<?xml version="1.0" encoding="UTF-8"?><!-- $Id$ --><!DOCTYPE rfcSYSTEM "rfc2629.dtd">[ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IRTF" category="exp" consensus="true" docName="draft-irtf-nwcrg-tetrys-04" number="9407" ipr="trust200902" obsoletes="" updates=""submissionType="IETF" xml:lang="en"> <?xml-stylesheet type='text/xsl' href='http://xml.resource.org/authoring/rfc2629.xslt' ?> <?rfc toc="yes"?> <?rfc tocompact="yes"?> <?rfc tocdepth="3"?> <?rfc tocindent="yes"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc comments="yes"?> <?rfc inline="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?> <?rfc iprnotified="no" ?> <?rfc strict="yes" ?>xml:lang="en" tocInclude="true" tocDepth="3" symRefs="true" sortRefs="true" version="3"> <front> <title abbrev="Tetrys Network CodingProtocol">Tetrys, anProtocol">Tetrys: An On-the-Fly Network Coding Protocol</title> <seriesInfo name="RFC" value="9407"/> <author fullname="Jonathan Detchart" initials="J." surname="Detchart"> <organization>ISAE-SUPAERO</organization> <address> <postal> <street>10, avenue Edouard Belin</street><street>BP 54032</street><extaddr>BP 54032</extaddr> <city>Toulouse CEDEX 4</city> <code>31055</code> <country>France</country> </postal> <email>jonathan.detchart@isae-supaero.fr</email> </address> </author> <author fullname="Emmanuel Lochin" initials="E." surname="Lochin"> <organization>ENAC</organization> <address> <postal> <street>7, avenue Edouard Belin</street> <city>Toulouse</city> <code>31400</code> <country>France</country> </postal> <email>emmanuel.lochin@enac.fr</email> </address> </author> <author fullname="Jerome Lacan" initials="J." surname="Lacan"> <organization>ISAE-SUPAERO</organization> <address> <postal> <street>10, avenue Edouard Belin</street><street>BP 54032</street><extaddr>BP 54032</extaddr> <city>Toulouse CEDEX 4</city> <code>31055</code> <country>France</country> </postal> <email>jerome.lacan@isae-supaero.fr</email> </address> </author> <author fullname="Vincent Roca" initials="V." surname="Roca"> <organization>INRIA</organization> <address> <postal> <street>655, avenue de l'Europe</street><street>Inovallee; Montbonnot</street> <city>ST ISMIER cedex</city><extaddr>Inovallee; Montbonnot</extaddr> <city>St Ismier CEDEX</city> <code>38334</code> <country>France</country> </postal> <email>vincent.roca@inria.fr</email> </address> </author> <date year="2023" month="June" /><area /> <workgroup>NWCRG</workgroup><workgroup>Coding for Efficient NetWork Communications</workgroup> <keyword>Network Coding</keyword> <abstract> <t>This document describes Tetrys, which is anOn-The-Fly Network Coding (NC)on-the-fly network coding protocol that can be used to transport delay-sensitive and loss-sensitive data over a lossy network. Tetrys may recover from erasures within an RTT-independentdelay,delay thanks to the transmission ofCoded Packets.coded packets. This document is a record of the experience gained by the authors while developing and testing the Tetrys protocol in real conditions.</t> <t> This document is a product of the Coding for EfficientNetworkNetWork Communications Research Group (NWCRG). It conforms to the NWCRGtaxonomy<xref target="RFC8406" />.taxonomy described in RFC 8406. </t> </abstract> </front> <middle> <section anchor="intro"title="Introduction"numbered="true" toc="default"><!-- ==================================== --><name>Introduction</name> <t>This document is a product of and represents the collaborative work and consensus of the Coding for EfficientNetworkNetWork Communications Research Group (NWCRG). It is not an IETF productand is notor an IETF standard.</t><t> This<t>This document describes Tetrys,a novel erasurewhich is an on-the-fly network codingprotocol.protocol that can be used to transport delay-sensitive and loss-sensitive data over a lossy network. Network codes were introduced in the early 2000s <xref target="AHL-00"pageno="false" format="default" />format="default"/> to address the limitations of transmission over the Internet (delay,capacitycapacity, and packet loss). While network codes have seen some deployment fairly recently in the Internet community, the use ofapplication layerapplication-layer erasure codes in the IETF has already been standardized in the RMT <xreftarget="RFC3452" pageno="false" format="default" />target="RFC5052" format="default"/> <xref target="RFC5445" format="default"/> andtheFECFRAME <xref target="RFC8680"pageno="false" format="default" /> working groups.format="default"/> Working Groups. The protocol presented here may be seen as anetwork codingnetwork-coding extension to standard unicast transport protocols (or even multicast or anycast with a few modifications). The current proposal may be considered a combination of network erasure coding and feedback mechanisms <xref target="Tetrys"pageno="false" format="default" />,format="default"/> <xref target="Tetrys-RT"pageno="false" format="default"/> .format="default"/>. </t> <t>The main innovation of the Tetrys protocol is in the generation ofCoded Packetscoded packets from anElastic Encoding Window.elastic encoding window. This window is filled by anySource Packetssource packets coming from an input flow and is periodically updated with the receiver feedback. These feedback messages provide to the senderwithinformation about the highest sequence number received or rebuilt, which can enable the flushing the correspondingSource Packetssource packets stored in the encoding window. The size of this window may be fixed or dynamically updated. If the window is full, incomingSource Packetssource packets replace oldersourcessource packetswhichthat are dropped. As a matter of fact, its limit should be correctly sized. Finally, Tetrys allowsto dealdealing with losses on both the forward and return paths andin particular,is particularly resilient to acknowledgment losses. All these operations are further detailed in <xref target="tetrys_basic_functions"pageno="false" format="default" />.</t>format="default"/>.</t> <t>With Tetrys, aCoded Packetcoded packet is a linear combination over a finite field of the dataSource Packetssource packets belonging to the coding window. Thecoefficients finite field'schoice of coefficients, as finite fields elements, is a trade-off between the best erasure recovery performance (finite fields of 256 elements) and the system constraints (finite fields of 16 elementsisare preferred) and is driven by the application.</t> <t>Thanks to theElastic Encoding Window,elastic encoding window, theCoded Packetscoded packets are builton-the-fly,on-the-fly by using a predefined method to choose the coefficients. The redundancy ratio may be dynamicallyadjusted,adjusted and the coefficients may be generated in differentways,ways during the transmission. Compared toFECForward Error Correction (FEC) block codes, thisallows reducingreduces the bandwidth use and the decoding delay.</t> <t>Thedescription of thedesign description of the Tetrys protocol in this document is complemented by a record of the experience gained by the authors while developing and testing the Tetrys protocol in realistic conditions. In particular, several research issues are discussed in <xref target="research"pageno="false" format="default" />format="default"/> following our own experience and observations.</t> <sectiontitle="Requirements Notation"numbered="true" toc="default"><!-- ==================================== --><name>Requirements Notation</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP14BCP 14 <xreftarget="RFC2119" pageno="false" format="default" />target="RFC2119"/> <xreftarget="RFC8174" pageno="false" format="default" />target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section> </section> <section anchor="terminology"title="Definitions, Notations and Abbreviations"numbered="true" toc="default"><!-- ==================================== --><name>Definitions, Notations, and Abbreviations</name> <t> The notation used in this document is based on the NWCRG taxonomy <xref target="RFC8406"pageno="false" format="default" /> .format="default"/>. </t><t> <list style="empty"> <t>Source Symbol: a<dl spacing="normal" newline="false"> <dt>Source Symbol:</dt><dd>A symbol that is transmitted between the ingress and egress of thenetwork.</t> <t>Coded Symbol: anetwork.</dd> <dt>Coded Symbol:</dt><dd>A linear combination over a finite field of a set ofSource Symbols.</t> <t>Sourcesource symbols.</dd> <dt>Source SymbolID: aID:</dt><dd>A sequence number to identify theSource Symbols.</t> <t>Codedsource symbols.</dd> <dt>Coded SymbolID: aID:</dt><dd>A sequence number to identify theCoded Symbols.</t> <t>Encoding Coefficients: elementscoded symbols.</dd> <dt>Encoding Coefficients:</dt><dd>Elements of the finite field characterizing the linear combination used to generateCoded Symbols.</t> <t>Encoding Vector: acoded symbols.</dd> <dt>Encoding Vector:</dt><dd>A set of the coding coefficients and inputSource Symbol IDs.</t> <t>Source Packet: a Source Packetsource symbol IDs.</dd> <dt>Source Packet:</dt><dd>A source packet contains aSource Symbolsource symbol with its associatedIDs.</t> <t>Coded Packet: a Coded PacketIDs.</dd> <dt>Coded Packet:</dt><dd>A coded packet contains aCoded Symbol,coded symbol, theCoded Symbol'scoded symbol's ID, andEncoding Vector.</t> <t>Input Symbol: aencoding vector.</dd> <dt>Input Symbol:</dt><dd>A symbol at the input of the TetrysEncoder.</t> <t>Output Symbol: aencoder.</dd> <dt>Output Symbol:</dt><dd>A symbol generated by the TetrysEncoder.encoder. For a non-systematic mode, allOutput Symbolsoutput symbols areCoded Symbols.coded symbols. For a systematic mode,Output Symbols MAYoutput symbols <bcp14>MAY</bcp14> be theInput Symbolsinput symbols and a number ofCoded Symbolscoded symbols that are linear combinations of theInput Symbols +input symbols plus theEncoding Vectors.