<?xml version="1.0" encoding="utf-8"?> encoding="UTF-8"?>

<!-- xml2rfc v2v3 conversion 3.6.0 -->

<!DOCTYPE rfc [
 <!ENTITY nbsp    "&#160;">
 <!ENTITY zwsp   "&#8203;">
 <!ENTITY nbhy   "&#8209;">
 <!ENTITY wj     "&#8288;">
]>

<rfc xmlns:xi="http://www.w3.org/2001/XInclude"
category="info"
docName="draft-ietf-ippm-pam-09"
number="9544"
ipr="trust200902"
obsoletes=""
updates=""
submissionType="IETF"
consensus="true"
xml:lang="en"
tocInclude="true"
tocDepth="3"
symRefs="true"
sortRefs="true"
version="3">
  <!-- xml2rfc v2v3 conversion 3.6.0 -->
  <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?>

<front>
    <title abbrev="Framework of PAM">Precision abbrev="PAMs for Services Governed by SLOs">Precision Availability Metrics (PAMs) for Services Governed by Service Level Objectives (SLOs)</title>
    <seriesInfo name="Internet-Draft" value="draft-ietf-ippm-pam-09"/> name="RFC" value="9544"/>
    <author fullname="Greg Mirsky" initials="G." surname="Mirsky">
      <organization>Ericsson</organization>
      <address>
        <postal>
          <street/>
          <city/>
          <code/>
          <country/>
        </postal>
        <email>gregimirsky@gmail.com</email>
      </address>
    </author>
        <author fullname="Joel Halpern" initials="J." surname="Halpern">
      <organization>Ericsson</organization>
      <address>
        <postal>
          <street/>
          <city/>
          <code/>
          <country/>
        </postal>
        <email>joel.halpern@ericsson.com</email>
      </address>
    </author>
    <author fullname="Xiao Min" initials="X." surname="Min">
      <organization>ZTE Corp.</organization>
      <address>
        <postal>
          <street/>
          <city/>
          <code/>
          <country/>
        </postal>
        <email>xiao.min2@zte.com.cn</email>
      </address>
    </author>
     <author fullname="Alexander Clemm" initials="A." surname="Clemm">
      <organization>Futurewei</organization>
      <organization></organization>
      <address>
        <postal>
          <street>2330 Central Expressway</street>
          <city>Santa Clara</city>
          <code>CA 95050</code>
          <country>USA</country>
          <street/>
          <city/>
          <code/>
          <country/>
        </postal>
        <email>ludwig@clemm.org</email>
      </address>
    </author>
        <author fullname="John Strassner" initials="J." surname="Strassner">
      <organization>Futurewei</organization>
      <address>
        <postal>
          <street>2330 Central Expressway</street>
          <city>Santa Clara</city>
          <code>CA 95050</code>
          <country>USA</country>
          <region>CA</region> <code>95050</code>
          <country>United States of America</country>
        </postal>
        <email>strazpdj@gmail.com</email>
      </address>
    </author>
    <author fullname="Jerome Francois" initials="J." surname="Francois">
      <organization>Inria and University of Luxembourg</organization>
      <address>
        <postal>
          <street>615 Rue du Jardin Botanique</street>
          <city>Villers-les-Nancy</city>
          <code>54600</code>
          <country>France</country>
        </postal>
        <email>jerome.francois@inria.fr</email>
      </address>
      </author>

      <date year="2023"/>
    <area>Transport</area>
    <workgroup>Network Working Group</workgroup>
    <keyword>Internet-Draft</keyword> year="2024" month="February"/>

    <area>TSV</area>
    <workgroup>ippm</workgroup>

    <keyword>IPPM</keyword>
    <keyword>Performance Measurement </keyword> Measurement</keyword>

