<?xmlversion='1.0' encoding='utf-8'?>version="1.0" encoding="UTF-8"?> <!DOCTYPE rfc [ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]><?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?><rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF" category="info" consensus="true" docName="draft-ietf-dmm-srv6-mobile-uplane-24" number="9433" ipr="trust200902" obsoletes="" updates=""submissionType="IETF"xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"><!-- xml2rfc v2v3 conversion 3.9.0 --> <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?><front> <title abbrev="SRv6 MobileUser-Plane"> SegmentUser Plane">Segment Routing over IPv6 for the Mobile User Plane</title> <seriesInfoname="Internet-Draft" value="draft-ietf-dmm-srv6-mobile-uplane-24"/>name="RFC" value="9433"/> <author fullname="Satoru Matsushima" initials="S." surname="Matsushima" role="editor"> <organization abbrev="SoftBank">SoftBank</organization> <address> <postal> <street/> <city/> <region/> <code/> <country>Japan</country> </postal> <email>satoru.matsushima@g.softbank.co.jp</email> </address> </author> <author fullname="Clarence Filsfils" initials="C." surname="Filsfils"> <organization abbrev="Cisco Systems, Inc."> Cisco Systems, Inc.</organization> <address> <postal> <street/> <city/> <region/> <code/> <country>Belgium</country> </postal> <email>cf@cisco.com</email> </address> </author> <author fullname="Miya Kohno" initials="M." surname="Kohno"> <organization abbrev="Cisco Systems, Inc."> Cisco Systems, Inc.</organization> <address> <postal> <street/> <city/> <region/> <code/> <country>Japan</country> </postal> <email>mkohno@cisco.com</email> </address> </author> <author fullname="Pablo Camarillo Garvia" initials="P." surname="Camarillo" role="editor"> <organization abbrev="Cisco Systems, Inc."> Cisco Systems, Inc.</organization> <address> <postal> <street/> <city/> <region/> <code/> <country>Spain</country> </postal> <email>pcamaril@cisco.com</email> </address> </author> <author fullname="Daniel Voyer" initials="D." surname="Voyer"> <organization abbrev="Bell Canada">Bell Canada</organization> <address> <postal> <street/> <city/> <region/> <code/> <country>Canada</country> </postal> <email>daniel.voyer@bell.ca</email> </address> </author> <dateyear="2023"/> <workgroup>DMM Working Group</workgroup>year="2023" month="July" /> <area>int</area> <workgroup>dmm</workgroup> <abstract> <t> This document discusses the applicability ofSRv6 (SegmentSegment RoutingIPv6)over IPv6 (SRv6) to theuser-planeuser plane of mobile networks. The network programming nature of SRv6 accomplishes mobile user-plane functions in a simple manner. The statelessness of SRv6 and its ability to control both service layer path and underlying transport can be beneficial to the mobileuser-plane,user plane, providing flexibility, end-to-end network slicing, andSLAService Level Agreement (SLA) control for various applications. </t> <t> This document discusses how SRv6(Segment Routing over IPv6)could be used asuser-planethe user plane of mobile networks. This document also specifies the SRv6SegmentEndpointbehaviorsBehaviors required for mobilityuse-cases.use cases. </t> </abstract> </front> <middle> <section numbered="true" toc="default"> <name>Introduction</name><t> In<t>In mobile networks, mobility systems provide connectivity over a wireless link to stationary and non-stationary nodes. Theuser-planeuser plane establishes a tunnel between the mobile node and its anchor node over IP-based backhaul and core networks. </t><t> This<t>This document specifies the applicability of SRv6(Segment Routing IPv6)<xref target="RFC8754"format="default"/><xrefformat="default"/> <xref target="RFC8986" format="default"/> to mobile networks. </t> <t>Segment Routing (SR) <xref target="RFC8402" format="default"/> is asource routingsource-routing architecture: a node steers a packet through an ordered list of instructions called "segments". A segment can represent any instruction, topological or service based.</t> <t>SRv6 applied to mobile networks enables asource-routing basedmobilearchitecture,architecture based on source routing, where operators can explicitly indicate a route for the packets to and from the mobile node. The SRv6 Endpoint nodes serve as mobile user-plane anchors.</t> </section><!-- End section "Introduction" --><section numbered="true" toc="default"> <name>Conventions and Terminology</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119" format="default"/>target="RFC2119"/> <xreftarget="RFC8174" format="default"/>target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> <section anchor="terms" numbered="true" toc="default"> <name>Terminology</name><ul spacing="compact"> <li>CNF: Cloud-native Network Function</li> <li>NFV:<dl spacing="normal" newline="false"> <dt>CNF:</dt> <dd>Cloud-native Network Function</dd> <dt>NFV:</dt> <dd>Network Function Virtualization</li> <li>PDU: Packet</dd> <dt>PDU:</dt> <dd>Packet DataUnit</li> <li>PDU Session: ContextUnit</dd> <dt>PDU Session:</dt> <dd>Context of a UE connected to a mobilenetwork.</li> <li>UE: User Equipment</li> <li>gNB: gNodeBnetwork</dd> <dt>UE:</dt> <dd>User Equipment</dd> <dt>gNB:</dt> <dd>gNodeB <xref target="TS.23501"format="default"/></li> <li>UPF: Userformat="default"/></dd> <dt>UPF:</dt> <dd>User Plane Function</li> <li>VNF: Virtual</dd> <dt>VNF:</dt> <dd>Virtual NetworkFunction</li> <li>DN: Data Network</li> <li>Uplink: fromFunction</dd> <dt>DN:</dt> <dd>Data Network</dd> <dt>Uplink:</dt> <dd>from the UE towards theDN</li> <li>Downlink: fromDN</dd> <dt>Downlink:</dt> <dd>from the DN towards theUE</li> </ul>UE</dd> </dl> <t>The following terms used within this document are defined in <xref target="RFC8402" format="default"/>: Segment Routing, SRDomain,domain, Segment ID (SID), SRv6, SRv6 SID, Active Segment, SR Policy,Prefix SID, Adjacency SIDand BindingSID.</t> <t> TheSID (BSID).</t> <t>The following terms used within this document are defined in <xref target="RFC8754" format="default"/>:SRH, SR Source Node, Transit Node, SRSegmentEndpoint NodeRouting Header (SRH) and Reduced SRH.</t> <t>The following terms used within this document are defined in <xref target="RFC8986" format="default"/>:NH, SL, FIB, SA, DA, SRv6 SID behavior,NH (next header), SL (the Segments Left field of the SRH), FIB (Forwarding Information Base), SA (Source Address), DA (Destination Address), and SRv6SegmentEndpoint Behavior.</t> </section><!-- End subsection "Terminology" --><section anchor="conventions" numbered="true" toc="default"> <name>Conventions</name> <t>An SR Policy is resolved to a SID list. A SID list is represented as <S1, S2, S3> where S1 is the first SID to visit, S2 is the second SID to visit, and S3 is the last SID to visit along the SR path.</t> <t>(SA,DA) (S3, S2, S1; SL) represents an IPv6 packetwith:</t>where:</t> <ulspacing="compact">spacing="normal"> <li>Source Address is SA, Destination Address is DA, andnext-headernext header is SRH</li><li>SRH<li><t>SRH with SID list <S1, S2, S3> with Segments Left =SL</li> <li>NoteSL</t> <t>Note the difference between the <> and ()symbols:symbols. <S1, S2, S3> represents a SID list where S1 is the first SID and S3 is the last SID to traverse. (S3, S2, S1; SL) represents the same SID list but encoded in the SRH format where the rightmost SID in the SRH is the first SID and the leftmost SID in the SRH is the last SID. When referring to an SRpolicyPolicy in a high-leveluse-case,use case, it is simpler to use the <S1, S2, S3> notation. When referring to an illustration of the detailed packet behavior, the (S3, S2, S1; SL) notation is moreconvenient.</li>convenient.</t> </li> <li>The payload of the packet is omitted.</li> </ul> <t>(SA1,DA1) (SA2, DA2) represents an IPv6 packetwith:</t>where:</t> <ulspacing="compact">spacing="normal"> <li>Source Address is SA1, Destination Address is DA1, andnext-headernext header isIP</li>IP.</li> <li>Source Address is SA2, and Destination Address is DA2.</li> </ul> <t>Throughout thedocumentdocument, the representation SRH[n] is used as a shorter representation of Segment List[n], as defined in <xref target="RFC8754" format="default"/>.</t> <t>This document uses the following conventions throughout the different examples:</t> <ulspacing="compact"> <li> gNB::1spacing="normal"> <li>gNB::1 is an IPv6 address (SID) assigned to the gNB.</li><li> U1::1<li>U1::1 is an IPv6 address (SID) assigned to UPF1.</li><li> U2::1<li>U2::1 is an IPv6 address (SID) assigned to UPF2.</li><li> U2::<li>U2:: is the Locator of UPF2.</li> </ul> </section><!-- End subsection "Conventions" --><section anchor="srv6-funcs" numbered="true" toc="default"> <name>Predefined SRv6 Endpoint Behaviors</name> <t> The following SRv6 Endpoint Behaviors are used throughout this document. They are defined in <xref target="RFC8986" format="default"/>. </t> <ulspacing="compact"> <li> End.DT4:spacing="normal"> <li>End.DT4: Decapsulation and Specific IPv4 Table Lookup</li><li> End.DT6:<li>End.DT6: Decapsulation and Specific IPv6 Table Lookup</li><li> End.DT46:<li>End.DT46: Decapsulation and Specific IP Table Lookup</li><li> End.DX4:<li>End.DX4: Decapsulation and IPv4 Cross-Connect</li><li> End.DX6:<li>End.DX6: Decapsulation and IPv6 Cross-Connect</li><li> End.DX2:<li>End.DX2: Decapsulation and L2 Cross-Connect</li><li> End.T:<li>End.T: Endpoint with specific IPv6 Table Lookup</li> </ul> <t> This document defines new SRv6SegmentEndpoint Behaviors in <xref target="srv6_functions" format="default"/>.</t> </section><!-- End section "Predefined SRv6 Functions" --></section><!-- End section "Conventions and Terminology" --><section anchor="motivations" numbered="true" toc="default"> <name>Motivation</name> <t> Mobile networks are becoming more challenging to operate. On one hand, traffic is constantly growing, and latency requirements are tighter; on theother-hand,other hand, there are newuse-casesuse cases like distributed NFV Infrastructure that are also challenging network operations. On top of this, the number of devices connected is steadily growing, causing scalability problems in mobile entities as the state to maintain keeps increasing.