</t> <t>Feedback Packet: a Feedback Packetencoding vectors.</dd> <dt>Feedback Packet:</dt><dd>A feedback packet is a packet containing information about the decoded or receivedSource Symbols.source symbols. ItMAY<bcp14>MAY</bcp14> also contain additional information about the Packet Error Rate or the number of various packets in the receiver decodingwindow.</t> <t>Elasticwindow.</dd> <dt>Elastic EncodingWindow: anWindow:</dt><dd>An encoder-side buffer that stores all thenon-acknowledged Source Packetsunacknowledged source packets of the input flow involved in the codingprocess.</t> <t>Codingprocess.</dd> <dt>Coding Coefficient GeneratorIdentifier: aIdentifier (CCGI):</dt><dd>A unique identifier that defines a function or an algorithm allowingto generatetheEncoding Vector.</t> <t>Code Rate: Definegeneration of the encoding vector.</dd> <dt>Code Rate:</dt><dd>Defines the rate between the number ofInput Symbolsinput symbols and the number ofOutput Symbols.</t> </list> </t>output symbols.</dd> </dl> </section> <section anchor="tetrys_architecture"title="Architecture"numbered="true" toc="default"><!-- ==================================== --><name>Architecture</name> <section anchor="use_cases"title="Use Cases"numbered="true" toc="default"><!-- ==================================== --><name>Use Cases</name> <t>Tetrys is well suited, but notlimited to,limited, to the use case where there is a single flow originated by a singlesource,source withintra streamintra-stream coding at a single encoding node. Note that the input streamMAY<bcp14>MAY</bcp14> be a multiplex of severalupper layerupper-layer streams. TransmissionMAY<bcp14>MAY</bcp14> be over a single path or multiple paths. This is the simplestuse-case,use case that isvery muchquite aligned with currently proposed scenarios for end-to-end streaming.</t> </section> <section anchor="protocol_overview"title="Overview"numbered="true" toc="default"><!-- ==================================== --><name>Overview</name> <figureanchor="fig-archi-tetrys" title="Tetrys Architecture" suppress-title="false" align="left" alt="" width="" height="">anchor="fig-archi-tetrys"> <name>Tetrys Architecture</name> <artworkxml:space="preserve"name="" type="" align="left"alt="" width="" height="">alt=""><![CDATA[ +----------+ +----------+ | | | | | App | | App | | | | | +----------+ +----------+ | ^ | Source Source | | Symbols Symbols | | | v | +----------+ +----------+ | |output packetsOutput Packets | | | Tetrys|--------------->||--------------->| Tetrys | | Encoder |Feedback Packets| Decoder | ||<---------------||<---------------| | +----------+ +----------+</artwork>]]></artwork> </figure> <t> The Tetrys protocol features several key functionalities. The mandatory featuresare: <list style="symbols"> <t>on-the-fly encoding;</t> <t>decoding;</t> <t>signaling,include: </t> <ul spacing="normal"> <li>on-the-fly encoding;</li> <li>decoding;</li> <li>signaling, to carry in particular the symbolidentifiersIDs in the encoding window and the associated coding coefficients whenmeaningful;</t> <t>feedback management;</t> <t>elasticmeaningful;</li> <li>feedback management;</li> <li>elastic windowmanagement;</t> <t>Tetrysmanagement; and</li> <li>Tetrys packet header creation andprocessing;</t> </list> </t> <t> and theprocessing.</li> </ul> <t>The optional featuresare : <list style="symbols"> <t>channel estimation;</t> <t>dynamicinclude: </t> <ul spacing="normal"> <li>channel estimation;</li> <li>dynamic adjustment of theCode Ratecode rate and flowcontrol;</t> <t>control; and</li> <li> congestion control management (if appropriate). See <xref target="transport-issue"/>format="default"/> for furtherdetails; </t> </list> </t>details. </li> </ul> <t> Several building blocks providethesethe following functionalities:<list style="symbols"> <t>The</t> <dl spacing="normal"> <dt>The Tetrys BuildingBlock: this BBBlock:</dt><dd>This building block embeds both the TetrysDecoderdecoder and TetrysEncoder andencoder; thus, it is used duringencoding,encoding and decoding processes. It must be noted that Tetrys does not mandate a specific building block. Instead, any building block compatible with theElastic Encoding Windowelastic encoding window feature of Tetrys may beused.</t> <t> Theused.</dd> <dt>The Window Management BuildingBlock: thisBlock:</dt><dd>This building block is in charge of managing the encoding window at a Tetrys sender.</t> </list> </t></dd> </dl> <t> To ease the addition of future components and services, Tetrys adds a header extensionmechanism,mechanism that is compatible with that ofLCTLayered Coding Transport (LCT) <xref target="RFC5651"/>, NORMformat="default"/>, NACK-Oriented Reliable Multicast (NORM) <xref target="RFC5740"/>, FECFRAMEformat="default"/>, and FEC Framework (FECFRAME) <xref target="RFC8680"/>.format="default"/>. </t><!-- VR: pas d'accord... JL: OK, a discuter. <t>Tetrys uses three building blocks to provide a reliable protocol:</t> <t> - The Tetrys Encoding Building Block creates some linear combinations of all the non-acknowledged Input Symbols. An upper limit can be set to avoid big computations. Each linear combination is called a Coded Symbol. It is associated to an Encoding Vector, which MUST defines the Input Symbols and MAY define the coefficients used in the combinations. If not, a Coding Coefficient Generator Identifier (CCGI) is used to identify the function or the algorithm used to rebuild the coefficients.</t> <t> - The Tetrys Relaying Building Block transmits input packets received from the source or a relay node to a relay node or the destination node. According to the characteristics of previous and next links, it can remove some Coded Packets or generate additional Coded Packets. The generation of new packets is done by the recoding process (which does not need a decoding process).</t> <t> - The Tetrys Decoding Building Block stores all the received output packets. When it is possible, the Coded Symbols are decoded to rebuild the lost Source Symbols. Regularly, this building block sends a feedback packet containing information about the acknowledgment of received and decoded Source Symbols. When this information is received by a Tetrys Encoding Building Block, the acknowledged Source Symbols are removed, and will not be considered in the next Coded Symbols.</t> <t>This encoding mechanism is called an elastic coding window. Each generated Output Symbols is encapsulated in an output packet format. </t> --></section> </section> <section anchor="tetrys_basic_functions"title="Tetrys Basic Functions"numbered="true" toc="default"><!-- ==================================== --><name>Tetrys Basic Functions</name> <section anchor="encoding"title="Encoding"numbered="true" toc="default"><!-- ==================================== --><name>Encoding</name> <t>At the beginning of a transmission, a TetrysEncoder MUSTencoder <bcp14>MUST</bcp14> choose an initialCode Rate (added redundancy)code rate that adds redundancy as it doesn't know the packet loss rate of the channel. In the steady state,depending on the Code Rate,the TetrysEncoder MAYencoder <bcp14>MAY</bcp14> generateCoded Symbolscoded symbols when it receives aSource Symbolsource symbol from the application or some feedback from the decodingblocks.</t>blocks depending on the code rate.</t> <t>When a TetrysEncoderencoder needs to generate aCoded Symbol,coded symbol, it considers the set ofSource Symbolssource symbols stored in theElastic Encoding Windowelastic encoding window and generates anEncoding Vectorencoding vector with theCoded Symbol.coded symbol. TheseSource Symbolssource symbols are the set ofSource Symbolssource symbols that are not yet acknowledged by the receiver. For eachSource Symbol,source symbol, a finite field coefficient is determined using a Coding Coefficient Generator. This generatorMAY<bcp14>MAY</bcp14> takeas inputtheSource Symbolsource symbol IDs and theCoded Symbolcoded symbol ID as an input andMAY<bcp14>MAY</bcp14> determine a coefficient in a deterministic way as presented in <xref target="coded-packet"pageno="false" format="default" />.format="default"/>. Finally, theCoded Symbolcoded symbol is the sum of theSource Symbolssource symbols multiplied by their corresponding coefficients.</t> <t>A TetrysEncoder SHOULDencoder <bcp14>MUST</bcp14> set a limit to theElastic Encoding Windowelastic encoding window maximum size. This controls the algorithmic complexity at the encoder and decoder by limiting the size of linear combinations. It is also needed in situations where all window update packets arealllost or absent.</t> </section> <section anchor="windowing"title="The Elastic Encoding Window"numbered="true" toc="default"><!-- ==================================== --><name>The Elastic Encoding Window</name> <t>When an inputSource Symbolsource symbol is passed to a TetrysEncoder,encoder, it is added to theElastic Encoding Window.elastic encoding window. This windowMUST<bcp14>MUST</bcp14> have a limit set by the encoding buildingBlock.block. If theElastic Encoding Windowelastic encoding window has reached its limit, the window slides over thesymbols: thesymbols. The first (oldest) symbol is removed, and the newest symbol is added. As an element of the coding window, this symbol is included in the next linear combinations created to generate theCoded Symbols.</t>coded symbols.