  <abstract>

    <t>
   This document defines a set of metrics for networking services with
   performance requirements expressed as Service Level Objectives (SLO). (SLOs).
   These metrics, referred to as Precision "Precision Availability Metrics (PAM), (PAMs)",
   are useful for defining and monitoring SLOs.
  For example, PAM PAMs can be used by providers and/or customers of an RFC XXXX 9543 Network Slice Service
  to assess whether the service is provided in compliance with its defined SLOs.
</t>
<t>Note to the RFC Editor: Please update "RFC XXXX Network Slice"
 with the RFC number assigned to draft-ietf-teas-ietf-network-slices.</t>
    </abstract>

  </front>
  <middle>
    <section anchor="intro" numbered="true" toc="default">
      <name>Introduction</name>
      <t>
  Service providers and users often need to assess the quality with which network services are being delivered.
  In particular, in cases where service level service-level guarantees are documented (including their companion metrology) as part of a
  contract established between the customer and the service provider, and Service Level Objectives (SLOs) are defined,
  it is essential to provide means to verify that what has been delivered complies with what has been possibly negotiated
  and (contractually) defined between the customer and the service provider.
  <!-- Examples of Service Level Indicators (SLIs) include packet latency and packet loss ratio.  -->
  Examples of SLOs <!-- associated with such SLIs -->would would be target values for the maximum packet delay
  (one-way and/or round-trip) or maximum packet loss ratio that would be deemed acceptable.
  </t>
<t>
More generally, SLOs can be used to characterize the ability of a particular set of nodes to communicate
according to certain measurable expectations. Those expectations can include but are not limited to aspects
such as latency, delay variation, loss, capacity/throughput, ordering, and fragmentation.
Whatever SLO parameters are chosen and whichever way service level service-level parameters are being measured,
precision availability metrics
Precision Availability Metrics indicate whether or not a given service has been available according to expectations at all times.
</t>
  <t>
 Several metrics (often documented in the IANA Registry of Performance Metrics "Performance Metrics" registry <xref target="IANA-PM-Registry"/>
 according to <xref target="RFC8911"/> and <xref target="RFC8912"/>), target="RFC8912"/>) can be used to characterize the service quality, expressing
 the perceived quality of delivered networking services versus their SLOs.
  Of concern is not so much the absolute service level (for example, actual latency experienced)
  but whether the service is provided in compliance with the negotiated and eventually contracted service levels.
  For instance, this may include whether the experienced packet delay falls within
  an acceptable range that has been contracted for the service.
  The specific quality of service depends on the SLO or a set thereof for a given service that is in effect.
  <!-- Different groups of applications set forth requirements for varying sets of service levels with different target values.
  Such applications range from Augmented Reality/Virtual Reality to mission-critical controlling industrial processes. -->
  A non-compliance
  Non-compliance to an SLO might result in the degradation of the quality of experience for gamers
  or even jeopardize the safety of a large geographical area.
  <!-- However, as those applications represent clear business opportunities, they demand dependable technical solutions. -->
  </t>

  <t>
  The same service level may be deemed acceptable for one application, while
  unacceptable for another, depending on the needs of the application. Hence Hence,
  it is not sufficient to measure service levels per se over time, but to assess time; the quality
  of the service being contextually provided (e.g., with the applicable SLO in mind).
  mind) must be also assessed.  However, at this point, there are no standard
  metrics that can be used to account for the quality with which services are
  delivered relative to their SLOs, and SLOs or to determine whether their SLOs are
  being met at all times.  Such metrics and the instrumentation to support
  them are essential for various purposes, including monitoring (to ensure
  that networking services are performing according to their objectives) as
  well as accounting (to maintain a record of service levels delivered, which
  is important for the monetization of such services as well as for the
  triaging of problems).
      </t>