</t> <t> The current architecture of mobile networks does not take into account the underlying transport. Theuser-planeuser plane is rigidly fragmented into radio access,corecore, and servicenetworks,networks that connected by tunneling according to user-plane roles such as access and anchor nodes. These factors have made it difficult for the operator to optimize and operate thedata-path.data path. </t> <t> In the meantime, applications have shifted to use IPv6, and network operators have started adopting IPv6 as their IP transport. SRv6, the IPv6dataplanedata plane instantiation of Segment Routing <xref target="RFC8402" format="default"/>, integrates both the applicationdata-pathdata path and the underlying transport layer into a single protocol, allowing operators to optimize the network in a simplified manner and removing forwarding state from the network. It is also suitable for virtualized environments, likeVNF/CNF to VNF/CNFVNF/CNF-to-VNF/CNF networking. SRv6 has been deployed in dozens of networks <xref target="I-D.matsushima-spring-srv6-deployment-status" format="default"/>.</t> <t> SRv6 defines thenetwork-programmingnetwork programming concept <xref target="RFC8986" format="default"/>. Applied to mobility, SRv6 can provide the user-plane behaviors needed for mobility management. SRv6 takes advantage of the underlying transport awareness and flexibility together with the ability to also include services to optimize the end-to-end mobiledataplane.</t>data plane.</t> <t>Theuse-casesuse cases for SRv6 mobility are discussed in <xref target="I-D.camarilloelmalky-springdmm-srv6-mob-usecases" format="default"/>, and the architectural benefits are discussed in <xref target="I-D.kohno-dmm-srv6mob-arch" />. </t> </section><!-- End section "Motivation" --><section anchor="scenarios" numbered="true" toc="default"> <name>3GPP Reference Architecture</name> <t> This section presents the 3GPPReference Architecturereference architecture and possible deployment scenarios.</t> <t> <xref target="fig_5g-ref-arch" format="default"/> shows a reference diagram from the 5G packet core architecture <xref target="TS.23501" format="default"/>.</t> <t> The user plane described in this document does not depend on any specific architecture. The 5G packet core architecture as shown is based on the 3GPP standards.</t> <figure anchor="fig_5g-ref-arch"> <name>3GPP 5G Reference Architecture</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +-----+ | AMF | /+-----+ / | [N11] [N2] / +-----+ +------/ | SMF | / +-----+ / / \ / / \ [N4] / / \ ________ / / \ / \ +--+ +-----+ [N3] +------+ [N9] +------+ [N6] / \ |UE|------| gNB |------| UPF1 |--------| UPF2 |--------- \ DN / +--+ +-----+ +------+ +------+ \________/ ]]></artwork> </figure><ul spacing="compact"> <li>UE: User Equipment</li> <li>gNB: gNodeB<dl spacing="normal" newline="false"> <dt>UE:</dt> <dd>User Equipment</dd> <dt>gNB:</dt> <dd>gNodeB with N3 interface towards packet core (and N2 for controlplane)</li> <li>UPF1: UPFplane)</dd> <dt>UPF1:</dt> <dd>UPF with Interfaces N3 and N9 (and N4 for controlplane)</li> <li>UPF2: UPFplane)</dd> <dt>UPF2:</dt> <dd>UPF with Interfaces N9 and N6 (and N4 for controlplane)</li> <li>SMF: Sessionplane)</dd> <dt>SMF:</dt> <dd>Session ManagementFunction </li> <li>AMF: AccessFunction</dd> <dt>AMF:</dt> <dd>Access and Mobility ManagementFunction </li> <li>DN: Data NetworkFunction</dd> <dt>DN:</dt> <dd>Data Network, e.g., operatorservices,services and Internet access</li> </ul></dd> </dl> <t> This reference diagram does not depict a UPF that is only connected to N9 interfaces, although the mechanisms defined in this document also work in such a case.</t> <t> Each session from a UE gets assigned to a UPF. Sometimes multiple UPFs may be used, providing richer service functions. A UE gets its IPv4 address, or IPv6 prefix, from the DHCP block of its UPF. The UPF advertises that IP address block toward the Internet, ensuring that return traffic is routed to the right UPF. </t> </section><!-- End section "A 3GPP Reference Architecture" --><section anchor="uplane-functions" numbered="true" toc="default"><name>User-plane modes</name><name>User-Plane Modes</name> <t>This section introduces anSRv6 basedSRv6-based mobileuser-plane.Ituser plane. It presents two different "modes" that vary with respect to the use ofSRv6. TheSRv6.</t> <t>The firstonemode is the "Traditional mode", which inherits the current 3GPP mobile architecture. In thismodemode, the <xref target="TS.29281" format="default">GTP-U protocol</xref> is replaced bySRv6, howeverSRv6. However, the N3,N9N9, and N6 interfaces are still point-to-point interfaces with no intermediate waypoints as in the current mobile network architecture.</t> <t> The second mode is the "Enhanced mode". This is an evolution from the "Traditional mode". In thismodemode, the N3,N9N9, or N6 interfaces have intermediate waypoints-SIDs-(SIDs) that are used forTraffic Engineeringtraffic engineering or VNF purposes transparent to 3GPP functionalities. This results in optimal end-to-end policies across the mobile network with transport and services awareness.</t> <t>Inboth,both the Traditional and the Enhanced modes, this document assumes that the gNB as well as the UPFs are SR-aware (N3,N9N9, and-potentially-potentially N6 interfaces are SRv6).</t> <t>In addition to those two modes, this document introduces three mechanisms for interworking with legacy access networks (those where the N3 interface is unmodified). In thisdocumentdocument, they are introduced as a variant to the Enhanced mode,howeverbut they are equally applicable to the Traditional mode.</t> <t>One of these mechanisms is designed to interwork with legacy gNBs using GTP-U/IPv4. The second mechanism is designed to interwork with legacy gNBs using GTP-U/IPv6. The thirdof those mechanismsmechanism is another mode that allows deploying SRv6 when legacy gNBs and UPFsthatstill run GTP-U.</t> <t> This document uses the SRv6SegmentEndpoint Behaviors defined in <xref target="RFC8986" format="default"/> as well as the new SRv6SegmentEndpoint Behaviors designed for the mobile user plane that are defined inthis document in<xref target="srv6_functions"format="default"/>.format="default"/> of this document. </t> <section anchor="traditional_mode" numbered="true" toc="default"> <name>Traditionalmode</name>Mode</name> <t> In thetraditionalTraditional mode, the existing mobile UPFs remain unchanged with the sole exception of the use of SRv6 as the data plane instead of GTP-U. There is no impact to the rest of the mobile system.</t> <t> In existing 3GPP mobile networks, a PDU Session is mapped 1-for-1 with a specific GTP-U tunnel (Tunnel Endpoint Identifier- TEID).(TEID)). This 1-for-1 mapping is mirrored here to replace GTP-U encapsulation with the SRv6 encapsulation, while not changing anything else. There will be a unique SRv6 SID associated with each PDU Session, and the SID list only contains a single SID.</t> <t> ThetraditionalTraditional mode minimizes thechangesrequired changes to the mobile system;hencehence, it is a good starting point for formingacommon ground.</t> <t> The gNB/UPFcontrol-planecontrol plane (N2/N4 interface) isunchanged, specificallyunchanged; specifically, a single IPv6 address is provided to the gNB. The same control planesignallingsignaling is used, and the gNB/UPF decides to use SRv6 based on signaled GTP-U parameters per local policy. The only information from the GTP-U parameters used for the SRv6 policy is the TEID, QFI-QoS(QoS FlowIdentifier-,Identifier), and the IPv6 Destination Address.</t> <t> Our example topology is shown in <xref target="fig_traditional" format="default"/>. The gNB and the UPFs are SR-aware. In the descriptions of the uplink and downlink packet flow, A is an IPv6 address of the UE, and Z is an IPv6 address reachable within theData NetworkDN.AEnd.MAP, a new SRv6 EndpointBehavior, End.MAP,Behavior defined in <xref target="end-map-function" format="default"/>, is used.</t> <figure anchor="fig_traditional"> <name>TraditionalmodeMode -example topology</name>Example Topology</name> <artwork align="center" name="" type="" alt=""><![CDATA[ ________ SRv6 SRv6 / \ +--+ +-----+ [N3] +------+ [N9] +------+ [N6] / \ |UE|------| gNB |------| UPF1 |--------| UPF2 |--------- \ DN / +--+ +-----+ +------+ +------+ \________/ SRv6 node SRv6 node SRv6 node ]]></artwork> </figure> <section anchor="traditional_up" numbered="true" toc="default"> <name>PacketflowFlow - Uplink</name> <t> The uplink packet flow is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ UE_out : (A,Z) gNB_out : (gNB, U1::1) (A,Z) -> H.Encaps.Red <U1::1> UPF1_out: (gNB, U2::1) (A,Z) -> End.MAP UPF2_out: (A,Z) -> End.DT4 orEnd.DT6]]></artwork>End.DT6 ]]></artwork> <t> When the UE packet arrives at the gNB, the gNB performsaan H.Encaps.Red operation. Since there is only one SID, there is no need to push an SRH (reduced SRH). gNB only adds an outer IPv6 header with IPv6 DA U1::1. gNB obtains the SID U1::1 from the existing control plane (N2 interface). U1::1 represents an anchoring SID specific for that session at UPF1.</t> <t> When the packet arrives at UPF1, the SID U1::1 is associated with the End.MAP SRv6 Endpoint Behavior. End.MAP replaces U1::1bywith U2::1,thatwhich belongs to the next UPF (U2).</t> <t> When the packet arrives at UPF2, the SID U2::1 corresponds to an End.DT4/End.DT6/End.DT46 SRv6 Endpoint Behavior. UPF2 decapsulates the packet, performs a lookup in a specific table associated with that mobilenetworknetwork, and forwards the packet toward thedata network (DN).</t>DN.</t> </section><!