<?xml version="1.0" encoding="UTF-8"?>
  <?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?>
  <!-- generated by https://github.com/cabo/kramdown-rfc version 1.6.11 (Ruby 2.6.8) -->

<!DOCTYPE rfc [
  <!ENTITY nbsp    "&#160;">
  <!ENTITY zwsp   "&#8203;">
  <!ENTITY nbhy   "&#8209;">
  <!ENTITY wj     "&#8288;">
]>

<?rfc strict="yes"?>
<?rfc compact="yes"?>

<rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902" docName="draft-ietf-lpwan-schc-over-nbiot-15" docName="draft-ietf-lpwan-schc-over-nbiot-15draft-ietf-lpwan-schc-over-nbiot-15" number="9391" submissionType="IETF" category="std" consensus="true" submissionType="IETF" tocInclude="true" sortRefs="true" symRefs="true"> symRefs="true" updates="" obsoletes="" xml:lang="en" version="3">

  <front>
    <title abbrev="LPWAN SCHC NB-IoT">Static Context Header Compression over Narrowband Internet of Things</title>
    <seriesInfo name="RFC" value="9391"/>
    <author initials="E." surname="Ramos" fullname="Edgar Ramos">
      <organization>Ericsson</organization>
      <address>
        <postal>
          <street>Hirsalantie 11</street>
          <city>02420 Jorvas,
          <city>Jorvas, Kirkkonummi</city>
          <code>02420</code>
          <country>Finland</country>
        </postal>
        <email>edgar.ramos@ericsson.com</email>
      </address>
    </author>
    <author initials="A." surname="Minaburo" fullname="Ana Minaburo">
      <organization>Acklio</organization>
      <address>
        <postal>
          <street>1137A Avenue des Champs Blancs</street>
          <city>35510 Cesson-Sevigne
          <city>Cesson-Sevigne Cedex</city>
          <code>35510</code>
          <country>France</country>
        </postal>
        <email>ana@ackl.io</email>
      </address>
    </author>
    <date year="2022" month="December" day="15"/>

    <area>Internet</area>
    <workgroup>lpwan Working Group</workgroup>
    <keyword>Internet-Draft</keyword> year="2023" month="April"/>
    <area>int</area>
    <workgroup>lpwan</workgroup>

    <abstract>
      <t>This document describes Static Context Header Compression and Fragmentation
      fragmentation (SCHC) specifications, RFC RFCs 8724 and RFC 8824,
      in combination with the 3rd Generation Partnership Project (3GPP) and the
      Narrowband Internet of Things (NB-IoT).</t>
      <t>This document has two parts. One parts: one normative to specify part that specifies the
      use of SCHC over NB-IoT. And NB-IoT and one informational, which informational part that recommends some
      values if 3GPP wanted wants to use SCHC inside their architectures.</t>
    </abstract>
  </front>
  <middle>
    <section anchor="Introduction"><name>Introduction</name> anchor="Introduction">
      <name>Introduction</name>
      <t>This document defines the scenarios where the Static Context Header Compression and fragmentation (SCHC) <xref target="RFC8724"/> and <xref target="RFC8824"/> are suitable for 3rd Generation Partnership Project (3GPP) and Narrowband Internet of Things (NB-IoT) protocol stacks.</t>
      <t>In the 3GPP and the NB-IoT networks, header compression efficiently brings Internet connectivity to the Device-User Equipment Device UE (Dev-UE), the radio (RGW-eNB) and network (NGW-MME) gateways, and the Application Server. This document describes the SCHC parameters supporting static context header compression and fragmentation SCHC over the NB-IoT architecture.</t>
      <t>This document assumes functionality for NB-IoT of 3GPP release 15  <xref target="_3GPPR15"/>. target="R15-3GPP"/>. Otherwise, the text explicitly mentions other versions' functionality.</t>

      <t>This document has two parts, a standard parts: normative end-to-end scenario scenarios describing how any application must use SCHC over the 3GPP public service. And service and informational scenarios about how 3GPP could use SCHC in their protocol stack network.</t>
    </section>
    <section anchor="conventions-and-definitions"><name>Conventions anchor="conventions-and-definitions">
      <name>Conventions and Definitions</name>

<t>The
        <t>
    The key words "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL
    NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
    "<bcp14>MAY</bcp14>", and "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as
    described in BCP 14 BCP&nbsp;14 <xref target="RFC2119"/> <xref target="RFC8174"/>
    when, and only when, they appear in all capitals, as shown here.</t> here.
        </t>
    </section>
    <section anchor="terminology"><name>Terminology</name> anchor="terminology">
      <name>Terminology</name>
      <t>This document will follow the terms defined in <xref
      target="RFC8724"/>, in <xref target="RFC8376"/>, and the <xref
      target="TR23720"/>.</t>

<t><list style="symbols">
  <t>Capillary Gateway. A capillary gateway facilitates

      <dl newline="false" spacing="normal">
        <dt>Capillary Gateway:</dt>
	<dd>Facilitates seamless integration because it
	has wide area wide-area connectivity through cellular and provides wide area wide-area
	access as a proxy to other devices using LAN technologies (BT, Wi-Fi,
	Zigbee, or others.)</t>
  <t>CIoT EPS. Cellular others).</dd>
        <dt>Cellular IoT Evolved Packet System. It is a System (CIoT EPS):</dt>
	<dd>A functionality to improve the support of small data transfers.</t>
  <t>Dev-UE. Device - User Equipment.</t>
  <t>DoNAS. Data
	transfers.</dd>
        <dt>Device UE (Dev-UE):</dt>
	<dd>As defined in <xref target="RFC8376" sectionFormat="comma" section="3"/>.</dd>
        <dt>Data over Non-Access Stratum.</t>
  <t>EPC. Evolved Stratum (DoNAS):</dt>
	<dd>Sending user data within signaling messages over the NAS functional layer.</dd>
        <dt>Evolved Packet Connectivity. Core Connectivity (EPC):</dt>
	<dd>Core network of 3GPP LTE systems.</t>
  <t>EUTRAN. Evolved systems.</dd>
        <dt>Evolved Universal Terrestrial Radio Access Network. Radio Network (EUTRAN):</dt>
	<dd>Radio access network of LTE-based systems.</t>
  <t>HARQ. Hybrid systems.</dd>
        <dt>Hybrid Automatic Repeat Request.</t>
  <t>HSS. Home reQuest (HARQ):</dt>
	<dd>A combination of high-rate Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) error control.</dd>
        <dt>Home Subscriber Server. It is a Server (HSS):</dt>
	<dd>A database that contains users' subscription data, including
	data needed for mobility management.</t>
  <t>IP address. IPv6 management.</dd>
        <dt>IP address:</dt>
	<dd>IPv6 or IPv4 address used.</t>
  <t>IWK-SCEF. InterWorking used.</dd>
        <dt>InterWorking Service Capabilities Exposure Function. It is used Function
        (IWK-SCEF):</dt>
	<dd>Used in roaming scenarios, it is located in the Visited PLMN PLMN, and
	serves for interconnection with the SCEF Service Capabilities Exposure
	Function (SCEF) of the Home PLMN.</t>
  <t>L2. Layer-2 PLMN.</dd>
        <dt>Layer 2 (L2):</dt>
	<dd>L2 in the 3GPP architectures it includes MAC, RLC RLC, and PDCP layers layers; see <xref target="AppendixA"/>.</t>
  <t>LCID. Logical
	target="AppendixA"/>.</dd>
        <dt>Logical Channel ID. Is the ID (LCID):</dt>
	<dd>The logical channel instance of the corresponding MAC SDU.</t>
  <t>MAC. Medium SDU.</dd>
        <dt>Medium Access Control protocol, part (MAC) protocol:</dt>
	<dd>Part of L2.</t>
  <t>NAS. Non-Access Stratum.</t>
  <t>NB-IoT. Narrowband IoT. A L2.</dd>
        <dt>Non-Access Stratum (NAS):</dt>
	<dd>Functional layer for signaling messages that establishes communication sessions and maintains the communication while the user moves.</dd>
        <dt>Narrowband IoT (NB-IoT):</dt>
	<dd>A 3GPP LPWAN Low-Power WAN (LPWAN) technology based on the LTE
	architecture but with additional optimization for IoT and using a
	Narrowband spectrum frequency.</t>
  <t>NGW-CSGN. Network frequency.</dd>
        <dt>Network Gateway - CIoT Serving Gateway Node.</t>
  <t>NGW-CSGW. Network Node (NGW-CSGN):</dt>
	<dd>As defined in <xref target="RFC8376" sectionFormat="comma" section="3"/>.</dd>
        <dt>Network Gateway - Cellular Serving Gateway. It routes Gateway (NGW-CSGW):</dt>
	<dd>Routes and forwards the user data packets through the access network.</t>
  <t>NGW-MME. Network
	network.</dd>
        <dt>Network Gateway - Mobility Management Entity. An Entity (NGW-MME):</dt>
	<dd>An entity in charge of handling mobility of the Dev-UE.</t>
  <t>NGW-PGW. Network Dev-UE.</dd>
        <dt>Network Gateway - Packet Data Network Gateway. An Gateway (NGW-PGW):</dt>
	<dd>An interface between the internal with the and external network.</t>
  <t>NGW-SCEF. Network network.</dd>
        <dt>Network Gateway - Service Capability Exposure Function. EPC Function
        (NGW-SCEF):</dt>
	<dd>EPC node for exposure of 3GPP network service capabilities to 3rd third
	party applications.</t>
  <t>NIDD. Non-IP applications.</dd>
        <dt>Non-IP Data Delivery.</t>
  <t>PDCP. Packet Delivery (NIDD):</dt>
	<dd>End-to-end communication between the UE and the Application Server.</dd>
        <dt>Packet Data Convergence Protocol part (PDCP):</dt>
	<dd>Part of L2.</t>
  <t>PLMN. Public Land L2.</dd>
        <dt>Public Land-based Mobile Network. Combination Network (PLMN):</dt>
	<dd>A combination of wireless communication services offered by a
	specific operator.</t>
  <t>PDU. Protocol operator.</dd>
        <dt>Protocol Data Unit. A Unit (PDU):</dt>
	<dd>A data packet including headers that are transmitted between
	entities through a protocol.</t>
  <t>RLC. Radio protocol.</dd>
        <dt>Radio Link Protocol part (RLC):</dt>
	<dd>Part of L2.</t>
  <t>RGW-eNB. Radio L2.</dd>
        <dt>Radio Gateway - evolved Node B. Base B (RGW-eNB):</dt>
	<dd>Base Station that controls the UE.</t>
  <t>SDU. Service UE.</dd>
        <dt>Service Data Unit. A Unit (SDU):</dt>
	<dd>A data packet (PDU) from higher layer higher-layer protocols used by lower layer lower-layer
	protocols as a payload of their own PDUs.</t>
</list></t> PDUs.</dd>
      </dl>
    </section>
    <section anchor="nb-iot-architecture"><name>NB-IoT anchor="nb-iot-architecture">
      <name>NB-IoT Architecture</name>
      <t>The Narrowband Internet of Things (NB-IoT) NB-IoT architecture has a complex structure.
      It relies on different NGWs Network Gateways (NGWs) from different providers. It can send data via different paths, each with different characteristics in terms of bandwidth, acknowledgments, and layer-2 L2 reliability and segmentation.</t>

      <t><xref target="Figure-Archi"/> shows this architecture, where the Network Gateway - Cellular Internet of Things IoT Serving Gateway Node (NGW-CSGN) optimizes co-locating entities in different paths. For example, a Dev-UE using the path formed by the Network Gateway - Mobility Management Entity (NGW-MME), the NGW-CSGW, and the Network Gateway - Packet Data Network Gateway (NGW-PGW) may get a limited bandwidth transmission from a few bytes/s to one thousand bytes/s only.</t>
      <t>Another node introduced in the NB-IoT architecture is the Network Gateway - Service Capability Exposure Function (NGW-SCEF),
which securely exposes service and network capabilities to entities external to the network operator. The Open Mobile Alliance (OMA) <xref target="OMA0116"/> and the One Machine to Machine (OneM2M) <xref target="TR-0024"/> define the northbound APIs. <xref target="TS23222"/> defines architecture for the common API framework for 3GPP northbound APIs and APIs. <xref target="TS33122"/> defines security aspects for a common API framework for 3GPP northbound APIs. In this case, the path is small for data transmission.
The main functions of the NGW-SCEF are Connectivity path connectivity and Device Monitoring.</t> device monitoring.</t>
      <figure title="3GPP network architecture" anchor="Figure-Archi"><artwork><![CDATA[ anchor="Figure-Archi">
        <name>3GPP Network Architecture</name>
        <artwork><![CDATA[
+---+              +---------+    +------+
|Dev| \            | +-----+ | ---| HSS  |
|-UE|  \           | | NGW | |    +------+
+---+  |           | |-MME |\__
        \          / +-----+ | \
+---+    \+-----+ /|   |     | +------+
|Dev| ----| RGW |- |   |     | | NGW- |
|-UE|     |-eNB |  |   |     | | SCEF |---------+
+---+    /+-----+ \|   |     | +------+         |
        /          \ +------+|                  |
       /           |\| NGW- || +-----+   +-----------+
+---+ /            | | CSGW |--| NGW-|---|Application|
|Dev|              | |      || | PGW |   |   Server  |
|-UE|              | +------+| +-----+   +-----------+
+---+              |         |
                   |NGW-CSGN |
                   +---------+

]]></artwork></figure>
]]></artwork>
      </figure>
    </section>
    <section anchor="data-transmission-in-the-3gpp-architecture"><name>Data anchor="data-transmission-in-the-3gpp-architecture">
      <name>Data Transmission in the 3GPP Architecture</name>
      <t>NB-IoT networks deal with end-to-end user data and in-band signaling between the nodes and functions to configure, control, and monitor the system functions and behaviors. The signaling uses a different path with specific protocols, handling processes, and entities but can transport end-to-end user data for IoT services. In contrast, the end-to-end application only transports end-to-end data.</t>
      <t>The recommended 3GPP MTU size is 1358 bytes. The radio network protocols limit the packet sizes over the air, including radio protocol overhead, to 1600 bytes, bytes; see <xref target="Radio-Parameters"/>. However, the recommended 3GPP MTU is smaller to avoid fragmentation in the network backbone due to the payload encryption size (multiple of 16) and the additional core transport overhead handling.</t>
      <t>3GPP standardizes NB-IoT and, in general, the cellular technologies interfaces and functions. functions of cellular technologies. Therefore, the introduction of SCHC entities to Dev-UE, RGW-eNB, and NGW-CSGN needs to be specified in the NB-IoT standard.</t>