</t> <t>As explained below, the TetrysDecoderdecoder sends periodic feedback indicating the received or decodedSource Symbols.source symbols. When the sender receives the information that aSource Symbolsource symbol was received or decoded by the receiver, it removes this symbol from the coding window.</t> </section> <section anchor="decoding"title="Decoding"numbered="true" toc="default"><!-- ==================================== --><name>Decoding</name> <t>A standard Gaussian elimination is sufficient to recover the erasedSource Symbols,source symbols when the matrix rank enables it.</t> </section> </section> <section anchor="encapsulation-format"title="Packet Format"numbered="true" toc="default"><!-- ==================================== --><name>Packet Format</name> <section anchor="common-packet-header-format"title="Common Header Format"numbered="true" toc="default"><!-- ==================================== --><name>Common Header Format</name> <t> All types of Tetrys packets share the same common header format (see <xref target="fig-common-header-format"pageno="false" format="default" />).format="default"/>). </t> <figureanchor="fig-common-header-format" title="Commonanchor="fig-common-header-format"> <name>Common HeaderFormat" suppress-title="false" align="left" alt="" width="" height="">Format</name> <artworkxml:space="preserve"name="" type="" align="left"alt="" width="" height="">alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | V | C |S| Reserved | HDR_LEN | PKT_TYPE | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Congestion Control Information (CCI, length = 32*C bits) | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Transport Session Identifier (TSI, length = 32*S bits) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Header Extensions (if applicable) | | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</artwork>]]></artwork> </figure></t><t>Asalreadynotedabove in the document,above, this format is inspired by, and inheritsfromfrom, the LCT header format <xref target="RFC5651"pageno="false" format="default" />format="default"/> with slight modifications.</t><t> <list style="symbols"> <t>Tetrys<dl spacing="normal"> <dt>Tetrys version number(V): 4(V):</dt><dd>4 bits. Indicates the Tetrys version number. The Tetrys version number for this specification is1.</t> <t> Congestion1.</dd> <dt>Congestion control flag(C): 2(C):</dt><dd>2 bits.C=0C set to 0b00 indicates the Congestion Control Information (CCI) field is 0 bits in length.C=1C set to 0b01 indicates the CCI field is 32 bits in length.C=2C set to 0b10 indicates the CCI field is 64 bits in length.C=3C set to 0b11 indicates the CCI field is 96 bits in length.</t> <t>Transport</dd> <dt>Transport Session Identifier flag(S): 1(S):</dt><dd>1 bit. This is the number of full 32-bit words in the TSI field. The TSI field is 32*S bits inlength,length; i.e., the length is either 0 bits or 32bits.</t> <t>Reserved (Resv): 9bits.</dd> <dt>Reserved (Resv):</dt><dd>9 bits. These bits are reserved. In this version of the specification, theyMUST<bcp14>MUST</bcp14> be set to zero by senders andMUST<bcp14>MUST</bcp14> be ignored byreceivers.</t> <t>Headerreceivers.</dd> <dt>Header length(HDR_LEN): 8(HDR_LEN):</dt><dd>8 bits. The total length of the Tetrys header in units of 32-bit words. The length of the Tetrys headerMUST<bcp14>MUST</bcp14> be a multiple of 32 bits. This field may be used to directly access the portion of the packet beyond the Tetrys header, i.e., to the first next header if it exists,orto the packet payload if it exists and there is no other header, or to the end of the packet if there are noothersother headers or packetpayload.</t> <t>PKT_TYPE: Tetryspayload.</dd> <dt>Tetrys packettype, 8type (PKT_TYPE):</dt><dd>8 bits.Type of packet.Thereis 3are three types of packets: the PKT_TYPE_SOURCE(0)(0b00) defined in <xref target="source-packet"pageno="false" format="default" />,format="default"/>, the PKT_TYPE_CODED(1)(0b01) defined in <xref target="coded-packet"pageno="false" format="default" />format="default"/> and the PKT_TYPE_WND_UPT(3),(0b11) for window update packets defined in <xref target="ack-packet"pageno="false" format="default" />.</t> <t>Congestionformat="default"/>.</dd> <dt>Congestion Control Information(CCI): 0,(CCI):</dt><dd>0, 32, 64, or 96bitsbits. Used to carry congestion control information. For example, the congestion control information could include layer numbers, logical channel numbers, and sequence numbers. This field is opaque for this specification. This fieldMUST<bcp14>MUST</bcp14> be 0 bits (absent) ifC=0.C is set to 0b00. This fieldMUST<bcp14>MUST</bcp14> be 32 bits ifC=1.C is set to 0b01. This fieldMUST<bcp14>MUST</bcp14> be 64 bits ifC=2.C is set to 0b10. This fieldMUST<bcp14>MUST</bcp14> be 96 bits ifC=3.</t> <t> TransportC is set to 0b11.</dd> <dt>Transport Session Identifier(TSI): 0(TSI):</dt><dd>0 or 32bitsbits. The TSI uniquely identifies a session among all sessions from a particular Tetrys encoder. The TSI is scoped by the IP address of thesender, and thussender; thus, the IP address of the sender and the TSI together uniquely identify the session. Although aTSI,TSI always uniquely identifies a session conjointly with the IP address of the sender,always uniquely identifies a session,whether the TSI is included in the Tetrys header depends on what is used as the TSI value. If the underlying transport is UDP, then the 16-bit UDP source port numberMAY<bcp14>MAY</bcp14> serve as the TSI for the session.<!-- If the TSI value appears multiple times in a packet, then all occurrences MUST be the same value. -->If there is no underlying TSI provided by the network,transporttransport, or any other layer, then the TSIMUST<bcp14>MUST</bcp14> be included in the Tetrys header.</t> </list> </t></dd> </dl> <section anchor="header-extension-format"title="Header Extensions"numbered="true" toc="default"><!-- ==================================== --><name>Header Extensions</name> <t>HeaderExtensionsextensions are used in Tetrys to accommodate optional header fields that are not always used or have variablesize.sizes. The presence ofHeader Extensions MAYheader extensions <bcp14>MAY</bcp14> be inferred by the Tetrys header length (HDR_LEN). If HDR_LEN is larger than the length of the standard header, then the remaining header space is taken byHeader Extensions.</t>header extensions.</t> <t>If present,Header Extensions MUSTheader extensions <bcp14>MUST</bcp14> be processed to ensure that they are recognized before performing any congestion control procedure or otherwise accepting a packet. The default action for unrecognizedHeader Extensionsheader extensions is to ignore them. This allows for the future introduction of backward-compatible enhancements to Tetrys without changing the Tetrys version number.Non-backward-compatibleHeaderExtensions CANNOTextensions that are not backward-compatible <bcp14>MUST NOT</bcp14> be introduced without changing the Tetrys version number.</t> <t> There are two formats forHeader Extensionsheader extensions as depicted in <xreftarget="fig:header_extension" pageno="false" format="default" /> : <list style="symbols"> <t>Thetarget="fig_header_extension" format="default"/>: </t> <ul spacing="normal"> <li>The first format is used for variable-lengthextensions,extensions withHeader Extension Typeheader extension type (HET) values between 0 and127.</t> <t>The127.</li> <li>The second format is used for fixed-length (one 32-bit word)extensions,extensions using HET values from 128 to255.</t> </list> </t>255.</li> </ul> <figureanchor="fig:header_extension" title="Headeranchor="fig_header_extension"> <name>Header ExtensionFormat" suppress-title="false" align="left" alt="" width="" height="">Format</name> <artworkxml:space="preserve"name="" type="" align="left"alt="" width="" height="">alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HET(<=127)(<=127) | HEL | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + . . . Header Extension Content (HEC) . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | HET(>=128)(>=128) | Header Extension Content (HEC) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</artwork>]]></artwork> </figure><t> <list style="symbols"> <t>Header<dl spacing="normal"> <dt>Header Extension Type(HET): 8 bits <t>The(HET):</dt><dd>8 bits. The type of theHeader Extension.header extension. This document defines several possible types. Additional types may be defined in future versions of this specification. HET values from 0 to 127 are used for variable-lengthHeader Extensions.header extensions. HET values from 128 to 255 are used forfixed-lengthfixed-length, 32-bitHeader Extensions.</t> </t> <t>Headerheader extensions.</dd> <dt>Header Extension Length(HEL): 8 bits <t>The(HEL):</dt><dd>8 bits. The length of the wholeHeader Extension field,header extension field expressed in multiples of 32-bit words. This fieldMUST<bcp14>MUST</bcp14> be present for variable-length extensions (HETs between 0 and 127) andMUST NOT<bcp14>MUST NOT</bcp14> be present for fixed-length extensions (HETs between 128 and255).</t></t> <t>Header255).</dd> <dt>Header Extension Content(HEC): variable length <t>The(HEC):</dt><dd>Length of the variable. The content of theHeader Extension.header extension. The format of this subfield depends on theHeader Extension Type.header extension type. For fixed-lengthHeader Extensions,header extensions, the HEC is 24 bits. For variable-lengthHeader Extensions,header extensions, the HEC field has a variablesize,size as specified by the HEL field. Note that the length of eachHeader Extension MUSTheader extension <bcp14>MUST</bcp14> be a multiple of 32 bits.Also, note thatAdditionally, the total size of the Tetrys header, including allHeader Extensionsheader extensions andalloptional header fields, cannot exceed 255 32-bitwords.