-- End section "Packet flow - Uplink" --><section anchor="traditional_dn" numbered="true" toc="default"> <name>PacketflowFlow - Downlink</name> <t>The downlink packet flow is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ UPF2_in : (Z,A) UPF2_out: (U2::, U1::2) (Z,A) -> H.Encaps.Red <U1::2> UPF1_out: (U2::, gNB::1) (Z,A) -> End.MAP gNB_out : (Z,A) -> End.DX4, End.DX6, End.DX2 ]]></artwork> <t> When the packet arrives at the UPF2, the UPF2 maps that flow into a PDU Session. This PDU Session is associated with the segment endpoint <U1::2>. UPF2 performsaan H.Encaps.Red operation, encapsulating the packet into a new IPv6 header with no SRH since there is only one SID.</t> <t> Upon packet arrival on UPF1, the SID U1::2 is a local SID associated with the End.MAP SRv6 Endpoint Behavior. It maps the SID to the next anchoring point and replaces U1::2bywith gNB::1,thatwhich belongs to the next hop.</t> <t> Upon packet arrival on gNB, the SID gNB::1 corresponds to an End.DX4,End.DX6End.DX6, or End.DX2 behavior (depending on the PDU Session Type). The gNB decapsulates the packet, removing the IPv6 header and all its extensions headers, and forwards the traffic toward the UE.</t> </section><!-- End section "Packet flow - Downlink" --></section><!-- End section "Traditional mode" --><section anchor="enhanced_mode" numbered="true" toc="default"> <name>Enhancedmode</name>Mode</name> <t> Enhanced mode improves scalability, provides traffic engineering capabilities, and allows service programming <xref target="I-D.ietf-spring-sr-service-programming" format="default"/>, thanks to the use of multiple SIDs in the SID list (instead of a direct connectivity in between UPFs with no intermediate waypoints as in TraditionalMode).</t>mode).</t> <t>Thus, the main difference is that the SRpolicy MAYPolicy <bcp14>MAY</bcp14> include SIDs for traffic engineering and service programming in addition to the anchoring SIDs at UPFs.</t><t>Additionally<t>Additionally, in thismodemode, the operator may choose to aggregate several devices under the same SID list (e.g., stationary residential meters[water/energy](water and energy) connected to the same cell) to improve scalability.</t> <t>The gNB/UPFcontrol-planecontrol plane (N2/N4 interface) isunchanged, specificallyunchanged; specifically, a single IPv6 address is provided to the gNB. A local policy instructs the gNB to use SRv6.</t> <t> The gNB resolves the IP address received via the control plane into a SID list. The resolution mechanism is out of the scope of this document.</t> <t> Note that the SIDsMAY<bcp14>MAY</bcp14> use theargumentsargument <xref target="arguments-for-mobility" format="default">Args.Mob.Session </xref> if required by the UPFs.</t> <t> <xref target="fig_enhanced" format="default"/> shows an Enhanced mode topology. The gNB and the UPF are SR-aware. TheFigurefigure shows two service segments, S1 and C1. S1 represents a VNF in the network, and C1 represents an intermediate router used forTraffic Engineeringtraffic engineering purposes to enforce a low-latency path in the network. Note that neither S1 nor C1 are required to have an N4 interface.</t> <figure anchor="fig_enhanced"> <name>EnhancedmodeMode - Exampletopology</name>Topology</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +----+ SRv6 _______ SRv6 --| C1 |--[N3] / \ +--+ +-----+ [N3] / +----+ \ +------+ [N6] / \ |UE|----| gNB |-- SRv6 / SRv6 --| UPF1 |------\ DN / +--+ +-----+ \ [N3]/ TE +------+ \_______/ SRv6 node \ +----+ / SRv6 node -| S1 |- +----+ SRv6 node VNF ]]></artwork> </figure> <section anchor="enhanced_uplink" numbered="true" toc="default"> <name>PacketflowFlow - Uplink</name> <t>The uplink packet flow is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ UE_out : (A,Z) gNB_out : (gNB, S1)(U1::1, C1; SL=2)(A,Z)->H.Encaps.Red<S1,C1,U1::1> S1_out : (gNB, C1)(U1::1, C1; SL=1)(A,Z) C1_out : (gNB, U1::1)(A,Z) ->End with PSP UPF1_out: (A,Z) ->End.DT4,End.DT6,End.DT2U ]]></artwork> <t> UE sends its packet (A,Z) on a specific bearer to its gNB. gNB's control plane associates that session from the UE(A) with the IPv6 address B. gNB resolves B into a SIDlist.list <S1, C1, U1::1>. </t> <t> When gNB transmits the packet, it contains all the segments of the SRpolicy.Policy. The SRpolicyPolicy includes segments for traffic engineering (C1) and for service programming (S1). </t> <t> Nodes S1 and C1 perform their related Endpoint functionality and forward the packet. TheEnd"End withPSPPSP" functionalityreferesrefers to the EndpointbehaviorBehavior with Penultimate Segment Popping as defined inRFC8986.</t><xref target="RFC8986" format="default"/>.</t> <t> When the packet arrives at UPF1, the active segment (U1::1) is anEnd.DT4/End.DT6/End.DT2UEnd.DT4/End.DT6/End.DT2U, which performs the decapsulation (removing the IPv6 header with all its extension headers) and forwards toward thedata network.</t>DN.</t> </section><!-- End section "Packet flow - Uplink" --><section numbered="true" toc="default"> <name>PacketflowFlow - Downlink</name> <t>The downlink packet flow is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ UPF1_in : (Z,A) ->UPF1 maps the flow w/ SID list <C1,S1, gNB> UPF1_out: (U1::1, C1)(gNB::1, S1; SL=2)(Z,A)->H.Encaps.Red C1_out : (U1::1, S1)(gNB::1, S1; SL=1)(Z,A) S1_out : (U1::1, gNB::1)(Z,A) ->End with PSP gNB_out : (Z,A) ->End.DX4/End.DX6/End.DX2 ]]></artwork> <t>When the packet arrives at the UPF1, the UPF1 maps that particular flow into a UE PDU Session. This UE PDU Session is associated with the policy <C1, S1, gNB>. The UPF1 performs a H.Encaps.Red operation, encapsulating the packet into a new IPv6 header with its corresponding SRH.</t> <t>The nodes C1 and S1 perform their related Endpoint processing.</t> <t>Once the packet arrives at the gNB, the IPv6 DA corresponds to an End.DX4,End.DX6End.DX6, or End.DX2 behavior at the gNB (depending on the underlying traffic). The gNB decapsulates the packet, removing the IPv6 header, and forwards the traffic towards the UE. The SID gNB::1 is one example of a SID associated to this service.</t> <t>Note that there are several means to provide the UE session aggregation. The decisiononabout which one to use is a local decision made by the operator. One option is to usethe<xref target="arguments-for-mobility" format="default">Args.Mob.Session </xref>. Another option comprises the gNB performing an IP lookup on the inner packet by using the End.DT4, End.DT6, and End.DT2U behaviors.</t> </section><!-- End section "Packet flow - Downlink" --><section numbered="true" toc="default"> <name>Scalability</name> <t>The EnhancedModemode improves scalability since it allows the aggregation of several UEs under the same SID list. For example, in the case of stationary residential meters that are connected to the same cell, all such devices can share the same SID list. This improves scalability compared to TraditionalModemode (unique SID per UE) and compared to GTP-U (TEID per UE).</t> </section> </section><!-- End section "Enhanced Mode" --><section anchor="enhanced_gtp" numbered="true" toc="default"> <name>EnhancedmodeMode withunchangedUnchanged gNB GTP-Ubehavior</name>Behavior</name> <t> This section describes two mechanisms for interworking with legacy gNBs that still use GTP-U: one forIPv4,IPv4 and another for IPv6.</t> <t> In the interworking scenariosasillustrated in <xref target="fig_interworking" format="default"/>, the gNB does not support SRv6. The gNB supports GTP-U encapsulation over IPv4 or IPv6. To achieve interworking, an SR Gateway (SRGW) entity is added. The SRGW is a new entity that maps the GTP-U traffic into SRv6. It is deployed at the boundary of the SRDomaindomain and performs the mapping functionality forinbound/outboundinbound and outbound traffic.</t> <t> The SRGW is not an anchor point and maintains very little state. For this reason, both IPv4 and IPv6 methods scale to millions of UEs.</t> <figure anchor="fig_interworking"> <name>ExampletopologyTopology forinterworking</name>Interworking</name> <artwork align="center" name="" type="" alt=""><![CDATA[ _______ IP GTP-U SRv6 / \ +--+ +-----+ [N3] +------+ [N9] +------+ [N6] / \ |UE|------| gNB |------| SRGW |--------| UPF |---------\ DN / +--+ +-----+ +------+ +------+ \_______/ SR Gateway SRv6 node ]]></artwork> </figure> <t>Both of the mechanisms described in this section are applicable toeitherthe TraditionalMode ormode and the EnhancedMode.</t>mode.</t> <section numbered="true" toc="default"> <name>Interworking with IPv6 GTP-U</name> <t>In this interworkingmodemode, the gNB at the N3 interface uses GTP-U over IPv6.</t> <t>Key points: </t> <ulspacing="compact">spacing="normal"> <li> The gNB is unchanged(control-plane(control plane oruser-plane)user plane) and encapsulates into GTP-U (N3 interface is not modified).</li> <li> The 5GControl-Planecontrol plane towards the gNB (N2 interface) is unmodified, though multiple UPF addresses need to beused - oneused. One IPv6 address(i.e.(i.e., a BSID at the SRGW) is needed per <SLA, PDUsession type>.Session Type>. The SRv6 SID is different depending on the required <SLA, PDUsession type>Session Type> combination.</li> <li> In the uplink, the SRGW removes the GTP-U header, finds the SID list related to the IPv6 DA, and adds SRH with the SID list.</li> <li> There is no state for the downlink at the SRGW.</li> <li> There is simple state in the uplink at the SRGW; using Enhanced mode results in fewer SRpoliciesPolicies on this node. An SRpolicyPolicy is shared across UEs as long as they belong to the same context (i.e., tenant). A set of many different policies (i.e., different SLAs) increases the amount of state required.</li> <li> When a packet from the UE leaves the gNB, it is SR-routed. This simplifies network slicing <xreftarget="I-D.ietf-lsr-flex-algo"target="RFC9350" format="default"/>.</li> <li> In the uplink, the SRv6 BSID steers traffic into an SRpolicyPolicy when it arrives at the SRGW.