      <t>This document identifies the use cases of SCHC over the NB-IoT architecture.</t>

<t>First,
      <t>The first use case is of the radio transmission where, see (see <xref target="Radio"/>, target="Radio"/>) where the Dev-UE and the RGW-eNB can use the SCHC functionalities.</t>

<t>Second,
      <t>The second is where the packets transmitted over the control path can also use SCHC when the transmission goes over the NGW-MME or NGW-SCEF. See NGW-SCEF (see <xref target="DONAS"/>.</t> target="DONAS"/>).</t>
      <t>These two use cases are also valid for any 3GPP architecture and not only for NB-IoT. And as the 3GPP internal network is involved, they have been put in the informational part of this section.</t>
      <t>And third, over the third covers the SCHC over Non-IP Data Delivery (NIDD) connection or at least up to the operator network edge, see edge (see <xref target="E2E"/>. target="E2E"/>). In this case, SCHC functionalities are available in the application layer of the Dev-UE and the Application Servers or a broker function at the edge of the operator network. NGW-PGW or NGW-SCEF transmit the packets which that are non-IP Non-IP traffic, using IP tunneling or API calls. It is also possible to benefit legacy devices with SCHC by using the non-IP Non-IP transmission features of the operator network.</t>
      <t>A non-IP Non-IP transmission refers to other layer-2 an L2 transport that is different from NB-IoT.</t>
      <section anchor="normative-part"><name>Normative Part.</name>
<t>This anchor="normative-part">

        <name>Normative Scenarios</name>
        <t>These scenarios does do not modify the 3GPP architecture or any of its components, it
        components. They only use it the architecture as a layer-2 an L2
        transmission.</t>
        <section anchor="E2E"><name>SCHC anchor="E2E">
          <name>SCHC over Non-IP Data Delivery (NIDD)</name>
          <t>This section specifies the use of SCHC over Non-IP Data Delivery (NIDD) NIDD services of 3GPP. The NIDD services of 3GPP enable the transmission of SCHC packets compressed by the application layer. The packets can be delivered between the NGW-PGW and the Application Server or between the NGW-SCEF and the Application Server, using IP-tunnels or API calls. In both cases, as compression occurs before transmission, the network will not understand the packet, and the network does not have context information of this compression. Therefore, the network will treat the packet as Non-IP traffic and deliver it to the other side without any other protocol stack element, directly over the layer-2.</t> L2.</t>
          <section anchor="schc-entities-placing-over-nidd"><name>SCHC anchor="schc-entities-placing-over-nidd">
            <name>SCHC Entities Placing over NIDD</name>
            <t>In the two scenarios using NIDD compression, SCHC entities are located almost on top of the stack. The NB-IoT connectivity services implement SCHC in the Dev-UE, an in the Application Server. The IP tunneling scenario requires that the Application Server send the compressed packet over an IP connection terminated by the 3GPP core network. If the transmission uses the NGW-SCEF services, it is possible to utilize an API call to transfer the SCHC packets between the core network and the Application Server. Also, an IP tunnel could be established by the Application Server if negotiated with the NGW-SCEF.</t>
            <figure title="End-to End Compression. anchor="Fig--NIDD">
              <name>End-to-End Compression: SCHC entities placed Entities Placed when using Using Non-IP Delivery (NIDD) 3GPP Services" anchor="Fig--NIDD"><artwork><![CDATA[ Services</name>
              <artwork><![CDATA[
+---------+       XXXXXXXXXXXXXXXXXXXXXXXX             +--------+
| SCHC    |      XXX                    XXX            | SCHC   |
|(Non-IP) +-----XX........................XX....+--*---+(Non-IP)|
+---------+    XX                  +----+  XX   |  |   +--------+
|         |    XX                  |SCEF+-------+  |   |        |
|         |   XXX     3GPP RAN &   +----+  XXX     +---+  UDP   |
|         |   XXX    CORE NETWORK          XXX     |   |        |
|  L2     +---+XX                  +------------+  |   +--------+
|         |     XX                 |IP TUNNELING+--+   |        |
|         |      XXX               +------------+  +---+  IP    |
+---------+       XXXX                 XXXX        |   +--------+
| PHY     +------+ XXXXXXXXXXXXXXXXXXXXXXX         +---+  PHY   |
+---------+                                            +--------+
  Dev-UE                                              Application
                                                         Server

]]></artwork></figure>
]]></artwork>
            </figure>
          </section>
          <section anchor="Config"><name>Parameters anchor="Config">
            <name>Parameters for Static Context Header Compression and Fragmentation (SCHC)</name>
            <t>These scenarios <bcp14>MAY</bcp14> use the SCHC header compression
            capability to improve the transmission of IPv6 packets.</t>

<t><list style="symbols">
  <t>SCHC
            <ul spacing="normal">
              <li><t>SCHC Context initialization.</t>
</list></t> Initialization</t>
	      <t>The application layer handles the static context; consequently, context.
	      Consequently, the context distribution <bcp14>MUST</bcp14> be
	      according to the application's capabilities, perhaps utilizing
	      IP data transmissions up to context initialization. Also, the
	      static contexts context delivery may use the same IP tunneling or
	      NGW-SCEF services used later for the transport of SCHC packets transport.</t>

<t><list style="symbols">
  <t>SCHC Rules.</t>
</list></t> packets.</t></li>
              <li><t>SCHC Rules</t>
	      <t>For devices acting as a capillary gateway, several rules
	      match the diversity of devices and protocols used by the devices
	      associated with the gateway. Meanwhile, simpler devices may have
	      predetermined protocols and fixed parameters.</t>

<t><list style="symbols">
  <t>Rule ID.</t>
</list></t> parameters.</t></li>
              <li><t>RuleID</t>

	      <t>This scenario can dynamically set the RuleID size before the
	      context delivery. For delivery, for example, negotiate by negotiating between the
	      applications when choosing a profile according to the type of
	      traffic and application deployed.  Transmission optimization may
	      require only one physical layer Physical Layer transmission. SCHC overhead
	      <bcp14>SHOULD NOT</bcp14> exceed the available number of
	      effective bits of the smallest physical TB available to optimize
	      the transmission. The packets handled by 3GPP networks are
	      byte-aligned. Thus, to use the smallest TB, the maximum SCHC
	      header size is 12 bits. On the other hand, more complex NB-IoT
	      devices (such as a capillary gateway) might require additional
	      bits to handle the variety and multiple parameters of
	      higher-layer protocols deployed.  The configuration may be part
	      of the agreed operation profile and content distribution.
              The RuleID field size may range from 2 bits, resulting in 4 rules
              rules, to an 8-bit value that would yield value, yielding up to 256 rules that can be used with the operators and seems quite a reasonable for use by
              operators.  A 256-rule maximum limit seems to be quite
              reasonable, even for a device acting as a NAT.  An application
              may use a larger RuleID, but it should consider the byte
              alignment of the expected Compression Residue. In the minimum TB
              size case, 2 bits of RuleID leave only 6 bits available for
              Compression Residue.</t>

<t><list style="symbols">
  <t>SCHC MAX_PACKET_SIZE.</t>
</list></t> Residue.</t></li>
              <li><t>SCHC MAX_PACKET_SIZE</t>
	      <t>In these scenarios, the maximum <bcp14>RECOMMENDED</bcp14>
	      MTU size is 1358 bytes since the SCHC packets (and fragments)
	      are traversing the whole 3GPP network infrastructure (core and
	      radio), not only the radio as in the IP transmissions case.</t>

<t><list style="symbols">
  <t>Fragmentation.</t>
</list></t>
	      case.</t></li>
              <li><t>Fragmentation</t>
	      <t>Packets larger than 1358 bytes need the SCHC fragmentation
	      function. Since the 3GPP uses reliability functions, the No-ACK
	      fragmentation mode <bcp14>MAY</bcp14> be enough in
	      point-to-point connections. Nevertheless, additional
	      considerations are described below for more complex cases.</t>

<t><list style="symbols">
  <t>Fragmentation modes.</t>
</list></t>
	      cases.</t></li>
              <li><t>Fragmentation Modes</t>
	      <t>A global service assigns a QoS to the packets e.g. packets, e.g., depending
	      on the billing. Packets with very low QoS may get lost before
	      arriving in the 3GPP radio network transmission, for example, e.g., in
	      between the links of a capillary gateway or due to buffer
	      overflow handling in a backhaul connection.  The use of SCHC
	      fragmentation with the ACK-on-Error mode is
	      <bcp14>RECOMMENDED</bcp14> to secure additional reliability on
	      the packets transmitted with a small trade-off on further
	      transmissions to signal the end-to-end arrival of the packets if
	      no transport protocol takes care of retransmission.<br /> retransmission.<br/> Also,
	      the ACK-on-Error mode could be desirable to keep track of all
	      the SCHC packets delivered. In that case, the fragmentation
	      function could be activated for all packets transmitted by the
	      applications.  SCHC ACK-on-Error fragmentation
	      <bcp14>MAY</bcp14> be activated in transmitting non-IP Non-IP packets
	      on the NGW-MME. A non-IP Non-IP packet will use SCHC reserved RuleID
	      for non-compressing packets as <xref target="RFC8724"/> allows it.</t>

<t><list style="symbols">
  <t>Fragmentation Parameters.</t>
</list></t> it.</t></li>
              <li><t>Fragmentation Parameters</t>
	      <t>SCHC profile will have specific Rules for the fragmentation
	      modes. The rule will identify, identify which fragmentation mode is in
	      use, and section <xref target="Radio-Parameters"/> defines the RuleID size.</t>
	      size.</t></li></ul>
            <t>SCHC parametrization considers that NBIoT NB-IoT aligns the bit and
            uses padding and the size of the Transfer Block. SCHC will try to
            reduce padding to optimize the compression of the information. The Header
            header size needs to be a multiple of 4, and the 4. The Tiles
            <bcp14>MAY</bcp14> keep a fixed value of 4 or 8 bits to avoid padding
            padding, except for when the transfer block equals 16 bits where as
            the Tiles may be 2 bits. The transfer block size has a wide range
            of values. Two configurations are <bcp14>RECOMMENDED</bcp14> for
            the fragmentation parameters.</t>

<t><list style="symbols">
            <ul spacing="normal">
              <li>
                <t>For Transfer Blocks smaller than or equal to 304 bits using an
                8-bit Header_size configuration, with the size of the header
                fields as follows:
  <list style="symbols">
      <t>RuleID
                </t>
                <ul spacing="normal">
                  <li>RuleID from 1 - 3 bits,</t>
      <t>DTag bits</li>
                  <li>DTag 1 bit,</t>
      <t>FCN bit</li>
                  <li>FCN 3 bits,</t>
      <t>W bits</li>
                  <li>W 1 bits.</t>
    </list></t> bits</li>
                </ul>
              </li>
              <li>
                <t>For Transfer Blocks bigger than 304 bits using a 16-bit Header_size configuration, with the size of the header fields as follows:
  <list style="symbols">
      <t>RulesID
                </t>
                <ul spacing="normal">
                  <li>RulesID from 8 - 10 bits,</t>
      <t>DTag bits</li>
                  <li>DTag 1 or 2 bits,</t>
      <t>FCN bits</li>
                  <li>FCN 3 bits,</t>
      <t>W bits</li>
                  <li>W 2 or 3 bits.</t>
    </list></t>
  <t>WINDOW_SIZE of 2^N-1 is <bcp14>RECOMMENDED</bcp14>.</t>
  <t>RCS bits</li>
                </ul>
              </li>
              <li>WINDOW_SIZE of (2<sup>N</sup>)-1 is <bcp14>RECOMMENDED</bcp14>.</li>
              <li>Reassembly Check Sequence (RCS) will follow the default size defined in section 8.2.3 of the <xref target="RFC8724"/>, target="RFC8724" sectionFormat="of" section="8.2.3"/>, with a length equal to the L2 Word.</t>
  <t>MAX_ACK_REQ Word.</li>
              <li>MAX_ACK_REQ is <bcp14>RECOMMENDED</bcp14> to be 2, but applications <bcp14>MAY</bcp14> change this value based on transmission conditions.</t>
</list></t> conditions.</li>
            </ul>
            <t>The IoT devices communicate with small data transfer transfers and use the Power Save Mode and the Idle Mode DRX, Discontinuous Reception (DRX), which govern how often the device wakes up, stays up, and is reachable. The use of the different modes allows the battery to last ten years. Table 10.5.163a in <xref target="TS24008"/> specifies a range for defines the radio timers as N to 3N in increments of one where the timer values with units incrementing by N. The units of N can be 1 hour or 10 hours. The range used for IoT is of N to 3N, where N increments by one.

