<?xmlversion='1.0' encoding='utf-8'?>version="1.0" encoding="UTF-8"?> <!DOCTYPE rfcSYSTEM "rfc2629-xhtml.ent"> <?rfc toc="yes"?> <?rfc tocompact="yes"?> <?rfc tocdepth="3"?> <?rfc tocindent="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc comments="yes"?> <?rfc inline="yes"?> <?rfc compact="no"?> <?rfc subcompact="no"?> <?rfc authorship="yes"?> <?rfc tocappendix="yes"?>[ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" docName="draft-ietf-raw-ldacs-14" number="9372" submissionType="IETF" category="info" consensus="true" ipr='trust200902' tocInclude="true" symRefs="true" sortRefs="true" tocDepth="3" obsoletes="" updates=""submissionType="IETF"xml:lang="en"version="3" docName="draft-ietf-raw-ldacs-14"> <!-- ***** FRONT MATTER ***** -->version="3"> <front> <titleabbrev='LDACS'>L-bandabbrev='LDACS'>L-Band Digital Aeronautical Communications System (LDACS)</title> <seriesInfo name="RFC" value="9372"/> <author fullname="Nils Mäurer" initials="N." surname="Mäurer" role="editor"> <organization>German Aerospace Center (DLR)</organization> <address> <postal><street ascii="Muenchner Strasse 20">Münchner<street> Münchner Strasse 20</street><!-- Reorder these if your country does things differently --><code>82234</code><city ascii="Wessling">Wessling</city><city>Wessling</city> <region></region> <country>Germany</country> </postal><!--<phone></phone>--><email>Nils.Maeurer@dlr.de</email><!-- uri and facsimile elements may also be added --></address> </author><!--role="editor"--><author fullname="Thomas Gräupl" initials="T." surname="Gräupl" role="editor"> <organization>German Aerospace Center (DLR)</organization> <address> <postal><street ascii="Muenchner Strasse 20">Münchner<street>Münchner Strasse 20</street><!-- Reorder these if your country does things differently --><code>82234</code><city ascii="Wessling">Wessling</city><city>Wessling</city> <region></region> <country>Germany</country> </postal><!--<phone></phone>--><email>Thomas.Graeupl@dlr.de</email><!-- uri and facsimile elements may also be added --></address> </author> <author fullname="Corinna Schmitt" initials="C." surname="Schmitt" role="editor"> <organization>Research Institute CODE, UniBwM</organization> <address> <postal> <street>Werner-Heisenberg-Weg 39</street><!-- Reorder these if your country does things differently --><code>85577</code> <city>Neubiberg</city> <region></region> <country>Germany</country> </postal><!--<phone></phone>--><email>corinna.schmitt@unibw.de</email><!-- uri and facsimile elements may also be added --></address> </author><date/> <area>Routing</area> <workgroup>RAW</workgroup><date year="2023" month="March" /> <area>rtg</area> <workgroup>raw</workgroup> <abstract> <t> This document gives an overview of thearchitecture of theL-band Digital Aeronautical Communications System(LDACS),(LDACS) architecture, which provides a secure,scalablescalable, andspectrum efficientspectrum-efficient terrestrial data link for civil aviation. LDACS is ascheduled,scheduled and reliable multi-application cellular broadband system with support for IPv6. It is part of a larger shift of flight guidance communication moving to IP-based communication. High reliability and availability of IP connectivity over LDACS, as well as security, are therefore essential. The intent of this document is to introduce LDACS to the IETF community, raise awareness on related activities inside and outside of the IETF, and to seek expertise in shaping the shift of aeronautics to IP. </t> </abstract> </front> <middle> <section><name>Introduction</name> <t> One of the main pillars of the modern Air Traffic Management (ATM) system is the existence of a communications infrastructure that enables efficient aircraft control and safe aircraft separation in all phases of flight. Current systems are technicallymaturemature, but they are suffering from the Very High Frequency (VHF) band's increasing saturation in high-density areas and the limitations posed byanalogueanalog radio communications. Therefore, aviation strives for a sustainable modernization of the aeronautical communications infrastructure on the basis of IP. </t> <t> This modernization is realized in two steps: (1) the transition of communicationsdatalinksdata links fromanalogueanalog to digital technologiesand,and (2) the introduction ofIPv6 basedIPv6-based networking protocols <xref target="RFC8200"/> in aeronautical networks <xreftarget="ICAO2015"/>. </t> <t> Steptarget="ICAO2015"/>.</t> <t>Step (1) is realized via ATM communications transitioning fromanalogueanalog VHF voice <xref target="KAMA2010"/> to morespectrum efficientspectrum-efficient digital data communication. For terrestrialcommunicationscommunications, theInternational Civil Aviation Organization (ICAO)'sGlobal Air Navigation Plan (GANP) created by the International Civil Aviation Organization (ICAO) foresees this transition to be realized by the development of the L-band Digital Aeronautical Communications System (LDACS). Since Central Europe has been identified as the area of the world that suffers the most from increased saturation of the VHF band, the initialroll-outrollout of LDACS will likely startthere,there and continue to other increasingly saturated zones such as the East and West Coast of the US and parts of Asia <xref target="ICAO2018"/>. </t> <t>TechnicallyTechnically, LDACS enables IPv6-basedair-groundAir/Ground (A/G) communication related to aviation safety and regularity of flight <xref target="ICAO2015"/>. Passenger communication and similar services are notsupported,supported since only communications related to "safety and regularity of flight" are permitted in protected aviation frequency bands. The particular challenge is that no additional frequencies can be made available for terrestrial aeronauticalcommunication. Itcommunication; thus, it wasthusnecessary to developco-existence mechanism/procedurescoexistence mechanisms and procedures to enable theinterference freeinterference-free operation of LDACS in parallel with other aeronauticalservices/systemsservices and systems in the protected frequency band. Since LDACS will be used for aircraft guidance, high reliability and availability for IP connectivity over LDACS are essential. </t> <t> LDACS is standardized in ICAO and the European Organization for Civil Aviation Equipment (EUROCAE). </t> <t> This document provides information to the IETF community about the aviation industry transition of flight guidance systems from analog to digital, provides context for LDACS relative to related IETF activities <xref target="I-D.haindl-lisp-gb-atn" format="default"/>, and seeks expertise on realizing reliable IPv6 over LDACS for step (1). This document does not intend to advance LDACS as an IETFstandards-trackStandards Track document. </t> <t> Step (2) is a strategy for the worldwideroll-outrollout ofIPv6 capableIPv6-capable digital aeronauticalinter-networking.internetworking. This is called the Aeronautical Telecommunications Network(ATN)/Internet(ATN) / Internet Protocol Suite (IPS) (hence, ATN/IPS). It is specified in theInternational Civil Aviation Organization (ICAO)ICAO document Doc 9896 <xref target="ICAO2015"/>, the Radio Technical Commission for Aeronautics (RTCA) document DO-379 <xref target="RTCA2019"/>, the EUROCAE document ED-262 <xref target="EURO2019"/>, and the Aeronautical Radio Incorporated (ARINC) documentP858858 <xref target="ARI2021"/>. LDACS is subject to these regulations since it provides an "access network"- link-layer datalink -(link-layer data link) to the ATN/IPS. </t> <t> ICAO has chosen IPv6 as a basis for the ATN/IPS mostly for historicalreasons,reasons since a previous architecture based on ISO/OSIprotocols, the ATN/OSI,protocols (the ATN/OSI) failed in the marketplace. </t> <t> In the context of safety-related communications, LDACS will play a major role in future ATM. ATN/IPSdatalinksdata links will provide diversified terrestrial and space-based connectivity in a multilinkconcept,concept called the Future Communications Infrastructure (FCI) <xref target="VIR2021"/>. From a technical point ofviewview, the FCI will realize airbornemulti-homedand multihomed IPv6 networks connected to a global ground network via at least two independent communication technologies. This is considered in more detail in related IETFwork in progressdocuments <xref target="I-D.haindl-lisp-gb-atn" format="default"/> <xref target="I-D.ietf-rtgwg-atn-bgp" format="default"/>. As such, ICAO has actively sought out the support of IETF to define a mobility solution for step (2), which is currently the Locator/ID Separation Protocol (LISP). </t> <t> In the context of the Reliable and Available Wireless (RAW)working group,Working Group, developing options, such as intelligent switching betweendatalinks,data links, for reliably delivering content from and toendpoints,endpoints is foreseen. As LDACS is part of such a concept, the work of RAW is immediately applicable. In general, with the aeronautical communications system transitioning toATN/IPS,ATN/IPS and data being transported via IPv6, closer cooperation and collaboration between the aeronautical and IETF community is desirable. </t> <t> LDACS standardization within the framework of ICAO started in December 2016.TheAs of 2022, the ICAO standardization group has produced the final Standards and Recommended Practices (SARPS) documentas of 2022<xreftarget="ICAO2022"/>. Ittarget="ICAO2022"/> that defines the general characteristics of LDACS. By the end of 2023, the ICAO standardization group plans to have developed an ICAO technicalmanual -manual, which is the ICAO equivalent to a technical standard.As suchThe LDACS standardization is not finishedyet, and thereforeyet; therefore, this document is a snapshot of the current status. The physical characteristics of an LDACS installation (form, fit, and function) will be standardized by EUROCAE. Generally, the group is open to input from all sources and encourages cooperation between the aeronautical andtheIETFcommunity.communities. </t> </section> <section><name>Acronyms</name> <t> The following terms are used in the context of RAW in this document: </t><dlspacing='compact'> <dt>A/A</dt><dd>spacing='compact' indent='13'> <dt>A/A:</dt><dd> Air/Air </dd><dt>A/G</dt><dd><dt>A/G:</dt><dd> Air/Ground </dd><dt>A2G</dt><dd><dt>A2G:</dt><dd> Air-to-Ground </dd><dt>ACARS</dt><dd><dt>ACARS:</dt><dd> Aircraft Communications Addressing and Reporting System </dd><dt>AC-R</dt><dd><dt>AC-R:</dt><dd> Access Router </dd><dt>ADS-B</dt><dd><dt>ADS-B:</dt><dd> Automatic Dependent Surveillance - Broadcast </dd><dt>ADS-C</dt><dd><dt>ADS-C:</dt><dd> Automatic Dependent Surveillance–- Contract </dd><dt>AeroMACS</dt><dd><dt>AeroMACS:</dt><dd> Aeronautical Mobile Airport Communications System </dd><dt>ANSP</dt><dd><dt>ANSP:</dt><dd> Air Traffic Network Service Provider </dd><dt>AOC</dt><dd><dt>AOC:</dt><dd> Aeronautical Operational Control </dd><dt>ARINC</dt><dd><dt>ARINC:</dt><dd> AeronauticalRadio,Radio Incorporated </dd><dt>ARQ</dt><dd><dt>ARQ:</dt><dd> Automatic Repeat reQuest </dd><dt>AS</dt><dd><dt>AS:</dt><dd> Aircraft Station </dd><dt>ATC</dt><dd><dt>ATC:</dt><dd> Air Traffic Control </dd><dt>ATM</dt><dd><dt>ATM:</dt><dd> Air Traffic Management </dd><dt>ATN</dt><dd><dt>ATN:</dt><dd> AeronauticalTelecommunicationTelecommunications Network </dd><dt>ATS</dt><dd><dt>ATS:</dt><dd> Air Traffic Service </dd><dt>BCCH</dt><dd><dt>BCCH:</dt><dd> Broadcast Channel </dd><dt>CCCH</dt><dd><dt>CCCH:</dt><dd> Common Control Channel </dd><dt>CM</dt><dd><dt>CM:</dt><dd> Context Management </dd><dt>CNS</dt><dd><dt>CNS:</dt><dd> Communication Navigation Surveillance </dd><dt>COTS</dt><dd><dt>COTS:</dt><dd> Commercial Off-The-Shelf </dd><dt>CPDLC</dt><dd> Controller Pilot<dt>CPDLC:</dt><dd> Controller-Pilot Data Link Communications </dd><dt>CRL</dt><dd> Certificate Revocation List </dd> <dt>CSP</dt><dd><dt>CSP:</dt><dd> Communications Service Provider </dd><dt>DCCH</dt><dd><dt>DCCH:</dt><dd> Dedicated Control Channel </dd><dt>DCH</dt><dd><dt>DCH:</dt><dd> Data Channel </dd><dt>DiffServ</dt><dd><dt>Diffserv:</dt><dd> Differentiated Services </dd><dt>DLL</dt><dd><dt>DLL:</dt><dd> Data Link Layer </dd><dt>DLS</dt><dd><dt>DLS:</dt><dd> Data Link Service </dd><dt>DME</dt><dd><dt>DME:</dt><dd> Distance Measuring Equipment </dd><dt>DSB-AM</dt><dd><dt>DSB-AM:</dt><dd> Double Side-Band Amplitude Modulation </dd><dt>DTLS</dt><dd><dt>DTLS:</dt><dd> Datagram Transport Layer Security </dd><dt>EUROCAE</dt><dd><dt>EUROCAE:</dt><dd> European Organization for Civil Aviation Equipment </dd><dt>FAA</dt><dd><dt>FAA:</dt><dd> Federal Aviation Administration </dd><dt>FCI</dt><dd><dt>FCI:</dt><dd> Future Communications Infrastructure </dd><dt>FDD</dt><dd><dt>FDD:</dt><dd> Frequency Division Duplex </dd><dt>FL</dt><dd><dt>FL:</dt><dd> Forward Link </dd><dt>GANP</dt><dd><dt>GANP:</dt><dd> Global Air Navigation Plan </dd><dt>GBAS</dt><dd> Ground Based<dt>GBAS:</dt><dd> Ground-Based Augmentation System </dd><dt>GNSS</dt><dd><dt>GNSS:</dt><dd> Global Navigation Satellite System </dd><dt>GS</dt><dd><dt>GS:</dt><dd> Ground-Station </dd><dt>G2A</dt><dd><dt>G2A:</dt><dd> Ground-to-Air </dd><dt>HF</dt><dd><dt>HF:</dt><dd> High Frequency </dd><dt>ICAO</dt><dd><dt>ICAO:</dt><dd> International Civil Aviation Organization </dd><dt>IP</dt><dd><dt>IP:</dt><dd> Internet Protocol </dd><dt>IPS</dt><dd><dt>IPS:</dt><dd> Internet Protocol Suite </dd><dt>kbit/s</dt><dd><dt>kbit/s:</dt><dd> kilobit per second </dd><dt>LDACS</dt><dd><dt>LDACS:</dt><dd> L-band Digital Aeronautical Communications System </dd><dt>LISP</dt><dd><dt>LISP:</dt><dd> Locator/ID Separation Protocol </dd><dt>LLC</dt><dd><dt>LLC:</dt><dd> Logical Link Control </dd><dt>LME</dt><dd><dt>LME:</dt><dd> LDACS Management Entity </dd><dt>MAC</dt><dd><dt>MAC:</dt><dd> Medium Access Control </dd><dt>MF</dt><dd> Multi Frame<dt>MF:</dt><dd> Multiframe </dd><dt>NETCONF</dt><dd> NETCONF<dt>NETCONF:</dt><dd> Network Configuration Protocol </dd><dt>OFDM</dt><dd><dt>OFDM:</dt><dd> OrthogonalFrequency-DivisionFrequency Division Multiplexing </dd><dt>OFDMA</dt><dd><dt>OFDMA:</dt><dd> OrthogonalFrequency-DivisionFrequency Division Multiplexing Access </dd><dt>OSI</dt><dd><dt>OSI:</dt><dd> Open Systems Interconnection </dd><dt>PHY</dt><dd><dt>PHY:</dt><dd> Physical Layer </dd><dt>QPSK</dt><dd><dt>QPSK:</dt><dd> Quadrature Phase-Shift Keying </dd><dt>RACH</dt><dd><dt>RACH:</dt><dd> Random-Access Channel </dd><dt>RL</dt><dd><dt>RL:</dt><dd> Reverse Link </dd><dt>RTCA</dt><dd><dt>RTCA:</dt><dd> Radio Technical Commission for Aeronautics </dd><dt>SARPS</dt><dd><dt>SARPS:</dt><dd> Standards and Recommended Practices </dd><dt>SDR</dt><dd> Software Defined<dt>SDR:</dt><dd> Software-Defined Radio </dd><dt>SESAR</dt><dd><dt>SESAR:</dt><dd> Single European Sky ATM Research </dd><dt>SF</dt><dd><dt>SF:</dt><dd> Super-Frame </dd><dt>SNMP</dt><dd><dt>SNMP:</dt><dd> Simple Network Management Protocol </dd><dt>SNP</dt><dd> Sub-Network<dt>SNP:</dt><dd> Subnetwork Protocol </dd><dt>VDLm2</dt><dd><dt>VDLm2:</dt><dd> VHF