<t>
The current state-of-the-art of metrics includes, include, for example,
 interface metrics, useful metrics that can be used to obtain statistical data on traffic volume and
 behavior that can be observed at an interface <xref target="RFC2863"/>
 and
 <xref target="RFC8343"/>. However, they are agnostic of actual service levels and not specific to
  distinct flows.  Flow records <xref target="RFC7011"/> and <xref target="RFC7012"/> maintain statistics
 about flows, including flow volume and flow duration, but again, they
 contain very little information about service levels, let
  alone whether the service levels delivered meet their respective targets, i.e., their associated SLOs.
      </t>
      <t>
  This specification introduces a new set of metrics, Precision Availability Metrics (PAM), (PAMs), aimed at capturing
   service levels for a flow, specifically the degree to
   which the flow complies with the SLOs that are in effect.
   PAM
   PAMs can be used to assess whether a service is provided in compliance with its defined SLOs.
   This information can be used in multiple ways, for example,
   to optimize service delivery, take timely counteractions in the event of service degradation,
   or account for the quality of services being delivered.
   </t>
   <t>
   Availability is discussed in Section 3.4 of <xref target="RFC7297"/>. target="RFC7297" sectionFormat="of" section="3.4"/>.
   In this document, the term "availability" reflects that
   a service that is characterized by its SLOs is considered unavailable whenever those SLOs are violated,
   even if basic connectivity is still working. "Precision" refers to services
   whose service levels are governed by SLOs and must be delivered precisely
   according to the associated quality and performance requirements. It should be noted that precision
   refers to what is being assessed, not the mechanism used to measure it. In other words,
   it does not refer to the precision of the mechanism with which actual service levels are measured.
   Furthermore, the precision, with respect to the delivery of an SLO, particularly applies when a metric value
approaches the specified threshold levels in the SLO.
</t>
<t>
The specification and implementation of methods
   that provide for accurate measurements are separate topics independent of the definition of
   the metrics in which the results of such measurements would be expressed.
     Likewise, Service Level Expectations (SLEs), as defined in Section 5.1 of <xref target="I-D.ietf-teas-ietf-network-slices"/>, target="RFC9543" sectionFormat="of" section="5.1"/>,
      are outside the scope of this document.
      <!--, because it is in the nature of SLEs that they define parts of the SLA that are not easily measured.-->
       </t>
 <!--
      <t>
      [Ed.note: It should be noted that at this point, the set of metrics proposed
   here is intended as a "starter set" that is intended to spark further
   discussion.  Other metrics are certainly conceivable; we expect that
   the list of metrics will evolve as part of the Working Group discussions.]
       </t>
-->
    </section>
    <section numbered="true" toc="default">
      <name>Conventions and Terminology</name>
      <name>Conventions</name>
      <section numbered="true" toc="default">
        <name>Terminology</name>
        <t>
        In this document, SLA and SLO are used as defined in <xref target="RFC3198"/>.
        The reader may refer to Section 5.1 of <xref target="I-D.ietf-teas-ietf-network-slices"/> target="RFC9543" sectionFormat="of" section="5.1"/>
        for an applicability example of these concepts in the context of RFC XXXX 9543 Network Slice Services.
        </t>
        <t>Note to the RFC Editor: Please update "RFC XXXX Network Slice"
 	      with the RFC number assigned to <xref target="I-D.ietf-teas-ietf-network-slices"/>.</t>
        </section>

      <section numbered="true" toc="default">
        <name>Acronyms</name>

        <t>PAM               Precision
<dl indent="7" newline="false" spacing="normal">
	<dt>IPFIX</dt><dd>IP Flow Information Export</dd>
        <dt>PAM </dt><dd>Precision Availability Metric</t>
        <t>OAM               Operations, Administration, and Maintenance</t>
        <t>SLA               Service Metric</dd>
        <dt>SLA </dt><dd>Service Level Agreement</t>
        <t>SLE               Service Agreement</dd>
        <dt>SLE </dt><dd>Service Level Expectations</t>
        <!-- <t>SLI                 Service Expectation</dd>
        <dt>SLO </dt><dd>Service Level Indicator</t>  -->
        <t>SLO               Service Level Objective</t>
        <t>VI Objective</dd>
        <dt>SVI </dt><dd>Severely Violated Interval</t>
        <t>VIR Interval</dd>
        <dt>SVIR </dt><dd>Severely Violated Interval Ratio</t>
        <t>VPC Ratio</dd>
        <dt>SVPC </dt><dd>Severely Violated Packets Count </t>
        <t>SVI               Severely Violated Interval</t>
        <t>SVIR              Severely Violated </dd>
        <dt>VFI </dt><dd>Violation-Free Interval</dd>
        <dt>VI  </dt><dd>Violated Interval</dd>
        <dt>VIR </dt><dd>Violated Interval Ratio</t>
        <t>SVPC              Severely Violated Ratio</dd>
        <dt>VPC </dt><dd>Violated Packets Count </t>
        <t>VFI               Violation-Free Interval</t>