	    The Inactivity Timer and the Retransmission Timer can be set based on these limits.</t>
          </section>
        </section>
      </section>
      <section anchor="informational-part"><name>Informational Part.</name> anchor="informational-part">
        <name>Informational Scenarios</name>
        <t>These scenarios shows show how 3GPP could use SCHC for their
        transmissions.</t>
        <section anchor="Radio"><name>Use anchor="Radio">
          <name>Use of SCHC over the Radio link</name> Link</name>
          <t>Deploying SCHC over the radio link Radio Link only would require placing it as part of the protocol stack for data transfer between the Dev-UE and the RGW-eNB. This stack is the functional layer responsible for transporting data over the wireless connection and managing radio resources. There is support for features such as reliability, segmentation, and concatenation. The transmissions use link adaptation, meaning that the system will optimize the transport format used according to the radio conditions, the number of bits to transmit, and the power and interference constraints. That means that the number of bits transmitted over the air depends on the selected Modulation and Coding Schemes (MCS). (MCSs). Transport Block (TB) transmissions happen in the physical layer Physical Layer at network-synchronized intervals called Transmission Time Interval (TTI). Each Transport Block TB has a different MCS and number of bits available to transmit. The MAC layer <xref target="TR36321"/> defines the Transport Blocks' characteristics. characteristics of the TBs. The Radio link Link stack shown in <xref target="Fig-ProtocolArchi3"/> comprises the Packet Data Convergence Protocol (PDCP) <xref target="TS36323"/>, the Radio Link Protocol (RLC) <xref target="TS36322"/>, the Medium Access Control protocol (MAC) <xref target="TR36321"/>, and the Physical Layer <xref target="TS36201"/>. The <xref target="AppendixA"/> gives more details about these protocols.</t>
          <figure title="SCHC anchor="Fig-ProtocolArchi3">
            <name>SCHC over the Radio link" anchor="Fig-ProtocolArchi3"><artwork><![CDATA[ Link</name>
            <artwork><![CDATA[
+---------+                              +---------+  |
  |IP/non-IP+------------------------------+IP/non-IP+->+
|IP/Non-IP+------------------------------+IP/Non-IP+->+
+---------+   |   +---------------+   |  +---------+  |
| PDCP    +-------+ PDCP  | GTP|U +------+ GTP-U   |->+
| (SCHC)  +       + (SCHC)|       +      +         |  |
+---------+   |   +---------------+   |  +---------+  |
| RLC     +-------+ RLC   |UDP/IP +------+ UDP/IP  +->+
+---------+   |   +---------------+   |  +---------+  |
| MAC     +-------+ MAC   | L2    +------+ L2      +->+
+---------+   |   +---------------+   |  +---------+  |
| PHY     +-------+ PHY   | PHY   +------+ PHY     +->+
+---------+       +---------------+      +---------+  |
           C-Uu/                    S1-U             SGi
  Dev-UE               RGW-eNB             NGW-CSGN
          Radio Link

]]></artwork></figure>
]]></artwork>
          </figure>
          <section anchor="schc-entities-placing-over-the-radio-link"><name>SCHC anchor="schc-entities-placing-over-the-radio-link">

            <name>Placing SCHC Entities Placing over the Radio Link</name>
            <t>The 3GPP architecture supports Robust Header Compression (ROHC) <xref target="RFC5795"/> in the PDCP layer. Therefore, the architecture can deploy SCHC header compression entities similarly without the need for significant changes in the 3GPP specifications.</t>
            <t>The RLC layer has three functional modes modes: Transparent Mode (TM), Unacknowledged Mode (UM), and Acknowledged Mode (AM). The mode of operation controls the functionalities of the RLC layer.
TM only applies to signaling packets, while AM or UM carry signaling and data packets.</t>

<t>The RLC layer takes care of fragmentation unless except for the Transparent Mode. TM. In AM or UM modes, UM, the SCHC fragmentation is unnecessary and <bcp14>SHOULD NOT</bcp14> be used. While sending IP packets, the Radio link Link does not commonly use the RLC Transparent Mode. TM. However, if other protocol overhead optimizations are targeted for NB-IoT traffic, SCHC fragmentation may be used for TM transmission mode in the future.</t>
          </section>
        </section>
        <section anchor="DONAS"><name>Use anchor="DONAS">
          <name>Use of SCHC over the Non-Access Stratum (NAS)</name>
          <t>This section consists of IETF suggestions to the 3GPP. The NGW-MME conveys mainly signaling between the Dev-UE and the cellular network <xref target="TR24301"/>. The network transports this traffic on top of the radio link.</t> Radio Link.</t>
          <t>This kind of flow supports data transmissions to reduce the overhead when transmitting infrequent small quantities of data. This transmission is known as Data over Non-Access Stratum (DoNAS) or Control Plane Cellular Internet of Things (CIoT) evolved packet system (EPS) CIoT EPS optimizations. In DoNAS, the Dev-UE uses the pre-established security and security, can piggyback small uplink data into the initial uplink message message, and uses an additional message to receive a downlink small data response.</t>
          <t>The NGW-MME performs the data encryption from the network side in a DoNAS PDU. Depending on the data type signaled indication (IP or non-IP Non-IP data), the network allocates an IP address or establishes a direct forwarding path.
DoNAS is regulated under rate control upon previous agreement, meaning that a maximum number of bits per unit of time is agreed upon per device subscription beforehand and configured in the device.</t>
          <t>The system will use DoNAS when a terminal in a power-saving state requires a short transmission and receives an acknowledgment or short feedback from the network. Depending on the size of the buffered data to transmit, be transmitted, the Dev-UE might deploy the connected mode transmissions instead, limiting transmission instead. The connected mode would limit and controlling control the DoNAS transmissions to predefined thresholds thresholds, and it would be a good resource optimization balance for the terminal and the network. The support for mobility of DoNAS is present but produces additional overhead. The <xref target="AppendixB"/> gives additional details of DoNAS.</t>
          <section anchor="schc-entities-placing-over-donas"><name>SCHC anchor="schc-entities-placing-over-donas">
            <name>Placing SCHC Entities Placing over DoNAS</name>
            <t>SCHC resides in this scenario's Non-Access Stratum (NAS) protocol layer. The same principles as for the section <xref target="Radio"/> apply here as well. Because the NAS protocol already uses ROHC <xref target="RFC5795"/>, it can also adapt SCHC for header compression. The main difference compared to the radio link, section <xref target="Radio"/>, Radio Link (<xref target="Radio"/>) is the physical placing of the SCHC entities. On the network side, the NGW-MME resides in the core network and is the terminating node for NAS instead of the RGW-eNB.</t>
            <figure title="SCHC entities placement anchor="Fig-ProtocolArchi4">
              <name>SCHC Entities Placement in the 3GPP CIOT radio protocol architecture Radio Protocol Architecture for DoNAS transmissions" anchor="Fig-ProtocolArchi4"><artwork><![CDATA[ Transmissions</name>
              <artwork><![CDATA[
+--------+                       +--------+--------+  +  +--------+
| IP/    +--+-----------------+--+  IP/   |   IP/  +-----+   IP/  |
| Non-IP |  |                 |  | Non-IP | Non-IP |  |  | Non-IP |
+--------+  |                 |  +-----------------+  |  +--------+
| NAS    +-----------------------+   NAS  |GTP-C/U +-----+GTP-C/U |
|(SCHC)  |  |                 |  | (SCHC) |        |  |  |        |
+--------+  |  +-----------+  |  +-----------------+  |  +--------+
| RRC    +-----+RRC  |S1|AP+-----+ S1|AP  |        |  |  |        |
+--------+  |  +-----------+  |  +--------+  UDP   +-----+  UDP   |
| PDCP*  +-----+PDCP*|SCTP +-----+ SCTP   |        |  |  |        |
+--------+  |  +-----------+  |  +-----------------+  |  +--------+
| RLC    +-----+ RLC | IP  +-----+ IP     | IP     +-----+ IP     |
+--------+  |  +-----------+  |  +-----------------+  |  +--------+
| MAC    +-----+ MAC | L2  +-----+ L2     | L2     +-----+ L2     |
+--------+  |  +-----------+  |  +-----------------+  |  +--------+
| PHY    +--+--+ PHY | PHY +--+--+ PHY    | PHY    +-----+ PHY    |
+--------+     +-----+-----+     +--------+--------+  |  +--------+
           C-Uu/             S1                   SGi
 Dev-UE           RGW-eNB               NGW-MME             NGW-PGW

    *PDCP is bypassed until AS security is activated TGPP36300.

]]></artwork></figure>
]]></artwork>
            </figure>
          </section>
        </section>
        <section anchor="Radio-Parameters"><name>Parameters anchor="Radio-Parameters">
          <name>Parameters for Static Context Header Compression and
          Fragmentation (SCHC) for the Radio link Link and DONAS use-cases.</name> DoNAS Use Cases</name>
          <t>If 3GPP incorporates SCHC, it is recommended that these scenarios
          use the SCHC header compression <xref target="RFC8724"/> capability to
          optimize the data transmission.</t>

<t><list style="symbols">
  <t>SCHC
          <ul spacing="normal">
            <li><t>SCHC Context initialization.</t>
</list></t> Initialization</t>
	    <t>The RRC (Radio Radio Resource Control) Control (RRC) protocol is the main tool used
	    to configure the parameters of the Radio link. Link. It will configure
	    SCHC and the static context distribution as it has been made for ROHC operation
	    <xref target="RFC5795"/> operation <xref target="TS36323"/>.</t>

<t><list style="symbols">
  <t>SCHC Rules.</t>
</list></t>
	    target="TS36323"/>.</t></li>
            <li><t>SCHC Rules</t>
	    <t>The network operator in these scenarios defines the number of rules.
	    rules in these scenarios. For this, the network operator must know the IP traffic the
	    device will carry. The operator might supply rules compatible with
	    the device's use case.  For devices acting as a capillary gateway,
	    several rules match the diversity of devices and protocols used by
	    the devices associated with the gateway. Meanwhile, simpler
	    devices may have predetermined protocols and fixed parameters.
	    The use of IPv6 and IPv4 may force the operator to get develop more rules to deal with
	    each case.</t>

<t><list style="symbols">
  <t>RuleID.</t>
</list></t> case.</t></li>
            <li><t>RuleID</t>
            <t>There is a reasonable assumption of 9 bytes of radio protocol
            overhead for these transmission scenarios in NB-IoT, where PDCP
            uses 5 bytes due to header and integrity protection, protection and where RLC
            and MAC use 4 bytes. The minimum physical Transport Blocks (TB) TBs
            that can withhold this overhead value value, according to the 3GPP
            Release 15 specifications specification <xref target="R15-3GPP"/>, are 88, 104,
            120, and 144 bits.  As for <xref target="Config"/>, these
            scenarios must optimize the physical layer Physical Layer where the smallest TB
            is 12 bits.  These 12 bits must include the Compression Residue in
            addition to the RuleID. On the other hand, more complex NB-IoT
            devices (such as a capillary gateway) might require additional
            bits to handle the variety and multiple parameters of higher-layer
            protocols deployed. In that sense, the operator may want
            flexibility on the number and type of rules independently
            supported by each device; consequently, these scenarios require a
            configurable value.  The configuration may be part of the agreed
            operation profile with the content distribution.  The RuleID field
            size may range from 2 bits, resulting in 4 rules rules, to an 8-bit value that would yield
            value, yielding up to 256 rules that can be used for use with the operators and seems quite a reasonable operators.  A
            256-rule maximum limit seems to be quite reasonable, even for a
            device acting as a NAT.  An application may use a larger RuleID,
            but it should consider the byte alignment of the expected
            Compression Residue. In the minimum TB size case, 2 bits of RuleID
            leave only 6 bits available for Compression Residue.</t>

<t><list style="symbols">
  <t>SCHC MAX_PACKET_SIZE.</t>
</list></t> Residue.</t></li>
            <li><t>SCHC MAX_PACKET_SIZE</t>
            <t>The Radio Link can handle the fragmentation of SCHC packets if
            needed, including reliability. Hence, the packet size is limited
            by the MTU that is handled by the radio protocols, which
            corresponds to 1600 bytes for the 3GPP Release 15.</t>

<t><list style="symbols">
  <t>Fragmentation.</t>
</list></t> 15.</t></li>
            <li><t>Fragmentation</t>
            <t>For the Radio link <xref target="Radio"/> Link (<xref target="Radio"/>) and DoNAS' <xref target="DONAS"/> DoNAS (<xref
            target="DONAS"/>) scenarios, the SCHC fragmentation functions are
            disabled. The RLC layer of NB-IoT can segment packets into
            suitable units that fit the selected transport blocks TB for
            transmissions of the physical layer. Physical Layer. The block selection is made
            according to the link adaptation input function in the MAC layer
            and the quantity of data in the buffer. The link adaptation layer
            may produce different results at each Time Transmission Interval (TTI), TTI, resulting in varying
	    physical transport blocks TBs that depend
            on the network load, interference, number of bits transmitted, and
            QoS. Even if setting a value that allows the construction of data
            units following the SCHC tiles principle, the protocol overhead
            may be greater or equal to allowing the Radio link Link protocols to
            take care of the fragmentation intrinsically.</t>

<t><list style="symbols">
  <t>Fragmentation intrinsically.</t></li>
            <li><t>Fragmentation in RLC Transparent Mode.</t>
</list></t> TM</t>
            <t>The RLC Transparent Mode TM mostly applies to control signaling
            transmissions. When RLC operates in Transparent Mode, TM, the MAC
            layer mechanisms ensure reliability and generate overhead. This
            additional reliability implies sending repetitions or automatic
            retransmissions.</t>
          <t>The ACK-Always fragmentation mode of SCHC may reduce this
          overhead in future operations when data transmissions may use this
          mode. The ACK-Always mode may transmit compressed data with fewer
          possible transmissions by using fixed or limited transport blocks TBs
          compatible with the tiling SCHC fragmentation handling. For SCHC
          fragmentation parameters parameters, see <xref target="Config"/>.</t> target="Config"/>.</t></li></ul>
        </section>
      </section>
    </section>
    <section anchor="padding"><name>Padding</name> anchor="padding">
      <name>Padding</name>
      <t>NB-IoT and 3GPP wireless access, in general, assumes a byte-aligned payload. Therefore, the layer 2 word L2 Word for NB-IoT <bcp14>MUST</bcp14> be considered 8 bits, and the padding treatment should use this value accordingly.</t>
    </section>
    <section anchor="iana-considerations"><name>IANA considerations</name> anchor="iana-considerations">
      <name>IANA Considerations</name>
      <t>This document has no IANA actions.</t>
    </section>
    <section anchor="security-considerations"><name>Security considerations</name> anchor="security-considerations">
      <name>Security Considerations</name>
      <t>This document does not add any security considerations and follows the <xref target="RFC8724"/> and the 3GPP access security document specified in <xref target="TS33122"/>.</t>
    </section>
  </middle>
  <back>

    <references title='Normative References'>

<reference anchor='RFC2119' target='https://www.rfc-editor.org/info/rfc2119'>
<front>
<title>Key words for use in RFCs to Indicate Requirement Levels</title>
<author fullname='S. Bradner' initials='S.' surname='Bradner'><organization/></author>
<date month='March' year='1997'/>
<abstract><t>In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t></abstract>
</front>
<seriesInfo name='BCP' value='14'/>
<seriesInfo name='RFC' value='2119'/>
<seriesInfo name='DOI' value='10.17487/RFC2119'/>
</reference>

