<?xml version="1.0"encoding="US-ASCII"?> <!-- $Id: draft-jain-bess-evpn-lsp-ping.xml 2015-07-05 paragj $ -->encoding="utf-8"?> <!DOCTYPE rfcSYSTEM "rfc2629.dtd"[ <!ENTITYrfc2119 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml">nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF" category="std" consensus="true" docName="draft-ietf-bess-evpn-lsp-ping-11" number="9489" ipr="trust200902"updates=""> <?rfc toc="yes" ?> <?rfc compact="yes"?> <?rfc subcompact="no"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes" ?>updates="" obsoletes="" xml:lang="en" tocInclude="true" symRefs="true" sortRefs="true" version="3"> <!-- xml2rfc v2v3 conversion 3.17.2 --> <front> <titleabbrev="MPLS OAMabbrev="LSP Ping forEVPN">LSP-PingEVPN and PBB-EVPN">Label Switched Path (LSP) Ping Mechanisms for EVPN andPBB-EVPN</title>Provider Backbone Bridging EVPN (PBB-EVPN)</title> <seriesInfo name="RFC" value="9489"/> <author fullname="Parag Jain" initials="P." surname="Jain"> <organization>Cisco</organization> <address> <postal><street></street> <city></city> <code></code> <region></region><country>Canada</country> </postal> <email>paragj@cisco.com</email> </address> </author> <author fullname="Ali Sajassi" initials="A." surname="Sajassi"> <organization>Cisco</organization> <address> <postal><street></street> <city></city> <code></code> <region></region> <country>USA</country><country>United States of America</country> </postal> <email>sajassi@cisco.com</email> </address> </author> <author fullname="Samer Salam" initials="S." surname="Salam"> <organization>Cisco</organization> <address> <postal><street></street> <city></city> <code></code> <region></region><country>Canada</country> </postal> <email>ssalam@cisco.com</email> </address> </author> <author fullname="Sami Boutros" initials="S." surname="Boutros"> <organization>Ciena</organization> <address> <postal><street></street> <city></city> <code></code> <region></region> <country>USA</country><country>United States of America</country> </postal> <email>sboutros@ciena.com</email> </address> </author> <author fullname="Greg Mirsky" initials="G." surname="Mirsky"> <organization>Ericsson</organization> <address> <postal><street></street> <city></city> <code></code> <region></region> <country>USA</country><country>United States of America</country> </postal> <email>gregimirsky@gmail.com</email> </address> </author> <dateyear="2023"/> <area>Routing</area> <workgroup>BESS Workgroup</workgroup>year="2023" month="November"/> <area>rtg</area> <workgroup>bess</workgroup> <keyword>EVPN</keyword> <keyword>LSP Ping</keyword> <keyword>MPLS OAM</keyword> <abstract><t>LSP<t>Label Switched Path (LSP) Ping is a widely deployed Operation, Administration, and Maintenance (OAM) mechanism in MPLS networks. This document describes mechanisms for detecting data plane failures using LSP Ping inMPLS basedMPLS-based Ethernet VPN (EVPN) and Provider Backbone BridgingwithEVPN (PBB-EVPN) networks.</t> </abstract> </front> <middle> <sectiontitle="Introduction">numbered="true" toc="default"> <name>Introduction</name> <t><xreftarget="RFC7432"/>target="RFC7432" format="default"/> describesMPLS basedMPLS-based EVPN technology. An EVPN comprisesCE(s)one or more Customer Edge devices (CEs) connected toPE(s).one or more Provider Edge devices (PEs). The PEs providelayer-2Layer 2 (L2) EVPN among the CE(s) over the MPLS core infrastructure. In EVPN networks, the PEs advertise theMACMedia Access Control (MAC) addresses learned from the locally connected CE(s), along with the MPLSLabel,label, to remote PE(s) in the control plane using multiprotocol BGP <xreftarget="RFC4760"/>.target="RFC4760" format="default"/>. EVPN enables multihoming of CE(s) connected to multiple PEs and load balancing of traffic to and from multihomed CE(s).</t> <t><xreftarget="RFC7623"/>target="RFC7623" format="default"/> describes the use of Provider Backbone Bridging[802.1ah] withEVPN. PBB-EVPN maintains the Customer MAC (C-MAC) learning in the data plane and only advertisesProviderBackbone MAC (B-MAC) addresses in a control plane using BGP.</t> <t>Procedures for simple and efficient mechanisms to detect data plane failures using LSP Ping in MPLSnetworknetworks are well defined in <xreftarget="RFC8029"/>target="RFC8029" format="default"/> and <xreftarget="RFC6425"/>.target="RFC6425" format="default"/>. The basic idea for the LSP Ping mechanism is to sendaan MPLS Echo Request packet along the same data path as data packets belonging to the same Forwarding Equivalent Class (FEC). The Echo Request packet carries the FEC being verified in the Target FEC Stack TLV <xreftarget="RFC8029"/>.target="RFC8029" format="default"/>. Once the Echo Request packet reaches the end of the MPLS path, it is sent to the control plane of the egress PE. The Echo Request packet contains sufficient information to verify the correctness of data plane operations and validate the data plane against the control plane. TheEgressegress PE sends the results of the validation in an Echo Reply packet to the originating PE of the Echo Request packet.</t> <t>This document defines procedures to detect data plane failures using LSP Ping in MPLS networks deploying EVPN and PBB-EVPN. This document defines four newSub-TLVssub-TLVs for the Target FEC Stack TLV with the purpose of identifying the FEC on theEgressegress PE.