</t></t> </list> </t>words.</dd> </dl> </section> </section> <section anchor="source-packet"title="Source Packet Format"numbered="true" toc="default"><!-- ==================================== --> <t>A Source<name>Source Packet Format</name> <t>A source packet is aCommon Packet Headercommon packet header encapsulation, aSource Symbol IDsource symbol ID, and aSource Symbolsource symbol (payload). TheSource Symbols MAYsource symbols <bcp14>MAY</bcp14> have variable sizes.</t> <figureanchor="fig-src-pkt" title="Sourceanchor="fig-src-pkt"> <name>Source PacketFormat" suppress-title="false" align="left" alt="" width="" height="">Format</name> <artworkxml:space="preserve"name="" type="" align="left"alt="" width="" height="">alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / Common Packet Header / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Symbol ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / Payload / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</artwork>]]></artwork> </figure><t>Common<dl spacing="normal"> <dt>Common PacketHeader: aHeader:</dt><dd>A common packet header (as common header format) wherePacket Type=0.</t> <t>Sourcepacket type is set to 0b00.</dd> <dt>Source SymbolID: theID:</dt><dd>The sequence number to identify aSource Symbol.</t> <t>Payload: thesource symbol.</dd> <dt>Payload:</dt><dd>The payload(Source Symbol)</t>(source symbol).</dd> </dl> </section> <section anchor="coded-packet"title="Coded Packet Format"numbered="true" toc="default"><!-- ==================================== --><name>Coded Packet Format</name> <t> ACoded Packetcoded packet is the encapsulation of aCommon Packet Header,common packet header, aCoded Symbolcoded symbol ID, the associatedEncoding Vector,encoding vector, and aCoded Symbolcoded symbol (payload). As theSource Symbols MAYsource symbols <bcp14>MAY</bcp14> have variable sizes, all theSource Symbolsource symbol sizes need to be encoded. To generate this encoded payloadsize,size as a 16-bit unsigned value, the linear combination uses the same coefficients as the coded payload. The resultMUST<bcp14>MUST</bcp14> be stored in theCoded Packetcoded packet as theEncoded Payload Sizeencoded payload size (16bits): asbits). As it is an optional field, theEncoding Vector MUSTencoding vector <bcp14>MUST</bcp14> signal the use of variableSource Symbolsource symbol sizes with the field V (see <xref target="unified-encoding-vector-format"pageno="false" format="default" />).format="default"/>). </t> <figureanchor="fig-rpr-pkt" title="Codedanchor="fig-rpr-pkt"> <name>Coded PacketFormat" suppress-title="false" align="left" alt="" width="" height="">Format</name> <artworkxml:space="preserve"name="" type="" align="left"alt="" width="" height="">alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / Common Packet Header / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Coded Symbol ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / Encoding Vector / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Encoded Payload Size | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | | / Payload / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</artwork>]]></artwork> </figure><t>Common<dl spacing="normal"> <dt>Common PacketHeader: aHeader:</dt><dd>A common packet header (as common header format) wherePacket Type=1.</t> <t>Codedpacket type is set to 0b01.</dd> <dt>Coded SymbolID: theID:</dt><dd>The sequence number to identify aCoded Symbol.</t> <t>Encoding Vector: an Encoding Vectorcoded symbol.</dd> <dt>Encoding Vector:</dt><dd>An encoding vector to define the linear combination used (coefficients andSource Symbols).</t> <t>Encodedsource symbols).</dd> <dt>Encoded PayloadSize: theSize:</dt><dd>The coded payload size used if theSource Symbolssource symbols have a variable size(optional,<xref(optional, <xref target="unified-encoding-vector-format"pageno="false" format="default" />).</t> <t>Payload: the Coded Symbol.</t>format="default"/>).</dd> <dt>Payload:</dt><dd>The coded symbol.</dd> </dl> <section anchor="unified-encoding-vector-format"title="The Encoding Vector"numbered="true" toc="default"><t>An<name>The EncodingVectorVector</name> <t>An encoding vector contains all the information about the linear combination used to generate aCoded Symbol.coded symbol. The information includes the source identifiers and the coefficients used for eachSource Symbol.source symbol. ItMAY<bcp14>MAY</bcp14> be stored in different ways depending on the situation.</t> <figureanchor="fig-unif-enc-vec" title="Encodinganchor="fig-unif-enc-vec"> <name>Encoding VectorFormat" suppress-title="false" align="left" alt="" width="" height="">Format</name> <artworkxml:space="preserve"name="" type="" align="left"alt="" width="" height="">alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | EV_LEN | CCGI | I |C|V| NB_IDS | NB_COEFS | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | FIRST_SOURCE_ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | b_id | | +-+-+-+-+-+-+-+-+ id_bit_vector +-+-+-+-+-+-+-+ | | Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + coef_bit_vector +-+-+-+-+-+-+-+ | | Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</artwork>]]></artwork> </figure><t> <list style="symbols"> <t>Encoding<dl> <dt>Encoding Vector Length(EV_LEN) (8-bits):(EV_LEN):</dt><dd>8 bits. The size in units of 32-bitwords.</t> <t>Codingwords.</dd> <dt>Coding Coefficient Generator Identifier(CCGI): 4-bit(CCGI):</dt><dd><t>4-bit ID to identify the algorithm orthefunction used to generate the coefficients. As a CCGI is included in each encoded vector, itMAY<bcp14>MAY</bcp14> dynamically change between the generation of2 Coded Symbols.two coded symbols. The CCGI builds the coding coefficients used to generate theCoded Symbols.coded symbols. TheyMUST<bcp14>MUST</bcp14> be known by all the Tetrys encoders or decoders. The two RLC FEC schemes specified in this document reuse theFinite Fieldsfinite fields defined in <xref target="RFC5510"pageno="false" format="default" />, Section 8.1.sectionFormat="comma" section="8.1"/>. More specifically, the elements of the fieldGF(2^(m))GF(2<sup>(m)</sup>) are represented by polynomials with binary coefficients (i.e., over GF(2)) and with degree lower or equal to m-1. The addition between two elements is defined as the addition of binary polynomials in GF(2), which is equivalent to a bitwise XOR operation on the binary representation of these elements. WithGF(2^(8)),GF(2<sup>(8)</sup>), multiplication between two elements is the multiplication modulo a given irreducible polynomial of degree 8. The following irreducible polynomial is used forGF(2^(8)): x^(8)GF(2<sup>(8)</sup>):</t> <t indent="3">x<sup>(8)</sup> +x^(4)x<sup>(4)</sup> +x^(3)x<sup>(3)</sup> +x^(2)x<sup>(2)</sup> +1 With GF(2^(4)),1</t> <t>With GF(2<sup>(4)</sup>), multiplication between two elements is the multiplication modulo a given irreducible polynomial of degree 4. The following irreducible polynomial is used forGF(2^(4)): x^(4)GF(2<sup>(4)</sup>):</t> <t indent="3">x<sup>(4)</sup> + x + 1<list style="ccgi"> <t>0: Vandermonde based</t> <ul spacing="normal"> <li>0b00: Vandermonde-based coefficients over the finite fieldGF(2^(4)),GF(2<sup>(4)</sup>) as defined below. Each coefficient is built asalpha^(alpha<sup>( (source_symbol_id*coded-symbol_id) %16),16)</sup>, with alpha the root of the primitivepolynomial.</t> <t>1: Vandermonde basedpolynomial.</li> <li>0b01: Vandermonde-based coefficients over the finite fieldGF(2^(8)),GF(2<sup>(8)</sup>) as defined below. Each coefficient is built asalpha^(alpha<sup>( (source_symbol_id*coded-symbol_id) %256),256)</sup>, with alpha the root of the primitivepolynomial.</t> <t>Supposepolynomial.</li> <li>Suppose we want to generate theCoded Symbolcoded symbol 2 as a linear combination of theSource Symbols 1,2,4source symbols 1, 2, and 4 usingCCGI=1.CCGI set to 0b01. The coefficients will bealpha^(alpha<sup>( (1 * 1) %256), alpha^(256)</sup>, alpha<sup>( (1 * 2) %256), alpha^(256)</sup>, and alpha<sup>( (1 * 4) %256).</t> </list> </t> <!-- <t>Store the Source Symbol IDs (I) (1 bit): if equal to 1, the Encoding Vector contains the list of the Source Symbol IDs, if equal to 0, there is no Source Symbol ID information.</t> --> <t>256)</sup>.</li> </ul></dd> <dt> Store the Source Symbol ID Format (I) (2 bits):<list style="symbols"> <t>00</dt><dd> <ul spacing="normal"> <li>0b00 means there is noSource Symbolsource symbol IDinformation.</t> <t>01information.</li> <li>0b01 means theEncoding Vectorencoding vector contains the edge blocks of theSource Symbolsource symbol IDs withoutcompression.</t> <t>10compression.</li> <li>0b10 means theEncoding Vectorencoding vector contains the compressed list of theSource Symbol IDs.</t> <t>11source symbol IDs.</li> <li>0b11 means theEncoding Vectorencoding vector contains the compressed edge blocks of theSource Symbol IDs.</t> </list> </t> <t>Storesource symbol IDs.</li> </ul> </dd> <dt>Store the Encoding Coefficients(C): 1(C):</dt><dd>1 bit to indicate if anEncoding Vectorencoding vector contains information about the coefficientsused.</t> <t>Havingused.</dd> <dt>Having Source Symbols with Variable Size Encoding(V): set(V):</dt><dd>Set V to10b01 if the combinationwhichthat refers to theEncoding Vectorencoding vector is a combination ofSource Symbolssource symbols with variable sizes. In this case, theCoded Packets MUSTcoded packets <bcp14>MUST</bcp14> have the 'Encoded Payload Size'field.</t> <t>NB_IDS: thefield.</dd> <dt>NB_IDS:</dt><dd>The number of source IDs stored in theEncoding Vectorencoding vector (depending onI).