<reference anchor='RFC8174' target='https://www.rfc-editor.org/info/rfc8174'>
<front>
<title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title>
<author fullname='B. Leiba' initials='B.' surname='Leiba'><organization/></author>
<date month='May' year='2017'/>
<abstract><t>RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.</t></abstract>
</front>
<seriesInfo name='BCP' value='14'/>
<seriesInfo name='RFC' value='8174'/>
<seriesInfo name='DOI' value='10.17487/RFC8174'/>
</reference>

<reference anchor='RFC8724' target='https://www.rfc-editor.org/info/rfc8724'>
<front>
<title>SCHC: Generic Framework for Static Context Header Compression and Fragmentation</title>
<author fullname='A. Minaburo' initials='A.' surname='Minaburo'><organization/></author>
<author fullname='L. Toutain' initials='L.' surname='Toutain'><organization/></author>
<author fullname='C. Gomez' initials='C.' surname='Gomez'><organization/></author>
<author fullname='D. Barthel' initials='D.' surname='Barthel'><organization/></author>
<author fullname='JC. Zuniga' initials='JC.' surname='Zuniga'><organization/></author>
<date month='April' year='2020'/>
<abstract><t>This document defines the Static Context Header Compression and fragmentation (SCHC) framework, which provides both a header compression mechanism and an optional fragmentation mechanism. SCHC has been designed with Low-Power Wide Area Networks (LPWANs) in mind.</t><t>SCHC compression is based on a common static context stored both in the LPWAN device and in the network infrastructure side. This document defines a generic header compression mechanism and its application to compress IPv6/UDP headers.</t><t>This document also specifies an optional fragmentation and reassembly mechanism. It can be used to support the IPv6 MTU requirement over the LPWAN technologies. Fragmentation is needed for IPv6 datagrams that, after SCHC compression or when such compression was not possible, still exceed the Layer 2 maximum payload size.</t><t>The SCHC header compression and fragmentation mechanisms are independent of the specific LPWAN technology over which they are used. This document defines generic functionalities and offers flexibility with regard to parameter settings and mechanism choices. This document standardizes the exchange over the LPWAN between two SCHC entities. Settings and choices specific to a technology or a product are expected to be grouped into profiles, which are specified in other documents. Data models for the context and profiles are out of scope.</t></abstract>
</front>
<seriesInfo name='RFC' value='8724'/>
<seriesInfo name='DOI' value='10.17487/RFC8724'/>
</reference>

<reference anchor='RFC8824' target='https://www.rfc-editor.org/info/rfc8824'>
<front>
<title>Static Context Header Compression (SCHC) for the Constrained Application Protocol (CoAP)</title>
<author fullname='A. Minaburo' initials='A.' surname='Minaburo'><organization/></author>
<author fullname='L. Toutain' initials='L.' surname='Toutain'><organization/></author>
<author fullname='R. Andreasen' initials='R.' surname='Andreasen'><organization/></author>
<date month='June' year='2021'/>
<abstract><t>This document defines how to compress Constrained Application Protocol (CoAP) headers using the Static Context Header Compression and fragmentation (SCHC) framework. SCHC defines a header compression mechanism adapted for Constrained Devices. SCHC uses a static description of the header to reduce the header's redundancy and size. While RFC 8724 describes the SCHC compression and fragmentation framework, and its application for IPv6/UDP headers, this document applies SCHC to CoAP headers. The CoAP header structure differs from IPv6 and UDP, since CoAP uses a flexible header with a variable number of options, themselves of variable length. The CoAP message format is asymmetric: the request messages have a header format different from the format in the response messages. This specification gives guidance on applying SCHC to flexible headers and how to leverage the asymmetry for more efficient compression Rules.</t></abstract>
</front>
<seriesInfo name='RFC' value='8824'/>
<seriesInfo name='DOI' value='10.17487/RFC8824'/>
</reference>
    <references>
      <name>References</name>
      <references>
        <name>Normative References</name>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8724.xml"/>
        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8824.xml"/>
      </references>

    <references title='Informative References'>
      <references>
        <name>Informative References</name>

        <reference anchor='RFC5795' target='https://www.rfc-editor.org/info/rfc5795'> anchor="RFC5795" target="https://www.rfc-editor.org/info/rfc5795">
	  <front>
	    <title>The RObust Header Compression (ROHC) Framework</title>
	    <author fullname='K. Sandlund' initials='K.' surname='Sandlund'><organization/></author> fullname="K. Sandlund" initials="K." surname="Sandlund"/>
	    <author fullname='G. Pelletier' initials='G.' surname='Pelletier'><organization/></author>
<author fullname='L-E. Jonsson' initials='L-E.' surname='Jonsson'><organization/></author>
<date month='March' year='2010'/>
<abstract><t>The Robust Header Compression (ROHC) protocol provides an efficient, flexible, and future-proof header compression concept.  It is designed to operate efficiently and robustly over various link technologies with different characteristics.</t><t>The ROHC framework, along with a set of compression profiles, was initially defined in RFC 3095.  To improve and simplify the ROHC specifications, this document explicitly defines the ROHC framework and the profile for uncompressed separately.  More specifically, the definition of the framework does not modify or update the definition of the framework specified by RFC 3095.</t><t>This specification obsoletes RFC 4995.  It fixes one interoperability issue that was erroneously introduced in RFC 4995, and adds some minor clarifications.  [STANDARDS-TRACK]</t></abstract>
</front>
<seriesInfo name='RFC' value='5795'/>
<seriesInfo name='DOI' value='10.17487/RFC5795'/>
</reference>

<reference anchor='RFC8376' target='https://www.rfc-editor.org/info/rfc8376'>
<front>
<title>Low-Power Wide Area Network (LPWAN) Overview</title> fullname="G. Pelletier" initials="G." surname="Pelletier"/>
	    <author fullname='S. Farrell' initials='S.' role='editor' surname='Farrell'><organization/></author> fullname="L-E. Jonsson" initials="L-E." surname="Jonsson"/>
	    <date month='May' year='2018'/>
<abstract><t>Low-Power Wide Area Networks (LPWANs) are wireless technologies with characteristics such as large coverage areas, low bandwidth, possibly very small packet and application-layer data sizes, and long battery life operation.  This memo is an informational overview of the set of LPWAN technologies being considered in the IETF and of the gaps that exist between the needs of those technologies and the goal of running IP in LPWANs.</t></abstract> month="March" year="2010"/>
	  </front>
	  <seriesInfo name='RFC' value='8376'/> name="RFC" value="5795"/>
	  <seriesInfo name='DOI' value='10.17487/RFC8376'/> name="DOI" value="10.17487/RFC5795"/>
	</reference>

        <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8376.xml"/>

        <reference anchor="_3GPPR15" target="https://www.3gpp.org/release-15"> anchor="R15-3GPP" target="https://www.3gpp.org/specifications-technologies/releases/release-15">
          <front>
    <title>The Mobile Broadband Standard</title>
    <author >
            <title>Release 15</title>
            <author>
              <organization>3GPP</organization>
            </author>
            <date month="April" year="2019"/>
          </front>
        </reference>

        <reference anchor="TR23720" target="https://www.3gpp.org/ftp/Specs/archive/23_series/23.720/23720-d00.zip">
          <front>
            <title>Study on architecture enhancements for Cellular Internet of Things</title>
    <author >
            <author>
              <organization>3GPP</organization>
            </author>
            <date year="2015"/> month="March" year="2016"/>
          </front>
	  <refcontent>3GPP TR 23.720 V13.0.0</refcontent>
        </reference>

        <reference anchor="TS33122" target="https://www.3gpp.org/ftp//Specs/archive/33_series/33.122/33122-f30.zip">
          <front>
            <title>Security aspects of Common API Framework (CAPIF) for 3GPP northbound APIs</title>
    <author >
            <author>
              <organization>3GPP</organization>
            </author>
            <date year="2018"/> month="March" year="2019"/>
          </front>
	  <refcontent>3GPP TS 33.122 V15.3.0</refcontent>
        </reference>

        <reference anchor="TR36321" target="https://www.3gpp.org/ftp/Specs/archive/36_series/36.321/36321-d20.zip">
           <front>
	     <title>Evolved Universal Terrestrial Radio Access (E-UTRA);
	     Medium Access Control (MAC) protocol specification</title>
    <author > specification
	     </title>
	     <author>
	       <organization>3GPP</organization>
	     </author>
	     <date month="June" year="2016"/>
	   </front>
	   <refcontent>3GPP TS 36.321 V13.2.0</refcontent>
	 </reference>

        <reference anchor="TS36322" target="https://www.3gpp.org/ftp/Specs/archive/36_series/36.322/36322-f01.zip">
          <front>
	    <title>Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
	    Link Control (RLC) protocol specification</title>
    <author >
	    <author>
	      <organization>3GPP</organization>
	    </author>
	    <date month="April" year="2018"/>
	  </front>
	  <refcontent>3GPP TS 36.322 V15.0.1</refcontent>
	</reference>

        <reference anchor="TS36201" target="https://www.3gpp.org/ftp/Specs/archive/36_series/36.201/36201-f10.zip">
           <front>
	     <title>Evolved Universal Terrestrial Radio Access (E-UTRA); LTE
	     physical layer; General description</title>
    <author >
	     <author>
	       <organization>3GPP</organization>
	     </author>
	     <date month="June" year="2018"/>
	   </front>
	   <refcontent>3GPP TS 36.201 V15.1.0</refcontent>
	</reference>

        <reference anchor="TR24301" target="https://www.3gpp.org/ftp//Specs/archive/24_series/24.301/24301-f80.zip">
          <front>
    <title>Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC)
            <title>Non-Access-Stratum (NAS) protocol specification</title>
    <author > for Evolved Packet System (EPS); Stage 3</title>
            <author>
              <organization>3GPP</organization>
            </author>
            <date month="December" year="2019"/>
          </front>
</reference>
<reference anchor="TR-0024" target="https://ftp.onem2m.org/work%20programme/WI-0037/TR-0024-3GPP_Interworking-V4_3_0.DOCX">
  <front>
    <title>3GPP_Interworking</title>
    <author >
      <organization>OneM2M</organization>
    </author>
    <date year="2020"/>
  </front>
</reference>
<reference anchor="OMA0116" target="https://www.openmobilealliance.org/release/REST_NetAPI_Common/V1_0-20180116-A/OMA-TS-REST_NetAPI_Common-V1_0-20180116-A.pdf">
  <front>
    <title>Common definitions for RESTful Network APIs</title>
    <author >
      <organization>OMA</organization>
    </author>
    <date year="2018"/>
  </front>
	  <refcontent>3GPP TS 24.301 V15.8.0</refcontent>
        </reference>

        <reference anchor="TS24008" target="https://www.3gpp.org/ftp//Specs/archive/24_series/24.008/24008-f50.zip">
           <front>
	     <title>Mobile radio interface layer Layer 3 specification.</title>
    <author > specification; Core network
	     protocols; Stage 3</title>
	     <author>
	       <organization>3GPP</organization>
	     </author>
	     <date month="December" year="2018"/>
	   </front>
	   <refcontent>3GPP TS 24.008 V15.5.0</refcontent>
	 </reference>

        <reference anchor="TS36323" target="https://www.3gpp.org/ftp/Specs/archive/36_series/36.323/36323-d20.zip">
           <front>
	     <title>Evolved Universal Terrestrial Radio Access (E-UTRA);
	     Packet Data Convergence Protocol (PDCP) specification</title>
    <author >
	     <author>
	       <organization>3GPP</organization>
	     </author>
	     <date month="June" year="2016"/>
	   </front>
	   <refcontent>3GPP TS 36.323 V13.2.0</refcontent>
	</reference>

        <reference anchor="TS36331" target="https://www.3gpp.org/ftp//Specs/archive/36_series/36.331/36331-f51.zip">
           <front>
	     <title>Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
	     Resource Control (RRC); Protocol specification</title>
    <author >
	     <author>
	       <organization>3GPP</organization>
	     </author>
	     <date year="2018"/> month="April" year="2019"/>
	   </front>
	   <refcontent>3GPP TS 36.331 V15.5.1</refcontent>
	</reference>

        <reference anchor="TS23222" target="https://www.3gpp.org/ftp/Specs/archive/23_series/23.222/23222-f60.zip">
          <front>
    <title>Common
            <title>Functional architecture and information flows to support Common API Framework for 3GPP Northbound APIs</title>
    <author > APIs; Stage 2</title>
            <author>
              <organization>3GPP</organization>
            </author>
            <date month="September" year="2022"/>
          </front>
	  <refcontent>3GPP TS 23.222 V15.6.0</refcontent>
        </reference>

        <reference anchor="TR-0024" target="https://ftp.onem2m.org/work%20programme/WI-0037/TR-0024-3GPP_Interworking-V4_3_0.DOCX">
          <front>
            <title>3GPP_Interworking</title>
            <author>
              <organization>OneM2M</organization>
            </author>
            <date month="March" year="2020"/>
          </front>
	  <refcontent>TR-0024-V4.3.0</refcontent>
        </reference>

        <reference anchor="OMA0116" target="https://www.openmobilealliance.org/release/REST_NetAPI_Common/V1_0-20180116-A/OMA-TS-REST_NetAPI_Common-V1_0-20180116-A.pdf">
          <front>
            <title>Common definitions for RESTful Network APIs</title>
            <author>
              <organization>Open Mobile Alliance</organization>
            </author>
            <date month="January" year="2018"/>
          </front>
	  <refcontent>Version 1.0</refcontent>
        </reference>

