    in-vehicle device and a driver/passenger's mobile device) needs to
    establish a secure connection (e.g., TLS) with another element in
    another vehicle or another element in a vehicular cloud Vehicular Cloud (e.g., a
    server).
    Note that any key management approach can be used for the secure
    communication, and particularly for IPv6-based vehicular networks,
    a new or enhanced key management approach resilient to wireless
    networks is required.
      </t>
      <t>
    IEEE Std 1609.2 <xref target="WAVE-1609.2" /> format="default"/> specifies
    security services for applications and management messages, but this
    WAVE specification is optional.
    Thus, if the link layer does not support the security of a WAVE frame,
    either the network layer or the
    transport layer needs to support security services for the WAVE
    frames.
    frame.
      </t>

      <section anchor="section:Security-Threats-in-Neighbor-Discovery"
        title="Security anchor="section_Security-Threats-in-Neighbor-Discovery" numbered="true" toc="default">
        <name>Security Threats in Neighbor Discovery"> Discovery</name>
        <t>
        For the classical IPv6 ND (i.e., the legacy ND), DAD is required
        to ensure the uniqueness of the
        IPv6 address of a vehicle's wireless interface. This DAD can be
        used as a flooding attack that uses the DAD-related ND packets
        disseminated over the VANET or vehicular networks.
        <xref target="RFC6959" /> format="default"/>
        introduces threats enabled by IP source address spoofing.
        This possibility indicates that vehicles and IP-RSUs need to filter
        out suspicious ND traffic in advance.
        <xref target="RFC8928" /> format="default"/> introduces a mechanism that protects
        the ownership of an address for 6loWPAN 6LoWPAN ND from address theft
        and impersonation attacks.
        Based on the SEND mechanism <xref target="RFC3971" /> mechanism, format="default"/>, the
        authentication for routers (i.e., IP-RSUs) can be conducted
        by only selecting an IP-RSU that has a certification path toward
        trusted parties. For authenticating other vehicles,
        cryptographically generated addresses (CGA)
        Cryptographically Generated Addresses (CGAs) can be used to
        verify the true owner of a received ND message, which requires
        using the CGA ND option in the ND protocol.
        This CGA can protect vehicles against DAD flooding
        by DAD filtering based on the verification for the true owner
        of the received DAD message.
        For a general protection of the ND mechanism, the RSA Signature
        ND option can also be used to protect the integrity of the
        messages by public key signatures.  For a more advanced
        authentication mechanism, a distributed blockchain-based
        approach <xref target="Vehicular-BlockChain"/> target="Vehicular-BlockChain" format="default"/> can be used.
        However, for a scenario where a trustable router or an
        authentication path cannot be obtained, it is desirable to find
        a solution in which vehicles and infrastructures infrastructure nodes can
        authenticate each other without any support from a third party.
        </t>
        <t>
        When applying the classical IPv6 ND process to VANET, one of
        the security issues is that an IP-RSU (or an IP-OBU) as
        a router may receive deliberate or accidental DoS attacks from network
        scans that probe devices on a VANET. In this scenario, the IP-RSU
        (or IP-OBU) can be overwhelmed for by processing the network scan requests
        so that the capacity and resources of the IP-RSU (or IP-OBU) are
        exhausted, causing the failure of receiving normal ND messages from
        other hosts for network address resolution.
        <xref target="RFC6583"/> target="RFC6583" format="default"/> describes more about the operational problems
        in the classical IPv6 ND mechanism that can be vulnerable to deliberate
        or accidental DoS attacks and suggests several implementation guidelines
        and operational mitigation techniques for those problems.
        Nevertheless, for running IPv6 ND in VANET, those issues can be
        more acute
        acuter since the movements of vehicles can be so diverse that it leaves
        there is a large
        room wider opportunity for rogue behaviors, and the failure of
        networking among vehicles may cause lead to grave consequences.
        </t>
        <t>
        Strong security measures shall protect vehicles roaming in road
        networks from the attacks of malicious nodes, which nodes that are controlled
        by hackers.  For safe driving applications (e.g., context-aware
        navigation, cooperative adaptive cruise control, and platooning),
        as explained in <xref target="subsection:V2V-Use-Cases"/>, target="subsection_V2V-Use-Cases" format="default"/>, the
        cooperative action among vehicles is assumed.  Malicious nodes may
        disseminate wrong driving information (e.g., location, speed, and
        direction) for disturbing safe driving.  For example, a Sybil attack,
        which tries to confuse a vehicle with multiple false identities,
        may disturb a vehicle from taking a safe maneuver.
        Since cybersecurity issues in vehicular networks may cause physical
        vehicle safety issues, it may be necessary to consider those physical
        security
        safety concerns when designing protocols in IPWAVE.
        </t>
        <t>
        To identify malicious vehicles among vehicles, an authentication
        method may be required.  A Vehicle Identification Number (VIN) (or a
        vehicle manufacturer certificate) and a user certificate (e.g., X.509
        certificate <xref target="RFC5280"/>) target="RFC5280" format="default"/>) along with an
        in-vehicle device's identifier generation can be used to efficiently
        authenticate a vehicle or its driver (having a user certificate)
        through a road infrastructure node (e.g., IP-RSU) connected to an
        authentication server in the vehicular cloud. Vehicular Cloud.  This authentication can
        be used to identify the vehicle that will communicate with an
        infrastructure node or another vehicle.  In the case where a vehicle
        has an internal network (called Moving
        Network) a mobile network) and elements in the
        network (e.g., in-vehicle devices and a user's mobile devices), as
        shown in <xref target="fig:v2i-internetworking" />, target="fig_v2i-internetworking" format="default"/>,
        the elements in the network need to be authenticated individually for
        safe authentication.  Also, Transport Layer Security (TLS)
        certificates <xref target="RFC8446" /><xref target="RFC5280"/> format="default"/> <xref
        target="RFC5280" format="default"/> can be used for an element's
        authentication to allow secure E2E vehicular communications between an
        element in a vehicle and another element in a server in a
        vehicular cloud, Vehicular
        Cloud or between an element in a vehicle and another element in
        another vehicle.
        </t>
      </section>

      <section anchor="section:Security-Threats-in-Mobility-Management"
        title="Security anchor="section_Security-Threats-in-Mobility-Management" numbered="true" toc="default">
        <name>Security Threats in Mobility Management"> Management</name>
        <t>
        For mobility management, a malicious vehicle can construct
        multiple virtual bogus vehicles, vehicles and register them with IP-RSUs
        and MA. MAs.  This registration makes the IP-RSUs and MA MAs waste their
        resources.  The IP-RSUs and MA MAs need to determine whether
        a vehicle is genuine or bogus in mobility management.

        Also, for the confidentiality of control packets and data packets
        among
        between IP-RSUs and MA, MAs, the E2E paths (e.g., tunnels) need to be
        protected by secure communication channels.

        In addition, to prevent bogus IP-RSUs and MA MAs from interfering with
        the IPv6 mobility of vehicles, mutual authentication among them
        the IP-RSUs, MAs, and vehicles
        needs to be performed by certificates (e.g., TLS certificate).
        </t>
      </section>