      </section>
      <!--
      <section numbered="true" toc="default">
        <name>Requirements Language</name>
        <t>
   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
   NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
   "MAY", and "OPTIONAL" in this document are to be interpreted as
   described in BCP 14 <xref target="RFC2119" format="default"/> <xref target="RFC8174" format="default"/>
   when, and only when, they appear in all capitals, as shown here.
        </t> </dd>
</dl>
      </section>
      -->
    </section>
    <section anchor="ep-metrics-section" numbered="true" toc="default">
      <name>Precision Availability Metrics</name>
      <section anchor="preliminaries" numbered="true" toc="default">
      <name>Introducing Violated Intervals</name>

      <t>
When analyzing the availability metrics of a service between two measurement points,
a time interval as the unit of PAM PAMs needs to be selected. In <xref target="ITU.G.826" format="default"/>,
a time interval of one second is used. That is reasonable, but some services may require different granularity (e.g., decamillisecond).
For that reason, the time interval in PAM PAMs is viewed as a variable parameter parameter, though constant for a particular measurement session.
Furthermore, for the purpose of PAM, PAMs, each time interval is classified either as either Violated Interval (VI),
Severely Violated Interval (SVI), or Violation-Free Interval (VFI). These are defined as follows:
</t>
<ul spacing="normal">
        <li>VI is a time interval during which at least one of the performance
      parameters degraded below its configurable optimal level threshold.</li>
        <li>SVI is a time interval during which at least one of the performance
      parameters degraded below its configurable critical threshold.</li>
        <li>Consequently, VFI is a time interval during which all performance parameters are
        at or better than their respective pre-defined optimal levels.
        <!-- In such a case, the service is in compliance with its specification. --></li> levels.</li>
      </ul>

      <t>
      The monitoring of performance parameters to determine the quality of an interval
      is performed between the elements of the network that are referred to for identified in the SLO corresponding to the performance parameter.
      Mechanisms of for setting levels of a threshold of an SLO are outside the scope of this document.
      </t>
      <t>
From these definitions, the definitions above, a set of basic metrics can be defined that count the numbers number of time intervals that fall into each category:
</t>
<ul spacing="normal">
<li>VI count. count </li>
<li>SVI count. count </li>
<li>VFI count. count </li>
</ul>
<t>
These count metrics are essential in calculating respective ratios (see <xref target="derived-ep-metrics-section"/>)
that can be used to assess the instability of a service.
</t>

<t> Beyond accounting for violated intervals, it is sometimes beneficial to
maintain counts of packets for which a performance threshold is violated.  For
example, this allows for distinguishing between cases in which violated
intervals are caused by isolated violation occurrences (such as, as a sporadic
issue that may be caused by a temporary spike in a queue depth along the
packet's path) or by broad violations across multiple packets (such as a
problem with slow route convergence across the network or more foundational
issues such as insufficient network resources).  Maintaining such counts and
comparing them with the overall amount of traffic also facilitates facilitate assessing
compliance with statistical SLOs (see <xref
target="statistical-slo-section"/>).  For these reasons, the following
additional metrics are defined:
</t>
<ul spacing="normal">
<li>VPC: Violated packets count
<li>VPC (Violated Packets Count) </li>
<li>SVPC: Severely violated packets count
<li>SVPC (Severely Violated Packets Count) </li>
</ul>
</section>