      </references>
    </references>

<section anchor="AppendixA"><name>NB-IoT anchor="AppendixA">
      <name>NB-IoT User Plane protocol architecture</name> Protocol Architecture</name>
      <section anchor="packet-data-convergence-protocol-pdcp-ts36323"><name>Packet anchor="packet-data-convergence-protocol-pdcp-ts36323">
        <name>Packet Data Convergence Protocol (PDCP) <xref target="TS36323"/></name> (PDCP)</name>
        <t>Each of the Radio Bearers (RB) (RBs) is associated with one PDCP entity. entity <xref target="TS36323"/>. Moreover, a PDCP entity is associated with one or two RLC entities entities, depending on the unidirectional or bi-directional bidirectional characteristics of the RB and RLC mode used. A PDCP entity is associated with either a control plane or a user plane with independent configuration and functions. The maximum supported size for NB-IoT of a PDCP SDU is 1600 octets. The primary services and functions of the PDCP sublayer for NB-IoT for the user plane include:</t>

<t><list style="symbols">
  <t>Header
        <ul spacing="normal">
          <li>Header compression and decompression using ROHC <xref target="RFC5795"/></t>
  <t>Transfer
          target="RFC5795"/></li>
          <li>Transfer of user and control data to higher and lower layers</t>
  <t>Duplicate layers</li>
          <li>Duplicate detection of lower layer lower-layer SDUs when re-establishing
          connection (when RLC with Acknowledge Mode is in use for User Plane only)</t>
  <t>Ciphering
          only)</li>
          <li>Ciphering and deciphering</t>
  <t>Timer-based deciphering</li>
          <li>Timer-based SDU discard in uplink</t>
</list></t> uplink</li>
        </ul>
      </section>
      <section anchor="radio-link-protocol-rlc-ts36322"><name>Radio anchor="radio-link-protocol-rlc-ts36322">
        <name>Radio Link Protocol (RLC) <xref target="TS36322"/></name> (RLC)</name>
        <t>RLC <xref target="TS36322"/> is a layer-2 an L2 protocol that operates between the UE User Equipment (UE) and the base station (eNB). It supports the packet delivery from higher layers to MAC, creating packets transmitted over the air, optimizing the Transport Block TB utilization. RLC flow of data packets is unidirectional, and it is composed of a transmitter located in the transmission device and a receiver located in the destination device. Therefore, to configure bi-directional bidirectional flows, two sets of entities, one in each direction (downlink and uplink), must be configured and effectively peered to each other. The peering allows the transmission of control packets (ex., (e.g., status reports) between entities. RLC can be configured for a data transfer in one of the following modes:</t>

<t><list style="symbols">
  <t>Transparent
        <ul spacing="normal">
          <li><t>Transparent Mode (TM). RLC (TM)</t>
	  <t>RLC does not segment or concatenate SDUs from higher layers in
	  this mode and does not include any header to with the payload. RLC
	  receives SDUs from upper layers when acting as a transmitter and
	  transmits directly to its flow RLC receiver via lower
	  layers. Similarly, upon reception, a TM RLC receiver would only deliver without processing not
	  process the packets and only deliver them to higher layers upon reception.</t>
  <t>Unacknowledged layers.</t></li>
          <li><t>Unacknowledged Mode (UM). This (UM)</t>
	  <t>This mode provides support for segmentation and concatenation of
	  payload. The RLC packet's size depends on the indication given at a
	  particular transmission opportunity by the lower layer (MAC) and is
	  octet-aligned. The packet delivery to the receiver does not include
	  reliability support, and the loss of a segment from a packet means a
	  complete packet loss. Also, in the case of lower layer lower-layer retransmissions, there is
	  no support for re-segmentation in case of change of the radio
	  conditions triggering change and trigger the selection of a smaller transport block. TB.
	  Additionally, it provides PDU duplication detection and
	  discards, reordering of out-of-sequence, out-of-sequence reordering, and loss detection.</t>
  <t>Acknowledged
	  detection.</t></li>
          <li><t>Acknowledged Mode (AM). In (AM)</t>

	  <t>In addition to the same functions supported by UM, this mode also
	  adds a moving windows-based reliability service on top of the lower layer lower-layer
	  services.
          It also supports re-segmentation, and it requires
	  bidirectional communication to exchange acknowledgment reports reports,
	  called RLC Status Report Reports, and to trigger retransmissions. This model
	  also supports protocol error protocol-error detection. The mode used depends on the
	  operator configuration for the type of data to be transmitted. For
	  example, data transmissions supporting mobility or requiring high
	  reliability would be most likely configured using AM. Meanwhile,
	  streaming and real-time data would be mapped to a UM configuration.</t>
</list></t>
	  configuration.</t></li>
        </ul>
      </section>
      <section anchor="medium-access-control-mac-tr36321"><name>Medium anchor="medium-access-control-mac-tr36321">
        <name>Medium Access Control (MAC) <xref target="TR36321"/></name> (MAC)</name>

<t>MAC <xref target="TR36321"/> provides a mapping between the higher layers abstraction called Logical Channels (which are comprised by the previously described protocols to protocols) and the Physical layer Layer channels (transport channels).

Additionally, MAC may multiplex packets from different Logical Channels and prioritize what which ones to fit into one Transport Block TB if there is data and space available to maximize data transmission efficiency. MAC also provides error correction and reliability support through Hybrid Automatic Repeat reQuest (HARQ), transport format selection, and scheduling information reporting reported from the terminal to the network. MAC also adds the necessary padding and piggyback control elements elements, when possible and possible, as well as the higher layers data.</t>
        <figure title="Example anchor="Fig--MAC">
          <name>Example of User Plane packet encapsulation Packet Encapsulation for two transport blocks" anchor="Fig--MAC"><artwork><![CDATA[ Two Transport Blocks</name>
          <artwork><![CDATA[
                                            <Max. 1600 bytes>
                    +---+         +---+          +------+
Application         |AP1|         |AP1|          |  AP2 |
(IP/non-IP)
(IP/Non-IP)         |PDU|         |PDU|          |  PDU |
                    +---+         +---+          +------+
                    |   |         |  |           |      |
PDCP           +--------+    +--------      +-----------+
               |PDCP|AP1|    |PDCP|AP1|     |PDCP|  AP2 |
               |Head|PDU|    |Head|PDU|     |Head|  PDU |
               +--------+    +--------+     +--------+--\
               |    |   |    |     |  |     |    |   |\  `--------\
         +---------------------------+      |    |(1)| `-------\(2)\
RLC      |RLC |PDCP|AP1|RLC |PDCP|AP1| +-------------+    +----|---+
         |Head|Head|PDU|Head|Head|PDU| |RLC |PDCP|AP2|    |RLC |AP2|
         +-------------|-------------+ |Head|Head|PDU|    |Head|PDU|
         |         |   |         |   | +---------|---+    +--------+
         |         |   | LCID1   |   | /         /   /   /         /
        /         /   /        _/  _//        _/  _/    / LCID2   /
        |        |   |        |   | /       _/  _/     /      ___/
        |        |   |        |   ||       |   |      /      /
    +------------------------------------------+ +-----------+---+
MAC |MAC|RLC|PDCP|AP1|RLC|PDCP|AP1|RLC|PDCP|AP2| |MAC|RLC|AP2|Pad|
    |Hea|Hea|Hea |PDU|Hea|Hea |PDU|Hea|Hea |PDU| |Hea|Hea|PDU|din|
    |der|der|der |   |der|der |   |der|der |   | |der|der|   |g  |
    +------------------------------------------+ +-----------+---+
                      TB1                               TB2

(1) Segment One
(2) Segment Two

]]></artwork></figure>
]]></artwork>
        </figure>
      </section>
    </section>
    <section anchor="AppendixB"><name>NB-IoT anchor="AppendixB">
      <name>NB-IoT Data over NAS (DoNAS)</name>
      <t>The Access Stratum (AS) protocol stack used by DoNAS is specific because the radio network still needs to establish the security associations and reduce the protocol overhead, overhead so that the PDCP (Packet Data Convergence Protocol) is bypassed until the AS security is activated. RLC (Radio Link Control protocol) uses, by By default, RLC uses the AM mode, but AM. However, depending on the network's features and the terminal, it RLC may change to other modes by the network operator. For example, the transparent mode TM does not add any header or nor process the payload to reduce the overhead, but the MTU would be limited by the transport block TB used to transmit the data, which is a couple of thousand bits maximum. If UM (only terminals compatible with 3GPP Release 15 compatible terminals) <xref target="R15-3GPP"/>) is used, the RLC mechanisms of reliability are disabled, and only the reliability provided by the MAC layer by HARQ is available. In this case, the protocol overhead might be smaller than the AM case because of the lack of status reporting reporting, but with the overhead would have the same support for segmentation up to 1600 bytes. NAS packets are encapsulated within an RRC (Radio Resource Control) <xref target="TS36331"/> message.</t>
<t>Depending on the data type indication signaled (IP or non-IP Non-IP data), the network allocates an IP address or establishes a direct forwarding path. DoNAS is regulated under rate control upon previous agreement, meaning that a maximum number of bits per unit of time is agreed upon per device subscription beforehand and configured in the device. The use of DoNAS is typically expected when a terminal in a power-saving state requires a short transmission and is receiving an acknowledgment or short feedback from the network.
Depending on the size of buffered data to transmit, be transmitted, the UE might be instructed to deploy the connected mode transmissions instead, limiting and controlling the DoNAS transmissions to predefined thresholds and a good resource optimization balance for the terminal and the network. The support for mobility of DoNAS is present but produces additional overhead.</t>
      <figure title="DoNAS transmission sequence anchor="Fig--DONAS">
        <name>DoNAS Transmission Sequence from an Uplink initiated access" anchor="Fig--DONAS"><artwork><![CDATA[ Initiated Access</name>
        <artwork><![CDATA[
   +--------+   +--------+   +--------+
   |        |   |        |   |        |       +-----------------+
   |   UE   |   |  C-BS  |   |  C-SGN |       |Roaming Scenarios|
   +----|---+   +--------+   +--------+       |  +--------+     |
        |            |            |           |  |        |     |
    +----------------|------------|+          |  |  P-GW  |     |
    |        Attach                |          |  +--------+     |
    +------------------------------+          |       |         |
        |            |            |           |       |         |
 +------|------------|--------+   |           |       |         |
 |RRC Connection Establishment| connection establishment|   |           |       |         |
 |with NAS PDU transmission   |   |           |       |         |
 |& Ack Rsp                   |   |           |       |         |
 +----------------------------+   |           |       |         |
        |            |            |           |       |         |
        |            |Initial UE  |           |       |         |
        |            |message     |           |       |         |
        |            |----------->|           |       |         |
        |            |            |           |       |         |
        |            | +---------------------+|       |         |
        |            | |Checks Integrity     ||       |         |
        |            | |protection, decrypts ||       |         |
        |            | |data                 ||       |         |
        |            | +---------------------+|       |         |
        |            |            |       Small data packet     |
        |            |            |------------------------------->
        |            |            |       Small data packet     |
        |            |            |<-------------------------------
        |            | +----------|---------+ |       |         |
        |            | Integrity protection,| |       |         |
        |            | encrypts data        | |       |         |
        |            | +--------------------+ |       |         |
        |            |            |           |       |         |
        |            |Downlink NAS|           |       |         |
        |            |message     |           |       |         |
        |            |<-----------|           |       |         |
+-----------------------+         |           |       |         |
|Small Data Delivery, data delivery,   |         |           |       |         |
|RRC connection release |         |           |       |         |
+-----------------------+         |           |       |         |
                                              |                 |
                                              |                 |
                                              +-----------------+

]]></artwork></figure>
]]></artwork>
      </figure>
      <figure title="Example anchor="Fig--ProtocolArchi5">
        <name>Example of User Plane packet encapsulation Packet Encapsulation for Data over NAS" anchor="Fig--ProtocolArchi5"><artwork><![CDATA[ NAS</name>
        <artwork><![CDATA[
                   +---+ +---+ +---+                  +----+
 Application       |AP1| |AP1| |AP2|                  |AP2 |
(IP/non-IP)
(IP/Non-IP)        |PDU| |PDU| |PDU|  ............... |PDU |
                   +---+ +---+ +---+                  +----+
                   |   | |   | |   |                  |    |
                   |   | |   | |   |                  |    |
                   |   | |   | |   |                  |    |
                   |   | |   | |   |                  |    |
                   |   |/   /  |    \                 |    |
NAS /RRC      +--------+---|---+----+            +---------+
              |NAS/|AP1|AP1|AP2|NAS/|            |NAS/|AP2 |
              |RRC |PDU|PDU|PDU|RRC |            |RRC |PDU |
              +--------+-|-+---+----+            +---------|
              |          |         |            |         |
              |          |\         |            |         |
              |<--Max. 1600 bytes-->|__          |_        |
              |          |  \__        \___        \_       \
              |          |     \           \         \__     \
              |          |      \          |           |      \_
         +---------------|+-----|----------+            \       \
RLC      |RLC | NAS/RRC  ||RLC  | NAS/RRC  |       +----|-------+
         |Head|  PDU(1/2)||Head | PDU (2/2)|       |RLC |NAS/RRC|
         +---------------++----------------+       |Head|PDU    |
         |    |          | \               |       +------------+
         |    |    LCID1 |  \              |       |           /
         |    |          |   \              \      |           |
         |    |          |    \              \     |           |
         |    |          |     \              \     \          |
    +----+----+----------++-----|----+---------++----+---------|---+
MAC |MAC |RLC |    RLC   ||MAC  |RLC |  RLC    ||MAC |  RLC    |Pad|
    |Head|Head|  PAYLOAD ||Head |Head| PAYLOAD ||Head|  PDU    |   |
    +----+----+----------++-----+----+---------++----+---------+---+
             TB1                   TB2                     TB3

]]></artwork></figure>
]]></artwork>
      </figure>
    </section>
    <section anchor="acknowledgements"><name>Acknowledgements</name> anchor="acknowledgements" numbered="false">
      <name>Acknowledgements</name>
      <t>The authors would like to thank (in alphabetic order): Carles Gomez, Antti Ratilainen, Tuomas Tirronen, Pascal Thubert, Éric Vyncke.</t> <contact
      fullname="Carles Gomez"/>, <contact fullname="Antti Ratilainen"/>,
      <contact fullname="Pascal Thubert"/>, <contact fullname="Tuomas
      Tirronen"/>, and <contact fullname="Éric Vyncke"/>.</t>
    </section>
  </back>

