
RFC 9406

HyStart++: Modified Slow Start for TCP

Abstract

This document describes HyStart++, a simple modification to the slow start phase of congestion

control algorithms. Slow start can overshoot the ideal send rate in many cases, causing high

packet loss and poor performance. HyStart++ uses increase in round-trip delay as a heuristic to

find an exit point before possible overshoot. It also adds a mitigation to prevent jitter from

causing premature slow start exit.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9406

Standards Track

May 2023

2070-1721

 P. Balasubramanian

Confluent

Y. Huang

Microsoft

M. Olson

Microsoft

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9406

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Balasubramanian, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9406
https://www.rfc-editor.org/info/rfc9406
https://trustee.ietf.org/license-info

1. Introduction

 describes the slow start congestion control algorithm for TCP. The slow start algorithm

is used when the congestion window (cwnd) is less than the slow start threshold (ssthresh).

During slow start, in the absence of packet loss signals, TCP increases the cwnd exponentially to

probe the network capacity. This fast growth can overshoot the ideal sending rate and cause

significant packet loss that cannot always be recovered efficiently.

HyStart++ builds upon Hybrid Start (HyStart), originally described in . HyStart++ uses

increase in round-trip delay as a signal to exit slow start before potential packet loss occurs as a

result of overshoot. This is one of two algorithms specified in for finding a safe exit

point for slow start. After the slow start exit, a new Conservative Slow Start (CSS) phase is used to

determine whether the slow start exit was premature and to resume slow start. This mitigation

improves performance in the presence of jitter. HyStart++ reduces packet loss and

retransmissions, and improves goodput in lab measurements and real-world deployments.

Table of Contents

1. Introduction

2. Terminology

3. Definitions

4. HyStart++ Algorithm

4.1. Summary

4.2. Algorithm Details

4.3. Tuning Constants and Other Considerations

5. Deployments and Performance Evaluations

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Acknowledgments

Authors' Addresses

[RFC5681]

[HyStart]

[HyStart]

RFC 9406 HyStart++ May 2023

Balasubramanian, et al. Standards Track Page 2

SENDER MAXIMUM SEGMENT SIZE (SMSS):

RECEIVER MAXIMUM SEGMENT SIZE (RMSS):

RECEIVER WINDOW (rwnd):

CONGESTION WINDOW (cwnd):

While this document describes HyStart++ for TCP, it can also be used for other transport

protocols that use slow start, such as QUIC or the Stream Control Transmission

Protocol (SCTP) .

3. Definitions

To aid the reader, we repeat some definitions from :

The size of the largest segment that the sender can

transmit. This value can be based on the maximum transmission unit of the network, the Path

MTU Discovery algorithm , RMSS (see next item), or other factors. The

size does not include the TCP/IP headers and options.

The size of the largest segment that the receiver

is willing to accept. This is the value specified in the MSS option sent by the receiver during

connection startup. Or, if the MSS option is not used, it is 536 bytes . The size does

not include the TCP/IP headers and options.

The most recently advertised receiver window.

A TCP state variable that limits the amount of data a TCP can

send. At any given time, a TCP send data with a sequence number higher than the

sum of the highest acknowledged sequence number and the minimum of the cwnd and rwnd.

4. HyStart++ Algorithm

4.1. Summary

 specifies two algorithms (a "Delay Increase" algorithm and an "Inter-Packet Arrival"

algorithm) to be run in parallel to detect that the sending rate has reached capacity. In practice,

the Inter-Packet Arrival algorithm does not perform well and is not able to detect congestion

early, primarily due to ACK compression. The idea of the Delay Increase algorithm is to look for

spikes in RTT (round-trip time), which suggest that the bottleneck buffer is filling up.

In HyStart++, a TCP sender uses standard slow start and then uses the Delay Increase algorithm

to trigger an exit from slow start. But instead of going straight from slow start to congestion

avoidance, the sender spends a number of RTTs in a Conservative Slow Start (CSS) phase to

determine whether the exit from slow start was premature. During CSS, the congestion window

is grown exponentially in a fashion similar to regular slow start, but with a smaller exponential

[RFC9002]

[RFC9260]

2. Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5681]

[RFC1191] [RFC4821]

[RFC1122]

MUST NOT

[HyStart]

RFC 9406 HyStart++ May 2023

Balasubramanian, et al. Standards Track Page 3

base, resulting in less aggressive growth. If the RTT reduces during CSS, it's concluded that the

RTT spike was not related to congestion caused by the connection sending at a rate greater than

the ideal send rate, and the connection resumes slow start. If the RTT inflation persists

throughout CSS, the connection enters congestion avoidance.