</t> </section> <sectiontitle="Specificationnumbered="true" toc="default"> <name>Specification ofRequirements"> <t>TheRequirements</name> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here. </t> </section> <sectiontitle="Terminology"> <t>AD: Auto Discovery</t> <t>B-MAC: Backbone MAC Address</t> <t>BUM: Broadcast,numbered="true" toc="default"> <name>Terminology</name> <dl> <dt>A-D:</dt><dd>Auto-Discovery</dd> <dt>B-MAC:</dt><dd>Backbone MAC</dd> <dt>BUM:</dt><dd>Broadcast, UnknownUnicast or Multicast</t> <t>CE: CustomerUnicast, and Multicast</dd> <dt>CE:</dt><dd>Customer EdgeDevice</t> <t>C-MAC: Customer MAC Address</t> <t>DF: Designated Forwarder</t> <t>ES: Ethernet Segment</t> <t>ESI: Ethernetdevice</dd> <dt>C-MAC:</dt><dd>Customer MAC</dd> <dt>DF:</dt><dd>Designated Forwarder</dd> <dt>ES:</dt><dd>Ethernet Segment</dd> <dt>ESI:</dt><dd>Ethernet SegmentIdentifier</t> <t>EVI: EVPNIdentifier</dd> <dt>EVI:</dt><dd>EVPN Instance Identifier that globally identifies the EVPNInstance</t> <t>EVPN: EthernetInstance</dd> <dt>EVPN:</dt><dd>Ethernet Virtual PrivateNetwork</t> <t>FEC: ForwardingNetwork</dd> <dt>FEC:</dt><dd>Forwarding EquivalentClasss</t> <t>G-ACh: GenericClass</dd> <dt>G-ACh:</dt><dd>Generic AssociatedChannel</t> <t>GAL: G-ACh Label</t> <t>OAM: Operations,Channel</dd> <dt>GAL:</dt><dd>G-ACh Label</dd> <dt>MAC-VRF:</dt><dd>A Virtual Routing and Forwarding table for MAC addresses on a PE</dd> <dt>ND:</dt><dd>Neighbor Discovery</dd> <dt>OAM:</dt><dd>Operations, Administration, andMaintenance</t> <t>P2MP: Point-to-Multipoint</t> <t>PBB-EVPN: ProviderMaintenance</dd> <dt>P2MP:</dt><dd>Point-to-Multipoint</dd> <dt>PBB-EVPN:</dt><dd>Provider BackboneBridge with EVPN</t> <t>PE: ProviderBridging EVPN</dd> <dt>PE:</dt><dd>Provider EdgeDevice</t> <t>VPWS: Virtualdevice</dd> <dt>VPWS:</dt><dd>Virtual Private WireService</t>Service</dd> </dl> </section> <sectiontitle="Proposed Targetnumbered="true" toc="default"> <name>Target FEC StackSub-TLVs">Sub-TLVs</name> <t>This document introduces four new Target FEC StackSub-TLVssub-TLVs that are included in the MPLS Echo Request packet. The Echo Request packets are used for connectivitycheckchecks in the data plane in EVPN and PBB-EVPN networks. ThetargetTarget FECstack Sub-TLVs MAYStack sub-TLVs <bcp14>MAY</bcp14> be used to validate that an identifier for a given EVPN is programmed at the target node.</t> <sectiontitle="EVPNnumbered="true" toc="default"> <name>EVPN MAC/IPSub-TLV">Sub-TLV</name> <t>The EVPN MAC/IPSub-TLVsub-TLV identifies the target MAC, MAC/IP binding for ARP/ND, or IP address for anEVPN Instance Identifier (EVI)EVI under test at an egress PE. ThisSub-TLVsub-TLV is included in the Echo Request sent byaan EVPN/PBB-EVPN PE to aPeerpeer PE.</t> <t>The fields of the EVPN MAC/IPSub-TLV fieldssub-TLV are derived from the MAC/IP Advertisement route defined inSection 7.2 in<xreftarget="RFC7432"/>target="RFC7432" sectionFormat="of" section="7.2"/> and have the formatasshown inFigure 1.<xref target="fig1"/>. The fields of the EVPN MAC/IPSub-TLVsub-TLV should be set according to thefollowing thatfollowing, which is consistent with <xreftarget="RFC7432"/>target="RFC7432" format="default"/> and <xreftarget="RFC7623"/>:</t> <t><list style="symbols"> <t>The Route Distinguisher (RD) field is a 10-octet field and is set to the RD of the MAC-VRF on the Peer PE.</t> <t>Thetarget="RFC7623" format="default"/>:</t> <ul spacing="normal"> <li>The EthernetTAGTag ID field can be 0 or a valid VLAN ID for EVPN VLAN-aware bundle service <xreftarget="RFC7432"/>.target="RFC7432" format="default"/>. For PBB-EVPN, the value of this field is always 0 as perSection 5.2 of<xreftarget="RFC7623"/>.</t> <t>Thetarget="RFC7623" sectionFormat="of" section="5.2"/>.</li> <li>The Ethernet Segment Identifier field is a 10-octet field. For EVPN, it is set to 0 forsinglehomeda single-homed ES or to a valid ESI ID for a multihomed ES. For PBB-EVPN, the Ethernet Segment Identifier field must be set to either 0 (for single-homed segments or multihomed segments with per-I-SIDload-balancing)load balancing) or to MAX-ESI (for multihomed segments with per-flowload-balancing)load balancing) asdescribe in Section 5.2described in <xreftarget="RFC7623"/>.</t> <t>Thetarget="RFC7623" sectionFormat="of" section="5.2"/>.</li> <li>The MAC Addr Len field specifies the MAC length in bits. Only48 bit48-bit MACAddressesaddresses are supported as this document follows the MAC address length supported by <xreftarget="RFC7432"/>.</t> <t>Thetarget="RFC7432" format="default"/>.</li> <li>The MAC Address field is set to the 6-octet MACaddress.</t> <t>Theaddress.</li> <li>The IP Address field is optional. When the IP Address field is not present, the IP Addr Len field is set to 0. When the IP Address field is present, the IP Addr Len field is in bits and iseitherset to either 32 for IPv4 addresses or 128 for IPv6address. </t> <t>Theaddresses. </li> <li>The Must Be Zero fields are set to 0. The receiving PE should ignore the Must Be Zero fields.</t> </list></t></li> </ul> <figurealign="left"> <preamble/>anchor="fig1" title="EVPN MAC/IP Sub-TLV Format"> <artworkalign="left"><![CDATA[align="left" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Route Distinguisher | | (8 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ethernet Tag ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ethernet Segment Identifier | | (10 octets) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Must Be Zero | MAC Addr Len | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAC Address | + (6Octets)octets) +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Must Be Zero | IP Addr Len | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IP Address (0, 4 or 16Octets)octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Figure 1: EVPN MAC Sub-TLV format ]]></artwork> </figure>]]></artwork></figure> <t>The MPLS Echo Request is sent by the ingress PE using the EVPN MPLS label(s) associated with the MAC/IPadvertisementAdvertisement route announced by the egress PE and the MPLS transport label(s) to reach the egress PE.</t> <t>In EVPN, the MAC/IP Advertisement route has multiplepersonalityuses anditis used for the followingcases: </t> <t><list style="symbols"> <t>Thiscases:</t> <ul spacing="normal"> <li>This route with only a MAC address and MPLS Label1 is used for populating MAC-VRF and performing MACforwarding.</t> <t>Thisforwarding.</li> <li>This route with MAC and IP addresses and only MPLS Label1 is used for populating both MAC-VRF and ARP/ND tables (for ARP suppression) as well as for performing MACforwarding</t> <t>Thisforwarding.