<!-- ##markdown-source:
H4sIADLdmmMAA+197XbbxrbYfz7FNF69piKSkijbcXxOsy5NybZ6LJkRqePk
1q0vSA5J1CTAA4CSFTP937fos7Qv1v01XwAoy4lzzzq9ZVYsYgjMzN6zZ3/v
QbvdbuRFlEzfR8s00c9UkW10I15n9C0vuoeH3x92G9N0kkQr+HmaRbOiHeti
1l6ub6KknU8Wk3Z6rbN2Mo7Ton30uBFlOnqmzpJCZ4kuGjfzZ+r14G3vQr1N
sw9xMlcvs3Szbny4cTe1T7DfxiQqnqm8mDbyzXgV53mcJsXtGoY9Ox29aKzj
Zw2l8ttVpmf5M/XwVucPsSHNilJLkcWTwl1P0tU68huKdGIuGkVcLGGEYREV
8UT1YUT9sVCvdDTVGVyu1pmmiSgEUl1EWZbejAFhdu4qnanRAuDKG9F4nOlr
A+6w/6qvLp63z9IRIYEQVkJCtCkWafas0VZxAhCcdtRltEpzmCPj+3Q6jzLb
lmbQzSkAl+dpwoBqDXC9irM8WkZJEWt1dIQQx8XtM3XYfdQ9VP85za6jvKX+
EmcfPqTJZrWKCSebpMjgphdxAk9OoUmvonj5TGkcspPhkP+sZawOoNDMsddR
53ESjTdZaqfZSyK/kebZm3xYxqk3y6Oj4+96qnetk41WU52r/iJarXP1HMaf
5HbWx48fHx2qvsZx20N9Hc8TDZdT/TGYdgYPaTfrKIn+OYIROzBkkmYrWM1r
jfRy+aLfPTr6Xr4+Pfrukfn6Xdd+fQpflWrEyaz06OPvvn9sbjr+7gncpODq
+OVgcHlEPyhlllDRh0DH3+laiGu00Oo8HcdLrZ5naTQl+hnitouyKd04jQq4
r3t49D0/F2VzRNmiKNb5s4ODm5ubzvF8ve5A9weZXuoo17jVlBpddo+/6x7e
eyrDYjO9VUDOUTZZxIWeFJtMK50sEJ0rnRS5AhwAvpfLzRJIr4bKg/k+/vx8
Z8X6YLjWk/yAxrzWB93j9zmQls7hWwdmf0AwtKeHh51f4jVCNTw+Pup27w+V
nmwyoB4V5TAQwACzhb27Ajh7gzMklpW+gY2nmn24frFHMGInCmilWIyBqqZ4
Zwm4p/cDrgTdsYXu+LgDUBwQLO3ZsYXu8vjJcffo3tCdXqfLaz1VVwl0jztd
jXQGbAnYHHy/jKZxCrttAjtGNU/bV6PL3t6f1LmexpuVaUe+lqVL1Tzv9ffU
OkuBBcIlYiuexcB3Y2IoHuxPfsvCHj+xoD/pAIgHBGh72vUWFlruv7C/CXRu
fh0nHxzcl6/vCfc91/xOuLsENyz54ZEHN3T+x8L9enSq1ovbHOBaqmV0q7M/
qZc60RlcAr+dZPH6j4AXOjkg6NqzI0fi3UfHfzS8v5fE78Fra7Z395FlXo86
AOMBQdqePXWwtw8PWbbUwv4m0efdcx96xMZ74rQ3rB0E8+we1s4TptYBlW3V
XdFM8cn/2D0EuOfA7Vb64O0ZTOP4uwOZTrsySPuvj94fvz/snLzp/wQjvDnv
HR4dkYijz87pn/f8uQubnepZnMSIYxYgl6fD0WyzVBe6IMb7Jcw1XetkReIy
Wi5jFEy+3DvArt9Dv9Dlex794K9H7w/b2CdC0O4dwBzbo2G7eme7dGdnPZ3R
9uw+Ojx8em9yFWGeEV3GiNNZNNG859RxSHOdryFTAqKDmR7QfNuzxyFjPf5j
N9wANCxQBU6iIsLtBg/ONayOGpjN1hyc9Ad7f7RYOSb2elwWK8d/MLvh5kud
p5sMgHai5bKPuPl6suVO6I9JqB4Dw3nshEsXpM39hWqtZmQ1oos7NKJu93er
ezDRA5pue/aEl6/RaLfbKhoD9sFKazRAzcwVWJwbVEdFcI3BXPi8iYZqNUA0
xwcJ/aqJRliJIMEWAnVeof5PT9AFWAAtNBTHYMXQkzdxsVAFKO7H2VSkKLUP
oqyAi3wRr3HN/zuom6qJiNujzvCJO41E1WSTcK9ThnQR5QqYpVrDCHkHxYSy
lgyYrALELQ2xyTV2SSYmG6bUaQcssSlo91pZUyZNomVL3SziyUJlGiCEsaY5
WM0rra6j5QYQG8945cE8LWBTwFDYPfUNFl881ThknAUmQ96RdVvF0+lSNxoP
ENYsnW4mhKZPD/zLX6urCuIChkZY8olOoixOc5ilzmiwe671rG6tP30S4+7X
X+kmvn7K19B9vomLaAzcmyj+ixb3fgvr6R4FMEzE1FnCpIRYtlRCd6uEBSQQ
5YKBnHhA6hkQbQwQLm/VOKNR7MCTNElgfvE12j2wZtjnCZjLE92+gu2mTv+2
ideE7CY0t69O91p0Dwut5uXLt2198ZwBk0kACNB6fn66p+aw42+iW5iWmW9v
vV7KDgJ7KwOi66hdW5WWEOkHaBkYDMwYKG6zXgNrQd9Hzqs7kdWtAby6ukTl
Ht58YqxspSjP4QtoIptkwlsAkYQLLk+nQvKiU6ijxwoIRez6X3+F3QdDZTdx
rhlpNE/9ETEQ42LgKKTrpHifQiGClw/DEe/e4oBalYsTACzwabtI2/DH7geD
T8TYIr0BnIB96y3CapMXbqda/BBc680Y7lNAB0gQzBYCluDtugiYfUEj0KOT
dLOc+hxAdn9I1YZkkA08YGVAMIJLd+K0QUSBVh/0rYLbgfF8c341HH3T4r/q
4g19vzz98ers8vQEvw9f9V6/tl8acsfw1Zur1yfum3uy/wYI9uKEH4ZWFTQ1
vjnv/fwNU/E3bwajszcXvdffMFQBxWTEY8ea1TkgRGSFUd4wRI34U8/7g//9
v44eAan8B/ErAVPhC/QswQWwsIRHSxOgE74EBN42YOl0lGEvoNWqSbQGNrRE
IoCtAchPFDI/QOe3/wUx81+fqT+PJ+ujRz9IAwIcNBqcBY2Es2pL5WFGYk1T
zTAWm0F7CdPhfHs/B9cG714jkQ0oXas4SZfp/La8U25iQNIsXS6BLHkDZqtc
xAYthcfmW+76+LsneG141qdP4h+DLQ2YVX3A+nIZZbfqJfM32Bm0FNwoTE+B
Mh/D/oUrWBsdrZaoCCJdzEVOjPUkwh0S85a+QRmJbu8SU15k6Wa+UBPjTMNp
wTa6jtH76R6KWNOEjiL8+SOxc2YsU2LoOWxH5AKvexeAiMmCUAb6lGo+H7XU
27j9Im6pf4nnYw3sCpgcPZt39hBi5Hang2HHc+lhiyjAotEPb/NCrzrqrFAx
ziLkmzCbeIXzZtksjBx5aL5CWp6iPQDKW5LPcFgYlQVOR+SRaqtQItEt6UUP
ZkW2BGswYJ2Jzj2EzorNCm87HfQ75dn2PSQDXClsXSPADF9HV0hOQNF8TlGF
v+h8id4vhmtHWmWNvHFgiPYYZMfUH+hV7/LHjnp1C8Ia1OdNka5I0l1q2PsF
/Pkb6FsE/qshAP8KlbDhZswcJrNi1SwDIhaHALRHJPCLCBQy5M0ZiJqcHySf
Dt2K+2Cy3EyRVGhNEq2nMD+Ue2RP42KuoiSaa7MKZ6CPTKcodWHUwfUTpB74
+8i04lhTuvHtX9rD/umLDisgJooxZAGDGyuiAZAqTz+u0xzdyi+EjAxE2Bnu
1SyNVqQHGBnUwp0ENyxTkG18D1LaX+M8xsvB6/ML2jwozzQ7GIhNm+3m6+s4
S1wf/E4IxqcRhNfdjnqNFnq7awZghcxXa2kihEX4ft7rg63wuk9jo2nLFj4y
BeQtoBGBvI4/9pC7QP/9sxMYAXYm+t/6iwjmtlTYdsYa0VJ+mshPsJYFejfM
bCcp0uI6TWgFYXA1PLnCnuFrZ4e3y0jlFukURJddfIQ2V/2WMqaCr82S6SBb
h4JXls2A4klEnjLGcGMFoYPxpmDcA8XEolukQJOr+BfmlbhYpLAlU2FjkT80
OewzAGyW4e5IJrc0R9BD+8OXsGWNA0kYNvASYmlEeBhGk+aLdKq9B9/WPmg4
YOlhIk9g1cjuSfFMs5sIdRWxtDLeTWviPrll6/hryBbMBEAm1o1/bvbgud2D
6hS0JuRiPVD26SuSJhAIGNi4mEAp0yVO1e5foRXhsDLgoB5g319T+pVGdJ6r
MfyqNS8xteIy2i0Fyi+3lOBkhlAdt8IVbut4ArB2MHCnbIhp87vh4IbTigqL
UtpxGJBIaLkhyQc6MfHgi7OTE6Z94G4E+4leIr8nysJt3Pm8JyvcTcRC1ICV
6tdII+IBtFKi77kO4LGbGC0LoAw0uDeJUdkFGIxPgaiEXTW+RSNAvBOwb9AQ
TTOe51XHTYcmClKrwG3qUaPH8dmKyllWkDqLEnkVF8hBzfoSjREGhYgjy0Fw
UOB1HT98sgMdYjuaW93Ca5GvuBsV/P4chddQLDgrxIBv8d5iAkYmZ0lmJ6BN
QMgeMIl0pRbxHHUj9raa6Yt0AYSCyljzK2tX0e0yjaayicCoQb0bOiZvBiik
Yh32PAbH9ss9Lf+AMy5oSLRql/ojRsE3YqwitwGKRDIAwR0TKQArgB2VM4Cu
TbTFLCceNYmQhGAOhJjrOPLvjIoFyFEdTRa8cd1PyE6iCcw6zkEZyUn4kToN
ECBIoIkWC1CaJx+S9Gapp2R1i+W/FIGJEzZ7mSWxs80BeZ8+vYjnAFybUAd2
EJo0OdtYPlJano+nzDfuiDnXsnv2VqCU2DMSR+OGa5MWgXdbao+TMqY66gVx
nQhXBy1xZqgioXB6eBuyphVTVd2MdzN050lh/4ERS4zUcj938GnuCPj7Hmhu
YKHAbZFaAqy0q83imb3OzhOiIVDi9Q1MHITaATFM9AoWi3ST4wxMOxqpsHy9
hM0NYsexOO6cHlbjckFtrQ4l92H9DBMKj71Wgz2TOQbwNRjMJAfI7OJ+fO9U
WQTY5bXySdxgVks3/JQyMN6Atmb4dk8CS6r55ryHPkOJfonPEDtB/+s57KY4
Ic+A+drk8N0e2ZYUWYNn2C7lsUP3eQfvY/+8vS/cEiT+WP2zbvlZ1S1f6ldc
m5Io4XWdl1MhsIcv6hpVfN65k8j4v2gzQAsbfPikM/qE7BjJK7BQrPmYG23F
rDfJJd98447ZZUTrfZ4C70/R1Qlk+T/o02gotd9ut/dV8MEm/ux7l/tw8xb6
2qp3/s1b+X0fvsGfLdpf2Mpxzi3sfPj+Lnhgi7Omv2HvMpVteDPudbV99/59
wzV7/R1447/jQS1I78xPB1tl+t1W4WnTvC9xTm3l30kThSYHCDajgMZbwjtp
EbYOc/48Dsw83tXNwwHrQXjgA2vu9DFTfebAb35n5u7Wx19Yf4IHQX/wH7JT
BIW7QJi2not6a/Gmyg/yF/w2oAVmWNn2ViU0eg868D431dKDdYjzbzBSbNcN
HqE37J749Ew98EUux/b+08NAd/bZzMNfScMhGTPypYVvCoeKTylCASzGGAWe
t9rZRxH5mNts1cVzdB6BKPUtCxQvYmJZDgGsFXTCGYHSMuohi8kV8wJ2OpGP
xXuOpJheRNdxitoR8h436AZFSFk74qlbZduqhi1nZUEb2nNalB8rYNDIReWL
+B05v2oxYExdo+YTJyWQorxgRuo95/vyyVlse8/927DnDmuhNn4HopnW63x0
BVD/QtL46PjxU5brjA2O8xhScIowKQ/C1EntyElvsvGDKM58RxJ3Y53/eBta
Gi1cuKMnh4c8ZEtcImQQtAc26oOhlFegj8NTEn2qA8EIFpxBqqLrNC5Hf4RI
DTRjmPkYFZrpRhuhb3R7sOOyW3aKEWqaq82yiEHLQ2F09MSFaT2HxSQ19hJ7
NgVISxiAf5qsCdcQxoxWlEzJAT3nTCsG07p8A3ettbdLm4AWLNNAPiJuYz+U
auK8znZLRVttGUtM1ErDSNDvl0s4Q+i9oswZUCoxKjA3YKBZrK3/g/SAPIw3
747EvYgzQ+xMO4FuSup/QC3or3ceDbs6Ahltu02uXUjR903HFIceAk3hIjia
zgPj1054YpxmyA2w42iZe8FuDNZwsMGf8Tz1d4eo9egndR6QIUFz8uaiN6RA
A6wmzvgm9bCHmg8Ndw0TZ58sBvQqHkjWeNOCWYILWXIML8ods7Z+GrMrYqQw
