<?xml version="1.0"encoding="utf-8"?> <!-- name="GENERATOR" content="github.com/mmarkdown/mmark Mmark Markdown Processor - mmark.miek.nl" -->encoding="UTF-8"?> <!DOCTYPE rfc [ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]> <rfcversion="3"xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902" docName="draft-ietf-oauth-dpop-16" number="9449" submissionType="IETF" category="std" consensus="true" xml:lang="en"xmlns:xi="http://www.w3.org/2001/XInclude" indexInclude="true" consensus="true">tocInclude="true" sortRefs="true" symRefs="true" updates="" obsoletes="" version="3"> <front> <title abbrev="OAuth DPoP">OAuth 2.0 DemonstratingProof-of-Possession at the Application Layer (DPoP)</title><seriesInfo value="draft-ietf-oauth-dpop-16" stream="IETF" status="standard" name="Internet-Draft"></seriesInfo>Proof of Possession (DPoP)</title> <seriesInfo name="RFC" value="9449"/> <author initials="D." surname="Fett" fullname="Daniel Fett"><organization>Authlete</organization><address><postal><street></street> </postal><email>mail@danielfett.de</email></address></author><author</address></author> <author initials="B." surname="Campbell" fullname="Brian Campbell"><organization>Ping Identity</organization><address><postal><street></street></postal><email>bcampbell@pingidentity.com</email> </address></author><author</postal><email>bcampbell@pingidentity.com</email></address></author> <author initials="J." surname="Bradley" fullname="John Bradley"><organization>Yubico</organization><address><postal><street></street> </postal><email>ve7jtb@ve7jtb.com</email></address></author><author</address></author> <author initials="T." surname="Lodderstedt" fullname="TorstenLodderstedt"><organization>yes.com</organization><address><postal><street></street> </postal><email>torsten@lodderstedt.net</email> </address></author><authorLodderstedt"><organization>Tuconic</organization><address><postal><street></street> </postal><email>torsten@lodderstedt.net</email></address></author> <author initials="M." surname="Jones" fullname="MichaelJones"><organization>independent</organization><address><postal><street></street>Jones"><organization>Self-Issued Consulting</organization><address><postal><street></street> </postal><email>michael_b_jones@hotmail.com</email> <uri>https://self-issued.info/</uri></address></author><author</address></author> <author initials="D." surname="Waite" fullname="David Waite"><organization>Ping Identity</organization><address><postal><street></street> </postal><email>david@alkaline-solutions.com</email></address></author><date/> <area>Security</area> <workgroup>Web Authorization Protocol</workgroup></address></author> <date year="2023" month="September"/> <area>sec</area> <workgroup>oauth</workgroup> <keyword>security</keyword> <keyword>oauth2</keyword> <abstract> <t>This document describes a mechanism for sender-constraining OAuth 2.0 tokens via a proof-of-possession mechanism on the application level. This mechanism allows for the detection of replay attacks with access and refresh tokens.</t> </abstract> </front> <middle> <section anchor="Introduction"><name>Introduction</name><t>DPoP (for Demonstrating Proof-of-Possession at the Application Layer)<t>Demonstrating Proof of Possession (DPoP) is an application-level mechanism for sender-constraining OAuth <xref target="RFC6749"></xref> access and refresh tokens. It enables a client to prove the possession of a public/private key pair by including a <tt>DPoP</tt> header in an HTTP request. The value of the header is a JSON Web Token (JWT) <xref target="RFC7519"></xref> that enables the authorization server to bind issued tokens to the public part of a client's key pair. Recipients of such tokens are then able to verify the binding of the token to the key pair that the client has demonstrated that it holds via the <tt>DPoP</tt> header, thereby providing some assurance that the client presenting the token also possesses the private key. In other words, the legitimate presenter of the token is constrained to be the sender that holds andcan proveproves possession of the private part of the key pair.</t> <t>The mechanism specified herein can be used in cases where other methods of sender-constraining tokens that utilize elements of the underlying secure transport layer, such as <xref target="RFC8705"></xref> or <xref target="I-D.ietf-oauth-token-binding"></xref>, are not available or desirable. For example, due to a sub-par user experience of TLS client authentication in user agents and a lack of support for HTTP token binding, neither mechanism can be used if an OAuth client is an application that is dynamically downloaded and executed in a web browser (sometimes referred to as a"single-page application"). Applications"single-page application"). Additionally, applications that are installed and run directly on a user's device areanother examplewell positioned to benefit from DPoP-bound tokenstothat guard against the misuse of tokens by a compromised or malicious resource. Such applications often have dedicated protected storage for cryptographic keys.</t> <t>DPoP can be used to sender-constrain access tokens regardless of the client authentication method employed, but DPoP itself is not used for client authentication. DPoP can also be used to sender-constrain refresh tokens issued to public clients (those without authentication credentials associated with the <tt>client_id</tt>).</t> <section anchor="conventions-and-terminology"><name>Conventions and Terminology</name><t>The<t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xreftarget="RFC2119"></xref>target="RFC2119"/> <xreftarget="RFC8174"></xref>target="RFC8174"/> when, and only when, they appear in all capitals, as shownhere.</t>here. </t> <t>This specification uses the Augmented Backus-Naur Form (ABNF) notation of <xref target="RFC5234"></xref>.</t> <t>This specification uses the terms"access token", "refresh token", "authorization server", "resource server", "authorization endpoint", "authorization request", "authorization response", "token endpoint", "grant type", "access token request", "access token response", "client", "public client","access token", "refresh token", "authorization server", "resource server", "authorization endpoint", "authorization request", "authorization response", "token endpoint", "grant type", "access token request", "access token response", "client", "public client", and"confidential client""confidential client" defined byThe"The OAuth 2.0 AuthorizationFrameworkFramework" <xref target="RFC6749"></xref>.</t> <t>The terms"request", "response", "header field","request", "response", "header field", and"target URI""target URI" are imported from <xref target="RFC9110"></xref>.</t> <t>The terms"JOSE""JOSE" and"JOSE header""JOSE Header" are imported from <xref target="RFC7515"></xref>.</t> <t>This document contains non-normative examples of partial and complete HTTP messages. Some examples use a single trailing backslash to indicate line wrapping for long values, as per <xref target="RFC8792"></xref>. The character and leading spaces on wrapped lines are not part of the value.</t> </section> </section> <section anchor="objective"><name>Objectives</name> <t>The primary aim of DPoP is to prevent unauthorized or illegitimate parties from using leaked or stolen access tokens, by binding a token to a public key upon issuance and requiring that the client proves possession of the corresponding private key when using the token. This constrains the legitimate sender of the token to only the party with access to the private key and gives the server receiving the token added assurances that the sender is legitimately authorized to use it.</t> <t>Access tokens that are sender-constrained via DPoP thus stand in contrast to the typical bearer token, which can be used by any party in possession of such a token. Although protections generally exist to prevent unintended disclosure of bearer tokens, unforeseen vectors for leakage have occurred due to vulnerabilities and implementation issues in other layers in the protocol or software stack(CRIME(see, e.g., Compression Ratio Info-leak Made Easy (CRIME) <xref target="CRIME"></xref>,BREACHBrowser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) <xref target="BREACH"></xref>, Heartbleed <xref target="Heartbleed"></xref>, and the Cloudflare parser bug <xreftarget="Cloudbleed"></xref> are some examples).target="Cloudbleed"></xref>). There have also been numerous published token theft attacks on OAuth implementations themselves (<xref target="GitHub.Tokens"></xref>asis just onehigh profilehigh-profile example). DPoP provides a general defense in depth against the impact of unanticipated token leakage. DPoP is not, however, a substitute for a secure transport andMUST<bcp14>MUST</bcp14> always be used in conjunction with HTTPS.</t> <t>The very nature of the typical OAuth protocol interaction necessitates that the client discloses the access token to the protected resources that it accesses. The attacker model in <xref target="I-D.ietf-oauth-security-topics"></xref> describes cases where a protected resource might be counterfeit,maliciousmalicious, or compromised and plays received tokens against other protected resources to gain unauthorized access.Audience restrictedAudience-restricted access tokens (e.g., using the JWT <xref target="RFC7519"></xref> <tt>aud</tt> claim) can prevent suchmisuse, however,misuse. However, doing so in practice has proven to be prohibitively cumbersome for many deployments(even despite(despite extensions such as <xref target="RFC8707"></xref>). Sender-constraining access tokens is a more robust and straightforward mechanism to prevent such token replay at a differentendpointendpoint, and DPoP is an accessibleapplication layerapplication-layer means of doing so.</t> <t>Due to the potential for cross-site scripting (XSS), browser-based OAuth clients bring to bear added considerations with respect to protecting tokens. The most straightforward XSS-based attack is for an attacker to exfiltrate a token and use it themselves completely independent of the legitimate client. A stolen access token is used for protected resourceaccessaccess, and a stolen refresh token is used for obtaining new access tokens. If the private key is non-extractable (as is possible with <xref target="W3C.WebCryptoAPI"></xref>), DPoP renders exfiltrated tokens alone unusable.</t> <t>XSS vulnerabilities also allow an attacker to execute code in the context of the browser-based client application and maliciously use a token indirectly through the client. That execution context has access to utilize the signingkey and thuskey; thus, it can produce DPoP proofs to use in conjunction with the token. At this applicationlayerlayer, there is most likely no feasible defense against this threat except generally preventingXSS, thereforeXSS; therefore, it is considered out of scope for DPoP.</t> <t>Malicious XSS code executed in the context of the browser-based client application is also in a position to create DPoP proofs with timestamp values in the future and exfiltrate them in conjunction with a token. These stolen artifacts can later be used independent of the client application to access protected resources. To prevent this, servers can optionally require clients to include a server-chosen value into the proof that cannot be predicted by an attacker (nonce). In the absence of the optional nonce, the impact of pre-computed DPoP proofs is limited somewhat by the proof being bound to an access token on protected resource access. Because a proof covering an access token that does not yet exist cannot feasibly be created, access tokens obtained with an exfiltrated refresh token and pre-computed proofs will be unusable.</t> <t>Additional security considerations are discussed in <xref target="Security"></xref>.</t> </section> <section anchor="concept"><name>Concept</name> <t>The main data structure introduced by this specification is a DPoP proofJWT, described in detail below, whichJWT that is sent as a header in an HTTPrequest.request, as described in detail below. A client uses a DPoP proof JWT to prove the possession of a private key corresponding to a certain public key.</t> <t>Roughly speaking, a DPoP proof is a signatureover someover:</t> <ul> <li>some data of the HTTP request to which it isattached, a timestamp, aattached,</li> <li>a timestamp,</li> <li>a uniqueidentifier, anidentifier,</li> <li>an optional server-provided nonce,and aand</li> <li>a hash of the associated access token when an access token is present within therequest.</t>request.</li> </ul> <figure anchor="basic-flow"><name>Basic DPoP Flow </name><sourcecode type="ascii-art">+--------+<artwork type="ascii-art"><![CDATA[ +--------+ +---------------+ | |--(A)-- Token Request------------------->|------------------->| | | Client | (DPoP Proof) | Authorization | | | | Server | ||<-(B)-- DPoP-bound|<-(B)-- DPoP-Bound Access Token ----------| | | | (token_type=DPoP) +---------------+ | | | | | | +---------------+ | |--(C)--DPoP-boundDPoP-Bound Access Token--------->|--------->| | | | (DPoP Proof) | Resource | | | | Server | ||<-(D)--|<-(D)-- Protected Resource ---------------| | | | +---------------+ +--------+</sourcecode>]]></artwork> </figure> <t>The basic steps of an OAuth flow with DPoP (without the optional nonce) are shown in <xreftarget="basic-flow"></xref>:</t> <ul spacing="compact"> <li>(A) Intarget="basic-flow"></xref>.</t> <ol type="A" spacing="normal"> <li>In theToken Request,token request, the client sends an authorization grant (e.g., an authorization code, refresh token,etc.)<br />etc.) to the authorization server in order to obtain an access token (and potentially a refresh token). The client attaches a DPoP proof to the request in an HTTP header.</li><li>(B) The<li>The authorization server binds (sender-constrains) the access token to the public key claimed by the client in the DPoP proof; that is, the access token cannot be used without proving possession of the respective private key. If a refresh token is issued to a public client, ittoois also bound to the public key of the DPoP proof.</li><li>(C) To<li>To use the access token, the client has to prove possession of the private key by, again, adding a header to the request that carries a DPoP proof for that request. The resource server needs to receive information about the public key to which the access token is bound. This information may be encoded directly into the access token (forJWT structuredJWT-structured access tokens) or provided via token introspection endpoint (not shown). The resource server verifies that the public key to which the access token is bound matches the public key of the DPoP proof. It also verifies that the access token hash in the DPoP proof matches the access token presented in the request.</li><li>(D) The<li>The resource server refuses to serve the request if the signature check fails or if the data in the DPoP proof is wrong, e.g., the target URI does not match the URI claim in the DPoP proof JWT. The access token itself, of course, must also be valid in all other respects.</li></ul></ol> <t>The DPoP mechanism presented herein is not a client authentication method. In fact, a primary use case of DPoP is for public clients (e.g.,single pagesingle-page applications and applications on a user's device) that do not use client authentication. Nonetheless, DPoP is designedsuch that it isto be compatible with <tt>private_key_jwt</tt> and all other client authentication methods.