<?xmlversion='1.0' encoding='utf-8'?>version="1.0" encoding="UTF-8"?> <!DOCTYPE rfc [ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]><?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?> <!-- generated by https://github.com/cabo/kramdown-rfc2629 version 1.5.11 --> <?rfc toc="yes"?> <?rfc sortrefs="yes"?> <?rfc symrefs="yes"?><rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902"docName="draft-irtf-panrg-path-properties-08"submissionType="IRTF" category="info" consensus="true" docName="draft-irtf-panrg-path-properties-08" number="9473" obsoletes="" updates=""submissionType="IETF"xml:lang="en" tocInclude="true" sortRefs="true" symRefs="true" version="3"><!-- xml2rfc v2v3 conversion 3.10.0 --><front> <title abbrev="Path Properties">A Vocabulary of Path Properties</title> <seriesInfoname="Internet-Draft" value="draft-irtf-panrg-path-properties-08"/>name="RFC" value="9473"/> <author initials="R." surname="Enghardt" fullname="Reese Enghardt"> <organization>Netflix</organization> <address> <email>ietf@tenghardt.net</email> </address> </author> <author initials="C." surname="Krähenbühl" fullname="Cyrill Krähenbühl"> <organization>ETH Zürich</organization> <address> <email>cyrill.kraehenbuehl@inf.ethz.ch</email> </address> </author> <date year="2023"month="March" day="06"/> <area>IRTF</area> <workgroup>PANRG</workgroup> <keyword>Internet-Draft</keyword> <abstract> <t>This document is a product of the Pathmonth="September"/> <workgroup>Path AwareNetworking Research Group (PANRG). PathNetworking</workgroup> <keyword>PAN</keyword> <keyword>path-aware network</keyword> <keyword>path property</keyword> <keyword>path selection</keyword> <abstract> <t>Path properties express information about paths across a network and the services provided via such paths. In a path-aware network, path properties may be fully or partially available to entities such as endpoints. This document defines and categorizes path properties. Furthermore, the document identifies several path propertieswhichthat might be useful to endpoints or other entities, e.g., for selecting between paths or for invoking some of the providedservices.</t> </abstract> <note removeInRFC="true"> <name>Discussion Venues</name> <t>Discussion of thisservices. This documenttakes place onis a product of the"Path-AwarePath Aware Networking ResearchGroup" mailing list (PANRG), which is archived at <eref target="https://mailarchive.ietf.org/arch/browse/panrg/"/>. Subscription information is at <eref target="https://www.ietf.org/mailman/listinfo/panrg/"/>.</t> <t>Source for this draft and an issue tracker can be found at <eref target="https://github.com/panrg/path-properties/"/>.</t> </note>Group (PANRG).</t> </abstract> </front> <middle> <section anchor="introduction" numbered="true" toc="default"> <name>Introduction</name> <t>The current Internet architecture does not explicitly support endpoint discovery of forwarding paths through the network nor the discovery of properties and services associated with these paths. Path-aware networking, as defined inSection 1.1 of<xref target="RFC9217"format="default"/>,sectionFormat="of" section="1.1"/>, describes "endpoint discovery of the properties of paths they use for communication across an internetwork, and endpoint reaction to these properties that affects routing and/or data transfer". This document provides a generic definition of path properties, addressing the first of the questions in path-aware networking <xref target="RFC9217" format="default"/>.</t> <t>As terms related to paths have been used with different meanings in different areas of networking, first, this document provides a common terminology to define paths, path elements, and flows. Based on these terms, the document defines path properties. Then, this document provides some examples of use cases for path properties. Finally, the document lists several path properties that may be useful for the mentioned use cases. This list is intended to be neither exhaustive nor definitive.</t> <t>Note that this document does not assume that any of the listed path properties are actually available to any entity. The question of how entities can discover and distribute path properties in a trustworthy way is out of scope for this document.</t> <t>This document represents the consensus of the Path Aware Networking Research Group (PANRG).</t> </section> <section anchor="terminology" numbered="true" toc="default"> <name>Terminology</name><dl> <dt> Entity: </dt><dl spacing="normal" newline="false"> <dt>Entity:</dt> <dd> <t>A physical or virtual device or function, or a collection of devices or functions,whichthat plays a role related to path-aware networking for particular paths and flows. An entity can be on-path oroff-path:off-path. On the path, an entity may participate in forwarding the flow, i.e., what may be calleddata"data planefunctionality.functionality". On or off the path, an entity may influence aspects of how the flow is forwarded, i.e., what may be calledcontrol"control planefunctionality,functionality", such asPath Selectionpath selection orService Invocation.service invocation. An entity influencing forwarding aspects is usually aware of path properties, e.g., by observing or measuring them or by learning them from another entity.</t> </dd><dt> Node: </dt><dt>Node:</dt> <dd> <t>An on-path entitywhichthat processes packets, e.g., sends, receives, forwards, or modifies them. A node may be physical or virtual, e.g., a physical device, a service function provided as a virtual element, or even a single queue within a switch. A node may also be an entitywhichthat consists of a collection of devices or functions, e.g., an entire Autonomous System (AS).</t> </dd><dt> Link: </dt><dt>Link:</dt> <dd> <t>A medium or communication facility that connects two or more nodes with each other. A link enables a node to send packets to other nodes. Links can be physical, e.g., a Wi-Fi networkwhichthat connects an Access Point to stations, or virtual, e.g., a virtual switchwhichthat connects two virtual machines hosted on the same physical machine. A link is unidirectional. As such, bidirectional communication can be modeled as two links between the same nodes in opposite directions.</t> </dd><dt> Path element: </dt><dt>Path element:</dt> <dd> <t>Either a node or a link. For example, a path element can be an Abstract Network Element (ANE) as defined in <xreftarget="I-D.ietf-alto-path-vector"target="RFC9275" format="default"/>.</t> </dd><dt> Path: </dt><dt>Path:</dt> <dd> <t>A sequence of adjacent path elements over which a packet can be transmitted, starting and ending with anode. </t>node.</t> <t>Paths are unidirectional andtime-dependent,time dependent, i.e., there can be a variety of paths from one node to another, and the path over which packets are transmitted may change. A path definition can be strict (i.e., the exact sequence of path elements remains the same) or loose (i.e., the start and end node remain the same, but the path elements between them may vary over time).</t> <t>The representation of a path and its properties may depend on the entity considering the path. On the one hand, the representation may differ due to entities having partial visibility of path elements comprising a path or their visibility changing over time. On the other hand, the representation may differ due to treating path elements at different levels of abstraction. For example, a path may be given as a sequence of physical nodes and the links connecting these nodes, be given as a sequence of logical nodes such as a sequence of ASes or an Explicit Route Object (ERO), or only consist of a specific source and destinationwhichthat is known to be reachable from that source.</t> <t>A multicast or broadcastsetting,setting where a packet is sent by one node and received by multiplenodes,nodes is described by multiple paths over which the packet is sent, one path for each combination of sending and receiving node; these paths do not have to be disjoint as defined by theDisjointnessdisjointness path property, see <xref target="examples" format="default"/>.</t> </dd><dt> Endpoint: </dt><dt>Endpoint:</dt> <dd> <t>The endpoints of a path are the start and end node of the path. For example, an endpoint can be a host as defined in <xref target="RFC1122" format="default"/>, which can be a client (e.g., a node running a web browser) or a server (e.g., a node running a web server).</t> </dd><dt> Reverse Path: </dt><dt>Reverse Path:</dt> <dd> <t>The path that is used by a remote node in the context of bidirectional communication.</t> </dd><dt> Subpath: </dt><dt>Subpath:</dt> <dd> <t>Given a path, a subpath is a sequence of adjacent path elements of this path.</t> </dd><dt> Flow: </dt><dt>Flow:</dt> <dd> <t>One or multiple packets to which the traits of a path or set of subpaths may be applied in a functional sense. For example, a flow can consist of all packets sent within a TCP session with the same five-tuple between two hosts, or it can consist of all packets sent on the same physical link.</t> </dd><dt> Property: </dt><dt>Property:</dt> <dd> <t>A trait of one or a sequence of path elements, or a trait of a flow with respect to one or a sequence of path elements. An example of a link property is the maximum data rate that can be sent over the link. An example of a node property is the administrative domain that the node belongs to. An example of a property of a flow with respect to a subpath is the aggregated one-way delay of the flow being sent from one node to another node over this subpath. A property is thus described by a tuple containing the path element(s), the flow or an empty set if no packets are relevant for the property, the name of the property (e.g., maximum data rate), and the value of the property (e.g.,1Gbps).</t>1 Gbps).</t> </dd><dt> Aggregated property: </dt><dt>Aggregated property:</dt> <dd> <t>A collection of multiple values of a property into a single value, according to a function. A property can be aggregatedover multipleover:</t> <ul spacing="normal"> <li>multiple path elements (i.e., a subpath),e.g.,for example, the MTU of a path as the minimum MTU of all links on thepath, over multiplepath,</li> <li>multiple packets (i.e., a flow),e.g.,for example, the median one-way latency of all packets between twonodes, or over both, e.g.,nodes,</li> <li>or both path elements and packets, for example, the mean of the queueing delays of a flow on all nodes along apath. Thepath.</li> </ul> <t>The aggregation function can benumerical, e.g.,numerical (e.g., median, sum,minimum, it can be logical, e.g.,minimum) or logical (e.g., "true if all are true", "true if at least 50% of values aretrue",true"), or it can be an arbitrary functionwhichthat maps multiple input values to an output value.