Data Link mode 2 </dd><dt>VHF</dt><dd><dt>VHF:</dt><dd> Very High Frequency </dd><dt>VI</dt><dd><dt>VI:</dt><dd> Voice Interface </dd> </dl><t> </t> </section> <section anchor='MotivationUC'><name>Motivation and Use Cases</name> <t> Aircraft are currently connected to Air Traffic Control (ATC) and Aeronautical Operational Control (AOC) services via voice and data communications systems through all phases of flight. ATC refers to communication for flight guidance. AOC is a generic term referring to the business communication ofairlines. Itairlines and refers to the mostly proprietary exchange of data between the aircraft of the airline and the airline's operation centers and service partners. The ARINC document 633 was developed and first released in 2007 <xref target="ARI2019"/> with the goal to standardize these messages for interoperability, e.g., messages between the airline and fueling or de-icing companies. Within the airport and terminal area, connectivity is focused on high bandwidth communications.InHowever, in theEn-Routeen route domain,however,high reliability, robustness, and range are the main foci. Voice communications may use the same or different equipment as data communications systems. In the following, the main differences between voice and data communications capabilities are summarized. The assumed list of use cases for LDACS complements the list of use cases stated in <xref target="I-D.ietf-raw-use-cases" format="default"/> and the list of reliable and available wireless technologies presented in <xref target="I-D.ietf-raw-technologies" format="default"/>. </t> <section anchor='VoiceCom'><name>Voice Communications Today</name> <t> Voice links are used for Air/Ground (A/G) and Air/Air (A/A) communications. The communications equipment can be installed on ground or in the aircraft, in which cases the High Frequency (HF) or VHF frequency band is used. For remotedomainsdomains, voice communications can also be satellite-based. All VHF and HF voice communications are operated via openbroadcast channelsBroadcast Channels (BCCHs) without authentication,encryptionencryption, or other protective measures. The use of well-proven communications procedures viabroadcast channels,BCCHs, such as phraseology or read-backs, requiring well-trainedpersonnel,personnel help to enhance the safety ofcommunications,communications but does not replace necessary cryptographical security mechanisms. The main voice communications media is still theanalogueanalog VHF Double Side-Band Amplitude Modulation (DSB-AM) communicationstechnique,technique supplemented by HF single side-band amplitude modulation and satellite communications for remote and oceanic regions. DSB-AM has been in use since 1948, works reliably and safely, and uses low-cost communication equipment. These are the main reasons why VHF DSB-AM communications are still in use, and it is likely that this technology will remain in service for many more years.This however,However, this results in current operational limitations and impediments in deploying new ATM applications, such as flight-centric operation with point-to-point communications between pilots andair traffic control officers.ATC officers <xreftarget="BOE2019"/>target="BOE2019"/>. </t> </section> <section anchor='DataCom'><name>Data Communications Today</name> <t> Like forvoice,voice communications, data communications into thecockpit,cockpit are currently provided by ground-based equipment operating either on HF or VHF radio bands or by legacy satellite systems. All these communication systems use narrowband radio channels with a data throughput capacity in the order of kbit/s.WhileAdditional communications systems are available while the aircraft is on the ground,some additional communications systems are available, likesuch as the Aeronautical Mobile Airport Communications System (AeroMACS) or public cellular networks,operatingthat operate in the Airport (APT) domain and are able to deliver broadband communicationscapability.capability <xreftarget="BOE2019"/>target="BOE2019"/>. </t> <t> For regulatory reasons, the data communicationsnetworks,networks used for the transmission of data relating to the safety and regularity offlight,flight must be strictly isolated from those providing entertainment services to passengers. This leads to a situationthatwhere the flight crews are supported by narrowband services during flight while passengers have access toinflightin-flight broadband services. The current HF and VHF data links cannot provide broadband services now or in thefuture,future due to the lack of available spectrum. This technical shortcoming is becoming a limitation to enhanced ATM operations, such as trajectory-based operations and 4D trajectorynegotiations.negotiations <xreftarget="BOE2019"/>target="BOE2019"/>. </t> <t> Satellite-based communications are currently underinvestigationinvestigation, and enhanced capabilitiesare under development whichthat will be able to provideinflightin-flight broadband services and communications supporting the safety and regularity offlight.flight are under development. Inparallelparallel, the ground-based broadband data link technology LDACS is being standardized by ICAO and has recently shown its maturity during flight tests <xref target="MAE20211"/> <xref target="BEL2021"/>. The LDACS technology is scalable,securesecure, andspectrum efficientspectrum-efficient, and it provides significant advantages to the users and service providers. It is expected that both-satellite systems and LDACS-will be deployed to support the future aeronautical communication needs as envisaged by the ICAOGlobal Air Navigation Plan (GNAP).GANP <xreftarget="BOE2019"/>target="BOE2019"/>. </t> </section> </section> <section anchor='ProvenanceandDocuments'><name>Provenance and Documents</name> <t> The development of LDACS has already made substantial progress in the Single European Sky ATM Research (SESAR) framework and is currently being continued in the follow-up program SESAR2020 <xref target="RIH2018"/>. A key objective of these activities is to develop,implementimplement, and validate a modern aeronautical data link that is able to evolve with aviation needs over the long term. To this end, an LDACS specification has been produced <xref target="GRA2020"/> and is continuouslyupdated; transmitterupdated. Transmitter demonstrators were developed to test the spectrum compatibility of LDACS with legacy systems operating in the L-band <xreftarget="SAJ2014"/>;target="SAJ2014"/>, and the overall system performance was analyzed by computer simulations, indicating that LDACS canfulfilfulfill the identified requirements <xref target="GRA2011"/>. </t> <t> Up tonownow, LDACS standardization has been focused on the development of thephysical layerPhysical Layer (PHY) and thedata link layer.Data Link Layer (DLL). Only recently have higher layershavecome into the focus of the LDACS development activities. Currently no "IPv6 over LDACS" specification is defined; however, SESAR2020 has started experimenting with IPv6-based LDACS and ICAO plans to seek guidance from IETF to develop IPv6 over LDACS. As of May 2022, LDACS defines1536 Byte user-data1536-byte user data packets <xref target="GRA2020"/> in which IPv6 traffic shall be encapsulated. Additionally, Robust Header Compression (ROHC) <xref target="RFC5795"/> is considered on the LDACSSub-NetworkSubnetwork Protocol (SNP) layer(cf. Section 7.3.3.) <xref target="RFC5795"/>.(cf. <xref target="SNPservice"/>). </t> <t> The IPv6 architecture for the aeronautical telecommunication network is called the ATN/IPS. Link-layer technologies within the ATN/IPS encompass LDACS <xref target="GRA2020"/>, AeroMACS <xreftarget="KAMA2018"/>target="KAMA2018"/>, and several SatCOMcandidates andcandidates; combined with the ATN/IPS, these are called theFCI."FCI". The FCI will support quality of service, link diversity, and mobility under the umbrella of the "multilink concept". The "multilink concept"describingdescribes the idea that depending on link quality, communication can be switched seamlessly from onedatalinkdata link technology to another. This work is led by the ICAO Communication Panelworking group WG-I.Working Group (WG-I). </t> <t> In addition to standardizationactivitiesactivities, several industrial LDACS prototypes have been built. One set of LDACS prototypes has been evaluated in flight trials confirming the theoretical results predicting the system performance <xref target="GRA2018"/> <xref target="MAE20211"/> <xref target="BEL2021"/>. </t> </section> <section anchor='Applicability'><name>Applicability</name> <t> LDACS is a multi-application cellular broadband system capable of simultaneously providing various kinds of Air Traffic Services(ATS)(ATSs) includingATS-B3,ATS-B3 and AOC communications services from deployed Ground-Stations(GS).(GSs). The physical layer and data link layer of LDACS are optimized forcontroller-pilot data link communications,Controller-Pilot Data Link Communications (CPDLC), but the system also supports digitalair-groundA/G voice communications. </t> <t> LDACS supports communications in all airspaces (airport, terminal maneuvering area, anden-route),en route) and on the airport surface. The physical LDACS cell coverage is effectivelyde-coupleddecoupled from the operational coverage required for a particular service. This is new in aeronautical communications. Services requiring wide-area coverage can be installed at several adjacent LDACS cells. The handover between the involved LDACS cells is seamless, automatic, and transparent to the user. Therefore, the LDACS communications concept enables the aeronautical communication infrastructure to support future dynamic airspace management concepts. </t> <section anchor='Advances'><name>AdvancesBeyondbeyond the State of theState-of-the-Art</name>Art</name> <t> LDACS will offer severalcapabilities,capabilities that are not yet provided in contemporarily deployed aeronautical communications systems.All theseThese capabilities were already tested and confirmed in lab or flight trials with available LDACS prototype hardware <xref target="BEL2021"/> <xref target="MAE20211"/>. </t> <section anchor='Priorities'><name>Priorities</name> <t> LDACS is able to manage service priorities, which is an important feature that is not available in some of the current data link deployments. Thus, LDACS guarantees bandwidth availability, low latency, and high continuity of service forsafety criticalsafety-critical ATS applications while simultaneously accommodating less safety-critical AOC services. </t> </section> <section anchor='Security'><name>Security</name> <t> LDACS is a secure data link with built-in security mechanisms. It enables secure data communications for ATS and AOC services, including secured private communications for aircraft operators and AirtrafficTraffic Network Service Providers(ANSP).(ANSPs). This includes concepts for key and trust management,mutual authenticationMutual Authentication andkey establishmentKey Establishment (MAKE) protocols, key derivation measures, user and control message-in-transit protection, securelogginglogging, and availability and robustness measures <xref target="MAE20182"/> <xref target="MAE2021"/>. </t> </section> <section anchor='highdatarates'><name>High Data Rates</name> <t> The user data rate of LDACS is 315 kbit/s to 1428 kbit/s on the Forward Link (FL) for the Ground-to-Air (G2A) connection, and 294 kbit/s to 1390 kbit/s on the Reverse Link (RL) for the Air-to-Ground (A2G) connection, depending on coding and modulation. This is up to two orders of magnitude greater than what current terrestrial digital aeronautical communications systems, such as the VHF Data Link mode 2 (VDLm2),provideprovide; see <xref target="ICAO2019"/> <xref target="GRA2020"/>. </t> </section> </section> <section anchor='application'><name>Application</name> <t> LDACS will be used by several aeronautical applications ranging from enhanced communications protocol stacks(multi-homed(multihomed mobile IPv6 networks in the aircraft and potentially ad-hoc networks between aircraft) to broadcast communication applications(GNSS(Global Navigation Satellite System (GNSS) correction data) and integration with other service domains (using the communications signal for navigation) <xref target="MAE20211"/>. Also, a digital voice service offering better quality and service than current HF and VHF systems is foreseen. </t> <section anchor='MultilinkTechnology'><name>Air/Ground Multilink</name><t> It<t>It is expected that LDACS, together with upgraded satellite-based communications systems, will be deployed within the FCI and constitute one of the main components of the multilink concept within the FCI. </t> <t> Both technologies, LDACS and satellite systems, have their specific benefits and technical capabilitieswhichthat complement each other.Especially, satelliteSatellite systems are especially well-suited for large coverage areas with less dense air traffic,e.g.e.g., oceanic regions. LDACS is well-suited for dense air traffic areas, e.g., continental areas orhot-spotshotspots around airports and terminal airspace. In addition, both technologies offer comparable data linkcapacity and,capacity; thus, both are well-suited for redundancy, mutual back-up, or load balancing. </t> <t>TechnicallyTechnically, the FCI multilink concept will be realized bymulti-homedmultihomed mobile IPv6 networks in the aircraft. The related protocol stack is currently under development by ICAO, within SESAR, and the IETF.CurrentlyCurrently, two layers of mobility are foreseen. Local mobility within the LDACS access network is realized throughPMIPv6,Proxy Mobile IPv6 (PMIPv6), and global mobility between“multi-link”"multilink" access networks (which need not be LDACS) is implemented on top of LISP <xref target="I-D.haindl-lisp-gb-atn" format="default"/> <xreftarget="I-D.ietf-lisp-rfc6830bis"target="RFC9300" format="default"/> <xreftarget="I-D.ietf-lisp-rfc6833bis"target="RFC9301" format="default"/>. </t> </section> <section anchor='A2A'><name>Air/Air Extension for LDACS</name> <t> A potential extension of the multilink concept is its extension to the integration of ad-hoc networks between aircraft. </t> <t> Direct A/A communication between aircraft in terms of ad-hoc data networksareis currently considered a research topic since there is no immediate operational need for it, although several possible use cases are discussed (Automatic Dependent Surveillance - Broadcast (ADS-B), digital voice, wake vortex warnings, and trajectory negotiation) <xref target="BEL2019"/>. It should also benoted,noted that currently deployed analog VHF voice radios support direct voice communication between aircraft, making a similar use case for digital voice plausible. </t> <t> LDACS A/A is currently not a part of the standardization process and will not be covered within this document. However, it is planned that LDACS A/A will be rolled out after the initial deployment of LDACSA/G, then beingA/G and seamlessly integrated in the existing LDACS ground-based system. </t> </section> <section anchor='FlightGuidance'><name>Flight Guidance</name> <t> The FCI (and therefore LDACS) is used to provide flight guidance. This is realized using three applications:</t><dl</t><ol spacing='compact'><dt>1.