4.2. Algorithm Details

The following pseudocode uses a limit, L, to control the aggressiveness of the cwnd increase

during both standard slow start and CSS. While an arriving ACK may newly acknowledge an

arbitrary number of bytes, the HyStart++ algorithm limits the number of those bytes applied to

increase the cwnd to L*SMSS bytes.

lastRoundMinRTT and currentRoundMinRTT are initialized to infinity at the initialization time.

 currRTT is the RTT sampled from the latest incoming ACK and initialized to infinity.

HyStart++ measures rounds using sequence numbers, as follows:

Define windowEnd as a sequence number initialized to SND.NXT.

When windowEnd is ACKed, the current round ends and windowEnd is set to SND.NXT.

At the start of each round during standard slow start and CSS, initialize the variables

used to compute the last round's and current round's minimum RTT:

For each arriving ACK in slow start, where N is the number of previously unacknowledged bytes

acknowledged in the arriving ACK:

Update the cwnd:

Keep track of the minimum observed RTT:

lastRoundMinRTT = infinity

currentRoundMinRTT = infinity

currRTT = infinity

•

•

[RFC5681]

lastRoundMinRTT = currentRoundMinRTT

currentRoundMinRTT = infinity

rttSampleCount = 0

 cwnd = cwnd + min(N, L * SMSS)

 currentRoundMinRTT = min(currentRoundMinRTT, currRTT)

 rttSampleCount += 1

RFC 9406 HyStart++ May 2023

Balasubramanian, et al. Standards Track Page 4

For rounds where at least N_RTT_SAMPLE RTT samples have been obtained and

currentRoundMinRTT and lastRoundMinRTT are valid, check to see if delay increase triggers

slow start exit:

For each arriving ACK in CSS, where N is the number of previously unacknowledged bytes

acknowledged in the arriving ACK:

Update the cwnd:

Keep track of the minimum observed RTT:

For CSS rounds where at least N_RTT_SAMPLE RTT samples have been obtained, check to see if

the current round's minRTT drops below baseline (cssBaselineMinRtt) indicating that slow start

exit was spurious:

CSS lasts at most CSS_ROUNDS rounds. If the transition into CSS happens in the middle of a

round, that partial round counts towards the limit.

If CSS_ROUNDS rounds are complete, enter congestion avoidance by setting the ssthresh to the

current cwnd.

If loss or Explicit Congestion Notification (ECN) marking is observed at any time during standard

slow start or CSS, enter congestion avoidance by setting the ssthresh to the current cwnd.

if ((rttSampleCount >= N_RTT_SAMPLE) AND

 (currentRoundMinRTT != infinity) AND

 (lastRoundMinRTT != infinity))

 RttThresh = max(MIN_RTT_THRESH,

 min(lastRoundMinRTT / MIN_RTT_DIVISOR, MAX_RTT_THRESH))

 if (currentRoundMinRTT >= (lastRoundMinRTT + RttThresh))

 cssBaselineMinRtt = currentRoundMinRTT

 exit slow start and enter CSS

cwnd = cwnd + (min(N, L * SMSS) / CSS_GROWTH_DIVISOR)

currentRoundMinRTT = min(currentRoundMinRTT, currRTT)

rttSampleCount += 1

if (currentRoundMinRTT < cssBaselineMinRtt)

 cssBaselineMinRtt = infinity

 resume slow start including HyStart++

ssthresh = cwnd

RFC 9406 HyStart++ May 2023

Balasubramanian, et al. Standards Track Page 5

4.3. Tuning Constants and Other Considerations

It is that a HyStart++ implementation use the following constants:

These constants have been determined with lab measurements and real-world deployments. An

implementation tune them for different network characteristics.

The delay increase sensitivity is determined by MIN_RTT_THRESH and MAX_RTT_THRESH.

Smaller values of MIN_RTT_THRESH may cause spurious exits from slow start. Larger values of

MAX_RTT_THRESH may result in slow start not exiting until loss is encountered for connections

on large RTT paths.

MIN_RTT_DIVISOR is a fraction of RTT to compute the delay threshold. A smaller value would

mean a larger threshold and thus less sensitivity to delay increase, and vice versa.