</t> <t>NumberI).</dd> <dt>Number ofcoefficients (NB_COEFS): TheCoefficients (NB_COEFS):</dt><dd>The number of the coefficients used to generate the associatedCoded Symbol.</t> <t>Thecoded symbol.</dd> <dt>The First Source Identifier (FIRST_SOURCE_ID):</dt><dd>The first sourceidentifier (FIRST_SOURCE_ID): the first Source Symbolsymbol ID used in thecombination.</t> <t>combination.</dd> <dt> Number ofbitsBits foreach edge block (b_id): theEach Edge Block (b_id):</dt><dd>The number of bits needed to store the edge.</t> <t>Information</dd> <dt>Information about the Source Symbol IDs(id_bit_vector): if I=01,(id_bit_vector):</dt><dd>If I is set to 0b01, store the edge blocks as b_id * (NB_IDS * 2 - 1). IfI=10,I is set to 0b10, store the edge blocks in a compressedway the edge blocks.</t> <t>The coefficients (coef_bit_vector): Theway.</dd> <dt>The Coefficients (coef_bit_vector):</dt><dd>The coefficients stored depending on the CCGI (4 or 8 bits for eachcoefficient).</t> <t>Padding: paddingcoefficient).</dd> <dt>Padding:</dt><dd>Padding to have anEncoding Vectorencoding vector size that is a multiple of32-bit32 bits (for theidID and coefficientpart).</t> </list> </t> <!-- ==================================== -->part).</dd> </dl> <t>TheSource Symbolsource symbol IDs are organized as a sorted list of 32-bit unsigned integers. Depending on the feedback, theSource Symbolsource symbol IDsMAYin the list <bcp14>MAY</bcp14> be successive ornot in the list.not. If they are successive, the boundaries are stored in theEncoding Vector:encoding vector; it just needs2*32-bit2*32 bits of information. If not, the full list or the edge blocksMAY<bcp14>MAY</bcp14> bestored,stored and a differential transform to reduce the number of bits needed to represent an identifierMAY<bcp14>MAY</bcp14> be used.</t> <t>For the following subsections, let's take as an example the generation of an encoding vector for aCoded Symbol whichcoded symbol that is a linear combination of theSource Symbolssource symbols with IDs1,2,3,5,6,8,91, 2, 3, 5, 6, 8, 9, and 10 (or as edge blocks:[1..3],[5..6],[8..10])</t>[1..3], [5..6], [8..10]).</t> <t>There are several ways to store theSource Symbolssource symbol IDs into the encoding vector:<list style="symbols"> <t>If</t> <ul spacing="normal"> <li>If no information about theSource Symbolsource symbol IDs is needed, the field IMUST<bcp14>MUST</bcp14> be set to 0b00: no b_id and no id_bit_vectorfield</t> <t>Iffield.</li> <li>If the edge blocks are stored without compression, the field IMUST<bcp14>MUST</bcp14> be set to 0b01. In this case, set b_id to 32 (as asymbol idSymbol ID is 32 bits), and storeinto id_bit_vectorsthe listas 32 bitsof 32-bit unsignedintegers: 1,3,5,6,8,10</t> <t>Ifintegers (1, 3, 4, 5, 6, 10) into id_bit_vectors.</li> <li>If theSource Symbols Idssource symbol IDs are stored as a list with compression, the field IMUST<bcp14>MUST</bcp14> be set to 0b10. In this case, see <xref target="compressing-encoding-vector"pageno="false" format="default" />format="default"/>, but rather than compressing the edge blocks, we compress the full list of theSource Symbol IDs.</t> <t>Ifsource symbol IDs.</li> <li>If the edge blocks are stored with compression, the field IMUST<bcp14>MUST</bcp14> be set to 0b11. In this case, see <xref target="compressing-encoding-vector"pageno="false" format="default" />.</t> </list> </t>format="default"/>.</li> </ul> <section anchor="compressing-encoding-vector"title="Compressed listnumbered="true" toc="default"> <name>Compressed List of Source SymbolIDs" numbered="true" toc="default"> <!-- ==================================== -->IDs</name> <t>Let's continue with ourCoded Symbolcoded symbol defined in the previous section. TheSource Symbolssource symbol IDs used in the linear combination are:[1..3],[5..6],[8..10].</t>[1..3], [5..6], [8..10].</t> <t> If we want to compress and store this list into the encoding vector, weMUST<bcp14>MUST</bcp14> follow this procedure:<list style="numbers"> <t>Keep</t> <ol spacing="normal" type="1"><li>Keep the first element in the packet as the first_source_id:1.</t> <t>Apply1.</li> <li>Apply a differential transform to the other elements([3,5,6,8,10]) which([3, 5, 6, 8, 10]) that removes the element i-1 to the element i, starting with the first_source_id as i0, and get the list L =[2,2,1,2,2]</t> <t>Compute[2, 2, 1, 2, 2].</li> <li>Compute b, the number of bits needed to store all the elements, which is ceil(log2(max(L))), where max(L) represents the maximum of the elements of the listL:L; here, it is 2bits.</t> <t>Writebits.</li> <li>Write b in the corresponding field, and write all the b * [(2 * NB blocks) - 1] elements in a bitvector,vector here:10 10 01 10 10.</t> </list> </t>10, 10, 01, 10, 10.</li> </ol> </section> <section anchor="decompressing-encoding-vector"title="Decompressingnumbered="true" toc="default"> <name>Decompressing the Source SymbolIDs" numbered="true" toc="default"> <!-- ==================================== -->IDs</name> <t>When a TetrysDecoding Blockdecoding block wants to reverse the operations, this algorithm is used:</t><t> <list style="numbers"> <t>Rebuild<ol spacing="normal" type="1"><li>Rebuild the list of the transmitted elements by reading the bit vector and b:[10 10 01 10[10, 10, 01, 10, 10] =>[2,2,1,2,2]</t> <t>Apply[2, 2, 1, 2, 2].</li> <li>Apply the reverse transform by adding successively the elements, starting with first_source_id:[1,1+2,(1+2)+2,(1+2+2)+1,...][1, 1 + 2, (1 + 2) + 2, (1 + 2 + 2) + 1, ...] =>[1,3,5,6,8,10]</t> <t>Rebuild[1, 3, 5, 6, 8, 10].</li> <li>Rebuild the blocks using the list and first_source_id:[1..3],[5..6],[8..10].</t> </list> </t>[1..3], [5..6], [8..10].</li> </ol> </section> </section> </section> <section anchor="ack-packet"title="Window Update Packet Format"numbered="true" toc="default"><!-- ==================================== --><name>Window Update Packet Format</name> <t>A TetrysDecoder MAYdecoder <bcp14>MAY</bcp14> send window update packets back to another buildingblock some Window Update packets.block. They contain information about what the packets received,decodeddecoded, or dropped, and other information such as a packet loss rate or the size of the decoding buffers. They are used to optimize the content of the encoding window. The window update packets areOPTIONAL, and hence<bcp14>OPTIONAL</bcp14>; hence, they could be omitted or lost in transmission without impacting the protocol behavior.</t> <figureanchor="fig-ack-pkt" title="Windowanchor="fig-ack-pkt"> <name>Window Update PacketFormat" suppress-title="false" align="left" alt="" width="" height="">Format</name> <artworkxml:space="preserve"name="" type="" align="left"alt="" width="" height="">alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | / Common Packet Header / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | nb_missing_src | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | nb_not_used_coded_symb | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | first_src_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | plr | sack_size | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | | / SACK Vector / | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+</artwork>]]></artwork> </figure><t>Common<dl spacing="normal"> <dt>Common PacketHeader: aHeader:</dt><dd>A common packet header (as common header format) wherePacket Type=2.</t> <t>nb_missing_src: thepacket type is set to 0b10.</dd> <dt>nb_missing_src:</dt><dd>The number of missingSource Symbolssource symbols in the receiver since the beginning of thesession.</t> <!-- <t>Nb of not already used Coded Symbols: the number of not already used Coded Symbols in the receiver that have not already been used for decoding. Meaning the number of linear combinations containing at least 2 unknown Source Symbols.</t> --> <t>nb_not_used_coded_symb: thesession.</dd> <dt>nb_not_used_coded_symb:</dt><dd>The number ofCoded Symbolscoded symbols at the receiver that have not already been used for decoding (e.g., the linear combinations contain at least2two unknownSource Symbols).</t> <t>first_src_id: IDsource symbols).</dd> <dt>first_src_id:</dt><dd>ID of the firstSource Symbolsource symbol to consider in theSACK vector.</t> <t>plr: packetselective acknowledgment (SACK) vector.</dd> <dt>plr:</dt><dd>Packet loss ratio expressed as a percentage normalized toaan 8-bit unsigned integer. For example,2.5 %2.5% will be stored as floor(2.5 * 256/100) = 6. Conversely, if 6 is the stored value, the corresponding packet loss ratio expressed as a percentage is 6*100/256 =2.34 %.2.34%. This value is used in the case of dynamicCode Ratecode rate or for a statistical purpose. The choice of calculation is left to the TetrysDecoder,decoder, depending on a window observation, but should be the PLR seen beforedecoding.</t> <t>sack_size: thedecoding.</dd> <dt>sack_size:</dt><dd>The size of the SACK vector in 32-bit words. For instance, with a value of 2, the SACK vector is 64 bitslong.</t> <t>SACK vector: bitlong.</dd> <dt>SACK vector:</dt><dd>Bit vector indicating symbols that must be removed in the encoding window from the firstSource Symbolsource symbol ID. In most cases, these symbols were received by the receiver. The other cases concern some events with non-recoverable packets(for example(i.e., in the case of a burst of losses) where it is better to drop and abandon somepackets,packets andthus toremove them from the encodingwindow,window to allow the recovery of the following packets. The "First Source Symbol" is included in this bit vector. A bit equal to 1 at the i-th position means that this window update packet removes theSource Symbolsource symbol of the ID equal to "First Source Symbol ID" + i from the encodingwindow.