</dt><dd> Context<li>Context Management (CM): The CM application manages the automatic logical connection to the ATC center currently responsible to guide the aircraft. Currently, this is done by the air crew manually changing VHF voice frequenciesmanuallyaccording to the progress of the flight. The CM application automatically sets up equivalent sessions.</dd> <dt>2.</dt><dd> Controller Pilot</li> <li>Controller-Pilot Data Link Communications (CPDLC): The CPDLC application provides the air crew with the ability to exchange data messages similar to text messages with the currently responsible ATC center. The CPDLC application takes over most of the communication currently performed over VHF voice and enables new services that do not lend themselves to voice communication (i.e., trajectory negotiation).</dd> <dt>3.</dt><dd> Automatic</li> <li>Automatic Dependent Surveillance - Contract (ADS-C): ADS-C reports the position of the aircraft to the currently active ATC center. Reporting is bound to "contracts", i.e., pre-defined events related to the progress of the flight (i.e., the trajectory). ADS-C and CPDLC are the primary applications used for implementing in-flight trajectory management.</dd> </dl></li> </ol> <t> CM, CPDLC, and ADS-C are available on legacydatalinks,data links but are not widely deployed and with limited functionality. </t> <t> Further ATC applications may be ported to use the FCI or LDACS as well. A notable application isGBASthe Ground-Based Augmentation System (GBAS) for secure, automatedlandings:landings. TheGlobal Navigation Satellite System (GNSS) basedGNSS-based GBAS is used to improve the accuracy of GNSS to allowGNSS basedGNSS-based instrument landings. This is realized by sending GNSS correction data (e.g., compensating ionospheric errors in the GNSS signal) to the aircraft's GNSS receiver via a separate data link. Currently, theVDBVHF Data Broadcast (VDB) data link is used. VDB is a narrowband one-way, single-purposedatalinkdata link without advanced security and is only used to transmit GBAS correction data.This makes VDBThese shortcomings show a clear need to replace VDB. A natural candidatefor replacement by LDACSto replace it is LDACS, because it is a bidirectional data link, also operates in non-line-of sight scenarios, offers strong integrated link-layer security, and has a considerably larger operational range than VDB <xref target="MAE20211"/>. </t> </section> <section anchor='BusinessCommunicationofAirlines'><name>Business Communications of Airlines</name> <t> In addition toair traffic services,ATSs, AOC services are transmitted over LDACS. AOC is a generic term referring to the business communication ofairlines,airlines between the airlines and service partners on the ground and their own aircraft in the air. Regulatory-wise, this is considered related to safety and regularity offlight and mayflight; therefore, it may be transmitted over LDACS. AOC communication is considered the main business case for LDACS communications service providers since modern aircraft generate significant amounts of data (e.g., engine maintenance data). </t> </section> <sectionanchor='LDACSNavigation'><name>LDACS-basedanchor='LDACSNavigation'><name>LDACS-Based Navigation</name> <t> Beyond communications, radio signals can alwaysalsobe used fornavigation.navigation as well. This fact is used for the LDACS navigation concept. </t> <t> For future aeronautical navigation, ICAO recommends the further development ofGNSS basedGNSS-based technologies as primary means for navigation.DueHowever, due to the large separation between navigational satellites and aircraft, the power of the GNSS signals received by the aircraftis, however,is very low. As a result, GNSS disruptions might occasionally occur due to unintentionalinterference,interference or intentional jamming.YetYet, the navigation services must be available with sufficient performance for all phases of flight. Therefore, during GNSSoutages,outages or blockages, an alternative solution is needed. This is commonly referred to as Alternative Positioning, Navigation, and Timing (APNT). </t> <t> One such APNT solution is based on exploiting the built-in navigation capabilities of LDACS operation. That is, the normal operation of LDACS for ATC and AOC communications would also directly enable the aircraft to navigate and obtain a reliable timing reference from the LDACS GSs. Current cell planning for Europe shows 84 LDACS cells to be sufficient <xref target="MOST2018"/> to cover the continent at a sufficient service level. If more than threeGround Stations (GS)GSs are visible by the aircraft, via knowing the exact positions of these and having a good channel estimation (which LDACS does due to numerous works mapping the L-band channel characteristics <xreftarget="SCHN2018"/> )target="SCHN2018"/>), it is possible to calculate the position of the aircraft via measuring signal propagation times to each GS. In flight trials in 2019 with one aircraft (and airborne radio inside it) and just fourGS,GSs, navigation feasibility was demonstrated within the footprint of all fourGSGSs with a 95th percentile position-domain error of 171.1m <xref target="OSE2019"/> <xref target="BEL2021"/> <xref target="MAE20211"/>. As such, LDACS can be used independently of GNSS as a navigation alternative. Positioning errors will decrease markedly as moreGSesGSs aredeployed.deployed <xref target="OSE2019"/> <xref target="BEL2021"/> <xreftarget="MAE20211"/>target="MAE20211"/>. </t> <t> LDACS navigation has already been demonstrated in practice in two flight measurement campaigns <xref target="SHU2013"/> <xref target="BEL2021"/> <xref target="MAE20211"/>. </t> </section> </section> </section> <section anchor='RequirementstoLDACS'><name>Requirements</name> <t> The requirements for LDACS are mostly defined by its application area:Communicationscommunications related to safety and regularity of flight. </t> <t> A particularity of the current aeronautical communication landscape is that it is heavily regulated. Aeronautical data links (for applications related to safety and regularity of flight) may only use spectrum licensed to aviation and data links endorsed by ICAO. Nation states can change this locally; however, due to the global scale of the air transportation system, adherence to these practices is to be expected. </t> <t> Aeronautical data links for the ATN are therefore expected to remain in service for decades. The VDLm2 data link currently used for digital terrestrial internetworking was developed in the 1990s (the use of the Open Systems Interconnection (OSI) stack indicates that as well). VDLm2 is expected to be used at least for several decades to come. In thisrespectrespect, aeronautical communications(forfor applications related to safety and regularity offlight)flight is more comparable to industrial applications than to the open Internet. </t> <t> Internetwork technology is already installed in current aircraft. Current ATS applications use either the Aircraft Communications Addressing and Reporting System (ACARS) or the OSI stack. The objective of the development effort of LDACS, as part of the FCI, is to replace legacy OSI stack and proprietary ACARS internetwork technologies with industry standard IP technology. It is anticipated that the use of Commercial Off-The-Shelf (COTS) IP technology mostly applies to the ground network. The avionics networks on the aircraft will likely be heavily modified versions of Ethernet or proprietary. </t> <t> Currently, AOC applicationscurrentlymostly use the same stack (although some applications, like the graphical weatherserviceservice, may use the commercial passenger network). This creates capacity problems (resulting in excessive amounts of timeouts) since the underlying terrestrial data links do not provide sufficient bandwidth (i.e., with VDLm2 currently in the order of 10 kbit/s). The use ofnon- aviation specificnon-aviation-specific data links is considered a security problem.IdeallyIdeally, the aeronautical IPinternetwork, henceinternetwork (hence the ATN over which only communications related to safety and regularity of flight ishandled,handled) and the Internet should be completely separated at Layer 3. </t> <t> The objective of LDACS is to provide anext generationnext-generation terrestrial data link designed to support IP addressing and provide much higher bandwidth to avoid thecurrently experiencedoperationalproblems.problems that are currently experienced. </t> <t> The requirement for LDACS is therefore to provide a terrestrial high-throughput data link for IP internetworking in the aircraft. </t> <t> In order tofulfilfulfill the aboverequirementrequirement, LDACS needs to be interoperable with IP (and IP-based services like Voice-over-IP) at the gateway connecting the LDACS network to other aeronautical ground networks (i.e., the ATN). On the avionics side, in the aircraft,aviation specificaviation-specific solutions are to be expected. </t> <t> In addition to these functional requirements, LDACS and its IP stack need tofulfilfulfill the requirements defined in RTCA DO-350A/EUROCAE ED-228A <xref target="DO350A"/>. This document defines continuity, availability, and integrity requirements at different scopes for eachair traffic managementATM application (CPDLC, CM, and ADS-C). The scope most relevant to IP over LDACS is the Communications Service Provider (CSP) scope. </t> <t> Continuity, availability, and integrity requirements are defined in Volume 1 of <xref target="DO350A"/>volume 1 Table 5-14,in Tables 5-14 andTable6-13. <xref target="appendix"/> presents the required information. </t> <t> In a similar vein, requirements to fault management are defined in the same tables. </t> </section> <section anchor='Characteristics'><name>Characteristics</name> <t> LDACS will become one of several wireless access networks connecting aircraft to the ATN implemented by the FCI. </t> <t> The current LDACS design is focused on the specification oflayer oneLayers 1 andtwo.2. However, for the purpose of this work, onlylayer twoLayer 2 details are discussed here. </t> <t> Achieving the stringent continuity, availability, and integrity requirements defined in <xref target="DO350A"/> will require the specification oflayerLayer 3 and above mechanisms (e.g., reliable crossover at the IP layer). Fault management mechanisms are similarly unspecified as of November 2022. Current regulatory documents do not fully specify the above mechanism yet. However, a short overview of the current state shall be given throughout each section here. </t> <section anchor='LDACSSub-Network'><name>LDACS Access Network</name> <t> An LDACS access network contains an Access Router (AC-R) and severalGS,GSs, each of them providing one LDACS radio cell. </t> <t>User planeUser-plane interconnection to the ATN is facilitated by the AC-R peering with an A/G Router connected to the ATN. </t> <t> The internal control plane of an LDACS access network interconnects the GSs. An LDACS access network is illustrated in <xref target="fig_LDACSwirelesstopology"/>.</t> <figure title="LDACS access network with three GSs and one AS. dashes denotesDashes denote the user plane and points denote the controlplane"plane. </t> <figure title="LDACS Access Network with Three GSs and One AS" anchor="fig_LDACSwirelesstopology"><artwork> <![CDATA[<artwork><![CDATA[ wireless user link plane AS-------------GS---------------AC-R---A/G-----ATN .............. | Router control . | plane . | . | GS----------------| . | . |GS----------------+ ]]> </artwork>GS----------------+]]></artwork> </figure> </section> <section anchor='topology'><name>Topology</name> <t> LDACS is a cellular point-to-multipoint system. It assumes astar-topologystar topology in each cell where Aircraft Stations(AS)(ASs) belonging to aircraft within a certain volume of space (the LDACS cell) are connected to the controlling GS. The LDACS GS is a centralized instance that controls LDACS A/G communications within its cell. The LDACS GS can simultaneously support multiple bidirectional communications to the ASs under its control. LDACS's GSs themselves are connected to each other and the AC-R. </t> <t> Prior to utilizing thesystemsystem, an aircraft has to register with the controlling GS to establish dedicated logical channels for user and control data. Control channels have statically allocatedresources,resources while user channels have dynamically assigned resources according to the current demand. Logical channels exist only between the GS and the AS. </t> </section> <section anchor='LDACSPhysicalLayer'><name>LDACS Protocol Stack</name> <t> The protocol stack of LDACS is implemented in the AS andGS:GS. It consists of thePhysical Layer (PHY)PHY with fivemajor,major functional blocks above it. Four are placed in theData Link Layer (DLL)DLL of the AS and GS:(1)Medium Access Control (MAC)Layer, (2)layer, Voice Interface (VI),(3)Data Link Service (DLS), and(4)LDACS Management Entity (LME). The fifthentityentity, the SNP, resides within thesub-network layer: (5) the Sub-Network Protocol (SNP).subnetwork layer. The LDACS radio is externally connected to a voiceunit,unit and radio controlunit, andunit via the AC-R to the ATN network. </t> <t>LDACS is considered an ATN/IPS radio accesstechnology,technology from the view of ICAO's regulatory framework. Hence, the interface between ATN and LDACS must beIPv6 based,IPv6-based, as regulatorydocuments,documents such as ICAO Doc 9896 <xref target="ICAO2015"/> and DO-379 <xref target="RTCA2019"/> clearly foresee that. The translation between the IPv6 layer and SNP layer is currently the subject of ongoing standardization efforts and not finished yet at the time ofwriting not finished yet.writing. </t> <t> <xref target="fig_LDACSprotocolstack"/> shows the protocol stack of LDACS as implemented in the AS and GS. Acronyms used here are introduced throughout the upcoming sections. </t> <figure title="LDACSprotocol stackProtocol Stack in the AS and GS" anchor="fig_LDACSprotocolstack"><artwork> <![CDATA[<artwork><![CDATA[ IPv6 Network Layer | Airborne Voice | Interface(AVI)/(AVI) / | Radio Control Unit (RCU) Voice Unit (VU) | | | | +------------------+ +----+ | | SNP |--| |Sub-NetworkSubnetwork | | | | | Layer | +------------------+ | | | | | LME| +-----+ +------------------+ | | | VI | | DLS | | | LLC Layer +-----+ +------------------+ +----+ | | | DCH DCH DCCH/CCCH | RACH/BCCH | | +-------------------------------------+ | MAC | Medium Access | | Layer +-------------------------------------+ | +-------------------------------------+ | PHY | Physical Layer +-------------------------------------+ | | ((*)) FL/RL radio channels separated byFDD ]]> </artwork>FDD]]></artwork> </figure> <section anchor='LDACSDphyLayer'><name>LDACS Physical Layer</name> <t> The physical layer provides the means to transfer data over the radio channel. The LDACS GS supports bidirectional links to multiple aircraft under its control. The FL direction at the G2A connection and the RL direction at the A2G connection are separated by Frequency Division Duplex (FDD). FL and RL use a 500 kHz channel each. The GS transmits a continuous stream of OrthogonalFrequency-DivisionFrequency Division Multiplexing Access (OFDM) symbols on the FL. In theRLRL, different aircraft are separated in time and frequency using OrthogonalFrequency-DivisionFrequency Division Multiple Access (OFDMA).Aircraft thusThus, aircraft transmit discontinuously on the RL via short radio bursts sent in precisely defined transmission opportunities allocated by the GS. </t> </section> <section anchor='LDACSDataLinkLayer'><name>LDACS Data Link Layer</name> <t> Thedata-linkdata link layer provides the necessary protocols to facilitate concurrent and reliable data transfer for multiple users. The LDACS data link layer is organized in two sub-layers:Thethe medium access sub-layer and the Logical Link Control (LLC) sub-layer. The medium access sub-layer manages the organization of transmission opportunities in slots of time and frequency. The LLC sub-layer provides acknowledged point-to-point logical channels between the aircraft and the GS using an Automatic Repeat reQuest (ARQ) protocol. LDACS also supports unacknowledged point-to-point channels and G2ABroadcastbroadcast transmission. </t> <section anchor='MACservice'><name>Medium Access Control (MAC) Services</name> <t> The MAC time framing service provides the frame structure necessary to realize slot-based time-division multiplex-access on the physical link. It provides the functions for the synchronization of the MAC framing structure and the PHYLayerlayer framing. The MAC time framing provides a dedicated time slot for each logical channel. </t> <t> The MAC sub-layer offers access to the physical channel to its service users. Channel access is provided through transparent logical channels. The MAC sub-layer maps logical channels onto the appropriate slots and manages the access to these channels. Logical channels are used as interface between the MAC and LLC sub-layers. </t> </section> <section anchor='DLservice'><name>Data LinkService (DLS) Services</name>Services (DLSs)</name> <t> The DLS provides acknowledged and unacknowledged (including broadcast and packet mode voice) bidirectional exchange of user data. If user data is transmitted using the acknowledged DLS, the sending DLS entity will wait for an acknowledgement from the receiver. If no acknowledgement is received within a specified time frame, the sender may automatically try to retransmit its data. However, after a certain number of failed retries, the sender will suspend further retransmission attempts and inform its client of the failure. </t> <t> The DLS uses the logical channels provided by the MAC:</t><dl</t><ol spacing='compact'><dt>1.</dt><dd> A<li>A GS announces its existence and access parameters in the Broadcast Channel (BCCH).</dd> <dt>2.</dt><dd> The</li> <li>The Random-Access Channel (RACH) enables the AS to request access to an LDACS cell.</dd> <dt>3.</dt><dd> In</li> <li>In theFLFL, the Common Control Channel (CCCH) is used by the GS to grant access todata channelData Channel (DCH) resources.</dd> <dt>4.</dt><dd> The</li> <li>The reverse direction is covered by the RL, where ASs need to request resources before sending. This happens via the Dedicated Control Channel (DCCH).</dd> <dt>5.</dt><dd> User</li> <li>User data itself is communicated in theData Channel (DCH)DCH on the FL and RL.</dd> </dl></li> </ol> <t> Access to the FL and RLdata channelDCH is granted by the scheduling mechanism implemented in the LME discussed below. </t> </section> <section anchor='VIservice'><name>Voice Interface (VI) Services</name> <t> The VI provides support for virtual voice circuits. Voice circuits mayeitherbeset-upeither set up permanently by the GS (e.g., to emulate voice party line) ormay becreated on demand. </t> </section> <section anchor='LMEservice'><name>LDACS Management Entity (LME) Services</name> <t> The mobility management service in the LME provides support for registration and de-registration (cell entry and cell exit), scanning RF channels of neighboringcellscells, and handover between cells. In addition, it manages the addressing of aircraft within cells. </t> <t> The resource management service provides link maintenance (power,frequencyfrequency, and time adjustments), support for adaptive coding and modulation, and resource allocation. </t> <t> The resource management service accepts resource requests from/for differentASASs and issues resource allocations accordingly. While the scheduling algorithm is not specified and a point of possible vendor differentiation, it is subject to the following requirements:</t><dl</t><ol spacing='compact'><dt>1.</dt><dd> Resource<li>Resource scheduling must provide channel access according to the priority of therequest </dd> <dt>2.</dt><dd> Resourcerequest. </li> <li>Resource scheduling must support "one-time"requests. </dd> <dt>3.</dt><dd> Resourcerequests.</li> <li>Resource scheduling must support "permanent" requests that reserve a resource until the request is cancelede.g.(e.g., for digital voicecircuits. </dd> </dl>circuits). </li> </ol> </section> </section> <section anchor='SNPservice'><name>LDACSSub-NetworkSubnetwork Layer and Protocol Services</name> <t> Lastly, the SNP layer of LDACS directly interacts with IPv6 traffic. Incoming ATN/IPS IPv6 packets are forwarded over LDACS from and to the aircraft. The final IP addressing structure in an LDACS subnet still needs to be defined; however, the current layoutis considered to consistconsists of the five network segments: Air Core Net, Air Management Net, Ground Core Net, Ground Management Net, and Ground Net. Any protocols that the ATN/IPS <xref target="ICAO2015"/> defines as mandatory will reach theaircraft, howeveraircraft; however, listing these here is out of scope. For more information on the technicalities of the above ATN/IPS layer, please refer to <xreftarget="ICAO2015"/>target="ICAO2015"/>, <xreftarget="RTCA2019"/>target="RTCA2019"/>, and <xref target="ARI2021"/>. </t> <t> The DLS provides functions that are required for the transfer ofuser planeuser-plane data and control plane data over the LDACS access network. The security service provides functions for secure user data communication over the LDACS access network. Note that the SNP security service applies cryptographic measures as configured by the GS. </t> </section> </section> <section anchor='LDACSMobility'><name>LDACS Mobility</name> <t> LDACS supportslayerLayer 2 handovers to different LDACS cells. Handovers may be initiated by the aircraft (break-before-make) or by the GS (make-before-break). Make-before-break handovers are only supported between GSs connected to eachother,other and usuallyGSGSs operated by the same service provider. </t> <t> When a handover between the AS and two interconnectedGSGSs takes place, it can be triggered by the AS or GS. Once that is done, new security information is exchanged between the AS,GS1GS1, andGS2,GS2 before the "old" connection is terminated between the AS and GS1 and a "new" connection is set up between the AS and GS2. As a last step, accumulateduser-datauser data at GS1 is forwarded to GS2 via a groundconnection,connection beforethatit is sent via GS2 to the AS. While some information for handover is transmitted in the LDACS DCH, the information remains in the"control-plane""control plane" part of LDACS and is exchanged between LMEs in the AS,GS1GS1, and GS2. As such, local mobility takes place entirely within the LDACSnetwork, utilizingnetwork and utilizes the PMIPv6 protocol <xref target="RFC5213"/>. The use of PMIPv6 is currently not mandated bystandardization,standardization and may be vendor-specific. External handovers between non-connected LDACS access networks or different aeronautical data links are handled by the FCImulti-link concept. </t> <t> External handovers between non-connected LDACS access networks or different aeronautical data links are handled by the FCI multi- linkmultilink concept. </t> </section> <section anchor='LDACSMng'><name>LDACS Management–Interfaces and Protocols</name> <t> LDACS management interfaces and protocols are currently not be mandated by standardization. The implementations currently available use SNMP for management and Radius forAAA.Authentication, Authorization, and Accounting (AAA). Link state (link up, link down) is reported using the ATN/IPS Aircraft Protocol (AIAP) mandated by ICAO WG-I formulti-link.multilink. </t> </section> </section> <section anchor='ReliabilityandAvailability'><name>Reliability and Availability</name> <section anchor='belowlone'><name>Below Layer 1</name> <t> Below Layer2,1, aeronautics usuallyreliesrely on hardware redundancy. To protect availability of the LDACS link, an aircraft equipped with LDACS will have access to two L-band antennae with triple redundant radio systems as required for any safety relevant aeronautical systems by ICAO. </t> </section> <sectionanchor='Layer2'><name>Layeranchor='Layer2'><name>Layers 1 and 2</name> <t> LDACS has been designed with applications related to the safety and regularity of flight inmind. Itmind; therefore, it hasthereforebeen designed as a deterministic wireless data link (as far as this is possible). </t> <t> Based on channel measurements of the L-bandchannelchannel, LDACS was designed from the PHY layer up with robustness in mind. Channel measurements of the L-band channel <xref target="SCH2016"/> confirmed LDACS to be well adapted to its channel. </t> <t> In order to maximize the capacity per channel and to optimally use the available spectrum, LDACS was designed as an OFDM-based FDDsystem, supportingsystem that supports simultaneous transmissions in FL in the G2A connection and RL in the A2G connection. The legacy systems already deployed in the L-band limit the bandwidth of both channels to approximately 500 kHz. </t> <t> The LDACS physical layer design includes propagation guard times sufficient for operation at a maximum distance of 200 nautical miles (nm) from the GS. In actual deployment, LDACS can be configured for any range up to this maximum range. </t> <t> The LDACS physical layer supports adaptive coding and modulation for user data. Control data is always encoded with the most robust coding and modulation (FL: Quadrature Phase-Shift Keying (QPSK), coding rate1/2,1/2; RL: QPSK, coding rate 1/3). </t> <t> LDACS medium access layer on top of the physical layer uses a static frame structure to support deterministic timer management. As shown in Figures <xreftarget="fig_LDACSframesuper"/>target="fig_LDACSframesuper" format="counter"/> and <xreftarget="fig_LDACSframesmulti"/>,target="fig_LDACSframesmulti" format="counter"/>, LDACS framing structure is based onSuper- Frames (SF)Super-Frames (SFs) of240ms240 ms (milliseconds) duration corresponding to 2000 OFDM symbols. OFDM symbol time is 120 microseconds, sampling time is 1.6microsecondsmicroseconds, andaguard timeofis 4.8 microseconds. The structure ofaan SF is depicted in <xref target="fig_LDACSframesuper"/> along with its structure and timings of each part. FL and RL boundaries are aligned in time (from the GS perspective) allowing for deterministic slots for control anddata channels.DCHs. This initial AS time synchronization and time synchronization maintenance is based on observing the synchronization symbol pairs that repetitively occur within the FLstream,stream being sent by the controlling GS <xref target="GRA2020"/>. As already mentioned, LDACS data transmission is split intouser-datauser data (DCH) and control(BCCH,(BCCH and CCCH in FL;RACH,RACH and DCCH in RL) as depicted with corresponding timings in <xref target="fig_LDACSframesmulti"/>. </t> <figure title="SFstructureStructure for LDACS" anchor="fig_LDACSframesuper"> <artwork> <![CDATA[ ^ |+--------+------------+------------+------------+------------++---------+------------+------------+------------+------------+ | FL | BCCH | MF | MF | MF | MF | | |6.72ms6.72 ms |58.32ms58.32 ms |58.32ms58.32 ms |58.32ms58.32 ms |58.32ms58.32 ms | F+--------+------------+------------+------------+------------++---------+------------+------------+------------+------------+ r <----------------- Super-Frame (SF) -240ms240 ms -----------------> e q+--------+------------+------------+------------+------------++---------+------------+------------+------------+------------+ u RL | RACH | MF | MF | MF | MF | e |6.72ms6.72 ms |58.32ms58.32 ms |58.32ms58.32 ms |58.32ms58.32 ms |58.32ms58.32 ms | n+--------+------------+------------+------------+------------++---------+------------+------------+------------+------------+ c <----------------- Super-Frame (SF) -240ms240 ms -----------------> y ------------------------------ Time------------------------------->--------------------------------> |]]> </artwork>]]></artwork> </figure> <figure title="MFstructureStructure for LDACS" anchor="fig_LDACSframesmulti"> <artwork> <![CDATA[ ^ |+-------------+----------------+-----------------++--------------+-----------------+------------------+ | FL | DCH | CCCH | DCH | | |25.92ms25.92 ms | 2.16 -17.28ms17.28 ms | 15.12 -30.24ms30.24 ms | F+-------------+----------------+-----------------++--------------+-----------------+------------------+ r <-----------Multi-FrameMultiframe (MF) -58.32ms --------->58.32 ms -----------> e q+--------------+---------------------------------++---------------+----------------------------------+ u RL | DCCH | DCH | e | 2.8 -24.4ms24.4 ms | 33.84 -55.44ms55.44 ms | n+--------------+---------------------------------++---------------+----------------------------------+ c <-----------Multi-FrameMultiframe (MF) -58.32ms --------->58.32 ms ----------> y ----------------------------- Time-------------------->----------------------> |]]> </artwork>]]></artwork> </figure> <t> LDACS cell entry is conducted with an initial control message exchange via the RACH and the BCCH. </t> <t> After cell entry, LDACS medium access is always under the control of the GS of a radio cell. Any medium access for the transmission of user data on a DCH has to be requested with a resource request message stating the requested amount of resources and class of service. The GS performs resource scheduling on the basis of these requests and grants resources with resource allocation messages. Resource request and allocation messages are exchanged over dedicated contention-free control channels (DCCH and CCCH). </t> <t> The purpose ofquality-of-serviceQoS in LDACS medium access is to provide prioritized medium access at the bottleneck (the wireless link). Signaling ofhigher layer quality-of-servicehigher-layer QoS requests to LDACS is implemented on the basis