</t> </dd><dt> Observed property: </dt><dt>Observed property:</dt> <dd> <t>A property that is observed for a specific path element, subpath, orpath, e.g.,path. A property may be observed usingmeasurements. Formeasurements, for example, the one-way delay of a specific packet transmitted fromonenode toanother node can be measured.</t>node.</t> </dd><dt> Assessed property: </dt><dt>Assessed property:</dt> <dd> <t>An approximate calculation or assessment of the value of a property. An assessed property includes the reliability of the calculation or assessment. The notion of reliability depends on the property. For example, a path property based on an approximate calculation may describe the expected median one-way latency of packets sent on a path within the next second, including the confidence level and interval. A non-numerical assessment may instead include the likelihood that the property holds.</t> </dd><dt> Target property: </dt><dt>Target property:</dt> <dd> <t>An objective that is set for a property over a path element, subpath, or path. Note that a target property can be set for observed properties, such as one-way delay,butand also for properties that cannot be observed by the entity setting the target, such as inclusion of certain nodes on a path.</t> </dd> </dl> <section anchor="terminology-usage-for-specific-technologies" numbered="true" toc="default"> <name>TerminologyusageUsage forspecific technologies</name>Specific Technologies</name> <t>The terminology defined in this document is intended to be general and applicable to existing and future path-aware technologies. Using this terminology, a path-aware technology can define and consider specific path elements and path properties on a specific level of abstraction. For instance, a technology may define path elements as IP routers, e.g., in source routing(<xref<xref target="RFC1940"format="default"/>).format="default"/>. Alternatively, it may consider path elements on a different layer of the InternetArchitecture (<xrefarchitecture <xref target="RFC1122"format="default"/>)format="default"/> or as a collection of entities not tied to a specific layer, such as an AS oranERO. Even within a single path-aware technology, specific definitions might differ depending on the context in which they are used. For example, the endpoints might be the communicating hosts in the context of the transport layer, ASes that contain the hosts in the context of routing, or specific applications in the context of the application layer.</t> </section> </section> <section anchor="use-cases" numbered="true" toc="default"> <name>Use Cases for Path Properties</name> <t>When a path-aware network exposes path properties to endpoints or other entities, these entities may use this information to achieve different goals. This section lists several use cases for path properties.</t> <t>Note that this is not an exhaustivelist,list; as with every new technology and protocol, novel use cases may emerge, and new path properties may become relevant. Moreover, for any particular technology, entities may have visibility of and control over different path elements and pathproperties,properties and consider them on different levels of abstraction. Therefore, a new technology may implement an existing use case related to different path elements or on a different level of abstraction.</t> <section anchor="path-selection" numbered="true" toc="default"> <name>Path Selection</name> <t>Nodes may be able to send flows via one (or a subset) out of multiple possible paths, and an entity may be able to influence the decision about which path(s) to use. PathSelectionselection may be feasible if there are several paths to the same destination (e.g., in case of a mobile device with two wireless interfaces, both providing apath),path) or if there are several destinations, and thus several paths, providing the same service (e.g., Application-Layer Traffic Optimization (ALTO) <xref target="RFC5693" format="default"/>, an application layer peer-to-peer protocol allowing endpoints a better-than-random peer selection). Entities can express their intent to achieve a specific goal by specifying target properties for their paths, e.g., related to performance or security. Then, paths can be selectedwhichthat best meet the target properties, e.g., the entity can select these paths from all available paths or express the target properties to the network and rely on the network to select appropriate paths.</t> <t>Target properties relating to network performance typically refer to observed properties, such asOne-Way Delay, One-Way Packet Loss,one-way delay, one-way packet loss, andLink Capacity.link capacity. Entities then select paths based on their target property and the assessed property of the available paths that best match the application requirements. For such performance-related target properties, the observed property is similar to aservice level indicator (SLI)Service Level Indicator (SLI), and the assessed property is similar to aservice level objectiveService Level Objective (SLO) for IETFnetwork slicesNetwork Slices <xref target="I-D.ietf-teas-ietf-network-slices" format="default"/>. As an examplepath selectionpath-selection strategy,for sending a small delay-sensitive query,an entity may select a path with a shortOne-Way Delay, whileone-way delay forretrievingsending alarge file,small delay-sensitive query, while it may select a path with highLink Capacitieslink capacities on alllinks.</t>links for retrieving a large file.</t> <t>It is also possible for an entity to set target propertieswhichthat it cannot (directly) observe, similar toservice level expectationsService Level Expectations (SLEs) for IETFnetwork slicesNetwork Slices <xref target="I-D.ietf-teas-ietf-network-slices" format="default"/>.For example, this canThis may apply to security-related target properties (e.g., to mandate that all enterprise traffic goes through a specific firewall) and pathselection, such asselection (e.g., to enforce traffic policies by allowing or disallowing sending flows over paths that involve specific networks ornodes to enforce traffic policies or mandating that all enterprise traffic goes through a specific firewall.</t>nodes).</t> <t>Care needs to be taken when selecting paths based on observed path properties, as path properties that were previously measured may not be helpful in predicting current or future pathpropertiesproperties, and such path selection may lead to unintended feedback loops. Also, there may be trade-offs between path properties (e.g.,One-Way Delayone-way delay andLink Capacity),link capacity), and entities may influence these trade-offs with their choices. Finally, path selection may impact fairness. For example, if multiple entities concurrently attempt to meet their target properties using the same network resources, one entity's choices may influence the conditions on the path as experienced by flows of another entity.</t> <t>As a baseline, apath selectionpath-selection algorithm should aim to do a better jobatof meeting the target properties, and consequently accommodating the user's requirements, than the default case of not selecting a path most of the time.</t> <t>Path selection can be done either by the communicating node(s) or by other entities within thenetwork:network. A network (e.g., an AS) can adjust its path selection for internal or external routing based on path properties. In BGP, theMulti ExitMulti-Exit Discriminator (MED) attribute is used in the decision-making process to select which path to choose among those having the same ASPATHpath length and origin <xref target="RFC4271" format="default"/>; in a path-aware network, instead of using this single MED value, other properties such asLink Capacitylink capacity orLink Usagelink usage could additionally be used to improve load balancing or performance <xref target="I-D.ietf-idr-performance-routing" format="default"/>.</t> </section> <section anchor="protocol-selection" numbered="true" toc="default"> <name>Protocol Selection</name> <t>Before sending data over a specific path, an entity may select an appropriate protocol or configure protocol parameters depending on path properties. For example, an endpoint may cache stateon whetherif a path allows the use of QUIC <xref target="RFC9000"format="default"/> andformat="default"/>; if so, it may first attempt to connect using QUIC before falling back to another protocol when connecting over this path again. Avideo streamingvideo-streaming application may choose an (initial) video quality based on the achievable data rate or the monetary cost of sending data (e.g.,volume-basevolume-based or flat-rate cost model).</t> </section> <section anchor="service-invocation" numbered="true" toc="default"> <name>Service Invocation</name> <t>In addition to path or protocol selection, an entity may choose to invoke additional functions in the context of Service Function Chaining <xref target="RFC7665" format="default"/>, which may influencewhatwhich nodes are on the path. For example, a 0-RTT Transport Converter <xref target="RFC8803" format="default"/> will be involved in a path only when invoked by an endpoint; such invocation will lead to the use ofMPTCPMultipath TCP (MPTCP) <xref target="RFC8684" format="default"/> orTCPinc <xref target="RFC8547" format="default"/>tcpcrypt <xref target="RFC8548" format="default"/>capabilitiescapabilities, while such use is not supported via the default forwarding path. Another example is a connectionwhichthat is composed of multiple streams where each stream has specific service requirements. An endpoint may decide to invoke a given service function (e.g., transcoding) only for some streams while others are not processed by that service function.</t> </section> </section> <section anchor="examples" numbered="true" toc="default"> <name>Examples of Path Properties</name> <t>ThisSectionsection gives some examples of path propertieswhichthat may be useful, e.g., for the use cases described in <xref target="use-cases" format="default"/>.</t> <t>Within the context of any particular technology, available path properties may differ as entities have insight into and are able to influence different path elements and path properties. For example, an endpoint may have some visibility into path elements that are close and on a low level of abstractionand close, e.g.,(e.g., individual nodes within the first fewhops,hops), or it may have visibility into path elements that are far away and/or on a higher level ofabstraction, e.g.,abstraction (e.g., the list of ASestraversed.traversed). This visibility may depend on factors such as the physical or network distance or the existence of trust or contractual relationships between the endpoint and the path element(s). A path property can be defined relative to individual path elements, a sequence of path elements, or "end-to-end", i.e., relative to a path that comprises of two endpoints and a single virtual link connecting them.