      <section anchor="section:Other-Threats"
        title="Other Threats"> anchor="section_Other-Threats" numbered="true" toc="default">
        <name>Other Threats</name>
        <t>
        For the setup of a secure channel over IPsec or TLS, the multihop V2I
        communications over DSRC or 5G V2X (or LTE V2X) is required in on
        a highway.  In this case, multiple intermediate vehicles as relay
        nodes can help to forward association and authentication messages
        toward an IP-RSU (gNodeB or eNodeB) (or gNodeB/eNodeB) connected to an authentication
        server in the vehicular cloud. Vehicular Cloud. In this kind of process, the
        authentication messages forwarded by each vehicle can be delayed or
        lost, which may increase the construction time of a connection or cause some
        vehicles may to not be able to be authenticated.
        </t>
        <t>
    	  Even though vehicles can be authenticated with valid certificates by
        an authentication server in the vehicular cloud, Vehicular Cloud, the authenticated
        vehicles may harm other vehicles.  To deal with this kind of security
        issue, for monitoring suspicious behaviors, vehicles' communication
        activities can be recorded in either a centralized approach through a
        logging server (e.g., TCC) in the vehicular cloud Vehicular Cloud or a decentralized
        approach (e.g., an edge computing device ECD and blockchain <xref target="Bitcoin" />) format="default"/>)
        by the help of other vehicles and infrastructure.
        </t>
        <t>
        There are trade-offs between centralized and decentralized approaches
        in logging for of vehicles' behaviors (e.g., location, speed, direction,
        acceleration, deceleration,
        acceleration/deceleration, and lane change) and communication
        activities (e.g., transmission time, reception time, and packet types types,
        such as TCP, UDP, SCTP, QUIC, HTTP, and HTTPS).
        A centralized approach is more efficient than a decentralized
        approach in terms of logging log data collection and processing in a
        central server in the vehicular cloud. Vehicular Cloud.
        However, the centralized approach may cause a higher delay than a
        decentralized approach in terms of the analysis of the logging log data
        and counteraction in a local edge computing device ECD or a distributed database like a
        blockchain.
        The centralized approach stores logging log data collected from VANET into
        a remote logging server in a vehicular cloud Vehicular Cloud as a central cloud, so it
        takes time to deliver the logging log data to a remote logging server.
        On the other hand, the decentralized approach stores the logging log data
        into a nearby edge computing device as a local logging server or a
        nearby blockchain node, which participates in a blockchain network.
        On the stored logging log data, an analyzer needs to perform a machine
        learning technique (e.g., Deep Learning) deep learning) and seek suspicious behaviors
        of the vehicles.  If such an analyzer is located either within or near
        the edge computing device, it can access the logging log data with a short
        delay, analyze it quickly, and generate feedback to allow for a quick
        counteraction against such malicious behaviors.  On the other hand,
        if the vehicular cloud Vehicular Cloud with the logging log data is far away from a
        problematic VANET with malicious behaviors, the centralized approach
        takes a long longer time with the analysis with of the logging log data and the
        decision-making on malicious behaviors than the decentralized approach.
        If the logging log data is encrypted by a secret key, it can be protected
        from the observation of a hacker. The secret key sharing among legal
        vehicles, edge computing devices, ECDs, and vehicular clouds Vehicular Clouds should be supported efficiently.
        </t>
        <t>
        Logging information
        Log data can release privacy breakage of a vehicle.
        The logging information log data can contain the MAC address and IPv6
        address for a vehicle's wireless network interface. If the unique
        MAC address of the wireless network interface is used, a hacker
        can track the vehicle with that MAC address, so address and can track the
        privacy information of the vehicle's driver (e.g., location
        information). To prevent this privacy breakage, a MAC address
        pseudonym can be used for the MAC address of the wireless network
        interface, and the corresponding IPv6 address should be based on
        such a MAC address pseudonym.
        By solving a privacy issue of a vehicle's identity in logging,
        vehicles may observe activities of each other other's activities to identify any
        misbehavior
        misbehaviors without privacy breakage.  Once identifying a
        misbehavior, a vehicle shall have a way to either isolate itself
        from others or isolate a suspicious vehicle by informing
        other vehicles.
        </t>
        <t>
        For completely secure vehicular networks, we shall embrace the concept
        of "zero-trust" for vehicles in which where no vehicle is trustable and
        verifying every message  (such as IPv6 control messages including ND,
        DAD, NUD, and application layer application-layer messages) is necessary.  In this way,
        vehicular networks can defense defend against many possible cyberattacks. Thus, we
        need to have an efficient zero-trust framework or mechanism for
        the
        vehicular networks.
        </t>
        <t>
        For the non-repudiation of the harmful activities from malicious
        vehicles, which as it is difficult for other normal vehicles to identify them,
        an additional and advanced approach is needed. One possible
        approach is to use a blockchain-based approach
        <xref target="Bitcoin"/> target="Bitcoin" format="default"/> as an IPv6 security checking framework.
        Each IPv6 packet from a vehicle can be treated as a transaction transaction, and the
        neighboring vehicles can play the role of peers in a consensus
        method of a blockchain <xref target="Bitcoin"/> target="Bitcoin" format="default"/>
          <xref target="Vehicular-BlockChain"/>. target="Vehicular-BlockChain" format="default"/>. For a blockchain's efficient
        consensus in vehicular networks having fast moving fast-moving vehicles, either
        a new consensus algorithm needs to be developed, or an existing
        consensus algorithm needs to be enhanced.
        In addition, a consensus-based mechanism for the security of
        vehicular networks in the IPv6 layer can also be considered.
        A group of servers as blockchain infrastructure can be part of
        the security checking process in the IP layer.
        </t>
        <t>
        To prevent an adversary from tracking a vehicle with its MAC
        address or IPv6 address, especially for a long-living transport-layer
        session (e.g., voice call over IP and video streaming service),
        a MAC address pseudonym needs to be provided to each vehicle;
        that is, each vehicle periodically updates its MAC address address, and
        its
        the vehicle's IPv6 address needs to be updated accordingly by the MAC
        address change <xref target="RFC4086" /><xref format="default"/> <xref target="RFC8981" />. format="default"/>.
        Such an update of the MAC and IPv6 addresses should not
        interrupt the E2E communications between two vehicles (or
        between a vehicle and an IP-RSU) for a long-living transport-layer
        session.  However, if this pseudonym is performed without strong
        E2E confidentiality  (using either IPsec or TLS), there will be no
        privacy benefit from changing MAC and IPv6 addresses, addresses because an
        adversary can observe the change of the MAC and IPv6 addresses and
        track the vehicle with those addresses. Thus, the MAC address
        pseudonym and the IPv6 address update should be performed with strong
        E2E confidentiality.
        </t>
        <t>
        The privacy exposure to the TCC and via V2I is mostly about the
        location information of vehicles, vehicles and may also include other in-vehicle activities
        activities, such as transactions of credit cards.  The assumed,
        trusted actors are the owner of a vehicle, an authorized vehicle
        service provider (e.g., navigation service provider), and an
        authorized vehicle manufacturer for providing after-sales services.
        In addition, privacy concerns for excessively collecting vehicle
        activities from roadway operators operators, such as public transportation
        administrators and private contractors contractors, may also pose threats on
        violating privacy rights of vehicles.  It might be interesting to find
        a solution from a
        technology technological point of view along with public policy
        development for the issue.
        </t>
        <t>
        The "multicasting" of the location information of a VRU's smartphone
        means IPv6 multicasting.  There is a possible security attack related
        to this multicasting.  Attackers can use "fake identifiers" as source
        IPv6 addresses of their devices to generate IPv6 packets and multicast
        them to nearby vehicles in order to make a cause confusion that those
        vehicles are surrounded by other vehicles or pedestrians.  As a result,
        navigation services (e.g., Google Maps <xref target="Google-Maps" /> format="default"/> and Waze <xref target="Waze" />) format="default"/>)
        can be confused with fake road traffic by those vehicles or smartphones
        with "fake identifiers" <xref target="Fake-Identifier-Attack" />. format="default"/>.
        This attack with "fake identifiers" should be detected and handled by
        vehicular networks.  To cope with this attack, both legal vehicles and
        legal VRUs' smartphones can be registered with a traffic control center
        (called TCC) TCC and their locations
        can be tracked by the TCC.  With this tracking, the TCC can tell the
        road traffic conditions caused by those vehicles and smartphones.
        In addition, to prevent hackers from tracking the locations of those
        vehicles and smartphones, either a MAC address pseudonym
        <xref target="I-D.ietf-madinas-mac-address-randomization" /> format="default"/>
        or secure IPv6 address generation <xref target="RFC7721" /> format="default"/>
        can be used to protect the privacy of those vehicles and smartphones.
        </t>
      </section>
    </section>
    <!--  end section "Security Considerations"  -->

<section anchor="section:IANA-Considerations" title="IANA Considerations"> anchor="section_IANA-Considerations" numbered="true" toc="default">
      <name>IANA Considerations</name>
      <t>
    This document does not require any has no IANA actions.
      </t>
    </section>
  </middle>
  <back>

<displayreference target="I-D.ietf-intarea-ippl" to="IPPL"/>
<displayreference target="I-D.templin-intarea-aero" to="AERO"/>
<displayreference target="I-D.templin-intarea-omni" to="OMNI"/>
<displayreference target="I-D.templin-ipwave-uam-its" to="UAM-ITS"/>
<displayreference target="I-D.templin-intarea-parcels" to="PARCELS"/>
<displayreference target="I-D.ietf-dmm-fpc-cpdp" to="FPC-DMM"/>
<displayreference target="I-D.thubert-6man-ipv6-over-wireless" to="WIRELESS-ND"/>
<displayreference target="I-D.ietf-madinas-mac-address-randomization" to="MAC-ADD-RAN"/>
<displayreference target="I-D.ietf-madinas-use-cases" to="RCM-USE-CASES"/>
<displayreference target="I-D.jeong-ipwave-vehicular-neighbor-discovery" to="VEHICULAR-ND"/>
<displayreference target="I-D.jeong-ipwave-vehicular-mobility-management" to="VEHICULAR-MM"/>
<displayreference target="I-D.jeong-ipwave-security-privacy" to="SEC-PRIV"/>

    <!--
  START: Referenced Papers and Standard Activities
-->

<references title="Normative References">
    <?rfc include="reference.RFC.4861"?>
    <?rfc include="reference.RFC.4862"?>
    <?rfc include="reference.RFC.6275"?>
    <?rfc include="reference.RFC.8691"?>

<references>
      <name>References</name>
      <references>
        <name>Normative References</name>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4861.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4862.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6275.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8691.xml"/>
      </references>

<references title="Informative References">
      <references>
        <name>Informative References</name>
        <!-- START: IETF RFCs and Drafts -->
    <?rfc include="reference.RFC.2710"?>
    <?rfc include="reference.RFC.3626"?>
    <?rfc include="reference.RFC.3753"?>
    <?rfc include="reference.RFC.3810"?>
    <?rfc include="reference.RFC.3963"?>
    <?rfc include="reference.RFC.3971"?>
    <?rfc include="reference.RFC.4086"?>
    <?rfc include="reference.RFC.4193"?>
    <?rfc include="reference.RFC.4301"?>
    <?rfc include="reference.RFC.4302"?>
    <?rfc include="reference.RFC.4303"?>
    <?rfc include="reference.RFC.4308"?>
    <?rfc include="reference.RFC.4821"?>
    <?rfc include="reference.RFC.4885"?>
    <?rfc include="reference.RFC.4888"?>
    <?rfc include="reference.RFC.5213"?>
    <?rfc include="reference.RFC.5280"?>
    <?rfc include="reference.RFC.5415"?>
    <?rfc include="reference.RFC.5614"?>
    <?rfc include="reference.RFC.5881"?>
    <?rfc include="reference.RFC.5889"?>
    <?rfc include="reference.RFC.6130"?>
    <?rfc include="reference.RFC.6250"?>
    <?rfc include="reference.RFC.6550"?>
    <?rfc include="reference.RFC.6583"?>
    <?rfc include="reference.RFC.6775"?>
    <?rfc include="reference.RFC.6959"?>
    <?rfc include="reference.RFC.7149"?>
    <?rfc include="reference.RFC.7181"?>
    <?rfc include="reference.RFC.7296"?>
    <?rfc include="reference.RFC.7333"?>
    <?rfc include="reference.RFC.7429"?>
    <?rfc include="reference.RFC.7427"?>
    <?rfc include="reference.RFC.7466"?>
    <?rfc include="reference.RFC.7721"?>
    <?rfc include="reference.RFC.8002"?>
    <?rfc include="reference.RFC.8028"?>
    <?rfc include="reference.RFC.8175"?>
    <?rfc include="reference.RFC.8200"?>
    <?rfc include="reference.RFC.8446"?>
    <?rfc include="reference.RFC.8505"?>
    <?rfc include="reference.RFC.8629"?>
    <?rfc include="reference.RFC.8684"?>
    <?rfc include="reference.RFC.8757"?>
    <?rfc include="reference.RFC.8899"?>
    <?rfc include="reference.RFC.8928"?>
    <?rfc include="reference.RFC.8981"?>
    <?rfc include="reference.RFC.9000"?>
    <?rfc include="reference.RFC.9119"?>