</li> </ul> <t> An example topology is shown in <xref target="fig_interworking_ipv6" format="default"/>.</t> <t> S1 and C1 are two service segments. S1 represents a VNF in the network, and C1 represents a router configured forTraffic Engineering.</t>traffic engineering.</t> <figure anchor="fig_interworking_ipv6"> <name>EnhancedmodeMode withunchangedUnchanged gNB IPv6/GTP-Ubehavior</name>Behavior</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +----+ IPv6/GTP-U -| S1 |- ___ +--+ +-----+ [N3] / +----+ \ / |UE|--| gNB |- SRv6 / SRv6 \ +----+ +------+ [N6] / +--+ +-----+ \ [N9]/ VNF -| C1 |---| UPF2 |------\ DN GTP-U \ +------+ / +----+ +------+ \___ -| SRGW |- SRv6 SRv6 +------+ TE SR Gateway ]]></artwork> </figure> <section numbered="true" toc="default"> <name>PacketflowFlow - Uplink</name> <t>The uplink packet flow is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ UE_out : (A,Z) gNB_out : (gNB, B)(GTP: TEID T)(A,Z) -> Interface N3 unmodified (IPv6/GTP) SRGW_out: (SRGW, S1)(U2::T, C1; SL=2)(A,Z) -> B is an End.M.GTP6.D SID at the SRGW S1_out : (SRGW, C1)(U2::T, C1; SL=1)(A,Z) C1_out : (SRGW, U2::T)(A,Z) -> End with PSP UPF2_out: (A,Z) -> End.DT4 or End.DT6 ]]></artwork> <t> The UE sends a packet destined to Z toward the gNB on a specific bearer for that session. The gNB, which is unmodified, encapsulates the packet into IPv6, UDP, and GTP-U headers. The IPv6 DAB,B and the GTP-U TEID T are the ones received in the N2 interface.</t> <t> The IPv6 address that was signaled over the N2 interface for that UE PDU Session, B, is now the IPv6 DA. B is an SRv6 Binding SID at the SRGW.HenceHence, the packet is routed to the SRGW.</t> <t> When the packet arrives at the SRGW, the SRGW identifies B as an End.M.GTP6.D Binding SID (see <xref target="End-M-GTP6-D" format="default"/>). Hence, the SRGW removes the IPv6, UDP, and GTP-Uheaders,headers and pushes an IPv6 header with its own SRH containing the SIDs bound to the SRpolicyPolicy associated with thisBindingSID.Binding SID. There is at least one instance of the End.M.GTP6.D SID per PDU type.</t> <t> S1 and C1 perform their related Endpoint functionality and forward the packet.</t> <t> When the packet arrives at UPF2, the active segment is(U2::T)(U2::T), which is bound to End.DT4/6. UPF2 then decapsulates (removing the outer IPv6 header with all its extension headers) and forwards the packet toward thedata network.</t>DN.</t> </section><!-- End section "Packet flow - Uplink" --><section numbered="true" toc="default"> <name>PacketflowFlow - Downlink</name> <t>The downlink packet flow is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ UPF2_in : (Z,A) -> UPF2 maps the flow with <C1, S1, SRGW::TEID,gNB> UPF2_out: (U2::1, C1)(gNB, SRGW::TEID, S1; SL=3)(Z,A) -> H.Encaps.Red C1_out : (U2::1, S1)(gNB, SRGW::TEID, S1; SL=2)(Z,A) S1_out : (U2::1, SRGW::TEID)(gNB, SRGW::TEID, S1, SL=1)(Z,A) SRGW_out: (SRGW, gNB)(GTP: TEID=T)(Z,A) -> SRGW/96 is End.M.GTP6.E gNB_out : (Z,A) ]]></artwork> <t> When a packet destined to A arrives at the UPF2, the UPF2 performs a lookup in the table associated to A and finds the SID list <C1, S1, SRGW::TEID, gNB>. The UPF2 performs an H.Encaps.Red operation, encapsulating the packet into a new IPv6 header with its corresponding SRH.</t> <t> C1 and S1 perform their related Endpoint processing.</t> <t> Once the packet arrives at the SRGW, the SRGW identifies the active SID as an End.M.GTP6.E function. The SRGW removes the IPv6 header and all its extensions headers. The SRGW generates new IPv6, UDP, and GTP-U headers. The new IPv6 DA is thegNBgNB, which is the last SID in the received SRH. The TEID in the generated GTP-U header is also an argument of the received End.M.GTP6.E SID. The SRGW pushes the headers to the packet and forwards the packet toward the gNB. There is one instance of the End.M.GTP6.E SID per PDU type.</t> <t> Once the packet arrives at the gNB, the packet is a regular IPv6/GTP-U packet. The gNB looks for the specific radio bearer for that TEID and forwards it on the bearer. This gNB behavior is not modified from current and previous generations.</t> </section><!-- End section "Packet flow - Downlink" --><section numbered="true" toc="default"> <name>Scalability</name> <t> Forthedownlink traffic, the SRGW is stateless. All the state is in the SRH pushed by the UPF2. The UPF2 must have the UEstatesstate since it is the UE's session anchor point.</t> <t> Fortheuplink traffic, the state at the SRGW does not necessarily need to be unique per PDU Session; the SRpolicyPolicy can be shared among UEs. This enables more scalable SRGW deployments compared to a solution holding millions of states, one or more per UE.</t> </section><!-- End section "Scalability" --></section><!-- End section "Interworking with IPv6 GTP" --><section numbered="true" toc="default"> <name>Interworking with IPv4 GTP-U</name> <t> In this interworkingmodemode, the gNB uses GTP over IPv4 in the N3interface</t>interface.</t> <t> Key points: </t> <ulspacing="compact">spacing="normal"> <li> The gNB is unchanged and encapsulates packets into GTP-U (the N3 interface is not modified).</li> <li>N2 signaling is not changed, though multiple UPF addresses need to be provided--- one for each PDU Session Type.</li> <li> In the uplink, traffic is classified by SRGW's classification engine and steered into an SRpolicy.Policy. The SRGW may be implemented in a UPF or as a separate entity. How the classification engine rules are set up is outside the scope of this document, though one example is using BGP signaling from a Mobile User Plane (MUP) Controller <xref target="I-D.mhkk-dmm-srv6mup-architecture" format="default"/>.</li> <li> SRGW removes the GTP-U header, finds the SID list related to DA, and adds an SRH with the SID list.</li> </ul> <t> An example topology is shown in <xref target="fig_interworking_ipv4" format="default"/>. In thismodemode, the gNB is an unmodified gNB using IPv4/GTP. The UPFs are SR-aware. As before, the SRGW maps the IPv4/GTP-U traffic to SRv6.</t> <t> S1 and C1 are two service segment endpoints. S1 represents a VNF in the network, and C1 represents a router configured forTraffic Engineering.</t>traffic engineering.</t> <figure anchor="fig_interworking_ipv4"> <name>EnhancedmodeMode withunchangedUnchanged gNB IPv4/GTP-Ubehavior</name>Behavior</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +----+ IPv4/GTP-U -| S1 |- ___ +--+ +-----+ [N3] / +----+ \ / |UE|--| gNB |- SRv6 / SRv6 \ +----+ +------+ [N6] / +--+ +-----+ \ [N9]/ VNF -| C1 |---| UPF2 |------\ DN GTP-U \ +------+ / +----+ +------+ \___ -| UPF1 |- SRv6 SRv6 +------+ TE SR Gateway ]]></artwork> </figure> <section numbered="true" toc="default"> <name>PacketflowFlow - Uplink</name> <t>The uplink packet flow is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ gNB_out : (gNB, B)(GTP: TEID T)(A,Z) -> Interface N3 unchanged IPv4/GTP SRGW_out: (SRGW, S1)(U2::1, C1; SL=2)(A,Z) -> H.M.GTP4.D function S1_out : (SRGW, C1)(U2::1, C1; SL=1)(A,Z) C1_out : (SRGW, U2::1) (A,Z) -> PSP UPF2_out: (A,Z) -> End.DT4 or End.DT6 ]]></artwork> <t> The UE sends a packet destined to Z toward the gNB on a specific bearer for that session. The gNB, which is unmodified, encapsulates the packet into a new IPv4, UDP, andGTP-Uheaders.GTP-U headers. The IPv4 DA, B, and the GTP-UTEID are the ones received at the N2 interface.</t> <t> When the packet arrives at the SRGW for UPF1, the SRGW hasana classification engine rule for incoming traffic from thegNB,gNB that steers the traffic into an SRpolicyPolicy by using the function H.M.GTP4.D. The SRGW removes the IPv4, UDP, and GTP headers and pushes an IPv6 header with its own SRH containing the SIDs related to the SRpolicyPolicy associated with this traffic. The SRGW forwards according to the new IPv6 DA.</t> <t> S1 and C1 perform their related Endpoint functionality and forward the packet.</t> <t> When the packet arrives at UPF2, the active segment is(U2::1)(U2::1), which is bound toEnd.DT4/6End.DT4/6, which performs the decapsulation (removing the outer IPv6 header with all its extension headers) and forwards toward thedata network.</t>DN.</t> <t>Note that the interworking mechanisms for IPv4/GTP-U and IPv6/GTP-Udiffers.differ. This is due to the fact that IPv6/GTP-U can leverage the remote steering capabilities provided by the Segment Routing BSID. InIPv4IPv4, this construct is not available, and building a similar mechanism would require a significant address consumption.</t> </section><!-- End section "Packet flow - Uplink" --><section numbered="true" toc="default"> <name>PacketflowFlow - Downlink</name> <t>The downlink packet flow is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ UPF2_in : (Z,A) -> UPF2 maps flow with SID <C1, S1,GW::SA:DA:TEID> UPF2_out: (U2::1, C1)(GW::SA:DA:TEID, S1; SL=2)(Z,A) ->H.Encaps.Red C1_out : (U2::1, S1)(GW::SA:DA:TEID, S1; SL=1)(Z,A) S1_out : (U2::1, GW::SA:DA:TEID)(Z,A) SRGW_out: (GW, gNB)(GTP: TEID=T)(Z,A) -> End.M.GTP4.E gNB_out : (Z,A) ]]></artwork> <t>When a packet destined to A arrives at the UPF2, the UPF2 performs a lookup in the table associated to A and finds the SID list <C1, S1, SRGW::SA:DA:TEID>. The UPF2 performsaan H.Encaps.Red operation, encapsulating the packet into a new IPv6 header with its corresponding SRH.</t> <t>The nodes C1 and S1 perform their related Endpoint processing.</t> <t>Once the packet arrives at the SRGW, the SRGW identifies the active SID as an End.M.GTP4.E function. The SRGW removes the IPv6 header and all its extensions headers. The SRGW generatesanIPv4, UDP, and GTP-U headers. The IPv4 SA and DA are received as SID arguments. The TEID in the generated GTP-U header isalsotheargumentsargument of the received End.M.GTP4.E SID. The SRGW pushes the headers to the packet and forwards the packet toward the gNB.