    <section anchor="derived-ep-metrics-section" numbered="true" toc="default">
      <name>Derived Precision Availability Metrics</name>
      <t>
      A set of metrics can be created based on PAM PAMs as introduced in <xref target="ep-metrics-section"/>. this document.
      In this document, these metrics are referred to as "derived PAM". PAMs".
      Some of these metrics are modeled after Mean Time Between Failure (MTBF) metrics - metrics; a
   "failure" in this context referring refers to a failure to deliver a service according to its SLO.
      </t>
      <ul spacing="normal">
      <li>
      Time since the last violated interval (e.g., since last violated ms, ms or
      since last violated second).
      (This
      This parameter is suitable for monitoring the current compliance status of the service, e.g., for trending analysis.) analysis.
      </li>
      <li>
      Number of packets since the last violated packet.  (This  This parameter is
     suitable for the monitoring of the current compliance status of the service.) service.
      </li>
      <li>
      Mean time between VIs (e.g., between violated milliseconds, milliseconds or between violated seconds) seconds). This parameter is the
      arithmetic mean of time between consecutive VIs.
      </li>
      <li>
      Mean packets between VIs VIs. This parameter is the arithmetic
      mean of the number of SLO-compliant packets between consecutive VIs.
     (Another
      It is another variation of "MTBF" MTBF in a service setting.) setting.
      </li>
      </ul>
      <t>An analogous set of metrics can be produced for SVI:</t>
      <ul spacing="normal">
       <li>
      Time since the last SVI (e.g., since last violated ms, ms or since last violated second).  (This  This parameter is suitable
      for the monitoring of the current compliance status of the service.) service.
      </li>
      <li>
      Number of packets since the last severely violated packet.  (This  This parameter is
      suitable for the monitoring of the current compliance status of the service.) service.
      </li>
      <li>
      Mean time between SVIs (e.g., between severely violated
      milliseconds,
      milliseconds or between severely violated seconds) seconds). This parameter is the
      arithmetic mean of time between consecutive SVIs.
      </li>
      <li>
      Mean packets between SVIs SVIs. This parameter is the arithmetic
      mean of the number of SLO-compliant packets between consecutive SVIs.
     (Another
      It is another variation of "MTBF" in a service setting.) setting.
      </li>
     </ul>
        <t>
To indicate a historic degree of precision availability, additional derived PAMs can be defined as follows:
</t>
<ul spacing="normal">
          <li>
 Violated Interval Ratio (VIR) is the ratio of the summed numbers of VIs and SVIs to the total number of time unit intervals in a
      time of the availability periods during a fixed measurement session.
  </li>
          <li>
Severely Violated Interval Ratio (SVIR) is the ratio of SVIs to the total number of time unit intervals in a time of the availability periods
during a fixed measurement session.
</li>
        </ul>
      </section>

<section anchor="policy-section" numbered="true" toc="default">
      <name>PAM Configuration Settings and Service Availability</name>
              <t>
It might be useful for a service provider to determine the current condition of the service for which
PAMs are maintained.  To facilitate this, it is conceivable to complement PAM PAMs with a state model.
Such a state model can be used to indicate whether a service is currently considered as available or unavailable
depending on the network's recent ability to provide service without incurring intervals during which violations occur.
It is conceivable to define such a state model in which transitions occur per some predefined PAM settings.
</t>

<t>
While the definition of a service state model is outside the scope of this document, the following this section provides
some considerations for how such a state model and accompanying configuration settings could be defined.
</t>
<t>For example, a state model could be defined by a Finite State Machine featuring two states, states:
"available"  and "unavailable".  The initial state could be "available".  A service could subsequently be deemed as "unavailable"
based on the number of successive interval violations that have been experienced up to the particular observation time moment.
To return to a state of "available", a number of intervals without violations would need to be observed.
</t>
<t>
The number of successive intervals with violations, as well as the
number of successive intervals that are free of violations, required
for a state to transition to another state is defined by a configuration setting.
Specifically, the following configuration parameters are defined:
</t>
<ul
<dl newline="false" spacing="normal">
  <li>Unavailability threshold: The
  <dt>Unavailability threshold:</dt><dd>The number of successive intervals during which a violation occurs to transition to an unavailable state.  </li>
  <li>Availability threshold: The  </dd>
  <dt>Availability threshold:</dt><dd>The number of successive intervals during which
  no violations must occur to allow transition to an available state from a
  previously unavailable state. </li>
</ul> </dd>
</dl>
<t>
Additional configuration parameters could be defined to account for the severity of violations.  Likewise, it is conceivable to define
configuration settings that also take VIR and SVIR into account.
</t>
</section>
</section>