    <?rfc include='reference.I-D.ietf-intarea-ippl'?>
    <?rfc include='reference.I-D.ietf-lisp-rfc6830bis'?>
    <?rfc include='reference.I-D.templin-6man-aero'?>
    <?rfc include='reference.I-D.templin-6man-omni'?>
    <?rfc include='reference.I-D.templin-ipwave-uam-its'?>
    <?rfc include='reference.I-D.templin-intarea-parcels'?>
    <?rfc include='reference.I-D.ietf-dmm-fpc-cpdp'?>
    <?rfc include='reference.I-D.thubert-6man-ipv6-over-wireless'?>
    <?rfc include='reference.I-D.ietf-madinas-mac-address-randomization'?>
    <?rfc include='reference.I-D.ietf-madinas-use-cases'?>
    <?rfc include='reference.I-D.jeong-ipwave-vehicular-neighbor-discovery'?>
    <?rfc include='reference.I-D.jeong-ipwave-vehicular-mobility-management'?>
    <?rfc include='reference.I-D.jeong-ipwave-security-privacy'?>
	<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2710.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3626.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3753.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3810.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3963.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3971.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4086.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4193.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4301.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4302.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4303.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4308.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4821.xml"/>

<!-- RFC 4885 is the long way bc "H-Y." not in bib.ietf.org. Issue has been reported.-->

        <reference anchor="RFC4885" target="https://www.rfc-editor.org/info/rfc4885">
	  <front>
	    <title>Network Mobility Support Terminology</title>
	    <author fullname="T. Ernst" initials="T." surname="Ernst"/>
	    <author fullname="H-Y. Lach" initials="H-Y." surname="Lach"/>
	    <date month="July" year="2007"/>
	  </front>
	  <seriesInfo name="RFC" value="4885"/>
	  <seriesInfo name="DOI" value="10.17487/RFC4885"/>
	  </reference>

        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4888.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5213.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5280.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5415.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5614.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5881.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5889.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6130.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6250.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6550.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6583.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6775.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6959.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7149.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7181.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7296.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7333.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7429.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7427.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7466.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7721.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8002.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8028.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8175.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8505.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8629.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8684.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8757.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8899.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8928.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8981.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9000.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9099.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9119.xml"/>

<!-- [I-D.ietf-intarea-ippl] IESG state	Expired -->

        <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-intarea-ippl.xml"/>

<!-- [I-D.ietf-lisp-rfc6830bis] Published as RFC 9300 -->

        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9300.xml"/>

<!-- [I-D.templin-6man-aero] Replaced by [I-D.templin-intarea-aero] IESG state
ID-Exists. Changed to long version because Templin is missing editor
role.
-->

<reference anchor="I-D.templin-intarea-aero">
  <front>
    <title>Automatic Extended Route Optimization (AERO)</title>
    <author initials="F. L." surname="Templin" fullname="Fred Templin" role="editor">
      <organization>Boeing Research &amp; Technology</organization>
    </author>
    <date month="January" day="10" year="2023"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-templin-intarea-aero-11"/>
</reference>

<!-- [I-D.templin-6man-omni] Replaced by [I-D.templin-intarea-omni] IESG state
I-D Exists. Changed to long version because Templin is missing editor
role.
-->

<reference anchor="I-D.templin-intarea-omni">
  <front>
    <title>Transmission of IP Packets over Overlay Multilink Network (OMNI) Interfaces</title>
    <author initials="F. L." surname="Templin" fullname="Fred Templin" role="editor">
      <organization>The Boeing Company</organization>
    </author>
    <date month="February" day="15" year="2023"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-templin-intarea-omni-25"/>
</reference>

<!-- [I-D.templin-ipwave-uam-its] IESG state Expired. Changed to long version
because Templin is missing editor role. -->

<reference anchor="I-D.templin-ipwave-uam-its">
  <front>
    <title>Urban Air Mobility Implications for Intelligent Transportation Systems</title>
    <author initials="F." surname="Templin" fullname="Fred Templin" role="editor">
      <organization>Boeing Research &amp; Technology</organization>
    </author>
    <date month="January" day="4" year="2021"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-templin-ipwave-uam-its-04"/>
</reference>

<!-- [I-D.templin-intarea-parcels] IESG state I-D Exists. Changed to long
 version because Templin is missing editor role.
-->

<reference anchor="I-D.templin-intarea-parcels">
  <front>
    <title>IP Parcels</title>
    <author initials="F. L." surname="Templin" fullname="Fred Templin" role="editor">
      <organization>Boeing Research &amp; Technology</organization>
    </author>
    <date month="February" day="15" year="2023"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-templin-intarea-parcels-51"/>
</reference>

<!-- [I-D.ietf-dmm-fpc-cpdp] IESG state	Expired -->

        <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-dmm-fpc-cpdp.xml"/>

<!-- [I-D.thubert-6man-ipv6-over-wireless] IESG state I-D Exists. Changed to
long version because Thubert is missing editor role.
-->

<reference anchor="I-D.thubert-6man-ipv6-over-wireless">
  <front>
    <title>IPv6 Neighbor Discovery on Wireless Networks</title>
    <author initials="P." surname="Thubert" fullname="Pascal Thubert" role="editor">
      <organization>Cisco Systems, Inc</organization>
    </author>
    <date month="October" day="11" year="2022"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-thubert-6man-ipv6-over-wireless-12"/>
</reference>

<!-- [I-D.ietf-madinas-mac-address-randomization] IESG state I-D Exists. Updated to long version because C. J. Bernardos should be CJ. Bernardos and is missing editor role-->

   <reference anchor="I-D.ietf-madinas-mac-address-randomization">
     <front>
       <title>MAC address randomization</title>
       <author initials="JC." surname="Zúñiga" fullname="Juan-Carlos Zúñiga">
	 <organization>CISCO</organization>
       </author>
       <author initials="CJ." surname="Bernardos" fullname="Carlos J. Bernardos" role="editor">
	 <organization>Universidad Carlos III de Madrid</organization>
       </author>
       <author initials="A." surname="Andersdotter" fullname="Amelia Andersdotter">
	 <organization>Sky UK Group, Sky Labs</organization>
       </author>
       <date month="October" day="22" year="2022"/>
     </front>
     <seriesInfo name="Internet-Draft" value="draft-ietf-madinas-mac-address-randomization-04"/>
     </reference>

<!-- [I-D.ietf-madinas-use-cases] IESG state I-D Exists -->

        <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.ietf-madinas-use-cases.xml"/>

<!-- [I-D.jeong-ipwave-vehicular-neighbor-discovery] IESG state	I-D Exists

Changed to long version because:
* xi:include: J. P. Jeong but I-D header: J. Jeong, Ed.
* xi:include: Y. C. Shen but I-D header: Y. Shen
-->

<reference anchor="I-D.jeong-ipwave-vehicular-neighbor-discovery">
  <front>
    <title>Vehicular Neighbor Discovery for IP-Based Vehicular Networks</title>
    <author initials="J." surname="Jeong" fullname="Jaehoon Paul Jeong" role="editor">
      <organization>Department of Computer Science and Engineering</organization>
    </author>
    <author initials="Y." surname="Shen" fullname="Yiwen Chris Shen">
      <organization>Department of Computer Science and Engineering</organization>
    </author>
    <author initials="J." surname="Kwon" fullname="Junehee Kwon">
      <organization>Department of Computer Science and Engineering</organization>
    </author>
    <author initials="S." surname="Cespedes" fullname="Sandra Cespedes">
      <organization>NIC Chile Research Labs</organization>
    </author>
    <date month="February" day="4" year="2023"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-jeong-ipwave-vehicular-neighbor-discovery-15"/>
</reference>

<!-- [I-D.jeong-ipwave-vehicular-mobility-management] IESG state I-D Exists

Changed to long version because:
* xi:include: J. P. Jeong but txt: J. Jeong, Ed.
* xi:include: B. A. Mugabarigira but txt: B. Mugabarigira
* xi:include: Y. C. Shen but txt: Y. Shen
-->

<reference anchor="I-D.jeong-ipwave-vehicular-mobility-management">
  <front>
    <title>Vehicular Mobility Management for IP-Based Vehicular Networks</title>
    <author initials="J." surname="Jeong" fullname="Jaehoon Paul Jeong" role="editor">
      <organization>Department of Computer Science and Engineering</organization>
    </author>
    <author initials="B." surname="Mugabarigira" fullname="Bien Aime Mugabarigira">
      <organization>Department of Electrical and Computer Engineering</organization>
    </author>
    <author initials="Y." surname="Shen" fullname="Yiwen Chris Shen">
      <organization>Department of Electrical and Computer Engineering</organization>
    </author>
    <author initials="H." surname="Jung" fullname="Hyeonah Jung">
      <organization>Department of Computer Science and Engineering</organization>
    </author>
    <date month="February" day="4" year="2023"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-jeong-ipwave-vehicular-mobility-management-09"/>
</reference>

<!-- [I-D.jeong-ipwave-security-privacy] IESG state I-D Exists

Changed to long version because:
* xi:include: J. P. Jeong but I-D header: J. Jeong, Ed.
* xi:include: Y. C. Shen but I-D header: Y. Shen
* xi:include: J. Jung-Soo but I-D header: J. Park
* xi:include: T. T. Oh but I-D header: T. Oh
-->

<reference anchor="I-D.jeong-ipwave-security-privacy">
  <front>
    <title>Basic Support for Security and Privacy in IP-Based Vehicular Networks</title>
    <author initials="J." surname="Jeong" fullname="Jaehoon Paul Jeong" role="editor">
      <organization>Department of Computer Science and Engineering</organization>
    </author>
    <author initials="Y." surname="Shen" fullname="Yiwen Chris Shen">
      <organization>Department of Computer Science and Engineering</organization>
    </author>
    <author initials="H." surname="Jung" fullname="Hyeonah Jung">
      <organization>Department of Computer Science and Engineering</organization>
    </author>
    <author initials="J." surname="Park" fullname="Park Jung-Soo">
      <organization>Electronics and Telecommunications Research Institute</organization>
    </author>
    <author initials="T." surname="Oh" fullname="Tae (Tom) Oh">
      <organization>Golisano College of Computing and Information Sciences</organization>
    </author>
    <date month="July" day="25" year="2022"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-jeong-ipwave-security-privacy-06"/>
</reference>