</t> <t>Path properties may be relatively dynamic, e.g., the one-way delay of a packet sent over a specific path, or non-dynamic, e.g., the MTU of an Ethernet linkwhichthat only changes infrequently. Usefulness over time differs depending on how dynamic a property is:Thethe merit of a momentarily observed dynamic pathpropetyproperty may diminish greatly as time goes on, e.g., it is possible for the observed values ofOne-Way Delayone-way delay to change on timescaleswhichthat are shorter than theOne-Way Delayone-way delay between the measurement point and an entity making a decision such asPath Selection,path selection, which may cause the measurement to be outdated when it reaches the decision-making entity. Therefore, consumers of dynamic path properties need to apply caution when using them, e.g., by aggregating them appropriately or applying a dampening function to their changes toavoidingavoid oscillation. In contrast, the observed value of a less dynamic path property might stay relevant for a longer period of time,e.g.e.g., a NAT typically stays on a particular path during the lifetime of a connection involving packets sent over this path.</t><dl> <dt> Access Technology: </dt><dl spacing="normal" newline="false"> <dt>Access Technology:</dt> <dd> <t>Thephysicalphysical- orlink layerlink-layer technology used for transmitting or receiving a flow on one or multiple path elements. If known, theAccess Technologyaccess technology may be given as an abstract link type, e.g., as Wi-Fi,Wiredwired Ethernet, orCellular.cellular. It may also be given as a specific technology used on a link, e.g., 3GPPcellular,cellular or 802.11WiFi.Wireless Local Area Network (WLAN). Other path elements relevant to the access technology may include nodes related to processing packets on the physical or link layer, such as elements of a cellular core network. Note that there is no common registry of possible values for this property.</t> </dd><dt> Monetary Cost: </dt><dt>Monetary Cost:</dt> <dd> <t>The price to be paid to transmit or receive a specific flow across a network to which one or multiple path elements belong.</t> </dd><dt> Service function: </dt><dt>Service Function:</dt> <dd> <t>A service function that a path element applies to a flow, see <xref target="RFC7665" format="default"/>. Examples of abstract service functions include firewalls, Network Address Translation (NAT), and TCP Performance Enhancing Proxies. Some stateful service functions, such as NAT, need to observe the same flow in both directions, e.g., by being an element of both the path and the reverse path.</t> </dd><dt> Transparency: </dt><dt>Transparency:</dt> <dd> <t>When a node performs an action A on a flow F, the node is transparent to F with respect to some (meta-)information M if the node performs A independently of M. Mcancan, forexampleexample, be the existence of a protocol (header) in a packet or the content of a protocol header, payload, or both. For example, A can be blocking packets or reading and modifying (other protocol) headers or payloads. Transparency can be modeled using a function f, which takes as input F and M and outputs the action taken by the node. If a taint analysis shows that the output of f is not tainted (impacted) byMM, or if the output of f is constant for arbitrary values of M, then the node is considered to be transparent. An IP router could be transparent to transport protocol headers such as TCP/UDP but not transparent to IP headers since its forwarding behavior depends on the IP headers. A firewall that only allows outgoing TCP connections by blocking all incoming TCP SYN packets regardless of their IP address is transparent to IP but not to TCP headers. Finally, a NAT that actively modifies IP and TCP/UDP headers based on their content is not transparent to either IP or TCP/UDP headers. Note that according to this definition, a node that modifies packets in accordance with the endpoints, such as a transparent HTTP proxy, as defined in <xreftarget="RFC2616"target="RFC9110" format="default"/>, and a node listening and reacting to implicit or explicit signals, see <xref target="RFC8558" format="default"/>, are not consideredtransparent. </t>transparent.</t> <t>Transparency only applies to nodes and not to links, as a link cannot modify or perform any other actions on the packets by itself. For example, if the content of a packet is altered when forwarded over a Generic Routing Encapsulation (GRE) tunnel <xref target="RFC2784"format="default"/><xrefformat="default"/> <xref target="RFC7676" format="default"/>, per this documentconsiders as nodesthe software instances that terminate the tunnel are considered nodes over which the actions are performed; thus, the transparency definition applies to these nodes.</t> </dd><dt> Administrative Domain: </dt><dt>Administrative Domain:</dt> <dd> <t>The identity of an individual or an organization that controls access to a path element (or several path elements). Examples of administrative domains are an IGP area, an AS, or a service provider network.</t> </dd><dt> Routing<dt>Routing DomainIdentifier: </dt>Identifier:</dt> <dd> <t>An identifier indicating the routing domain of a path element. Path elements in the same routing domain are in the same administrative domain and use a common routing protocol to communicate with each other. An example of a routing domain identifier is the globally uniqueautonomous system numberAutonomous System Number (ASN) as defined in <xref target="RFC1930" format="default"/>.</t> </dd><dt> Disjointness: </dt><dt>Disjointness:</dt> <dd> <t>For a set of two paths or subpaths, the number of shared path elements can be a measure of intersection (e.g., Jaccard coefficient, which is the number of shared elements divided by the total number of elements). Conversely, the number of non-shared path elements can be a measure of disjointness (e.g., 1 - Jaccard coefficient). A multipath protocol might use disjointness as a metric to reduce the number of single points of failure. As paths can be defined at different levels of abstraction, two paths may be disjoint at one level ofabstraction,abstraction but not on another.</t> </dd><dt> Symmetric Path: </dt><dt>Symmetric Path:</dt> <dd> <t>Two paths are symmetric if the path and its reverse path consist of the same path elements on the same level of abstraction, but in reverse order. For example, a pathwhichthat consists of layer 3 switches and links between them and a reverse path with the same path elements but in reverse order are considered "routing" symmetric, as the same path elements on the same level of abstraction (IP forwarding) are traversed in the opposite direction. Symmetry can depend on the level of abstraction on which the path is defined ormodeled:modeled. If there are two parallel physical links between two nodes, modeling them as separate links may result in a flow using asymmetric paths, and modeling them as a single virtual link may result in symmetric paths, e.g., if the difference between the two physical links is irrelevant in a particular context.</t> </dd><dt> Path MTU: </dt><dt>Path MTU:</dt> <dd> <t>The maximum size, in octets, of a packet or frame that can be transmitted without fragmentation.</t> </dd><dt> Transport<dt>Transport Protocolsavailable: </dt>available:</dt> <dd> <t>Whether a specific transport protocol can be used to establish a connection over a path or subpath, e.g., whether the path is QUIC-capable or MPTCP-capable, based on input such as policy, cached knowledge, or probing results.</t> </dd><dt> Protocol<dt>Protocol Featuresavailable: </dt>available:</dt> <dd> <t>Whether a specific protocol feature is available over a path or subpath, e.g., Explicit Congestion Notification(ECN),(ECN) or TCP Fast Open.</t> </dd> </dl> <t>Some path properties express the performance of the transmission of a packet or flow over a link or subpath. Such transmission performance properties can be observed or assessed, e.g., by endpoints or by path elements on the path, or they may be available as cost metrics, see <xreftarget="I-D.ietf-alto-performance-metrics"target="RFC9439" format="default"/>. Transmission performance properties may be made available in an aggregated form, such as averages or minimums. Properties related to a path elementwhichthat constitutes a single layer 2 domain are abstracted from the usedphysicalphysical- andlink layerlink-layer technology, similar to <xref target="RFC8175" format="default"/>.</t><dl> <dt> Link Capacity: </dt><dl spacing="normal" newline="false"> <dt>Link Capacity:</dt> <dd> <t>The link capacity is the maximum data rate at which data that was sent over a link can correctly be received at the node adjacent to the link. This property is analogous to the link capacity defined in <xref target="RFC5136" format="default"/> and <xref target="RFC9097" format="default"/> but is not restricted to IP-layer traffic.</t> </dd><dt> Link Usage: </dt><dt>Link Usage:</dt> <dd> <t>The link usage is the actual data rate at which data that was sent over a link is correctly received at the node adjacent to the link. This property is analogous to the link usage defined in <xref target="RFC5136" format="default"/> and <xref target="RFC9097" format="default"/> but is not restricted to IP-layer traffic.</t> </dd><dt> One-Way Delay: </dt><dt>One-Way Delay:</dt> <dd> <t>The one-way delay is the delay between a node sending a packet and another node on the same path receiving the packet. This property is analogous to the one-way delay defined in <xref target="RFC7679" format="default"/> but is not restricted to IP-layer traffic.</t> </dd><dt> One-Way<dt>One-Way DelayVariation: </dt>Variation:</dt> <dd> <t>The variation of the one-way delays within a flow. This property is similar to the one-way delay variation defined in <xref target="RFC3393"format="default"/>format="default"/>, but it is not restricted to IP-layer traffic and it is defined for packets on the same flow instead of packets sent between a source and destination IP address.</t> </dd><dt> One-Way<dt>One-Way PacketLoss: </dt>Loss:</dt> <dd> <t>Packets sent by a node but not received by another node on the same path after a certain time interval are considered lost. This property is analogous to the one-way loss defined in <xref target="RFC7680" format="default"/> but is not restricted to IP-layer traffic. Metrics such as loss patterns <xref target="RFC3357" format="default"/> and loss episodes <xref target="RFC6534" format="default"/> can be expressed as aggregated properties.