While all TCP implementations are to take at least one RTT sample each round,

implementations of HyStart++ are to take at least N_RTT_SAMPLE RTT samples.

Using lower values of N_RTT_SAMPLE will lower the accuracy of the measured RTT for the

round; higher values will improve accuracy at the cost of more processing.

The minimum value of CSS_GROWTH_DIVISOR be at least 2. A value of 1 results in the

same aggressive behavior as regular slow start. Values larger than 4 will cause the algorithm to

be less aggressive and maybe less performant.

Smaller values of CSS_ROUNDS may miss detecting jitter, and larger values may limit

performance.

Packet pacing is a possible mechanism to avoid large bursts and their associated harm. A

paced TCP implementation use L = infinity. Burst concerns are mitigated by pacing, and

this setting allows for optimal cwnd growth on modern networks.

For TCP implementations that pace to mitigate burst concerns, L values smaller than infinity may

suffer performance problems due to slow cwnd growth in high-speed networks. For non-paced

TCP implementations, L values smaller than 8 may suffer performance problems due to slow

cwnd growth in high-speed networks; L values larger than 8 may cause an increase in burstiness

and thereby loss rates, and result in poor performance.

ssthresh = cwnd

RECOMMENDED

MIN_RTT_THRESH = 4 msec

MAX_RTT_THRESH = 16 msec

MIN_RTT_DIVISOR = 8

N_RTT_SAMPLE = 8

CSS_GROWTH_DIVISOR = 4

CSS_ROUNDS = 5

L = infinity if paced, L = 8 if non-paced

MAY

REQUIRED

RECOMMENDED

MUST

[ASA00]

SHOULD

RFC 9406 HyStart++ May 2023

Balasubramanian, et al. Standards Track Page 6

An implementation use HyStart++ only for the initial slow start (when the ssthresh is at

its initial value of arbitrarily high per) and fall back to using standard slow start for

the remainder of the connection lifetime. This is acceptable because subsequent slow starts will

use the discovered ssthresh value to exit slow start and avoid the overshoot problem. An

implementation use HyStart++ to grow the restart window after a long idle

period.

In application-limited scenarios, the amount of data in flight could fall below the bandwidth-

delay product (BDP) and result in smaller RTT samples, which can trigger an exit back to slow

start. It is expected that a connection might oscillate between CSS and slow start in such

scenarios. But this behavior will neither result in a connection prematurely entering congestion

avoidance nor cause overshooting compared to slow start.

5. Deployments and Performance Evaluations

At the time of this writing, HyStart++ as described in this document has been default enabled for

all TCP connections in the Windows operating system for over two years with pacing disabled

and an actual L = 8.

In lab measurements with Windows TCP, HyStart++ shows goodput improvements as well as

reductions in packet loss and retransmissions compared to standard slow start. For example,

across a variety of tests on a 100 Mbps link with a bottleneck buffer size of bandwidth-delay

product, HyStart++ reduces bytes retransmitted by 50% and retransmission timeouts (RTOs) by

36%.

In an A/B test where we compared an implementation of HyStart++ (based on an earlier draft

version of this document) to standard slow start across a large Windows device population, out

of 52 billion TCP connections, 0.7% of connections move from 1 RTO to 0 RTOs and another 0.7%

of connections move from 2 RTOs to 1 RTO with HyStart++. This test did not focus on send-heavy

connections, and the impact on send-heavy connections is likely much higher. We plan to

conduct more such production experiments to gather more data in the future.

6. Security Considerations

HyStart++ enhances slow start and inherits the general security considerations discussed in

.

An attacker can cause HyStart++ to exit slow start prematurely and impair the performance of a

TCP connection by, for example, dropping data packets or their acknowledgments.

The ACK division attack outlined in does not affect HyStart++ because the congestion

window increase in HyStart++ is based on the number of bytes newly acknowledged in each

arriving ACK rather than by a particular constant on each arriving ACK.

SHOULD

[RFC5681]

MAY [RFC5681]

[RFC5681]

[SCWA99]

RFC 9406 HyStart++ May 2023

Balasubramanian, et al. Standards Track Page 7

[RFC2119]

[RFC5681]

[RFC8174]

[ASA00]

[HyStart]

[RFC1122]

[RFC1191]

[RFC4821]

[RFC9002]

[RFC9260]

7. IANA Considerations

This document has no IANA actions.