        <!-- END: IETF RFCs and Drafts -->

<!-- START: Other Standardization Body Documents -->

    <reference anchor="DSRC">
          <front>
            <title>Standard Specification for Telecommunications and
            Information Exchange Between Roadside and Vehicle Systems - 5 GHz
            Band Dedicated Short Range Communications (DSRC) Medium Access
            Control (MAC) and Physical Layer (PHY) Specifications</title>
            <author>
              <organization>
                ASTM International
              </organization>
            </author>
            <date month="October" year="2010" /> month="September" year="2018"/>
          </front>
          <seriesInfo name="ASTM" value="E2213-03(2010)" /> value="E2213-03(2010)"/>
	  <seriesInfo name="DOI" value="10.1520/E2213-03R10"/>
        </reference>

        <reference anchor="EU-2008-671-EC"> anchor="EU-2008-671-EC" target="https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008D0671&amp;rid=7">
          <front>
            <title>Commission Decision
            <title>COMMISSION DECISION of 5 August 2008 on the Harmonised Use harmonised use
            of Radio Spectrum radio spectrum in the 5875 - 5905 5 875-5 905 MHz Frequency Band frequency band for Safety-related Applications
            safety-related applications of Intelligent Transport Systems
            (ITS)</title>
            <author>
              <organization>
                European Union
              </organization>
            </author>
            <date month="August" year="2008" /> year="2008"/>
          </front>
          <seriesInfo name="EU" value="2008/671/EC" /> value="2008/671/EC"/>
        </reference>

        <reference anchor="IEEE-802.11p">
          <front>
            <title>Part
            <title>IEEE Standard for Information technology-- Local and
            metropolitan area networks-- Specific requirements-- Part 11:
            Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
            Specifications - Amendment 6: Wireless Access in Vehicular
            Environments</title>
            <author surname="IEEE 802.11 Working Group" />
	    <author>
	      <organization>IEEE</organization>
	    </author>
            <date month="June" year="2010" /> month="July" year="2010"/>
          </front>
	  <seriesInfo name="DOI" value="10.1109/IEEESTD.2010.5514475"/>
          <seriesInfo name="IEEE" value="Std 802.11p-2010" /> 802.11p-2010"/>
        </reference>

        <reference anchor="IEEE-802.11-OCB">
          <front>
            <title>Part
            <title>IEEE Standard for Information technology -
            Telecommunications and information exchange between systems Local
            and metropolitan area networks-Specific requirements - Part 11:
            Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
            Specifications</title>
    		<author surname="IEEE 802.11 Working Group" />
            <author>
	      <organization>IEEE</organization>
	    </author>
            <date month="December" year="2016" /> year="2016"/>
          </front>
	  <seriesInfo name="DOI" value="10.1109/IEEESTD.2016.7786995"/>
          <seriesInfo name="IEEE" value="Std 802.11-2016" /> 802.11-2016"/>
        </reference>

        <reference anchor="WAVE-1609.0">
          <front>
            <title>IEEE Guide for Wireless Access in Vehicular Environments (WAVE) - Architecture</title>
            <author initials="" surname="IEEE 1609 Working Group" />
            <author>
	      <organization>IEEE</organization>
	    </author>
            <date month="March" year="2014" /> year="2014"/>
          </front>
	  <seriesInfo name="DOI" value="10.1109/IEEESTD.2014.6755433"/>
          <seriesInfo name="IEEE" value="Std 1609.0-2013" /> 1609.0-2013"/>
        </reference>

        <reference anchor="WAVE-1609.2">
          <front>
            <title>IEEE Standard for Wireless Access in Vehicular Environments - Security Services for Applications and Management Messages</title>
            <author initials="" surname="IEEE 1609 Working Group" />
            <author>
	      <organization>IEEE</organization>
	    </author>
            <date month="March" year="2016" /> year="2016"/>
          </front>
	  <seriesInfo name="DOI" value="10.1109/IEEESTD.2016.7426684"/>
          <seriesInfo name="IEEE" value="Std 1609.2-2016" /> 1609.2-2016"/>
        </reference>

        <reference anchor="WAVE-1609.3">
          <front>
            <title>IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services</title>
            <author initials="" surname="IEEE 1609 Working Group" />
	    <author>
	      <organization>IEEE</organization>
	    </author>
            <date month="April" year="2016" /> year="2016"/>
          </front>
	  <seriesInfo name="DOI" value="10.1109/IEEESTD.2016.7458115"/>
          <seriesInfo name="IEEE" value="Std 1609.3-2016" /> 1609.3-2016"/>
        </reference>

        <reference anchor="WAVE-1609.4">
          <front>
            <title>IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-Channel Operation</title>
            <author initials="" surname="IEEE 1609 Working Group" />
	    <author>
	      <organization>IEEE</organization>
	    </author>
            <date month="March" year="2016" /> year="2016"/>
          </front>
	  <seriesInfo name="DOI" value="10.1109/IEEESTD.2016.7435228"/>
          <seriesInfo name="IEEE" value="Std 1609.4-2016" /> 1609.4-2016"/>
        </reference>

        <reference anchor="ISO-ITS-IPv6"> anchor="ISO-ITS-IPv6" target="https://www.iso.org/standard/46549.html">
          <front>
            <title>Intelligent Transport Systems transport systems - Communications Access access for Land Mobiles
            land mobiles (CALM) - IPv6 Networking</title>
            <author initials="" surname="ISO/TC 204" />
            <author>
	      <organization>ISO/TC 204</organization>
	    </author>
            <date month="June" year="2012" /> year="2012"/>
          </front>
          <seriesInfo name="ISO" value="21210:2012" /> value="21210:2012"/>
        </reference>

        <reference anchor="ISO-ITS-IPv6-AMD1"> anchor="ISO-ITS-IPv6-AMD1" target="https://www.iso.org/standard/65691.html">
          <front>
            <title>Intelligent Transport Systems transport systems - Communications Access access for Land Mobiles land mobiles (CALM) - IPv6 Networking - Amendment 1</title>
            <author initials="" surname="ISO/TC 204" />
            <author>
	      <organization>ISO/TC 204</organization>
	    </author>
            <date month="September" year="2017" /> year="2017"/>
          </front>
          <seriesInfo name="ISO" value="21210:2012/AMD 1:2017" /> 1:2017"/>
        </reference>

        <reference anchor="TS-23.285-3GPP"> anchor="TS-23.285-3GPP" target="https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3078">
          <front>
            <title>Architecture Enhancements enhancements for V2X Services</title> services</title>
            <author>
                <organization>
                3GPP
                </organization>
              <organization>3GPP</organization>
            </author>
            <date month="December" year="2019" /> year="2019"/>
          </front>
	  <seriesInfo name="3GPP TS" value="23.285/Version 16.2.0" /> value="23.285 16.2.0"/>
        </reference>

        <reference anchor="TR-22.886-3GPP"> anchor="TR-22.886-3GPP" target="https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3108">
          <front>
            <title>Study on Enhancement enhancement of 3GPP Support support for 5G V2X Services</title> services</title>
            <author>
                <organization>
                3GPP
                </organization>
              <organization>3GPP</organization>
            </author>
            <date month="December" year="2018" /> year="2018"/>
          </front>
          <seriesInfo name="3GPP TR" value="22.886/Version 16.2.0" /> TS" value="22.886 16.2.0"/>
        </reference>

        <reference anchor="TS-23.287-3GPP"> anchor="TS-23.287-3GPP" target="https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3578">
          <front>
            <title>Architecture Enhancements enhancements for 5G System (5GS) to Support support Vehicle-to-Everything (V2X) Services</title> services</title>
            <author>
                <organization>
                3GPP
                </organization>
              <organization>3GPP</organization>
            </author>
            <date month="March" year="2020" /> year="2020"/>
          </front>
          <seriesInfo name="3GPP TS" value="23.287/Version 16.2.0" /> value="23.287 16.2.0"/>
        </reference>

        <!-- END: Other Standardization Body Documents -->

<!-- START: Papers -->
         <reference anchor="VIP-WAVE">
          <front>
            <title>VIP-WAVE: On the Feasibility of IP Communications in 802.11p Vehicular Networks</title>
            <author initials="S." surname="Cespedes" /> surname="Cespedes"/>
            <author initials="N." surname="Lu" /> surname="Lu"/>
            <author initials="X." surname="Shen" /> surname="Shen"/>
            <date month="March" year="2013" /> year="2013"/>
          </front>
	  <seriesInfo name="IEEE" value="Transactions name="DOI" value="10.1109/TITS.2012.2206387"/>
          <refcontent>IEEE Transactions on Intelligent Transportation Systems, vol. Volume 14, no. 1" /> Issue 1, pp. 82-97</refcontent>
        </reference>

        <reference anchor="Identity-Management"> anchor="Identity-Management" target="https://www.eurecom.fr/fr/publication/3205">
          <front>
            <title>Cross-layer Identities Management identities management in ITS Stations</title> stations</title>
            <author initials="M." surname="Wetterwald" /> surname="Wetterwald"/>
            <author initials="F." surname="Hrizi" /> surname="Hrizi"/>
            <author initials="P." surname="Cataldi" /> surname="Cataldi"/>
            <date month="November" year="2010" /> year="2010"/>
          </front>
        <seriesInfo name="The" value="10th
          <refcontent>10th IEEE International Conference on ITS Telecommunications" /> Telecommunications</refcontent>
        </reference>

