
RFC 9413

Maintaining Robust Protocols

Abstract

The main goal of the networking standards process is to enable the long-term interoperability of

protocols. This document describes active protocol maintenance, a means to accomplish that

goal. By evolving specifications and implementations, it is possible to reduce ambiguity over time

and create a healthy ecosystem.

The robustness principle, often phrased as "be conservative in what you send, and liberal in

what you accept", has long guided the design and implementation of Internet protocols.

However, it has been interpreted in a variety of ways. While some interpretations help ensure

the health of the Internet, others can negatively affect interoperability over time. When a

protocol is actively maintained, protocol designers and implementers can avoid these pitfalls.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Architecture Board (IAB)

9413

Informational

June 2023

2070-1721

 M. Thomson D. Schinazi

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational

purposes.

This document is a product of the Internet Architecture Board (IAB) and represents information

that the IAB has deemed valuable to provide for permanent record. It represents the consensus

of the Internet Architecture Board (IAB). Documents approved for publication by the IAB are not

candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9413

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

Thomson & Schinazi Informational Page 1

https://www.rfc-editor.org/rfc/rfc9413
https://www.rfc-editor.org/info/rfc9413

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Protocol Robustness

2.1. Fallibility of Specifications

2.2. Extensibility

2.3. Flexible Protocols

3. Applicability

4. Harmful Consequences of Tolerating the Unexpected

4.1. Protocol Decay

4.2. Ecosystem Effects

5. Active Protocol Maintenance

5.1. Virtuous Intolerance

5.2. Exclusion

6. Security Considerations

7. IANA Considerations

8. Informative References

IAB Members at the Time of Approval

Acknowledgments

Authors' Addresses

1. Introduction

There is good evidence to suggest that many important protocols are routinely maintained

beyond their inception. In particular, a sizable proportion of IETF activity is dedicated to the

stewardship of existing protocols. This document first discusses hazards in applying the

robustness principle too broadly (see Section 2) and offers an alternative strategy for handling

interoperability problems in deployments (see Section 5).

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 2

https://trustee.ietf.org/license-info

Ideally, protocol implementations can be actively maintained so that unexpected conditions are

proactively identified and resolved. Some deployments might still need to apply short-term

mitigations for deployments that cannot be easily updated, but such cases need not be

permanent. This is discussed further in Section 5.

Robustness to software defects:

Robustness to attacks:

Robustness to the unexpected:

2. Protocol Robustness

The robustness principle has been hugely influential in shaping the design of the Internet. As

stated in the IAB document "Architectural Principles of the Internet" , the robustness

principle advises to:

Be strict when sending and tolerant when receiving. Implementations must follow

specifications precisely when sending to the network, and tolerate faulty input from the

network. When in doubt, discard faulty input silently, without returning an error

message unless this is required by the specification.

This simple statement captures a significant concept in the design of interoperable systems.

Many consider the application of the robustness principle to be instrumental in the success of the

Internet as well as the design of interoperable protocols in general.

There are three main aspects to the robustness principle:

No software is perfect, and failures can lead to unexpected

behavior. Well-designed software strives to be resilient to such issues, whether they occur in

the local software or in software that it communicates with. In particular, it is critical for

software to gracefully recover from these issues without aborting unrelated processing.

Since not all actors on the Internet are benevolent, networking software

needs to be resilient to input that is intentionally crafted to cause unexpected consequences.

For example, software must ensure that invalid input doesn't allow the sender to access data,

change data, or perform actions that it would otherwise not be allowed to.

It can be possible for an implementation to receive inputs that

the specification did not prepare it for. This scenario excludes those cases where a the

specification explicitly defines how a faulty message is handled. Instead, this refers to cases

where handling is not defined or where there is some ambiguity in the specification. In this

case, some interpretations of the robustness principle advocate that the implementation

tolerate the faulty input and silently discard it. Some interpretations even suggest that a faulty

or ambiguous message be processed according to the inferred intent of the sender.

The facets of the robustness principle that protect against defects or attacks are understood to be

necessary guiding principles for the design and implementation of networked systems. However,

an interpretation that advocates for tolerating unexpected inputs is no longer considered best

practice in all scenarios.