8. References

8.1. Normative References

, , ,

, , March 1997,

.

, , and , , ,

, September 2009, .

, ,

, , , May 2017,

.

8.2. Informative References

, , and ,

, ,

, March 2000, .

 and , ,

, , June

2011, .

, ,

, , , October 1989,

.

 and , , ,

, November 1990, .

 and , , ,

, March 2007, .

 and , ,

, , May 2021,

.

, , and , ,

, , June 2022,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Allman, M. Paxson, V. E. Blanton "TCP Congestion Control" RFC 5681 DOI

10.17487/RFC5681 <https://www.rfc-editor.org/info/rfc5681>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Aggarwal, A. Savage, S. T. Anderson "Understanding the performance of

TCP pacing" Proceedings IEEE INFOCOM 2000 DOI 10.1109/INFCOM.

2000.832483 <https://doi.org/10.1109/INFCOM.2000.832483>

Ha, S. I. Rhee "Taming the elephants: New TCP slow start" Computer

Networks vol. 55, no. 9, pp. 2092-2110 DOI 10.1016/j.comnet.2011.01.014

<https://doi.org/10.1016/j.comnet.2011.01.014>

Braden, R., Ed. "Requirements for Internet Hosts - Communication Layers" STD

3 RFC 1122 DOI 10.17487/RFC1122 <https://www.rfc-editor.org/

info/rfc1122>

Mogul, J. S. Deering "Path MTU discovery" RFC 1191 DOI 10.17487/

RFC1191 <https://www.rfc-editor.org/info/rfc1191>

Mathis, M. J. Heffner "Packetization Layer Path MTU Discovery" RFC 4821

DOI 10.17487/RFC4821 <https://www.rfc-editor.org/info/rfc4821>

Iyengar, J., Ed. I. Swett, Ed. "QUIC Loss Detection and Congestion Control"

RFC 9002 DOI 10.17487/RFC9002 <https://www.rfc-editor.org/info/

rfc9002>

Stewart, R. Tüxen, M. K. Nielsen "Stream Control Transmission Protocol"

RFC 9260 DOI 10.17487/RFC9260 <https://www.rfc-editor.org/info/

rfc9260>

RFC 9406 HyStart++ May 2023

Balasubramanian, et al. Standards Track Page 8

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.1109/INFCOM.2000.832483
https://doi.org/10.1016/j.comnet.2011.01.014
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc4821
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9002
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9260

[SCWA99] , , , and ,

,

, , October 1999,

.

Acknowledgments

During the discussions of this work on the TCPM mailing list and in working group meetings,

helpful comments, critiques, and reviews were received from (listed alphabetically by last name)

, , , , , ,

, , , , , and

.

Savage, S. Cardwell, N. Wetherall, D. T. Anderson "TCP congestion control

with a misbehaving receiver" ACM SIGCOMM Computer Communication

Review, vol. 29, issue 5, pp. 71-78 DOI 10.1145/505696.505704

<https://doi.org/10.1145/505696.505704>

Mark Allman Bob Briscoe Neal Cardwell Yuchung Cheng Junho Choi Martin Duke Reese

Enghardt Christian Huitema Ilpo Järvinen Yoshifumi Nishida Randall Stewart Michael

Tüxen

Authors' Addresses

Praveen Balasubramanian

Confluent

899 West Evelyn Ave

, Mountain View CA 94041

United States of America

 pravb.ietf@gmail.com Email:

Yi Huang

Microsoft

One Microsoft Way

, Redmond WA 98052

United States of America

 +1 425 703 0447 Phone:

 huanyi@microsoft.com Email:

Matt Olson

Microsoft

One Microsoft Way

, Redmond WA 98052

United States of America

 +1 425 538 8598 Phone:

 maolson@microsoft.com Email:

RFC 9406 HyStart++ May 2023

Balasubramanian, et al. Standards Track Page 9

https://doi.org/10.1145/505696.505704
mailto:pravb.ietf@gmail.com
tel:+1%20425%20703%200447
mailto:huanyi@microsoft.com
tel:+1%20425%20538%208598
mailto:maolson@microsoft.com

	RFC 9406
	HyStart++: Modified Slow Start for TCP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Definitions
	4. HyStart++ Algorithm
	4.1. Summary
	4.2. Algorithm Details
	4.3. Tuning Constants and Other Considerations

	5. Deployments and Performance Evaluations
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Authors' Addresses