</t> </section> </section> <!-- <section anchor="ccgi" title="The Coding Coefficient Generator Identifier" numbered="true" toc="default"> <t>The Coding Coefficient Generator Identifier define a function or an algorithm to build the coding coefficients used to generate the Coded Symbols. They MUST be known by all the Tetrys encoders or decoders.</t> <t>0: Vandermonde based coefficients over a finite field with 2^^4 elements,defined by the primitive polynomial 1+x+x^^4. Each coefficient is built as alpha^( (source_symbol_id*coded-symbol_id) % 16), with alpha the root of the primitive polynomial.</t> <t>1: Vandermonde based coefficients over a finite field with 2^^8 elements,defined by the primitive polynomial 1+x^^2+x^^3+x^^4+x^^8. Each coefficient is built as alpha^( (source_symbol_id*coded-symbol_id) % 256), with alpha the root of the primitive polynomial.</t> <section anchor="ccgi_example" title="how to use the CCGI" numbered="true" toc="default"> <t>At the generation of a Coded Symbol, the Tetrys Encoder generates an Encoding Vector containing the IDs of the Source Symbols stored in the Elastic Encoding Window. For each Source Symbol, a finite field coefficient is determined using a Coding Coefficient Generator. This generator MAY take as input the Source Symbol ID and the Coded Symbol ID and MAY determine a coefficient in a deterministic way. A typical example of such a deterministic function is a generator matrix where the rows are indexed by the Source Symbol IDs and the columns by the Coded Symbol IDs. For example, the entries of this matrix MAY be built from a Vandermonde structure, like Reed-Solomon codes, or a sparse binary matrix, like Low-Density Generator Matrix codes. Finally, the Coded Symbol is the sum of the Source Symbols multiplied by their corresponding coefficients.</t> <t>Suppose we want to generate the Coded Symbol 2 as a linear combination of the Source Symbols 1,2,4. The coefficients will be alpha ^( (1 * 1) % 256), alpha ^( (1 * 2) % 256), alpha ^( (1 * 4) % 256).</t>window.</dd> </dl> </section> </section>--> <!-- ======================================================================= --><section anchor="research"title="Research Issues"numbered="true" toc="default"> <name>Research Issues</name> <t>The present document describes the baseline protocol, allowing communications between a Tetrys encoder andaTetrys decoder. In practice, Tetrys can be used either as a standalone protocol or embedded inside an existing protocol, and either above,withinwithin, or below the transport layer. There are different research questions related to each of these scenarios that should be investigated for future protocol improvements. We summarize them in the following subsections.</t> <section anchor="transport-issue"title="Interaction with Congestion Control"numbered="true" toc="default"> <name>Interaction with Congestion Control</name> <t> The Tetrys and congestion control components generate two separate channels (see <xref target="RFC9265"pageno="false" format="default" />, section 2.1): <list style="symbols"> <t>thesectionFormat="comma" section="2.1"/>): </t> <ul spacing="normal"> <li>The Tetrys channel carries source andCoded Packetscoded packets (from the sender to the receiver) and information from the receiver to the sender (e.g., signaling which symbols have been recovered, loss ratepriorbefore and/or after decoding,etc.);</t> <t>theetc.).</li> <li>The congestion control channel carries packets from a sender to areceiver,receiver and packets signaling information about the network (e.g., number of packets received versus lost, Explicit Congestion Notification (ECN) marks, etc.) from the receiver to the sender.</t> </list> In practice, depending on how Tetrys is deployed (i.e., above, within or below the transport layer),</li> </ul> <t> The following topics, which are identified and discussed by <xref target="RFC9265"pageno="false" format="default" /> identifies and discusses several topics. Theyformat="default"/>, arebriefly listed below andadapted to the particularcasedeployment cases ofTetrys: <list style="symbols"> <t>congestion relatedTetrys (i.e., above, within, or below the transport layer): </t> <ul spacing="normal"> <li>Congestion-related losses may be hidden if Tetrys is deployed below the transport layer without any precaution (i.e., Tetrys recovering packets lost because of a congested router), which can severely impact thethecongestion control efficiency. An approach is suggested to avoid hiding such signals in <xref target="RFC9265"pageno="false" format="default" />, section 5;</t> <t>having TetryssectionFormat="comma" section="5"/>.</li> <li>Tetrys and non-Tetrys flows sharing the same network links can raise fairness issues between these flows.TheIn particular, the situation dependsin particularon whether some of these flows and not others are congestion controlled andnot others, andwhich type of congestion control is used. The details are out of scope of this document, but may have major impacts inpractice;</t> <t>codingpractice.</li> <li>Coding rate adaptation within Tetrys can have major impacts on congestion control if done inappropriately. This topic is discussed more in detail in <xreftarget="adaptive"/>;</t> <t>Tetrystarget="adaptive" format="default"/>.</li> <li>Tetrys can leverageonmultipath transmissions, with the Tetrys packets being sent to the same receiver through multiple paths. Since paths can largely differ, a per-path flow control and congestion control adaptation could beneeded;</t> <t>protectingneeded.</li> <li>Protecting several application flows within a single Tetrys flow raises additional questions. This topic is discussed more in detail in <xreftarget="tunnel"/>.</t> </list> </t> <!-- <t> Tetrys coding and congestion control MAY be seen as two separate channels (the notion of channel corresponds to that of <xref target="RFC9265" pageno="false" format="default" />, section 2.1). In practice, implementations MAY interact with both channels by sharing information from one channel to the other one. This raises several concerns that must be tackled when Tetrys is jointly used with a congestion-controlled transport protocol. For example, the Encoding Window or the Code Rate COULD be adjusted by some feedback from the congestion-control channel. All these numerous research issues are discussed in a separate document, <xref target="RFC9265" pageno="false" format="default" />, which investigates end-to-end unicast data transfer with FEC coding in the application (above the transport layer), within the transport layer, or directly below the transport; the relationship between transport layer and application requirements; and the case of transport multipath and multi-streams applications. </t> -->target="tunnel" format="default"/>.</li> </ul> </section> <section anchor="adaptive"title="Adaptive Coding Rate"numbered="true" toc="default"> <name>Adaptive Coding Rate</name> <t> When the network conditions (e.g., delay and loss rate) strongly vary over time, an adaptive coding rate can be used to increase or reduce the amount ofCoded Packetscoded packets among a transmission dynamically (i.e., the addedredundancy),redundancy) with the help of a dedicatedalgorithm, similarlyalgorithm similar to <xref target="A-FEC"pageno="false" format="default" />.format="default"/>. Once again, the strategydiffers,differs depending on which layer Tetrys is deployed (i.e., above,withinwithin, or below the transport layer). Basically, we canslicesplit these strategiesininto two distinct classes:whenTetrysis deployeddeployment inside the transportlayer,layer versus outside the transport layer (i.e., above or below). A deployment within the transport layerobviouslymeans that interactions between transport protocolmicro-mechanisms,mechanisms such astheerrorrecovery mechanism, therecovery, congestion control,theand/or flow controlor both,are envisioned. Otherwise, deploying Tetrys within anon congestion controlledtransportprotocol,protocol that is not congestion controlled, like UDP, would not bring out any other advantage than deploying it below or above the transport layer. </t> <t>The impact deploying a FEC mechanism within the transport layer is further discussed in <xref target="RFC9265"pageno="false" format="default" />, section 4,sectionFormat="of" section="4"/>, where considerations concerning the interactions between congestion control and coding rates, or the impact of fairness, are investigated. This adaptation may be done jointly with the congestion control mechanism of a transport layerprotocol,protocol as proposed by <xreftarget="CTCP"/>.target="CTCP" format="default"/>. This allows the use of monitored congestion control metrics (e.g., RTT, congestion events, or current congestion window size) to adapt the coding rate conjointly with the computed transport sending rate. The rationale is to compute an amount of repair traffic that does not lead to congestion. This joint optimization is mandatory to prevent flowsto consumefrom consuming the whole available capacity asalsodiscussed in <xref target="I-D.singh-rmcat-adaptive-fec"/>format="default"/>, where the authors point out that an increase in the repair ratio should be done conjointly with a decrease in the source sending rate. </t> <t> Finally, adapting a coding rate can also be done outside the transport layerandwithout consideringtransport layertransport-layer metrics. In particular, this adaptation may be done jointly with the network as proposed in <xref target="RED-FEC"pageno="false" format="default" />.format="default"/>. In this paper, the authors propose a Random Early Detection FEC mechanism in the context of video transmission over wireless networks. Briefly, the idea is to add more redundancy packets if the queue at the access point is less occupied and vice versa. A first theoretical attempt for video delivery with Tetrys has been proposed <xref target="THAI"pageno="false" format="default" /> with Tetrys.format="default"/>. This approach is interesting as it illustrates a joint collaboration between the application requirements and the network conditions and combines both signals coming from the application needs and the network state (i.e., signals below or above the transport layer). </t> <t> To conclude, there are multiple ways to enable an adaptive coding rate. However, all of them depend on:<list style="symbols"> <t>the</t> <ul spacing="normal"> <li>the signal metrics that can be monitored and used to adapt the codingrate;</t> <t>therate;</li> <li>the transport layer used, whether it is congestion controlled ornot;</t> <t>thenot; and</li> <li>the objective sought (e.g., to minimizecongestion,congestion or to fit applicationrequirements).