        <reference anchor="SAINT">
          <front>
            <title>SAINT: Self-Adaptive Interactive Navigation Tool for Cloud-Based Vehicular Traffic Optimization</title>
            <author initials="J." surname="Jeong" /> surname="Jeong"/>
            <author initials="H." surname="Jeong" /> surname="Jeong"/>
            <author initials="E." surname="Lee" /> surname="Lee"/>
            <author initials="T." surname="Oh" /> surname="Oh"/>
            <author initials="D." surname="Du" /> initials="D. H. C." surname="Du"/>
            <date month="June" year="2016" /> year="2016"/>
          </front>
	  <seriesInfo name="IEEE" value="Transactions name="DOI" value="10.1109/TVT.2015.2476958"/>
          <refcontent>IEEE Transactions on Vehicular Technology, Vol. Volume 65, No. 6" /> Issue 6, pp. 4053-4067</refcontent>
        </reference>

        <reference anchor="SAINTplus">
          <front>
            <title>SAINT+: Self-Adaptive Interactive Navigation Tool+ for Emergency Service Delivery Optimization</title>
            <author initials="Y." surname="Shen" /> surname="Shen"/>
            <author initials="J." surname="Lee" /> surname="Lee"/>
            <author initials="H." surname="Jeong" /> surname="Jeong"/>
            <author initials="J." surname="Jeong" /> surname="Jeong"/>
            <author initials="E." surname="Lee" /> surname="Lee"/>
            <author initials="D." surname="Du" /> initials="D. H. C." surname="Du"/>
            <date month="June" year="2017" /> year="2017"/>
          </front>
          <seriesInfo name="IEEE" value="Transactions name="DOI" value="10.1109/TITS.2017.2710881"/>
          <refcontent>IEEE Transactions on Intelligent Transportation Systems" /> Systems, Volume 19, Issue 4, pp. 1038-1053</refcontent>
        </reference>

        <reference anchor="SANA">
          <front>
            <title>SANA: Safety-Aware Navigation Application for Pedestrian Protection in Vehicular Networks</title>
            <author initials="T." surname="Hwang" /> surname="Hwang"/>
            <author initials="J." surname="Jeong" /> surname="Jeong"/>
            <date month="December" year="2015" /> year="2015"/>
          </front>
	  <seriesInfo name="Springer" value="Lecture name="DOI" value="10.1007/978-3-319-27293-1_12"/>
          <refcontent>Lecture Notes in Computer Science (LNCS), Vol. 9502" /> book series (LNISA, Volume 9502)</refcontent>
        </reference>

        <reference anchor="CASD">
          <front>
            <title>CASD: A Framework of Context-Awareness Safety Driving in Vehicular Networks</title>
            <author initials="Y." surname="Shen" /> surname="Shen"/>
            <author initials="J." surname="Jeong" /> surname="Jeong"/>
            <author initials="T." surname="Oh" /> surname="Oh"/>
            <author initials="S." surname="Son" /> initials="S. H." surname="Son"/>
            <date month="March" year="2016" /> year="2016"/>
          </front>
          <seriesInfo name="International Workshop" value="on Device Centric Cloud (DC2)" /> name="DOI" value="10.1109/WAINA.2016.74"/>
          <refcontent>30th International Conference on Advanced Information
          Networking and Applications Workshops (WAINA)</refcontent>
        </reference>

        <reference anchor="CNP">
          <front>
            <title>Context-Aware Navigation Protocol for Safe Driving in Vehicular Cyber-Physical Systems</title>
            <author initials="B." surname="Mugabarigira"/>
            <author initials="Y." surname="Shen"/>
            <author initials="J." surname="Jeong"/>
            <author initials="T." surname="Oh"/>
            <author initials="H." surname="Jeong"/>
            <date month="January" year="2023"/>
          </front>
          <seriesInfo name="DOI" value="10.1109/TITS.2022.3210753"/>
          <refcontent>IEEE Transactions on Intelligent Transportation Systems, Volume 24, Issue 1, pp. 128-138</refcontent>
        </reference>

        <reference anchor="CA-Cruise-Control"> anchor="CA-Cruise-Control" target="https://path.berkeley.edu/research/connected-and-automated-vehicles/cooperative-adaptive-cruise-control">
          <front>
            <title>Cooperative Adaptive Cruise Control</title>
            <author initials="" surname="California
            <author>
	      <organization>California Partners for Advanced Transportation Technology (PATH)" />
            <date month="" year="2022" /> (PATH)</organization>
	      </author>
          </front>
        <seriesInfo name="Available:" value="https://path.berkeley.edu/research/connected-and-automated-vehicles/cooperative-adaptive-cruise-control" />
        </reference>

        <reference anchor="Truck-Platooning"> anchor="Truck-Platooning" target="https://path.berkeley.edu/research/connected-and-automated-vehicles/truck-platooning">
          <front>
            <title>Automated Truck
            <title>Truck Platooning</title>
            <author initials="" surname="California
            <author>
	      <organization>California Partners for Advanced Transportation Technology (PATH)" />
            <date month="" year="2022" /> (PATH)</organization>
	      </author>
          </front>
        <seriesInfo name="Available:" value="https://path.berkeley.edu/research/connected-and-automated-vehicles/truck-platooning" />
        </reference>

        <reference anchor="FirstNet"> anchor="FirstNet" target="https://www.firstnet.gov/">
          <front>
            <title>First Responder Network Authority (FirstNet)</title>
            <author initials="" surname="U.S. National Telecommunications and Information Administration (NTIA)" />
            <date month="" year="2022" /> | FirstNet</title>
            <author>
	      <organization>FirstNet Authority</organization>
	    </author>
          </front>
        <seriesInfo name="Available:" value="https://www.firstnet.gov/" />
        </reference>

        <reference anchor="PSCE"> anchor="PSCE" target="https://www.psc-europe.eu/">
          <front>
            <title>Public
            <title>PSCEurope Public Safety Communications Europe (PSCE)</title>
            <author initials="" surname="European Commission" />
            <date month="" year="2022" /> Europe</title>
            <author>
	      <organization>European Commission</organization>
	    </author>
          </front>
        <seriesInfo name="Available:" value="https://www.psc-europe.eu/" />
        </reference>

        <reference anchor="FirstNet-Report"> anchor="FirstNet-Report" target="https://www.firstnet.gov/system/tdf/FirstNet-Annual-Report-FY2017.pdf?file=1&amp;type=node&amp;id=449">
          <front>
            <title>FY 2017: ANNUAL REPORT TO CONGRESS, Advancing Public Safety
            Broadband Communications</title>
            <author>
                <organization>
                First Responder Network Authority
                </organization>
              <organization>FirstNet</organization>
            </author>
            <date month="December" year="2017" /> year="2017"/>
          </front>
          <seriesInfo name="FirstNet" value="FY 2017" /> 2017"/>
        </reference>

        <reference anchor="SignalGuru">
          <front>
            <title>SignalGuru: Leveraging Mobile Phones leveraging mobile phones for Collaborative
            Traffic Signal Schedule Advisory</title> collaborative
            traffic signal schedule advisory</title>
            <author initials="E." surname="Koukoumidis" /> surname="Koukoumidis"/>
            <author initials="L." surname="Peh" /> surname="Peh"/>
            <author initials="M." surname="Martonosi" /> surname="Martonosi"/>
            <date month="June" year="2011" /> year="2011"/>
          </front>
          <seriesInfo name="ACM" value="MobiSys" /> name="DOI" value="10.1145/1999995.2000008"/>
	  <refcontent>MobiSys '11: Proceedings of the 9th international conference on Mobile systems, applications, and services, pp. 127-140</refcontent>
        </reference>

        <reference anchor="Fuel-Efficient">
          <front>
            <title>Fuel-Efficient En Route Formation of Truck Platoons</title>
            <author initials="S." surname="van de Hoef" /> Hoef"/>
            <author initials="K." surname="H. Johansson" /> surname="Johansson"/>
            <author initials="D." surname="V. Dimarogonas" /> surname="Dimarogonas"/>
            <date month="January" year="2018" /> year="2018"/>
          </front>
	  <seriesInfo name="IEEE" value="Transactions name="DOI" value="10.1109/TITS.2017.2700021"/>
	  <refcontent>IEEE Transactions on Intelligent Transportation Systems" /> Systems, Volume 19, Issue 1, pp. 102-112</refcontent>
        </reference>

        <reference anchor="Automotive-Sensing">
          <front>
            <title>Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing</title>
            <author initials="J." surname="Choi" /> surname="Choi"/>
            <author initials="V." surname="Va" /> surname="Va"/>
            <author initials="N." surname="Gonzalez-Prelcic" /> surname="Gonzalez-Prelcic"/>
            <author initials="R." surname="Daniels" /> surname="Daniels"/>
            <author initials="C." surname="R. Bhat" /> surname="Bhat"/>
            <author initials="R." surname="W. Heath" /> surname="Heath"/>
            <date month="December" year="2016" /> year="2016"/>
          </front>
          <seriesInfo name="IEEE" value="Communications Magazine"/> name="DOI" value="10.1109/MCOM.2016.1600071CM"/>
	  <refcontent>IEEE Communications Magazine, Volume 54, Issue 12, pp. 160-167</refcontent>
        </reference>

        <reference anchor="NHTSA-ACAS-Report"> anchor="NHTSA-ACAS-Report" target="https://one.nhtsa.gov/people/injury/research/pub/ACAS/ACAS_index.htm">
          <front>
            <title>Final Report of Automotive
            <title>Automotive Collision Avoidance Systems (ACAS) Program</title> Program Final Report</title>
            <author>
              <organization>
                National Highway Traffic Safety Administration (NHTSA)
              </organization>
            </author>
            <date month="August" year="2000" /> year="2000"/>
          </front>
          <seriesInfo name="DOT" value="HS 809 080" /> 080"/>
        </reference>

        <reference anchor="CBDN">
          <front>
            <title>CBDN: Cloud-Based Drone Navigation for Efficient Battery Charging
            in Drone Networks</title>
            <author initials="J." surname="Kim" /> surname="Kim"/>
            <author initials="S." surname="Kim" /> surname="Kim"/>
            <author initials="J." surname="Jeong" /> surname="Jeong"/>
            <author initials="H." surname="Kim" /> surname="Kim"/>
            <author initials="J." surname="Park" /> surname="Park"/>
            <author initials="T." surname="Kim" /> surname="Kim"/>
            <date month="November" year="2019" /> year="2019"/>
          </front>
          <seriesInfo name="IEEE" value="Transactions name="DOI" value="10.1109/TITS.2018.2883058"/>
	  <refcontent>IEEE Transactions on Intelligent Transportation Systems" /> Systems, Volume 20, Issue 11, pp. 4174-4191</refcontent>
        </reference>