[RFC1958]

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 3

Time and experience show that negative consequences to interoperability accumulate over time

if implementations silently accept faulty input. This problem originates from an implicit

assumption that it is not possible to effect change in a system the size of the Internet. When one

assumes that changes to existing implementations are not presently feasible, tolerating flaws

feels inevitable.

Many problems that this third aspect of the robustness principle was intended to solve can

instead be better addressed by active maintenance. Active protocol maintenance is where a

community of protocol designers, implementers, and deployers work together to continuously

improve and evolve protocol specifications alongside implementations and deployments of those

protocols. A community that takes an active role in the maintenance of protocols will no longer

need to rely on the robustness principle to avoid interoperability issues.

2.1. Fallibility of Specifications

The context from which the robustness principle was developed provides valuable insights into

its intent and purpose. The earliest form of the principle in the RFC Series (the Internet Protocol

specification) is preceded by a sentence that reveals a motivation for the principle:

While the goal of this specification is to be explicit about the protocol there is the

possibility of differing interpretations. In general, an implementation should be

conservative in its sending behavior, and liberal in its receiving behavior.

This formulation of the principle expressly recognizes the possibility that the specification could

be imperfect. This contextualizes the principle in an important way.

Imperfect specifications are unavoidable, largely because it is more important to proceed to

implementation and deployment than it is to perfect a specification. A protocol benefits greatly

from experience with its use. A deployed protocol is immeasurably more useful than a perfect

protocol specification. This is particularly true in early phases of system design, to which the

robustness principle is best suited.

As demonstrated by the IAB document "What Makes for a Successful Protocol?" ,

success or failure of a protocol depends far more on factors like usefulness than on technical

excellence. Timely publication of protocol specifications, even with the potential for flaws, likely

contributed significantly to the eventual success of the Internet.

This premise that specifications will be imperfect is correct. However, ignoring faulty or

ambiguous input is almost always the incorrect solution to the problem.

[RFC0760]

[RFC5218]

2.2. Extensibility

Good extensibility can make it easier to respond to new use cases or changes in the

environment in which the protocol is deployed.

[EXT]

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 4

The ability to extend a protocol is sometimes mistaken for an application of the robustness

principle. After all, if one party wants to start using a new feature before another party is

prepared to receive it, it might be assumed that the receiving party is being tolerant of new types

of input.

A well-designed extensibility mechanism establishes clear rules for the handling of elements like

new messages or parameters. This depends on specifying the handling of malformed or illegal

inputs so that implementations behave consistently in all cases that might affect interoperation.

New messages or parameters thereby become entirely expected. If extension mechanisms and

error handling are designed and implemented correctly, new protocol features can be deployed

with confidence in the understanding of the effect they have on existing implementations.

In contrast, relying on implementations to consistently handle unexpected input is not a good

strategy for extensibility. Using undocumented or accidental features of a protocol as the basis of

an extensibility mechanism can be extremely difficult, as is demonstrated by the case study in

. It is better and easier to design a protocol for extensibility initially than to

retrofit the capability (see also).

Appendix A.3 of [EXT]

[EDNS0]

2.3. Flexible Protocols

A protocol could be designed to permit a narrow set of valid inputs, or it could be designed to

treat a wide range of inputs as valid.

A more flexible protocol is more complex to specify and implement; variations, especially those

that are not commonly used, can create potential interoperability hazards. In the absence of

strong reasons to be flexible, a simpler protocol is more likely to successfully interoperate.

Where input is provided by users, allowing flexibility might serve to make the protocol more

accessible, especially for non-expert users. HTML authoring is an example of this sort of

design.

In protocols where there are many participants that might generate messages based on data

from other participants, some flexibility might contribute to resilience of the system. A routing

protocol is a good example of where this might be necessary.

In BGP , a peer generates UPDATE messages based on messages it receives from other

peers. Peers can copy attributes without validation, potentially propagating invalid values. RFC

4271 mandated a session reset for invalid UPDATE messages, a requirement that was not

widely implemented. In many deployments, peers would treat a malformed UPDATE in less

stringent ways, such as by treating the affected route as having been withdrawn. Ultimately, RFC

7606 documented this practice and provided precise rules, including mandatory

actions for different error conditions.