</li> <li>This route with MAC and IP addresses and both MPLS Label1 and Label2 is used for populating MAC-VRF and IP-VRF tables as well as for both MACforwarding,and IP forwarding in the case of symmetricIRB.</t> </list></t>Integrated Routing and Bridging (IRB).</li> </ul> <t>When an MPLS Echo Request is sent by an ingress PE, the contents of the Echo Request and the egress PE mode of operation (i.e., IRB mode or L2 mode) along with EVPN MPLS label of thepacket,packet determine which of theabovethree casesisabove this Echo Request is for. When the egress PE receives the EVPN MAC/IPSub-TLVsub-TLV containing only the MAC address, the egress PE validates the MAC state and forwarding. When the egress PE receives the EVPN MAC/IPSub-TLVsub-TLV containing both MAC and IP addresses and if the EVPN label points to a MAC-VRF, then the egress PE validates the MAC state and forwarding. If the egress PE is not configured in symmetric IRB mode, it also validates ARP/ND state. However, if the EVPN label points to an IP-VRF, then the egress PE validates IP state and forwarding. Any othercombinations, such ascombinations (e.g., the egress PE receiving the EVPN MAC/IPSub-TLVsub-TLV containing only the MAC address but with the EVPN label pointing to anIP-VRF,IP-VRF) should be consideredinvalidinvalid, and the egress PE should send an Echo Replyshould be sentwith the appropriatereturn code by the egress PEReturn Code to the ingress PE.</t> </section> <sectiontitle="EVPNnumbered="true" toc="default"> <name>EVPN Inclusive MulticastSub-TLV">Sub-TLV</name> <t>The fields of the EVPN Inclusive MulticastSub-TLV fieldssub-TLV are based on the EVPN Inclusive Multicast Tag route defined in <xreftarget="RFC7432"/> Section 7.3.target="RFC7432" sectionFormat="of" section="7.3"/>. This TLV is included in the Echo Request sent to the EVPN peer PE by the originator of the request to verify the multicast connectivity state on the peer PE(s) in EVPN and PBB-EVPN networks. </t> <t>The EVPN Inclusive MulticastSub-TLVsub-TLV has the formatasshown inFigure 2.<xref target="fig2"/>. The fields of thisSub-TLVsub-TLV should be set according to thefollowing thatfollowing, which is consistent with <xreftarget="RFC7432"/>target="RFC7432" format="default"/> and <xreftarget="RFC7623"/>:</t> <t><list style="symbols"> <t>Thetarget="RFC7623" format="default"/>:</t> <ul spacing="normal"> <li>The Route Distinguisher (RD) field is a 10-octet field and is set to the RD of the MAC-VRF on thePeer PE.</t> <t>Forpeer PE.</li> <li>For EVPN, the EthernetTAGTag ID field can be set to 0 or a valid VLAN ID for EVPN VLAN-aware bundle service <xreftarget="RFC7432"/>.target="RFC7432" format="default"/>. For PBB-EVPN, the value of this field is set to the Service Instance Identifier (I-SID) value as perSection 5.3 of<xreftarget="RFC7623"/>.</t> <t>Thetarget="RFC7623" sectionFormat="of" section="5.3"/>.</li> <li>The IP Addr Len field specifies the length of the Originating Router's IP Addr field in bits anditiseitherset to either 32 for IPv4 addresses or 128 for IPv6address.</t> <t>Theaddresses.</li> <li>The Originating Router's IP Addr field is set to the IPv4 or IPv6 address of the peerPE.</t> </list></t>PE.</li> </ul> <figurealign="left"> <preamble/>anchor="fig2" title="EVPN Inclusive Multicast Sub-TLV Format"> <artworkalign="left"><![CDATA[align="left" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Route Distinguisher | | (8 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ethernet Tag ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IP Addr Len | | +-+-+-+-+-+-+-+ | ~ Originating Router's IP Addr ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Figure 2: EVPN Inclusive Multicast Sub-TLV format ]]></artwork> </figure> <t>Broadcast, unknown unicast or multicast (BUM)]]></artwork></figure> <t>BUM traffic can be sent using ingress replication or P2MP P-tree in EVPN and PBB-EVPNnetwork. In case ofnetworks. When using ingress replication, the Echo Request is sent using a label stack of [Transport label, Inclusive Multicast label] to each egress PE participating in EVPN or PBB-EVPN. Theinclusive multicastInclusive Multicast label is thedownstream assigneddownstream-assigned label announced by the egress PE to which the Echo Request is being sent. The Inclusive Multicast label is the inner label in the MPLS label stack.</t> <t>When using P2MP P-tree in EVPN or PBB-EVPN, the Echo Request is sent using a P2MP P-tree transport label forinclusivethe Inclusive P-tree arrangement or using a label stack of [P2MP P-treetransportTransport label,upstream assignedupstream-assigned EVPN Inclusive Multicast label] for theaggregate inclusiveAggregate Inclusive P2MP P-tree arrangement as described inSection 6.</t> <t>In case of EVPN,<xref target="operations"/>.</t> <t> In an EVPN network, to emulate traffic coming from a multihomed site, an additional EVPN EthernetAuto-Discovery Sub-TLVA-D sub-TLV in the Target FECstackStack TLV and an ESI Split Horizon Group MPLS label as the bottomlabel,label are also included in the Echo Request packet. When using P2MP P-tree, the ESI Split Horizon Group MPLS label is upstream assigned. Please seeSection 6.2.2<xref target="p2mp-ptree"/> for operations using P2MP P-trees.</t> </section> <sectiontitle="EVPNnumbered="true" toc="default"> <name>EVPN Ethernet Auto-DiscoverySub-TLV">(A-D) Sub-TLV</name> <t>The fields in the EVPN EthernetAuto-Discovery (AD) Sub-TLV fieldsA-D sub-TLV are based on the EVPN EthernetAuto-DiscoveryA-D route advertisement defined in <xreftarget="RFC7432"/> Section 7.1.target="RFC7432" sectionFormat="of" section="7.1"/>. The EVPN EthernetAD Sub-TLVA-D sub-TLV only applies toonlyEVPN.</t> <t>The EVPN EthernetAD Sub-TLVA-D sub-TLV has the format shown inFigure 3.