</t> </list> </t>requirements).</li> </ul> </section> <section anchor="tunnel"title="Usingnumbered="true" toc="default"> <name>Using TetrysBelow Thebelow the IP LayerFor Tunneling" numbered="true" toc="default">for Tunneling</name> <t> The use of Tetrys to protect an aggregate offlows, typicallyflows raises research questions when Tetrys is usedfor tunneling,to recover from IP datagramlosses, raises research questions. Whenlosses while tunneling. Applying redundancyis appliedwithout flowdifferentiation, thisdifferentiation maycome in contradiction withcontradict the service requirements of individualflows,flows: someof themflows may bemorepenalized more by high latency and jitter than by partial reliability, while other flows mayhave opposite requirements.be penalized more by partial reliability. Inpracticepractice, head-of-line blockingwill impactimpacts all flows in a similar manner despite their different needs, whichasks forindicates that more elaborate strategies insideTetrys. <!-- Note this research issue joins the topics discussed in the IRTF LOOPS working group <xref target="I-D.li-tsvwg-loops-problem-opportunities" pageno="false" format="default" />. -->Tetrys are needed. </t> </section> </section><!-- ======================================================================= --><section anchor="security"title="Security Considerations"numbered="true" toc="default"><!-- ==================================== --><name>Security Considerations</name> <t> First of all, it must be clear that the use of FEC protectiontoon a data stream does notprovide, per se,provide any kind ofsecurity, but, onsecurity per se. On the contrary, the use of FEC protection on a data stream raises security risks. The situation with Tetrys is mostly similar to that of other content delivery protocols making use of FECprotection, andprotection; this is well described in FECFRAME <xref target="RFC6363"pageno="false" format="default" />.format="default"/>. This sectionleveragesbuilds on this reference, adding new considerations to comply with Tetrys specificities when meaningful. </t> <section anchor="security-problem-statement"title="Problem Statement"numbered="true" toc="default"> <name>Problem Statement</name> <t> An attacker can either target the content,theprotocol, orthenetwork. The consequences will largelydiffer,differ reflecting various types of goals, like gaining access to confidential content, corrupting the content,compromizingcompromising the TetrysEncoderencoder and/or TetrysDecoder,decoder, orcompromizingcompromising the network behavior. In particular, several of these attacks aim at creating a Denial-of-Service(DoS),(DoS) with consequences that may be limited to a single node (e.g., the TetrysDecoder),decoder), or that may impact all the nodes attached to the targeted network (e.g., by making flowsnon-responsiveunresponsive to congestion signals). </t> <t> In the following sections, we discuss these attacks, according to the component targeted by the attacker. </t> </section> <section anchor="security-attack-against-data-flow"title="Attacksnumbered="true" toc="default"> <name>Attacks against the DataFlow" numbered="true" toc="default">Flow</name> <t> An attacker may want to accessaconfidentialcontent,content by eavesdropping the traffic between the TetrysEncoder/Decoder.encoder/decoder. Traffic encryption is the usual approach to mitigate this risk, and this encryption can bedone either onapplied to the sourceflow, above Tetrys,flow upstream of the Tetrys encoder orbelow Tetrys, onto the outputpackets, both Source and Coded Packets.packets downstream of the Tetrys encoder. The choice on where to apply encryption depends on various criteria, in particular the attacker model (e.g., when encryption happens below Tetrys, the security risk is assumed to be on the interconnection network). </t> <t> An attacker may also want to corrupt the content (e.g., by injecting forged or modifiedSourcesource andCoded Packetscoded packets to prevent the TetrysDecoder to recoverdecoder from recovering the original source flow). Content integrity and source authentication services at the packet level are then needed to mitigate this risk. Here, these services need to be provided below Tetrys in order to enable the receiver to drop undesired packets and only transfer legitimate packets to the TetrysDecoder.decoder. It should be noted that forging or modifyingFeedback Packetsfeedback packets will not corrupt the content, although it will certainlycompromizecompromise Tetrys operation (seenext section).<xref target="security-attack-against-signaling"/>). </t> </section> <section anchor="security-attack-against-signaling"title="Attacks against Signaling"numbered="true" toc="default"> <name>Attacks against Signaling</name> <t> Attacks on signaling information (e.g., by forging or modifyingFeedback Packetsfeedback packets topretendfalsify the good reception or recovery of source content) can easily prevent the TetrysDecoder to recoverdecoder from recovering the source flow, thereby creating a DoS. In order to prevent this type of attack, content integrity and source authentication services at the packet level are needed for the feedbackflow,flow from the TetrysDecoderdecoder to the TetrysEncoder,encoder as well. These services need to be provided belowTetrys,Tetrys in order to drop undesired packets and only transfer legitimateFeedback Packetsfeedback packets to the TetrysEncoder.encoder. </t> <t>On the opposite,Conversely, an attacker in position to selectively dropFeedback Packetsfeedback packets (instead of modifying them) will notseverilyseverely impact the function of Tetrysfunctionning,sinceTetrysit is naturally robustin front ofwhen challenged with such losses.HoweverHowever, it will have side impacts,likesuch as the use of bigger linear systems (since the TetrysEncoderencoder cannot removewell receivedwell-received or decoded source packets from its linear system), which mechanically increases computational costs on bothsides, encodersides (encoder anddecoder.decoder). </t> </section> <section anchor="security-attack-against-network"title="Attacks against the Network"numbered="true" toc="default"> <name>Attacks against the Network</name> <t> Tetrys can react to congestion signals (<xref target="transport-issue"/>)format="default"/>) in order to provide a certain level of fairness with other flows on a shared network. This ability could be exploited by an attacker to create or reinforce congestion events (e.g., by forging or modifyingFeedback Packets), whichfeedback packets) that can potentially impact a significant number of nodes attached to the network.Here also, inIn order to mitigate the risk, content integrity and source authentication services at the packet level are needed to enable the receiver to drop undesired packets and only transfer legitimate packets to the TetrysEncoderencoder andDecoder.decoder. </t> </section> <section anchor="security-baseline-security"title="Baseline Security Operation"numbered="true" toc="default"> <name>Baseline Security Operation</name> <t> Tetrys can benefit from anIPsec/EncapsulatingIPsec / Encapsulating Security Payload (IPsec/ESP) <xref target="RFC4303"pageno="false" format="default" />,format="default"/> that providesin particularconfidentiality, origin authentication, integrity, and anti-replayservices.services in particular. IPsec/ESP can beusefulused to protect the Tetrys data flows (both directions) against attackers located within the interconnectionnetwork,network or attackers in position to eavesdrop traffic,orinject forged traffic, or replay legitimate traffic. </t> </section> </section><!-- <section anchor="security" title="Security Considerations" numbered="true" toc="default"> <t> Tetrys inherits a subset of the security issues described in FECFRAME <xref target="RFC8680" pageno="false" format="default" /> and in particular in sections "9.2.2. Content Corruption" and "9.3. Attacks against the FEC Parameters". As an application layer end-to-end protocol, security considerations of Tetrys should also be comparable to those of HTTP/2 with TLS. The considerations from Section 10 of HTTP2 <xref target="RFC7540" pageno="false" format="default" /> also apply in addition to those listed here. </t> </section> --><section anchor="iana"title="IANA Considerations"numbered="true" toc="default"><!-- ==================================== --><name>IANA Considerations</name> <t>This documentdoes not ask for anyhas no IANAregistration.