</t> </dd> </dl> </section> <section anchor="security-considerations" numbered="true" toc="default"> <name>Security Considerations</name> <t>If entities are basing policy orpath selectionpath-selection decisions on path properties, they need to rely on the accuracy of path properties that other devices communicate to them. In order to be able to trust such path properties, entities may need to establish a trust relationship or be able to independently verify the authenticity, integrity, and correctness of path properties received from another entity.</t> <t>Entities that reveal their target path properties to the network can negatively impact their own privacy, e.g., if the target property leaks personal information about a user, such as their identity or which (type of) application is used. Such information could then allow network operators to block orre-prioritizereprioritize traffic for certain users and/orapplication.applications. Conversely, ifprivacy enhancingprivacy-enhancing technologies, e.g., MASQUE proxies <xref target="RFC9298" format="default"/>, are used on a path, the path may only be partially visible to any single entity. This may diminish the usefulness of path-aware technologies over this path.</t> <t>The need for, and potential definition of,securitysecurity- andprivacy relatedprivacy-related path properties, such as confidentiality and integrity protection of payloads, are the subject of ongoing discussion and research,e.g.,for example, see <xref target="RFC9049" format="default"/> and <xref target="RFC9217" format="default"/>. As the discussion of such properties is not mature enough, they are out of scope for this document. One aspect discussed in this context is thatsecurity relatedsecurity-related properties are difficult to characterize since they are only meaningful with respect to a threat modelwhichthat depends on the use case, application, environment, and other factors. Likewise, properties for trust relations between entities cannot be meaningfully defined without a concrete threat model, and defining a threat model is out of scope for this document. Properties related to confidentiality, integrity, and trust seem to be orthogonal to the path terminology and path properties defined in this document, since they are tied to the communicating nodes and the protocols they use (e.g., client and server using HTTPS, or client and remote network node using a VPN service) as well as additional context, such as keying material and who has access to such a context. In contrast, the path as defined in this document is typically oblivious to these aspects. Intuitively, the path describes what function the network applies to packets, while confidentiality, integrity, and trust describe what function the communicating parties apply to packets.</t> </section> <section anchor="iana-considerations" numbered="true" toc="default"> <name>IANA Considerations</name> <t>This document has no IANA actions.</t> </section> </middle> <back> <displayreference target="I-D.ietf-idr-performance-routing" to="PERFORMANCE-ROUTING"/> <displayreference target="I-D.ietf-teas-ietf-network-slices" to="NETWORK-SLICES"/> <references> <name>Informative References</name> <referenceanchor="I-D.ietf-idr-performance-routing">anchor="I-D.ietf-idr-performance-routing" target="https://datatracker.ietf.org/doc/html/draft-ietf-idr-performance-routing-03"> <front> <title>Performance-based BGP Routing Mechanism</title> <authorfullname="Xiaohu Xu"initials="X."surname="Xu">surname="Xu" fullname="Xiaohu Xu"> <organization>Alibaba, Inc</organization> </author> <authorfullname="Shraddha Hegde"initials="S."surname="Hegde">surname="Hegde" fullname="Shraddha Hegde"> <organization>Juniper</organization> </author> <authorfullname="Ketan Talaulikar"initials="K."surname="Talaulikar">surname="Talaulikar" fullname="Ketan Talaulikar"> <organization>Cisco</organization> </author> <authorfullname="Mohamed Boucadair"initials="M."surname="Boucadair">surname="Boucadair" fullname="Mohamed Boucadair"> <organization>France Telecom</organization> </author> <authorfullname="Christian Jacquenet"initials="C."surname="Jacquenet">surname="Jacquenet" fullname="Christian Jacquenet"> <organization>France Telecom</organization> </author> <dateday="22"month="December" day="21" year="2020"/><abstract> <t> The current BGP specification doesn't use network performance metrics (e.g., network latency) in the route selection decision process. This document describes a performance-based BGP routing mechanism in which network latency metric is taken as one of the route selection criteria. This routing mechanism is useful for those server providers with global reach to deliver low-latency network connectivity services to their customers. </t> </abstract></front> <seriesInfo name="Internet-Draft" value="draft-ietf-idr-performance-routing-03"/> </reference> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9275.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9439.xml"/> <referenceanchor="I-D.ietf-alto-path-vector"> <front> <title>An Extension for Application-Layer Traffic Optimization (ALTO): Path Vector</title> <author fullname="Kai Gao" initials="K." surname="Gao"> <organization>Sichuan University</organization> </author> <author fullname="Young Lee" initials="Y." surname="Lee"> <organization>Samsung</organization> </author> <author fullname="Sabine Randriamasy" initials="S." surname="Randriamasy"> <organization>Nokia Bell Labs</organization> </author> <author fullname="Y. Richard Yang" initials="Y. R." surname="Yang"> <organization>Yale University</organization> </author> <author fullname="Jingxuan Zhang" initials="J." surname="Zhang"> <organization>Tongji University</organization> </author> <date day="20" month="March" year="2022"/> <abstract> <t>This document is an extension to the base Application-Layer Traffic Optimization (ALTO) protocol. It extends the ALTO cost map and ALTO property map services so that an application can decide to which endpoint(s) to connect based not only on numerical/ordinal cost values but also on fine-grained abstract information regarding the paths. This is useful for applications whose performance is impacted by specific components of a network on the end-to-end paths, e.g., they may infer that several paths share common links and prevent traffic bottlenecks by avoiding such paths. This extension introduces a new abstraction called the "Abstract Network Element" (ANE) to represent these components and encodes a network path as a vector of ANEs. Thus, it provides a more complete but still abstract graph representation of the underlying network(s) for informed traffic optimization among endpoints. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-alto-path-vector-25"/> </reference> <reference anchor="I-D.ietf-alto-performance-metrics"> <front> <title>ALTO Performance Cost Metrics</title> <author fullname="Qin Wu" initials="Q." surname="Wu"> <organization>Huawei</organization> </author> <author fullname="Y. Richard Yang" initials="Y. R." surname="Yang"> <organization>Yale University</organization> </author> <author fullname="Young Lee" initials="Y." surname="Lee"> <organization>Samsung</organization> </author> <author fullname="Dhruv Dhody" initials="D." surname="Dhody"> <organization>Huawei</organization> </author> <author fullname="Sabine Randriamasy" initials="S." surname="Randriamasy"> <organization>Nokia Bell Labs</organization> </author> <author fullname="Luis M. Contreras" initials="L. M." surname="Contreras"> <organization>Telefonica</organization> </author> <date day="21" month="March" year="2022"/> <abstract> <t> The cost metric is a basic concept in Application-Layer Traffic Optimization (ALTO), and different applications may use different types of cost metrics. Since the ALTO base protocol (RFC 7285) defines only a single cost metric (namely, the generic "routingcost" metric), if an application wants to issue a cost map or an endpoint cost request in order to identify a resource provider that offers better performance metrics (e.g., lower delay or loss rate), the base protocol does not define the cost metric to be used. This document addresses this issue by extending the specification to provide a variety of network performance metrics, including network delay, delay variation (a.k.a, jitter), packet loss rate, hop count, and bandwidth. There are multiple sources (e.g., estimation based on measurements or service-level agreement) to derive a performance metric. This document introduces an additional "cost-context" field to the ALTO "cost-type" field to convey the source of a performance metric. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-alto-performance-metrics-28"/> </reference> <reference anchor="I-D.ietf-teas-ietf-network-slices">anchor="I-D.ietf-teas-ietf-network-slices" target="https://datatracker.ietf.org/doc/html/draft-ietf-teas-ietf-network-slices-22"> <front> <title>A Framework for IETF Network Slices</title> <author initials="A." surname="Farrel" fullname="Adrian Farrel"initials="A." surname="Farrel">role="editor"> <organization>Old Dog Consulting</organization> </author> <author initials="J." surname="Drake" fullname="John Drake"initials="J." surname="Drake">role="editor"> <organization>Juniper Networks</organization> </author> <authorfullname="Reza Rokui"initials="R."surname="Rokui">surname="Rokui" fullname="Reza Rokui"> <organization>Ciena</organization> </author> <authorfullname="Shunsuke Homma"initials="S."surname="Homma">surname="Homma" fullname="Shunsuke Homma"> <organization>NTT</organization> </author> <authorfullname="Kiran Makhijani"initials="K."surname="Makhijani">surname="Makhijani" fullname="Kiran Makhijani"> <organization>Futurewei</organization> </author> <authorfullname="Luis M. Contreras"initials="L. M."surname="Contreras">surname="Contreras" fullname="Luis M. Contreras"> <organization>Telefonica</organization> </author> <authorfullname="Jeff Tantsura"initials="J."surname="Tantsura"> <organization>Microsoft Inc.