</t> <t>DPoP does not directly ensure messageintegrityintegrity, but it relies on the TLS layer for that purpose. See <xref target="Security"></xref> for details.</t> </section> <section anchor="the-proof"><name>DPoP Proof JWTs</name> <t>DPoP introduces the concept of a DPoP proof, which is a JWT created by the client and sent with an HTTP request using the <tt>DPoP</tt> header field. Each HTTP request requires a unique DPoP proof.</t> <t>A valid DPoP proof demonstrates to the server that the client holds the private key that was used to sign the DPoP proof JWT. This enables authorization servers to bind issued tokens to the corresponding public key (as described in <xref target="access-token-request"></xref>) andforenables resource servers to verify the key-binding of tokens that it receives (see <xref target="http-auth-scheme"></xref>), which prevents said tokens from being used by any entity that does not have access to the private key.</t> <t>The DPoP proof demonstrates possession of a key and, by itself, is not an authentication or access control mechanism. When presented in conjunction with a key-bound access token as described in <xref target="http-auth-scheme"></xref>, the DPoP proof provides additional assurance about the legitimacy of the client to present the access token. However, a valid DPoP proof JWT is not sufficient alone to make access control decisions.</t> <section anchor="the-dpop-http-header"><name>The DPoP HTTP Header</name> <t>A DPoP proof is included in an HTTP request using the following request header field.</t> <dl spacing="compact"><dt><tt>DPoP</tt></dt><dt><tt>DPoP</tt>:</dt> <dd>A JWT that adheres to the structure and syntax of <xref target="DPoP-Proof-Syntax"></xref>.</dd> </dl> <t><xref target="dpop-proof-jwt"></xref> shows an example DPoP HTTP headerfield (with '\'field. The example uses "\" line wrapping perRFC 8792).</t><xref target="RFC8792"/>.</t> <figure anchor="dpop-proof-jwt"><name>Example <tt>DPoP</tt>headerHeader </name><artwork>DPoP:<sourcecode type="http-message">DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\ VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\ nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\ QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\ oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\ WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg\ 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg</artwork></sourcecode> </figure> <t>Note that per <xreftarget="RFC9110"></xref>target="RFC9110"></xref>, header field names arecase-insensitive; socase insensitive; thus, <tt>DPoP</tt>, <tt>DPOP</tt>, <tt>dpop</tt>, etc., are all valid and equivalent header field names.CaseHowever, case is significant in the header fieldvalue, however.</t>value.</t> <t>The <tt>DPoP</tt> HTTP header field value uses the<tt>token68</tt>token68 syntax defined inSection 11.2 of<xreftarget="RFC9110"></xref> (repeatedtarget="RFC9110" sectionFormat="of" section="11.2"></xref> and is repeated below in <xref target="dpop-header-abnf"></xref> for ease ofreference).</t>reference.</t> <figure anchor="dpop-header-abnf"><name>DPoPheader field ABNF </name> <artwork>Header Field ABNF</name> <sourcecode type="abnf"><![CDATA[ DPoP = token68 token68 = 1*( ALPHA / DIGIT /"-""-" /".""." /"_""_" /"~""~" /"+""+" /"/""/" )*"=" </artwork> </figure>*"=" ]]></sourcecode></figure> </section> <section anchor="DPoP-Proof-Syntax"><name>DPoP Proof JWT Syntax</name> <t>A DPoP proof is a JWT(<xref target="RFC7519"></xref>)<xref target="RFC7519"></xref> that is signed (using JSON Web Signature (JWS) <xref target="RFC7515"></xref>) with a private key chosen by the client (see below). The JOSEheaderHeader of a DPoP JWTMUST<bcp14>MUST</bcp14> contain at least the following parameters:</t><ul spacing="compact"> <li><tt>typ</tt>:<dl spacing="normal"> <dt><tt>typ</tt>:</dt><dd>A field with the value <tt>dpop+jwt</tt>, which explicitly types the DPoP proof JWT as recommended in <xref target="RFC8725" sectionFormat="of"relative="#" section="3.11"></xref>.</li> <li><tt>alg</tt>: ansection="3.11"></xref>.</dd> <dt><tt>alg</tt>:</dt><dd>An identifier for a JWS asymmetric digital signature algorithm from <xref target="IANA.JOSE.ALGS"></xref>.MUST NOTIt <bcp14>MUST NOT</bcp14> be <tt>none</tt> or an identifier for a symmetric algorithm(MAC).</li> <li><tt>jwk</tt>: representing(Message Authentication Code (MAC)).</dd> <dt><tt>jwk</tt>:</dt><dd>Represents the public key chosen by theclient,client in JSON Web Key (JWK) <xreftarget="RFC7517"></xref> format,target="RFC7517"/> format as defined inSection 4.1.3 of<xreftarget="RFC7515"></xref>. MUST NOTtarget="RFC7515" sectionFormat="of" section="4.1.3"></xref>. It <bcp14>MUST NOT</bcp14> contain a privatekey.</li> </ul>key.</dd> </dl> <t>The payload of a DPoP proofMUST<bcp14>MUST</bcp14> contain at least the following claims:</t><ul spacing="compact"> <li><tt>jti</tt>: Unique<dl spacing="normal"> <dt><tt>jti</tt>:</dt><dd>Unique identifier for the DPoP proof JWT. The valueMUST<bcp14>MUST</bcp14> be assigned such that there is a negligible probability that the same value will be assigned to any other DPoP proof used in the same context during the time window of validity. Such uniqueness can be accomplished by encoding (base64url or any other suitable encoding) at least 96 bits of pseudorandom data or by using a version 4UUIDUniversally Unique Identifier (UUID) string according to <xref target="RFC4122"></xref>. The <tt>jti</tt> can be used by the server for replay detection andprevention,prevention; see <xreftarget="Token_Replay"></xref>.</li> <li><tt>htm</tt>: Thetarget="Token_Replay"></xref>.</dd> <dt><tt>htm</tt>:</dt><dd>The value of the HTTP method(Section 9.1 of <xref target="RFC9110"></xref>)(<xref target="RFC9110" sectionFormat="of" section="9.1"></xref>) of the request to which the JWT isattached.</li> <li><tt>htu</tt>: Theattached.</dd> <dt><tt>htu</tt>:</dt><dd>The HTTP target URI (<xref target="RFC9110" sectionFormat="of"relative="#" section="7.1"></xref>), without query and fragment parts,section="7.1"></xref>) of the request to which the JWT isattached.</li> <li><tt>iat</tt>: Creationattached, without query and fragment parts.</dd> <dt><tt>iat</tt>:</dt><dd>Creation timestamp of the JWT (<xreftarget="RFC7519"></xref>, section 4.1.6]).</li> </ul>target="RFC7519" sectionFormat="of" section="4.1.6"></xref>).</dd> </dl> <t>When the DPoP proof is used in conjunction with the presentation of an access token in protected resourceaccess, seeaccess (see <xreftarget="protected-resource-access"></xref>,target="protected-resource-access"></xref>), the DPoP proofMUST<bcp14>MUST</bcp14> also contain the following claim:</t><ul spacing="compact"> <li><tt>ath</tt>: hash<dl spacing="normal"> <dt><tt>ath</tt>:</dt><dd>Hash of the access token. The valueMUST<bcp14>MUST</bcp14> be the result of a base64url encoding (as defined in <xref target="RFC7515" sectionFormat="of"relative="#"section="2"></xref>) the SHA-256 <xref target="SHS"></xref> hash of the ASCII encoding of the associated access token'svalue.</li> </ul>value.</dd> </dl> <t>When the authentication server or resource server provides a <tt>DPoP-Nonce</tt> HTTP header in a response (see Sections <xreftarget="ASNonce"></xref>,target="ASNonce" format="counter"></xref> and <xreftarget="RSNonce"></xref>),target="RSNonce" format="counter"></xref>), the DPoP proofMUST<bcp14>MUST</bcp14> also contain the following claim:</t><ul spacing="compact"> <li><tt>nonce</tt>: A<dl spacing="normal"> <dt><tt>nonce</tt>:</dt><dd>A recent nonce provided via the <tt>DPoP-Nonce</tt> HTTPheader.</li> </ul>header.</dd> </dl> <t>A DPoP proofMAY<bcp14>MAY</bcp14> contain other JOSEheader parametersHeader Parameters or claims as defined by extension, profile, ordeployment specificdeployment-specific requirements.</t> <t><xref target="dpop-proof"></xref> is a conceptual example showing the decoded content of the DPoP proof in <xref target="dpop-proof-jwt"></xref>. The JSON of the JWT header and payload are shown, but the signature part is omitted. As usual, line breaks and extra spaces are included for formatting and readability.</t> <figure anchor="dpop-proof"><name>Example JWTcontentContent of a <tt>DPoP</tt>proof </name> <artwork>{ "typ":"dpop+jwt", "alg":"ES256", "jwk":Proof</name> <sourcecode>{ "typ":"dpop+jwt", "alg":"ES256", "jwk": {"kty":"EC", "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs", "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA", "crv":"P-256""kty":"EC", "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs", "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA", "crv":"P-256" } } . {"jti":"-BwC3ESc6acc2lTc", "htm":"POST", "htu":"https://server.example.com/token", "iat":1562262616"jti":"-BwC3ESc6acc2lTc", "htm":"POST", "htu":"https://server.example.com/token", "iat":1562262616 }</artwork></sourcecode> </figure> <t>Of the HTTP request, only the HTTP method and URI are included in the DPoPJWT, and thereforeJWT; therefore, only these two message parts are covered by the DPoP proof. The idea is to sign just enough of the HTTP data to provide reasonableproof-of-possessionproof of possession with respect to the HTTP request. This design approach of using only a minimal subset of the HTTP header data is to avoid the substantial difficulties inherent in attempting to normalize HTTP messages. Nonetheless, DPoP proofs can be extended to contain other information of the HTTP request (see also <xref target="request_integrity"></xref>).</t> </section> <section anchor="checking"><name>Checking DPoP Proofs</name> <t>To validate a DPoP proof, the receiving serverMUST<bcp14>MUST</bcp14> ensurethat</t>the following:</t> <ol spacing="compact"><li>there<li>There is not more than one <tt>DPoP</tt> HTTP request headerfield,</li> <li>thefield.</li> <li>The DPoP HTTP request header field value is a single and well-formedJWT,</li> <li>allJWT.</li> <li>All required claims per <xref target="DPoP-Proof-Syntax"></xref> are contained in theJWT,</li> <li>theJWT.</li> <li>The <tt>typ</tt> JOSEheader parameterHeader Parameter has the value<tt>dpop+jwt</tt>,</li> <li>the<tt>dpop+jwt</tt>.</li> <li>The <tt>alg</tt> JOSEheader parameterHeader Parameter indicates a registered asymmetric digital signature algorithm <xref target="IANA.JOSE.ALGS"></xref>, is not <tt>none</tt>, is supported by the application, and is acceptable per localpolicy,</li> <li>thepolicy.</li> <li>The JWT signature verifies with the public key contained in the <tt>jwk</tt> JOSEheader parameter,</li> <li>theHeader Parameter.</li> <li>The <tt>jwk</tt> JOSEheader parameterHeader Parameter does not contain a privatekey,</li> <li>thekey.</li> <li>The <tt>htm</tt> claim matches the HTTP method of the currentrequest,</li> <li>therequest.</li> <li>The <tt>htu</tt> claim matches the HTTP URI value for the HTTP request in which the JWT was received, ignoring any query and fragmentparts,</li> <li>ifparts.</li> <li>If the server provided a nonce value to the client, the <tt>nonce</tt> claim matches the server-provided noncevalue,</li> <li>thevalue.</li> <li>The creation time of the JWT, as determined by either the <tt>iat</tt> claim or a server managed timestamp via the <tt>nonce</tt> claim, is within an acceptable window (see <xreftarget="Token_Replay"></xref>),</li> <li><t>iftarget="Token_Replay"></xref>).</li> <li><t>If presented to a protected resource in conjunction with an access token,</t> <ul spacing="compact"> <li>ensure that the value of the <tt>ath</tt> claim equals the hash of that accesstoken,</li>token, and</li> <li>confirm that the public key to which the access token is bound matches the public key from the DPoP proof.</li> </ul></li> </ol> <t>To reduce the likelihood of false negatives, serversSHOULD<bcp14>SHOULD</bcp14> employSyntax-Based Normalizationsyntax-based normalization (<xref target="RFC3986" sectionFormat="of"relative="#"section="6.2.2"></xref>) andScheme-Based Normalizationscheme-based normalization (<xref target="RFC3986" sectionFormat="of"relative="#"section="6.2.3"></xref>) before comparing the <tt>htu</tt> claim.</t> <t>These checks may be performed in any order.</t> </section> </section> <section anchor="access-token-request"><name>DPoP Access Token Request</name> <t>To request an access token that is bound to a public key using DPoP, the clientMUST<bcp14>MUST</bcp14> provide a valid DPoP proof JWT in a <tt>DPoP</tt> header when making an access token request to the authorization server's token endpoint. This is applicable for all access token requests regardless of grant type(including, for example,(e.g., the common <tt>authorization_code</tt> and <tt>refresh_token</tt> grant typesbut alsoand extension grants such as the JWT authorization grant <xref target="RFC7523"></xref>). The HTTP request shown in <xref target="token-request-code"></xref> illustrates such an access token request using an authorization code grant with a DPoP proof JWT in the <tt>DPoP</tt>header (with '\'header. <xref target="token-request-code"/> uses "\" line wrapping perRFC 8792).</t><xref target="RFC8792"/>.</t> <figure anchor="token-request-code"><name>Token Request for a DPoPsender-constrained token usingSender-Constrained Token Using anauthorization code </name> <artwork>POSTAuthorization Code</name> <sourcecode type="http-message"><![CDATA[POST /token HTTP/1.1 Host: server.example.com Content-Type: application/x-www-form-urlencoded DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\ VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\ nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\ QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\ oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\ WF0IjoxNTYyMjYyNjE2fQ.2-GxA6T8lP4vfrg8v-FdWP0A0zdrj8igiMLvqRMUvwnQg\ 4PtFLbdLXiOSsX0x7NVY-FNyJK70nfbV37xRZT3Lg grant_type=authorization_code\&client_id=s6BhdRkqt\ &code=SplxlOBeZQQYbYS6WxSbIA &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\ &code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz- </artwork>&client_id=s6BhdRkqt\ &code=SplxlOBeZQQYbYS6WxSbIA &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\ &code_verifier=bEaL42izcC-o-xBk0K2vuJ6U-y1p9r_wW2dFWIWgjz- ]]></sourcecode> </figure> <t>The <tt>DPoP</tt> HTTP header fieldMUST<bcp14>MUST</bcp14> contain a valid DPoP proof JWT. If the DPoP proof is invalid, the authorization server issues an error response perSection 5.2 of<xreftarget="RFC6749"></xref>target="RFC6749" sectionFormat="of" section="5.2"></xref> with <tt>invalid_dpop_proof</tt> as the value of the <tt>error</tt> parameter.</t> <t>To sender-constrain the accesstoken,token after checking the validity of the DPoP proof, the authorization server associates the issued access token with the public key from the DPoP proof, which can be accomplished as described in <xref target="Confirmation"></xref>. A <tt>token_type</tt> of <tt>DPoP</tt>MUST<bcp14>MUST</bcp14> be included in the access token response to signal to the client that the access token was bound to its DPoP key and can be used as described in <xref target="http-auth-scheme"></xref>. The example response shown in <xref target="token-response"></xref> illustrates such a response.