<xref target="fig3"/>. The fields of thisSub-TLVsub-TLV should be set according to thefollowing thatfollowing, which is consistent with <xreftarget="RFC7432"/>:</t> <t><list style="symbols"> <t>Thetarget="RFC7432" format="default"/>:</t> <ul spacing="normal"> <li>The Route Distinguisher (RD) field is a 10-octet field and is set to the RD of the MAC-VRF on thePeerpeer PE. Please seeSection 4.3.2 below<xref target="adroute"/> for the case when a per-ESADA-D route is announced with differentRDs</t> <t>TheRDs.</li> <li>The EthernetTAGTag ID field can be 0,MAX-ETMAX-ET, or a valid VLAN ID as described inSection 4.3.1 below.</t> <t>The<xref target="etagvalue"/>.</li> <li>The Ethernet Segment Identifier field is a 10-octet field and is set to 0 forsinglehomeda single-homed ES or to a valid ESI ID for a multihomedES.</t> <t>TheES.</li> <li>The Must Be Zero field is set to 0. The receiving PE should ignore the Must Be Zero field.</t> </list></t></li> </ul> <figurealign="left"> <preamble/>anchor="fig3" title="EVPN Ethernet A-D Sub-TLV Format"> <artworkalign="left"><![CDATA[align="left" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Route Distinguisher | | (8 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ethernet Tag ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ethernet Segment Identifier | | (10 octets) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Must Be Zero | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Figure 3: EVPN Ethernet Auto-Discovery Sub-TLV format ]]></artwork> </figure>]]></artwork></figure> <sectiontitle="Ethernet TAG Value"> <t>anchor="etagvalue" numbered="true" toc="default"> <name>Ethernet Tag Value</name> <t>The EVPN EthernetAD Sub-TLVA-D sub-TLV can be sent in the context ofper-Ethernet Segment (ES)per-ES or per-EVI. When an operator performs a connectivity check for the BUM L2 service, an Echo Request packetsent, MAYis sent and <bcp14>MAY</bcp14> contain the EVPN EthernetAD Sub-TLVA-D sub-TLV to emulate traffic coming from a multihomed site. In this case, the EVPN EthernetAD Sub-TLVA-D sub-TLV is added in the per-ES context. When an Echo Request packet is sent for the connectivity check for EVPN Aliasing state, the context for the EVPN EthernetAD Sub-TLVA-D sub-TLV is per-EVI.</t><t>Ethernet<t>The Ethernet Tag field value in the EVPN EthernetAD Sub-TLV, MUSTA-D sub-TLV <bcp14>MUST</bcp14> be set according to the context:</t><t><list style="symbols"> <t>For<ul spacing="normal"> <li>For the per-ES context, the Ethernet Tag field in the sub-TLVMUST<bcp14>MUST</bcp14> be set to the reserved MAX-ET value <xreftarget="RFC7432"/></t> <t>Fortarget="RFC7432" format="default"/>.</li> <li>For the per-EVI context, the Ethernet Tag field in the sub-TLVMUST<bcp14>MUST</bcp14> be set to the non-reservedvalue</t> </list></t>value.</li> </ul> </section> <sectiontitle="Per-ESanchor="adroute" numbered="true" toc="default"> <name>Per-ES EVPN Auto-Discovery Route withdifferent RDs"> <t>Section 8.2 of <xref target="RFC7432"/>Different RDs</name> <t><xref target="RFC7432" sectionFormat="of" section="8.2"/> specifies that a per-ES EVPNADA-D route for a given multihomedES,ES may be advertised more than once with different RD values because many EVIs may be associated with the same ES and Route Targets for all these EVIs may not fit in a single BGP Update message. In this case, the RD value used in the EVPN EthernetAD Sub-TLV, MUSTA-D sub-TLV <bcp14>MUST</bcp14> be the RD value received for the EVI in the per-ES EVPNAD Route.</t>A-D route.</t> </section> <sectiontitle="EVPN VPWS">numbered="true" toc="default"> <name>EVPN VPWS</name> <t>LSP Ping can also be used to detect data plane failures for the EVPNVirtual Private Wire Service (VPWS)VPWS described in <xreftarget="RFC8214"/>.target="RFC8214" format="default"/>. The Echo Request packet carries the EVPN EthernetAD Sub-TLVA-D sub-TLV with fields populated from the EVPN EthernetAD per EVIA-D per-EVI route announced by the egress PE for the EVPN VPWS under test. The Echo Request is sent by the ingress PE using the EVPN MPLS label associated with the EVPN EthernetADA-D route announced by the egress PE and the MPLS transport label(s) to reach the egress PE.</t> <t>The egress PEprocessprocesses the Echo Request packet andperformperforms checks for the EVPN EthernetAD Sub-TLVA-D sub-TLV present in the Target FEC Stack TLV as described inSection 4.4 in<xreftarget="RFC8029"/>target="RFC8029" sectionFormat="of" section="4.4"/> andrespondresponds according to<xref target="RFC8029"/>processingrule. Egressrules in <xref target="RFC8029" format="default"/>. The egress PE can identify that the Echo Request is for the EVPN VPWS instance as EVI (identified by the RD) for EVPN VPWS is different fromthatEVI assigned for EVPN. The egress PE will use the information from the EVPN EthernetAD Sub-TLVA-D sub-TLV in the Target FEC Stack TLV and validate the VLAN state for the EVPN VPWS under test. For the success case, the egress PE will reply with Return Code 3- "Replying("Replying router is an egress for the FEC atstack-depth".</t>stack-depth <RSC>").</t> </section> </section> <sectiontitle="EVPNnumbered="true" toc="default"> <name>EVPN IP PrefixSub-TLV">Sub-TLV</name> <t>The EVPN IP PrefixSub-TLVsub-TLV identifies the IPPrefixprefix for an EVI under test at a peer PE.</t> <t>The EVPN IP PrefixSub-TLVsub-TLV fields are derived from the IP PrefixRouteroute (RT-5) advertisement defined in <xreftarget="RFC9136"/>.target="RFC9136" format="default"/>. This sub-TLV only applies toonlyEVPN.</t> <t>The EVPN IP PrefixSub-TLVsub-TLV has the format shown inFigure 4.<xref target="fig4"/>. The total length (not shown) of this sub-TLVMUST<bcp14>MUST</bcp14> be either 32 bytes (if IPv4 addresses are carried) or 56 bytes (if IPv6 addresses are carried). The IP prefix and gateway IP addressMUST<bcp14>MUST</bcp14> be from the same IP address family, as described inSection 3.1 of<xreftarget="RFC9136"/>.</t>target="RFC9136" sectionFormat="of" section="3.1"/>.</t> <t>The fields of the EVPN IP PrefixSub-TLVsub-TLV should be set according to thefollowing thatfollowing, which is consistent with <xreftarget="RFC9136"/>:</t> <t><list style="symbols"> <t>Thetarget="RFC9136" format="default"/>:</t> <ul spacing="normal"> <li>The Route Distinguisher (RD) field is a 10-octet field and is set to the RD of the IP-VRF on thePeer PE.