</organization>surname="Tantsura" fullname="Jeff Tantsura"> <organization>Nvidia</organization> </author> <dateday="21" month="January"month="August" year="2023"/><abstract> <t> This document describes network slicing in the context of networks built from IETF technologies. It defines the term "IETF Network Slice" and establishes the general principles of network slicing in the IETF context. The document discusses the general framework for requesting and operating IETF Network Slices, the characteristics of an IETF Network Slice, the necessary system components and interfaces, and how abstract requests can be mapped to more specific technologies. The document also discusses related considerations with monitoring and security. This document also provides definitions of related terms to enable consistent usage in other IETF documents that describe or use aspects of IETF Network Slices. </t> </abstract></front> <seriesInfo name="Internet-Draft"value="draft-ietf-teas-ietf-network-slices-19"/> </reference> <reference anchor="RFC1930"> <front> <title>Guidelines for creation, selection, and registration of an Autonomous System (AS)</title> <author fullname="J. Hawkinson" initials="J." surname="Hawkinson"> <organization/> </author> <author fullname="T. Bates" initials="T." surname="Bates"> <organization/> </author> <date month="March" year="1996"/> <abstract> <t>This memo discusses when it is appropriate to register and utilize an Autonomous System (AS), and lists criteria for such. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="6"/> <seriesInfo name="RFC" value="1930"/> <seriesInfo name="DOI" value="10.17487/RFC1930"/> </reference> <reference anchor="RFC2616"> <front> <title>Hypertext Transfer Protocol -- HTTP/1.1</title> <author fullname="R. Fielding" initials="R." surname="Fielding"> <organization/> </author> <author fullname="J. Gettys" initials="J." surname="Gettys"> <organization/> </author> <author fullname="J. Mogul" initials="J." surname="Mogul"> <organization/> </author> <author fullname="H. Frystyk" initials="H." surname="Frystyk"> <organization/> </author> <author fullname="L. Masinter" initials="L." surname="Masinter"> <organization/> </author> <author fullname="P. Leach" initials="P." surname="Leach"> <organization/> </author> <author fullname="T. Berners-Lee" initials="T." surname="Berners-Lee"> <organization/> </author> <date month="June" year="1999"/> <abstract> <t>HTTP has been in use by the World-Wide Web global information initiative since 1990. This specification defines the protocol referred to as "HTTP/1.1", and is an update to RFC 2068. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="2616"/> <seriesInfo name="DOI" value="10.17487/RFC2616"/> </reference> <reference anchor="RFC3357"> <front> <title>One-way Loss Pattern Sample Metrics</title> <author fullname="R. Koodli" initials="R." surname="Koodli"> <organization/> </author> <author fullname="R. Ravikanth" initials="R." surname="Ravikanth"> <organization/> </author> <date month="August" year="2002"/> </front> <seriesInfo name="RFC" value="3357"/> <seriesInfo name="DOI" value="10.17487/RFC3357"/> </reference> <reference anchor="RFC3393"> <front> <title>IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)</title> <author fullname="C. Demichelis" initials="C." surname="Demichelis"> <organization/> </author> <author fullname="P. Chimento" initials="P." surname="Chimento"> <organization/> </author> <date month="November" year="2002"/> </front> <seriesInfo name="RFC" value="3393"/> <seriesInfo name="DOI" value="10.17487/RFC3393"/> </reference> <reference anchor="RFC4271"> <front> <title>A Border Gateway Protocol 4 (BGP-4)</title> <author fullname="Y. Rekhter" initials="Y." role="editor" surname="Rekhter"> <organization/> </author> <author fullname="T. Li" initials="T." role="editor" surname="Li"> <organization/> </author> <author fullname="S. Hares" initials="S." role="editor" surname="Hares"> <organization/> </author> <date month="January" year="2006"/> <abstract> <t>This document discusses the Border Gateway Protocol (BGP), which is an inter-Autonomous System routing protocol.</t> <t>The primary function of a BGP speaking system is to exchange network reachability information with other BGP systems. This network reachability information includes information on the list of Autonomous Systems (ASes) that reachability information traverses. This information is sufficient for constructing a graph of AS connectivity for this reachability from which routing loops may be pruned, and, at the AS level, some policy decisions may be enforced.</t> <t>BGP-4 provides a set of mechanisms for supporting Classless Inter-Domain Routing (CIDR). These mechanisms include support for advertising a set of destinations as an IP prefix, and eliminating the concept of network "class" within BGP. BGP-4 also introduces mechanisms that allow aggregation of routes, including aggregation of AS paths.</t> <t>This document obsoletes RFC 1771. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="4271"/> <seriesInfo name="DOI" value="10.17487/RFC4271"/> </reference> <reference anchor="RFC5136"> <front> <title>Defining Network Capacity</title> <author fullname="P. Chimento" initials="P." surname="Chimento"> <organization/> </author> <author fullname="J. Ishac" initials="J." surname="Ishac"> <organization/> </author> <date month="February" year="2008"/> <abstract> <t>Measuring capacity is a task that sounds simple, but in reality can be quite complex. In addition, the lack of a unified nomenclature on this subject makes it increasingly difficult to properly build, test, and use techniques and tools built around these constructs. This document provides definitions for the terms 'Capacity' and 'Available Capacity' related to IP traffic traveling between a source and destination in an IP network. By doing so, we hope to provide a common framework for the discussion and analysis of a diverse set of current and future estimation techniques. This memo provides information for the Internet community.</t> </abstract> </front> <seriesInfo name="RFC" value="5136"/> <seriesInfo name="DOI" value="10.17487/RFC5136"/> </reference> <reference anchor="RFC5693"> <front> <title>Application-Layer Traffic Optimization (ALTO) Problem Statement</title> <author fullname="J. Seedorf" initials="J." surname="Seedorf"> <organization/> </author> <author fullname="E. Burger" initials="E." surname="Burger"> <organization/> </author> <date month="October" year="2009"/> <abstract> <t>Distributed applications -- such as file sharing, real-time communication, and live and on-demand media streaming -- prevalent on the Internet use a significant amount of network resources. Such applications often transfer large amounts of data through connections established between nodes distributed across the Internet with little knowledge of the underlying network topology. Some applications are so designed that they choose a random subset of peers from a larger set with which to exchange data. Absent any topology information guiding such choices, or acting on suboptimal or local information obtained from measurements and statistics, these applications often make less than desirable choices.</t> <t>This document discusses issues related to an information-sharing service that enables applications to perform better-than-random peer selection. This memo provides information for the Internet community.</t> </abstract> </front> <seriesInfo name="RFC" value="5693"/> <seriesInfo name="DOI" value="10.17487/RFC5693"/> </reference> <reference anchor="RFC6534"> <front> <title>Loss Episode Metrics for IP Performance Metrics (IPPM)</title> <author fullname="N. Duffield" initials="N." surname="Duffield"> <organization/> </author> <author fullname="A. Morton" initials="A." surname="Morton"> <organization/> </author> <author fullname="J. Sommers" initials="J." surname="Sommers"> <organization/> </author> <date month="May" year="2012"/> <abstract> <t>The IETF has developed a one-way packet loss metric that measures the loss rate on a Poisson and Periodic probe streams between two hosts. However, the impact of packet loss on applications is, in general, sensitive not just to the average loss rate but also to the way in which packet losses are distributed in loss episodes (i.e., maximal sets of consecutively lost probe packets). This document defines one-way packet loss episode metrics, specifically, the frequency and average duration of loss episodes and a probing methodology under which the loss episode metrics are to be measured. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="6534"/> <seriesInfo name="DOI" value="10.17487/RFC6534"/> </reference> <reference anchor="RFC7665"> <front> <title>Service Function Chaining (SFC) Architecture</title> <author fullname="J. Halpern" initials="J." role="editor" surname="Halpern"> <organization/> </author> <author fullname="C. Pignataro" initials="C." role="editor" surname="Pignataro"> <organization/> </author> <date month="October" year="2015"/> <abstract> <t>This document describes an architecture for the specification, creation, and ongoing maintenance of Service Function Chains (SFCs) in a network. It includes architectural concepts, principles, and components used in the construction of composite services through deployment of SFCs, with a focus on those to be standardized in the IETF. This document does not propose solutions, protocols, or extensions to existing protocols.</t> </abstract> </front> <seriesInfo name="RFC" value="7665"/> <seriesInfo name="DOI" value="10.17487/RFC7665"/> </reference> <reference anchor="RFC7679"> <front> <title>A One-Way Delay Metric for IP Performance Metrics (IPPM)</title> <author fullname="G. Almes" initials="G." surname="Almes"> <organization/> </author> <author fullname="S. Kalidindi" initials="S." surname="Kalidindi"> <organization/> </author> <author fullname="M. Zekauskas" initials="M." surname="Zekauskas"> <organization/> </author> <author fullname="A. Morton" initials="A." role="editor" surname="Morton"> <organization/> </author> <date month="January" year="2016"/> <abstract> <t>This memo defines a metric for one-way delay of packets across Internet paths. It builds on notions introduced and discussed in the IP Performance Metrics (IPPM) Framework document, RFC 2330; the reader is assumed to be familiar with that document. This memo makes RFC 2679 obsolete.</t> </abstract> </front> <seriesInfo name="STD" value="81"/> <seriesInfo name="RFC" value="7679"/> <seriesInfo name="DOI" value="10.17487/RFC7679"/> </reference> <reference anchor="RFC7680"> <front> <title>A One-Way Loss Metric for IP Performance Metrics (IPPM)</title> <author fullname="G. Almes" initials="G." surname="Almes"> <organization/> </author> <author fullname="S. Kalidindi" initials="S." surname="Kalidindi"> <organization/> </author> <author fullname="M. Zekauskas" initials="M." surname="Zekauskas"> <organization/> </author> <author fullname="A. Morton" initials="A." role="editor" surname="Morton"> <organization/> </author> <date month="January" year="2016"/> <abstract> <t>This memo defines a metric for one-way loss of packets across Internet paths. It builds on notions introduced and discussed in the IP Performance Metrics (IPPM) Framework document, RFC 2330; the reader is assumed to be familiar with that document. This memo makes RFC 2680 obsolete.