</t> <figure anchor="token-response"><name>Access Token Response </name><artwork>HTTP/1.1<sourcecode type="http-message">HTTP/1.1 200 OK Content-Type: application/json Cache-Control: no-store {"access_token": "Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU", "token_type": "DPoP", "expires_in":"access_token": "Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU", "token_type": "DPoP", "expires_in": 2677,"refresh_token": "Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g""refresh_token": "Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g" }</artwork></sourcecode> </figure> <t>The example response in <xref target="token-response"></xref> includes a refresh tokenwhichthat the client can use to obtain a new access token when the previous one expires. Refreshing an access token is a token request using the <tt>refresh_token</tt> grant type made to the authorization server's token endpoint. As with all access token requests, the client makes it a DPoP request by including a DPoP proof, as shown inthe<xreftarget="token-request-rt"></xref> example (with '\'target="token-request-rt"></xref>. <xref target="token-request-rt"/> uses "\" line wrapping perRFC 8792).</t><xref target="RFC8792"/>.</t> <figure anchor="token-request-rt"><name>Token Request for aDPoP-boundDPoP-Bound TokenusingUsing a Refresh Token </name><artwork>POST<sourcecode type="http-message"><![CDATA[POST /token HTTP/1.1 Host: server.example.com Content-Type: application/x-www-form-urlencoded DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\ VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\ nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\ QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiItQndDM0VTYzZhY2MybFRjIiwiaHRtIj\ oiUE9TVCIsImh0dSI6Imh0dHBzOi8vc2VydmVyLmV4YW1wbGUuY29tL3Rva2VuIiwia\ WF0IjoxNTYyMjY1Mjk2fQ.pAqut2IRDm_De6PR93SYmGBPXpwrAk90e8cP2hjiaG5Qs\ GSuKDYW7_X620BxqhvYC8ynrrvZLTk41mSRroapUA grant_type=refresh_token\&client_id=s6BhdRkqt\ &refresh_token=Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g </artwork>&client_id=s6BhdRkqt\ &refresh_token=Q..Zkm29lexi8VnWg2zPW1x-tgGad0Ibc3s3EwM_Ni4-g ]]></sourcecode> </figure> <t>When an authorization server supporting DPoP issues a refresh token to a public client that presents a valid DPoP proof at the token endpoint, the refresh tokenMUST<bcp14>MUST</bcp14> be bound to the respective public key. The bindingMUST<bcp14>MUST</bcp14> be validated when the refresh token is later presented to get new access tokens. As a result, such a clientMUST<bcp14>MUST</bcp14> present a DPoP proof for the same key that was used to obtain the refresh token each time that refresh token is used to obtain a new access token. The implementation details of the binding of the refresh token are at the discretion of the authorization server. Since the authorization server both produces and validates its refresh tokens, there is no interoperability consideration in the specific details of the binding.</t> <t>An authorization serverMAY<bcp14>MAY</bcp14> elect to issue access tokenswhichthat are not DPoP bound, which is signaled to the client with a value of <tt>Bearer</tt> in the <tt>token_type</tt> parameter of the access token response per <xref target="RFC6750"></xref>. For a public client that is also issued a refresh token, this has the effect of DPoP-binding the refresh token alone, which can improve the security posture even when protected resources are not updated to support DPoP.</t> <t>If the access token response contains a different <tt>token_type</tt> value than <tt>DPoP</tt>, the access token protection provided by DPoP is not given. The clientMUST<bcp14>MUST</bcp14> discard the response in thiscase,case if this protection is deemed important for the security of the application; otherwise,itthe client may continue as in a regular OAuth interaction.</t> <t>Refresh tokens issued to confidential clients (those having established authentication credentials with the authorization server) are not bound to the DPoP proof public key because they are already sender-constrained with a different existing mechanism. The OAuth 2.0 Authorization Framework <xref target="RFC6749"></xref> already requires that an authorization server bind refresh tokens to the client to which they were issued and that confidential clients authenticate to the authorization server when presenting a refresh token. As a result, such refresh tokens are sender-constrained by way of the client identifier and the associated authentication requirement. This existing sender-constraining mechanism is more flexible (e.g., it allows credential rotation for the client without invalidating refresh tokens) than binding directly to a particular public key.</t> <section anchor="as-meta"><name>Authorization Server Metadata</name> <t>This document introduces the following authorization server metadata <xref target="RFC8414"></xref> parameter to signal support for DPoP in general and the specific JWS <tt>alg</tt> values the authorization server supports for DPoP proof JWTs.</t> <dl spacing="compact"><dt><tt>dpop_signing_alg_values_supported</tt></dt><dt><tt>dpop_signing_alg_values_supported</tt>:</dt> <dd>A JSON array containing a list of the JWS <tt>alg</tt> values (from the <xref target="IANA.JOSE.ALGS"></xref> registry) supported by the authorization server for DPoP proof JWTs.</dd> </dl> </section> <section anchor="client-meta"><name>Client Registration Metadata</name> <t>The Dynamic Client Registration Protocol <xref target="RFC7591"></xref> defines an API for dynamically registering OAuth 2.0 client metadata with authorization servers. The metadata defined by <xref target="RFC7591"></xref>, and registered extensions to it, also imply a general data model for clients that is useful for authorization server implementations even when the Dynamic Client Registration Protocol isn't in play. Such implementations will typically have some sort of user interface available for managing client configuration.</t> <t>This document introduces the following client registration metadata <xref target="RFC7591"></xref> parameter to indicate that the client always uses DPoP when requesting tokens from the authorization server.</t> <dl spacing="compact"><dt><tt>dpop_bound_access_tokens</tt></dt> <dd>Boolean<dt><tt>dpop_bound_access_tokens</tt>:</dt> <dd>A boolean value specifying whether the client always uses DPoP for token requests. If omitted, the default value is <tt>false</tt>.</dd> </dl> <t>If the value is <tt>true</tt>, the authorization serverMUST<bcp14>MUST</bcp14> reject token requests fromthisthe client that do not contain the DPoP header.</t> </section> </section> <section anchor="Confirmation"><name>Public Key Confirmation</name> <t>Resource serversMUST<bcp14>MUST</bcp14> be able to reliably identify whether an access token is DPoP-bound and ascertain sufficient information to verify the binding to the public key of the DPoP proof (see <xref target="http-auth-scheme"></xref>). Such a binding is accomplished by associating the public key with the token in a way that can be accessed by the protected resource, such as embedding the JWK hash in the issued access token directly, using the syntax described in <xref target="jwk-thumb-jwt"></xref>, or through token introspection as described in <xref target="jwk-thumb-intro"></xref>. Other methods of associating a public key with an access token arepossible,possible per an agreement by the authorization server and the protectedresource, butresource; however, they are beyond the scope of this specification.</t> <t>Resource servers supporting DPoPMUST<bcp14>MUST</bcp14> ensure that the public key from the DPoP proof matches the one bound to the access token.</t> <section anchor="jwk-thumb-jwt"><name>JWK Thumbprint Confirmation Method</name> <t>When access tokens are represented as JWTs <xref target="RFC7519"></xref>, the public key information is represented using the <tt>jkt</tt> confirmation method member defined herein. To convey the hash of a public key in a JWT, this specification introduces the following JWT Confirmation Method <xref target="RFC7800"></xref> member for use under the <tt>cnf</tt> claim.</t> <dl spacing="compact"><dt><tt>jkt</tt></dt><dt><tt>jkt</tt>:</dt> <dd>JWK SHA-256 ThumbprintConfirmation Method.confirmation method. The value of the <tt>jkt</tt> memberMUST<bcp14>MUST</bcp14> be the base64url encoding (as defined in <xref target="RFC7515"></xref>) of the JWK SHA-256 Thumbprint (according to <xref target="RFC7638"></xref>) of the DPoP public key (in JWK format) to which the access token is bound.</dd> </dl> <t>The following example JWT in <xref target="cnf-claim-jwt"></xref> with a decoded JWT payload shown in <xref target="cnf-claim"></xref> contains a <tt>cnf</tt> claim with the <tt>jkt</tt> JWK Thumbprint confirmation method member. The <tt>jkt</tt> value in these examples is the hash of the public key from the DPoP proofs in the examples shown in <xref target="access-token-request"></xref>.(TheThe example uses'\'"\" line wrapping perRFC 8792.)</t><xref target="RFC8792"/>.</t> <figure anchor="cnf-claim-jwt"><name>JWTcontainingContaining a JWK SHA-256 Thumbprint Confirmation </name><artwork>eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWIiOiJzb21lb25lQGV4YW1\<sourcecode type="jwt">eyJhbGciOiJFUzI1NiIsImtpZCI6IkJlQUxrYiJ9.eyJzdWIiOiJzb21lb25lQGV4YW1\ wbGUuY29tIiwiaXNzIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJuYmYiOjE\ 1NjIyNjI2MTEsImV4cCI6MTU2MjI2NjIxNiwiY25mIjp7ImprdCI6IjBaY09DT1JaTll\ 5LURXcHFxMzBqWnlKR0hUTjBkMkhnbEJWM3VpZ3VBNEkifX0.3Tyo8VTcn6u_PboUmAO\ YUY1kfAavomW_YwYMkmRNizLJoQzWy2fCo79Zi5yObpIzjWb5xW4OGld7ESZrh0fsrA</artwork></sourcecode> </figure> <figure anchor="cnf-claim"><name>JWT Claims Set with a JWK SHA-256 Thumbprint Confirmation </name><artwork>{ "sub":"someone@example.com", "iss":"https://server.example.com", "nbf":1562262611, "exp":1562266216, "cnf":<sourcecode type="json">{ "sub":"someone@example.com", "iss":"https://server.example.com", "nbf":1562262611, "exp":1562266216, "cnf": {"jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I""jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I" } }</artwork></sourcecode> </figure> </section> <section anchor="jwk-thumb-intro"><name>JWK Thumbprint Confirmation Method in Token Introspection</name><t>OAuth<t>"OAuth 2.0 TokenIntrospectionIntrospection" <xref target="RFC7662"></xref> defines a method for a protected resource to query an authorization server about the active state of an accesstoken as well as to determinetoken. The protected resource also determines metainformation about the token.</t> <t>For a DPoP-bound access token, the hash of the public key to which the token is bound is conveyed to the protected resource as metainformation in a token introspection response. The hash is conveyed using the same <tt>cnf</tt> content with <tt>jkt</tt> member structure as the JWK Thumbprint confirmation method, described in <xref target="jwk-thumb-jwt"></xref>, as a top-level member of the introspection response JSON. Note that the resource server does not send a DPoP proof with the introspectionrequestrequest, and the authorization server does not validate an access token's DPoP binding at the introspection endpoint.RatherRather, the resource server uses the data of the introspection response to validate the access token binding itself locally.</t> <t>If the <tt>token_type</tt> member is included in the introspection response, itMUST<bcp14>MUST</bcp14> contain the value <tt>DPoP</tt>.</t> <t>The example introspection request in <xref target="introspect-req"></xref> and corresponding response in <xref target="introspect-resp"></xref> illustrate an introspection exchange for the example DPoP-bound access token that was issued in <xref target="token-response"></xref>.</t> <figure anchor="introspect-req"><name>Example Introspection Request </name><artwork>POST<sourcecode type="http-message">POST /as/introspect.oauth2 HTTP/1.1 Host: server.example.com Content-Type: application/x-www-form-urlencoded Authorization: Basic cnM6cnM6TWt1LTZnX2xDektJZHo0ZnNON2tZY3lhK1Rp token=Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU</artwork></sourcecode> </figure> <figure anchor="introspect-resp"><name>Example Introspection Response for a DPoP-Bound Access Token </name><artwork>HTTP/1.1<sourcecode>HTTP/1.1 200 OK Content-Type: application/json Cache-Control: no-store {"active":"active": true,"sub": "someone@example.com", "iss": "https://server.example.com", "nbf":"sub": "someone@example.com", "iss": "https://server.example.com", "nbf": 1562262611,"exp":"exp": 1562266216,"cnf":"cnf": {"jkt": "0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I""jkt": "0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I" } }</artwork></sourcecode> </figure> </section> </section> <section anchor="protected-resource-access"><name>Protected Resource Access</name> <t>Requests toDPoP protectedDPoP-protected resourcesMUST<bcp14>MUST</bcp14> include both a DPoP proof as per <xref target="the-proof"></xref> and the access token as described in <xref target="http-auth-scheme"></xref>. The DPoP proofMUST<bcp14>MUST</bcp14> include the <tt>ath</tt> claim with a valid hash of the associated access token.</t> <t>Binding the token value to the proof in this way prevents a proof to be used with multiple different access token values across different requests. For example, if a client holds tokens bound to two different resource owners, AT1 and AT2, and uses the same key when talking to theAS,authorization server, it's possible that these tokens could be swapped. Without the <tt>ath</tt> field to bind it, a captured signature applied to AT1 could be replayed with AT2 instead, changing the rights and access of the intended request. This same substitution prevention remains for rotated access tokens within the same combination of client and resource owner -- a rotated token value would require the calculation of a new proof. This binding additionally ensures that a proof intended for use with the access token is not usable without an access token, or vice-versa.</t> <t>The resource server is required to calculate the hash of the token value presented and verify that it is the same as the hash value in the <tt>ath</tt> field as described in <xref target="checking"></xref>. Since the <tt>ath</tt> field value is covered by the DPoP proof's signature, its inclusion binds the access token value to the holder of the key used to generate the signature.</t> <t>Note that the <tt>ath</tt> field alone does not prevent replay of the DPoP proof or provide binding to the request in which the proof is presented, and it is still important to check the time window of the proof as well as the included messageparametersparameters, such as <tt>htm</tt> and <tt>htu</tt>.</t> <section anchor="http-auth-scheme"><name>The DPoP Authentication Scheme</name> <t>A DPoP-bound access token is sent using the <tt>Authorization</tt> request header field perSection 11.6.2 of<xreftarget="RFC9110"></xref> usingtarget="RFC9110" sectionFormat="of" section="11.6.2"></xref> with an authentication scheme of <tt>DPoP</tt>. The syntax of the <tt>Authorization</tt> header field for the <tt>DPoP</tt> scheme uses the<tt>token68</tt>token68 syntax defined inSection 11.2 of<xreftarget="RFC9110"></xref> (repeatedtarget="RFC9110" sectionFormat="of" section="11.2"></xref> for credentials and is repeated below for ease ofreference) for credentials.reference. The ABNF notation syntax for DPoP authentication scheme credentials is as follows:</t><figure><name>DPoP<figure anchor="dpop-auth-scheme-abnf"><name>DPoP Authentication Scheme ABNF </name><artwork><sourcecode type="abnf"><![CDATA[ token68 = 1*( ALPHA / DIGIT /"-""-" /".""