</t> <t> When the packet arrives at the gNB, the packet is a regular IPv4/GTP-U packet. The gNB looks for the specific radio bearer for that TEID and forwards it on the bearer. This gNB behavior is not modified from current and previous generations.</t> </section><!-- End section "Packet flow - Downlink" --><section numbered="true" toc="default"> <name>Scalability</name> <t>Forthedownlink traffic, the SRGW is stateless. All the state is in the SRH pushed by the UPF2. The UPF must have this UE-base state anyway (since it is its anchor point).</t> <t>Fortheuplink traffic, the state at the SRGW is dedicated on aper UE/sessionper-UE/session basis according to a classification engine. There is state for steering the different sessions in the form of an SR Policy. However, SRpoliciesPolicies are shared among several UE/sessions.</t> </section><!-- End section "Scalability" --></section><!-- End section "Interworking with IPv4 GTP" --><section numbered="true" toc="default"> <name>Extensions to theinterworking mechanisms</name>Interworking Mechanisms</name> <t>This section presents two mechanisms for interworking with gNBs and UPFs that do not support SRv6. These mechanisms are used to support GTP-U over IPv4 and IPv6.</t><t>Even<t> Even though these methods are presented as an extension to the"Enhanced mode", it is straightforward in its applicabilityEnhanced mode, they are also applicable to the"Traditional mode".</t>Traditional mode. </t> </section><!-- End section "Extensions .. interworking mechanisms" --></section><!-- End "Enhanced mode with unchanged gNB GTP-U ..." --><section anchor="drop_in" numbered="true" toc="default"> <name>SRv6Drop-inDrop-In Interworking</name> <t>This section introduces another mode useful for legacy gNB and UPFs that still operate with GTP-U. This mode provides an SRv6-enabled user plane in between two GTP-U tunnel endpoints.</t> <t>This mode employs two SRGWs that map GTP-U traffic to SRv6 andvice-versa.</t>vice versa.</t> <t>Unlike other interworking modes, in thismodemode, both of the mobility overlay endpoints use GTP-U. Two SRGWs are deployed in either an N3 or N9 interface to realize an intermediate SRpolicy.</t>Policy.</t> <figure anchor="fig_drop_in"> <name>ExampletopologyTopology for SRv6Drop-in mode</name>Drop-In Mode</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +----+ -| S1 |- +-----+ / +----+ \ | gNB |- SRv6 / SRv6 \ +----+ +--------+ +-----+ +-----+ \ / VNF -| C1 |---| SRGW-B |----| UPF | GTP[N3]\ +--------+ / +----+ +--------+ +-----+ -| SRGW-A |- SRv6 SR Gateway-B GTP +--------+ TE SR Gateway-A ]]></artwork> </figure> <t>The packet flow of <xref target="fig_drop_in" format="default"/> is as follows:</t> <artwork align="center" name="" type="" alt=""><![CDATA[ gNB_out : (gNB, U::1)(GTP: TEID T)(A,Z) GW-A_out: (GW-A, S1)(U::1, SGB::TEID, C1; SL=3)(A,Z)->U::1 is an End.M.GTP6.D.Di SID at SRGW-A S1_out : (GW-A, C1)(U::1, SGB::TEID, C1; SL=2)(A,Z) C1_out : (GW-A, SGB::TEID)(U::1, SGB::TEID, C1; SL=1)(A,Z) GW-B_out: (GW-B, U::1)(GTP: TEID T)(A,Z) ->SGB::TEID is an End.M.GTP6.E SID at SRGW-B UPF_out : (A,Z) ]]></artwork> <t>When a packet destined to Z is sent to the gNB, which is unmodified(control-plane(control plane anduser-planeuser plane remain GTP-U), gNB performs encapsulation intoanew IP, UDP, and GTP-U headers. The IPv6 DA, U::1, andtheGTP-U TEID are the ones received at the N2 interface.</t> <t>The IPv6 address that was signaled over the N2 interface for that PDU Session, U::1, is now the IPv6 DA. U::1 is an SRv6 Binding SID at SRGW-A.HenceHence, the packet is routed to the SRGW.</t> <t>When the packet arrives at SRGW-A, the SRGW identifies U::1 as an End.M.GTP6.D.Di Binding SID (see <xref target="End-M-GTP6-D-Di" format="default"/>). Hence, the SRGW removes the IPv6, UDP, and GTP-Uheaders,headers and pushes an IPv6 header with its own SRH containing the SIDs bound to the SRpolicyPolicy associated with this Binding SID. There is one instance of the End.M.GTP6.D.Di SID per PDU type.</t> <t>S1 and C1 perform their related Endpoint functionality and forward the packet.</t> <t>Once the packet arrives at SRGW-B, the SRGW identifies the active SID as an End.M.GTP6.E function. The SRGW removes the IPv6 header and all its extensions headers. The SRGW generates new IPv6, UDP, and GTP headers. The new IPv6 DA isU::1U::1, which is the last SID in the received SRH. The TEID in the generated GTP-U header is an argument of the received End.M.GTP6.E SID. The SRGW pushes the headers to the packet and forwards the packet toward UPF. There is one instance of the End.M.GTP6.E SID per PDU type.</t> <t>Once the packet arrives at UPF, the packet is a regular IPv6/GTP packet. The UPF looks for the specific rule for that TEID to forward the packet. This UPF behavior is not modified from current and previous generations.</t> </section><!-- End section "SRv6 Drop-in Interworking" --></section><!-- End section "User-plane behaviors" --><section anchor="srv6_functions" numbered="true" toc="default"> <name>SRv6 Segment Endpoint Mobility Behaviors</name><!-- Add text on functions used on UPF1, UPF2,... --><t>This section introduces new SRv6SegmentEndpoint Behaviors for the mobileuser-plane.user plane. The behaviors described in this document are compatible with the NEXT and REPLACE flavors defined in <xref target="I-D.ietf-spring-srv6-srh-compression" format="default" />.</t> <section anchor="arguments-for-mobility" numbered="true" toc="default"> <name>Args.Mob.Session</name> <t>Args.Mob.Sessionprovideprovides per-session information for charging,bufferingbuffering, or other purposes required by some mobile nodes. The Args.Mob.Session argument format is used in combination with the End.Map,End.DT4/End.DT6/End.DT46End.DT4/End.DT6/End.DT46, and End.DX4/End.DX6/End.DX2 behaviors. Note that proposed format is applicable for 5G networks, while similar formats could be used for legacy networks. </t> <figure> <name>Args.Mob.Sessionformat</name>Format</name> <artwork align="center" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | QFI |R|U| PDU Session ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |PDU Sess(cont')| +-+-+-+-+-+-+-+-+ ]]></artwork> </figure><ul spacing="compact"> <li> QFI: QoS<dl spacing="normal" newline="false"> <dt>QFI:</dt> <dd>QoS Flow Identifier <xref target="TS.38415"format="default"/></li> <li> R: Reflectiveformat="default"/>.</dd> <dt>R:</dt> <dd>Reflective QoS Indication <xref target="TS.23501" format="default"/>. This parameter indicates the activation of reflective QoS towards the UE for the transferred packet. Reflective QoS enables the UE to mapUL User Planeuplink user-plane traffic to QoSFlowsflows withoutSMF providedSMF-provided QoSrules.</li> <li>U: Unusedrules.</dd> <dt>U:</dt> <dd>Unused and for future use.MUST<bcp14>MUST</bcp14> be 0 on transmission and ignored onreceipt.</li> <li>PDUreceipt.</dd> <dt>PDU SessionID: IdentifierID:</dt> <dd>Identifier of PDU Session. The GTP-U equivalent isTEID.</li> </ul>TEID.</dd> </dl> <t>Args.Mob.Session is required in casethatone SID aggregates multiple PDU Sessions. Since the SRv6 SID is likely NOT to be instantiated per PDUsession,Session, Args.Mob.Session helps the UPF to perform the behaviorswhichthat require granularity per QFI and/or per PDUSession granularity.</t>Session.</t> <t>Note that the encoding of user-plane messages (e.g., Echo Request, Echo Reply, ErrorIndicationIndication, and End Marker) is out of the scope of thisdraft.document. <xref target="I-D.murakami-dmm-user-plane-message-encoding" /> defines one possibleencoding.</t>encoding method.</t> </section> <section anchor="end-map-function" numbered="true" toc="default"> <name>End.MAP</name><t>The "Endpoint behavior<t>End.MAP (Endpoint Behavior with SIDmapping" behavior (End.MAP for short)mapping) is used in several scenarios. Particularly in mobility, End.MAP is used by the intermediate UPFs.</t> <t>When node N receives a packet whose IPv6 DA is D and D is a local End.MAP SID, Ndoes:</t> <artwork name="" type="" align="left" alt=""><![CDATA[does the following:</t> <sourcecode type="pseudocode"><![CDATA[ S01. If (IPv6 Hop Limit <= 1) { S02. Send an ICMP Time Exceeded message to the SourceAddress,Address with Code 0 (Hop limit exceeded in transit), interrupt packet processing, and discard the packet. S03. } S04. Decrement IPv6 Hop Limit by 1 S05. Update the IPv6 DA with the new mapped SID S06. Submit the packet to the egress IPv6 FIB lookup for transmission to the new destination]]></artwork> <t>Notes:]]></sourcecode> <t>Note: The SRH is not modified (neither theSID,SID nor the SL value).</t> </section> <section anchor="End-M-GTP6-D" numbered="true" toc="default"> <name>End.M.GTP6.D</name><t>The "Endpoint behavior<t>End.M.GTP6.D (Endpoint Behavior with IPv6/GTP-U decapsulation into SRpolicy" behavior (End.M.GTP6.D for short)Policy) is used in the interworking scenario for the uplink towards SRGW from the legacy gNB using IPv6/GTP. Any SID instance of this behavior is associated with an SR Policy B and an IPv6 Source Address S. </t> <t>When the SR Gateway node N receives a packet destined toDD, and D is a local End.M.GTP6.D SID, Ndoes:</t> <artwork name="" type="" align="left" alt=""><![CDATA[does the following:</t> <sourcecode type="pseudocode"><![CDATA[ S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packet processing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork>]]></sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.M.GTP6.D SID, Ndoes:</t> <artwork name="" type="" align="left" alt=""><![CDATA[does the following:</t> <sourcecode type="pseudocode"><![CDATA[ S01. If (Next Header (NH) == UDP & UDP_Dest_port == GTP) { S02. Copy the GTP-U TEID and QFI to buffer memory S03. Pop the IPv6, UDP, and GTP-UHeadersheaders S04. Push a new IPv6 header with its own SRH containing B S05. Set the outer IPv6 SA to S S06. Set the outer IPv6 DA to the first SID of B S07. Set the outer Payload Length, Traffic Class, Flow Label, Hop Limit, andNext-HeaderNext Header (NH) fields S08. Write in the SRH[0] the Args.Mob.Session based on the informationofin buffer memory S09. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination S10. } Else { S11. Process as per[RFC8986][RFC8986], Section 4.1.1 S12. }]]></artwork> <t>Notes: S07. The]]></sourcecode> <t>Notes:</t> <ul spacing="normal"> <li>In line S07, the NH is set based on the SID parameter. There is one instantiation of the End.M.GTP6.D SID per PDU SessionType, henceType; hence, the NH is already known in advance.ForIn addition, for the IPv4v6 PDU Session Type,in additionthe router inspects the first nibble of the PDU to know the NHvalue.</t> <t>Thevalue.</li> <li>The last segmentSHOULD<bcp14>SHOULD</bcp14> be followed by an Args.Mob.Session argumentspacespace, which is used to provide the session identifiers, as shown in lineS08.</t>S08.</li> </ul> </section><!-- End section "End.M.GTP6.D" --><section anchor="End-M-GTP6-D-Di" numbered="true" toc="default"> <name>End.M.GTP6.D.Di</name><t>The "Endpoint behavior<t>End.M.GTP6.D.Di (Endpoint Behavior with IPv6/GTP-U decapsulation into SRpolicyPolicy for Drop-inMode" behavior (End.M.GTP6.D.Di for short)Mode) is used in the SRv6 drop-in interworking scenario described in <xref target="drop_in" format="default"/>. The difference between End.M.GTP6.D as another variant of the IPv6/GTP decapsulation function is that the original IPv6 DA of the GTP-U packet is preserved as the last SID in SRH.</t> <t>Any SID instance of this behavior is associated with an SR Policy B and an IPv6 Source Address S.</t> <t>When the SR Gateway node N receives a packet destined toDD, and D is a local End.M.GTP6.D.Di SID, Ndoes:</t> <artwork name="" type="" align="left" alt=""><![CDATA[does the following:</t> <sourcecode type="pseudocode"><![CDATA[ S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packet processing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork>]]></sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.M.GTP6.Di SID, Ndoes:</t> <artwork name="" type="" align="left" alt=""><![CDATA[does the following:</t> <sourcecode type="pseudocode"><![CDATA[ S01. If (Next Header = UDP & UDP_Dest_port = GTP) { S02. Copy D to buffer memory S03. Pop the IPv6, UDP, and GTP-UHeadersheaders S04. Push a new IPv6 header with its own SRH containing B S05. Set the outer IPv6 SA to S S06. Set the outer IPv6 DA to the first SID of B S07. Set the outer Payload Length, Traffic Class, Flow Label, Hop Limit, andNext-HeaderNext Header fields S08. Prepend D to the SRH (as SRH[0]) and set SL accordingly S09. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination S10. } Else { S11. Process as per[RFC8986][RFC8986], Section 4.1.1 S12. }]]></artwork> <t>Notes: S07. The]]></sourcecode> <t>Notes:</t> <ul spacing="normal"> <li>In line S07, the NH is set based on the SID parameter. There is one instantiation of the End.M.GTP6.Di SID per PDU SessionType, henceType; hence, the NH is already known in advance.ForIn addition, for the IPv4v6 PDU Session Type,in additionthe router inspects the first nibble of the PDU to know the NHvalue.</t> <t>S SHOULDvalue.</li> <li>S <bcp14>SHOULD</bcp14> be an End.M.GTP6.E SID instantiated at the SRgateway.</t>Gateway.</li> </ul> </section><!-- End section "End.M.GTP6.D.Di" --><section numbered="true" toc="default"> <name>End.M.GTP6.E</name><t>The "Endpoint behavior<t>End.M.GTP6.E (Endpoint Behavior with encapsulation for IPv6/GTP-U tunnel"behavior (End.M.GTP6.E for short)behavior) is used among others in the interworking scenario for the downlink toward the legacy gNB using IPv6/GTP.</t> <t>The prefix of End.M.GTP6.E SIDMUST<bcp14>MUST</bcp14> be followed by the Args.Mob.Session argumentspacespace, which is used to provide the session identifiers.</t> <t>When the SR Gateway node N receives a packet destined to D, and D is a local End.M.GTP6.E SID, N does the following:</t><artwork name="" type="" align="left" alt=""><![CDATA[<sourcecode type="pseudocode"><![CDATA[ S01. When an SRH is processed { S02. If (Segments Left != 1) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packet processing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork>]]></sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.M.GTP6.E SID, Ndoes:</t> <artwork name="" type="" align="left" alt=""><![CDATA[does the following:</t> <sourcecode type="pseudocode"><![CDATA[ S01. Copy SRH[0] and D to buffer memory S02. Pop the IPv6 header and all its extension headers S03. Push a new IPv6 header with a UDP/GTP-UHeaderheader S04. Set the outer IPv6 SA to S S05. Set the outer IPv6 DA from buffer memory S06. Set the outer Payload Length, Traffic Class, Flow Label, Hop Limit, andNext-HeaderNext Header fields S07. Set the GTP-U TEID (from buffer memory) S08. Submit the packet to the egress IPv6 FIB lookupandfor transmission to the new destination]]></artwork> <t>Notes: An]]></sourcecode> <t>Notes:</t> <ul spacing="normal"> <li>An End.M.GTP6.E SIDMUST<bcp14>MUST</bcp14> always be the penultimate SID. The TEID is extracted from the argument space of the currentSID.</t> <t>SID.</li> <li> The source address SSHOULD<bcp14>SHOULD</bcp14> be an End.M.GTP6.D SID instantiated at the egress SRgateway.</t>Gateway.</li> </ul> </section><!-- End section "End.M.GTP6.E" --><section numbered="true" toc="default"> <name>End.M.GTP4.E</name><t>The "Endpoint behavior<t>End.M.GTP4.E (Endpoint Behavior with encapsulation for IPv4/GTP-Utunnel" behavior (End.M.GTP4.E for short)tunnel) is used in the downlink when doing interworking with legacy gNB using IPv4/GTP.</t> <t>When the SR Gateway node N receives a packet destined toSS, and S is a local End.M.GTP4.E SID, Ndoes:</t> <artwork name="" type="" align="left" alt=""><![CDATA[does the following:</t> <sourcecode type="pseudocode"><![CDATA[ S01. When an SRH is processed { S02. If (Segments Left != 0) { S03. Send an ICMP Parameter Problem to the SourceAddress,Address with Code 0 (Erroneous header fieldencountered),encountered) and Pointer set to the Segments Left field, interrupt packet processing, and discard the packet. S04. } S05. Proceed to process the next header in the packet S06. }]]></artwork>]]></sourcecode> <t>When processing theUpper-layerUpper-Layer header of a packet matching a FIB entry locally instantiated as an End.M.GTP4.E SID, Ndoes:</t> <artwork name="" type="" align="left" alt=""><![CDATA[does the following:</t> <sourcecode type="pseudocode"><![CDATA[ S01. Store the IPv6 DA and SA in buffer memory S02. Pop the IPv6 header and all its extension headers S03. Push a new IPv4 header with a UDP/GTP-UHeaderheader S04. Set the outer IPv4 SA and DA (from buffer memory) S05. Set the outer Total Length, DSCP, Time To Live, andNext-HeaderNext Header fields S06. Set the GTP-U TEID (from buffer memory) S07. Submit the packet to the egress IPv4 FIB lookupandfor transmission to the new destination]]></artwork> <t>Notes: The]]></sourcecode> <t>Notes:</t> <ul spacing="normal"> <li><t>The End.M.GTP4.E SID in S has the following format:</t> <figure> <name>End.M.GTP4.E SID Encoding</name> <artwork align="center" name="" type="" alt=""><![CDATA[ 0 127 +-----------------------+-------+----------------+---------+ | SRGW-IPv6-LOC-FUNC |IPv4DA |Args.Mob.Session|0 Padded | +-----------------------+-------+----------------+---------+ 128-a-b-c a b c ]]></artwork> </figure><t>The</li> <li><t>The IPv6 Source Address has the following format:</t> <figure> <name>IPv6 SA Encoding for End.M.GTP4.E</name> <artwork align="center" name="" type="" alt=""><![CDATA[ 0 127 +----------------------+--------+--------------------------+ | Source UPF Prefix |IPv4 SA | any bit pattern(ignored) | +----------------------+--------+--------------------------+ 128-a-b a b ]]></artwork> </figure> </li> </ul> </section><!-- End section "End.M.GTP4.E" --><section numbered="true" toc="default"> <name>H.M.GTP4.D</name><t>The "SR<t>H.M.GTP4.D (SR Policy Headend with tunnel decapsulation and map to an SRv6policy" behavior (H.M.GTP4.D for short)policy) is used in the direction from the legacy IPv4user-planeuser plane to the SRv6 user-plane network.</t> <t>When the SR Gateway node N receives a packet destined to a SRGW-IPv4-Prefix, Ndoes:</t>does the following:</t> <artwork align="left" name="" type="" alt=""><![CDATA[ S01. IF Payload == UDP/GTP-U THEN S02. Pop the outer IPv4 header and UDP/GTP-U headers S03. Copy IPv4DA,DA and TEID to form SID B S04. Copy IPv4 SA to form IPv6 SA B' S05. Encapsulate the packet into a new IPv6 header S06. Set the IPv6 DA = B S07. Forward along the shortest path to B S08. ELSE S09. Drop the packet ]]></artwork> <t>The SID B has the following format:</t> <figure> <name>H.M.GTP4.D SID Encoding</name> <artwork align="center" name="" type="" alt=""><![CDATA[ 0 127 +-----------------------+-------+----------------+---------+ |Destination UPF Prefix |IPv4DA |Args.Mob.Session|0 Padded | +-----------------------+-------+----------------+---------+ 128-a-b-c a b c ]]></artwork> </figure> <t> The SID BMAY<bcp14>MAY</bcp14> be an SRv6 Binding SID instantiated at the first UPF (U1) to bind an SRpolicyPolicy <xref target="RFC9256" format="default"/>.</t> </section><!-- End section "T.M.Tmap" --><section numbered="true" toc="default"><name>End.Limit: Rate Limiting behavior</name><name>End.Limit</name> <t> The mobileuser-planeuser plane requires a rate-limit feature. For this purpose, this document defines a newbehaviorbehavior, called "End.Limit". The "End.Limit" behavior encodes in its arguments therate limitingrate-limiting parameter that should be applied to this packet. Multiple flows of packets should have the same group identifier in the SID when those flows are in the same AMBR (Aggregate Maximum Bit Rate) group. The encoding format of therate limitrate-limit segment SID is as follows:</t> <figure> <name>End.Limit:Rate limiting behavior argument format</name>Rate-Limiting Behavior Argument Format</name> <artwork align="center" name="" type="" alt=""><![CDATA[ +----------------------+----------+-----------+ | LOC+FUNC rate-limit | group-id | limit-rate| +----------------------+----------+-----------+ 128-i-j i j ]]></artwork> </figure> <t> If the limit-rate bits are set to zero, the node should not do rate limiting unless static configuration orcontrol-planecontrol plane sets the limit rate associated to the SID.