</t> <t>Thepeer PE.</li> <li>The EthernetTAGTag ID field can be 0 or a valid VLAN ID for EVPN VLAN-aware bundle service <xreftarget="RFC7432"/>.</t> <t>Thetarget="RFC7432" format="default"/>.</li> <li>The Ethernet Segment Identifier field is a 10-octet field and is set to a valid ESI ID if the ESI is used as an Overlay Index as perSection 3.1 of<xreftarget="RFC9136"/>. Otherwisetarget="RFC9136" sectionFormat="of" section="3.1"/>. Otherwise, the Ethernet Segment Identifier field is set toall 0s.</t> <t>The0.</li> <li>The IP Prefix Len field specifies the number of bits in the IP Prefix field. It is set to a value between 0 and 32 for IPv4 or between 0 to 128 forIPv6.</t> <t>TheIPv6.</li> <li>The IPprefixPrefix field is set to a 4-octet IPv4 address (with trailing 0 bits to make 32 bits in all) or a 16-octet IPv6 address (with trailing 0 bits to make 128 bits in all). The address family of this field is inferred from the sub-TLV length field, as discussedabove.</t> <t>above.</li> <li> The Gateway (GW) IP Address field is set to a 4-octet IPv4 address or a 16-octet IPv6 address if it's used as an Overlay Index for the IP prefixes. If the GW IP Address is not being used, it must be set to 0 as described inSection 3.1 of<xreftarget="RFC9136"/>.target="RFC9136" sectionFormat="of" section="3.1"/>. The address family of this field is inferred from the sub-TLV length field, as discussedabove.</t> <t>Theabove.</li> <li>The Must Be Zero field is set to 0. The receiving PE should ignore the Must Be Zero field.</t> </list></t></li> </ul> <figurealign="left"> <preamble/>anchor="fig4" title="EVPN IP Prefix Sub-TLV Format"> <artworkalign="left"><![CDATA[align="left" name="" type="" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Route Distinguisher | | (8 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ethernet Tag ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Ethernet Segment Identifier | | (10 octets) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Must Be Zero | IP Prefix Len | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ IP Prefix (4 or 16Octets)octets) ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ GW IP Address (4 or 16Octets)octets) ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+Figure 4: EVPN IP Prefix Sub-TLV format ]]></artwork> </figure>]]></artwork></figure> <t>The MPLS Echo Request is sent by the ingress PE using the EVPN MPLS label(s) associated with the IP Prefix route announced by the egress PE and the MPLS transport label(s) to reach the egress PE.</t> </section> </section> <sectiontitle="Encapsulationnumbered="true" toc="default"> <name>Encapsulation of OAM PingPackets">Packets</name> <t>The MPLS Echo Request IP/UDP packetsMUST<bcp14>MUST</bcp14> be encapsulated with the Transport and EVPNLabel(s)label(s) followed by theGeneric Associated Channel Label (GAL)GAL <xreftarget="RFC5586"/>target="RFC5586" format="default"/>, which is thebottom mostbottommost label. The GAL is followed by aGeneric Associated Channel HeaderG-ACh header carrying the IPv4(0x0021) or IPv6(0x0057) Channel Type. The code points for IPv4 and IPv6 channels are defined inGenericthe "Generic Associated Channel (G-ACh)Parameters by IANA.</t>Parameters" IANA registry.</t> </section> <sectiontitle="Operations">anchor="operations" numbered="true" toc="default"> <name>Operations</name> <sectiontitle="Unicast Data-plane connectivity checks"> <t>Figure 5numbered="true" toc="default"> <name>Unicast Data Plane Connectivity Checks</name> <t><xref target="fig5"/> is an example of a PBB-EVPN network. CE1 is dual-homed to PE1 and PE2.Assume,Assume that PE1 announced a MAC route with RD 192.0.2.1:00 and B-MAC 00-AA-00-BB-00-CC and with MPLS label 16001 for EVI 10. Similarly, PE2 announced a MAC route with RD 203.0.113.2:00 and B-MAC 00-AA-00-BB-00-CC and with MPLS label 16002.</t> <t>On PE3, when an operator performs a connectivity check for the B-MAC address 00-AA-00-BB-00-CC on PE1, the operator initiates an LSP Ping request with thetargetTarget FECstackStack TLV containing the EVPNMAC Sub-TLVMAC/IP sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {TransportLabel(s)label(s) to reach PE1, EVPNLabellabel = 16001, GAL} MPLS label stack and IP ACH Channel header. Once the Echo Request packet reaches PE1, PE1 will use the GAL and the IP ACH Channel header to determinethatif the packet is an IPv4 or IPv6 OAMPacket.packet. The PE1 will process the packet and perform checks for the EVPNMAC Sub-TLVMAC/IP sub-TLV present in the Target FEC Stack TLV as described inSection 4.4 in<xreftarget="RFC8029"/>target="RFC8029" sectionFormat="of" section="4.4"/> and respond according to<xref target="RFC8029"/>the processingrules.</t>rules in <xref target="RFC8029" format="default"/>.</t> <figurealign="left"> <preamble/>anchor="fig5" title="PBB-EVPN Network"> <artworkalign="left"><![CDATA[align="left" name="" type="" alt=""><![CDATA[ +-----------------+ | | | | +----+ AC1 +-----+ +-----+ +----+ | CE1|------| | | PE3 |-----| CE2| +----+\ | PE1 | IP/MPLS | | +----+ \ +-----+ Network +-----+ \ | | AC2\ +-----+ | \ | | | \| PE2 | | +-----+ | | | +-----------------+ <-802.1Q-> <------PBB over MPLS------> <-802.1Q->Figure 5: PBB-EVPN network ]]></artwork> </figure>]]></artwork></figure> <t>Similarly, on PE3, when an operator performs a connectivity check for the B-MAC address 00-AA-00-BB-00-CC on PE2, the operator initiates an LSP Ping request with thetargetTarget FECstackStack TLV containing the EVPNMAC Sub-TLVMAC/IP sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {MPLStransport Label(s)Transport label(s) to reach PE2, EVPNLabellabel = 16002, GAL} MPLS label stack and IP ACH Channel header.</t> <t>LSP Pingoperationoperations for unicast data plane connectivity checks inEVPN,EVPN are similar to those described above forPBB-EVPNPBB-EVPN, except that the checks are for C-MAC addresses instead of B-MAC addresses.