." /"_""_" /"~""~" /"+""+" /"/""/" )*"="*"=" credentials ="DPoP""DPoP" 1*SP token68</artwork>]]></sourcecode> </figure> <t>For such an access token, a resource serverMUST<bcp14>MUST</bcp14> check that a DPoP proof was also received in the <tt>DPoP</tt> header field of the HTTP request, check the DPoP proof according to the rules in <xref target="checking"></xref>, and check that the public key of the DPoP proof matches the public key to which the access token is bound per <xref target="Confirmation"></xref>.</t> <t>The resource serverMUST NOT<bcp14>MUST NOT</bcp14> grant access to the resource unless all checks are successful.</t> <t><xref target="protected-resource-request"></xref> shows an example request to a protected resource with a DPoP-bound access token in the <tt>Authorization</tt> header and the DPoP proof in the <tt>DPoP</tt>header (with '\'header. The example uses "\" line wrapping perRFC 8792). Following that is<xreftarget="dpop-proof-pr"></xref>, whichtarget="RFC8792"/>. <xref target="dpop-proof-pr"></xref> shows the decoded content of that DPoP proof. The JSON of the JWT header and payload areshownshown, but the signature part is omitted. As usual, line breaks and indentation are included for formatting and readability.</t> <figureanchor="protected-resource-request"><name>DPoP Protectedanchor="protected-resource-request"><name>DPoP-Protected Resource Request </name><artwork>GET<sourcecode type="http-message">GET /protectedresource HTTP/1.1 Host: resource.example.org Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU DPoP: eyJ0eXAiOiJkcG9wK2p3dCIsImFsZyI6IkVTMjU2IiwiandrIjp7Imt0eSI6Ik\ VDIiwieCI6Imw4dEZyaHgtMzR0VjNoUklDUkRZOXpDa0RscEJoRjQyVVFVZldWQVdCR\ nMiLCJ5IjoiOVZFNGpmX09rX282NHpiVFRsY3VOSmFqSG10NnY5VERWclUwQ2R2R1JE\ QSIsImNydiI6IlAtMjU2In19.eyJqdGkiOiJlMWozVl9iS2ljOC1MQUVCIiwiaHRtIj\ oiR0VUIiwiaHR1IjoiaHR0cHM6Ly9yZXNvdXJjZS5leGFtcGxlLm9yZy9wcm90ZWN0Z\ WRyZXNvdXJjZSIsImlhdCI6MTU2MjI2MjYxOCwiYXRoIjoiZlVIeU8ycjJaM0RaNTNF\ c05yV0JiMHhXWG9hTnk1OUlpS0NBcWtzbVFFbyJ9.2oW9RP35yRqzhrtNP86L-Ey71E\ OptxRimPPToA1plemAgR6pxHF8y6-yqyVnmcw6Fy1dqd-jfxSYoMxhAJpLjA</artwork></sourcecode> </figure> <figure anchor="dpop-proof-pr"><name>Decoded Content of the <tt>DPoP</tt> Proof JWT in<xref target="protected-resource-request"></xref> </name> <artwork>{ "typ":"dpop+jwt", "alg":"ES256", "jwk":Figure 13</name> <sourcecode type="json">{ "typ":"dpop+jwt", "alg":"ES256", "jwk": {"kty":"EC", "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs", "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA", "crv":"P-256""kty":"EC", "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs", "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA", "crv":"P-256" } } . {"jti":"e1j3V_bKic8-LAEB", "htm":"GET", "htu":"https://resource.example.org/protectedresource", "iat":1562262618, "ath":"fUHyO2r2Z3DZ53EsNrWBb0xWXoaNy59IiKCAqksmQEo""jti":"e1j3V_bKic8-LAEB", "htm":"GET", "htu":"https://resource.example.org/protectedresource", "iat":1562262618, "ath":"fUHyO2r2Z3DZ53EsNrWBb0xWXoaNy59IiKCAqksmQEo" }</artwork></sourcecode> </figure> <t>Upon receipt of a request to a protected resource within the protection space requiring DPoP authentication, the server can respond with a challenge to the client to provide DPoP authentication information if the request does not include valid credentials or does not contain an access token sufficient foraccess, the server can respond with a challenge to the client to provide DPoP authentication information.access. Such a challenge is made using the 401 (Unauthorized) response status code (<xreftarget="RFC9110"></xref>, Section 15.5.2)target="RFC9110" sectionFormat="comma" section="15.5.2"></xref>) and the <tt>WWW-Authenticate</tt> header field (<xreftarget="RFC9110"></xref>, Section 11.6.1).target="RFC9110" sectionFormat="comma" section="11.6.1"></xref>). The serverMAY<bcp14>MAY</bcp14> include the <tt>WWW-Authenticate</tt> header in response to other conditions as well.</t> <t>In such challenges:</t> <ul spacing="compact"> <li>The scheme name is <tt>DPoP</tt>.</li> <li>The authentication parameter <tt>realm</tt>MAY<bcp14>MAY</bcp14> be included to indicate the scope of protection in the manner described in <xreftarget="RFC9110"></xref>, Section 11.5.</li>target="RFC9110" sectionFormat="comma" section="11.5"></xref>.</li> <li>A <tt>scope</tt> authentication parameterMAY<bcp14>MAY</bcp14> be included as defined in <xreftarget="RFC6750"></xref>, Section 3.</li>target="RFC6750" sectionFormat="comma" section="3"></xref>.</li> <li>An <tt>error</tt> parameter (<xreftarget="RFC6750"></xref>, Section 3) SHOULDtarget="RFC6750" sectionFormat="comma" section="3"></xref>) <bcp14>SHOULD</bcp14> be included to indicate the reason why the request was declined, if the request included an access token but failed authentication. The error parameter values described inSection 3.1 of<xreftarget="RFC6750"></xref>target="RFC6750" sectionFormat="comma" section="3.1"></xref> aresuitablesuitable, as are any appropriate values defined by extension. The value <tt>use_dpop_nonce</tt> can be used as described in <xref target="RSNonce"></xref> to signal that a nonce is needed in the DPoP proof of a subsequent request(s).AndAdditionally, <tt>invalid_dpop_proof</tt> is used to indicate that the DPoP proof itself was deemed invalid based on the criteria of <xref target="checking"></xref>.</li> <li>An <tt>error_description</tt> parameter (<xreftarget="RFC6750"></xref>, Section 3) MAYtarget="RFC6750" sectionFormat="comma" section="3"></xref>) <bcp14>MAY</bcp14> be included along with the <tt>error</tt> parameter to provide developers a human-readable explanation that is not meant to be displayed to end-users.</li> <li>An <tt>algs</tt> parameterSHOULD<bcp14>SHOULD</bcp14> be included to signal to the client the JWS algorithms that are acceptable for the DPoP proof JWT. The value of the parameter is a space-delimited list of JWS <tt>alg</tt> (Algorithm) header values (<xreftarget="RFC7515"></xref>, Section 4.1.1).</li>target="RFC7515" sectionFormat="comma" section="4.1.1"></xref>).</li> <li>Additional authentication parametersMAY<bcp14>MAY</bcp14> beusedused, and unknown parametersMUST<bcp14>MUST</bcp14> be ignored by recipients.</li> </ul><t>For example, in<t><xref target="http-401-response-protected-req-without-auth"/> shows a response to a protected resource request withoutauthentication:</t> <figure><name>HTTPauthentication.</t> <figure anchor="http-401-response-protected-req-without-auth"><name>HTTP 401 Response to a Protected Resource Request without Authentication </name><artwork><sourcecode type="http-message"> HTTP/1.1 401 Unauthorized WWW-Authenticate: DPoPalgs="ES256 PS256" </artwork>algs="ES256 PS256" </sourcecode> </figure><t>And in<t><xref target="http-401-response-protected-req-with-invalid-token"/> shows a response to a protected resource request that was rejectedbecausedue to the failed confirmation of the DPoP binding in the accesstoken failed (with '\'token. <xref target="http-401-response-protected-req-with-invalid-token"/> uses "\" line wrapping perRFC 8792):</t> <figure><name>HTTP<xref target="RFC8792"/>.</t> <figure anchor="http-401-response-protected-req-with-invalid-token"><name>HTTP 401 Response to a Protected Resource Request with an Invalid Token </name><artwork><sourcecode type="http-message"> HTTP/1.1 401 Unauthorized WWW-Authenticate: DPoPerror="invalid_token",error="invalid_token", \error_description="Invaliderror_description="Invalid DPoP keybinding", algs="ES256" </artwork>binding", algs="ES256" </sourcecode> </figure> <t>Note that browser-based client applications usingCORSCross-Origin Resource Sharing (CORS) <xref target="WHATWG.Fetch"></xref> only have access to CORS-safelisted response HTTP headers by default. In order for the application to obtain and use the <tt>WWW-Authenticate</tt> HTTP response header value, the server needs to make it available to the application by including <tt>WWW-Authenticate</tt> in the <tt>Access-Control-Expose-Headers</tt> response header list value.</t> <t>This authentication scheme is for origin-server authentication only. Therefore, this authentication schemeMUST NOT<bcp14>MUST NOT</bcp14> be used with the <tt>Proxy-Authenticate</tt> or <tt>Proxy-Authorization</tt> header fields.</t> <t>Note that the syntax of the <tt>Authorization</tt> header field for this authentication scheme follows the usage of the <tt>Bearer</tt> scheme defined inSection 2.1 of<xreftarget="RFC6750"></xref>.target="RFC6750" sectionFormat="of" section="2.1"></xref>. While it is not the preferred credential syntax of <xref target="RFC9110"></xref>, it is compatible with the general authentication framework therein andwasis used for consistency and familiarity with the <tt>Bearer</tt> scheme.</t> </section> <section anchor="compatibility-with-the-bearer-authentication-scheme"><name>Compatibility with the Bearer Authentication Scheme</name> <t>Protected resources simultaneously supporting both the <tt>DPoP</tt> and <tt>Bearer</tt> schemes need to update how the evaluationof bearer tokensprocess is performed for bearer tokens to prevent downgraded usage of a DPoP-bound access token. Specifically, such a protected resourceMUST<bcp14>MUST</bcp14> reject a DPoP-bound access token received as a bearer token per <xref target="RFC6750"></xref>.</t><t>Section 11.6.1 of <xref target="RFC9110"></xref><t><xref target="RFC9110" sectionFormat="of" section="11.6.1"></xref> allows a protected resource to indicate support for multiple authentication schemes (i.e., <tt>Bearer</tt> and <tt>DPoP</tt>) with the <tt>WWW-Authenticate</tt> header field of a 401 (Unauthorized) response.</t> <t>A protected resource that supports only <xref target="RFC6750"></xref> and is unaware of DPoP would most presumably accept a DPoP-bound access token as a bearer token (JWT <xref target="RFC7519"></xref> says to ignore unrecognized claims, Introspection <xref target="RFC7662"></xref> says that other parameters might be present while placing no functional requirements on their presence, and <xref target="RFC6750"></xref> is effectively silent on the content of the access tokenassince it relates to validity). As such, a client can send a DPoP-bound access token using the <tt>Bearer</tt> scheme upon receipt of a <tt>WWW-Authenticate: Bearer</tt> challenge from a protected resource (or it can send a DPoP-bound access token if it has priorsuchknowledgeaboutof the capabilities of the protected resource). The effect of this likely simplifies the logistics of phased upgrades to protected resources in their support DPoP orevenprolonged deployments of protected resources with mixed token type support.</t> <t>If a protected resource supporting both <tt>Bearer</tt> and <tt>DPoP</tt> schemes elects to respond with multiple <tt>WWW-Authenticate</tt> challenges, attention should be paid to which challenge(s) should deliver the actual error information. It isRECOMMENDED<bcp14>RECOMMENDED</bcp14> that the following rules be adhered to:</t> <ul> <li><t>If no authentication information has been included with the request, then the challengesSHOULD NOT<bcp14>SHOULD NOT</bcp14> include an error code or other error information, as per <xreftarget="RFC6750"></xref>, Section 3.1target="RFC6750" sectionFormat="of" section="3.1"></xref> (<xref target="multi-challenge-no-token"></xref>).</t> </li> <li><t>If the mechanism used to attempt authentication could be established unambiguously, then the corresponding challengeSHOULD<bcp14>SHOULD</bcp14> be used to deliver error information (<xref target="multi-challenge-invalid-token"></xref>).</t> </li> <li><t>Otherwise, both <tt>Bearer</tt> and <tt>DPoP</tt>challenged MAYchallenges <bcp14>MAY</bcp14> be used to deliver error information (<xref target="multi-challenge-ambiguous"></xref>).</t> </li> </ul><t>(Where needed, the<t>The following examples use'\'"\" line wrapping perRFC 8792.)</t><xref target="RFC8792"/>.</t> <figure anchor="multi-challenge-no-token"><name>HTTP 401 Response to a Protected Resource Request without Authentication </name><artwork>GET<sourcecode type="http-message">GET /protectedresource HTTP/1.1 Host: resource.example.org HTTP/1.1 401 Unauthorized WWW-Authenticate: Bearer, DPoPalgs="ES256 PS256" </artwork>algs="ES256 PS256" </sourcecode> </figure> <figure anchor="multi-challenge-invalid-token"><name>HTTP 401 Response to a Protected Resource Request with Invalid Authentication </name><artwork>GET<sourcecode type="http-message">GET /protectedresource HTTP/1.1 Host: resource.example.org Authorization: Bearer INVALID_TOKEN HTTP/1.1 401 Unauthorized WWW-Authenticate: Bearererror="invalid_token",error="invalid_token", \error_description="Invalid token",error_description="Invalid token", DPoPalgs="ES256 PS256" </artwork>algs="ES256 PS256" </sourcecode> </figure> <figure anchor="multi-challenge-ambiguous"><name>HTTP 400 Response to a Protected Resource Request with Ambiguous Authentication </name><artwork>GET<sourcecode type="http-message">GET /protectedresource HTTP/1.1 Host: resource.example.org Authorization: Bearer Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU Authorization: DPoP Kz~8mXK1EalYznwH-LC-1fBAo.4Ljp~zsPE_NeO.gxU HTTP/1.1 400 Bad Request WWW-Authenticate: Bearererror="invalid_request",error="invalid_request", \error_description="Multipleerror_description="Multiple methods used to include accesstoken",token", \ DPoPalgs="ES256 PS256", error="invalid_request",algs="ES256 PS256", error="invalid_request", \error_description="Multipleerror_description="Multiple methods used to include accesstoken" </artwork>token" </sourcecode> </figure> </section> <section anchor="client-considerations"><name>Client Considerations</name> <t>Authorization including a DPoP proof may not be idempotent (depending on server enforcement of <tt>jti</tt>,<tt>iat</tt><tt>iat</tt>, and <tt>nonce</tt> claims). Consequently, all previously idempotent requests for protected resources that were previously idempotent may no longer be idempotent. It isRECOMMENDED<bcp14>RECOMMENDED</bcp14> that clients generate a unique DPoPproofproof, even when retrying idempotent requests in response to HTTP errors generally understood as transient.</t> <t>Clients that encounter frequent network errors may experience additional challenges when interacting with servers withmore strictstricter nonce validation implementations.</t> </section> </section> <section anchor="ASNonce"><name>Authorization Server-Provided Nonce</name> <t>This section specifies a mechanism using opaque nonces provided by the server that can be used to limit the lifetime of DPoP proofs. Without employing such a mechanism, a malicious party controlling the client(including potentially(potentially including the end-user) can create DPoP proofs for use arbitrarily far in the future.