A protocol can explicitly allow for a range of valid expressions of the same semantics, with

precise definitions for error handling. This is distinct from a protocol that relies on the

application of the robustness principle. With the former, interoperation depends on

specifications that capture all relevant details, whereas interoperation in the latter depends more

extensively on implementations making compatible decisions, as noted in Section 4.2.

[HTML]

[BGP]

[BGP]

[BGP-REH]

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 5

https://www.rfc-editor.org/rfc/rfc6709#appendix-A.3

3. Applicability

The guidance in this document is intended for protocols that are deployed to the Internet. There

are some situations in which this guidance might not apply to a protocol due to conditions on its

implementation or deployment.

In particular, this guidance depends on an ability to update and deploy implementations. Being

able to rapidly update implementations that are deployed to the Internet helps manage security

risks, but in reality, some software deployments have lifecycles that make software updates

either rare or altogether impossible.

Where implementations are not updated, there is no opportunity to apply the practices that this

document recommends. In particular, some practices -- such as those described in Section 5.1 --

only exist to support the development of protocol maintenance and evolution. Employing this

guidance is therefore only applicable where there is the possibility of improving deployments

through timely updates of their implementations.

4. Harmful Consequences of Tolerating the Unexpected

Problems in other implementations can create an unavoidable need to temporarily tolerate

unexpected inputs. However, this course of action carries risks.

4.1. Protocol Decay

Tolerating unexpected input might be an expedient tool for systems in early phases of

deployment, which was the case for the early Internet. Being lenient in this way defers the effort

of dealing with interoperability problems and prioritizes progress. However, this deferral can

amplify the ultimate cost of handling interoperability problems.

Divergent implementations of a specification emerge over time. When variations occur in the

interpretation or expression of semantic components, implementations cease to be perfectly

interoperable.

Implementation bugs are often identified as the cause of variation, though it is often a

combination of factors. Using a protocol in ways that were not anticipated in the original design

or ambiguities and errors in the specification are often contributing factors. Disagreements on

the interpretation of specifications should be expected over the lifetime of a protocol.

Even with the best intentions to maintain protocol correctness, the pressure to interoperate can

be significant. No implementation can hope to avoid having to trade correctness for

interoperability indefinitely.

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 6

An implementation that reacts to variations in the manner recommended in the robustness

principle enters a pathological feedback cycle. Over time:

Implementations progressively add logic to constrain how data is transmitted or to permit

variations in what is received.

Errors in implementations or confusion about semantics are permitted or ignored.

These errors can become entrenched, forcing other implementations to be tolerant of those

errors.

A flaw can become entrenched as a de facto standard. Any implementation of the protocol is

required to replicate the aberrant behavior, or it is not interoperable. This is both a consequence

of tolerating the unexpected and a product of a natural reluctance to avoid fatal error conditions.

Ensuring interoperability in this environment is often referred to as aiming to be "bug-for-bug

compatible".

For example, in TLS , extensions use a tag-length-value format and can be added to

messages in any order. However, some server implementations terminated connections if they

encountered a TLS ClientHello message that ends with an empty extension. To maintain

interoperability with these servers, which were widely deployed, client implementations were

required to be aware of this bug and ensure that a ClientHello message ends in a non-empty

extension.

Overapplication of the robustness principle therefore encourages a chain reaction that can

create interoperability problems over time. In particular, tolerating unexpected behavior is

particularly deleterious for early implementations of new protocols, as quirks in early

implementations can affect all subsequent deployments.

•

•

•

[TLS]

4.2. Ecosystem Effects

From observing widely deployed protocols, it appears there are two stable points on the

spectrum between being strict versus permissive in the presence of protocol errors:

If implementations predominantly enforce strict compliance with specifications, newer

implementations will experience failures if they do not comply with protocol requirements.

Newer implementations need to fix compliance issues in order to be successfully deployed.

This ensures that most deployments are compliant over time.