        <reference anchor="LIFS">
          <front>
            <title>Low Human-Effort, Device-Free Localization with
                Fine-Grained Subcarrier Information</title>
            <author initials="J." surname="Wang" /> surname="Wang"/>
            <author initials="J." surname="Xiong" /> surname="Xiong"/>
            <author initials="H." surname="Jiang" /> surname="Jiang"/>
            <author initials="K." surname="Jamieson" /> surname="Jamieson"/>
            <author initials="X." surname="Chen" /> surname="Chen"/>
            <author initials="D." surname="Fang" /> surname="Fang"/>
            <author initials="C." surname="Wang" /> surname="Wang"/>
            <date month="November" year="2018" /> year="2018"/>
          </front>
          <seriesInfo name="IEEE" value="Transactions name="DOI" value="10.1109/TMC.2018.2812746"/>
          <refcontent>IEEE Transactions on Mobile Computing" /> Computing, Volume 17, Issue 11, pp. 2550-2563</refcontent>
        </reference>

        <reference anchor="DFC">
          <front>
            <title>DFC: Device-free human counting through WiFi
                fine-grained subcarrier information</title>
            <author initials="J." surname="Jeong" /> surname="Jeong"/>
            <author initials="Y." surname="Shen" /> surname="Shen"/>
            <author initials="S." surname="Kim" /> surname="Kim"/>
            <author initials="D." surname="Choe" /> surname="Choe"/>
            <author initials="K." surname="Lee" /> surname="Lee"/>
            <author initials="Y." surname="Kim" /> surname="Kim"/>
            <date month="January" year="2021" /> month="February" year="2021"/>
          </front>
	  <seriesInfo name="IET" value="Communications" /> name="DOI" value="10.1049/cmu2.12043"/>
          <refcontent>IET Communications, Volume 15, Issue 3, pp. 337-350</refcontent>
        </reference>

        <reference anchor="In-Car-Network">
          <front>
            <title>Challenges in a Future future IP/Ethernet-based In-Car Network in-car network for Real-Time Applications</title> real-time applications</title>
            <author initials="H." surname="Lim" /> surname="Lim"/>
            <author initials="L." surname="Volker" /> surname="Volker"/>
            <author initials="D." surname="Herrscher" /> surname="Herrscher"/>
            <date month="June" year="2011" /> year="2011"/>
          </front>
	  <seriesInfo name="ACM/EDAC/IEEE" value="Design name="DOI" value="10.1145/2024724.2024727"/>
          <refcontent>Proceedings of the 48th Design Automation Conference (DAC)"/> Conference, pp. 7-12</refcontent>
        </reference>

        <reference anchor="Scrambler-Attack">
          <front>
            <title>The Scrambler Attack: scrambler attack: A Robust Physical Layer Attack robust physical layer attack on Location Privacy location privacy in Vehicular Networks</title> vehicular networks</title>
            <author initials="B." surname="Bloessl" /> surname="Bloessl"/>
            <author initials="C." surname="Sommer" /> surname="Sommer"/>
            <author initials="F." surname="Dressier" /> surname="Dressier"/>
            <author initials="D." surname="Eckhoff" /> surname="Eckhoff"/>
            <date month ="February" year="2015" /> month="February" year="2015"/>
          </front>
          <seriesInfo name="IEEE" value="2015 name="DOI" value="10.1109/ICCNC.2015.7069376"/>
	  <refcontent>2015 International Conference on Computing, Networking and Communications (ICNC)" /> (ICNC)</refcontent>
        </reference>

        <reference anchor="Bitcoin"> anchor="Bitcoin" target="https://bitcoin.org/bitcoin.pdf">
          <front>
            <title>Bitcoin: A Peer-to-Peer Electronic Cash System</title>
            <author initials="S." surname="Nakamoto" />
            <date month="May" year="2009" /> surname="Nakamoto"/>
          </front>
        <seriesInfo name="URL:" value="https://bitcoin.org/bitcoin.pdf" />
        </reference>

        <reference anchor="Vehicular-BlockChain">
          <front>
            <title>BlockChain: A Distributed Solution to Automotive Security and Privacy</title>
            <author initials="A." surname="Dorri" /> surname="Dorri"/>
            <author initials="M." surname="Steger" /> surname="Steger"/>
            <author initials="S." surname="Kanhere" /> surname="Kanhere"/>
            <author initials="R." surname="Jurdak" /> surname="Jurdak"/>
            <date month="December" year="2017" /> year="2017"/>
          </front>
	  <seriesInfo name="IEEE" value="Communications name="DOI" value="10.1109/MCOM.2017.1700879"/>
          <refcontent>IEEE Communications Magazine, Vol. Volume 55, No. 12" /> Issue 12, pp. 119-125</refcontent>
        </reference>

        <reference anchor="FCC-ITS-Modification"> anchor="FCC-ITS-Modification" target="https://www.fcc.gov/document/fcc-modernizes-59-ghz-band-improve-wi-fi-and-automotive-safety-0">
          <front>
            <title>Use of the 5.850-5.925
            <title>FCC Modernizes 5.9 GHz Band, First Report and Order,
                Further Notice of Proposed Rulemaking, Band to Improve Wi-Fi and Order of Proposed
                Modification, FCC 19-138</title> Automotive Safety</title>
            <author>
              <organization>
                Federal Communications Commission
              </organization>
            </author>
            <date month="November" year="2020" /> year="2020"/>
          </front>
        <seriesInfo name="Available:" value="https://www.fcc.gov/document/fcc-modernizes-59-ghz-band-improve-wi-fi-and-automotive-safety-0" />
        </reference>

        <reference anchor="Fake-Identifier-Attack"> anchor="Fake-Identifier-Attack" target="https://www.abc.net.au/news/2020-02-04/man-creates-fake-traffic-jam-on-google-maps-by-carting-99-phones/11929136">
          <front>
            <title>German man fools
            <title>Berlin artist uses handcart full of smartphones to trick Google Maps' traffic algorithm</title>
            <author initials="" surname="ABC News" /> algorithm into thinking there is traffic jam</title>
            <author><organization>ABC News</organization></author>
            <date month="February" year="2020" /> year="2020"/>
          </front>
        <seriesInfo name="Available:" value="https://www.abc.net.au/news/2020-02-04/man-creates-fake-traffic-jam-on-google-maps-by-carting-99-phones/11929136" />
        </reference>

        <reference anchor="Google-Maps"> anchor="Google-Maps" target="https://www.google.com/maps/">
          <front>
            <title>Google Maps</title>
            <author initials="" surname="Google" />
            <date month="" year="2022" />
            <author><organization>Google</organization></author>
          </front>
        <seriesInfo name="Available:" value="https://www.google.com/maps/" />
        </reference>

        <reference anchor="Waze"> anchor="Waze" target="https://www.waze.com/">
          <front>
            <title>Google Maps</title>
            <author initials="" surname="Google" />
            <date month="" year="2022" />
            <title>Waze</title>
            <author><organization>Google</organization></author>
          </front>
        <seriesInfo name="Available:" value="https://www.waze.com/" />
        </reference>
        <!-- END: Papers -->

</references>
    </references>
    <!--
START: Appendices
-->
<section anchor="appendix:Support-of-Multiple-Radio-Technologies-for-V2V"
title="Support anchor="appendix_Support-of-Multiple-Radio-Technologies-for-V2V" numbered="true" toc="default">
      <name>Support of Multiple Radio Technologies for V2V"> V2V</name>
      <t>
    Vehicular networks may consist of multiple radio technologies technologies, such as
    DSRC and 5G V2X. V2X (or LTE V2X).  Although a Layer-2 Layer 2 solution can provide support for
    multihop communications in vehicular networks, the scalability issue
    related to multihop forwarding still remains when vehicles need to
    disseminate or forward packets toward multihop-away destinations. destinations that are multiple hops away.  In
    addition, the IPv6-based approach for V2V as a network layer network-layer protocol can
    accommodate multiple radio technologies as MAC protocols, such as DSRC and
    5G V2X. V2X (or LTE V2X). Therefore, the existing IPv6 protocol can be augmented through the
    addition of a virtual interface (e.g., OMNI
    <xref target="I-D.templin-6man-omni" /> target="I-D.templin-intarea-omni" format="default"/>
    and DLEP <xref target="RFC8175" />) format="default"/>) and/or
    protocol changes in order to support both wireless single-hop/multihop V2V
    communications and multiple radio technologies in vehicular networks.
    In such a way, vehicles can communicate with each other by V2V
    communications to share either an emergency situation or road hazard
    information in on a highway having multiple kinds of radio technologies.
      </t>
    </section>
    <section anchor="appendix:Support-of-Multihop-V2X"
title="Support anchor="appendix_Support-of-Multihop-V2X" numbered="true" toc="default">
      <name>Support of Multihop V2X Networking"> Networking</name>
      <t>
    The multihop V2X networking can be supported by
    RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks)
    <xref target="RFC6550" /> format="default"/> and Overlay Multilink Network
    Interface (OMNI) <xref target="I-D.templin-6man-omni" /> target="I-D.templin-intarea-omni" format="default"/> with
    AERO <xref target="I-D.templin-6man-aero" /> . target="I-D.templin-intarea-aero" format="default"/>.
      </t>
      <t>
    RPL defines an IPv6 routing protocol for low-power Low-Power and lossy
    networks (LLN), Lossy
    Networks (LLNs) as being mostly designed for home automation routing,
    building automation routing, industrial routing, and urban
    LLN routing. It uses a Destination-Oriented Directed Acyclic
    Graph (DODAG) to construct routing paths for hosts
    (e.g., IoT devices) in a network. The DODAG uses an objective
    function Objective
    Function (OF) for route selection and optimization within the
    network. A user can use different routing metrics to define an OF
    for a specific scenario. RPL supports multipoint-to-point,
    point-to-multipoint, and point-to-point traffic, traffic; and the major
    traffic flow is the multipoint-to-point traffic. For example, in
    a highway scenario, a vehicle may not access an IP-RSU directly
    because of the distance of the DSRC coverage (up to 1 km). In
    this case, the RPL can be extended to support a multihop V2I
    since a vehicle can take advantage of other vehicles as relay
    nodes to reach the IP-RSU. Also, RPL can be extended to support both
    multihop V2V and V2X in the similar way.
      </t>
      <t>
    RPL is primarily designed to minimize the control plane activity,
    which is the relative amount of routing protocol exchanges versus data
    traffic; this approach is beneficial for situations where the power
    and bandwidth are scarce (e.g., an IoT LLN where RPL is typically
    used today), but also in situations of high relative mobility between
    the nodes in the network (also known as swarming, e.g., within a variable set of
    vehicles with a similar global motion, or a variable set of drones flying
    toward the same direction).
      </t>
      <t>
    To reduce the routing exchanges, RPL leverages a Distance Vector (DV)
    approach, which does not need a global knowledge of the topology,
    and only optimizes the routes to and from the root, allowing
    Peer-to-Peer
    peer-to-peer (P2P) paths to be stretched. Although RPL installs its
    routes proactively, it only maintains them lazily, that is, in
    reaction to actual traffic, traffic or as a slow background activity.
    Additionally, RPL leverages the concept of an objective function
    (called OF), OF,
    which allows adapting the activity of the routing
    protocol to use cases, e.g., type, speed, and quality of the
    radios. RPL does not need converge, to converge and provides connectivity to
    most nodes most of the time. The default route toward the root is
    maintained aggressively and may change while a packet progresses
    without causing loops, so the packet will still reach the root.