</t> <t>Including a nonce value contributed by the authorization server in the DPoP proofMAY<bcp14>MAY</bcp14> be used by authorization servers to limit the lifetime of DPoP proofs. The server determines whenand ifto issue a new DPoP nonce challenge and if it is needed, thereby requiring the use of the nonce value in subsequent DPoP proofs. The logic through which the server makes that determination is out of scope of this document.</t> <t>An authorization serverMAY<bcp14>MAY</bcp14> supply a nonce value to be included by the client in DPoP proofs sent. In this case, the authorization server responds to requests that do notincludinginclude a nonce with an HTTP<tt>400</tt>400 (Bad Request) error response perSection 5.2 of<xreftarget="RFC6749"></xref>target="RFC6749" sectionFormat="of" section="5.2"></xref> using <tt>use_dpop_nonce</tt> as the error code value. The authorization server includes a <tt>DPoP-Nonce</tt> HTTP header in the response supplying a nonce value to be used when sending the subsequent request. Nonce valuesMUST<bcp14>MUST</bcp14> be unpredictable. This same error code is used when supplying a new nonce value when there was a nonce mismatch. The client will typically retry the request with the new nonce value supplied upon receiving a <tt>use_dpop_nonce</tt> error with an accompanying nonce value.</t> <t>For example, in response to a token request without a nonce when the authorization server requires one, the authorization server can respond with a <tt>DPoP-Nonce</tt> value such as the following to provide a nonce value to include in the DPoP proof:</t><figure><name>HTTP<figure anchor="http-400-response-token-without-nonce"><name>HTTP 400 Response to a Token Request without a Nonce </name><artwork><sourcecode type="http-message"> HTTP/1.1 400 Bad Request DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v {"error": "use_dpop_nonce", "error_description": "Authorization"error": "use_dpop_nonce", "error_description": "Authorization server requires nonce in DPoPproof"proof" }</artwork></sourcecode> </figure> <t>Other HTTP headers and JSON fieldsMAY<bcp14>MAY</bcp14> also be included in the error response, but thereMUST NOT<bcp14>MUST NOT</bcp14> be more than one <tt>DPoP-Nonce</tt> header.</t> <t>Upon receiving the nonce, the client is expected to retry its token request using a DPoP proof including the supplied nonce value in the <tt>nonce</tt> claim of the DPoP proof. An example unencoded JWTPayloadpayload of such a DPoP proof including a nonceis:</t> <figure><name>DPoPis shown below.</t> <figure anchor="dpop-proof-payload-nonce-value"><name>DPoP Proof PayloadIncludingincluding a Nonce Value </name><artwork><sourcecode type="json"> {"jti": "-BwC3ESc6acc2lTc", "htm": "POST", "htu": "https://server.example.com/token", "iat":"jti": "-BwC3ESc6acc2lTc", "htm": "POST", "htu": "https://server.example.com/token", "iat": 1562262616,"nonce": "eyJ7S_zG.eyJH0-Z.HX4w-7v""nonce": "eyJ7S_zG.eyJH0-Z.HX4w-7v" }</artwork></sourcecode> </figure> <t>The nonce is opaque to the client.</t> <t>If the <tt>nonce</tt> claim in the DPoP proof does not exactly match a nonce recently supplied by the authorization server to the client, the authorization serverMUST<bcp14>MUST</bcp14> reject the request. The rejection responseMAY<bcp14>MAY</bcp14> include a <tt>DPoP-Nonce</tt> HTTP header providing a new nonce value to use for subsequent requests.</t> <t>The intent is that clients need to keep only one nonce value and servers need to keep a window of recent nonces. That said, transient circumstances may arise in which theserver's and client'sstored nonce values for the server and the client differ. However, this situation isself-correcting; withself-correcting. With any rejection message, the server can send the client the nonce valuethat the server wantsit wants to use to the client, and the client can store that nonce value and retry the request with it. Even if the client and/or server discard their stored nonce values, that situation is also self-correcting because new nonce values can be communicated when responding to or retrying failed requests.</t> <t>Note that browser-based client applications using CORS <xref target="WHATWG.Fetch"></xref> only have access to CORS-safelisted response HTTP headers by default. In order for the application to obtain and use the <tt>DPoP-Nonce</tt> HTTP response header value, the server needs to make it available to the application by including <tt>DPoP-Nonce</tt> in the <tt>Access-Control-Expose-Headers</tt> response header list value.</t> <section anchor="NonceSyntax"><name>Nonce Syntax</name> <t>The nonce syntax in ABNF as used by <xref target="RFC6749"></xref> (which is the same as the<tt>scope-token</tt>scope-token syntax)is:</t> <figure><name>Nonceis shown below.</t> <figure anchor="nonce-abnf"><name>Nonce ABNF </name><artwork> nonce<sourcecode type="abnf"><![CDATA[nonce =1*NQCHAR </artwork>1*NQCHAR]]></sourcecode> </figure> </section> <section anchor="NewNonce"><name>Providing a New Nonce Value</name> <t>It is up to the authorization server when to supply a new nonce value for the client to use. The client is expected to use the existing supplied nonce in DPoP proofs until the server supplies a new nonce value.</t> <t>The authorization serverMAY<bcp14>MAY</bcp14> supply the new nonce in the same way that the initial one was supplied: by using a <tt>DPoP-Nonce</tt> HTTP header in the response. The <tt>DPoP-Nonce</tt> HTTP header field uses the nonce syntax defined in <xref target="NonceSyntax"></xref>.Of course, eachEach time thishappenshappens, it requires an extra protocol round trip.</t> <t>A more efficient manner of supplying a new nonce value is also defined--by including a <tt>DPoP-Nonce</tt> HTTP header in the HTTP<tt>200</tt>200 (OK) response from the previous request. The clientMUST<bcp14>MUST</bcp14> use the new nonce value supplied for the next tokenrequest,request and for all subsequent token requests until the authorization server supplies a new nonce.</t> <t>Responses that include the <tt>DPoP-Nonce</tt> HTTP header should be uncacheable (e.g., using <tt>Cache-Control: no-store</tt> in response to a <tt>GET</tt> request) to prevent the response from being used to serve a subsequent request and a stale nonce value from being used as a result.</t> <t>An example 200 OK response providing a new nonce valueis:</t> <figure><name>HTTPis shown below.</t> <figure anchor="http-200-response-next-nonce-value"><name>HTTP 200 Response Providing the Next Nonce Value </name><artwork><sourcecode type="http-message"> HTTP/1.1 200 OK Cache-Control: no-store DPoP-Nonce: eyJ7S_zG.eyJbYu3.xQmBj-1</artwork></sourcecode> </figure> </section> </section> <section anchor="RSNonce"><name>Resource Server-Provided Nonce</name> <t>Resource servers can also choose to provide a nonce value to be included in DPoP proofs sent to them. They provide the nonce using the <tt>DPoP-Nonce</tt> header in the same way that authorization servers do as described in Sections <xreftarget="ASNonce"></xref>target="ASNonce" format="counter"></xref> and <xreftarget="NewNonce"></xref>.target="NewNonce" format="counter"></xref>. The error signaling is performed as described in <xref target="http-auth-scheme"></xref>. Resource servers use an HTTP<tt>401</tt>401 (Unauthorized) error code with an accompanying <tt>WWW-Authenticate: DPoP</tt> value and <tt>DPoP-Nonce</tt> value to accomplish this.</t> <t>For example, in response to a resource request without a nonce when the resource server requires one, the resource server can respond with a <tt>DPoP-Nonce</tt> value such as the following to provide a nonce value to include in the DPoPproof (with '\'proof. The example below uses "\" line wrapping perRFC 8792):</t> <figure><name>HTTP<xref target="RFC8792"/>.</t> <figure anchor="http-401-response-resource-request-without-nonce"><name>HTTP 401 Response to a Resource Request without a Nonce </name><artwork><sourcecode type="http-message"> HTTP/1.1 401 Unauthorized WWW-Authenticate: DPoPerror="use_dpop_nonce",error="use_dpop_nonce", \error_description="Resourceerror_description="Resource server requires nonce in DPoPproof"proof" DPoP-Nonce: eyJ7S_zG.eyJH0-Z.HX4w-7v</artwork></sourcecode> </figure> <t>Note that the nonces provided by an authorization server and a resource server are different and should not be confused with oneanother,another since nonces will be only accepted by the server that issued them. Likewise, should a client use multiple authorization servers and/or resource servers, a nonce issued by any of them should be used only at the issuing server. Developers should alsotake carebe careful to not confuse DPoP nonces with the OpenID Connect <xref target="OpenID.Core"></xref> ID Token nonce.</t> </section> <section anchor="dpop_jkt"><name>Authorization Code Binding to a DPoP Key</name> <t>Binding the authorization code issued to the client's proof-of-possession key can enable end-to-end binding of the entire authorization flow. This specification defines the <tt>dpop_jkt</tt> authorization request parameter for this purpose. The value of the <tt>dpop_jkt</tt> authorization request parameter is theJSON Web Key (JWK)JWK Thumbprint <xref target="RFC7638"></xref> of the proof-of-possession public key using the SHA-256 hashfunction -function, which is the same value as used for the <tt>jkt</tt> confirmation method defined in <xref target="jwk-thumb-jwt"></xref>.</t> <t>When a token request is received, the authorization server computes the JWKthumbprintThumbprint of the proof-of-possession public key in the DPoP proof and verifies that it matches the <tt>dpop_jkt</tt> parameter value in the authorization request. If they do not match, itMUST<bcp14>MUST</bcp14> reject the request.</t> <t>An example authorization request using the <tt>dpop_jkt</tt> authorization request parameterfollows (with '\'is shown below and uses "\" line wrapping perRFC 8792):</t> <figure><name>Authorization<xref target="RFC8792"/>.</t> <figure anchor="auth-req-using-dpopjkt-parameter"><name>Authorization RequestusingUsing the <tt>dpop_jkt</tt> Parameter </name><artwork><sourcecode type="http-message"><![CDATA[ GET/authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz\ &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\ &code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM\ &code_challenge_method=S256\ &dpop_jkt=NzbLsXh8uDCcd-6MNwXF4W_7noWXFZAfHkxZsRGC9Xs/authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz\ &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb\ &code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM\ &code_challenge_method=S256\ &dpop_jkt=NzbLsXh8uDCcd-6MNwXF4W_7noWXFZAfHkxZsRGC9Xs HTTP/1.1 Host: server.example.com</artwork>]]></sourcecode> </figure> <t>Use of the <tt>dpop_jkt</tt> authorization request parameter isOPTIONAL.<bcp14>OPTIONAL</bcp14>. Note that the <tt>dpop_jkt</tt> authorization request parameterMAY<bcp14>MAY</bcp14> also be used in combination withPKCEProof Key for Code Exchange (PKCE) <xref target="RFC7636"></xref>, which is recommended by <xref target="I-D.ietf-oauth-security-topics"></xref> as a countermeasure to authorization code injection. The <tt>dpop_jkt</tt> authorization request parameter only provides similar protections when a unique DPoP key is used for each authorization request.</t> <section anchor="dpop-with-pushed-authorization-requests"><name>DPoP with Pushed Authorization Requests</name> <t>When Pushed Authorization Requests(PAR,(PARs) <xreftarget="RFC9126"></xref>)target="RFC9126"></xref> are used in conjunction with DPoP, there are two ways in which the DPoP key can be communicated in the PAR request:</t> <ul spacing="compact"> <li>The <tt>dpop_jkt</tt> parameter can be used as described in <xref target="dpop_jkt"></xref> to bind the issued authorization code to a specific key. In this case, <tt>dpop_jkt</tt>MUST<bcp14>MUST</bcp14> be included alongside other authorization request parameters in the POST body of the PAR request.</li> <li>Alternatively, the <tt>DPoP</tt> header can be added to the PAR request. In this case, the authorization serverMUST<bcp14>MUST</bcp14> check the provided DPoP proof JWT as defined in <xref target="checking"></xref>. ItMUST<bcp14>MUST</bcp14> further behave as if the contained public key's thumbprint was provided using <tt>dpop_jkt</tt>, i.e., reject the subsequent token request unless a DPoP proof for the same key is provided. This can help to simplify the implementation of the client, as it can"blindly""blindly" attach the <tt>DPoP</tt> header to all requests to the authorization server regardless of the type of request. Additionally, it provides a stronger binding, as the <tt>DPoP</tt> header contains a proof of possession of the private key.</li> </ul> <t>Both mechanismsMUST<bcp14>MUST</bcp14> be supported by an authorization server that supports PAR and DPoP. If both mechanisms are used at the same time, the authorization serverMUST<bcp14>MUST</bcp14> reject the request if the JWK Thumbprint in <tt>dpop_jkt</tt> does not match the public key in the <tt>DPoP</tt> header.</t> <t>Allowing both mechanisms ensures that clientsthat useusing <tt>dpop_jkt</tt> do not need to distinguish between front-channel and pushed authorization requests, and at the same time, clients that only have one code path for protecting all calls to authorization server endpoints do not need to distinguish between requests to the PAR endpoint and the token endpoint.</t> </section> </section> <section anchor="Security"><name>Security Considerations</name> <t>In DPoP, the prevention of token replay at a different endpoint (see <xref target="objective"></xref>) is achieved through authentication of the server per <xref target="RFC6125"></xref> and the binding of the DPoP proof to a certain URI and HTTP method.DPoP, however,However, DPoP has a somewhat different nature of protection than TLS-based methods such as OAuth Mutual TLS <xref target="RFC8705"></xref> or OAuth Token Binding <xref target="I-D.ietf-oauth-token-binding"></xref> (see also Sections <xreftarget="Token_Replay"></xref>target="Token_Replay" format="counter"/> and <xreftarget="request_integrity"></xref>).target="request_integrity" format="counter"/>). TLS-based mechanisms can leverage a tight integration between the TLS layer and the application layer to achieve strong message integrity, authenticity, and replay protection.</t> <section anchor="Token_Replay"><name>DPoP Proof Replay</name> <t>If an adversary is able to get hold of a DPoP proof JWT, the adversary could replay that token at the same endpoint (the HTTP endpoint and method are enforced via the respective claims in the JWTs). To limit this, serversMUST<bcp14>MUST</bcp14> only accept DPoP proofs for a limited time after their creation (preferably only for a relatively brief period on the order of seconds or minutes).</t><t>To prevent multiple uses of the same DPoP proof, servers can store, in<t>In the context of the target URI, servers can store the <tt>jti</tt> value of each DPoP proof for the time window in which the respective DPoP proof JWT would beaccepted.accepted to prevent multiple uses of the same DPoP proof. HTTP requests to the same URI for which the <tt>jti</tt> value has been seen before would be declined.Such a single-use check, whenWhen strictly enforced, such a single-use check provides a very strong protection against DPoP proof replay, but it may not always be feasible in practice, e.g., when multiple servers behind a single endpoint have no shared state.