Conversely, if non-compliance is tolerated by existing implementations, non-compliant

implementations can be deployed successfully. Newer implementations then have a strong

incentive to tolerate any existing non-compliance in order to be successfully deployed. This

ensures that most deployments are tolerant of the same non-compliant behavior.

This happens because interoperability requirements for protocol implementations are set by

other deployments. Specifications and test suites -- where they exist -- can guide the initial

development of implementations. Ultimately, the need to interoperate with deployed

implementations is a de facto conformance test suite that can supersede any formal protocol

definition.

•

•

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 7

For widely used protocols, the massive scale of the Internet makes large-scale interoperability

testing infeasible for all but a privileged few. The cost of building a new implementation using

reverse engineering increases as the number of implementations and bugs increases. Worse, the

set of tweaks necessary for wide interoperability can be difficult to discover. In the worst case, a

new implementer might have to choose between deployments that have diverged so far as to no

longer be interoperable.

Consequently, new implementations might be forced into niche uses, where the problems arising

from interoperability issues can be more closely managed. However, restricting new

implementations into limited deployments risks causing forks in the protocol. If implementations

do not interoperate, little prevents those implementations from diverging more over time.

This has a negative impact on the ecosystem of a protocol. New implementations are key to the

continued viability of a protocol. New protocol implementations are also more likely to be

developed for new and diverse use cases and are often the origin of features and capabilities that

can be of benefit to existing users.

The need to work around interoperability problems also reduces the ability of established

implementations to change. An accumulation of mitigations for interoperability issues makes

implementations more difficult to maintain and can constrain extensibility (see also the IAB

document "Long-Term Viability of Protocol Extension Mechanisms").

Sometimes, what appear to be interoperability problems are symptomatic of issues in protocol

design. A community that is willing to make changes to the protocol, by revising or extending

specifications and then deploying those changes, makes the protocol better. Tolerating

unexpected input instead conceals problems, making it harder, if not impossible, to fix them

later.

[RFC9170]

5. Active Protocol Maintenance

The robustness principle can be highly effective in safeguarding against flaws in the

implementation of a protocol by peers. Especially when a specification remains unchanged for

an extended period of time, the incentive to be tolerant of errors accumulates over time. Indeed,

when faced with divergent interpretations of an immutable specification, the only way for an

implementation to remain interoperable is to be tolerant of differences in interpretation and

implementation errors. However, when official specifications fail to be updated, then deployed

implementations -- including their quirks -- often become a substitute standard.

Tolerating unexpected inputs from another implementation might seem logical, even necessary.

However, that conclusion relies on an assumption that existing specifications and

implementations cannot change. Applying the robustness principle in this way

disproportionately values short-term gains over the negative effects on future implementations

and the protocol as a whole.

For a protocol to have sustained viability, it is necessary for both specifications and

implementations to be responsive to changes, in addition to handling new and old problems that

might arise over time. For example, when an implementer discovers a scenario where a

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 8

specification defines some input as faulty but does not define how to handle that input, the

implementer can provide significant value to the ecosystem by reporting the issue and helping to

evolve the specification.

When a discrepancy is found between a specification and its implementation, a maintenance

discussion inside the standards process allows reaching consensus on how best to evolve the

specification. Subsequently, updating implementations to match evolved specifications ensures

that implementations are consistently interoperable and removes needless barriers for new

implementations. Maintenance also enables continued improvement of the protocol. New use

cases are an indicator that the protocol could be successful .

Protocol designers are strongly encouraged to continue to maintain and evolve protocol

specifications beyond their initial inception and definition. This might require the development

of revised specifications, extensions, or other supporting material that evolves in concert with

implementations. Involvement of those who implement and deploy the protocol is a critical part

of this process, as they provide input on their experience with how the protocol is used.

Most interoperability problems do not require revision of protocols or protocol specifications, as

software defects can happen even when the specification is unambiguous. For instance, the most

effective means of dealing with a defective implementation in a peer could be to contact the

developer responsible. It is far more efficient in the long term to fix one isolated bug than it is to

deal with the consequences of workarounds.