of DifferentiatedServices-(DiffServ)Services (Diffserv) classes CS01 (lowest priority) to CS07 (highest priority). </t> <t> In addition to having full control over resource scheduling, the GS can send forced handover commands for off-loading or channel management, e.g., when the signal quality declines and a more suitable GS is in the AS's reach. With robust resource management of the capacities of the radio channel, reliability and robustness measures arethereforealso anchored in the LME. </t> <t> In addition to radio resource management, the LDACS control channels are also used to sendkeep-alive messages,keepalive messages when they are not otherwise used. Since the framing of the control channels is deterministic, missingkeep-alivekeepalive messages canthusbe immediately detected. This information is made available to the multilink protocols for fault management. </t> <t> The protocol used to communicate faults is not defined in the LDACS specification. It is assumed that vendors would use industry standard protocols like the Simple Network Management Protocol or the Network ConfigurationProtocol,Protocol (NETCONF) where security permits. </t> <t> The LDACS data link layer protocol, running on top of the medium access sub-layer, uses ARQ to provide reliable data transmission on thedata channel. </t> <t>DCH. It employs selective repeat ARQ with transparent fragmentation and reassembly to the resource allocation size to minimize latency and overhead without losing reliability. It ensures correct order of packet delivery without duplicates. In case of transmission errors, it identifies lost fragments with deterministic timers synced to the medium access frame structure and initiates retransmission. </t> </section> <section anchor='BeyondLayer2'><name>Beyond Layer 2</name> <t> LDACS availability can be increased by appropriately deploying LDACSinfrastructure:infrastructure. This means proliferating the number of terrestrialground stations.GSs. However, there are four aspects that need to be taken into consideration: (1) scarcity of aeronautical spectrum for data link communication(in the case of LDACS: tens(tens of MHz in theL-band),L-band in the case of LDACS), (2) an increase in theamountnumber ofground stationsGSs also increases the individual bandwidth for aircraft in the cell, as fewer aircraft have to share the spectrum, (3)to covercovering worldwide terrestrial ATM via LDACS is also a question of cost and the possible reuse ofspectrumspectrum, which makes it not always possible to decrease cellsizessizes, and (4) the Distance Measuring Equipment (DME) is the primary user of the aeronautical L-band, which means any LDACS deployment has to take DME frequency planning into account. </t> <t> While aspect (2) provides a goodreason,reason alongside increasingredundancy,redundancy for smaller cells than the maximum range LDACS was developed for (200Nautical Miles (NM)),nm), the other three need to be respected when doing so. There are preliminary works on LDACS cell planning, such as <xref target="MOST2018"/>, where the authorsreach the conclusionconcluded that 84 LDACS cells in Europe would be sufficient to serve European air traffic for the next 20 years. </t> <t> For redundancy reasons, the aeronautical community has decided not to rely on a single communication system or frequency band. It is envisioned to have multiple independent data link technologies in the aircraft (e.g., terrestrial and satellite communications) in addition to legacy VHF voice. </t> <t> However, as of now, no reliability and availability mechanisms that could utilize the multilinkarchitecture,architecture have been specified on Layer 3 and above. Even if LDACS has been designed for reliability, the wireless medium presents significant challenges to achieve deterministic properties such as low packet error rate, bounded consecutive losses, and bounded latency. Support for high reliability and availability for IP connectivity over LDACS iscertainlyhighlydesirabledesirable, but support needs to be adapted to the specific use case. </t> </section> </section> <sectionanchor='Security2'><name>Security</name>anchor='Security2'><name>Security Considerations</name> <t> The goal of thisSectionsection is to inform the reader about the state of security in aeronauticalcommunications,communications and the state security considerations applicable for all ATN/IPS traffic and to provide an overview of the LDACS link-layer security capabilities. </t> <section anchor='Resasons'><name>Security in Wireless Digital Aeronautical Communications</name> <t> Aviation will require secure exchanges of data and voice messages for managing the air traffic flow safely through the airspaces all over the world.HistoricallyHistorically, Communication Navigation Surveillance (CNS) wireless communications technology emerged from the military and a threat landscape where inferior technological and financial capabilities of adversaries were assumed <xref target="STR2016"/>. The main communications method for ATC today is still an openanalogueanalog voice broadcast within the aeronautical VHF band. Currently, information security is mainlyprocedural,procedural and based by using well-trained personnel and proven communications procedures. This communication method has been in service since 1948. However, the world has changed since the emergence of civil aeronautical CNS applications in the70s, and today, the world has changed.70s. </t> <t>CCivilCivil applications have significant lower spectrum available than military applications. This means that several military defensemechanisms,mechanisms such as frequency hopping or pilot symbol scramblingand, thus,(and thus a defense-in-depth approach starting at the physicallayer, islayer) are infeasible for civil systems. With the rise of cheapSoftware DefinedSoftware-Defined Radios(SDR),(SDRs), the previously existing financial barrier is almostgonegone, and open source projects such as GNU radio <xref target="GNU2021"/> allow for a new type of unsophisticatedlistenerslistener and possibleattackers.attacker. </t> <t> Most CNS technology developed in ICAO relies on openstandards, thusstandards; thus, syntax and semantics of wireless digital aeronautical communications should be expected to be common knowledge for attackers. With increased digitization and automation of civil aviation, the human as controlinstance,instance is being taken gradually out of the loop. Autonomous transport drones orsingle pilotedsingle-piloted aircraft demonstrate this trend. However, without profound cybersecuritymeasuresmeasures, such as authenticity and integrity checks of messages in-transit on the wireless link or mutual entity authentication, this lack of a control instance can prove disastrous. Thus, future digital communications will need additional embedded security features to fulfill modern information security requirements like authentication and integrity. These security features require sufficientbandwidthbandwidth, which is beyond the capabilities of currently deployed VHF narrowband communications systems. For voice and data communications, sufficient data throughput capability is needed to support the security functions while not degrading performance. LDACS is a data link technology with sufficient bandwidth to incorporate security without losing too much user data throughput. </t> </section> <section anchor='Secdepth'><name>Security inDepth </name>Depth</name> <t> ICAO Doc 9896 <xref target="ICAO2015"/> foresees transport layer security<xref target="ICAO2015"/>for all aeronautical data transmitted via the ATN/IPS, as described in ARINCP858858 <xref target="ARI2021"/>. This is realized via Datagram Transport Layer Security (DTLS) 1.3 <xref target="RFC9147"/>. </t> <t> LDACS also needs to comply with in-depth securityrequirements,requirements as stated in ARINC858,858 for the radio access technologies transporting ATN/IPS data. These requirements imply that LDACS must providelayerLayer 2 security in addition to anyhigher layerhigher-layer mechanisms. Specifically, ARINC 858 <xref target="ARI2021"/> states that[datalinksdata links within the FCI need toprovide] "aprovide</t> <blockquote>a secure channel between the airborne radio systems and the peer radio access endpoints on the ground [...] to ensure authentication and integrity of air-ground message exchanges in support of an overall defense-in-depth securitystrategy." <xref target="ARI2021"/> </t>strategy. </blockquote> </section> <section anchor='Requirements'><name>LDACS Security Requirements </name> <t> Overall, cybersecurity for CNS technology shall protect the following business goals <xref target="MAE20181"/>:</t><dl</t><ol spacing='compact'><dt>1.</dt><dd> Safety:<li>Safety: The system must sufficiently mitigateattacks, whichattacks that contribute to safetyhazards.</dd> <dt>2.</dt><dd> Flighthazards.</li> <li>Flight regularity: The system must sufficiently mitigateattacks, whichattacks that contribute to delays, diversions, orcancellationscancelations of flights.</dd> <dt>3.</dt><dd> Protection</li> <li>Protection of business interests: The system must sufficiently mitigate attackswhichthat result in financial loss, reputation damage, disclosure of sensitive proprietary information, or disclosure of personal information.</dd> </dl><t></li> </ol><t> </t> <t> To further analyzeassets andassets, derivethreatsthreats, andthuscreate protectionscenariosscenarios, severalthreat-andthreat and risk analyses were performed for LDACS <xref target="MAE20181"/>,<xref target="MAE20191"/>. These results allowed the derivation of security scope and objectives from the requirements and the conductedthreat-andthreat and risk analysis. Note, IPv6 security considerations are briefly discussed in <xref target="cons"/> while a summary of security requirements for link-layer candidates in the ATN/IPS is given in <xref target="ARI2021"/>, whichstates: "Sincestates:</t> <blockquote> Since the communication radios connect to local airborne networks in the aircraft control domain, [...] the airborne radio systems represent the first point of entry for an external threat to the aircraft. Consequently, a secure channel between the airborne radio systems and the peer radio access endpoints on the ground is necessary to ensure authentication and integrity of air-ground message exchanges in support of an overall defense-in-depth securitystrategy". </t>strategy. </blockquote> </section> <section anchor='objectives'><name>LDACS Security Objectives</name> <t> Security considerations for LDACS are defined by the official SARPS document by ICAO <xref target="ICAO2022"/>:</t><dl</t><ul spacing='compact'><dt>1.</dt><dd> LDACS<li>LDACS shall provide a capability to protect the availability and continuity of thesystem.</dd> <dt>2.</dt><dd> LDACSsystem.</li> <li>LDACS shall provide a capability including cryptographic mechanisms to protect the integrity of messages in transit.</dd> <dt>3.</dt><dd> LDACS</li> <li>LDACS shall provide a capability to ensure the authenticity of messages in transit.</dd> <dt>4.</dt><dd> LDACS</li> <li>LDACS should provide a capability fornonrepudiationnon-repudiation of origin for messages in transit.</dd> <dt>5.</dt><dd> LDACS</li> <li>LDACS should provide a capability to protect the confidentiality of messages in transit.</dd> <dt>6.</dt><dd> LDACS</li> <li>LDACS shall provide an authentication capability.</dd> <dt>7.</dt><dd> LDACS</li> <li>LDACS shall provide a capability to authorize the permitted actions of users of the system and to deny actions that are not explicitly authorized.</dd> <dt>8.</dt><dd> If</li> <li>If LDACS provides interfaces to multiple domains, LDACS shall provide capability to prevent the propagation of intrusions within LDACS domains and towards external domains.</dd> </dl><t></li> </ul><t> </t> <t> Work in 2022 includes a change request for these SARPS aims to limit the“non-repudiation"non-repudiation of origin of messages intransit”transit" requirement only to the authentication and key establishment messages at the beginning of every session. </t> </section> <section anchor='SFL'><name>LDACS Security Functions</name> <t> These objectives were used to derive several security functions for LDACS required to be integrated in the LDACS cybersecurity architecture: Identification, Authentication, Authorization, Confidentiality, System Integrity, Data Integrity, Robustness, Reliability, Availability, and Key and Trust Management. Several works investigated possible measures to implement these security functions <xreftarget="BIL2017"/>,target="BIL2017"/> <xreftarget="MAE20181"/>,target="MAE20181"/> <xref target="MAE20191"/>. </t> </section> <section anchor='SADL'><name>LDACS Security Architecture</name> <t> The requirements lead toaan LDACS security model, including different entities for identification,authenticationauthentication, and authorizationpurposes,purposes ensuring integrity,authenticityauthenticity, and confidentiality of data. A draft of the cybersecurity architecture of LDACS can be found in <xref target="ICAO2022"/> and <xreftarget="MAE20182"/>target="MAE20182"/>, and respective updates can be found in <xref target="MAE20191"/>, <xref target="MAE20192"/>, <xref target="MAE2020"/>, and <xref target="MAE2021"/>. </t> <section anchor='ELSM'><name>Entities </name> <t> A simplified LDACS architectural model requires the following entities:Networknetwork operators such as the Societe Internationale de Telecommunications Aeronautiques (SITA) <xref target="SIT2020"/> and ARINC <xreftarget="ARI2020"/> are providingtarget="ARI2020"/>; both entities provide access to the ground IPS network via an A/G LDACS router. This router is attached to an internal LDACS accessnetwork, whichnetwork that connects via furtheraccess routersAC-Rs to the different LDACS cell ranges, each controlled by a GS (serving one LDACS cell), with several interconnectedGSGSs spanning a local LDACS access network. Via the A/G wireless LDACS data linkASAS, the aircraft is connected to the groundnetwork and vianetwork. Via the aircraft's VI andaircraft'snetwork interface, the aircraft's data can be sent via the AS back to the GS, then to the LDACS local access network,access routers,AC-Rs, LDACS access network, A/G LDACSrouterrouter, and finally to the ground IPS network <xref target="ICAO2015"/>. </t> </section> <section anchor='MLEI'><name>Entity Identification</name> <t> LDACS needs specific identities for the AS, the GS, and the network operator. The aircraft itself can be identified using the 24-bit ICAO identifier of an aircraft <xref target="ICAO2022"/>, the call sign of thataircraftaircraft, or the recently founded privacy ICAO address of the Federal Aviation Administration (FAA) program with the same name <xref target="FAA2020"/>. It is conceivable that the LDACS AS will use a combination of aircraft identification, radio componentidentificationidentification, and even operator feature identification to create a uniqueASLDACS AS identification