</t> <t>In order to guard against memory exhaustion attacks, a server that is tracking <tt>jti</tt> values should reject DPoP proof JWTs with unnecessarily large <tt>jti</tt> values or store only a hash thereof.</t> <t>Note: To accommodate for clock offsets, the serverMAY<bcp14>MAY</bcp14> accept DPoP proofs that carry an <tt>iat</tt> time in the reasonably near future (on the order of seconds or minutes). Because clock skews between servers and clients may be large, serversMAY<bcp14>MAY</bcp14> limit DPoP proof lifetimes by using server-provided nonce values containing the time at the server rather than comparing the client-supplied <tt>iat</tt> time to the time at the server. Nonces created in this way yield the same result even in the face of arbitrarily large clock skews.</t> <t>Server-provided nonces are an effective means for further reducing the chances for successful DPoP proof replay. Unlike cryptographic nonces, it is acceptable for clients to use the same <tt>nonce</tt> multipletimes,times and for the server to accept the same nonce multiple times. As long as the <tt>jti</tt> value is tracked and duplicates are rejected for the lifetime of the <tt>nonce</tt>, there is no additional risk of token replay.</t> </section> <section anchor="Pre-Generation"><name>DPoP ProofPre-Generation</name>Pre-generation</name> <t>An attacker in control of the client can pre-generate DPoP proofs for specific endpoints arbitrarily far into the future by choosing the <tt>iat</tt> value in the DPoP proof to be signed by the proof-of-possession key. Note that one such attacker is the person who is the legitimate user of the client. The user may pre-generate DPoP proofs to exfiltrate from the machine possessing the proof-of-possession key upon which they were generated and copy them to another machine that does not possess the key. For instance, a bank employee might pre-generate DPoP proofs on a bank computer and then copy them to another machine for use in the future, thereby bypassing bank audit controls. When DPoP proofs can be pre-generated and exfiltrated, all that is actually being proved in DPoP protocol interactions is possession of a DPoP proof -- not of the proof-of-possession key.</t> <t>Use of server-provided nonce values that are not predictable by attackers can prevent this attack. By providing new nonce values at times of its choosing, the server can limit the lifetime of DPoP proofs, preventing pre-generated DPoP proofs from being used. When server-provided nonces are used, possession of the proof-of-possession key is being demonstrated -- not just possession of a DPoP proof.</t> <t>The <tt>ath</tt> claim limits the use of pre-generated DPoP proofs to the lifetime of the access token. Deployments that do not utilize the nonce mechanismSHOULD NOT<bcp14>SHOULD NOT</bcp14> issue long-lived DPoP constrained access tokens, preferring instead to use short-lived access tokens and refresh tokens. Whilst an attacker could pre-generate DPoP proofs to use the refresh token to obtain a new access token, they would be unable to realistically pre-generate DPoP proofs to use a newly issued access token.</t> </section> <section anchor="Nonce-Downgrade"><name>DPoP Nonce Downgrade</name> <t>A serverMUST NOT<bcp14>MUST NOT</bcp14> accept any DPoP proofs without the <tt>nonce</tt> claim when a DPoP nonce has been provided to the client.</t> </section> <section anchor="untrusted-code-in-the-client-context"><name>Untrusted Code in the Client Context</name> <t>If an adversary is able to run code in the client's execution context, the security of DPoP is no longer guaranteed. Common issues in web applications leading to the execution of untrusted code arecross-site scriptingXSS and remote code inclusion attacks.</t> <t>If the private key used for DPoP is stored in such a way that it cannot be exported, e.g., in a hardware or software security module, the adversary cannot exfiltrate the key and use it to create arbitrary DPoP proofs. The adversary can, however, create new DPoP proofs as long as the client isonline,online anduseuses these proofs (together with the respective tokens) either on the victim's device or on a device under the attacker's control to send arbitrary requests that will be accepted by servers.</t> <t>To send requests even when the client is offline, an adversary can try to pre-compute DPoP proofs using timestamps in the future and exfiltrate these together with the access or refresh token.</t> <t>An adversary might further try to associate tokens issued from the token endpoint with a key pair under the adversary's control. One way to achieve this is to modify existing code, e.g., by replacing cryptographic APIs. Another way is to launch a new authorization grant between the client and the authorization server in an iframe. This grant needs to be"silent","silent", i.e., not require interaction with the user. With code running in the client's origin, the adversary has access to the resulting authorization code and can use it to associate their own DPoP keys with the tokens returned from the token endpoint. The adversary is then able to use the resulting tokens on their own device even if the client is offline.</t> <t>Therefore, protecting clients against the execution of untrusted code is extremely important even if DPoP is used. Besides secure coding practices, Content Security Policy <xref target="W3C.CSP"></xref> can be used as a second layer of defense againstcross-site scripting.</t>XSS.</t> </section> <section anchor="signed-jwt-swapping"><name>Signed JWT Swapping</name> <t>Servers accepting signed DPoP proof JWTsMUST<bcp14>MUST</bcp14> verify that the <tt>typ</tt> field is <tt>dpop+jwt</tt> in the headers of the JWTs to ensure that adversaries cannot use JWTs created for other purposes.</t> </section> <section anchor="signature-algorithms"><name>Signature Algorithms</name> <t>ImplementersMUST<bcp14>MUST</bcp14> ensure that only asymmetric digital signature algorithms (such as <tt>ES256</tt>) that are deemed secure can be used for signing DPoP proofs. In particular, the algorithm <tt>none</tt>MUST NOT<bcp14>MUST NOT</bcp14> be allowed.</t> </section> <section anchor="request_integrity"><name>Request Integrity</name> <t>DPoP does not ensure the integrity of the payload or headers of requests. The DPoP proof only contains claims for the HTTP URI and method, butnot, for example,not the message body or general requestheaders.</t>headers, for example.</t> <t>This is an intentional design decision intended to keep DPoP simple to use, but as described, it makes DPoP potentially susceptible to replay attacks where an attacker is able to modify message contents and headers. In many setups, the message integrity and confidentiality provided by TLS is sufficient to provide a good level of protection.</t> <t>Note: While signatures covering other parts of requests are out of the scope of this specification, additional information to be signed can be added into DPoP proofs.</t> </section> <section anchor="access-token-and-public-key-binding"><name>Access Token and Public Key Binding</name> <t>The binding of the access token to the DPoP public key,which isas specified in <xref target="Confirmation"></xref>, uses a cryptographic hash of the JWK representation of the public key. It relies on the hash function having sufficient second-preimage resistance so as to make it computationally infeasible to find or create another key that produces to the same hash output value. The SHA-256 hash function was used because it meets the aforementioned requirement while being widely available.</t> <t>Similarly, the binding of the DPoP proof to the access token uses a hash of that access token as the value of the <tt>ath</tt> claim in the DPoP proof (see <xref target="DPoP-Proof-Syntax"></xref>). This relies on the value of the hash being sufficiently unique so as to reliably identify the access token. The collision resistance of SHA-256 meets that requirement.</t> </section> <section anchor="authorization-code-and-public-key-binding"><name>Authorization Code and Public Key Binding</name> <t>Cryptographic binding of the authorization code to the DPoP publickey,key is specified in <xref target="dpop_jkt"></xref>. This binding prevents attacks in which the attacker captures the authorization code and creates a DPoP proof using a proof-of-possession key other thanthatthe one held by the client and redeems the authorization code using that DPoP proof. By ensuringend-to-endend to end that only the client's DPoP key can be used, this prevents captured authorization codes from being exfiltrated and used at locations other than the one to which the authorization code was issued.</t> <t>Authorization codes can, for instance, be harvested by attackers from placesthatwhere the HTTP messages containing them are logged. Even when efforts are made to make authorization codes one-time-use, in practice, there is often a time window during which attackers can replay them. For instance, when authorization servers are implemented as scalable replicated services, some replicas may temporarily not yet have the information needed to prevent replay. DPoP binding of the authorization code solves these problems.</t> <t>If an authorization server does not (or cannot) strictly enforce the single-use limitation for authorization codes and an attacker can access the authorization code (and if PKCE is used, the <tt>code_verifier</tt>), the attacker can create a forged token request, binding the resulting token to an attacker-controlled key. For example, usingcross-site scripting,XSS, attackers might obtain access to the authorization code and PKCE parameters. Use of the <tt>dpop_jkt</tt> parameter prevents this attack.</t> <t>The binding of the authorization code to the DPoP public key uses a JWK Thumbprint of the public key, just as the access token binding does. The same JWK Thumbprint considerations apply.</t> </section> <section anchor="hash-algorithm-agility"><name>Hash Algorithm Agility</name> <t>The <tt>jkt</tt> confirmation method member, the <tt>ath</tt> JWT claim, and the <tt>dpop_jkt</tt> authorization request parameter defined herein all use the output of the SHA-256 hash function as their value. The use of a single hash function by this specification was intentional and aimed at simplicity and avoidance of potential security and interoperability issues arising from common mistakes implementing and deploying parameterized algorithm agility schemes.TheHowever, the use of a different hash function is notprecluded, however,precluded if future circumstances changemakingand make SHA-256 insufficient for the requirements of this specification. Should that need arise, it is expected that a short specification will be produced that updates this one.That specification will likely define, usingUsing the output ofa thenan appropriate hash function as the value, that specification will likely define a new confirmation method member, a new JWT claim, and a new authorization request parameter. These items will be used in place of, or alongside, their respective counterparts in the same message structures and flows of the larger protocol defined by this specification.</t> </section> <section anchor="binding-to-client-identity"><name>Binding to Client Identity</name> <t>In cases where DPoP is used with client authentication, it is only bound to authentication by being coincident in the same TLS tunnel. Since the DPoP proof is not directlycryptographicallybound to theauthentication,authentication cryptographically, it's possible that the authentication or the DPoP messages were copied into the tunnel. While including the URI in the DPoP can partially mitigate some of this risk, modifying the authentication mechanism to provide cryptographic binding between authentication and DPoP could provide better protection. However, providing additional binding with authentication through the modification of authentication mechanisms or other means is beyond the scope of this specification.</t> </section> </section> <section anchor="IANA"><name>IANA Considerations</name> <section anchor="oauth-access-token-type-registration"><name>OAuth Access TokenTypeTypes Registration</name><t>This specification requests registration of<t>IANA has registered the following access token type in the"OAuth"OAuth Access TokenTypes"Types" registry <xref target="IANA.OAuth.Params"></xref> established by <xref target="RFC6749"></xref>.</t><ul spacing="compact"> <li>Type name: <tt>DPoP</tt></li> <li>Additional<dl spacing="normal"> <dt>Name:</dt><dd><tt>DPoP</tt></dd> <dt>Additional Token Endpoint ResponseParameters: (none)</li> <li>HTTPParameters:</dt><dd>(none)</dd> <dt>HTTP AuthenticationScheme(s): <tt>DPoP</tt></li> <li>Change controller: IETF</li> <li>Specification document(s): [[ this specification ]]</li> </ul>Scheme(s):</dt><dd><tt>DPoP</tt></dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd>RFC 9449</dd> </dl> </section> <section anchor="oauth-extensions-error-registration"><name>OAuth Extensions Error Registration</name><t>This specification requests registration of<t>IANA has registered the following error values in the"OAuth"OAuth ExtensionsError"Error" registry <xref target="IANA.OAuth.Params"></xref> established by <xref target="RFC6749"></xref>.</t><t>Invalid<dl spacing="normal"> <dt>Invalid DPoPproof:</t> <ul spacing="compact"> <li>Name: <tt>invalid_dpop_proof</tt></li> <li>Usage Location: tokenproof:</dt> <dd><t><br/></t> <dl spacing="normal"> <dt>Name:</dt><dd><tt>invalid_dpop_proof</tt></dd> <dt>Usage Location:</dt><dd>token error response, resource access errorresponse</li> <li>Protocol Extension: Demonstratingresponse</dd> <dt>Protocol Extension:</dt><dd>Demonstrating Proof of Possession(DPoP)</li> <li>Change controller: IETF</li> <li>Specification document(s): [[ this specification ]]</li> </ul> <t>Use(DPoP)</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd>RFC 9449</dd> </dl> </dd> </dl> <dl spacing="normal"> <dt>Use DPoPnonce:</t> <ul spacing="compact"> <li>Name: <tt>use_dpop_nonce</tt></li> <li>Usage Location: tokennonce:</dt> <dd> <t><br/></t> <dl spacing="normal"> <dt>Name:</dt><dd><tt>use_dpop_nonce</tt></dd> <dt>Usage Location:</dt><dd>token error response, resource access errorresponse</li> <li>Protocol Extension: Demonstratingresponse</dd> <dt>Protocol Extension:</dt><dd>Demonstrating Proof of Possession(DPoP)</li> <li>Change controller: IETF</li> <li>Specification document(s): [[ this specification ]]</li> </ul>(DPoP)</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd>RFC 9449</dd> </dl></dd></dl> </section> <section anchor="oauth-parameters-registration"><name>OAuth Parameters Registration</name><t>This specification requests registration of<t>IANA has registered the following authorization request parameter in the"OAuth Parameters""OAuth Parameters" registry <xref target="IANA.OAuth.Params"></xref> established by <xref target="RFC6749"></xref>.