    There are two modes for routing in RPL such as RPL: non-storing mode
    and storing mode. In non-storing mode, a node inside the
    mesh/swarm
    mesh or swarm that changes its point(s) of attachment to the graph
    informs the root with a single unicast packet flowing along the
    default route, and the connectivity is restored immediately; this
    mode is preferable for use cases where Internet connectivity is
    dominant. On the other hand, in storing mode, the routing stretch
    is reduced, reduced for a better P2P connectivity, while and the Internet
    connectivity is restored more slowly, slowly during the time for the DV
    operation to operate hop-by-hop. While an RPL topology can
    quickly scale up and down and fits fit the needs of mobility of
    vehicles, the total performance of the system will also depend on
    how quickly a node can form an address, join the mesh (including
    Authentication, Authorization, and Accounting (AAA)), and manage
    its global mobility to become reachable from another node outside
    the mesh.
      </t>
      <t>
    OMNI defines a protocol for the transmission of IPv6 packets over
    Overlay Multilink Network Interfaces that are virtual interfaces
    governing multiple physical network interfaces.
    OMNI supports multihop V2V communication between vehicles
    in multiple forwarding hops via intermediate vehicles with OMNI links.
    It also supports multihop V2I communication between a vehicle and an
    infrastructure access point by multihop V2V communication.
    The OMNI interface supports an NBMA link model where multihop V2V and
    V2I communications use each mobile node's ULAs without need for any DAD
    or MLD Messaging. messaging.
      </t>
      <t>
    In the OMNI protocol, an OMNI virtual interface can have a ULA
    <xref target="RFC4193"/> target="RFC4193" format="default"/> indeed, but wireless physical
    interfaces associated with the OMNI virtual interface are using can use any prefix. prefixes.
    The ULA supports both V2V and V2I multihop forwarding within the
    vehicular network (e.g., via a VANET routing protocol) while each
    vehicle can communicate with Internet correspondents using global
    IPv6 global addresses via OMNI interface encapsulation over the wireless
    interface.
      </t>
      <t>
    For the control traffic overhead for running both vehicular ND and a VANET
    routing protocol, the AERO/OMNI approach may avoid this issue by using
    MANET routing protocols only (i.e., no multicast of IPv6 ND messaging) in
    the wireless underlay network while applying efficient unicast IPv6 ND
    messaging in the OMNI overlay on an as-needed basis for router discovery
    and NUD. This greatly reduces the overhead for VANET-wide multicasting
    while providing agile accommodation for dynamic topology changes.
      </t>
    </section>
    <section anchor="appendix:Support-of-Mobility-Management"
title="Support anchor="appendix_Support-of-Mobility-Management" numbered="true" toc="default">
      <name>Support of Mobility Management for V2I"> V2I</name>
      <t>
    The seamless application communication between two vehicles or
    between a vehicle
    and an infrastructure node requires mobility management
    in vehicular networks.
    The mobility management schemes include a host-based mobility scheme,
    network-based mobility scheme, and software-defined networking scheme.
      </t>
      <t>
    In the host-based mobility scheme (e.g., MIPv6), an IP-RSU plays a the role
    of a home agent. On the other hand, in the network-based mobility scheme
    (e.g., PMIPv6, PMIPv6), an MA plays a the role of a mobility management controller controller,
    such as a Local Mobility Anchor (LMA) in PMIPv6, which also serves
    vehicles as a home agent, and an IP-RSU plays a the role of an access router router,
    such as a Mobile Access Gateway (MAG) in PMIPv6 <xref target="RFC5213" />. format="default"/>.
	  The host-based mobility scheme needs client functionality in the
    IPv6 stack of a vehicle as a mobile node for mobility signaling
	  message exchange between the vehicle and home agent.
    On the other hand, the network-based mobility scheme does not
    need such a client functionality for of a vehicle because the network
    infrastructure node (e.g., MAG in PMIPv6) as a proxy mobility agent
    handles the mobility signaling message exchange with the home agent
    (e.g., LMA in PMIPv6) for the sake of the vehicle.
      </t>
      <t>
    There are a scalability issue and a route optimization issue in the
    network-based mobility scheme (e.g., PMIPv6) when an MA covers a
    large vehicular network governing many IP-RSUs. In this case, a
    distributed mobility scheme (e.g., DMM <xref target="RFC7429" />) format="default"/>)
    can mitigate the scalability issue by distributing multiple MAs in
    the vehicular network such that they are positioned closer to
    vehicles for route optimization and bottleneck mitigation in a
    central MA in the network-based mobility scheme.
    All these mobility approaches (i.e., a host-based mobility scheme,
    network-based mobility scheme, and distributed mobility scheme) and
    a hybrid approach of a combination of them need to provide an
    efficient mobility service to vehicles moving fast and moving along
    with the relatively predictable trajectories along the roadways.
      </t>
      <t>
    In vehicular networks, the control plane can be separated from
    the data plane for efficient mobility management and data forwarding
    by using the concept of Software-Defined Networking (SDN)
    <xref target="RFC7149" /><xref format="default"/> <xref target="I-D.ietf-dmm-fpc-cpdp" />. format="default"/>.
    Note that Forwarding Policy Configuration (FPC) in <xref target="I-D.ietf-dmm-fpc-cpdp" />, format="default"/>,
	  which is a flexible mobility management system, can manage the
    separation of data-plane data plane and control-plane control plane in DMM.
	  In SDN, the control plane and data plane are separated for the
    efficient management of forwarding elements (e.g., switches and
    routers) where an SDN controller configures the forwarding elements
    in a centralized way way, and they perform packet forwarding according to
    their forwarding tables that are configured by the SDN controller.
    An MA as an SDN controller needs to efficiently configure and
    monitor its IP-RSUs and vehicles for mobility management,
    location management, management and security services.
      </t>
    </section>
    <section anchor="appendix:Support-of-MTU-Diversity"
    title="Support anchor="appendix_Support-of-MTU-Diversity" numbered="true" toc="default">
      <name>Support of MTU Diversity for IP-based IP-Based Vehicular Networks"> Networks</name>
      <t>
    The wireless and/or wired-line links in paths between both mobile
    nodes and fixed network correspondents may configure a variety of
    Maximum Transmission Units (MTUs), where all IPv6 links are required
    to support a minimum MTU of 1280 octets and may  support larger MTUs.
    Unfortunately, determining the path MTU (i.e., the minimum link MTU
    in the path) has proven to be inefficient and unreliable due to the
    uncertain nature of the loss-oriented ICMPv6 messaging service used
    for path MTU discovery. Recent developments have produced a more
    reliable path MTU determination service for TCP <xref target="RFC4821" /> format="default"/>
    and UDP <xref target="RFC8899" /> however format="default"/>; however, the MTUs discovered are
    always limited by the most
    restrictive link MTU in the path (often 1500 octets or smaller).
      </t>
      <t>
    The AERO/OMNI service addresses the MTU issue by introducing a new
    layer in the Internet architecture known as the "OMNI Adaptation Layer
    (OAL)". The OAL allows end systems that configure an OMNI interface
    to utilize a full 65535 octet 65535-octet MTU by leveraging the IPv6 fragmentation
    and reassembly service during encapsulation to produce fragment sizes
    that are assured of traversing the path without loss due to a
    size restriction. (This Thus, this allows end systems to send packets that are
    often much larger than the actual path MTU.) MTU.
      </t>
      <t>
    Performance studies over the course of many decades have proven that
    applications will see greater performance by sending smaller numbers
    of large packets (as opposed to larger numbers of small packets) even
    if fragmentation is needed. The OAL further supports even larger packet
    sizes through the IP Parcels construct
    <xref target="I-D.templin-intarea-parcels" /> format="default"/>,
    which provides "packets-in-packet" encapsulation for a total size up
    to 4MB. 4 MB. Together, the OAL and IP Parcels will provide a revolutionary
    new capability for greater efficiency in both mobile and fixed networks.
    On the other hand, due to the high dynamics highly dynamic nature of vehicular networks,
    a high packet loss may not be able to be avoided. The high packet
    loss on IP parcels Parcels can simultaneously cause multiple TCP sessions
    to experience packet re-transmissions, retransmissions, session time-out, or
    re-establishment of the sessions. Other protocols protocols, such as MPTCP and
    QUIC
    QUIC, may also experience the similar issue. issues. A mechanism for
    mitigating this issue in OAL and IP Parcels should be considered.
      </t>
    </section>
    <!--
END: Appendices
-->