tag. Similar to a 4G'seNodeB servingeNodeB-serving network identification tag, a GS could be identified using a similar field. The identification of the network operator isagainsimilar to 4G (e.g., E-Plus, AT&T, and TELUS), in the way that the aeronautical network operators are listed (e.g., ARINC <xref target="ARI2020"/> and SITA <xref target="SIT2020"/>). </t> </section> <section anchor='MLEIAKN'><name>Entity Authentication and Key Establishment</name> <t> In order to anchor trust within the system, all LDACS entities connected to the ground IPS network will be rooted in anLDACS specificLDACS-specific chain-of-trust and PKI solution, quite similar toAeroMACS’sAeroMACS's approach <xref target="CRO2016"/>. These certificates, residing at the entities and incorporated in the LDACS PKI,providingprovide proof of the ownership of their respective publickey,key and include information about the identity of the owner and the digital signature of the entity that has verified the certificate's content. First, all ground infrastructures must mutually authenticate to each other, negotiate and derivekeys and, thus,keys, and then secure all ground connections. How this process is handled in detail is still an ongoing discussion. However, established methods to secure the user plane byIPSecIPsec <xref target="RFC4301"/> and IKEv2 <xref target="RFC7296"/> or the application layer via TLS 1.3 <xref target="RFC8446"/> are conceivable. The LDACS PKI with its chain-of-trust approach, digitalcertificatescertificates, and public entity keys lay the groundwork for this step. In a second step, the AS with the LDACS radioaboard,aboard approaches an LDACS cell and performs a cell-attachment procedure with the corresponding GS. This procedure consists of (1) the basic cell entry <xref target="GRA2020"/> and (2) aMutual Authentication and Key Establishment (MAKE)MAKE procedure <xref target="MAE2021"/>. </t> <t> Note that LDACS will foresee multiple security levels. To address the issue of the long service life of LDACS (i.e., possibly>30greater than 30 years) and the security of current pre-quantum cryptography, these security levels includepre-pre-quantum and post-quantum cryptographic solutions. Limiting security data on the LDACSdatalinkdata link as much aspossible,possible to reserve as much space for actual user datatransmission,transmission is key in the LDACS securityarchitecture, thisarchitecture. This is also reflected in the underlyingcryptography:cryptography. Pre-quantum solutions will rely on elliptic curves <xref target="NIST2013"/>, while post-quantum solutions consider Falcon <xref target="SON2021"/> <xref target="MAE2021"/> or similar lightweight PQC signatureschemes,schemes and CRYSTALS-KYBER or SABER as key establishment options <xref target="AVA2021"/> <xref target="ROY2020"/>. </t> </section> <sectionanchor='MLCIA'><name>Message-in-transitanchor='MLCIA'><name>Message-In-Transit Confidentiality,IntegrityIntegrity, and Authenticity</name> <t> The key material from the previous step can then be used to protect LDACS Layer 2 communications via applying encryption and integrity protection measures on the SNP layer of the LDACS protocol stack. As LDACS transports AOC and ATS data, the integrity of that data is mostimportant,important while confidentiality only needs to be applied to AOC data to protect business interests <xref target="ICAO2022"/>. This possibility of providinglow layeredlow-layered confidentiality and integrity protection ensures a secure delivery of user data over the wireless link. Furthermore, it ensures integrity protection of LDACS control data. </t> </section> </section> <section anchor='cons'><name>Considerations on LDACS Security Impact on IPv6 Operational Security</name> <t> In this part, considerations on IPv6 operational security in <xref target="RFC9099"/> and interrelations with the LDACS security additions are compared and evaluated to identify further protection demands. As IPv6 heavily relies on the Neighbor Discovery Protocol (NDP) <xref target="RFC4861"/>, integrity and authenticity protection on thelink-layer,link layer, as provided by LDACS, already help mitigate spoofing and redirection attacks. However, to also mitigate the threat of remote DDoS attacks, neighbor solicitation rate-limiting is recommended byRFC 9099.<xref target="RFC9099"/>. To prevent the threat of(D)DoSDDoS and DoS attacks in general on the LDACS access network, rate-limiting needs to be performed on each network node in the LDACS access network. One approach is to filter for the total amount of possible LDACS AS-GS traffic per cell– i.e.,(i.e., of up to 1.4Mbps user-dataMbit/s user data per cell and up to the amount of GS per service provider network times 1.4Mbps.Mbit/s). </t> </section> </section><!-- Possibly a 'Contributors' section ... --><section anchor='IANA'><name>IANA Considerations</name> <t>Thismemo includesdocument has norequest to IANA.</t> </section> <section anchor='Acknowledgements'><name>Acknowledgements</name> <t> Thanks to all contributors to the development of LDACS and ICAO PT-T, as well as to all in the RAW Working Group for deep discussions and feedback. </t> <t> Thanks to Klaus-Peter Hauf, Bart Van Den Einden, and Pierluigi Fantappie for their comments to this draft. </t> <t> Thanks to the Chair for Network Security and the research institute CODE for their comments and improvements. </t> <t> Thanks to the colleagues of the Research Institute CODE at the UniBwM working in the AMIUS project funded under the Bavarian Aerospace Program by the Bavarian State Ministry of Economics, Regional Development and Energy with the GA ROB-2-3410.20-04-11-15/HAMI-2109-0015 for fruitful discussions on aeronautical communications and relevant security incentives for the target market. </t> <t> Thanks to SBA Research Vienna for continuous discussions on security infrastructure issues in quick developing markets such the air space and potential economic spillovers to used technologies and protocols. </t> <t> Thanks to the Aeronautical Communications group at the Institute of Communications and Navigation of the German Aerospace Center (DLR). With that, the authors would like to explicitly thank Miguel Angel Bellido-Manganell and Lukas Marcel Schalk for their thorough feedback. </t>IANA actions.</t> </section> </middle><!-- *****BACK MATTER ***** --><back><!--<displayreference target="I-D.pthubert-raw-problem-statement" to="RAW-PROBLEM"/>--><displayreference target="I-D.ietf-raw-technologies" to="RAW-TECHNOS"/> <displayreference target="I-D.ietf-raw-use-cases" to="RAW-USE-CASES"/><references><name>Normative References</name> </references><displayreference target="I-D.haindl-lisp-gb-atn" to="LISP-GB-ATN"/> <displayreference target="I-D.ietf-rtgwg-atn-bgp" to="RTGWG-ATN-BGP"/> <references><name>Informative References</name><!--<xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.3610.xml"/>--> <!--<xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4291.xml"/>--><xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4301.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4301.xml"/> <xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.4861.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4861.xml"/> <xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5213.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5213.xml"/> <xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.5795.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5795.xml"/> <xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.7296.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7296.xml"/> <xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8200.xml"/> <xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/> <xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.9099.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9099.xml"/> <xi:includehref="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.9147.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9147.xml"/> <reference anchor="GRA2020" target="https://www.ldacs.com/wp-content/uploads/2013/12/SESAR2020_PJ14-W2-60_D3_1_210_Initial_LDACS_AG_Specification_00_01_00-1_0_updated.pdf"><!--REF3--><front><title>LDACS<title>Initial LDACS A/GSpecification </title>Specification</title> <author initials="T." surname="Gräupl"/><author initials="C." surname="Rihacek"/> <author initials="B." surname="Haindl"/><date month="December" year="2020"/> </front> <seriesInfo name='SESAR2020PJ14-02-01 D3.3.030' value=''/>-' value='PJ14-W2-60, D3.1.210'/> </reference> <reference anchor="ARI2021" target="https://standards.globalspec.com/std/14391274/858p1"> <front><title>Internet Protocol Suite<title>INTERNET PROTOCOL SUITE (IPS)For Aeronautical Safety Services Part 1- Airborne IP System Technical Requirements, ARINC SPECIFICATION 858 P1</title>FOR AERONAUTICAL SAFETY SERVICES PART 1 AIRBORNE IPS SYSTEM TECHNICAL REQUIREMENTS</title> <author> <organization>ARINC</organization> </author> <date year="2021" month="June"/> </front> <seriesInfo name="ARINC" value="858P1"/> </reference> <reference anchor="EURO2019" target="https://eshop.eurocae.net/eurocae-documents-and-reports/ed-262/"> <front> <title>Technical Standard of Aviation Profiles forATN/IPS, ED-262ATN/IPS </title> <author> <organization>European Organization for Civil Aviation Equipment (EUROCAE)</organization> </author> <date year="2019" month="September"/> </front> <seriesInfo name="ED" value="262"/> </reference> <reference anchor="ICAO2015" target="https://standards.globalspec.com/std/10026940/icao-9896"> <front> <title>Manual on the Aeronautical Telecommunication Network (ATN) using Internet Protocol Suite (IPS) Standards andProtocols, Doc 9896Protocol </title> <author> <organization>International Civil Aviation Organization (ICAO)</organization> </author> <date year="2015" month="January"/> </front> <seriesInfo name="ICAO" value="9896"/> </reference> <reference anchor="RTCA2019"target="https://www.rtca.org/products/do-379/">target="https://standards.globalspec.com/std/14224450/rtca-do-379"> <front> <title>Internet Protocol SuiteProfiles, DO-379 </title>Profiles</title> <author> <organization>Radio Technical Commission for Aeronautics (RTCA)</organization> </author> <date year="2019" month="September"/> </front> <seriesInfo name="RTCA" value="DO-379"/> </reference> <referenceanchor="SCH2016"> <!--REF1-->anchor="SCH2016" target=""> <front> <title>Measurement of theL-band Air-to-Ground Channell-band air-to-ground channel forPositioning Applications </title>positioning applications</title> <author initials="N." surname="Schneckenburger"/> <author initials="T." surname="Jost"/> <author initials="D." surname="Shutin"/> <author initials="M." surname="Walter"/> <author initials="T." surname="Thiasiriphet"/> <author initials="M." surname="Schnell"/> <author initials="U.C." surname="Fiebig"/> <date month="October" year="2016"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/TAES.2016.150451"/> <refcontent>IEEE Transactions on Aerospace and Electronic Systems,52(5), pp.2281-229' value=''/>Vol. 52, Issue 5, pp. 2281-2297</refcontent> </reference> <referenceanchor="OSE2019"> <!--REF1-->anchor="OSE2019" target=""> <front> <title>Feasibility Demonstration of Terrestrial RNP with LDACS </title> <author initials="O." surname="Osechas"/> <author initials="S." surname="Narayanan"/> <author initials="O.G." surname="Crespillo"/> <author initials="G." surname="Zampieri"/> <author initials="G." surname="Battista"/> <author initials="R." surname="Kumar"/> <author initials="N." surname="Schneckenburger"/> <author initials="E." surname="Lay"/> <author initials="B." surname="Belabbas"/> <author initials="M." surname="Meurer"/> <date month="September" year="2019"/> </front> <seriesInfoname='32ndname="DOI" value="10.33012/2019.17119"/> <refcontent>32nd International Technical Meeting of the Satellite Division of The Institute of Navigation,pp.1-12' value=''/>pp. 3254-3265</refcontent> </reference> <reference anchor="SCHN2018"><!--REF1--><front> <title>A Wide-Band Air-Ground ChannelMode </title>Model</title> <author initials="N." surname="Schneckenburger"/> <date month="February" year="2018"/> </front><seriesInfo name='Dissertation, Technische<refcontent>Dissertation, Technischen UniversitaetIlmenau, Ilmenau, Germany' value=''/>Ilmenau</refcontent> </reference> <referenceanchor="MOST2018"> <!--REF1-->anchor="MOST2018" target=""> <front> <title>Feasibility of Cell Planning for the L-Band Digital Aeronautical Communications System Under the Constraint of Secondary Spectrum Usage </title> <author initials="M." surname="Mostafa"/> <author initials="M.A.." surname="Bellido-Manganell"/> <author initials="T." surname="Gräupl"/> <dateyear="2018"/>year="2018" month="October"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/TVT.2018.2862829"/> <refcontent>IEEE Transactions on Vehicular Technology,vol.Vol. 67,no.Issue 10, pp.9721-9733' value=''/>9721-9733</refcontent> </reference> <referenceanchor="MAE20191"> <!--REF1-->anchor="MAE20191" target=""> <front> <title>Evaluation of the LDACS CybersecurityImplementation </title>Implementation</title> <author initials="N." surname="Mäurer"/> <author initials="T." surname="Gräupl"/> <author initials="C." surname="Schmitt"/> <date month ="September" year="2019"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/DASC43569.2019.9081786"/> <refcontent>IEEE 38th Digital Avionics Systems Conference(DACS),(DASC), pp.1-10, San Diego, CA, USA' value=''/>1-10</refcontent> </reference> <referenceanchor="MAE20192"> <!--REF2-->anchor="MAE20192" target=""> <front> <title>Towards Successful Realization of the LDACS Cybersecurity Architecture: An Updated Datalink Security Threat- and Risk Analysis </title> <author initials="N." surname="Mäurer"/> <author initials="C." surname="Schmitt"/> <date month="April" year="2019"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/ICNSURV.2019.8735139"/> <refcontent>IEEE Integrated Communications, Navigation and Surveillance Conference (ICNS), pp.1-13, Herndon, VA, USA' value=''/>1-13</refcontent> </reference> <referenceanchor="MAE20182"> <!--REF9-->anchor="MAE20182" target=""> <front> <title>A Cybersecurity Architecture for the L-band Digital Aeronautical Communications System (LDACS) </title> <author initials="N." surname="Mäurer"/> <author initials="A." surname="Bilzhause"/> <dateyear="2017"/>year="2018" month="September"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/DASC.2018.8569878"/> <refcontent>IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), pp.1-10, London, UK' value=''/>1-10</refcontent> </reference> <reference anchor="GRA2011"><!--REF10--><front><title>L-DACS1 Data Link Layer Evolution of ATN/IPS </title><title>LDACS1 data link layer evolution for ATN/IPS</title> <author initials="T." surname="Gräupl"/> <author initials="M." surname="Ehammer"/> <dateyear="2011"/>year="2011" month="October"/> </front> <seriesInfoname='30th IEEE/AIAAname="DOI" value="10.1109/DASC.2011.6096230"/> <refcontent>IEEE/AIAA 30th Digital Avionics Systems Conference (DASC), pp.1-28, Seattle, WA, USA' value=''/>1-28</refcontent> </reference> <referenceanchor="GRA2018"> <!