Early implementations of protocols have a stronger obligation to closely follow specifications, as

their behavior will affect all subsequent implementations. In addition to specifications, later

implementations will be guided by what existing deployments accept. Tolerance of errors in

early deployments is most likely to result in problems. Protocol specifications might need more

frequent revision during early deployments to capture feedback from early rounds of

deployment.

Neglect can quickly produce the negative consequences this document describes. Restoring the

protocol to a state where it can be maintained involves first discovering the properties of the

protocol as it is deployed rather than the protocol as it was originally documented. This can be

difficult and time-consuming, particularly if the protocol has a diverse set of implementations.

Such a process was undertaken for HTTP after a period of minimal maintenance.

Restoring HTTP specifications to relevance took significant effort.

Maintenance is most effective if it is responsive, which is greatly affected by how rapidly protocol

changes can be deployed. For protocol deployments that operate on longer time scales,

temporary workarounds following the spirit of the robustness principle might be necessary. For

this, improvements in software update mechanisms ensure that the cost of reacting to changes is

much lower than it was in the past. Alternatively, if specifications can be updated more readily

than deployments, details of the workaround can be documented, including the desired form of

the protocols once the need for workarounds no longer exists and plans for removing the

workaround.

[RFC5218]

[HTTP]

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 9

5.1. Virtuous Intolerance

A well-specified protocol includes rules for consistent handling of aberrant conditions. This

increases the chances that implementations will have consistent and interoperable handling of

unusual conditions.

Choosing to generate fatal errors for unspecified conditions instead of attempting error recovery

can ensure that faults receive attention. This intolerance can be harnessed to reduce occurrences

of aberrant implementations.

Intolerance toward violations of specification improves feedback for new implementations in

particular. When a new implementation encounters a peer that is intolerant of an error, it

receives strong feedback that allows the problem to be discovered quickly.

To be effective, intolerant implementations need to be sufficiently widely deployed so that they

are encountered by new implementations with high probability. This could depend on multiple

implementations deploying strict checks.

Interoperability problems also need to be made known to those in a position to address them. In

particular, systems with human operators, such as user-facing clients, are ideally suited to

surfacing errors. Other systems might need to use less direct means of making errors known.

This does not mean that intolerance of errors in early deployments of protocols has the effect of

preventing interoperability. On the contrary, when existing implementations follow clearly

specified error handling, new implementations or features can be introduced more readily, as

the effect on existing implementations can be easily predicted; see also Section 2.2.

Any intolerance also needs to be strongly supported by specifications; otherwise, they encourage

fracturing of the protocol community or proliferation of workarounds. See Section 5.2.

Intolerance can be used to motivate compliance with any protocol requirement. For instance, the

INADEQUATE_SECURITY error code and associated requirements in HTTP/2 resulted in

improvements in the security of the deployed base.

A notification for a fatal error is best sent as explicit error messages to the entity that made the

error. Error messages benefit from being able to carry arbitrary information that might help the

implementer of the sender of the faulty input understand and fix the issue in their software.

QUIC error frames are an example of a fatal error mechanism that helped implementers

improve software quality throughout the protocol lifecycle. Similarly, the use of Extended DNS

Errors has been effective in providing better descriptions of DNS resolution errors to

clients.

Stateless protocol endpoints might generate denial-of-service attacks if they send an error

message in response to every message that is received from an unauthenticated sender. These

implementations might need to silently discard these messages.

[HTTP/2]

[QUIC]

[EDE]

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 10

8. Informative References

5.2. Exclusion

Any protocol participant that is affected by changes arising from maintenance might be excluded

if they are unwilling or unable to implement or deploy changes that are made to the protocol.

Deliberate exclusion of problematic implementations is an important tool that can ensure that

the interoperability of a protocol remains viable. While backward-compatible changes are

always preferable to incompatible ones, it is not always possible to produce a design that protects

the ability of all current and future protocol participants to interoperate.

Accidentally excluding unexpected participants is not usually a good outcome. When developing

and deploying changes, it is best to first understand the extent to which the change affects

existing deployments. This ensures that any exclusion that occurs is intentional.

In some cases, existing deployments might need to change in order to avoid being excluded.