</t> </section><!-- End section "End.Limit: Rate Limiting function" --></section><!-- End section "" --><section anchor="pdu_sessions" numbered="true" toc="default"><name>SRv6 supported<name>SRv6-Supported 3GPP PDUsession types</name>Session Types</name> <t>The 3GPP <xref target="TS.23501" format="default"/> defines the following PDUsession types:Session Types: </t> <ulspacing="compact">spacing="normal"> <li>IPv4</li> <li>IPv6</li> <li>IPv4v6</li> <li>Ethernet</li> <li>Unstructured</li> </ul> <t> SRv6 supports the 3GPP PDUsession typesSession Types without any protocol overhead by using the corresponding SRv6behaviors (End.DX4,behaviors:</t> <ul spacing="normal"> <li>End.DX4 and End.DT4 for IPv4 PDUsessions; End.DX6,Sessions</li> <li>End.DX6, End.DT6, and End.T for IPv6 PDUsessions; End.DT46Sessions</li> <li>End.DT46 for IPv4v6 PDUsessions; End.DX2Sessions</li> <li>End.DX2 for L2 and Unstructured PDUsessions).</t>Sessions</li> </ul> </section><!-- End section "SRv6 supported PDU session types" --><section anchor="netslice" numbered="true" toc="default"> <name>Network Slicing Considerations</name> <t>A mobile network may be required to implement "network slices", which logically separate network resources within the same SRDomain.</t>domain.</t> <t><xref target="RFC9256" format="default"/> describes a solution to build basic network slices with SR. Depending on the requirements, these slices can be further refined by adopting the mechanisms from: </t> <ulspacing="compact">spacing="normal"> <li>IGP Flex-Algo <xreftarget="I-D.ietf-lsr-flex-algo"target="RFC9350" format="default"/></li> <li>Inter-Domain policies <xref target="RFC9087" format="default"/></li> </ul> <t>Furthermore, these can be combined with ODN/AS(On Demand Nexthop/Automated(On-Demand Next Hop / Automated Steering) <xref target="RFC9256" format="default"/> for automated slice provisioning and traffic steering.</t> <t>Further details on how these tools can be used to createend to endend-to-end network slices are documented in <xreftarget="I-D.ali-spring-network-slicing-building-blocks"target="I-D.ali-teas-spring-ns-building-blocks" format="default"/>.</t> </section><!-- End section "Network Slicing Considerations" --><section anchor="c-plane" numbered="true" toc="default"> <name>Control Plane Considerations</name> <t>This document focuses on user-plane behavior and its independence from the control plane. While the SRv6 mobile user-plane behaviors may be utilized in emergingarchitectures, such asarchitectures (for example, those described in <xref target="I-D.gundavelli-dmm-mfa"format="default"/>,format="default"/> and <xref target="I-D.mhkk-dmm-srv6mup-architecture"format="default"/> for example, require control plane support for the user-plane,format="default"/>), this document does not impose any change to the existent mobility controlplane.</t>plane. </t> <t> <xref target="IANA" format="default"/> allocates SRv6SegmentEndpoint Behavior codepoints for the new behaviors defined in this document.</t> </section><!-- End section "Control Plane Considerations" --><section numbered="true" toc="default"> <name>Security Considerations</name> <t> The security considerations for Segment Routing are discussed in <xref target="RFC8402" format="default"/>. Morespecificallyspecifically, forSRv6SRv6, the security considerations and the mechanisms for securing an SR domain are discussed in <xref target="RFC8754" format="default"/>. Together, they describe the required security mechanisms that allow establishment of an SR domain of trust to operate SRv6-based services for internal traffic while preventing any external traffic from accessing or exploiting the SRv6-based services.</t> <t>The technology described in this document is applied to a mobile network that is within the SRDomain.domain. It's important to note theressemblanceresemblance between the SRDomaindomain and the 3GPP Packet Core Domain.</t> <t>This document introduces new SRv6 Endpoint Behaviors. Those behaviors operate on control plane information, including information within the received SRH payload on which the behaviors operate. Altering the behaviors requires that an attacker alter the SRDomaindomain as defined in <xref target="RFC8754" format="default"/>. Those behaviors do not need any special security consideration given thatit isthey are deployed within that SRDomain.</t>domain.</t> </section><!-- End section "Security Considerations" --><section anchor="IANA" numbered="true" toc="default"> <name>IANA Considerations</name><t> The<t>The following values have been allocatedwithinin the "SRv6 Endpoint Behaviors" <xref target="RFC8986" format="default"/>sub-registry belonging tosubregistry within the top-level "Segment Routing Parameters" registry:</t> <table anchor="endpoint_opcodes" align="center"> <name>SRv6 MobileUser-planeUser-Plane Endpoint Behavior Types</name> <thead> <tr> <th align="left">Value</th> <th align="center">Hex</th> <th align="center">Endpointbehavior</th>Behavior</th> <th align="center">Reference</th> <th align="center">Change Controller</th> </tr> </thead> <tbody> <tr> <td align="left">40</td> <td align="center">0x0028</td> <td align="center">End.MAP</td> <tdalign="center">[This.ID]</td>align="center">RFC 9433</td> <td align="center">IETF</td> </tr> <tr> <td align="left">41</td> <td align="center">0x0029</td> <td align="center">End.Limit</td> <tdalign="center">[This.ID]</td>align="center">RFC 9433</td> <td align="center">IETF</td> </tr> <tr> <td align="left">69</td> <td align="center">0x0045</td> <td align="center">End.M.GTP6.D</td> <tdalign="center">[This.ID]</td>align="center">RFC 9433</td> <td align="center">IETF</td> </tr> <tr> <td align="left">70</td> <td align="center">0x0046</td> <td align="center">End.M.GTP6.Di</td> <tdalign="center">[This.ID]</td>align="center">RFC 9433</td> <td align="center">IETF</td> </tr> <tr> <td align="left">71</td> <td align="center">0x0047</td> <td align="center">End.M.GTP6.E</td> <tdalign="center">[This.ID]</td>align="center">RFC 9433</td> <td align="center">IETF</td> </tr> <tr> <td align="left">72</td> <td align="center">0x0048</td> <td align="center">End.M.GTP4.E</td> <tdalign="center">[This.ID]</td>align="center">RFC 9433</td> <td align="center">IETF</td> </tr> </tbody> </table> </section><!-- End section "IANA Considerations" --> <section numbered="true" toc="default"> <name>Contributors</name> <t>Kentaro Ebisawa Toyota Motor Corporation Japan</t> <t>Email: ebisawa@toyota-tokyo.tech</t> <t>Tetsuya Murakami Arrcus, Inc. United States of America</t> <t>Email: tetsuya.ietf@gmail.com</t> <t>Charles E. Perkins Lupin Lodge United States of America</t> <t>Email: charliep@computer.org</t> <t>Jakub Horn Cisco Systems, Inc. United States of America</t> <t>Email: jakuhorn@cisco.com</t> </section> <!-- End section "Contributors" --> <section anchor="acknowledge" numbered="true" toc="default"> <name>Acknowledgements</name> <t>The authors would like to thank Daisuke Yokota, Bart Peirens, Ryokichi Onishi, Kentaro Ebisawa, Peter Bosch, Darren Dukes, Francois Clad, Sri Gundavelli, Sridhar Bhaskaran, Arashmid Akhavain, Ravi Shekhar, Aeneas Dodd-Noble, Carlos Jesus Bernardos, Dirk v. Hugo and Jeffrey Zhang for their useful comments of this work.</t> </section> <!-- End section "Acknowledgements" --></middle> <back> <displayreference target="I-D.ietf-spring-sr-service-programming" to="SR-SERV-PROG"/> <displayreference target="I-D.camarilloelmalky-springdmm-srv6-mob-usecases" to="SRV6-MOB-USECASES"/> <displayreference target="I-D.ali-teas-spring-ns-building-blocks" to="NETWORK-SLICE"/> <displayreference target="I-D.mhkk-dmm-srv6mup-architecture" to="MUP-SR-ARCH"/> <displayreference target="I-D.matsushima-spring-srv6-deployment-status" to="SRV6-DEPLOY-STAT"/> <displayreference target="I-D.kohno-dmm-srv6mob-arch" to="SRV6-MOB-ARCH-DISCUSS"/> <displayreference target="I-D.gundavelli-dmm-mfa" to="MFA"/> <displayreference target="I-D.murakami-dmm-user-plane-message-encoding" to="SRV6-UP-MSG-ENCODING"/> <displayreference target="I-D.ietf-spring-srv6-srh-compression" to="SRV6-SRH-COMPRESSION"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8402.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8986.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8754.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9256.xml"/> <reference anchor="TS.23501"> <front> <title>SystemArchitecturearchitecture for the 5GSystem</title> <author surname="3GPP" fullname="3GPP">System (5GS)</title> <author> <organization>3GPP</organization> </author> <datemonth="November" year="2017"/>month="June" year="2023"/> </front> <seriesInfo name="3GPPTS 23.501" value="15.0.0"/>TS" value="23.501"/> <refcontent>Version 17.9.0</refcontent> </reference> </references> <references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9087.xml"/> <xi:includehref="https://datatracker.ietf.org/doc/bibxml3/draft-ietf-lsr-flex-algo.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-ietf-spring-sr-service-programming.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-camarilloelmalky-springdmm-srv6-mob-usecases.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-ali-spring-network-slicing-building-blocks.xml"/> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-mhkk-dmm-srv6mup-architecture.xml"/>href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9350.xml"/> <!