</t> <t> In EVPNnetwork,networks, an operator can also perform a MAC state test using an aliasing label for the MAC to verify the MAC state on the egress multihoming PE that did not learn the MAC from the multihomed CE on a local ESI but has announced EthernetADA-D per-EVI and per-ESI routes for the ESI. This is due to the fact that MAC state on multihoming PEs that did not learn the MAClocally,locally get created from EVPN MAC/IP route advertisement from the multihoming PE that has learned the CE's MAC address locally. </t> </section> <sectiontitle="Inclusivenumbered="true" toc="default"> <name>Inclusive MulticastData-planeData Plane ConnectivityChecks">Checks</name> <sectiontitle="Ingress Replication">numbered="true" toc="default"> <name>Ingress Replication</name> <t>Assume PE1 announced an Inclusive Multicast route for EVI 10, with RD 192.0.2.1:00, Ethernet Tag (ISID 10), PMSI tunnel attribute Tunnel type set to ingressreplicationreplication, anddownstream assigned inclusive multicastdownstream-assigned Inclusive Multicast MPLS label 17001. Similarly, PE2 announced an Inclusive Multicast route for EVI 10, with RD 203.0.113.2:00, Ethernet Tag (ISID 10), PMSI tunnel attribute Tunnel type set to ingressreplicationreplication, anddownstream assigned inclusive multicastdownstream-assigned Inclusive Multicast MPLS label 17002.</t> <t>Given CE1 is dual-homed to PE1 and PE2, assume that PE1 is the DF for ISID 10 for the port corresponding to the ESI 11aa.22bb.33cc. 44dd.5500.</t> <t>When an operator at PE3 initiates a connectivity check for theinclusive multicastInclusive Multicast on PE1, the operator initiates an LSP Ping request with thetargetTarget FECstackStack TLV containing the EVPN Inclusive MulticastSub-TLVsub-TLV in the Echo Request packet. The Echo Request packet is sent with the {TransportLabel(s)label(s) to reach PE1, EVPNIncl.Inclusive MulticastLabellabel = 17001, GAL} MPLS label stack and IP ACH Channel header. Once the Echo Request packet reaches PE1, PE1 will use the GAL and the IP ACH Channel header to determinethatif the packet is an IPv4 or IPv6 OAMPacket.packet. The packet will have the EVPN InclusivemulticastMulticast label. PE1 will process the packet and perform checks for the EVPN Inclusive MulticastSub-TLVsub-TLV present in the Target FEC Stack TLV as described inSection 4.4 in<xreftarget="RFC8029"/>target="RFC8029" sectionFormat="of" section="4.4"/> and respond according to<xref target="RFC8029"/>the processingrules.rules in <xref target="RFC8029" format="default"/>. For the success case, PE1 will reply with Return Code 3- "Replying("Replying router is an egress for the FEC atstack-depth".stack-depth <RSC>"). </t> <t>Similarly, an operator atPE3,PE3 may initiate an LSP Ping to PE2 with thetargetTarget FECstackStack TLV containing the EVPN Inclusive Multicast sub-TLV in the Echo Request packet. The Echo Request packet is sent with the{transport Label(s){Transport label(s) to reach PE2, EVPNIncl.Inclusive MulticastLabellabel = 17002, GAL} MPLS label stack and IP ACH Channel header. Once the Echo Request packet reaches PE2, PE2 will use the GAL and the IP ACH Channel header to determinethatif the packet is an IPv4 or IPv6 OAMPacket.packet. The processing on PE2 will be similar tothethat on PE1 as describedabove and forabove. For the success case, PE2 will reply with Return Code 3- "Replying("Replying router is an egress for the FEC atstack-depth"stack-depth <RSC>") as per <xreftarget="RFC8029"/>.</t>target="RFC8029" format="default"/>.</t> <t>Incase of EVPN, in thean Echo Requestpacket,packet for EVPN, a combination of an EVPN EthernetAD Sub-TLVA-D sub-TLV and the associated MPLS Split HorizonLabel abovelabel, immediately preceding the GAL in the MPLS label stack, may beaddedused to emulate traffic coming from a multihomed site. The Split Horizon label is used by leaf PE(s) attached to the same multihomed site tonot forwardprevent forwarding of packets back to the multihomed site. If the behavior on a leaf PE is to not forward the packet to the multihomed site on the ESI identified by the EVPN EthernetAD Sub-TLVA-D sub-TLV because of Split Horizon filtering, the PE will reply withaReturn Codeindicating that "Replying router is egress for the FEC at the stack depth. In addition,37 (see <xref target="iana"/>) and drop the BUM packetsare droppedon the ES corresponding to the ESI received in the EVPN EthernetAD Sub-TLVA-D sub-TLV because of the Split Horizon Groupfiltering" as described in Section 8.</t>filtering.</t> </section> <sectiontitle="Usinganchor="p2mp-ptree" numbered="true" toc="default"> <name>Using P2MPP-tree">P-Tree</name> <t>Bothinclusive P-TreeInclusive P-tree andaggregate inclusiveAggregate Inclusive P-tree can be used in EVPN or PBB-EVPN networks.</t> <t>When using aninclusiveInclusive P-tree arrangement,p2mp p-treethe P2MP P-tree transport label itself is used to identify the L2 service associated with the Inclusive MulticastRoute, thisroute. This L2 service could be acustomer Bridge,Customer Bridge or a Provider Backbone Bridge.</t> <t>For an Inclusive P-tree arrangement, when an operator performs a connectivity check for the multicast L2 service, the operator initiates an LSP Ping request with thetargetTarget FECstackStack TLV containing the EVPN Inclusive MulticastSub-TLVsub-TLV in the Echo Request packet. The Echo Request packet is sent over P2MP LSP with the {P2MP P-tree Transport label, GAL} MPLS label stack and IP ACH Channel header.</t> <t>When using an Aggregate InclusiveP-tree,P-tree arrangement, a PE announces anupstream assignedupstream-assigned MPLS label along with the P-tree ID, so both thep2mp p-treeP2MP P-tree MPLS transport label and the upstream MPLS label can be used to identify the L2 service.