</t> </abstract> </front> <seriesInfo name="STD" value="82"/> <seriesInfo name="RFC" value="7680"/> <seriesInfo name="DOI" value="10.17487/RFC7680"/> </reference> <reference anchor="RFC8175"> <front> <title>Dynamic Link Exchange Protocol (DLEP)</title> <author fullname="S. Ratliff" initials="S." surname="Ratliff"> <organization/> </author> <author fullname="S. Jury" initials="S." surname="Jury"> <organization/> </author> <author fullname="D. Satterwhite" initials="D." surname="Satterwhite"> <organization/> </author> <author fullname="R. Taylor" initials="R." surname="Taylor"> <organization/> </author> <author fullname="B. Berry" initials="B." surname="Berry"> <organization/> </author> <date month="June" year="2017"/> <abstract> <t>When routing devices rely on modems to effect communications over wireless links, they need timely and accurate knowledge of the characteristics of the link (speed, state, etc.) in order to make routing decisions. In mobile or other environments where these characteristics change frequently, manual configurations or the inference of state through routing or transport protocols does not allow the router to make the best decisions. This document introduces a new protocol called the Dynamic Link Exchange Protocol (DLEP), which provides a bidirectional, event-driven communication channel between the router and the modem to facilitate communication of changing link characteristics.</t> </abstract> </front> <seriesInfo name="RFC" value="8175"/> <seriesInfo name="DOI" value="10.17487/RFC8175"/> </reference> <reference anchor="RFC8547"> <front> <title>TCP-ENO: Encryption Negotiation Option</title> <author fullname="A. Bittau" initials="A." surname="Bittau"> <organization/> </author> <author fullname="D. Giffin" initials="D." surname="Giffin"> <organization/> </author> <author fullname="M. Handley" initials="M." surname="Handley"> <organization/> </author> <author fullname="D. Mazieres" initials="D." surname="Mazieres"> <organization/> </author> <author fullname="E. Smith" initials="E." surname="Smith"> <organization/> </author> <date month="May" year="2019"/> <abstract> <t>Despite growing adoption of TLS, a significant fraction of TCP traffic on the Internet remains unencrypted. The persistence of unencrypted traffic can be attributed to at least two factors. First, some legacy protocols lack a signaling mechanism (such as a STARTTLS command) by which to convey support for encryption, thus making incremental deployment impossible. Second, legacy applications themselves cannot always be upgraded and therefore require a way to implement encryption transparently entirely within the transport layer. The TCP Encryption Negotiation Option (TCP-ENO) addresses both of these problems through a new TCP option kind providing out-of-band, fully backward-compatible negotiation of encryption.</t> </abstract> </front> <seriesInfo name="RFC" value="8547"/> <seriesInfo name="DOI" value="10.17487/RFC8547"/> </reference> <reference anchor="RFC8548"> <front> <title>Cryptographic Protection of TCP Streams (tcpcrypt)</title> <author fullname="A. Bittau" initials="A." surname="Bittau"> <organization/> </author> <author fullname="D. Giffin" initials="D." surname="Giffin"> <organization/> </author> <author fullname="M. Handley" initials="M." surname="Handley"> <organization/> </author> <author fullname="D. Mazieres" initials="D." surname="Mazieres"> <organization/> </author> <author fullname="Q. Slack" initials="Q." surname="Slack"> <organization/> </author> <author fullname="E. Smith" initials="E." surname="Smith"> <organization/> </author> <date month="May" year="2019"/> <abstract> <t>This document specifies "tcpcrypt", a TCP encryption protocol designed for use in conjunction with the TCP Encryption Negotiation Option (TCP-ENO). Tcpcrypt coexists with middleboxes by tolerating resegmentation, NATs, and other manipulations of the TCP header. The protocol is self-contained and specifically tailored to TCP implementations, which often reside in kernels or other environments in which large external software dependencies can be undesirable. Because the size of TCP options is limited, the protocol requires one additional one-way message latency to perform key exchange before application data can be transmitted. However, the extra latency can be avoided between two hosts that have recently established a previous tcpcrypt connection.</t> </abstract> </front> <seriesInfo name="RFC" value="8548"/> <seriesInfo name="DOI" value="10.17487/RFC8548"/> </reference> <reference anchor="RFC8558"> <front> <title>Transport Protocol Path Signals</title> <author fullname="T. Hardie" initials="T." role="editor" surname="Hardie"> <organization/> </author> <date month="April" year="2019"/> <abstract> <t>This document discusses the nature of signals seen by on-path elements examining transport protocols, contrasting implicit and explicit signals. For example, TCP's state machine uses a series of well-known messages that are exchanged in the clear. Because these are visible to network elements on the path between the two nodes setting up the transport connection, they are often used as signals by those network elements. In transports that do not exchange these messages in the clear, on-path network elements lack those signals. Often, the removal of those signals is intended by those moving the messages to confidential channels. Where the endpoints desire that network elements along the path receive these signals, this document recommends explicit signals be used.</t> </abstract> </front> <seriesInfo name="RFC" value="8558"/> <seriesInfo name="DOI" value="10.17487/RFC8558"/> </reference> <reference anchor="RFC8684"> <front> <title>TCP Extensions for Multipath Operation with Multiple Addresses</title> <author fullname="A. Ford" initials="A." surname="Ford"> <organization/> </author> <author fullname="C. Raiciu" initials="C." surname="Raiciu"> <organization/> </author> <author fullname="M. Handley" initials="M." surname="Handley"> <organization/> </author> <author fullname="O. Bonaventure" initials="O." surname="Bonaventure"> <organization/> </author> <author fullname="C. Paasch" initials="C." surname="Paasch"> <organization/> </author> <date month="March" year="2020"/> <abstract> <t>TCP/IP communication is currently restricted to a single path per connection, yet multiple paths often exist between peers. The simultaneous use of these multiple paths for a TCP/IP session would improve resource usage within the network and thus improve user experience through higher throughput and improved resilience to network failure.</t> <t>Multipath TCP provides the ability to simultaneously use multiple paths between peers. This document presents a set of extensions to traditional TCP to support multipath operation. The protocol offers the same type of service to applications as TCP (i.e., a reliable bytestream), and it provides the components necessary to establish and use multiple TCP flows across potentially disjoint paths.</t> <t>This document specifies v1 of Multipath TCP, obsoleting v0 as specified in RFC 6824, through clarifications and modifications primarily driven by deployment experience.</t> </abstract> </front> <seriesInfo name="RFC" value="8684"/> <seriesInfo name="DOI" value="10.17487/RFC8684"/> </reference> <reference anchor="RFC8803"> <front> <title>0-RTT TCP Convert Protocol</title> <author fullname="O. Bonaventure" initials="O." role="editor" surname="Bonaventure"> <organization/> </author> <author fullname="M. Boucadair" initials="M." role="editor" surname="Boucadair"> <organization/> </author> <author fullname="S. Gundavelli" initials="S." surname="Gundavelli"> <organization/> </author> <author fullname="S. Seo" initials="S." surname="Seo"> <organization/> </author> <author fullname="B. Hesmans" initials="B." surname="Hesmans"> <organization/> </author> <date month="July" year="2020"/> <abstract> <t>This document specifies an application proxy, called Transport Converter, to assist the deployment of TCP extensions such as Multipath TCP. A Transport Converter may provide conversion service for one or more TCP extensions. The conversion service is provided by means of the 0-RTT TCP Convert Protocol (Convert).</t> <t>This protocol provides 0-RTT (Zero Round-Trip Time) conversion service since no extra delay is induced by the protocol compared to connections that are not proxied. Also, the Convert Protocol does not require any encapsulation (no tunnels whatsoever).</t> <t>This specification assumes an explicit model, where the Transport Converter is explicitly configured on hosts. As a sample applicability use case, this document specifies how the Convert Protocol applies for Multipath TCP.</t> </abstract> </front> <seriesInfo name="RFC" value="8803"/> <seriesInfo name="DOI" value="10.17487/RFC8803"/> </reference> <reference anchor="RFC9000"> <front> <title>QUIC: A UDP-Based Multiplexed and Secure Transport</title> <author fullname="J. Iyengar" initials="J." role="editor" surname="Iyengar"> <organization/> </author> <author fullname="M. Thomson" initials="M." role="editor" surname="Thomson"> <organization/> </author> <date month="May" year="2021"/> <abstract> <t>This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.</t> </abstract> </front> <seriesInfo name="RFC" value="9000"/> <seriesInfo name="DOI" value="10.17487/RFC9000"/> </reference> <reference anchor="RFC9097"> <front> <title>Metrics and Methods for One-Way IP Capacity</title> <author fullname="A. Morton" initials="A." surname="Morton"> <organization/> </author> <author fullname="R. Geib" initials="R." surname="Geib"> <organization/> </author> <author fullname="L. Ciavattone" initials="L." surname="Ciavattone"> <organization/> </author> <date month="November" year="2021"/> <abstract> <t>This memo revisits the problem of Network Capacity Metrics first examined in RFC 5136. This memo specifies a more practical Maximum IP-Layer Capacity Metric definition catering to measurement and outlines the corresponding Methods of Measurement.</t> </abstract> </front> <seriesInfo name="RFC" value="9097"/> <seriesInfo name="DOI" value="10.17487/RFC9097"/> </reference> <reference anchor="RFC9217"> <front> <title>Current Open Questions in Path-Aware Networking</title> <author fullname="B. Trammell" initials="B." surname="Trammell"> <organization/> </author> <date month="March" year="2022"/> <abstract> <t>In contrast to the present Internet architecture, a path-aware internetworking architecture has two important properties: it exposes the properties of available Internet paths to endpoints, and it provides for endpoints and applications to use these properties to select paths through the Internet for their traffic. While this property of "path awareness" already exists in many Internet-connected networks within single domains and via administrative interfaces to the network layer, a fully path-aware internetwork expands these concepts across layers and across the Internet.