-- [I-D.ietf-spring-sr-service-programming] IESG state I-D Exists. Updated to long version because missing editor role for Clad and Xu. --> <reference anchor="I-D.ietf-spring-sr-service-programming" target="https://datatracker.ietf.org/doc/html/draft-ietf-spring-sr-service-programming-07"> <front> <title>Service Programming with Segment Routing</title> <author initials="F." surname="Clad" fullname="Francois Clad" role="editor"> <organization>Cisco Systems, Inc.</organization> </author> <author initials="X." surname="Xu" fullname="Xiaohu Xu" role="editor"> <organization>China Mobile</organization> </author> <author initials="C." surname="Filsfils" fullname="Clarence Filsfils"> <organization>Cisco Systems, Inc.</organization> </author> <author initials="D." surname="Bernier" fullname="Daniel Bernier"> <organization>Bell Canada</organization> </author> <author initials="C." surname="Li" fullname="Cheng Li"> <organization>Huawei</organization> </author> <author initials="B." surname="Decraene" fullname="Bruno Decraene"> <organization>Orange</organization> </author> <author initials="S." surname="Ma" fullname="Shaowen Ma"> <organization>Mellanox</organization> </author> <author initials="C." surname="Yadlapalli" fullname="Chaitanya Yadlapalli"> <organization>AT&T</organization> </author> <author initials="W." surname="Henderickx" fullname="Wim Henderickx"> <organization>Nokia</organization> </author> <author initials="S." surname="Salsano" fullname="Stefano Salsano"> <organization>Universita di Roma "Tor Vergata"</organization> </author> <date month="February" day="15" year="2023"/> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-spring-sr-service-programming-07"/> </reference> <!-- [I-D.camarilloelmalky-springdmm-srv6-mob-usecases] IESG state Expired. Updated to long version because missing editor role for Camarillo and Elmalky. --> <reference anchor="I-D.camarilloelmalky-springdmm-srv6-mob-usecases" target="https://datatracker.ietf.org/doc/html/draft-camarilloelmalky-springdmm-srv6-mob-usecases-02"> <front> <title>SRv6 Mobility Use-Cases</title> <author initials="P." surname="Camarillo" fullname="Pablo Camarillo" role="editor"> <organization>Cisco Systems, Inc.</organization> </author> <author initials="C." surname="Filsfils" fullname="Clarence Filsfils"> <organization>Cisco Systems, Inc.</organization> </author> <author initials="H." surname="Elmalky" fullname="Hani Elmalky" role="editor"> <organization>Individual</organization> </author> <author initials="S." surname="Matsushima" fullname="Satoru Matsushima"> <organization>SoftBank</organization> </author> <author initials="D." surname="Voyer" fullname="Daniel Voyer"> <organization>Bell Canada</organization> </author> <author initials="A." surname="Cui" fullname="Anna Cui"> <organization>AT&T</organization> </author> <author initials="B." surname="Peirens" fullname="Bart Peirens"> <organization>Proximus</organization> </author> <date month="August" day="15" year="2019"/> </front> <seriesInfo name="Internet-Draft" value="draft-camarilloelmalky-springdmm-srv6-mob-usecases-02"/> </reference> <!-- [I-D.ali-teas-spring-ns-building-blocks] IESG state Expired --> <xi:includehref="https://datatracker.ietf.org/doc/bibxml3/draft-matsushima-spring-srv6-deployment-status.xml"/>href="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.ali-teas-spring-ns-building-blocks.xml"/> <!-- [I-D.mhkk-dmm-srv6mup-architecture] IESG state I-D Exists --> <xi:includehref="https://datatracker.ietf.org/doc/bibxml3/draft-kohno-dmm-srv6mob-arch.xml"/>href="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.mhkk-dmm-srv6mup-architecture.xml"/> <!-- [I-D.matsushima-spring-srv6-deployment-status] IESG state Expired --> <xi:includehref="https://datatracker.ietf.org/doc/bibxml3/draft-gundavelli-dmm-mfa.xml"/>href="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.matsushima-spring-srv6-deployment-status.xml"/> <!-- [I-D.kohno-dmm-srv6mob-arch] IESG state Exists. Updated to long version because xi:include shows March 12, 2023, as the date when it's axtually march 9, 2023 --> <reference anchor="I-D.kohno-dmm-srv6mob-arch" target="https://datatracker.ietf.org/doc/html/draft-kohno-dmm-srv6mob-arch-06"> <front> <title>Architecture Discussion on SRv6 Mobile User plane</title> <author initials="M." surname="Kohno" fullname="Miya Kohno"> <organization>Cisco Systems, Inc.</organization> </author> <author initials="F." surname="Clad" fullname="Francois Clad"> <organization>Cisco Systems, Inc.</organization> </author> <author initials="P." surname="Camarillo" fullname="Pablo Camarillo"> <organization>Cisco Systems, Inc.</organization> </author> <author initials="Z." surname="Ali" fullname="Zafar Ali"> <organization>Cisco Systems, Inc.</organization> </author> <date month="March" day="9" year="2023"/> </front> <seriesInfo name="Internet-Draft" value="draft-kohno-dmm-srv6mob-arch-06"/> </reference> <!-- [I-D.gundavelli-dmm-mfa] IESG state Expired --> <xi:includehref="https://datatracker.ietf.org/doc/bibxml3/draft-murakami-dmm-user-plane-message-encoding.xml"/>href="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.gundavelli-dmm-mfa.xml"/> <!-- [I-D.murakami-dmm-user-plane-message-encoding] IESG state Expired --> <xi:includehref="https://datatracker.ietf.org/doc/bibxml3/draft-ietf-spring-srv6-srh-compression.xml"/>href="https://bib.ietf.org/public/rfc/bibxml3/reference.I-D.murakami-dmm-user-plane-message-encoding.xml"/> <!-- [I-D.ietf-spring-srv6-srh-compression] IESG state I-D Exists. Updated to long version because missing editor role for Cheng and Clad--> <reference anchor="I-D.ietf-spring-srv6-srh-compression" target="https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression-05"> <front> <title>Compressed SRv6 Segment List Encoding in SRH</title> <author initials="W." surname="Cheng" fullname="Weiqiang Cheng" role="editor"> <organization>China Mobile</organization> </author> <author initials="C." surname="Filsfils" fullname="Clarence Filsfils"> <organization>Cisco Systems</organization> </author> <author initials="Z." surname="Li" fullname="Zhenbin Li"> <organization>Huawei Technologies</organization> </author> <author initials="B." surname="Decraene" fullname="Bruno Decraene"> <organization>Orange</organization> </author> <author initials="F." surname="Clad" fullname="Francois Clad" role="editor"> <organization>Cisco Systems</organization> </author> <date month="June" day="20" year="2023"/> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-spring-srv6-srh-compression-05"/> </reference> <reference anchor="TS.29281"> <front> <title>General Packet Radio System (GPRS) Tunnelling Protocol User Plane (GTPv1-U)</title><author surname="3GPP" fullname="3GPP"><author> <organization>3GPP</organization> </author> <datemonth="December" year="2017"/>month="September" year="2022"/> </front> <seriesInfo name="3GPPTS 29.281" value="15.1.0"/>TS" value="29.281"/> <refcontent>Version 17.4.0</refcontent> </reference> <reference anchor="TS.38415"> <front><title>Draft Specification for 5GS container (TS 38.415)</title> <author surname="3GPP" fullname="3GPP"><title>PDU session user plane protocol</title> <author> <organization>3GPP</organization> </author> <datemonth="August" year="2017"/>month="April" year="2022"/> </front> <seriesInfo name="3GPPR3-174510" value="0.0.0"/>TS" value="38.415"/> <refcontent>Version 17.0.0</refcontent> </reference> </references> </references> <sectionanchor="Implementations" numbered="true"anchor="acknowledge" numbered="false" toc="default"><name>Implementations</name> <t>RFC Editor: Please remove this section prior<name>Acknowledgements</name> <t>The authors would like topublication.</t> <t>This document introduces new SRv6 Endpoint Behaviors. These behaviors have an open-source P4 implementation available in <eref target="https://github.com/ebiken/p4srv6"/>.</t> <t>Additionally, a full open-source implementationthank <contact fullname="Daisuke Yokota"/>, <contact fullname="Bart Peirens"/>, <contact fullname="Ryokichi Onishi"/>, <contact fullname="Kentaro Ebisawa"/>, <contact fullname="Peter Bosch"/>, <contact fullname="Darren Dukes"/>, <contact fullname="Francois Clad"/>, <contact fullname="Sri Gundavelli"/>, <contact fullname="Sridhar Bhaskaran"/>, <contact fullname="Arashmid Akhavain"/>, <contact fullname="Ravi Shekhar"/>, <contact fullname="Aeneas Dodd-Noble"/>, <contact fullname="Carlos Jesus Bernardos"/>, <contact fullname="Dirk von Hugo"/>, and <contact fullname="Jeffrey Zhang"/> for their useful comments of thisdocument is available in Linux Foundation FD.io VPP project since release 20.05. More information available here: <eref target="https://docs.fd.io/vpp/20.05/d7/d3c/srv6_mobile_plugin_doc.html"/>.</t> <t>There are also experimental implementations in M-CORD NGIC and Open Air Interface (OAI).</t>work.</t> </section> <section numbered="false" toc="default"> <name>Contributors</name> <contact fullname="Kentaro Ebisawa"> <organization>Toyota Motor Corporation</organization> <address> <postal> <country>Japan</country> </postal> <email>ebisawa@toyota-tokyo.tech</email> </address> </contact> <contact fullname="Tetsuya Murakami" > <organization>Arrcus, Inc.</organization> <address> <postal> <street></street> <city></city> <country>United States of America</country> </postal> <email>tetsuya.ietf@gmail.com</email> </address> </contact> <contact fullname="Charles E. Perkins" > <organization>Lupin Lodge</organization> <address> <postal> <street></street> <city></city> <country>United States of America</country> </postal> <email>charliep@computer.org</email> </address> </contact> <contact fullname="Jakub Horn" > <organization>Cisco Systems, Inc.</organization> <address> <postal> <street></street> <city></city> <country>United States of America</country> </postal> <email>jakuhorn@cisco.com</email> </address> </contact> </section><!-- End section "Implementations" --></back> </rfc>