    <section anchor="statistical-slo-section" numbered="true" toc="default">
      <name>Statistical SLO</name>
 <t>
     It should be noted that certain SLAs may be
   statistical, requiring the service levels of packets in a
   flow to adhere to specific distributions.  For example, an SLA might
   state that any given SLO applies to at least a certain percentage of
   packets, allowing for a certain level of, for example,
   packet loss and/or exceeding packet delay threshold to take place.
   Each such event, in that case, does not necessarily constitute an
   SLO violation.  However, it is still useful to maintain those
   statistics, as the number of out-of-SLO packets still matters when
   looked at in proportion to the total number of packets.
   </t>
   <t>
   Along that vein, an SLA might establish a multi-tiered SLO of, say, end-to-end
   latency (from the lowest to highest tier) as follows:
   </t>
   <ul spacing="normal">
   <li>not to exceed 30 ms for any packet;</li>
   <li>to not
   <li>not to exceed 25 ms for 99.999% of packets;</li>
   <li>to not packets; and</li>
   <li>not to exceed 20 ms for 99% of packets.</li>
   </ul>
   <t>
  In that case, any individual packet with a latency greater than 20 ms latency
   and lower than 30 ms cannot be considered an SLO violation in itself, but compliance with
   the SLO may need to be assessed after the fact.
   </t>
   <t>
   To support statistical SLOs more directly requires
   additional metrics, for example, metrics that represent histograms for
   service level
   service-level parameters with buckets corresponding to individual
   service level objectives.
   SLOs. Although the definition of histogram metrics is outside the scope of this document
   and could be considered for future work (see <xref target="for-discussion"/>, target="for-discussion"/>), for the example just given, a histogram
   for a particular flow could be maintained with four buckets: one
   containing the count of packets within 20 ms, a second with a count of
   packets between 20 and 25 ms (or simply all within 25 ms), a third with
   a count of packets between 25 and 30 ms (or merely all packets within
   30 ms, ms), and a fourth with a count of anything beyond (or simply a total
   count).  Of course, the number of buckets and the boundaries between
   those buckets should correspond to the needs of the SLA associated with the application,
   i.e., to the specific guarantees and SLOs that were
   provided.
   </t>
   </section>

    <section anchor="other" numbered="true" toc="default">
     <name>Other Expected PAM Benefits
     </name>
     <t>
     PAM provides
     PAMs provide several benefits with other, more conventional performance metrics.
     Without PAM, PAMs, it would be possible to conduct ongoing measurements of service levels
     and levels,
     maintain a time-series time series of service level service-level records, and then assess compliance with specific
     SLOs after the fact.  However, doing so would require the collection of vast amounts of data
     that would need to be generated, exported, transmitted, collected, and stored.
     In addition, extensive postprocessing post-processing would be required to compare that data against SLOs
     and analyze its compliance.  Being able to perform these tasks at scale
     and in real-time real time would present significant additional challenges.
     </t>
     <t>
     Adding PAM PAMs allows for a more compact expression of service level service-level compliance.
     In that sense, PAM does PAMs do not simply represent raw data but expresses actionable information.
     In conjunction with proper instrumentation, PAM PAMs can thus help avoid expensive postprocessing. post-processing.
     </t>
   </section>