</t> <t>This document poses questions in path-aware networking, open as of 2021, that must be answered in the design, development, and deployment of path-aware internetworks. It was originally written to frame discussions in the Path Aware Networking Research Group (PANRG), and has been published to snapshot current thinking in this space.</t> </abstract> </front> <seriesInfo name="RFC" value="9217"/> <seriesInfo name="DOI" value="10.17487/RFC9217"/> </reference> <reference anchor="RFC9298"> <front> <title>Proxying UDP in HTTP</title> <author fullname="D. Schinazi" initials="D." surname="Schinazi"> <organization/> </author> <date month="August" year="2022"/> <abstract> <t>This document describes how to proxy UDP in HTTP, similar to how the HTTP CONNECT method allows proxying TCP in HTTP. More specifically, this document defines a protocol that allows an HTTP client to create a tunnel for UDP communications through an HTTP server that acts as a proxy.</t> </abstract> </front> <seriesInfo name="RFC" value="9298"/> <seriesInfo name="DOI" value="10.17487/RFC9298"/> </reference> <reference anchor="RFC1122"> <front> <title>Requirements for Internet Hosts - Communication Layers</title> <author fullname="R. Braden" initials="R." role="editor" surname="Braden"> <organization/> </author> <date month="October" year="1989"/> <abstract> <t>This RFC is an official specification for the Internet community. It incorporates by reference, amends, corrects, and supplements the primary protocol standards documents relating to hosts. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="STD" value="3"/> <seriesInfo name="RFC" value="1122"/> <seriesInfo name="DOI" value="10.17487/RFC1122"/> </reference> <reference anchor="RFC1940"> <front> <title>Source Demand Routing: Packet Format and Forwarding Specification (Version 1)</title> <author fullname="D. Estrin" initials="D." surname="Estrin"> <organization/> </author> <author fullname="T. Li" initials="T." surname="Li"> <organization/> </author> <author fullname="Y. Rekhter" initials="Y." surname="Rekhter"> <organization/> </author> <author fullname="K. Varadhan" initials="K." surname="Varadhan"> <organization/> </author> <author fullname="D. Zappala" initials="D." surname="Zappala"> <organization/> </author> <date month="May" year="1996"/> <abstract> <t>The purpose of SDRP is to support source-initiated selection of routes to complement the route selection provided by existing routing protocols for both inter-domain and intra-domain routes. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind.</t> </abstract> </front> <seriesInfo name="RFC" value="1940"/> <seriesInfo name="DOI" value="10.17487/RFC1940"/> </reference> <reference anchor="RFC2784"> <front> <title>Generic Routing Encapsulation (GRE)</title> <author fullname="D. Farinacci" initials="D." surname="Farinacci"> <organization/> </author> <author fullname="T. Li" initials="T." surname="Li"> <organization/> </author> <author fullname="S. Hanks" initials="S." surname="Hanks"> <organization/> </author> <author fullname="D. Meyer" initials="D." surname="Meyer"> <organization/> </author> <author fullname="P. Traina" initials="P." surname="Traina"> <organization/> </author> <date month="March" year="2000"/> <abstract> <t>This document specifies a protocol for encapsulation of an arbitrary network layer protocol over another arbitrary network layer protocol. [STANDARDS-TRACK]</t> </abstract> </front> <seriesInfo name="RFC" value="2784"/> <seriesInfo name="DOI" value="10.17487/RFC2784"/> </reference> <reference anchor="RFC7676"> <front> <title>IPv6 Support for Generic Routing Encapsulation (GRE)</title> <author fullname="C. Pignataro" initials="C." surname="Pignataro"> <organization/> </author> <author fullname="R. Bonica" initials="R." surname="Bonica"> <organization/> </author> <author fullname="S. Krishnan" initials="S." surname="Krishnan"> <organization/> </author> <date month="October" year="2015"/> <abstract> <t>Generic Routing Encapsulation (GRE) can be used to carry any network- layer payload protocol over any network-layer delivery protocol. Currently, GRE procedures are specified for IPv4, used as either the payload or delivery protocol. However, GRE procedures are not specified for IPv6.</t> <t>This document specifies GRE procedures for IPv6, used as either the payload or delivery protocol.</t> </abstract> </front> <seriesInfo name="RFC" value="7676"/> <seriesInfo name="DOI" value="10.17487/RFC7676"/> </reference> <reference anchor="RFC9049"> <front> <title>Path Aware Networking: Obstacles to Deployment (A Bestiary of Roads Not Taken)</title> <author fullname="S. Dawkins" initials="S." role="editor" surname="Dawkins"> <organization/> </author> <date month="June" year="2021"/> <abstract> <t>This document is a product of the Path Aware Networking Research Group (PANRG). At the first meeting of the PANRG, the Research Group agreed to catalog and analyze past efforts to develop and deploy Path Aware techniques, most of which were unsuccessful or at most partially successful, in order to extract insights and lessons for Path Aware networking researchers.</t> <t>This document contains that catalog and analysis.</t> </abstract> </front> <seriesInfo name="RFC" value="9049"/> <seriesInfo name="DOI" value="10.17487/RFC9049"/>value="draft-ietf-teas-ietf-network-slices-22"/> </reference> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1930.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3357.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3393.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4271.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5136.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5693.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6534.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7665.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7679.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7680.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8175.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8548.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8558.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8684.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8803.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9000.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9097.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9110.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9217.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9298.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1122.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.1940.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2784.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7676.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9049.xml"/> </references> <section numbered="false" anchor="acknowledgments" toc="default"> <name>Acknowledgments</name> <t>Thanks to thePath-AwarePath Aware Networking Research Group for the discussion and feedback. Specifically, thanks toMohamed Boucadair<contact fullname="Mohamed Boucadair"/> for the detailed review, various text suggestions, andshepherding,shepherding; thanks toBrian Trammell<contact fullname="Brian Trammell"/> for suggesting the flowdefinition,definition; and thanks toLuis<contact fullname="Luis M.Contreras, Spencer Dawkins, Paul Hoffman, Jake Holland, Colin Perkins, Adrian Perrig,Contreras"/>, <contact fullname="Spencer Dawkins"/>, <contact fullname="Paul Hoffman"/>, <contact fullname="Jake Holland"/>, <contact fullname="Colin Perkins"/>, <contact fullname="Adrian Perrig"/>, andMatthias Rost<contact fullname="Matthias Rost"/> for the reviews, comments, and suggestions. Many thanks toDave Oran<contact fullname="Dave Oran"/> for his careful IRSG review.</t> </section> </back><!-- ##markdown-source: H4sIAKElBmQAA61963LbSJbmfz4FwhMbI0WQbNlVvnZszKhs2a2Zkq2xVN2x OzGxkSSSJMogwAJAyewKv808xvzrF5vznUtmAqDsqt6pHy7xgrycPPfzneRs Npt0RVf6V9l59ud66Rb70jWHrF5l167bZNdNvfNNV/h24haLxt+9Gr2f18vK bWmAvHGrblY03Wq2c1Wzpn+7zWwXvjk7ezHJXedfTZb077puDq+yolrVk0mx a15lXbNvuydnZy/Pnkxc492r7PLj7dvJfd18Wjf1fkczn7//+G7yyR/ovZw+ rjrfVL6bvcHEk0nbuSr/f66sK1rMgVa2K15l/97Vy2nW1k3X+FVLfx22+OM/ JhO37zZ182qSzSYZ/VdU7avs4zy7qNYb1+Qdvykb++h96/sf1M3aVcVfXVfU 1avsve9WZfGZP/FbV5S0MXrrnzuvz8xpmb2JXs+zf23+9p8bXy3+9l+bMpns 9aEpynL8aX/Gi9s/Zf/3b//VFMtNOuuSH55/apzHw3u/Kf+ZSDz33eavc/rq BPRutjTIHR0DP3k5ezPHYmdF3szopPjzaulnRPOuqNbDr7myq+Vk7/yyAwGP fZ6Ms/UdLbMdfq/zrp3xX0QbHPKsLYult+99fPv68cvvzuKrJ88eP4uvvvvu 6fP01cvv4qvvnzx/HF89ffxd8tzTZ+k3nz397vv46vmzZ0/TV89fpq9eJGt5 8fh58s0XT79/3nv1In31NH317EUy34sXZ8laXp6dnaWvXiZjvnzyuPfqJcac zWaZW7Rd45bE/Lebos1IFPdbX3UZ/e0ykrx8v+wgy93Gi9ye35NogV9BcTpd 4u3Wu2a5yd5BxrITlrHT+YS/HWU38593jW/bLDBQXdHsxCIZeIGmWzZ1i1n1 NDOSRZ629c0dzhWD3RW5z7O7wmXtnqbkJ+eTywqLBUc5Xp2OMOX30jVs3SFb +Gy1L0vSUA19Tu87vHB3xP5uUfqsqzMiQMHf50kcrb3Kd3VRdTRXn0y5XxUV fRFrVZ1U/BVL7U88n7zdN7SXZls3fsq7ipTOMd2Kp/N3vnHlaNn3G5LSbFus Nx2Wv2897UAWquvCZmpMENY+nfj5ej7NiNg0bkmShsNaEGW8r5Tk9BE+Lqq7 mo+yrbfeDjsQ28g/F4bZFnle+snkH6A9hT/oJME+PlvumwZbMr2agS+Kjube N9gxbaWqO3ACCSrZjAMReLcjzRo2kuVFu6yJCmxAaHF0njmWJgvuNsRj6w0v 0Nikoh0wQdMnE+LhaAILubatlwUdVJ7dFx0PRIpZ2eh6xEE08xTnL8ecE6Wy G88bzh7PH2OiX39V6fryZUpfa5dNsSDD8ej4hpSwtjQsVPflDzhWPo5lvd3u q2KpIqJiUdHkQlVhbWwrTELGTlZFPKFbirN0G0cnsVrRwttMdTIe/wPNRdbU kd10VbvyzaMhdysPQCjXvvKkhIUSBc+lq0+molXlOYQcM2Cvq6Jpg/r4Ze9b PAgVcERa8UxCTWK3c1o7iQwt2pd8ZLQ7odfG3XniZWJkIpoeZV7QFpn9tp7s XLXmeeK78AiY5OnZ8gIhkA9sG2cBstIyiqou6/UBixB2kLWokiEJw7OtHMyq rO/befaDw+rwPJ8Jb2Yg/aZARgqD5Kl6cGEsqP6z2+5KYSPwzpJma5mDxtqn qKDlBnOXRds9rHSYbVRhqsZZqajhaTpI2luYd54x62BI2A7wapXLkS1wxIUo p88bRz4a+Q4stsZMd55O+33deZm0v+mgNkh26R1l5yrIE6akiYbLB2eRUOzH 2h3PspY8YNGRLzHgpr6P2n/pqiC+fKz0gjyRxb7zo+kKmCB2QIm3us0huyfK 0TZg32hcGmTnlX7J5uZDs9t4GEkwEu9tSdLiq3bf/n0mmJT0beTcyeSCd/1q Ald9tzm0pGNKGIE7crmJUHQe0JJsFvYVK5QpXkAMylL1Hi1Evtam3yO2FiO1 K90BgtPUROyB3I7lfWU2eImgwRyBIECT80pPis+CGKmu2HNkc7da8d+vsg+V KFZ6AfGzR8C7MnhBH3kcUWJQWD3RLNOsmPs5lh/ZnchS0rJZOdKGKh/26Uqw zYRmlBU8ODF5OeXek/dKbLtjzavcZfOCOXQ5Pv/KIogFyMyWx9YxDf4Js8WN D2fU0Au2eGSK72qxJCk1bXV6BkYTWyotbd+q5PCRHVP14l4sSA4XbF7peZqX dG+7b5TAW7xD3yiJO6vw3qqpt0StxF05sPjnnjmzCoesi1XGamriuZZV5fKT 78IKSEByetH4pSdF0k5tQy3z7rbOxbfC1HPi+4rmMRIfkQEb1cUPhd3xlroR 4RSik+TA8yZGagt4flKu0AywiCWrmr1nc8X6oqW/lpveqlzZssaM3CTbhyZg dU1H8dvkUfch49AZnu+7uqq3NSmTmwOpzG12cn4DJfFjUX0SnbD1ebHnQ+v7 ICu3LMBwontpKRWzCYmxkBhCXcMusSEmX2Qjzih2VtLotAQoX3busVHSBzg1 O0m8Fm7gUea8otZE3s4hnsxfitnbIvh/gT6yKHrofAlOya7ZNcJcnVOaHDtn OzU5jOFw2KN9Y0sbY2O9qdnkiGHPWoq6I7fol8LWIUtVkdMJqODSJxJYkPCk 