</t><ul spacing="compact"> <li>Name: <tt>dpop_jkt</tt></li> <li>Parameter<dl spacing="normal"> <dt>Name:</dt><dd><tt>dpop_jkt</tt></dd> <dt>Parameter UsageLocation: authorization request</li> <li>Change Controller: IETF</li> <li>Reference: [[ <xrefLocation:</dt><dd>authorization request</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd><xref target="dpop_jkt"></xref> ofthis specification ]]</li> </ul>RFC 9449</dd> </dl> </section> <section anchor="http-authentication-scheme-registration"><name>HTTP AuthenticationSchemeSchemes Registration</name><t>This specification requests registration of<t>IANA has registered the following scheme in the"Hypertext Transfer Protocol (HTTP)"HTTP AuthenticationScheme Registry"Schemes" registry <xreftarget="RFC9110"></xref><xref target="IANA.HTTP.AuthSchemes"></xref>:</t> <ul spacing="compact"> <li>Authentication Scheme Name: <tt>DPoP</tt></li> <li>Reference: [[target="IANA.HTTP.AuthSchemes"></xref> established by <xref target="RFC9110" sectionFormat="comma" section="16.4.1"></xref>.</t> <dl spacing="normal"> <dt>Authentication Scheme Name:</dt><dd><tt>DPoP</tt></dd> <dt>Reference:</dt><dd><xref target="http-auth-scheme"></xref> ofthis specification ]]</li> </ul>RFC 9449</dd> </dl> </section> <section anchor="media-type-registration"><name>Media Type Registration</name><t>This section registers<t>IANA has registered the <tt>application/dpop+jwt</tt> media type <xref target="RFC2046"></xref> in theIANA "Media Types""Media Types" registry <xref target="IANA.MediaTypes"></xref> in the manner described in <xref target="RFC6838"></xref>, which is used to indicate that the content is a DPoP JWT.</t><ul spacing="compact"> <li>Type name: application</li> <li>Subtype name: dpop+jwt</li> <li>Required parameters: n/a</li> <li>Optional parameters: n/a</li> <li>Encoding considerations: binary;<dl spacing="normal"> <dt>Type name:</dt><dd>application</dd> <dt>Subtype name:</dt><dd>dpop+jwt</dd> <dt>Required parameters:</dt><dd>n/a</dd> <dt>Optional parameters:</dt><dd> n/a</dd> <dt>Encoding considerations:</dt><dd>binary. A DPoP JWT is a JWT; JWT values are encoded as a series of base64url-encoded values (some of which may be the empty string) separated by period ('.')characters.</li> <li>Security considerations: Seecharacters.</dd> <dt>Security considerations:</dt><dd>See <xref target="Security"></xref> of[[ this specification ]]</li> <li>Interoperability considerations: n/a</li> <li>Published specification: [[ this specification ]]</li> <li>ApplicationsRFC 9449</dd> <dt>Interoperability considerations:</dt><dd>n/a</dd> <dt>Published specification:</dt><dd>RFC 9449</dd> <dt>Applications that use this mediatype: Applicationstype:</dt><dd>Applications using[[ this specification ]]RFC 9449 for application-level proof ofpossession</li> <li>Fragmentpossession</dd> <dt>Fragment identifierconsiderations: n/a</li> <li><t>Additional information:</t> <ulconsiderations:</dt><dd>n/a</dd> <dt>Additional information:</dt> <dd> <t><br/></t> <dl spacing="compact"><li>File extension(s): n/a</li> <li>Macintosh<dt>File extension(s):</dt><dd>n/a</dd> <dt>Macintosh file typecode(s): n/a</li> </ul></li> <li>Personcode(s):</dt><dd>n/a</dd> </dl></dd> <dt>Person & email address to contact for furtherinformation: Michael B. Jones, mbj@microsoft.com</li> <li>Intended usage: COMMON</li> <li>Restrictionsinformation:</dt><dd>Michael B. Jones, michael_b_jones@hotmail.com</dd> <dt>Intended usage:</dt><dd>COMMON</dd> <dt>Restrictions onusage: none</li> <li>Author: Michael B. Jones, mbj@microsoft.com</li> <li>Change controller: IETF</li> <li>Provisional registration? No</li> </ul>usage:</dt><dd>none</dd> <dt>Author:</dt><dd>Michael B. Jones, michael_b_jones@hotmail.com</dd> <dt>Change controller:</dt><dd>IETF</dd> </dl> </section> <section anchor="jwt-confirmation-methods-registration"><name>JWT Confirmation Methods Registration</name><t>This specification requests registration of<t>IANA has registered the following JWT <tt>cnf</tt> member value in theIANA "JWT"JWT ConfirmationMethods"Methods" registry <xref target="IANA.JWT"></xref>for JWT <tt>cnf</tt> member valuesestablished by <xref target="RFC7800"></xref>.</t><ul spacing="compact"> <li>Confirmation<dl spacing="normal"> <dt>Confirmation MethodValue: <tt>jkt</tt></li> <li>ConfirmationValue:</dt><dd><tt>jkt</tt></dd> <dt>Confirmation MethodDescription: JWKDescription:</dt><dd>JWK SHA-256Thumbprint</li> <li>Change Controller: IETF</li> <li>Specification Document(s): [[ <xrefThumbprint</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd><xref target="Confirmation"></xref> ofthis specification ]]</li> </ul>RFC 9449</dd> </dl> </section> <section anchor="json-web-token-claims-registration"><name>JSON Web Token Claims Registration</name><t>This specification requests registration of<t>IANA has registered the following Claims in theIANA "JSON"JSON Web TokenClaims"Claims" registry <xref target="IANA.JWT"></xref> established by <xref target="RFC7519"></xref>.</t><t>HTTP method:</t> <ul spacing="compact"> <li>Claim Name: <tt>htm</tt></li> <li>Claim Description: The<dl spacing="normal"> <dt>HTTP method:</dt> <dd> <t><br/></t> <dl spacing="normal"> <dt>Claim Name:</dt><dd><tt>htm</tt></dd> <dt>Claim Description:</dt><dd>The HTTP method of therequest</li> <li>Change Controller: IETF</li> <li>Specification Document(s): [[ <xrefrequest</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd><xref target="DPoP-Proof-Syntax"></xref> ofthis specification ]]</li> </ul> <t>HTTP URI:</t> <ul spacing="compact"> <li>Claim Name: <tt>htu</tt></li> <li>Claim Description: TheRFC 9449</dd> </dl> </dd></dl> <dl spacing="normal"> <dt>HTTP URI:</dt> <dd> <t><br/></t> <dl spacing="normal"> <dt>Claim Name:</dt><dd><tt>htu</tt></dd> <dt>Claim Description:</dt><dd>The HTTP URI of the request (without query and fragmentparts)</li> <li>Change Controller: IETF</li> <li>Specification Document(s): [[ <xrefparts)</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd><xref target="DPoP-Proof-Syntax"></xref> ofthis specification ]]</li> </ul> <t>AccessRFC 9449</dd> </dl></dd></dl> <dl spacing="normal"> <dt>Access tokenhash:</t> <ul spacing="compact"> <li>Claim Name: <tt>ath</tt></li> <li>Claim Description: The base64url encodedhash:</dt> <dd> <t><br/></t> <dl spacing="normal"> <dt>Claim Name:</dt><dd><tt>ath</tt></dd> <dt>Claim Description:</dt><dd>The base64url-encoded SHA-256 hash of the ASCII encoding of the associated access token'svalue</li> <li>Change Controller: IETF</li> <li>Specification Document(s): [[ <xrefvalue</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd><xref target="DPoP-Proof-Syntax"></xref> ofthis specification ]]</li> </ul>RFC 9449</dd> </dl> </dd> </dl> <sectionanchor="nonce-registry-update"><name>"nonce" Registryanchor="nonce-registry-update"><name>"nonce" Registration Update</name> <t>The Internet Security Glossary <xref target="RFC4949"></xref> provides a useful definition of nonce as a random or non-repeating value that is included in data exchanged by a protocol, usually for the purpose of guaranteeing liveness and thus detecting and protecting against replay attacks.</t> <t>However, the initial registration of the <tt>nonce</tt> claim by <xref target="OpenID.Core"></xref> used language that was contextually specific to that application, which was potentially limiting to its general applicability.</t><t>This specification therefore requests that<t>Therefore, IANA has updated the entry for <tt>nonce</tt> in theIANA "JSON"JSON Web TokenClaims"Claims" registry <xref target="IANA.JWT"></xref>be updated as followswith an expanded definition to reflect that the claim can be used appropriately in othercontexts.</t> <ul spacing="compact"> <li>Claim Name: <tt>nonce</tt></li> <li>Claim Description: Valuecontexts and with the addition of this document as a reference, as follows.</t> <dl spacing="normal"> <dt>Claim Name:</dt><dd><tt>nonce</tt></dd> <dt>Claim Description:</dt><dd>Value used to associate a Client session with an ID Token(MAY(<bcp14>MAY</bcp14> also be used for nonce values in other applications ofJWTs)</li> <li>Change Controller: OpenIDJWTs)</dd> <dt>Change Controller:</dt><dd>OpenID Foundation Artifact Binding WorkingGroup - openid-specs-ab@lists.openid.net</li> <li>Specification Document(s): <xrefGroup, openid-specs-ab@lists.openid.net</dd> <dt>Specification Document(s):</dt><dd><xref target="OpenID.Core" sectionFormat="of"relative="#"relative="openid-connect-core-1_0.html#IDToken" section="2"></xref> and[[ this specification ]]</li> </ul>RFC 9449</dd> </dl> </section> </section> <sectionanchor="http-message-header-field-names-registration"><name>HTTP Message Headeranchor="http-message-header-field-names-registration"><name>Hypertext Transfer Protocol (HTTP) FieldNamesName Registration</name><t>This document specifies<t>IANA has registered the following HTTP header fields,registration of which is requestedas specified by this document, in the"Hypertext"Hypertext Transfer Protocol (HTTP) Field NameRegistry" registryRegistry" <xreftarget="RFC9110"></xref><xref target="IANA.HTTP.Fields"></xref>:</t> <ul> <li>Field name: <tt>DPoP</tt></li> <li>Status: permanent</li> <li><t>Specification document: [[ this specification ]] <br /> </t> </li> <li><t>Field name: <tt>DPoP-Nonce</tt></t> </li> <li><t>Status: permanent</t> </li> <li><t>Specification document: [[ this specification ]]</t> </li> </ul>target="IANA.HTTP.Fields"></xref> established by <xref target="RFC9110"></xref>:</t> <dl spacing="normal"> <dt>DPoP:</dt> <dd> <t><br/></t> <dl spacing="normal"> <dt>Field Name:</dt><dd><tt>DPoP</tt></dd> <dt>Status:</dt><dd>permanent</dd> <dt>Reference:</dt><dd>RFC 9449</dd> </dl> </dd> </dl> <dl spacing="normal"> <dt>DPoP-Nonce:</dt> <dd> <t><br/></t> <dl spacing="normal"> <dt>Field Name:</dt><dd><tt>DPoP-Nonce</tt></dd> <dt>Status:</dt><dd>permanent</dd> <dt>Reference:</dt><dd>RFC 9449</dd> </dl> </dd> </dl> </section> <section anchor="oauth-authorization-server-metadata-registration"><name>OAuth Authorization Server Metadata Registration</name><t>This specification requests registration of<t>IANA has registered the following value in theIANA "OAuth"OAuth Authorization ServerMetadata"Metadata" registry <xref target="IANA.OAuth.Params"></xref> established by <xref target="RFC8414"></xref>.</t><ul spacing="compact"> <li>Metadata Name: <tt>dpop_signing_alg_values_supported</tt></li> <li>Metadata Description: JSON<dl spacing="normal"> <dt>Metadata Name:</dt><dd><tt>dpop_signing_alg_values_supported</tt></dd> <dt>Metadata Description:</dt><dd>JSON array containing a list of the JWS algorithms supported for DPoP proofJWTs</li> <li>Change Controller: IETF</li> <li>Specification Document(s): [[ <xrefJWTs</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd><xref target="as-meta"></xref> ofthis specification ]]</li> </ul>RFC 9449</dd> </dl> </section> <section anchor="oauth-dynamic-client-registration-metadata"><name>OAuth Dynamic Client Registration Metadata</name><t>This specification requests registration of<t>IANA has registered the following value in the IANA"OAuth"OAuth Dynamic Client RegistrationMetadata"Metadata" registry <xref target="IANA.OAuth.Params"></xref> established by <xref target="RFC7591"></xref>.</t><ul spacing="compact"> <li>Metadata Name: <tt>dpop_bound_access_tokens</tt></li> <li>Metadata Description: Boolean<dl spacing="normal"> <dt>Client Metadata Name:</dt><dd><tt>dpop_bound_access_tokens</tt></dd> <dt>Client Metadata Description:</dt><dd>Boolean value specifying whether the client always uses DPoP for tokenrequests</li> <li>Change Controller: IETF</li> <li>Specification Document(s): [[ <xrefrequests</dd> <dt>Change Controller:</dt><dd>IETF</dd> <dt>Reference:</dt><dd><xref target="client-meta"></xref> ofthis specification ]]</li> </ul>RFC 9449</dd> </dl> </section> </section> </middle> <back><references><name>Normative<displayreference target="I-D.ietf-oauth-security-topics" to="SECURITY-TOPICS"/> <displayreference target="I-D.ietf-oauth-token-binding" to="TOKEN-BINDING"/> <references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3986.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5234.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6125.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6749.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6750.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7515.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7517.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7519.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7638.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7800.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <reference anchor="SHS"target="https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">target="http://dx.doi.org/10.6028/NIST.FIPS.180-4"> <front> <title>Secure Hash Standard (SHS)</title> <author> <organization>National Institute of Standards and Technology</organization> </author> <date year="2015" month="August"></date> </front><format type="PDF" target="https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf"></format><seriesInfo name="FIPS" value="PUB 180-4"></seriesInfo> <seriesInfo name="DOI" value="10.6028/NIST.FIPS.180-4"/> </reference> </references> <references><name>Informative References</name> <reference anchor="BREACH" target="https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3587"> <front> <title>CVE-2013-3587</title><author></author><author><organization>CVE</organization></author> </front> </reference> <reference anchor="CRIME" target="https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2012-4929"> <front> <title>CVE-2012-4929</title><author></author><author><organization>CVE</organization></author> </front> </reference> <reference anchor="Cloudbleed" target="https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/"> <front> <title>Incident report on memory leak caused by Cloudflare parser bug</title><author></author><author initials="J." surname="Graham-Cumming" fullname="John Graham-Cumming"/> <date month="February" year="2017"/> </front> </reference> <reference anchor="GitHub.Tokens" target="https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/"> <front> <title>Security alert: Attack campaign involving stolen OAuth user tokens issued to two third-party integrators</title><author></author><author initials="M." surname="Hanley" fullname="Mike Hanley"/> <date month="April" year="2022"/> </front> </reference> <reference anchor="Heartbleed" target="https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160"> <front> <title>CVE-2014-0160</title> <author></author> </front> </reference> <!-- [I-D.ietf-oauth-security-topics] IESG state I-D Exists as of 8/9/23 --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-oauth-security-topics.xml"/> <!