        <section anchor="for-discussion" numbered="true" toc="default">
      <name>Extensions and Future Work</name>
      <!--
      <li>Terminology - "Errored" vs. "Violated".  The key metrics defined in
      this draft refer to intervals during which violations of
      objectives for service level parameters occur as "violated". The term "errored" was chosen in continuity with the
      concept of "errored seconds", often used in transmission systems.
      However, "violated" may be a more accurate term, as the metrics
      defined here are not "errors" in an absolute sense, but relative
      to a set of defined objectives. </li>
      -->
      <t>
      The following is a list of items that are outside the scope of this specification, specification but which will be useful extensions and opportunities for future work:
</t>

<ul spacing="normal">
     <li>A YANG data model will allow PAM PAMs to be incorporated into monitoring applications based on the YANG/NETCONF/RESTCONF framework. YANG, NETCONF, and RESTCONF frameworks.
     In addition, a YANG data model will enable the configuration and retrieval of PAM-related settings.  </li>
     <li>A set of IPFIX Information Elements will allow PAM PAMs to be associated with flow records and exported as part of flow data,
     for example, for processing by accounting applications that assess compliance of delivered services with quality guarantees. </li>
     <li>Additional second-order metrics, such as "longest disruption of service time" (measuring consecutive time units with SVIs),
     can be defined and would be deemed useful by some users.  At the same time, such metrics can be computed in a straightforward manner
     and will be application specific in many cases be application-specific. cases.  For this reason, further such metrics are omitted here in order to not overburden this specification. </li>
     <li>The definition of the metrics that
     <li>Metrics can be defined to represent histograms for service level service-level parameters with buckets corresponding to individual service level
   objectives,</li> SLOs.</li>
     </ul>
    </section>

    <section anchor="iana-consider" numbered="true" toc="default">
      <name>IANA Considerations</name>
      <t>This document has no IANA actions.</t>
    </section>
    <section anchor="security" numbered="true" toc="default">
      <name>Security Considerations</name>
      <t>
   Instrumentation for metrics that are used to assess compliance with
   SLOs constitute constitutes an attractive target for an attacker.  By interfering
   with the maintenance of such metrics, services could be falsely
   identified as complying (when they are not) or vice-versa vice versa
   (i.e., flagged as being non-compliant when indeed they are).  While this
   document does not specify how networks should be instrumented to
   maintain the identified metrics, such instrumentation needs to be
   adequately secured to ensure accurate measurements and prohibit
   tampering with metrics being kept.
      </t>
<t>
         Where metrics are being defined relative to an SLO, the configuration
   of those SLOs needs to be adequately secured.  Likewise, where
   SLOs can be adjusted, the correlation between any metric instance
   and a particular SLO must be unambiguous. The same service levels that constitute
   SLO violations for one flow that and should be maintained as part of
   the "violated time units" and related metrics, metrics
   may be compliant for another flow.  In cases when it is
   impossible to tie together SLOs and PAM, PAMs, it will
   be is
   preferable to merely maintain statistics about service levels
   delivered (for example, overall histograms of end-to-end
   latency) without assessing which constitutes constitute violations.
      </t>

      <t>
      By the same token, where the definition of what constitutes a
   "severe" or a "significant" violation depends on configuration settings or
   context. The configuration of such settings or context needs to be
   specially secured. Also, the configuration must be bound to
   the metrics being maintained.  Thus, it will be clear which configuration setting
   was in effect when those metrics were being assessed.  An attacker
   that can tamper with such configuration settings will render the
   corresponding metrics useless (in the best case) or misleading (in
   the worst case).
      </t>
    </section>
    <section numbered="true" toc="default">
      <name>Acknowledgments</name>
      <t>
         The authors greatly appreciate review and comments by Bjørn Ivar Teigen and Christian Jacquenet.
      </t>
    </section>
  </middle>
  <back>

      <references>
      <name>References</name>
      <!--
      <references>

        <name>Normative References</name>

        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>

  <?rfc include="reference.RFC.8126"?>
  <?rfc include="reference.RFC.4656"?>
  <?rfc include="reference.RFC.6038"?>

    </references>
      -->
      <references>
        <name>Informative References</name>
        <!--
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7799.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5880.xml"/>

