<?xml version="1.0" encoding="utf-8"?> encoding="UTF-8"?>

<!-- pre-edited by ST 01/30/24 -->

<!DOCTYPE rfc [
<!ENTITY nbsp "&#160;">
<!ENTITY zwsp "&#8203;">
<!ENTITY nbhy "&#8209;">
<!ENTITY wj "&#8288;">
]>

<rfc xmlns:xi="http://www.w3.org/2001/XInclude"
category="std"
ipr="trust200902"
docName="draft-ietf-detnet-mpls-oam-15"
number="9546"
obsoletes=""
updates=""
submissionType="IETF"
xml:lang="en"
consensus="true"
tocInclude="true"
tocDepth="3"
symRefs="true"
sortRefs="true"
version="3">
  <!-- xml2rfc v2v3 conversion 3.6.0 -->
  <?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?>

  <front>
    <title abbrev="OAM for DetNet over MPLS">Operations, Administration Administration, and Maintenance (OAM) for Deterministic Networks Networking (DetNet) with the MPLS Data Plane</title>
    <seriesInfo name="Internet-Draft" value="draft-ietf-detnet-mpls-oam-15"/> name="RFC" value="9546"/>

    <author initials="G." surname="Mirsky" fullname="Greg Mirsky">
      <organization>Ericsson</organization>
      <address>
        <email>gregimirsky@gmail.com</email>
      </address>
    </author>

    <author fullname="Mach(Guoyi) Chen" initials="M." surname="Chen">
      <organization>Huawei</organization>
      <address>
        <postal>
          <street/>
          <city/>
          <code/>
          <country/>
        </postal>
        <email>mach.chen@huawei.com</email>
      </address>
    </author>

        <author fullname="Balazs Varga" initials="B." surname="Varga">
        <organization>Ericsson</organization>
        <address>
         <postal>
          <street>Magyar Tudosok krt. 11.</street>
          <city>Budapest</city>
          <country>Hungary</country>
          <code>1117</code>
         </postal>
         <email>balazs.a.varga@ericsson.com</email>
        </address>
        </author>
<!--
    <author fullname="Janos Farkas" initials="J." surname="Farkas">
      <organization>Ericsson</organization>
      <address>
        <postal>
          <street>Magyar Tudosok krt. 11.</street>
          <city>Budapest</city>
          <country>Hungary</country>
          <code>1117</code>
        </postal>
        <email>janos.farkas@ericsson.com</email>
      </address>
    </author>
    -->
    <date month="February" year="2024"/>

    <area>Routing</area>
    <workgroup>DetNet  Working Group</workgroup>
    <keyword>Internet-Draft</keyword>