</t> </section> <section anchor="implementation" title="Implementation Status" numbered="true" toc="default"> <t>Editor's notes: RFC Editor, please remove this section motivated by RFC 7942 before publishing the RFC. Thanks!</t> <t>An implementation of Tetrys exists: <list> <t>organization: ISAE-SUPAERO</t> <t>Description: This is a proprietary implementation made by ISAE-SUPAERO</t> <t>Maturity: "production"</t> <t>Coverage: this software implements TETRYS with some modifications</t> <t>Licensing: proprietary</t> <t>Implementation experience: maximum</t> <t>Information update date: January 2022</t> <t>Contact: jonathan.detchart@isae-supaero.fr</t> </list> </t> </section> <section anchor="ack" title="Acknowledgments" numbered="true" toc="default"> <!-- ==================================== --> <t>First, the authors want sincerely to thank Marie-Jose Montpetit for continuous help and support on Tetrys. Marie-Jo, many thanks!</t> <t>The authors also wish to thank NWCRG group members for numerous discussions on on-the-fly coding that helped finalize this document.</t> <t>Finally, the authors would like to thank Colin Perkins for providing comments and feedback on the document.</t>actions.</t> </section> </middle> <back><references title="Normative References"> <reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" xml:base="https://xml2rfc.tools.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"> <front> <title>Keywords for use in RFCs to Indicate Requirement Levels</title> <author initials="S." surname="Bradner" fullname="S. Bradner"> <organization /> </author> <date year="1997" month="March" /> <abstract> <t>In many standards track documents, several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14" /> <seriesInfo name="RFC" value="2119" /> <seriesInfo name="DOI" value="10.17487/RFC2119" /> </reference> <reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174"> <front> <title> Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words </title> <author initials="B." surname="Leiba" fullname="B. Leiba"> <organization/> </author> <date year="2017" month="May"/> <abstract> <t> RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings. </t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="8174"/> <seriesInfo name="DOI" value="10.17487/RFC8174"/> </reference> <?rfc include="reference.RFC.3452.xml"?> <?rfc include="reference.RFC.4303.xml"?> <?rfc include="reference.RFC.5510.xml"?> <?rfc include="reference.RFC.5651.xml"?> <?rfc include="reference.RFC.5740.xml"?> <?rfc include="reference.RFC.6363.xml"?> <!-- <?rfc include="reference.RFC.7540.xml"?>--> <?rfc include="reference.RFC.8406.xml"?> <?rfc include="reference.RFC.8680.xml"?> <?rfc include="reference.RFC.9265.xml"?><displayreference target="I-D.singh-rmcat-adaptive-fec" to="RMCAT-ADAPTIVE-FEC"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5052.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5445.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4303.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5510.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5651.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5740.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6363.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8406.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8680.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9265.xml"/> </references><references title="Informative References"> <!-- <?rfc include="reference.I-D.li-tsvwg-loops-problem-opportunities.xml"?> --> <?rfc include="reference.I-D.singh-rmcat-adaptive-fec.xml"?><references> <name>Informative References</name> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/reference.I-D.singh-rmcat-adaptive-fec.xml"/> <reference anchor="AHL-00"quote-title="true">target="https://doi.org/10.1109/18.850663"> <front> <title>Network information flow</title> <author initials="R." surname="Ahlswede"><organization /><organization/> </author> <authorinitials="" surname="Ning Cai"> <organization />initials="N." surname="Cai"> <organization/> </author> <authorinitials="S.-Y.R."initials="S." surname="Li"><organization /><organization/> </author> <authorinitials="R.W."initials="R." surname="Yeung"><organization /><organization/> </author> <date month="July"year="2000" />year="2000"/> </front> <seriesInfoname="IEEEname="DOI" value="10.1109/18.850663"/> <refcontent>IEEE Transactions on InformationTheory" value="vol.46, no.4, pp.1204,1216" />Theory, Vol. 46, Issue 4, pp. 1204-1216</refcontent> </reference> <reference anchor="Tetrys"quote-title="true">target="https://doi.org/10.1109/IWSSC.2008.4656755"> <front> <title>Rethinking reliability for long-delay networks</title> <author initials="J." surname="Lacan"><organization /><organization/> </author> <author initials="E." surname="Lochin"><organization /><organization/> </author> <date month="October"year="2008" />year="2008"/> </front> <seriesInfoname="Internationalname="DOI" value="10.1109/IWSSC.2008.4656755"/> <refcontent>International Workshop on Satellite and SpaceCommunications 2008" value="(IWSSC08)" />Communications, Toulouse, France, pp. 90-94</refcontent> </reference> <reference anchor="Tetrys-RT"quote-title="true">target="http://dx.doi.org/10.1109/TMM.2011.2126564"> <front><title>On-the-fly erasure coding<title>On-the-Fly Erasure Coding forreal-time video applications</title>Real-Time Video Applications</title> <authorinitials="P.U."initials="P." surname="Tournoux"><organization /><organization/> </author> <author initials="E." surname="Lochin"><organization /><organization/> </author> <author initials="J." surname="Lacan"><organization /><organization/> </author> <author initials="A." surname="Bouabdallah"><organization /><organization/> </author> <author initials="V." surname="Roca"><organization /><organization/> </author> <date month="August"year="2011" />year="2011"/> </front> <seriesInfoname="IEEEname="DOI" value="10.1109/TMM.2011.2126564"/> <refcontent>IEEE Transactions on Multimedia,VolVol. 13, Issue 4,August 2011" value="(TMM.2011)" />pp. 797-812</refcontent> </reference> <referenceanchor="CTCP">anchor="CTCP" target="https://arxiv.org/abs/1212.2291"> <front> <title>Network Coded TCP (CTCP)</title> <authorinitials="M" surname="Kim (et al.)">initials="M." surname="Kim"> </author> <author initials="J." surname="Cloud"> </author> <author initials="A." surname="ParandehGheibi"> </author> <author initials="L." surname="Urbina"> </author> <author initials="K." surname="Fouli"> </author> <author initials="D." surname="Leith"> </author> <author initials="M." surname="Medard"> </author> <date month="April" year="2013"/> </front> <seriesInfo name="arXiv" value="1212.2291v3"/> </reference> <reference anchor="A-FEC"quote-title="true">target="https://doi.org/10.1109/INFCOM.1999.752166"> <front> <title>Adaptive FEC-based error control for Internet telephony</title> <author initials="J." surname="Bolot"><organization /><organization/> </author> <author initials="S." surname="Fosse-Parisis"><organization /><organization/> </author> <author initials="D." surname="Towsley"><organization /><organization/> </author> <dateyear="1999" />month="March" year="1999"/> </front><seriesInfo name="IEEE<refcontent>IEEE INFOCOM99,'99, Conference on Computer Communications, New York, NY, USA, Vol. 3, pp.1453-1460 vol. 3" value="DOI 10.1109/INFCOM.1999.752166" />1453-1460</refcontent> <seriesInfo name="DOI" value="10.1109/INFCOM.1999.752166"/> </reference> <reference anchor="RED-FEC"quote-title="true">target="https://doi.org/10.1109/TBC.2008.2001713"> <front> <title>A RED-FEC Mechanism for Video Transmission Over WLANs</title> <author initials="C." surname="Lin"><organization /><organization/> </author> <author initials="C." surname="Shieh"><organization /><organization/> </author> <authorinitials="N. K."initials="N." surname="Chilamkurti"><organization /><organization/> </author> <author initials="C." surname="Ke"><organization /><organization/> </author> <authorinitials="H. S."initials="W." surname="Hwang"><organization /><organization/> </author> <date month="September"year="2008" />year="2008"/> </front><seriesInfo name="IEEE<refcontent>IEEE Transactions on Broadcasting,vol.Vol. 54,no.Issue 3, pp.517-524" value="DOI 10.1109/TBC.2008.2001713" />517-524</refcontent> <seriesInfo name="DOI" value="10.1109/TBC.2008.2001713"/> </reference> <reference anchor="THAI"quote-title="true">target="https://doi.org/10.1016/j.image.2014.02.003"> <front> <title>Joint on-the-fly network coding/video quality adaptation for real-time delivery</title> <author initials="T."surname="Tran-Thai"> <organization />surname="Tran Thai"> <organization/> </author> <author initials="J." surname="Lacan"><organization /><organization/> </author> <author initials="E." surname="Lochin"><organization /><organization/> </author> <dateyear="2014" />month="April" year="2014"/> </front><seriesInfo name="Signal<refcontent>Signal Processing: Image Communication,vol.Vol. 29(no. 4),Issue 4, pp.449-461" value="ISSN 0923-5965" />449-461</refcontent> <seriesInfo name="DOI" value="10.1016/j.image.2014.02.003"/> </reference> </references> </references> <section anchor="ack" numbered="false" toc="default"> <name>Acknowledgments</name> <t>First, the authors want sincerely to thank <contact fullname="Marie-Jose Montpetit"/> for continuous help and support on Tetrys. Marie-Jo, many thanks!</t> <t>The authors also wish to thank NWCRG group members for numerous discussions on on-the-fly coding that helped finalize this document.</t> <t>Finally, the authors would like to thank <contact fullname="Colin Perkins"/> for providing comments and feedback on the document.</t> </section> </back> </rfc>