        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8762.xml"/>
        -->
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2863.xml"/>
  <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8343.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2863.xml"/>
	<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7011.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8343.xml"/>
	<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7012.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7011.xml"/>
	<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7297.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7012.xml"/>
	<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3198.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7297.xml"/>
	<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8911.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3198.xml"/>
	<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8912.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8911.xml"/>
	<xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-ietf-teas-ietf-network-slices.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8912.xml"/>

<!-- <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-mmm-rtgwg-integrated-oam.xml"/> [I-D.ietf-teas-ietf-network-slices] in EDIT state as of 12/18/23; companion document RFC9543 -->
<reference anchor="RFC9543" target="https://www.rfc-editor.org/info/rfc9543">
<front>
<title>A Framework for Network Slices in Networks Built from IETF Technologies</title>
<author initials="A." surname="Farrel" fullname="Adrian Farrel" role="editor">
<organization>Old Dog Consulting</organization>
</author>
<author initials="J." surname="Drake" fullname="John Drake" role="editor">
<organization>Juniper Networks</organization>
</author>
<author initials="R." surname="Rokui" fullname="Reza Rokui">
<organization>Ciena</organization>
</author>
<author initials="S." surname="Homma" fullname="Shunsuke Homma">
<organization>NTT</organization>
</author>
<author initials="K." surname="Makhijani" fullname="Kiran Makhijani">
<organization>Futurewei</organization>
</author>
<author initials="L." surname="Contreras" fullname="Luis M. Contreras">
<organization>Telefonica</organization>
</author>
<author initials="J." surname="Tantsura" fullname="Jeff Tantsura">
<organization>Nvidia</organization>
</author>
<date month="February" year="2024"/>
</front>
<seriesInfo name="RFC" value="9543"/>
<seriesInfo name="DOI" value="10.17487/RFC9543"/>
</reference>

        <reference anchor="ITU.G.826">
          <front>
            <title>End-to-end error performance parameters and objectives for international, constant bit-rate digital paths and connections</title>
            <author>
              <organization>ITU-T</organization>
            </author>
            <date month="December" year="2002"/>
          </front>
          <seriesInfo name="ITU-T" value="G.826"/>
        </reference>

          <reference anchor="IANA-PM-Registry" target="https://www.iana.org/assignments/performance-metrics/performance-metrics.xhtml"> target="https://www.iana.org/assignments/performance-metrics">
          <front>
            <title>IANA Registry of Performance
            <title>Performance Metrics</title>
            <author>
              <organization>IANA</organization>
            </author>
              <date month="March" year="2020"/>
          </front>
        </reference>

    </references>
    </references>

        <section numbered="false" toc="default">
      <name>Acknowledgments</name>
      <t>
         The authors greatly appreciate review and comments by <contact fullname="Bjørn Ivar Teigen"/> and <contact fullname="Christian Jacquenet"/>.
      </t>
    </section>

         <section anchor="contr-sec" numbered="false" toc="default">
        <name>Contributors' Addresses</name>
        <name>Contributors</name>

    <contact fullname="Liuyan Han" initials="L." surname="Han">
      <organization>China Mobile</organization>
      <address>
        <postal>
          <street>32 XuanWuMenXi Street</street>
          <city>Beijing</city>
          <code>100053</code>
          <country>China</country>
        </postal>
        <email>hanliuyan@chinamobile.com</email>
      </address>
    </contact>

      <contact fullname="Mohamed Boucadair" initials="M." surname="Boucadair">
      <organization>Orange</organization>
      <address>
        <postal>
          <street>35000 Rennes</street>
    <city/>
          <code/>
          <country>France</country>
        </postal>
        <email>mohamed.boucadair@orange.com</email>
      </address>
    </contact>

        <contact fullname="Adrian Farrel" initials="A." surname="Farrel">
      <organization>Old Dog Consulting</organization>
      <address>
        <postal>
          <street/>
    <city/>
          <code/>
          <country>United Kingdom</country>
        </postal>
        <email>adrian@olddog.co.uk</email>
      </address>
    </contact>

        </section>

  </back>
</rfc>