Though it might be preferable to avoid forcing deployments to change, this might be considered

necessary. To avoid unnecessarily excluding deployments that might take time to change,

developing a migration plan can be prudent.

Exclusion is a direct goal when choosing to be intolerant of errors (see Section 5.1). Exclusionary

actions are employed with the deliberate intent of protecting future interoperability.

Excluding implementations or deployments can lead to a fracturing of the protocol system that

could be more harmful than any divergence that might arise from tolerating the unexpected. The

IAB document "Uncoordinated Protocol Development Considered Harmful" describes

how conflict or competition in the maintenance of protocols can lead to similar problems.

[RFC5704]

6. Security Considerations

Careless implementations, lax interpretations of specifications, and uncoordinated extrapolation

of requirements to cover gaps in specification can result in security problems. Hiding the

consequences of protocol variations encourages the hiding of issues, which can conceal bugs and

make them difficult to discover.

The consequences of the problems described in this document are especially acute for any

protocol where security depends on agreement about semantics of protocol elements. For

instance, weak primitives and obsolete mechanisms are good examples of the use

of unsafe security practices where forcing exclusion (Section 5.2) can be desirable.

[MD5] [SSL3]

7. IANA Considerations

This document has no IANA actions.

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 11

[BGP]

[BGP-REH]

[EDE]

[EDNS0]

[EXT]

[HTML]

[HTTP]

[HTTP/2]

[MD5]

[QUIC]

[RFC0760]

[RFC1958]

[RFC3117]

[RFC5218]

, , and ,

, , , January 2006,

.

, , , and ,

, , , August

2015, .

, , , , and ,

, , , October 2020,

.

, , and , ,

, , , April 2013,

.

, , and ,

, , , September 2012,

.

, , .

, , and , ,

, , , June 2022,

.

 and , , ,

, June 2022, .

 and ,

, , , March

2011, .

 and ,

, , , May 2021,

.

, , , ,

January 1980, .

, , ,

, June 1996, .

, , ,

, November 2001, .

 and , , ,

, July 2008, .

Rekhter, Y., Ed. Li, T., Ed. S. Hares, Ed. "A Border Gateway Protocol 4

(BGP-4)" RFC 4271 DOI 10.17487/RFC4271 <https://www.rfc-

editor.org/info/rfc4271>

Chen, E., Ed. Scudder, J., Ed. Mohapatra, P. K. Patel "Revised Error

Handling for BGP UPDATE Messages" RFC 7606 DOI 10.17487/RFC7606

<https://www.rfc-editor.org/info/rfc7606>

Kumari, W. Hunt, E. Arends, R. Hardaker, W. D. Lawrence "Extended DNS

Errors" RFC 8914 DOI 10.17487/RFC8914 <https://www.rfc-

editor.org/info/rfc8914>

Damas, J. Graff, M. P. Vixie "Extension Mechanisms for DNS (EDNS(0))"

STD 75 RFC 6891 DOI 10.17487/RFC6891 <https://www.rfc-

editor.org/info/rfc6891>

Carpenter, B. Aboba, B., Ed. S. Cheshire "Design Considerations for

Protocol Extensions" RFC 6709 DOI 10.17487/RFC6709 <https://

www.rfc-editor.org/info/rfc6709>

WHATWG "HTML - Living Standard" <https://html.spec.whatwg.org/>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/

RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Turner, S. L. Chen "Updated Security Considerations for the MD5 Message-

Digest and the HMAC-MD5 Algorithms" RFC 6151 DOI 10.17487/RFC6151

<https://www.rfc-editor.org/info/rfc6151>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/info/rfc9000>