7w9orrsn/vWlMBiWUjJlzIsPswv1iadqcqdb8rizMDD89uvEQ8FJX4g11tNg DY+B59lbcKy4FVMNqew5WxDoqzGjmaDsQr9ycv7+4nTgL//664OBPzt5WJtw X+t/EY0JFs9/dkt2eVLnKmNLLCfklHtsXezEbouugzalE2/MzYWXjD+ZN2XL c0TC12JsiHf75yNxZ7H1s9zv4MRAkkU9g2o+ECK7cw3t6xDdeNZs5BcFLlct Nw2xrBivuAuTACwj2QGrguXGVWtaawZrjecS31vXAHeEzuEkLA+nR2+kpOxT sEGep2oD65zi+Mu6Jj8uGYXpZ8ST3ciD4Tli3n0XtxTGT1hzy7u442Qgdgya njLp4XUFT8eZGlN+w6xF1w7DdjkMkznzCqAVc2/2hgcAwdQjwFEQEXPZ1GBG HpSjgyzf98N+Ci8k5uTsAMl/WyxEAY7oSUK7awoOeHT94iMXTfoYHyVbSCNE ukoWxt+xzo4imc6C4rgU1yXRTkmGpxRrodLKLkB2VMTVHK4LNlYtW7qEgUy1 iZYxVhZVpIpSD6BVVTQdDEHuZzKCeS3975zfiAkjzr7QBEH2sYav/WHxsweX X3z8cMo6vK7Kg1lE4Rw4LmTnlxQZ7Rs4XfDW4dZXQkSRNtLFn6r6vtKoBFHz hqMCFlw2bvI8cynZw31J3qPDJOTHNLXL+UXru46jx3vWB0ETFQimiPbwiUwJ YCHqmuT4gIck2hud4Pxr1qD/uWZooqoQ/k4nmvI0fIJwpNnuEj8ubNOIO1T5 xWXgFeb+Y5r7oACEQyyOq4U4FOv8zAY0UeeLA6/ijX5UwcqmfiE8Uu9J5Vto yhr+QrMU0PK3LLshaRWFHvrvuOKpo5M9NFBVzIAEpQzbPDJB/4Rk8OMnT5Ck UQNv31+WBZsucwdE2e2rSkT63i9w8vfk+p2KpYQTSIfytQfkK9B1HxFctxK3 2f55w8xs7GcLXR0ULCJgHk4VLXx//5lZ/CuuAk1zs1/sdIZ3IsQWlJCw8UeS 0P0tJnYlIaqo0slbClUw7IeKHYWEPYPrFtmT9EzRO1bOPUoALMsIKVi3IxGX 43FJVAOGbf3IEeGACUeWCn1ZhlWw2AW3+vb1Nb3Ttiz4muUTP2lFxJl1e2wg GCryqsAz4h0W3TenOer1sftEzozKgTg0TA6MUVfeeOcBu6xxdnhCt8yrJ2OA sIy95G8ONEcApZSTgdgLNQEFG3AGx30utuTqc4jbOMu8mFvB+2RTpYp+PCzz 6XBYl2/JQ4G94RxPXqvP4MRV4GcWvqyRnOvq8aBhvIdJ0ONonnO9bvzaiUPu Z/fsK5Qu5Id4lIXn/Db29ZCTptpGdg0NK9NQ2DzY5n6gsunYmKMgrbTd1Bex YzlpT6dxMWLk/HZHI0I8ihXN3XMFG3ruzmGxmnGLCpbp6Hp5elmbKqTRyZ5G 7/POUdT/0IOP3y12LXTWeSTorsfP/agzqAIetR0cIOnkOsa9/BVax3JZa/al TsQesVJ40BRzcqo4kp5djNpKfdbAFKcW12GHV7c/pSZGOZ9OCPSxD8tSPZk6 zSIN55SjCbPhGHtTIXJ2VWBApL2q5WGoP1Kdo/Yf3gzmWtSYNh3QVUnifM/8 y3zdJsKB+kAZHDPIle6W88eBiBzDW85CCVztt0jox0hYtoCc0nZqVJqaQqQH 1Iezrz/qGuKlQjYo4cveP0rfhxMKd+np2f/CkpVNkq+KHLhmUZDCoCghLFHr XW7XxjMoqh0FHDoISy1yq+E94tsPnIcacW3gLDO5tX1vJarUXMeUs6bGUNNM 8+m27z37+pLmMpXbs1YaePQVUW8a9uHSaO/rKskyATJlzoURmLfhTisY1aYm 8Yc+p6NCUtXygY4f4ShduSoogyi1rJDdcHAi/bLc55JDg2oqXIyG2E15aCrJ r9NeVGWkz0o8F8XOljA5FqCEpSysouIe3q1Ei6KgNSaG8UBU/aCUDi28zqsu hZQbP8PzJyWPbC1TxDQ9vbdCFZfMMYddEsKiWnfH6R6iQDUL8pYehWSK2867 3KisJvcTkWpT13k0noEGm7rMkdW5dc3ad0MeqDlYgvU1foeJEVaP5pUrGt/g +HlSkiEb158tugoyeD0QPk4RW6DXEwfJHHCek9P/g4oTjYtIBLl+G1LDDo35 NfoSh5MXFSdiGrbKbUsaFu6HaMdwqCiL9OoiJNJuLcWZIKSdX274U+CTWJem JcAktuiGqIlB5YvrpppUYp93GUAGn4s25KhWey6RJ1WSdAXzyU9aUi3adCEm H8NH5HS0SsnQBM2THFd2EtMPK1pMsPB9YexhOuEtowcAm5IEebICkcJQJ03m arPLa65DU2RkWpUoqZG7FahPNGp7+f3Zly+nJEUlqt/sV6KQWYjwhI0Nghis PUmGuINvTFsFcMJ5Ck44SYNEifTaUaI9JIjAoV0hh5wSCfNEbkSq9MZSGh8/ zCcXCM1i9l98o6MHOI2DxqxfqxAQywaxBuWsUj9cLKoYkx0kw9nCbozMVIzE A7ZExgnRJQ3OwdGRiFQDvqplAIdunZM4ViXoLGH40BB61qxxwn5VSgJS4Mi0 yVdkYi51/kRx9utQAx+ADLNf/4GIMONa9ZfJ5C8bfxwzBGNRt+OC/DfRNpJN CRwC5kRxnEU2hTyBY4jvPMKjwKDrmvShoi9a5bd+df4bBf5h9bzQknmVltwx IsNZpEzDoJTK36dSy4qgqbuaGH9KQ0Do49TYFEkY6VyJKfDwcYjVEgAFi2Lm k6u68bA5AkdCAT6p+qZc36MfZ6P6yVdVZlwRZSMWafhNjTbtq0KpT1bfzpne Isu3YuCWG9KLDTgEitU/k1u1ulEtLYI/tFhOafY11lF1C8PVL/VK3TRmVdS2 cHWNa+iMlYNreSLO7p6MandqsIQY4dQtkbkMmBY2V72CdjJ6rG0znITkto1e OwagcBffIxIoDDCWpg2BR84sz1estKoCGUyhKK1imSTRkuZyT4LJYPqyB7ut iUe8ARgk6UNB1n0BHmzFKjcrtwQXINTSym1M20ti+ehqkrlbi6X3fdwMUEBh wLBoKxfrgs+j1pr9yBbptnErqLwPu67YKjI3Ozn/8fbDqUChADZFzlK83b7O y3beNzOGyvomCC3Csfoey4jayiHw7PDljatmpLJzCjf4qdbOheL+ixT2YmBN qWSwT9OlqisxetBdcNHkjQNToOcrFqq0ZCwll5AkBYhEwK+kDZf7hpEBAoQS lghOZykOvbDcgg6IfHvfJT7hEahCWjeicWSQXhZckAmIZwNeKAAlE4oc2Z/y agpdpb0dzDLb+yyaPC0HL7sGUESDHw4cegzL9NF8iY2REqo77BBS0ESkoaDT 6q874h/IEf8LSeAbccTt5bWEpD+SEhAGRwGebClFRXwEgTU6mE3dgVBmkUDc 6HSHUYJlnsZBpZnyAaXZhMmBuk7TyinrN/6XfWGBN3s0AgROYefGVGNG4Nh8 mCbgGInkj21RncA8RAkX5GPR5DTTyc2Pl6df2dLXx4mBGY1DAg6RuLy4fRsO VtDracH8IYQ7yirnrZgbyZ6yPQnSnHEG1sOgCvxXi0BZuwV3cxg2Q6adsXfI LzWHIYDJ+DQGwnh+A19vwEUkhKWETw2A+v5O5ipB/mxVwNlUb/3ImBtyPHvs ZqGH5eVILi4Fjo6IMdiplSZRZcEsV90RudS6XwgrT6SKUh5OjQ+m6Zn1T0zy BuqJ0qFdtP/fpzZwwQtRaWBw3YRovYd5ODo24bSTgMN0P7CVRRteGgOIR8B+ UyJtgH+XxAZBo+uyWe1J8MzOL219yS4/26xdjRKtlGxJ7nLVU5wsoLPzMLio jMcn1rWPCO7EgKzoSO7pGTrp1+KJ+7zV8LlznxAyRbUTseBB80SBHvl7R9x4 LPAeJp7U+V1R71uivKXWmEk1+7Dx5Q6YV2CV6aNCpjaEO0OtQsg+gptbb0Ii khi6RJ4HjlEVsgQr2uyC1C8wGDtUb4jLDWiivhLRL/ezerWKCeThpOph9ARz rMhPDTWe+Ng9X67tTWalM1Lry00tLQABSHxkd+QHA3uyckWDyvCA2YvE24wI 27pSigJqSD7KdsduhhnzkUXBQ/u252WZIJJ15gxCK2Vx0Qz/2Nrax7vF7LkG 1knyn/s9SPJJk9EXOfukcrMaoxbP2bsiTiRdFdOVkS6uREdIt9lCde5LcqqL LUcCdfDKsp/rBZLl2HM/r3U0duHCH5NryeD0IHgc5Tf/2PZMJFjJVeqnrxwd QHCawedRpgwJUke8vsBUxIGPO1IXLGcaC45M83P9tAEUB+IAQYD2o+V+XpWP 79XkPJzkSYAunt+cioLMf94DWN61QwJL/wqnhkpx0/RvyyMFNTGKmS+r7Id3 11oqAmtmF5/JUrwpkDrewuOHzb+6eHMK1lTct5XsCyOqBD+zrWNAs6JUE0cv RkV4k5gRUCu3rfnM8LeCjQI/n99k1+e3fyJlUa0VDkUstGYcg/amffnyRymc j/MX05BP5q6AkDXUZBPtxopxciSJXJkV6ekM0JTf+ImTpEth4lzkhj1PaQ9g vUYagKIglIpo/oUrnSCMkbBInNbEVD7QMciwEcS6FtQk8e4PHIoHk8ZlTk1n 95KbD/kzVd/1thkY81qtijXrdHt35xo6EiQq+9m2cYPFQ7gUTlJS1MTQlg6V IVgzhV+KuilZu6gA49j+7afL19oKc3Z29uWL1BNWGSyDdNQkqlIBWHrW/OhC SLSikUUClp/SolLYHZvVBMAVa9+ysLUrgBrPAHEGirbxbsu6IvHHBagoTE2x K2cqXXmqz/yyZ6B6L0rQGJJ9/gg/sM4SUisdaoFLVUS9c1bFQO7KfutnC1Zk ZIjJVZrxIPwQI2ZPhYHGKPgJNwsq/1pjQlYnVEn8qj4H6TY5AXJXf/KJGETc 9ZGMpS3irZU3X28UJsBnjKbRiEvqWynuB9DqbuNTKzWqk53NPt7eIqOgCdnX dUXHCfvCs6BVlDjpHp3BC28+Xx7ViIDqmCVke4JtiKz8R1EQRSClDGY+TcK/ V9dA4Mi0z158T9PSUumtolrqu0+/f07v2t8v6O8l6RtO86nXTszB02FITWZq r6D2f6YmbdAniE4HNTgaHhWSyxdOT+GAgG/WzJuJeyKc3iq8j2F18hbp6jaB Guq59kJShrSkwg8Lkfe4RnGWo2YC5W7OqS9r7OZUDoVjOCRU48JAH96iMAbI Yw0SWi8DlnEwA2fJL5KusXGOPAD3tDHJuh2x5CNtZ0M/NPJwaBqz7IshWWI2 OYJo2LbF9Dy0/1+ih5CI0lcyx/1Ewgg9zJnVCbfyRpAv5KDlyofAVZD0bI7l OX9HlvkbtoBnZTomiW2evT+yBFIi8xRL1/dHU8LiFZbEwbGQlheke/cBbJu4 WmI7Vv4+21CsYXi3Y5n2ry1oRYR39xJf/MEy1wjjSd6OrTFNv5UKqpMyUeMY HJlr4SOZvw/4Xjl0C0QHhXVg0rpjfiPa8yx/KHV/tAYqSo5789TM89JAIsmv kdreFLt+W0U4tB5yP8K5GBbWgyaYY6y1YRn6ThkpHMoA9fctSCD6iJHjpf89 si6EdGSXoEkVii6Siex3kgEGZwcwlrazMDCwj9/emr8/7pm3WUkf5YeKHIFl erBHAC+Kc4lYwpGDxumFanZkOANnVdkFlByqtbxa0S8C/+buCK6tNRYToU4O ncPA5AC1V+kduHDoxdOZe7i19hWX+wHW6Ky2gPNwTVEeYq7BHo08YGxbMARy k62B0kec1soqOP0RxGFScFKrl8/qZScjqq4f1XMQga2zN0ADtyQFQfVy3QJJ OvbkNPLrD5ByeQJjyiK7p27PJwkOQ5HneMdh6r0sndQ9+6NLOofc+1ya79nP kMb1jSKLhrFU0qNr9TcEwMDRMF3GRyAMi/wRywZn1Wg5avK5W9wYPelfDCg5 a1BMAgS5JoJHUkKQXvfsvAW7Lc4PZ0mEJTH3XS3FoLpdkpekOO3LSrWP9JwP T1vxumDeY3s7aJWelNyhjxCFgaCZOcwqanZmwBmyR/r0/fltUirA8wEP0+u9 zfLQuknytvLMt9pwGHwncR3F10pBU73gAakR6cK7DTY64N8T1c1SLeWspKrK 8SRLhIHkNIyMLQwRAFmPkOk9OPTlSno+hOCjRY17X6pgvGR1RLhgXelzbj6c 0v+QLzTtxLrstS9LkJLm7Hq9nGlfzQhgpLsVM0/z2VTfvbu+zpY6JI//4uzJ /PFjmvltMc8+SCg36O1SnlB33Mlmh+VqxZmJe5BW4MSBTE/WAo6jJxbzzmnz gAuLJqaJeYl5liIU4FezV28XLJAAAjYuWDzTiaoCQ9d8xAhOrixOfE0hX2Cs Bt6uaJqdKyQsUQ6K3NMrXjITjW6eCU0NX+UtRbKj/WLgaFs/48DBVyRdOoj2 QbQKiOZ+dGmhCZHhvOeyB94cjt6Gg7V8OnkQ1qB5LtdySHioMMkT0gqaEUa4 dp1kaC6qjaZuroGwxO0ONxJ/EK8gKT6aPPICjToNKlj1W0xuSed7JTX42KOa aGNB6sMEKYXQ/FJ3m+iEmUfWaG+N6hsJfckAVktWNQrxkT4F2ZxItxzGuYgc L+itwuq59aZVVJNr1G69HfUgsP9+siUOnJ2m2J4rBRAMJj2HA2i9pCXz+NV8 csUe4yoGC1mAqyZuq4uJiZMNhdpoQ9KYnd0rdRs4Rqq6wRPyAJL1B6TkWIuA loMY5dx810VZLz/15B9C40IHGTfTsyE86aeSTnWqVrCjPBvwTMmRDBua99oz GaRjZU4Eaj6toDkB737LU19JIpQR39r3oULFFSJNQUtz7+WK8arizriSdFcL p+i+jWBahY7jjiFLL/ADtLATqWP4/BSjXkVYyPAhOCNdMMEBxR4dt6upFMxT 3jL4UQCIJszGNzQEbKTmWvtfCSqNczyDg44REgn0H356c81IW95bfwSaIzxR gNGQWE+SKAuPpHTdDEHa8TmEP6ZnhKrslGsuk9a/rjEQFEt0HVqWb+MxPEmT 11v74s3/eR8YDw5Zk7MrJNUIcq9odr1e6IiQXiabrXm4sNJQs1JHiLXwUmOZ cD8ERhdVyJQz+gzwDSZnxjP9RWg9hIaShFc6Ug9NnfbBCII4gDxDS6Hcv2PL M8JA9vlpVtShuy2EekkxuLe6P93eXoNfPh+GF1qxqcHdeAI0ym1+vlenis2j bmlIFADeuD1XYDHyd1usicxtYr5wcx2PqQmqlPVTpkdDeKoohJOiXYxtx3q6 jAuYyh4liJXivqinpNwg1wRJsn05KPRpR84BvO/L1aCJQyW+r1ZD860DFtmi mHCJi0W57/SqrI9agbqolm7XWnfCybuPF6dZtyehKLUz9clzJEnl7+fPnvNB 9HHlRjpWi1qSh0mtVx0XfwyDbRqOIeLS1edtrkErsREEjyu5fP5HhraJNezS M0muHkhOposd33D4+81/b7j5z3wzueXOQJxpRkSAHOnllFkAEDd12QY3th76 TieMbUlurzLPDGi21Gc61pWoN0SRwn13zXeDacFxGrt84eHoDS8hyYSeXj1X 2WB2aff3NdqBES70aww7ZDGV1SS1LzL2punC572bOkItgT2nwbNy6vHj452X EBpE4+EiMxslWI6uTuq2fnSBy2TYoTlYRrpX4cl1WS84zKQhf6GY1sVrZ1q5 dqbabxdooD6/eT++LERv7eQccNpnDtq+1ZPpLMEVwHnWXax+nEyA6tHGNQYM iVc2WOu35ifwRS4hG/JaE/H/QoxHgk308cCvFNwkEyoHRycKczB3x9aVru6Q kA1fj4yqdZrW2+1s8UvIjf3mDeRpT751dGazY5tAM4WGNJpdEFaQ7ALYpTcY q1m5ghXcQsvZK34i2b62MoS2/pUrSloZ33XTg27aYX/7soppcsQapMc7CToO zY6nm80P4PS4svHk5rDVPYRW/DA6J83C50W8byDcRZKGGmlzeBC/UftJ+OTh NRZVGJfsOVZ5rPVtfP2TpEu+0wuL1DSOLgbaqi3vLb3fDT+IZo8siUmT2O1H Kv6PIr2mlpH/O+iQnZCrFP3OU7sGR8oCpt/GdxrN7Tit0Sm9GuboRHXVu0VD useNF+WaMEQlr5Au6gICXBiwwUVsZb/X/2gvLw8Ss4hIjOHpzu5K2XLerkXF sgixp8ZBkf8SBP5owOM5/P64o5G0MCTcakK39L1EMO+0v0F0kTQhpVQM0oVa lLN6wdXtT2bprQG9Lf7qGaVfUzDF5YxVL2xdAVqRpdcOpC2x4FQ0KdC31lu7 CydE+Qh+DBzSxtKfhv2Kroi5tnHApDMacMWT+7QokbXvpTrTNsloZYyihuNI WQr4ixnXskvOHHEp3N6YxmhCQltz1RlLSfqfgSI55yuJGdFlI8CEBXhATriV WyZkF2+9Awbx2xQI+17JE+zEhoLp17cZLuN5jRyz3JRJoQzGVY/24vV7aZ9A 2PUWLd8fSCBpoRPOGg3z8ymSvof6T3rKtkVrbZw9nuGcryyXWT8ul3QCqNl7 Oh09WYDdJWnJ99CzjKvDQiKq1+21OBxXbaGQ1aHVzvpkAmVdq5gUucHcgqNv XnUO9+f2N+xEJ9y6PJ21kPboeIMCHk0CQ3jMa0XuSp8/Lj8edB1Yc2PP447G iHz5fecTjSRW6Unqn5oCtg53Lf/nUdOY5RqVAHqobIkmHz9/yl5hD55mSkfD QMWsPXjJibMtyL3HjAV2ba9GaQElstcCFZfqp17hlN5kEm7Q0Xy7XAJzm6aq WdAoLq7XcICT78XFDt1fXDevmC/FgL0EWMa8GhIdvvRNzufyeqakE5C10YfR ej3iSJNzEXJnfN/r7yYMZ7CMLv/zRJFF/k9TpFf/NKL0K9aFlSDTCqkmQmL7 hCoiqZGml8ZUAw8o1qlisuG3EKG/qCEd8IMCf/e+sz87VDS1OgEK3Nkbpnl7 s7exURla98jqEwkdrz0OPtwFfmrhN+9CL3KTEaTztVeZSosKAfbaq0vGw3zg ariYVkxIlnREgVzXvREPxhlxD/GCt68zhlt1LEx2NwFXWO2qiKG3XZLp+D1c U6KKNWaaF2e/g2muxAAFY8Fj7oA3barWDvDpcxVH/tTvipZTUvwpfhGD8Xxs Y9XW6w25o4uFpHd5AqCmNL7AyeDtCyxnglx+QGyBPORBcf6CPSa7qSLBgxuI oD0C052KlbbiVNqgR1HynkxVvOBx2DIih2o37aYpEzmELVf3JWiSxL6hyAR4 FFtCeo2JaSuGrSt1RuXhFKbE3kiKUUsrS6SpkQHlHe1Re8Dl17g1Ciy2bvhP aSRgHV5pfn2448DPx69qTtoBXccBoys1P26NC+Pm+S5pgwRzVAy54By8No7I CLiecdcUdw4OcS90GfYWlt5RmEJ/twzBHf+uiOOOiGmKG0Mza8hEWjr0BCV+ osNpD9msSH/1K9PRpTDDpR0ueIR9YWGOoWpgARQ6pII2ow2hDYQioqDY+Jce VAtgma3h6ZI1zCdpdqhYGWHoKKxAm14TYvS6Or/5t58uONsP4v+7/uLLf0zD XRDxNpRpDF/Ag5x75/K5/TAKo/Lixfnq7RkvsHLqwZ7UyQsorFXapJCudowY ud1I8xdoI3y6q5F+L7gJO/ndiWlolNMLC4Qq5reOxMwYwC7qwYj2cJAMDpLi XR9WxZzGuyn3cg8pX+gn9S38OsBePHQpksg9/PFqcq8p/pdn378MLsw/xR+5 QH5MwvIwEF+WuOz/uIBUm7YSu/kKHXSqzBgi+o3fGMDdjXK1u82T3F0TLg1R cQ6UDdTs/6YCEgjIAXSKRGMHHz96o6XEuKpKOutQQgJmYHyRX7cBRE6yHOZ+ 9guOBhaeplIBtXlXNHUl1xZxXZgVlOJEcX/4J39f4LFhC3pfnQbnwCe979r/ F1deRk/MshKcJVg2nisscRPT6K6Iw9jb4W/4NYjjQdiAbUfaXC2M91uD2TW0 zDVrRdW8ghJNrjA6duPPQ9caTYdHa1ffdEe7vuIVwbuQounsB240Na23rtpv 89DhSR4MZUopwSTfsJtRww/+5D7AB/58/d5qNVxMuPdo32/T3gzl8KgGPnnG MODisKbQKPR+UzO6Pxab5Nsh0ZWNwHvWLPi126Ai6q4mk879prFwpj+3AM+h 2xd2s1EYOvyakLSBJDCi5KKBWIwLP4sg3QG/jWnCPWnjKfoHywYBR2utyjqd uG+X5+/PR65b/5dNNly5lG+6cDO9/KYUOpQwzPnSUl+cZJn8+kpKDD7/349W rmz9I+5LcEhPKvsh+zj71g+iGLh2oK6t93ae3WiizH4kx2a4qjfkuufZD/V+ 6XJXNHEoT5a7ZJz3XeHvpxzw8OnyPXH7tabKNJPbbvyOVFTOtx3F8X9ocB/d beO2W/AtN3roo8lPlPTRASxbNsCPe6LxFVeRuoZIT9PRXkhYm+yNuyda0BvX jrTvn+rVaovrHf/FffL0qiz5vvHX5EdXwH7JV89zXhC9boq1zHVFvv+moMP7 iESWbV923U6ZS3z43aNk33N6sjokS32DHoMPjWKepPW9YTTZ5cebdzrifPLf JgQA1VByAAA= --></rfc>