-- [I-D.ietf-oauth-token-binding] IESG state Expired as of 8/9/23 --> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml-ids/reference.I-D.ietf-oauth-token-binding.xml"/> <reference anchor="IANA.HTTP.AuthSchemes"target="https://www.iana.org/assignments/http-authschemes">target="https://www.iana.org/assignments/http-authschemes/"> <front> <title>Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry</title> <author> <organization>IANA</organization> </author> </front> </reference> <reference anchor="IANA.HTTP.Fields"target="https://www.iana.org/assignments/http-fields/http-fields.xhtml">target="https://www.iana.org/assignments/http-fields/"> <front> <title>Hypertext Transfer Protocol (HTTP) Field Name Registry</title> <author> <organization>IANA</organization> </author><date></date></front> </reference> <reference anchor="IANA.JOSE.ALGS"target="https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms">target="https://www.iana.org/assignments/jose/"> <front> <title>JSON Web Signature and Encryption Algorithms</title> <author> <organization>IANA</organization> </author><date></date></front> </reference> <reference anchor="IANA.JWT"target="https://www.iana.org/assignments/jwt">target="https://www.iana.org/assignments/jwt/"> <front> <title>JSON Web Token Claims</title> <author> <organization>IANA</organization> </author><date></date></front> </reference> <reference anchor="IANA.MediaTypes"target="https://www.iana.org/assignments/media-types">target="https://www.iana.org/assignments/media-types/"> <front> <title>Media Types</title> <author> <organization>IANA</organization> </author> </front> </reference> <reference anchor="IANA.OAuth.Params"target="https://www.iana.org/assignments/oauth-parameters">target="https://www.iana.org/assignments/oauth-parameters/"> <front> <title>OAuth Parameters</title> <author> <organization>IANA</organization> </author> </front> </reference> <reference anchor="OpenID.Core" target="https://openid.net/specs/openid-connect-core-1_0.html"> <front> <title>OpenID Connect Core1.0</title>1.0 incorporating errata set 1</title> <author fullname="Nat Sakimura" initials="N." surname="Sakimura"><organization></organization></author> <author fullname="John Bradley" initials="J." surname="Bradley"><organization></organization></author> <author fullname="Michael B. Jones"initials="M.B."initials="M." surname="Jones"><organization></organization></author> <author fullname="Breno de Medeiros"initials="B.d." surname="Medeiros"> <organization></organization>initials="B." surname="de Medeiros"> </author> <author fullname="Chuck Mortimore" initials="C." surname="Mortimore"><organization></organization></author> <date year="2014" month="November"></date> </front> </reference> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2046.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4122.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4949.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6838.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7523.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7591.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7636.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7662.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8414.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8705.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8707.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8725.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8792.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9110.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9126.xml"/> <reference anchor="W3C.CSP"target="https://www.w3.org/TR/2018/WD-CSP3-20181015/">target="https://www.w3.org/TR/CSP3/"> <front> <title>Content Security Policy Level 3</title> <author fullname="Mike West" initials="M." surname="West"> <organization></organization> </author> <dateyear="2018" month="October" day="15"></date>year="2023" month="July"></date> </front><format type="HTML" target="https://www.w3.org/TR/2018/WD-CSP3-20181015/"></format> <seriesInfo name="World Wide Web Consortium<refcontent>W3C WorkingDraft" value="WD-CSP3-20181015"></seriesInfo>Draft</refcontent> </reference> <reference anchor="W3C.WebCryptoAPI" target="https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126"> <front> <title>Web Cryptography API</title> <author fullname="Mark Watson" initials="M." surname="Watson"> <organization></organization> </author> <date year="2017"month="January" day="26"></date>month="January"></date> </front><format type="HTML" target="https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126"></format> <seriesInfo name="World Wide Web Consortium Recommendation" value="REC-WebCryptoAPI-20170126"></seriesInfo><refcontent>W3C Recommendation</refcontent> </reference> <reference anchor="WHATWG.Fetch" target="https://fetch.spec.whatwg.org/"> <front> <title>Fetch Living Standard</title><author fullname="WHATWG" surname="WHATWG"><author> <organization>WHATWG</organization> </author> <dateyear="2022" month="May"></date>year="2023" month="July"></date> </front> </reference> </references> </references> <sectionanchor="Acknowledgements"><name>Acknowledgements</name>anchor="Acknowledgements" numbered="false"><name>Acknowledgements</name> <t>We would like to thankBrock Allen, Annabelle Backman, Spencer Balogh, Dominick Baier, Vittorio Bertocci, Jeff Corrigan, Domingos Creado, Andrii Deinega, William Denniss, Vladimir Dzhuvinov, Mike Engan, Nikos Fotiou, Mark Haine, Dick Hardt, Joseph Heenan, Bjorn Hjelm, Jacob Ideskog, Jared Jennings, Benjamin Kaduk, Pieter Kasselman, Neil Madden, Rohan Mahy, Karsten<contact fullname="Brock Allen"/>, <contact fullname="Annabelle Backman"/>, <contact fullname="Dominick Baier"/>, <contact fullname="Spencer Balogh"/>, <contact fullname="Vittorio Bertocci"/>, <contact fullname="Jeff Corrigan"/>, <contact fullname="Domingos Creado"/>, <contact fullname="Philippe De Ryck"/>, <contact fullname="Andrii Deinega"/>, <contact fullname="William Denniss"/>, <contact fullname="Vladimir Dzhuvinov"/>, <contact fullname="Mike Engan"/>, <contact fullname="Nikos Fotiou"/>, <contact fullname="Mark Haine"/>, <contact fullname="Dick Hardt"/>, <contact fullname="Joseph Heenan"/>, <contact fullname="Bjorn Hjelm"/>, <contact fullname="Jacob Ideskog"/>, <contact fullname="Jared Jennings"/>, <contact fullname="Benjamin Kaduk"/>, <contact fullname="Pieter Kasselman"/>, <contact fullname="Neil Madden"/>, <contact fullname="Rohan Mahy"/>, <contact fullname="Karsten Meyer zuSelhausen, Nicolas Mora, Steinar Noem, Mark Nottingham, Rob Otto, Aaron Parecki, Michael Peck, Roberto Polli, Paul Querna, Justin Richer, Joseph Salowey, Rifaat Shekh-Yusef, Filip Skokan, Dmitry Telegin, Dave Tonge, Jim Willeke, Philippe De Ryck,Selhausen"/>, <contact fullname="Nicolas Mora"/>, <contact fullname="Steinar Noem"/>, <contact fullname="Mark Nottingham"/>, <contact fullname="Rob Otto"/>, <contact fullname="Aaron Parecki"/>, <contact fullname="Michael Peck"/>, <contact fullname="Roberto Polli"/>, <contact fullname="Paul Querna"/>, <contact fullname="Justin Richer"/>, <contact fullname="Joseph Salowey"/>, <contact fullname="Rifaat Shekh-Yusef"/>, <contact fullname="Filip Skokan"/>, <contact fullname="Dmitry Telegin"/>, <contact fullname="Dave Tonge"/>, <contact fullname="Jim Willeke"/>, and others(please let us know, if you've been mistakenly omitted)for their valuable input,feedbackfeedback, and general support of this work.</t> <t>This document originated from discussions at the 4th OAuth Security Workshop in Stuttgart, Germany. We thank the organizers of this workshop(Ralf Kusters, Guido Schmitz).</t> </section> <section anchor="document-history"><name>Document History</name> <t>[[ To be removed from the final specification ]]</t> <t>-16</t> <ul spacing="compact"> <li>Per suggestion of the registry's designated expert, change "resource error response" to "resource access error response" for location of the two items in the "OAuth Extensions Error Registration" section</li> </ul> <t>-15</t> <ul spacing="compact"> <li>Editorial updates from IESG review/ballot</li> <li>Mike Jones and Daniel Fett with new email/organization info</li> </ul> <t>-14</t> <ul spacing="compact"> <li>Add sec considerations sub-section about binding to client identity</li> <li>Explicitly say that nonces must be unpredictable</li> <li>Change to a numbered list in 'Checking DPoP Proofs'</li> <li>Editorial adjustments</li> <li>Incorporated HTTP header field definition and RFC 8792 '\' line wrapping suggestions by Mark Nottingham</li> </ul> <t>-13</t> <ul spacing="compact"> <li>Editorial updates/fixes</li> <li>Make sure RFC7519 is a normative reference</li> </ul> <t>-12</t> <ul spacing="compact"> <li>Updates from Roman Danyliw's AD review</li> <li>DPoP-Nonce now included in HTTP header field registration request</li> <li>Fixed section reference to URI Scheme-Based Normalization</li> <li>Attempt to better describe the rationale for SHA-256 only and expectations for how hash algorithm agility would be achieved if needed in the future</li> <li>Elaborate on the use of multiple WWW-Authenticate challenges by protected resources</li> <li>Fix access token request examples that were missing a client_id</li> </ul> <t>-11</t> <ul spacing="compact"> <li>Updates addressing outstanding shepherd review comments per side meeting discussions at IETF 114</li> <li>Added more explanation of the PAR considerations</li> <li>Added parenthetical remark "(such as ES256)" to Signature Algorithms subsection</li> <li>Added more explanation for ath</li> <li>Added a reference to RFC8725 in mention of explicit JWT typing</li> </ul> <t>-10</t> <ul spacing="compact"> <li>Updates addressing some shepherd review comments</li> <li>Update HTTP references as RFCs 723x have been superseded by RFC 9110</li> <li>Editorial fixes</li> <li>Added some clarifications, etc. around nonce</li> <li>Added client considerations subsection</li> <li>Use bullets rather than numbers in Checking DPoP Proofs so as not to imply specific order</li> <li>Added notes/reminders about browser-based client applications using CORS needing access to response headers</li> <li>Added a JWT claims registry update request for "nonce" to (better) allow for more general use in other contexts</li> </ul> <t>-09</t> <ul spacing="compact"> <li>Add note/reminder about browser-based client applications using CORS needing access to response headers.</li> <li>Fixed typo</li> </ul> <t>-08</t> <ul spacing="compact"> <li>Lots of editorial updates from WGLC feedback</li> <li>Further clarify that either iat or nonce can be used alone in validating the timeliness of the proof and somewhat de-emphasize jti tracking</li> </ul> <t>-07</t> <ul spacing="compact"> <li>Registered the <tt>application/dpop+jwt</tt> media type.</li> <li>Editorial updates/clarifications based on review feedback.</li> <li>Added "(on the order of seconds or minutes)" to somewhat qualify "relatively brief period" and "reasonably near future" and give a general idea of expected timeframe without being overly prescriptive.</li> <li>Added a step to <xref target="checking"></xref> to reiterate that the jwk header cannot have a private key.</li> </ul> <t>-06</t> <ul spacing="compact"> <li>Editorial updates and fixes</li> <li>Changed name of client metadata parameter to <tt>dpop_bound_access_tokens</tt></li> </ul> <t>-05</t> <ul spacing="compact"> <li>Added Authorization Code binding via the <tt>dpop_jkt</tt> parameter.</li> <li>Described the authorization code reuse attack and how <tt>dpop_jkt</tt> mitigates it.</li> <li>Enhanced description of DPoP proof expiration checking.</li> <li>Described nonce storage requirements and how nonce mismatches and missing nonces are self-correcting.</li> <li>Specified the use of the <tt>use_dpop_nonce</tt> error for missing and mismatched nonce values.</li> <li>Specified that authorization servers use <tt>400 (Bad Request)</tt> errors to supply nonces and resource servers use <tt>401 (Unauthorized)</tt> errors to do so.</li> <li>Added a bit more about <tt>ath</tt> and pre-generated proofs to the security considerations.</li> <li>Mentioned confirming the DPoP binding of the access token in the list in <xref target="checking"></xref>.</li> <li>Added the <tt>always_uses_dpop</tt> client registration metadata parameter.</li> <li>Described the relationship between DPoP and Pushed Authorization Requests (PAR).</li> <li>Updated references for drafts that are now RFCs.</li> </ul> <t>-04</t> <ul spacing="compact"> <li>Added the option for a server-provided nonce in the DPoP proof.</li> <li>Registered the <tt>invalid_dpop_proof</tt> and <tt>use_dpop_nonce</tt> error codes.</li> <li>Removed fictitious uses of <tt>realm</tt> from the examples, as they added no value.</li> <li>State that if the introspection response has a <tt>token_type</tt>, it has to be <tt>DPoP</tt>.</li> <li>Mention that RFC7235 allows multiple authentication schemes in <tt>WWW-Authenticate</tt> with a 401.</li> <li>Editorial fixes.</li> </ul> <t>-03</t> <ul spacing="compact"> <li>Add an access token hash (<tt>ath</tt>) claim to the DPoP proof when used in conjunction with the presentation of an access token for protected resource access</li> <li>add Untrusted Code in the Client Context section to security considerations</li> <li>Editorial updates and fixes</li> </ul> <t>-02</t> <ul spacing="compact"> <li>Lots of editorial updates and additions including expanding on the objectives, better defining the key confirmation representations, example updates and additions, better describing mixed bearer/dpop token type deployments, clarify RT binding only being done for public clients and why, more clearly allow for a bound RT but with bearer AT, explain/justify the choice of SHA-256 for key binding, and more</li> <li>Require that a protected resource supporting bearer and DPoP at the same time must reject an access token received as bearer, if that token is DPoP-bound</li> <li>Remove the case-insensitive qualification on the <tt>htm</tt> claim check</li> <li>Relax the jti tracking requirements a bit and qualify it by URI</li> </ul> <t>-01</t> <ul spacing="compact"> <li>Editorial updates</li> <li>Attempt to more formally define the DPoP Authorization header scheme</li> <li>Define the 401/WWW-Authenticate challenge</li> <li>Added <tt>invalid_dpop_proof</tt> error code for DPoP errors in token request</li> <li>Fixed up and added to the IANA section</li> <li>Added <tt>dpop_signing_alg_values_supported</tt> authorization server metadata</li> <li>Moved the Acknowledgements into an Appendix and added a bunch of names (best effort)</li> </ul> <t>-00 [[ Working Group Draft ]]</t> <ul spacing="compact"> <li>Working group draft</li> </ul> <t>-04</t> <ul spacing="compact"> <li>Update OAuth MTLS reference to RFC 8705</li> <li>Use the newish RFC v3 XML and HTML format</li> </ul> <t>-03</t> <ul spacing="compact"> <li>rework the text around uniqueness requirements on the jti claim in the DPoP proof JWT</li> <li>make tokens a bit smaller by using <tt>htm</tt>, <tt>htu</tt>, and <tt>jkt</tt> rather than <tt>http_method</tt>, <tt>http_uri</tt>, and <tt>jkt#S256</tt> respectively</li> <li>more explicit recommendation to use mTLS if that is available</li> <li>added David Waite as co-author</li> <li>editorial updates</li> </ul> <t>-02</t> <ul spacing="compact"> <li>added normalization rules for URIs</li> <li>removed distinction between proof and binding</li> <li>"jwk" header again used instead of "cnf" claim in DPoP proof</li> <li>renamed "Bearer-DPoP" token type to "DPoP"</li> <li>removed ability for key rotation</li> <li>added security considerations on request integrity</li> <li>explicit advice on extending DPoP proofs to sign other parts of the HTTP messages</li> <li>only use the jkt#S256 in ATs</li> <li>iat instead of exp in DPoP proof JWTs</li> <li>updated guidance on token_type evaluation</li> </ul> <t>-01</t> <ul spacing="compact"> <li>fixed inconsistencies</li> <li>moved binding and proof messages to headers instead of parameters</li> <li>extracted and unified definition of DPoP JWTs</li> <li>improved description</li> </ul> <t>-00</t> <ul spacing="compact"> <li>first draft</li> </ul>(<contact fullname="Ralf Küsters"/> and <contact fullname="Guido Schmitz"/>).</t> </section> </back> </rfc>