</t> <t>For an Aggregate Inclusive P-tree arrangement, when an operator performs a connectivity check for the multicast L2 service, the operator initiates an LSP Ping request with thetargetTarget FECstackStack TLV containing the EVPN Inclusive MulticastSub-TLVsub-TLV in the Echo Request packet. The Echo Request packet is sent over P2MP LSP using the IP-ACH Control channel with the {P2MP P-tree Transport label, EVPNUpstream assignedupstream-assigned MulticastLabel,label, GAL} MPLS label stack and IP ACH Channel header.</t> <t>TheLeafleaf PE(s) of thep2mp treeP2MP P-tree will process the packet and perform checks for the EVPN Inclusive MulticastSub-TLVsub-TLV present in the Target FEC Stack TLV as described inSection 4.4 in<xreftarget="RFC8029"/>target="RFC8029" sectionFormat="of" section="4.4"/> and respond according to<xref target="RFC8029"/>the processingrules.rules in <xref target="RFC8029" format="default"/>. For the success case, theLeafleaf PE will reply with Return Code 3- "Replying("Replying router is an egress for the FEC atstack-depth".</t>stack-depth <RSC>").</t> <t>Incase of EVPN, in thean Echo Requestpacket,packet for EVPN, a combination of an EVPN EthernetAD Sub-TLVA-D sub-TLV and the associated MPLS Split HorizonLabel abovelabel, immediately preceding the GAL in the MPLS label stack, may beaddedused to emulate traffic coming from a multihomed site.In case of p2mp p-tree,When using P2MP P-tree, the Split HorizonLabellabel is upstream assigned and is received by all the leaf PEs of thep2mp-ptree.P2MP P-tree. The Split Horizon label is used by leaf PE(s) attached to the same multihomed sitenot to forwardso that packets will not be forwarded back to the multihomed site. If the behavior on a leaf PE is to not forward the packet to the multihomed site on the ESI in the EVPN EthernetAD Sub-TLVA-D sub-TLV because of Split Horizon filtering, the PE will reply withaReturn Codeindicating that "Replying router is egress for the FEC at the stack depth. In addition,37 (see <xref target="iana"/>) and drop the BUM packetsare droppedon the ES corresponding to the ESI received in the EVPN EthernetAD Sub-TLVA-D sub-TLV because of the Split Horizon Groupfiltering" as described in Section 8.filtering. If the leaf PE does not have the ESI identified in the EVPN EthernetAD Sub-TLV,A-D sub-TLV, the PEcan<bcp14>MAY</bcp14> reply withaReturn Codeindicating that "Replying router is egress for the FEC at the stack depth. In addition,38 (see <xref target="iana"/>), and the BUM packets are forwarded because there is no ES corresponding to the ESI received in the EVPN EthernetAD Sub-TLV".</t>A-D sub-TLV.</t> </section> <sectiontitle="Controllingnumbered="true" toc="default"> <name>Controlling Echo Responseswhen usingWhen Using P2MPP-tree">P-Tree</name> <t>The procedures described in[RFC6425]<xref target="RFC6425"/> for preventing congestion of Echo Responses (Echo Jitter TLV) and limiting the Echo Reply to a single egress node(Node(P2MP Responder Identifier TLV with either the IPv4 Node Address P2MP ResponderIdentifier TLV)sub-TLV or the IPv6 Node Address P2MP Responder sub-TLV) can be applied to LSP Ping in EVPN and PBB-EVPN when using P2MP P-trees forbroadcast, multicast, and unknown unicastBUM traffic.</t> </section> </section> <sectiontitle="EVPNnumbered="true" toc="default"> <name>EVPN AliasingData-plane connectivity check">Data Plane Connectivity Check</name> <t>Assume PE1 announced an EthernetADA-D per-EVIRouteroute with the ESI set to CE1 system ID and MPLS label19001, and19001. Additionally, assume PE2 announced an EthernetADA-D per-EVIRouteroute with the ESI set to CE1 system ID and MPLS label 19002.</t> <t>At PE3, when an operator performs a connectivity check for the aliasing aspect of the EVPN EthernetADA-D route on PE1, the operator initiates an LSP Ping request with thetargetTarget FECstackStack TLV containing the EVPN EthernetAD Sub-TLVA-D sub-TLV in the Echo Request packet. The Echo Request packet is sent with the {Transport label(s) to reach PE1, EVPN EthernetAD LabelA-D label 19001, GAL} MPLS label stack and IP ACH Channel header.</t> <t>When PE1 receives thepacketpacket, it will process the packet and perform checks for the EVPN EthernetAD Sub-TLVA-D sub-TLV present in the Target FEC Stack TLV as described inSection 4.4 in<xreftarget="RFC8029"/>target="RFC8029" sectionFormat="of" section="4.4"/> and respond according to<xref target="RFC8029"/>the processingrules.</t>rules in <xref target="RFC8029" format="default"/>.</t> </section> <sectiontitle="EVPNnumbered="true" toc="default"> <name>EVPN IP Prefix (RT-5)Data-plane connectivity check">Data Plane Connectivity Check</name> <t>Assume PE1 inFigure 5,<xref target="fig5"/> announced an IP PrefixRouteroute (RT-5) with an IP prefix reachable behind CE1 and MPLS label 20001. When an operator on PE3 performs a connectivity check for the IP prefix on PE1, the operator initiates an LSP Ping request with thetargetTarget FECstackStack TLV containing the EVPN IP PrefixSub-TLVsub-TLV in the Echo Request packet. The Echo Request packet is sent with the {Transport label(s) to reach PE1, EVPN IP PrefixLabellabel 20001 } MPLS label stack.</t> <t>When PE1 receives thepacketpacket, it will process the packet and perform checks for the EVPN IP PrefixSub-TLVsub-TLV present in the Target FEC Stack TLV as described inSection 4.4 in<xreftarget="RFC8029"/>target="RFC8029" sectionFormat="of" section="4.4"/> and respond according to<xref target="RFC8029"/>the processingrules.</t>rules in <xref target="RFC8029" format="default"/>.</t> </section> </section> <sectiontitle="Security Considerations">numbered="true" toc="default"> <name>Security Considerations</name> <t>The proposal introduced in thisThis document does not introduce any new security considerations beyond those thatalreadyapplytoin <xreftarget="RFC7432"/>,target="RFC7432" format="default"/>, <xreftarget="RFC7623"/>target="RFC7623" format="default"/>, and <xreftarget="RFC6425"/>.target="RFC6425" format="default"/>. Furthermore, the security considerations discussed in <xreftarget="RFC8029"/>target="RFC8029" format="default"/> apply to this document and need to be considered. As described in <xreftarget="RFC8029"/>,target="RFC8029" format="default"/>, these security considerations are:<t><list style="symbols"> <t>Denial-of-Service</t> <ul spacing="normal"> <li>A Denial-of-Service (DoS)attack,attack by sending MPLSecho requests/repliesEcho Requests/Replies toLSRsLabel Switching Routers (LSRs) and thereby increasing theirworkload.