tsA55gT0e42+HQBrvSkMAYRxQGPZk8KXszOVLAJchjiDnizsXrZBjXMFtPqz
k5M95flkEcZCYYS1UJu12ahGK7fzBovTksRp9xR5RqiB1q07I/Q6ipcUzBfY
fJ7KHoDAX3ZHMDun2apxln6Ap8xgOH9i29O5ddOW598xLjifKCwBBlTJxg7O
PGEMwl0Y4m+J3YktG/QN4wX0hgr7BBhjbmMCSEFgIeUxAk07PAHFH5E8jya3
Nl5Eoo7QBqars2ndqJ61qCP2fO8CD4ih9kFgWORvMrEq4ypwfNTJXzJJhZBB
DXmAWUaS2YI5Fx3mQS4mPcVNh7tglU5Nzkt1q8gegonHBbna1iATyHURy/6R
IB15YoL5GaMFJ/PgnpT96QFSp0xVSNywV8csw7ScO7rznIEEG4tt/K3yE/B+
ovIKczKDGQIzORTOZ1HZETyMfSDCaCbQDc3N8xQaZod0vXvX4BKUn2BDb+cj
jtbbTOt5mdJhRikxaFbE8iAzJJ2AfQsaGUnLABmtQEWgADJSEJi1QKaFmRAD
7kLE5n5LccQzTWqKxystk/RmUxHcwehFpqNA0wJQLoJ9T7MQ3COdGg5J+4ky
r3AjY3oG0Tk1l/Iw9JL8Ti3YbKBbYW6K5ddC8EzjQuSnRokYLKMJcRkiUyA6
k6SEYsttRF4rIkoP7lZJI0GOZmJ30XKV5gXFi9K1YSo0VyFw1hqCSLml9xjd
caSGeMknVtuJrCJYn4ykQwZqE2kwshRnWnzjOyiZHKvihzF7SNaNcASDnw18
6VZQ9gLBPPY41MSLRwMxz6qblqyTYLcY+E0c1OfwmyJeoh4bJXaTEJ1IvN3P
teIt7e9HfzJ3ZnL1QLC0BEbGoCQCAXPQOSbMxfnCQVqDv3gGA83TIiaM2NiR
1ZIaznhtNErOG/j8tONTbwrvN7YMtLOwy/eq2mb72LaxbfJm3JNuf/qps+PD
v8Bd3+LQ5rFtGYq6CezLr/SbuGMCKAI/QV0PW8TevhvHOWcYiqAHAy1R4mXv
Qv1TMIef7Jzg8upksLuH/pvLU3VxOnr75vIvVWRW5/C667reiYd2CMVuPNQh
YguUObq6uDh9fXbxcp9RvhMPqo4eynMQPJwNuId6mqzMw2+sQDF49bM/1P4u
sg7mBMPxc3VzuNfHm4Myqu4Xffz9jJ96T9R9PswNyn6qdptEiDipTsm7AbJo
6qf0dkpCZQ0SCjkJWmUihkSbKilSROwSeMjZz4XyznkhyIz6Henjnx70yUX1
qzHtnHw87/3sDMiaRNaJi4OU0qjKehyl3wgPp2Q16rJvFRFACpg+v5iI26jW
2iGHhcmrDrJs/4RfckqxACWhZe1h7HwaYwbUeEMdUbLhmFIb0oxcQKKVeKM9
zINgTEuBzbCI1rkIKzFlKiGCXKzAST1QLIQa1bnnRke6pSCYcQfksLwVk6ki
UzkuvASplNlQSyAvrb3isH65WZJnAWOExqSKJhRT5KBuOWUQzddrKrTL8FGY
ZjFh+TelTDPJ3LB9cSJgKXBNt5s78jydlETp3KRunOsoAVMSA5c5aUxulogf
0mCBAqeaVRTtD0aOp/gjKTdmfxDgCDNmKzVCW4wshOltEq0wd2mJuhqrUHj/
2Qn72Iw27tOUybkIA61WRQjUFD+Fgzf8ZJGmkiwEc59hzK5CkHg2ACmYnjLt
b4mpXi/TW8xfCxzeQXYS4kvUQ7YY0asYFlGWolzWuCMPocuaBRgnWotr0fol
ks1qzF4IDbbwhCzecVxYa5v9nqAv2zFHz73H0biW0HaFaYSGHO98oiM/BsC6
Ofpo27DR5kAL+Ngmb5kyj2ASo+fMGFbRx3i1WQVczfqZuwQAFqh4xsqC3KAr
pAKT8SCKvqHMZr5B30ft9tlTq3i+KOxKeK5ZQhbMleGjEa+BLrXkIVjnrldp
gHlTlCLSLieBeBTBpEpxB0cJY+35w2Aa8wxXlD0ieI8lRRiZCD0JmScvieyM
WayXU0YbUVmUzDU7QhiDLQA3x+kDRYNZ80hYB3rAE/W0DbdwgQ5bLTekjd9S
n8xFu4+fmEcos4YteWImlmUYZ04uSRt6lStAMWy/CEaP8pT9Cma9OTYAnIzT
9iJZvID3XfRGnUYvCUsRhCujkyWbA8oZBS0KnECP+YJmjxIIs1loakiTimiS
7D1Buf6IUWsdKAZYcxdPN1rcgjBdEBw4XdgqhF72EnbtxpIFWGpkhLSrn/Bv
bmPRIQc1Q1gRcN776f2g1//L6ej98OxfTm0Rjy/9w83iZcPvCMxAE+YcVCRQ
0y93yfdM9hYJDvHc3SzSpQ4z4+JkhnElSStSTbL1sCdyu++1nBfZ+eLFf1xy
5bGflWAP9B9oGcgUZV2B0hIfoMRwPHbRBsrTzGb6DS3YBADZv35CkQ2ESLJM
2gbEl3pbYWoKaltokCaUuwabZp3GSYGRMvriWec55iUCAqE/zMNrhdEeJkOR
N4htV+Ux1lhywCnTHjMjZ1QVQzStnFyk82U6xroak7iSYzgSN8yP6dDFqBib
ujPvIDPSnOorubWADQo2KYN02sak9uCcsB+TA7REF4tI3SjL4mthIhbHYfQv
dJPNfIEcJ4Ekhgl8oD1Uw6VRvZKA23iDnl0SgzOcm42gYnkLhecW0WbprQdz
XN8/Gi6v5Viw8m1Q80+zjJZgSlvI31pYCUnZQv6S+tQk2KyLBHGismSxwA9T
3U5nM0XEmpEcC7cFjkVB5UrsFnGOmc6zYCz0gaSeA9z66oroA+amRZzgmulQ
jqsGu1/q4bd+GKC0ODNqwQet1zjShIoRCJ4yW7FOXWGcJCRMRk/9XnWDIcu/
Jv2TJMFyWYvQqpMZNgNNIoAjHEx2sRshTlynSEQSbTADps63TJnVvfAGdrZa
Iww4OpqgUyuGMZQB91urDOP80jOww6BcFMuNsASgZqMPfG2Z0SzKAA1POrfN
LSD7wVobVUZmQvQb87gEXW9NpW4N76PoHoLZarAsl0Lbmph7UF7r6el25nxv
ZpRgwxBFk7h4TmHdJfEvZkyFpO+jWY7bDpUB8SaSmJN9MDJOyefLFP29HFZl
XzgZwECMm4m2fZTV28DRPytHKxlprzx11A90+2H+R86/P4qXms102jGRGD+s
WeGtyNWeWjWTkw/M/FClXxe8kAa0MYKmQFGNQKE8EsWCs1p5LFEkjZo8Mmq7
e5jmzunBVAXGqiFMhguy4ZmbNNROWUr5bLCeuEo2HZpe4Zq4TAsUAggEJdMf
PmI4pEDD6J+M6/esZPnzaTmG7a+/mAqk+dLu4gq+HI8j+NZuSFSBj1RbHbMa
TL+djKI5NEIDX7/oXwS/v+Ufd4M1judWQSmDA8v0B4GTG3ieAjxHh1WAYKZd
r7UKVhdvOXawvT27OHnzlnROnEb3v120j0oikM31/rBSJAnbHqQuZ/T4tZKG
VzztdDvHBriggFIE41Inc0zvMnSB973u4pl1UxoUlWJg7O8vT3+sEctI9Kzy
B/Y87j0seZprjp/x1nNVRb5tjokcsYgR0hh8C9LVUmjJ5aqWHxo+RVMfUCXA
EFnzObJQwxPO0JKklpPLnwzLnaMyk1AddDorRB0S++eGxPdm3ULH1C1/o3Q3
1GMjAA6EMu900XDY82Oi3yvOe2PpQgw1AunJHHGJyRE43K2OKJGNBPzRYedx
5+jJccSlrXI+DebV23hzZCxKYQSSbBOvkI9jpJE29gV2AOp3Joe7pTPycLgs
fEAoN18YC/IIcLAh/gAEjV+FiZ0lkYnXjXAUl6oTqDPyI6YegWz2i8dyzQYm
VVs8wAMj/EQUkwcQ+le5jmBXcbrAHpf0NonqX5Wj8TRZQhOquerTA05AajRO
yC9ABY3BzZm7mcu5aXjjpVhLCJUTDHzHQSlGG+ZLkxzwVO76xCc5XIE7kGR7
lwIjnikuF+RQoRVS5pSFqS2tJQPSVSTZCCY5ULB0wSX6ZXK8jclJo9w8KfjF
EWy2iPHmeJp3K6gKaRkvCe7XxBPgJY9wzkYHaPPR2jy50lHClq/EayX9kxhe
1SFmZge0xP6PiquQgXPcRaL11jlnxL9RQ53+sCYewrmtmL2HO3pC4gPPq4E2
whQMjHP2Iszlvuvy0aI4EyvQKrk5LBL5P4A9bZaRXaZ+SuAMJwuNB1s0z/vD
vQ4LQYKepKBqjp7vlfC7wHMHbNy85NmEuYqJ2M5vk8kiSxNArIB6jQoO+nyh
YVTe4FykgyZQczQ6g6mcYuFReT6s4zhGCLPm/LYQOYG/02CKiQWrYHmuWG9B
xwmW9NvSmPnDcr2TOOXcVuY9xYcuEHvFAJUpdaMU6GMYg3TR2ITq73v0FZVk
4OlUKFXrKun4JEJzWxdvu7uyVw6088B3xDkwy/naoIjPGcQUutGiVKOs5jEW
T5NbY6oLQLk5+4N5s3WTdhrl0ot7hSSDGymN/mxwwJZaEHmtfva9G3/Yr4wZ
RFnD9uqYXKftPbEvLVv1cjTYXrnQLFy2r7AbHnNron3KwLkvLVt77f9RNp5v
Pr9z4lhoHk6cW7ZXJ4MDsHbtxOVafQVk4fYKx+SWrQT07ZgS3/8aY5Zi5LhA
HP2Wv/th844x1Y4x6wjR+/TbV5uglMR8hkdEDF7Dy5gerQ2nm+xk/2PSr4MB
HQuohMRDjmNi47u0FYxrfy6Nyz1BA44WdUmTIs1Be0/HeIJQTSC8efnGnqSF
JyAD7xD54Q5BqKS+BYNQ0JCUqp2RcRvnz0GaL6MM1StJdiP5qcX1hA44OruN
K1lB5c0DT2d4tpuYDbhzTEScip11oD2xQs6SI2LJRAWlo/O9lrpKXCUsC2L4
5Qp/Qbbbq/7WO9+T4je8RA3bBoyCcudyBrMoi3auoP2es55J9pP2/I+e04rs
FSxhPEcV/eocvYpgSrj7IlMg7JIJQpSEzsjQgbBJSEk0RkUZReRJtCMTGlu7
/P944AeqmtAfOpHpzGsXLZVQVUe9JWhycYU7t1+rrK7bDE2uZly6RAAErTpT
W3cSz8qpkzZ868eC2cfCZxsK7UkI02Zp10Ap3h5SO/ERWMLAGmLfXSIEIDUS
u82T6pEdqnnRG2IOCtcXhOnH5LnL2YDDQ/Jhd89hg9jSKrNLJPVSihcmqMDc
5lSsubzdUaxVMktsRYuJKdDZSnj0rVE2gmADsxiy9014PswIdaaVyTj4ECdU
mU8BBculapJInB+RQpxmLbl8w/cjY4SMM17EVfC3TWS4DmZjYGUVm1nBkuFc
ElQOgXXcdT6RatIhRnuKYomstQE/puPqd5eyN/t0VIA5KsEUYbGB0zwdDPdC
qqQtRwMFdTI2iRQYatvP0HQFwGh+AR9ex/P57ZhUXkLCZs3bCSEDRT8VNyul
4pgfV7hp59p5fbFYxoVbzM+0EhONSQ2g5gPKWL92bhkxULXwIEOAwB/RXGMA
6Eavaov8aYVHUJQITYElQgMfjXFSjp4xoWBKCNMzmTFTE6FuAmORQIBkJu2F
GdvonZlEfASMdywSuUktdtmawTxrc0gMM+Zi0Wnw3MgjNEfLDcan1HOg9MKV
Hm3WlEagr+N0k3OCAadvByZvZIPKJUsJEEceG9pFaIbFuclS4J5tKlB4PBSH
CheUIcNWOVdc2qowfkiWybe2kccyaLS/IpP2vOQVIfO4nUfX5lxH7bKtI7Sx
wC4LNhcFqJlmmKqCUycQ3fzQDGAioi2TQ83SG58tRyW1iL/AnPd2DqeaiHbC
UQfyiOgpM+uQ2eAhTVTvSK4rI19lOZcmPM8YqrApSsJiNyzqIAAZOZJxFdQ8
TafW3RImJY3xZR4T59qzKC8VLUjZq+ee8Y8JsgSJKhfiFj2zaz7aIQ+OaxIO
WrYZn1ub0bvZWI5mgHtUF9B9DROco8PvzPmLxtH3MN8t+azU9spXKPUPzPNk
giEf8c1LpXAYGMOwHmhTt3S8It53A7y5o57LCX4kcwFNdpBomQEqbpnroR7s
q8GUn28LB8lj5RyRVR3XOxLB+EAmHOSKMj5oN5SErerkW8b3Zz03xusocjTI