<section title="Acknowledgments"> numbered="false" toc="default">
      <name>Acknowledgments</name>
      <t>
    This work was supported by a grant from the Institute of Information &amp;
    Communications Technology Planning &amp; Evaluation (IITP) grant funded by
    the Korea MSIT (Ministry of Science and ICT) (R-20160222-002755, Cloud based Cloud-based
    Security Intelligence Technology Development for the Customized
    Security Service Provisioning).
      </t>
      <t>
    This work was supported in part by the MSIT, Korea, under the ITRC
    (Information Technology Research Center) support program
    (IITP-2022-2017-0-01633) supervised by the IITP.
      </t>
      <t>
    This work was supported in part by the IITP (2020-0-00395-003, Standard
    Development of Blockchain based Blockchain-based Network Management Automation Technology).
      </t>
      <t>
    This work was supported in part by the French research project DataTweet
	(ANR-13-INFR-0008) and in part by the HIGHTS project funded by the
	European Commission I (636537-H2020).
      </t>
      <t>
    This work was supported in part by the Cisco University Research Program Fund,
    Grant # 2019-199458 (3696), and by ANID Chile Basal Project FB0008.
      </t>
    </section>
    <section anchor="section:Contributors" title="Contributors"> anchor="section_Contributors" numbered="false" toc="default">

      <name>Contributors</name>
      <t>
    This document is a group work of the IPWAVE working group, greatly benefiting
    from inputs and texts by Rex Buddenberg <contact fullname="Rex Buddenberg"/> (Naval
    Postgraduate School),
    Thierry Ernst <contact fullname="Thierry Ernst"/> (YoGoKo), Bokor Laszlo
    <contact fullname="Bokor Laszlo"/> (Budapest University of Technology and
    Economics), Jose <contact fullname="Jose Santa Lozanoi Lozanoi"/> (Universidad of
    Murcia), Richard Roy <contact fullname="Richard Roy"/> (MIT),
    Francois Simon <contact
    fullname="Francois Simon"/> (Pilot), Sri Gundavelli <contact fullname="Sri Gundavelli"/>
    (Cisco), Erik Nordmark, Dirk <contact fullname="Erik Nordmark"/> (Zededa), <contact fullname="Dirk von Hugo
    Hugo"/> (Deutsche Telekom), Pascal Thubert <contact fullname="Pascal Thubert"/> (Cisco), Carlos Bernardos
    <contact fullname="Carlos Bernardos"/> (UC3M),
    Russ Housley <contact fullname="Russ
    Housley"/> (Vigil Security), Suresh Krishnan (Kaloom), Nancy Cam-Winget <contact fullname="Suresh Krishnan"/>
    (Cisco), <contact fullname="Nancy Cam-Winget"/> (Cisco), Fred <contact
    fullname="Fred L. Templin Templin"/> (The Boeing Company), Jung-Soo Park <contact
    fullname="Jung-Soo Park"/> (ETRI), Zeungil <contact fullname="Zeungil (Ben) Kim Kim"/>
    (Hyundai Motors), Kyoungjae Sun <contact fullname="Kyoungjae Sun"/> (Soongsil
    University), Zhiwei Yan <contact fullname="Zhiwei Yan"/> (CNNIC), YongJoon Joe <contact
    fullname="YongJoon Joe"/> (LSware), Peter <contact fullname="Peter E. Yee Yee"/>
    (Akayla), and Erik Kline. <contact fullname="Erik Kline"/> (Aalyria).  The authors sincerely
    appreciate their contributions.
      </t>
      <t>
    The following are co-authors coauthors of this document:
      </t>

    <t>
    Nabil Benamar -
    </t>
    <t>
    Department

   <contact fullname="Nabil Benamar">
     <organization>Department of Computer Sciences,
    High Sciences,</organization>
     <address>
       <postal>
	 <extaddr>High School of Technology of Meknes,
    Moulay Meknes</extaddr>
	 <extaddr>Moulay Ismail University,
    Morocco,

    Phone: +212 University</extaddr>
	 <country>Morocco</country>
       </postal>
       <phone>+212 6 70 83 22 36,
    Email: benamar73@gmail.com
    </t>

    <t>
    Sandra Cespedes -
    </t>
    <t>
    NIC 36</phone>
       <email>benamar73@gmail.com</email>
     </address>
   </contact>

   <contact fullname="Sandra Cespedes">
     <organization>NIC Chile Research Labs,
    Universidad Labs</organization>
     <address>
       <postal>
	 <extaddr>Universidad de Chile,
    Av. Chile</extaddr>
	 <street>Av. Blanco Encalada 1975,
    Santiago,
    Chile,

    Phone: +56 1975</street>
	 <city>Santiago</city>
	 <country>Chile</country>
       </postal>
       <phone>+56 2 29784093,
    Email: scespede@niclabs.cl
    </t>

    <t>
    Jerome Haerri -
    </t>
    <t> 29784093</phone>
       <email>scespede@niclabs.cl</email>
     </address>
   </contact>

   <contact fullname="Jérôme Härri">
     <organization> Communication Systems Department,
    EURECOM,
    Sophia-Antipolis,
    France,

    Phone: +33 Department</organization>
     <address>
       <postal>
	 <extaddr>EURECOM</extaddr>
	 <city>Sophia-Antipolis</city>
	 <country>France</country>
       </postal>
       <phone>+33 4 93 00 81 34,
    Email: jerome.haerri@eurecom.fr
    </t>

    <t>
    Dapeng Liu -
    </t>
    <t>
    Alibaba,
    Beijing, Beijing 100022,
    China,

    Phone: +86 13911788933,
    Email: max.ldp@alibaba-inc.com
    </t>

    <t>
    Tae 34</phone>
       <email>jerome.haerri@eurecom.fr</email>
     </address>
   </contact>

<contact fullname="Dapeng Liu">
  <organization>Alibaba</organization>
  <address>
    <postal>
      <city>Beijing</city>
      <code>100022</code>
      <country>China</country>
    </postal>
    <phone>+86 13911788933</phone>
    <email>max.ldp@alibaba-inc.com</email>
  </address>
</contact>

<contact fullname="Tae (Tom) Oh -
    </t>
    <t>
    Department Oh">
  <organization>Department of Information Sciences and Technologies,
    Rochester Technologies</organization>
  <address>
    <postal>
      <extaddr>Rochester Institute of Technology,
    One Technology</extaddr>
      <street>One Lomb Memorial Drive,
    Rochester, NY 14623-5603,
    USA,

    Phone: +1 Drive</street>
      <city>Rochester</city>
      <region>NY</region><code>14623-5603</code>
      <country>United States of America</country>
    </postal>
    <phone>+1 585 475 7642,
    Email: Tom.Oh@rit.edu
    </t>

    <t>
    Charles 7642</phone>
    <email>Tom.Oh@rit.edu</email>
  </address>
</contact>

       <contact fullname="Charles E. Perkins -
    </t>
    <t>
    Futurewei Inc.,
    2330 Perkins">
	 <organization>Futurewei Inc.</organization>
	 <address>
	   <postal>
	     <street>2330 Central Expressway,
    Santa Clara, CA  95050,
    USA,

    Phone: +1 Expressway,</street>
	     <city>Santa Clara</city>
	     <region>CA</region><code>95050</code>
	     <country>United States of America</country>
	   </postal>

	   <phone>+1 408 330 4586,
    Email: charliep@computer.org
    </t>

    <t>
    Alexandre Petrescu -
    </t>
    <t>
    CEA, 4586,</phone>
	   <email>charliep@computer.org</email>
	 </address>
       </contact>

<contact fullname="Alexandre Petrescu">
  <organization>CEA, LIST, CEA Saclay,
    Gif-sur-Yvette, Île-de-France 91190,
    France,

    Phone: +33169089223,
    Email: Alexandre.Petrescu@cea.fr
    </t>

    <t>
    Yiwen Saclay
  </organization>
  <address>
    <postal>
      <city>Gif-sur-Yvette</city>
      <code>91190</code>
      <country>France</country>
    </postal>
    <phone>+33169089223</phone>
    <email>Alexandre.Petrescu@cea.fr</email>
  </address>
</contact>

       <contact fullname="Yiwen Chris Shen -
    </t>
    <t>
    Department Shen">
	 <organization>Department of Computer Science &amp; Engineering,
    Sungkyunkwan University,
    2066 Engineering</organization>
	 <address>
	   <postal>
	     <extaddr>Sungkyunkwan University</extaddr>
	     <street>2066 Seobu-Ro, Jangan-Gu,
    Suwon, Gyeonggi-Do 16419,
    Republic Jangan-Gu</street>
	     <city>Suwon</city>
	     <region>Gyeonggi-Do</region> <code>16419</code>
	     <country>Republic of Korea,

    Phone: +82 Korea</country>
	   </postal>
	   <phone>+82 31 299 4106,
    Fax:   +82 31 290 7996,
    Email: chrisshen@skku.edu,
    URI: https://chrisshen.github.io
    </t>

    <t>
    Michelle Wetterwald -
    </t>
    <t>
    FBConsulting,
    21, 4106</phone>
	   <email>chrisshen@skku.edu</email>
	   <uri>https://chrisshen.github.io</uri>
	 </address>
       </contact>

       <contact fullname="Michelle Wetterwald">
	 <organization>FBConsulting</organization>
	 <address>
	   <postal>
	     <street>21, Route de Luxembourg,
    Wasserbillig, Luxembourg L-6633,
    Luxembourg,

    Email: Michelle.Wetterwald@gmail.com
    </t> Luxembourg,</street>
	     <city>Wasserbillig,</city><code>L-6633,</code>
	     <country>Luxembourg</country>
	   </postal>
	   <email>Michelle.Wetterwald@gmail.com</email>
	 </address>
       </contact>

</section>
</back>

<!-- <vspace blankLines="100"/> -->
<!-- page break to put addresses onto one page-->

</rfc>