--REF11-->anchor="GRA2018" target=""> <front> <title>L-band Digital Aeronautical Communications System (LDACS) flight trials in the national German projectMICONAV </title>MICONAV</title> <author initials="T." surname="Gräupl"/> <author initials="N." surname="Schneckenburger"/> <author initials="T." surname="Jost"/> <author initials="M." surname="Schnell"/> <author initials="A." surname="Filip"/> <author initials="M.A." surname="Bellido-Manganell"/> <author initials="D.M." surname="Mielke"/> <author initials="N." surname="Mäurer"/> <author initials="R." surname="Kumar"/> <author initials="O." surname="Osechas"/> <author initials="G." surname="Battista"/> <dateyear="2018"/>year="2018" month="April"/> </front> <seriesInfoname='Integratedname="DOI" value="10.1109/ICNSURV.2018.8384881"/> <refcontent>Integrated Communications, Navigation, Surveillance Conference (ICNS), pp.1-7, Herndon, VA, USA' value=''/>1-7</refcontent> </reference><!--<referenceanchor="SCH20191">anchor="ICAO2022" target="https://www.ldacs.com/wp-content/uploads/2023/03/WP06.AppA-DCIWG-6-LDACS_SARPs.pdf"> <front><title>DLR Tests Digital Communications Technologies Combined with Additional Navigation Functions for the First Time </title> <author initials="M." surname="Schnell"/> <date year="2019"/> </front> </reference> --> <reference anchor="ICAO2022"> <!--REF13--> <front> <title>L-Band<title>CHAPTER 13 L-Band Digital AeronauticalCommunicationCommunications System(LDACS </title>(LDACS)</title> <author initials=""surname="Internationalsurname=""> <organization>International Civil Aviation Organization(ICAO)"/>(ICAO)</organization> </author> <date year="2022"/> </front><seriesInfo name='International<refcontent>International Standards and RecommendedPracticesPractices, Annex 10 - Aeronautical Telecommunications,Vol. III -Volume III, CommunicationSystems, 2022 ' value=''/>Systems</refcontent> </reference> <referenceanchor="SAJ2014">anchor="SAJ2014" target=""> <front> <title>LDACS1Conformanceconformance andCompatibility Assessment </title>compatibility assessment</title> <author initials="B." surname="Haindl"/> <author initials="J." surname="Meser"/> <author initials="M." surname="Sajatovic"/> <author initials="S." surname="Müller"/> <author initials="H." surname="Arthaber"/> <author initials="T." surname="Faseth"/> <author initials="M." surname="Zaisberger"/> <dateyear="2014"/>year="2014" month="October"/> </front> <seriesInfoname='IEEE/AIAAname="DOI" value="10.1109/DASC.2014.6979447"/> <refcontent>IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), pp.1-11, Colorado Springs, CO, USA' value=''/>1-11</refcontent> </reference> <referenceanchor="RIH2018"> <!--REF3-->anchor="RIH2018" target=""> <front> <title>L-band Digital Aeronautical Communications System (LDACS)Activitiesactivities inSESAR2020 </title>SESAR2020</title> <author initials="C." surname="Rihacek"/> <author initials="B." surname="Haindl"/> <author initials="P." surname="Fantappie"/> <author initials="S." surname="Pierattelli"/> <author initials="T." surname="Gräupl"/> <author initials="M." surname="Schnell"/> <author initials="N." surname="Fistas"/> <dateyear="2018"/>year="2018" month="April"/> </front> <seriesInfoname='Integratedname="DOI" value="10.1109/ICNSURV.2018.8384880"/> <refcontent>Integrated Communications Navigation and Surveillance Conference (ICNS), pp.1-8, Herndon, VA, USA' value=''/>1-8</refcontent> </reference> <referenceanchor="BEL2019"> <!--BELL19-->anchor="BEL2019" target=""> <front> <title>Towards Modern Air-to-Air Communications: the LDACS A2AMode </title>Mode</title> <author initials="M. A." surname="Bellido-Manganell"/> <author initials="M." surname="Schnell"/> <dateyear="2019"/>year="2019" month="September"/> </front> <seriesInfoname='IEEE/AIAAname="DOI" value="10.1109/DASC43569.2019.9081678"/> <refcontent>IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), pp.1-10, San Diego, CA, USA' value=''/>1-10</refcontent> </reference> <referenceanchor="CRO2016"> <!--BELL19-->anchor="CRO2016" target=""> <front> <title>Proposed AeroMACS PKISpecificationspecification is aModelmodel forGlobalglobal and National Aeronautical PKIDeployments </title>Deployments</title> <author initials="B." surname="Crowe"/> <dateyear="2016"/>year="2016" month="April"/> </front> <seriesInfoname='WiMAX Forum at 16th Integratedname="DOI" value="10.1109/ICNSURV.2016.7486405"/> <refcontent>Integrated Communications, Navigation and Surveillance Conference (ICNS), pp.1-19, New York, NY, USA' value=''/>1-19</refcontent> </reference> <reference anchor="MAE2020"><!--BELL19--><front> <title>Comparing Different Diffie-Hellman Key Exchange Flavors forLDACS </title>LDACS</title> <author initials="N." surname="Mäurer"/> <author initials="T." surname="Gräupl"/> <author initials="C." surname="Gentsch"/> <author initials="C." surname="Schmitt"/> <dateyear="2020"/>year="2020" month="October"/> </front> <seriesInfoname='IEEE/AIAAname="DOI" value="10.1109/DASC50938.2020.9256746"/> <refcontent>IEEE/AIAA 39th Digital Avionics Systems Conference (DASC), pp.1-10, San Antonio, TX, USA' value=''/>1-10</refcontent> </reference> <referenceanchor="STR2016"> <!--BELL19-->anchor="STR2016" target=""> <front> <title>On Perception and Reality in Wireless Air Traffic CommunicationSecurity </title>Security</title> <author initials="M." surname="Strohmeier"/> <author initials="M." surname="Schäfer"/> <author initials="R." surname="Pinheiro"/> <author initials="V." surname="Lenders"/> <author initials="I." surname="Martinovic"/> <date month="October" year="2016"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/TITS.2016.2612584"/> <refcontent>IEEE Transactions on Intelligent Transportation Systems,18(6),Vol. 18, Issue 6, pp.1338-1357, New York, NY, USA' value=''/>1338-1357</refcontent> </reference> <referenceanchor="BIL2017"> <!--BELL19-->anchor="BIL2017" target=""> <front> <title>DatalinkSecuritysecurity in the L-bandDigital Aeronautical Communications Systemdigital aeronautical communications system (LDACS) forAir Traffic Management </title>air traffic management</title> <author initials="A." surname="Bilzhause"/> <author initials="B." surname="Belgacem"/> <author initials="M." surname="Mostafa"/> <author initials="T." surname="Gräupl"/> <dateyear="2017"/>year="2017" month="November"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/MAES.2017.160282"/> <refcontent>IEEE Aerospace and Electronic Systems Magazine,32(11),Vol. 32, Issue 11, pp.22-33, New York, NY, USA' value=''/>22-33</refcontent> </reference> <referenceanchor="MAE20181"> <!--BELL19-->anchor="MAE20181" target=""> <front> <title>Paving theWayway for anIT Security Architectureit security architecture for LDACS: ADatalink Security Threatdatalink security threat andRisk Analysis </title>risk analysis</title> <author initials="N." surname="Mäurer"/> <author initials="A." surname="Bilzhause"/> <dateyear="2018"/>year="2018" month="April"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/ICNSURV.2018.8384828"/> <refcontent>IEEE Integrated Communications, Navigation, Surveillance Conference (ICNS), pp.1-11, New York, NY, USA' value=''/>1-11</refcontent> </reference> <reference anchor="FAA2020"target="https://www.faa.gov/nextgen/equipadsb/privacy/">target="https://www.faa.gov/air_traffic/technology/equipadsb/privacy"> <front><title>Federal Aviation Administration. ADS-B Privacy. </title><title>ADS-B Privacy</title> <author><organization>FAA</organization><organization>Federal Aviation Administration</organization> </author> <dateyear="2020" month="August"/>month="February" year="2023"/> </front> </reference> <reference anchor="GNU2021" target="http://gnuradio.org"> <front> <title>GNUradio</title>Radio</title> <author> <organization>GNU Radioproject</organization>Project</organization> </author><date year="2021" month="October"/></front> </reference> <reference anchor="SIT2020" target="https://www.sita.aero/"> <front> <title>Societe Internationale deTelecommunications Aeronautiques</title> <author> <organization>SITA</organization>Telecommunica Aéronautique (SITA)</title><author> </author><date year="2020" month="August"/></front> </reference> <reference anchor="ARI2020" target="https://www.aviation-ia.com/"> <front> <title>Aeronautical RadioIncorporated</title> <author> <organization>ARINC</organization>Incorporated (ARINC) Industry Activities</title><author> </author><date year="2020" month="August"/></front> </reference> <reference anchor="DO350A" target="https://standards.globalspec.com/std/10003192/rtca-do-350-volume-1-2"> <front> <title>Safety and Performance Requirements Standard for Baseline 2 ATS Data Communications (Baseline 2 SPR Standard)</title> <author><organization>RTCA SC-214</organization><organization>RTCA</organization> </author> <date year="2016"month="May"/>month="March"/> </front> <seriesInfo name="RTCA" value="DO-350"/> <refcontent>Vol. 1 & 2</refcontent> </reference> <reference anchor="ICAO2019" target="https://store.icao.int/en/manual-on-vhf-digital-link-vdl-mode-2-doc-9776"> <front> <title>Manual on VHF Digital Link (VDL) Mode2, Doc 9776 </title>2</title> <author> <organization>International Civil Aviation Organization (ICAO)</organization> </author> <dateyear="2019" month="January"/>year="2015"/> </front> <seriesInfo name="Doc" value="9776"/> <refcontent>Second Edition</refcontent> </reference> <referenceanchor="KAMA2010"> <!--BELL19-->anchor="KAMA2010" target=""> <front> <title>AnOverviewoverview of VHFCivil Radio Networkcivil radio network and theResolutionresolution ofSpectrum Depletion </title>spectrum depletion</title> <author initials="B." surname="Kamali"/> <date year="2010" month="May"/> </front> <seriesInfoname='Integratedname="DOI" value="10.1109/ICNSURV.2010.5503256"/> <refcontent>Integrated Communications, Navigation, and Surveillance Conference, pp.F4-1-F4-8' value=''/>F4-1-F4-8</refcontent> </reference> <referenceanchor="KAMA2018"> <!--BELL19-->anchor="KAMA2018" target=""> <front> <title>AeroMACS: An IEEE 802.16Standard-basedStandard-Based Technology for the Next Generation of Air TransportationSystems </title>Systems</title> <author initials="B." surname="Kamali"/> <date year="2018" month="September"/> </front> <seriesInfoname='John Wiley and Sons, DOI: 10.1002/9781119281139' value=''/>name="DOI" value="10.1002/9781119281139"/> </reference> <referenceanchor="NIST2013"> <!--BELL19-->anchor="NIST2013" target=""> <front> <title>Digital Signature Standard(DSS) </title> <author initials="E." surname="Barker"/> <date year="2013"/> </front> <seriesInfo name='National(DSS)</title> <author><organization>National Institute of Standards and Technology(NIST), FIPS.186-4, DOI: 10.6028/NIST.FIPS.186-4' value=''/>(NIST)</organization></author> <date year="2013" month="July"/> </front> <seriesInfo name="DOI" value="10.6028/NIST.FIPS.186-4"/> <refcontent>FIPS PUB 186-4</refcontent> </reference> <referenceanchor="SON2021"> <!--BELL19-->anchor="SON2021" target=""> <front> <title>FALCON </title> <author initials="D." surname="Soni"/> <author initials="K." surname="Basu"/> <author initials="M." surname="Nabeel"/> <author initials="N." surname="Aaraj"/> <author initials="M." surname="Manzano"/> <author initials="R." surname="Karri"/> <dateyear="2021" month="November"/>year="2021"/> </front> <seriesInfoname='Hardwarename="DOI" value="10.1007/978-3-030-57682-0_3"/> <refcontent>Hardware Architectures for Post-Quantum Digital Signature Schemes, pp.31-41' value=''/>31-41</refcontent> </reference> <reference anchor="AVA2021" target="https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf"> <front> <title>CRYSTALS-KYBER - Algorithm Specification and Supporting Documentation (version 3.02)</title> <author initials="R." surname="Avanzi"/> <author initials="J." surname="Bos"/> <author initials="L." surname="Ducas"/> <author initials="E." surname="Kiltz"/> <author initials="T." surname="Lepoint"/> <authorinitials="C."initials="V." surname="Lyubashevsky"/> <author initials="J.M." surname="Schanck"/> <author initials="P." surname="Schwabe"/> <author initials="G." surname="Seiler"/> <author initials="D."surname="Stehle"/>surname="Stehlé"/> <date year="2021" month="August"/> </front> </reference> <referenceanchor="ROY2020"> <!--BELL19-->anchor="ROY2020" target=""> <front><title>High-Speed Instruction-Set<title>High-speed Instruction-set CoprocessorFor Lattice-Basedfor Lattice-based Key Encapsulation Mechanism: SaberInin Hardware </title> <authorinitials="S.S.."initials="S.S." surname="Roy"/> <author initials="A." surname="Basso"/> <date year="2020" month="August"/> </front> <seriesInfoname='IACRname="DOI" value="10.13154/tches.v2020.i4.443-466"/> <refcontent>IACR Transactions on Cryptographic Hardware and Embedded Systems,443-466.' value=''/>Vol. 2020, Issue 4, pp. 443-466</refcontent> </reference><xi:include href="http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-raw-technologies.xml"/><!--Reliable[I-D.ietf-raw-technologies] IESG state I-D Exists; formatted the long way to include the editor role --> <reference anchor="I-D.ietf-raw-technologies" target="https://datatracker.ietf.org/doc/html/draft-ietf-raw-technologies-06"> <front> <title>Reliable and Available WirelessTechnologiesTechnologies</title> <author fullname="Pascal Thubert" initials="P." surname="Thubert" role="editor"> <organization>Cisco Systems, Inc</organization> </author> <author fullname="Dave Cavalcanti" initials="D." surname="Cavalcanti"> <organization>Intel Corporation</organization> </author> <author fullname="Xavier Vilajosana" initials="X." surname="Vilajosana"> <organization>Universitat Oberta de Catalunya</organization> </author> <author fullname="Corinna Schmitt" initials="C." surname="Schmitt"> <organization>Research Institute CODE, UniBw M</organization> </author> <author fullname="János Farkas" initials="J." surname="Farkas"> <organization>Ericsson</organization> </author> <date day="30" month="November" year="2022"/> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-raw-technologies-06"/> </reference> <!-- [I-D.ietf-raw-use-cases] IESG state IESG Evaluation::AD Followup. Formatted the long way to include the editor role --><xi:include href="http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-raw-use-cases.xml"/><reference anchor="I-D.ietf-raw-use-cases" target="https://datatracker.ietf.org/doc/html/draft-ietf-raw-use-cases-08"> <front> <title>RAW Use-Cases</title> <author fullname="Carlos J. Bernardos" initials="C. J." surname="Bernardos" role="editor"> <organization>Universidad Carlos III de Madrid</organization> </author> <author fullname="Georgios Z. Papadopoulos" initials="G. Z." surname="Papadopoulos"> <organization>IMT Atlantique</organization> </author> <author fullname="Pascal Thubert" initials="P." surname="Thubert"> <organization>Cisco Systems, Inc</organization> </author> <author fullname="Fabrice Theoleyre" initials="F." surname="Theoleyre"> <organization>CNRS</organization> </author> <date day="13" month="March" year="2023"/> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-raw-use-cases-09"/> </reference> <!