mbVJWT7rdCeQIOsNVqCmQECGM8UNHI6VQ5qInng/WOVVvJWey2C/bKaVP+4G
7879Uib12eBA7q06D/Ylb/tAbE/65qry6RIzwiVfuGSm84ca7Q3Bne4ygKW2
j5rJhe0IC+JN1d3r8ES3bNEl0T8wPop9c4m1CuKb2A2L3LENGv0M+RIs++EM
7gvL5WXfwbJPV9vh0bY3MPinC/VV5mGLFPbDS1xbtES/tb/Q1XbYHw3svXTx
deZxJz5e+/igy61i7wy3cHmBNKpq+1eah3hyTO94yU4c0yIenK1fquG3f6V5
iNNmX3YpXnKj36I8P5CZh2kv8w/5vdJiG+vm4W2OqsdneFTZQeLuqfh66vw8
yvLSctvg5VuscsLLb8lTAsx0fLuOqJZsAzx6qWCbWwU9zr0cmBFYacdPjg8P
O5VDPkJP0aPAUxRWS3ABv+cc6Z+BqV06wqFy+FCN8kJVFI2vW0VhBLRn0tPB
P2jWorhtc46dMnE5P6Wl0Tibmap3EFmg75Cqjh2bmjn/ZAkThQlCiXeVafhZ
QGHJRhBtqh56dL9CDWSTzfr3R3j6jYhe0heKNF2yU8E/IEWSzfxM5xCjVCdO
ert7hqZns3XCo9eDyo8oNwcaryKR+GUFyHNteZGOauGE7w+wBeVxJYE2COQ4
U4eymrlwALXE0FCz3dH552g8cEzfFdX6gXtCBTrIWBdzD5MRgKozqIacRU16
WUGxVJsNwt08zO1BDp1/PzUhXjoD1SbR4Yd4NjD2B8QxIfsfs1EppGSz171j
gjAmaFOLOf2HiYMDy0EOOp3ZvzaV1t9LgjFSQ/0JNIaf5KVSKkdcQG/swDOn
DhJPJsX+sXQv6azCEUyUd07sGUdkdZw9v/YkYJStiJhH/nE7Jifd1XGU4pIS
nDWp+oggNAfZDrJAcXJMEL/mWk73ooLQ4U1Oy6dPW+ro8BH80z3kyR49eiQ5
RT1m3J8+SQ0bH7cS7ELaSQGjK8WJXbqIVyriF4NI3oZccodyjDI9VpNqT/4D
sSuNKSQk8g9dWmJzbcHmNsm2ju3A1sHXrKgZgBGHCcvC/4hTS2UT76k44SQB
fg+ImPvMHmiHMRpqCvyCRbYIcKlvuO2I4H5vPYxlR/+/KObfWVGMS62gNAfE
t7edSq9wKR1WQicG4An1wXljLp+oA+plMtH+wU62qMYegcoiEuttvAo451bx
TnnjND93yHoeHmHmzsN0vLa2JOZFVY/1fE2o0aI+/dCdCFUuGLqjVkaqUeIc
10Mcci5wh1l6cnoGnQTMLlOLTvTl27cbcV4fbYKZnEJkc4tc0tSYRZPNHbPO
S5PIFsgBno/kMFNnEi4hfbGSdFVK64IJ4ilUttRA7BSX4WN0VInS3JoYjbmT
3bs8iXLf3ANuOfFwellHzFFyzHYifkn5S0FGU5jMVOJBIBMoNdDiooI+wjLz
aMvMRVvFI+laQepY647UMJbdP6ZDfFUFZm3NMImS2YzP97xUUk5Ec0fFEcJ4
8Tkz2LioieoKylC3jtNWmK1otRDh/XM8wKaUKh75fXpbwElCXP3og7YB5ioj
wOPt8M1iVFBcU2sBSK8N6TZcJLsSu8dDZ8LIuQm5uPBmmCSq3mJAAztjgcBO
0XLHrRKRrjQmIcT5Cg9ppGONy0dj80GAhQ786nG+q1wJlXVKg5CYRgZ0VMib
NFHc2JeIhFVDxsrCOpveEl/VVVc0YlgulzlLzNTXN+m0Xj5Ma20r4ijSUxN4
dcX3uOcpyO4NTwPiLfboM+8kHeqNJPBMY0KlO+EmGMGeVsbmCMBvGH1l09WZ
a3j6gEniDbFhT3Ikq7LmBv9NZXQSnVGX+Q1XA64IabhDH+WdeSatlt8EEZ4E
aV5D5pdfm3MqK/kzTF5dek2Wn3xgzmMwegJ08VRUJXemlZTT4H4lmSC6hV2s
kllBu+6BOutd9ErVkDUvLEtSvjGamAybB+6F23c+bTM2YH50glVe/5i8dcMx
tfI7/Kw/S963YfuxQwXHXHrnYpvXFGIo0Tvhn95HxLH6er/Ypwcuc5KS1X9D
AmiDcmIDH81zDZwFSKx5CbZgXDXpMTefrFQt7wU5B/pIKYsl8n/Y9SzK8ZuU
mJr1DFbqTEE6cBBbwn8ZkFPbbym/MMCA8Jzflwmd017n/J3e5+alYzLjInf8
JuGdVGk6O5ev6V7P1CmZI9UDU62C7iwi0g7D1/wJ2oYndMwsqXspgGYqs0AU
rtBatKeFhKcTC+TURb4Z8x71BjA+TQ8OMXufoVh7Vf9mw6n2W5jhlT1t8LQt
cYJZ0ABe5NmGuOVlGPSuBvfiixzfsLVhW4SyfbVVEPzXYwBWhNv7SSQ4Ha9K
oHlj5CQtkZcAx5KXqxIJFd62QguDXkAWr2F+Ni8NdqlcI4BYKSIv0cIFAr13
gi9DxB4pD4V23r2yqBs4v9g/5tHV3qLGZEW8n+LkpTfRa7Zy47DGF2OSK9Wm
IXkmiD2LpvIyElI76KVRE+TEfqXprvz/lvG7GJWqnELPJ+pI+QQCSelRRtGz
un9e2tVSn0SecToYk8pwcDu4mWTl920FfjRj5VKygmRsVJ6YYq5ZYo5b4XdN
+nLN912XmAzCgQYRHjeo2UQ1LKslr7AV94Z5SDVtihHlJRGJgLZO3qax819o
TnKxB66AWrjWWiLu1CU5loQBaKFOJ33KJzO5Y4PluAb9sUOVYMUG3SpEIHuV
V+zwaokDwptatRgoTph3i6pstXZKryQ+UpupygNYGWvMQXrdgym60bzFayjV
ZGCsTGGc7cj47VBgi2M0PGKbB7ZJPG4E2CxuAE4X8nwkPuHRtpPr3B1diUdk
oeGCJO6NkdG7bnz2hmdKSNYwSsbReXg7+4XIyWFO1zS5xXLEu3vLi+zPtIQf
SqfCDteFifPsSgwW/Z4waV/v6Gfl+GVR1aooXHhfKSRQeF4Pc1PLGRQJeXlt
mJ9DpxRH5KmLJ3zqeHjeEU4ETcJb4xvxZQCXl0jqB4lG/6SgKtczWSsG1xW6
8Y0bwYJTVZdpLsdLGHqVt9XIMFxFZV6bVNjh8TlzSqVJXYk4OOEDU7KRSLPm
WEOSBksC8i5YFXzrmvQntapBnqqrHAPcUqWxISDnB2GozDn2obkCU7fWH5Js
XDhKGaDk2/jHVhVefZ7IRHKMgvLOA2OO+aZop7M2O3zRq8AaQJ6754lod+Wr
n1W975RU5XSfwNF8dd7y+QWnP2EuGzRQ7h9wLODOuUjzgAbkRJQw/9dfNe99
CQX3beVuaZ2sWLNJhuNAlw1ft4bs/qMsZynPUNi2qW/DLTdkhn5JvwiH4qLy
suXt9vuyNF2rdGg698IthasPIF90aUPb+ECo89r8PwkHGJ1vHLzcrXTCWo3d
7r162yUIZoJDenccsL5gzW7MMSB0lu8y/oBC1BNirLP2zsO4I9qfK6Pqwfdl
m3JU2fa3PWJBIoniiKoXfIj5bPD6erhKGVwDnTJ2F0XUcTmJPeTp0RhrNiVz
nhe+9LrO3Jb9WT+ySdYlWWJOCQq9XQuvEo8pemK6azpGYNr2yswA4UC/iQk4
fbRSqfQ2uMpkOWYcp2ALo5i4obSHlBy+5A1GtaKsUMYzxxTte1tAuZjosA6T
rCsSPmWCsq+ln6CBCpPnU+nNSjDpk5/dsbEaoaDMOwh3vS430z/i63JVE9+q
i+na5Vpfy3uZLeSThZ5u5Bgid243b3VyKplUYptQG74wzIOGmBv/ZApY/INP
XE69UQ7lHG7Re6x7y8i9kBDlnS6uyPL+nz+fRx87Xtjih9qnwxcRlV5LZF8t
VT71FT/b3uBou+MKk6x6g67aNpq2YnPP/QiCbLvjCp9EObfdcbTs/eZb92Rw
FHE5PdK87KlhikLDHtvBq8Pa7dKPdWNusSeLlfBKLg2Oyk+iM8BiJbySS8FR
+ckds60mw72rjBlgyLzSy32RH98p9a+mG6+Pu6p29/0Bmkd7W9vDu2Z3713D
FLOqLWVEWjyFV6UhHHzbEPeMHouy8Cocort1o+LVLnC2pZHLnQZr5M0k+Fa+
2g+6Ly3X7k7wzdFH9solKx54/0tLw/8tvIs+7w/w/9Il34WjdIM+/NzY8sVB
pQfT9P79+3t1sa3+cuD+UA+fqQsPVyjYl4RQSnKFf3C1AxKrvQDKsDfj1QAW
l2aB62z+V4bAdly4m/EK5IF0AYq5+Z8B3n3hbsaruSlR/p24ULWf0fO6XNfw
jm6jARtYDcUee5PoBmxhez26SauneSPmzWHerHiifup71dlsAx0hWufmIIuZ
uKfLsRyqbTYuVa/irje0JXbOH//8V457lUpFgkoRPuHB5NDZQhh7PtvYq/4I
T0rMC3pviDlXzPpETWmJebcmu7ht8MKrR6x5VVqeOi9y83OBhL0vyBpmT0zT
85CWT4/Yo3y3FqJBToeSYwa5epeTUSoRAsHGw9yd92IUGaM6kQ2LWqs52sm8
Bohrq0V5rr6JNbBVrLdNfFtkIFWiRuKESjPjvPGdUTuqQRkwkxpijY9S2kiJ
EG3CbfDyJlTWTPZIzL6JjRC8e58uZb1xPIJe+gGWTZP8T17inhexNFjMabVx
WCl3xtiKizDTWZFedNnLDWGV1x3v6t0mmrhLjrHBa2hAXZrAMLp+7eteqxkB
lEQ31s7BgQetCSWR58TsKWPfy8mUgZuUzLNN4Z22hi6Hna4yTulyum6HS7XM
4Y2Z9viLRJswqTC5O99aogbHeJCMFLJ26AioXfWknrvNlpb+4fWk6v+JelL/
TDQLECBVzpK3iW1fu7ZUTjH8NywutYWlY001cpiSw8zkH7LSNMAJLuLXqzI1
2sRnFJM/6tMIta393Res2ZnnanRk7yLos13tgqqK5Kl++/nQu6BX/5quLlP2
oA1NyqCnHG7vnq6bTamt1ny562JbAU66qEAYWFHb/XIXg/bLt6UubMe9osBQ
XOkTugzqAfncaVLV3jyD6zfgoqaL/Trw/Ql8pgt+7TiKqb4LtJ8auYDMavv5
TrALkqRyKELIDMsW6s4u/gljBOoyX6vq535d3Lkg98DG11mT2qfO5FwL3H+/
sQtz2MXvmIWHjh/+frjYsU77X9LFtr/QmH13ZstkqP2LuvALa6aazv3Iv7AL
ksHlzxd18RVwUXMxdEefiAV8/y7u5mrtH/6t5vHnz0zkPih1wOx/EYWe1VVf
bb+oCzlJRoIbtvl308aXAbLj4gu6ODG5LsDd/36cyyeGz3Zx1wEH1c5ru9gy
5QYvzG2FN322CxSrXv5aJhb4F3TxFQD5ss+22vJ36KK2wL/q/OOKbXH/Ve0R
ZXISJLUjUVd8qBSXRhd8Pi+QJrr97BtBa6NgHAjy/62fM+jZ1VgWRxjsv90q
gqi5Ppolzl7vX1V6KSg11+P4C6ZdMydl2JX5t/aW+pH/kR+WOAbd9W7HwzXP
NpD+DuRYktLhEFv5G66Adz5oaTJb6OuAKIb/73JD3S3VCB/xHaIV8z811N5S
edib9pY9+ndMuzJy3dcdMuiuZ9/VtZb6LD8OAqIUkUYd9/177xb7/e55v3MP
wVfvu/niP/o5DPg3u+9miHKgtIrAd7U/2l898MLZlFnolhs85S5YUzNMJWCK
Up+JeksNQYs/lum5Ei2lYHLz6KC7t6UGtSUbsdnFFuWPJR3vDJVC5xXJsB+M
hR2rqhYRoLW8pQMofHlT0wcHSLcVvlCVvH54s2YSlR7eVTu4E4pdPXxJB/U9
+BTnfD7un2AltmHzfuk2Dp+b8KghKaXMidLUapuF9LjVuw4CpFNLVb2fX7/p
nShDVdwctjLxGYA/D06puQxOTYSzPrA5et6tacX2Y++qUT1hJzxi5/FvjG0G
oUt+EbGff0n5QfLm3k2xwAJ0Dkxhfh2nIkWgJjXR+b1cL6KxxmQoSvrce6b6
UYa1my/Tlf6lpXpJUcTqEsZeRnGiwZIebdJVlKtRnGUpNQyinM6hWGzGGlNw
/8//zKC7v94mMPtO4/8CPDl4sPq1AAA=

-->
</rfc>