Postel, J. "DoD standard Internet Protocol" RFC 760 DOI 10.17487/RFC0760

<https://www.rfc-editor.org/info/rfc760>

Carpenter, B., Ed. "Architectural Principles of the Internet" RFC 1958 DOI

10.17487/RFC1958 <https://www.rfc-editor.org/info/rfc1958>

Rose, M. "On the Design of Application Protocols" RFC 3117 DOI 10.17487/

RFC3117 <https://www.rfc-editor.org/info/rfc3117>

Thaler, D. B. Aboba "What Makes for a Successful Protocol?" RFC 5218 DOI

10.17487/RFC5218 <https://www.rfc-editor.org/info/rfc5218>

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 12

https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc7606
https://www.rfc-editor.org/info/rfc8914
https://www.rfc-editor.org/info/rfc8914
https://www.rfc-editor.org/info/rfc6891
https://www.rfc-editor.org/info/rfc6891
https://www.rfc-editor.org/info/rfc6709
https://www.rfc-editor.org/info/rfc6709
https://html.spec.whatwg.org/
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc760
https://www.rfc-editor.org/info/rfc1958
https://www.rfc-editor.org/info/rfc3117
https://www.rfc-editor.org/info/rfc5218

[RFC5704]

[RFC9170]

[SSL3]

[TLS]

, , and ,

, , , November 2009,

.

 and ,

, , , December 2021,

.

, , , and ,

, , , June 2015,

.

, , ,

, August 2018, .

Bryant, S., Ed. Morrow, M., Ed. IAB "Uncoordinated Protocol Development

Considered Harmful" RFC 5704 DOI 10.17487/RFC5704

<https://www.rfc-editor.org/info/rfc5704>

Thomson, M. T. Pauly "Long-Term Viability of Protocol Extension

Mechanisms" RFC 9170 DOI 10.17487/RFC9170 <https://

www.rfc-editor.org/info/rfc9170>

Barnes, R. Thomson, M. Pironti, A. A. Langley "Deprecating Secure Sockets

Layer Version 3.0" RFC 7568 DOI 10.17487/RFC7568 <https://

www.rfc-editor.org/info/rfc7568>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

IAB Members at the Time of Approval

Internet Architecture Board members at the time this document was approved for publication

were:

The document had broad but not unanimous approval within the IAB, reflecting that while the

guidance is valid, concerns were expressed in the IETF community about how broadly it applies

in all situations.

Jari Arkko

Deborah Brungard

Lars Eggert

Wes Hardaker

Cullen Jennings

Mallory Knodel

Mirja Kühlewind

Zhenbin Li

Tommy Pauly

David Schinazi

Russ White

Qin Wu

Jiankang Yao

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 13

https://www.rfc-editor.org/info/rfc5704
https://www.rfc-editor.org/info/rfc9170
https://www.rfc-editor.org/info/rfc9170
https://www.rfc-editor.org/info/rfc7568
https://www.rfc-editor.org/info/rfc7568
https://www.rfc-editor.org/info/rfc8446

Acknowledgments

Constructive feedback on this document has been provided by a surprising number of people

including, but not limited to, the following: , , ,

, , , , , ,

, , , , , ,

, and . Some of the properties of protocols described in Section 4.1

were observed by in .

Bernard Aboba Brian Carpenter Stuart Cheshire Joel

Halpern Wes Hardaker Russ Housley Cullen Jennings Mallory Knodel Mirja Kühlewind Mark

Nottingham Eric Rescorla Henning Schulzrinne Job Snijders Robert Sparks Dave Thaler Brian

Trammell Anne van Kesteren

Marshall Rose Section 4.5 of [RFC3117]

Authors' Addresses

Martin Thomson

 mt@lowentropy.net Email:

David Schinazi

 dschinazi.ietf@gmail.com Email:

RFC 9413 Maintaining Robust Protocols June 2023

Thomson & Schinazi Informational Page 14

https://www.rfc-editor.org/rfc/rfc3117#section-4.5
mailto:mt@lowentropy.net
mailto:dschinazi.ietf@gmail.com

	RFC 9413
	Maintaining Robust Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Protocol Robustness
	2.1. Fallibility of Specifications
	2.2. Extensibility
	2.3. Flexible Protocols

	3. Applicability
	4. Harmful Consequences of Tolerating the Unexpected
	4.1. Protocol Decay
	4.2. Ecosystem Effects

	5. Active Protocol Maintenance
	5.1. Virtuous Intolerance
	5.2. Exclusion

	6. Security Considerations
	7. IANA Considerations
	8. Informative References
	IAB Members at the Time of Approval
	Acknowledgments
	Authors' Addresses