--RAW use cases[I-D.haindl-lisp-gb-atn] IESG state I-D Exists --> <xi:includehref="http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.haindl-lisp-gb-atn.xml"/>href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.haindl-lisp-gb-atn.xml"/> <!--Ground-Based LISP for[I-D.ietf-rtgwg-atn-bgp] IESG state I-D Exists; formatted theAeronautical Telecommunications Network, Work in Progress, Internet-Draft, draft-haindl-lisp-gb-atn-06long way to include the editor role --><xi:include href="http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-rtgwg-atn-bgp.xml"/> <!-- A<reference anchor="I-D.ietf-rtgwg-atn-bgp" target="https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-atn-bgp-19"> <front> <title>A Simple BGP-based Mobile Routing System for the Aeronautical TelecommunicationsNetwork --> <xi:include href="http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-lisp-rfc6830bis.xml"/>Network</title> <author fullname="Fred Templin" initials="F." surname="Templin" role="editor"> <organization>Boeing Research & Technology</organization> </author> <author fullname="Greg Saccone" initials="G." surname="Saccone"> <organization>Boeing Research & Technology</organization> </author> <author fullname="Gaurav Dawra" initials="G." surname="Dawra"> <organization>LinkedIn</organization> </author> <author fullname="Acee Lindem" initials="A." surname="Lindem"> <organization>Cisco Systems, Inc.</organization> </author> <author fullname="Victor Moreno" initials="V." surname="Moreno"> <organization>Cisco Systems, Inc.</organization> </author> <date day="7" month="November" year="2022"/> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-rtgwg-atn-bgp-19"/> </reference> <!--The Locator/ID Separation Protocol (LISP)[I-D.ietf-lisp-rfc6830bis] Published as RFC 9300 --> <xi:includehref="http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-lisp-rfc6833bis.xml"/>href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.9300.xml"/> <!--Locator/ID Separation Protocol (LISP) Control-Plane[I-D.ietf-lisp-rfc6833bis] Published as RFC 9301 --> <xi:include href="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.9301.xml"/> <reference anchor="ICAO2018"target="https://www.icao.int/safety/FSMP/Documents/Doc9718/Doc9718_Vol_I_2nd_ed_(2018)corr1.pdf">target="https://www.icao.int/safety/FSMP/Documents/Doc9718/Doc.9718%20Vol.%20I%20(AdvanceUneditedVersion%202021).pdf"> <front> <title>Handbook on Radio Frequency Spectrum Requirements for CivilAviation, Doc 9718, Volume 1, ICAO Spectrum Strategy, Policy Statements and Related Information </title>Aviation</title> <author> <organization>International Civil Aviation Organization (ICAO)</organization> </author> <date year="2018" month="July"/> </front> <seriesInfo name="Doc 9718," value="AN/957"/> <refcontent>Vol. 1, ICAO Spectrum Strategy, Policy Statements and Related Information</refcontent> </reference> <reference anchor="ARI2019" target="https://standards.globalspec.com/std/13152055/ARINC%20633"> <front> <title>AOCAir-Ground Data And Message Exchange Format, ARINC 633</title>AIR-GROUND DATA AND MESSAGE EXCHANGE FORMAT</title> <author> <organization>ARINC</organization> </author> <date year="2019" month="January"/> </front> <seriesInfo name="ARINC" value="633"/> </reference> <referenceanchor="VIR2021">anchor="VIR2021" target=""> <front> <title>SAPIENT: Enabling Real-Time Monitoring and Control in the Future Communication Infrastructure of Air TrafficManagement </title>Management</title> <author initials="A." surname="Virdia"/> <author initials="G." surname="Stea"/> <author initials="G." surname="Dini"/> <date year="2021" month="August" /> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/TITS.2020.2983614"/> <refcontent>IEEE Transactions on Intelligent Transportation Systems,22(8):4864-4875' value=''/>Vol. 22, Issue 8, pp. 4864-4875</refcontent> </reference> <referenceanchor="SHU2013"> <!--REF9-->anchor="SHU2013" target=""> <front> <title>LDACS1Ranging Performanceranging performance - AnAnalysis Of Flight Measurement Results </title>analysis of flight measurement results</title> <author initials="D." surname="Shutin"/> <author initials="N." surname="Schneckenburger"/> <author initials="M." surname="Walter"/> <author initials="M." surname="Schnell"/> <date year="2013" month="October"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/DASC.2013.6712567"/> <refcontent>IEEE 32nd Digital Avionics Systems Conference (DASC), pp.1-10, East Syracuse, NY, USA' value=''/>1-10</refcontent> </reference> <referenceanchor="BEL2021"> <!--REF3-->anchor="BEL2021" target=""> <front> <title>LDACS Flight Trials: Demonstration and Performance Analysis of the Future Aeronautical Communications System </title> <author initials="M.A." surname="Bellido-Manganell"/> <author initials="T." surname="Gräupl"/> <author initials="O." surname="Heirich"/> <author initials="N." surname="Mäurer"/> <author initials="A." surname="Filip-Dhaubhadel"/> <author initials="D.M." surname="Mielke"/> <author initials="L.M." surname="Schalk"/> <author initials="D." surname="Becker"/> <author initials="N." surname="Schneckenburger"/> <author initials="M." surname="Schnell"/> <date year="2021" month="September"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/TAES.2021.3111722"/> <refcontent>IEEE Transactions on Aerospace and Electronic Systems, Vol. 58, Issue 1, pp.1-19' value=''/>615-634</refcontent> </reference> <referenceanchor="MAE2021"> <!--REF9-->anchor="MAE2021" target=""> <front> <title>A Secure Cell-Attachment Procedure forLDACS </title>LDACS</title> <author initials="N." surname="Mäurer"/> <author initials="T." surname="Gräupl"/> <author initials="C." surname="Gentsch"/> <author initials="T." surname="Guggemos"/> <author initials="M." surname="Tiepelt"/> <author initials="C." surname="Schmitt"/> <author initials="G." surname="Dreo Rodosek"/> <date year="2021" month="September"/> </front> <seriesInfoname='1st Workshopname="DOI" value="10.1109/EuroSPW54576.2021.00019"/> <refcontent>IEEE European Symposium onSecure and Reliable CommunicationSecurity andNavigation in the Aerospace Domain (SRCNAS),Privacy Workshops (EuroS&PW), pp.1-10, Vienna, Austria' value=''/>1-10</refcontent> </reference> <reference anchor="MAE20211"><!--REF9--><front> <title>Flight Trial Demonstration of Secure GBAS via the L-band Digital Aeronautical Communications System (LDACS) </title> <author initials="N." surname="Mäurer"/> <author initials="T." surname="Gräupl"/> <author initials="M.A." surname="Bellido-Manganell"/> <author initials="D.M." surname="Mielke"/> <author initials="A." surname="Filip-Dhaubhadel"/> <author initials="O." surname="Heirich"/> <author initials="D." surname="Gerberth"/> <author initials="M."surname="Flux"/>surname="Felux"/> <author initials="L.M." surname="Schalk"/> <author initials="D." surname="Becker"/> <author initials="N." surname="Schneckenburger"/> <author initials="M." surname="Schnell"/> <date year="2021" month="April"/> </front> <seriesInfoname='IEEEname="DOI" value="10.1109/MAES.2021.3052318"/> <refcontent>IEEE Aerospace and Electronic Systems Magazine,36(4),Vol. 36, Issue 4, pp.8-17' value=''/>8-17</refcontent> </reference> <referenceanchor="BOE2019"> <!--REF9-->anchor="BOE2019" target=""> <front> <title>LDACS White Paper - A Roll-outScenario </title>Scenario</title> <author initials="T." surname="Boegl"/> <author initials="M." surname="Rautenberg"/> <author initials="R." surname="Haindl"/> <author initials="C." surname="Rihacek"/> <author initials="J." surname="Meser"/> <author initials="P." surname="Fantappie"/> <author initials="N." surname="Pringvanich"/> <author initials="J." surname="Micallef"/> <authorinitials="H." surname="Klauspeter"/>initials="K." surname="Hauf"/> <author initials="J." surname="MacBride"/> <author initials="P." surname="Sacre"/> <author initials="B." surname="v.d. Eiden"/> <author initials="T." surname="Gräupl"/> <author initials="M." surname="Schnell"/> <date year="2019" month="October"/> </front><seriesInfo name='International<refcontent>International Civil Aviation Organization, Communications Panel - Data Communications Infrastructure Working Group - Third Meeting, pp.1-8, Montreal, Canada' value=''/>1-8</refcontent> </reference><!--<xi:include href="http://xml2rfc.tools.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-ipsecme-g-ikev2.xml"/>--></references> <section anchor="appendix" title="Selected Information from DO-350A"> <t> This appendix includes the continuity, availability, and integrity requirements applicable for LDACS defined in <xref target="DO350A"/>. </t> <t> The following terms are used here: </t><dlspacing='compact'> <dt>CPDLC</dt><dd> Controller Pilotspacing='compact' indent='10'> <dt>CPDLC:</dt><dd> Controller-Pilot Data LinkCommunicationCommunications </dd><dt>DT</dt><dd><dt>DT:</dt><dd> Delivery Time (nominal) value for RSP </dd><dt>ET</dt><dd><dt>ET:</dt><dd> Expiration Time value for RCP </dd><dt>FH</dt><dd><dt>FH:</dt><dd> Flight Hour </dd><dt>MA</dt><dd><dt>MA:</dt><dd> Monitoring and Alerting criteria </dd><dt>OT</dt><dd><dt>OT:</dt><dd> Overdue Delivery Time value for RSP </dd><dt>RCP</dt><dd><dt>RCP:</dt><dd> Required Communication Performance </dd><dt>RSP</dt><dd><dt>RSP:</dt><dd> Required Surveillance Performance </dd><dt>TT</dt><dd><dt>TT:</dt><dd> Transaction Time (nominal) value for RCP </dd> </dl><t> </t> <table anchor="tab_one"><name>CPDLC Requirements for RCP 130</name> <thead> <tr> <th align='center'> </th> <th align='center'>RCP 130</th> <th align='center'>RCP 130</th> </tr> </thead><tbody> <tr><td>Parameter</td> <td align='center'>ET</td> <td align='center'>TT95%</td> </tr> <tr><td>Transaction Time (sec)</td> <td align='center'>130</td> <td align='center'>67</td> </tr> <tr><td>Continuity</td> <td align='center'>0.999</td> <td align='center'>0.95</td> </tr> <tr><td>Availability</td> <td align='center'>0.989</td> <td align='center'>0.989</td> </tr> <tr><td>Integrity</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> </tr> </tbody> </table> <table anchor="tab_two"><name>CPDLC Requirements for RCP 240/400</name> <thead> <tr> <th align='center'> </th> <th align='center'>RCP 240</th> <th align='center'>RCP 240</th> <th align='center'>RCP 400</th> <th align='center'>RCP 400</th> </tr> </thead><tbody> <tr><td>Parameter</td> <td align='center'>ET</td> <td align='center'>TT95%</td> <td align='center'>ET</td> <td align='center'>TT95%</td> </tr> <tr><td>Transaction Time (sec)</td> <td align='center'>240</td> <td align='center'>210</td> <td align='center'>400</td> <td align='center'>350</td> </tr> <tr><td>Continuity</td> <td align='center'>0.999</td> <td align='center'>0.95</td> <td align='center'>0.999</td> <td align='center'>0.95</td> </tr> <tr><td>Availability</td> <td align='center'>0.989 </td> <td align='center'>0.989 </td> <td align='center'>0.989</td> <td align='center'>0.989</td> </tr> <tr><td>Integrity</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> </tr> </tbody> </table> <t> RCP Monitoring and Alerting Criteria in case of CPDLC: </t><dl spacing='compact'><dt>-</dt><dd> MA-1: The<dt>MA-1:</dt><dd>The system shall be capable of detecting failures and configuration changes that would cause the communication service to no longer meet the RCP specification for the intended use.</dd><dt>-</dt><dd> MA-2: When<dt>MA-2:</dt><dd>When the communication service can no longer meet the RCP specification for the intended function, the flight crew and/or the controller shall take appropriate action. </dd> </dl><t> </t> <table anchor="tab_three"><name>ADS-C Requirements</name> <thead> <tr> <th align='center'> </th> <th align='center'>RSP 160</th> <th align='center'>RSP 160</th> <th align='center'>RSP 180</th> <th align='center'>RSP 180</th> <th align='center'>RSP 400</th> <th align='center'>RSP 400</th> </tr> </thead><tbody> <tr><td>Parameter</td> <td align='center'>OT</td> <td align='center'>DT95%</td> <td align='center'>OT</td> <td align='center'>DT95%</td> <td align='center'>OT</td> <td align='center'>DT95%</td> </tr> <tr><td>Transaction Time (sec)</td> <td align='center'>160</td> <td align='center'>90</td> <td align='center'>180</td> <td align='center'>90</td> <td align='center'>400</td> <td align='center'>300</td> </tr> <tr><td>Continuity</td> <td align='center'>0.999</td> <td align='center'>0.95</td> <td align='center'>0.999</td> <td align='center'>0.95</td> <td align='center'>0.999</td> <td align='center'>0.95</td> </tr> <tr><td>Availability</td> <td align='center'>0.989</td> <td align='center'>0.989</td> <td align='center'>0.989</td> <td align='center'>0.989</td> <td align='center'>0.989</td> <td align='center'>0.989</td> </tr> <tr><td>Integrity</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> <td align='center'>1E-5 per FH</td> </tr> </tbody> </table> <t> RCP Monitoring and Alerting Criteria: </t><dl spacing='compact'><dt>- </dt><dd> MA-1: The<dt>MA-1:</dt><dd>The system shall be capable of detecting failures and configuration changes that would cause the ADS-C service to no longer meet the RSP specification for the intended function.</dd><dt>-</dt><dd> MA-2: When<dt>MA-2:</dt><dd>When the ADS-C service can no longer meet the RSP specification for the intended function, the flight crew and/or the controller shall take appropriate action. </dd> </dl><t> </t> </section></back> </rfc> <!-- CONVERT WARNING: wide character found<section anchor='Acknowledgements' numbered="false"><name>Acknowledgements</name> <t> Thanks to all contributors to the development of LDACS and ICAO Project Team Terrestrial (PT-T), as well as to all in the RAW Working Group for deep discussions and feedback. </t> <t> Thanks to <contact fullname="Klaus-Peter Hauf"/>, <contact fullname="Bart Van Den Einden"/>, and <contact fullname="Pierluigi Fantappie"/> for their comments on this document. </t> <t> Thanks to the Chair of Network Security for input and to the Research Institute CODE for their comments and improvements. </t> <t> Thanks to the colleagues of the Research Institute CODE atcharacter 2254the UniBwM, who are working on the AMIUS project funded under the Bavarian Aerospace Program by the Bavarian State Ministry of Economics, Regional Development and Energy with theoutput -->GA ROB-2-3410.20-04-11-15/HAMI-2109-0015, for fruitful discussions on aeronautical communications and relevant security incentives for the target market. </t> <t> Thanks to SBA Research Vienna for continuous discussions on security infrastructure issues in quickly developing markets such as the air space and potential economic spillovers to used technologies and protocols. </t> <t> Thanks to the Aeronautical Communications group at the Institute of Communications and Navigation of the German Aerospace Center (DLR). With that, the authors would like to explicitly thank <contact fullname="Miguel Angel Bellido-Manganell"/> and <contact fullname="Lukas Marcel Schalk"/> for their thorough feedback. </t> </section> </back> </rfc>