</t> <t>Obfuscatingworkload.</li> <li>Obfuscating the state of the MPLSdata-planedata plane liveness by spoofing, hijacking, replaying, or otherwise tampering with MPLSechoEcho Requests andreplies.</t> <t>ObtainingReplies.</li> <li>Obtaining information about the networkbythrough an unauthorized source using an LSPping.</t> </list></t>Ping.</li> </ul> <t> There are mitigations described in <xreftarget="RFC8029"/>.target="RFC8029" format="default"/>. The same mitigations can be applied to the LSP Ping procedures described in thisdraft and thusdocument; thus, this document doesn't require additional security considerations beyond theoneones described in <xreftarget="RFC8029"/>.</t>target="RFC8029" format="default"/>.</t> <t>The proposalThis document does not introduce any new privacy concerns because these TLVs contain the same information that are present in data packets and EVPN routes. </t></t></section> <sectiontitle="IANA Considerations">anchor="iana" numbered="true" toc="default"> <name>IANA Considerations</name> <sectiontitle="Sub-TLV Type">numbered="true" toc="default"> <name>Sub-TLV Type</name> <t> This document defines four newSub-TLV typesub-TLV types to be included in the Target FEC Stack TLV (TLVTypetypes 1,1616, and 21) <xreftarget="RFC9041"/>target="RFC9041" format="default"/> in Echo Request and Echo Reply messages in EVPN and PBB-EVPNnetwork.</t>networks.</t> <t>IANAis requested to assign lowest 4 free values forhas assigned thefour Sub-TLVs listed belowfollowing values from theStandards"Standards Action" (0-16383)range,range in the "Sub-TLVs for TLV Types 1, 16, and 21"sub-registry, insubregistry within the "TLVs" registryinof the "Multiprotocol Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters" namespace:space. </t><t><list style="symbols"> <t>EVPN MAC/IP Sub-TLV </t> <t>EVPN<table anchor="iana1"> <name></name> <thead> <tr> <th>Sub-Type</th> <th>Sub-TLV Name</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>42</td> <td>EVPN MAC/IP</td> <td>RFC 9489</td> </tr> <tr> <td>43</td> <td>EVPN InclusiveMulticast Sub-TLV </t> <t>EVPN Auto-Discovery Sub-TLV</t> <t>EVPN IP Prefix Sub-TLV </t> </list></t>Multicast</td> <td>RFC 9489</td> </tr> <tr> <td>44</td> <td>EVPN Ethernet Auto-Discovery</td> <td>RFC 9489</td> </tr> <tr> <td>45</td> <td>EVPN IP Prefix</td> <td>RFC 9489</td> </tr> </tbody> </table> </section> <sectiontitle="Proposed newnumbered="true" toc="default"> <name>New ReturnCodes">Codes</name> <t><xreftarget="RFC8029"/>target="RFC8029" format="default"/> defines values for the Return Code field of EchoReply.Reply messages. This documentproposesdefines two new ReturnCodes, which SHOULDCodes that <bcp14>SHOULD</bcp14> be included in the Echo Reply message by a PE in response to an Echo Request message in EVPN and PBB-EVPNnetwork.networks. </t> <t> IANAis requested to assign 2 lowest free values forhas assigned the2 Return Codes listed below fromfollowing values in theReturn"Return Codes" registryinof the "Multiprotocol Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters" namespace:</t> <t><list style="symbols"> <t>Replyingspace.</t> <table anchor="iana2"> <name></name> <thead> <tr> <th>Value</th> <th>Meaning</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>37</td> <td>Replying router is egress for the FEC at the stack depth. In addition, the BUM packets are dropped on the ES corresponding to the ESI received in the EVPN EthernetAD Sub-TLVAuto-Discovery sub-TLV because of the Split Horizon Groupfiltering.</t> <t>Replyingfiltering.</td> <td>RFC 9489</td> </tr> <tr> <td>38</td> <td>Replying router is egress for the FEC at the stack depth. In addition, the BUM packets are forwarded because there is no ES corresponding to the ESI received in the EVPN EthernetAD Sub-TLV.</t> </list></t>Auto-Discovery sub-TLV.</td> <td>RFC 9489</td> </tr> </tbody> </table> </section> </section> </middle> <back> <references> <name>Normative References</name> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4760.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7623.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8029.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6425.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5586.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7432.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9136.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8214.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9041.xml"/> </references> <sectiontitle="Acknowledgments">numbered="false" toc="default"> <name>Acknowledgments</name> <t>The authors would like to thankLoa Andersson, Alexander Vainshtein, Ron Sdayoor, Jim Guichard, Lars Eggert, John Scudder, Eric Vyncke, Warren Kumari, Patrice Brissette and Weiguo Hao<contact fullname="Loa Andersson"/>, <contact fullname="Alexander Vainshtein"/>, <contact fullname="Ron Sdayoor"/>, <contact fullname="Jim Guichard"/>, <contact fullname="Lars Eggert"/>, <contact fullname="John Scudder"/>, <contact fullname="Éric Vyncke"/>, <contact fullname="Warren Kumari"/>, <contact fullname="Patrice Brissette"/>, and <contact fullname="Weiguo Hao"/> for their valuable comments.</t> </section></middle> <back> <references title="Normative References"> <?rfc include="reference.RFC.2119"?> <?rfc include="reference.RFC.4760"?> <?rfc include="reference.RFC.8174"?> <?rfc include="reference.RFC.7623"?> <?rfc include="reference.RFC.8029"?> <?rfc include="reference.RFC.6425"?> <?rfc include="reference.RFC.5586"?> <?rfc include="reference.RFC.7432"?> <?rfc include="reference.RFC.9136"?> <?rfc include="reference.RFC.8214"?> <?rfc include="reference.RFC.9041"?> </references></back> </rfc>