    <area>RTG</area>
    <workgroup>detnet</workgroup>

    <keyword>DetNet</keyword>
    <keyword>OAM</keyword>

    <abstract>
      <t>
	   This document defines format and usage principles of the
	   Deterministic Network Networking (DetNet) service Associated Channel over a DetNet network with the MPLS data plane.
	   The DetNet service Associated Channel can be used to carry test packets of active
	   Operations, Administration, and Maintenance (OAM) protocols
	   that are used to detect DetNet failures and measure performance metrics.
      </t>
    </abstract>
  </front>
  <middle>
    <section anchor="intro" numbered="true" toc="default">
      <name>Introduction</name>
      <t>
   <xref target="RFC8655" format="default"/> introduces and explains Deterministic Networks Networking (DetNet)
   architecture and how the Packet Replication, Elimination, and Ordering functions Functions (PREOF) can be used to
   ensure a low packet drop ratio in a DetNet domain.
      </t>
      <t>
       Operations, Administration, and Maintenance (OAM) protocols are used to detect and localize network defects, defects
       and to monitor network performance. Some OAM functions (e.g., failure detection) are usually performed proactively
       in the network, while others (e.g., defect localization) are typically performed on demand.
       These tasks can be achieved through a combination of active and hybrid
       OAM methods, as classified in <xref target="RFC7799" format="default"/>.
       This document presents a format for active OAM in DetNet networks with the MPLS data plane.
      </t>
      <t>
   Also, this document defines format and usage principles of the
	   DetNet service Associated Channel over a DetNet network with
	   the MPLS data plane <xref target="RFC8964" format="default"/>.
      </t>
    </section>
    <section numbered="true" toc="default">
      <name>Conventions used Used in this document</name> This Document</name>
      <section numbered="true" toc="default">
        <name>Terminology and Acronyms</name>
        <t>
The term "DetNet OAM" is used in this document is used interchangeably with longer version a "set of OAM protocols, methods methods, and tools for Deterministic Networks". Networking".
	</t>
        <t>DetNet    Deterministic Network</t>
        <t>d-ACH      DetNet
        <dl spacing="normal">
        <dt>BFD:</dt><dd>Bidirectional Forwarding Detection</dd>
        <dt>CFM:</dt><dd>Connectivity Fault Management</dd>
	<dt>d-ACH:</dt><dd>DetNet Associated Channel Header</t>
        <t>OAM      Operations, Administration, and Maintenance</t>
        <t>PREOF   Packet Replication, Elimination, Header</dd>
        <dt>DetNet:</dt><dd>Deterministic Networking</dd>
	<dt>DetNet Node:</dt><dd>A node that is an actor in the DetNet domain.
        Examples of DetNet nodes include DetNet domain edge nodes
        and Ordering Functions</t>
        <t>PW         Pseudowire</t>
        <t>E2E        End-to-end</t>
        <t>BFD        Bidirectional Forwarding Detection</t>
        <t>TSN        IEEE 802.1 Time-Sensitive Networking</t>
        <t>CFM        Connectivity Fault Management</t>
        <t>F-Label - a DetNet nodes that perform PREOF within the DetNet domain.</dd>
	<dt>E2E:</dt><dd>End to end</dd>
	<dt>F-Label:</dt><dd>A DetNet "forwarding" label. The F-Label identifies the LSP  Label Switched Path (LSP)
                 used to forward a DetNet flow across an MPLS PSN, Packet Switched Network (PSN), e.g.,
                 a hop-by-hop label used between label switching routers.</t>
        <t>S-Label - a routers.</dd>
        <dt>OAM:</dt><dd>Operations, Administration, and Maintenance</dd>
        <dt>PREOF:</dt><dd>Packet Replication, Elimination, and Ordering Functions</dd>
        <dt>PW:</dt><dd>Pseudowire</dd>
        <dt>S-Label:</dt><dd>A DetNet "service" label. An S-Label is used between DetNet
                 nodes that implement the DetNet service sub-layer
                 functions.  An S-Label is also used to identify a
                 DetNet flow at the DetNet service sub-layer.</t>
        <t>   Underlay sub-layer.</dd>
	<dt>TSN:</dt><dd>Time-Sensitive Networking</dd>
        <dt>Underlay Network or Underlay Layer - the Layer:</dt><dd>The network that provides
   connectivity between the DetNet nodes. One example of an underlay
   layer is an MPLS network that provides Label Switched Path (LSP) LSP connectivity between DetNet nodes.</t>
        <t>DetNet Node - a node that is an actor in the DetNet domain.
        Examples of DetNet nodes include DetNet domain Edge nodes,
        and DetNet nodes that perform PREOF within the DetNet domain.</t> nodes.</dd>
	</dl>
      </section>
      <section numbered="true" toc="default">
        <name>Keywords</name>
        <name>Key Words</name>
        <t>
    The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
   NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
   "MAY", "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>",
    "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>",
    "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>",
    "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
    "<bcp14>MAY</bcp14>", and "OPTIONAL" "<bcp14>OPTIONAL</bcp14>" in this document are to be
    interpreted as described in BCP 14 BCP&nbsp;14 <xref target="RFC2119" format="default"/> target="RFC2119"/> <xref target="RFC8174" format="default"/>
    target="RFC8174"/> when, and only when, they appear in all capitals, as
    shown here.
        </t>
      </section>
    </section>

<section anchor="oam-data-plane" numbered="true" toc="default">
      <name>Active OAM for DetNet Networks with the MPLS Data Plane</name>
      <t>
OAM protocols and mechanisms act within the data plane of the
particular networking layer, thus layer; thus, it is critical that the data
plane encapsulation supports OAM mechanisms that comply
with the OAM requirements listed in <xref target="I-D.ietf-detnet-oam-framework" format="default"/>.
      </t>
<!-- One such example that requires special consideration is requirement #5:
</t>
      <ul empty="true" spacing="normal">
        <li>
  DetNet OAM packets MUST be in-band, i.e., follow precisely the same
  path as DetNet data plane traffic both for unidirectional and bi-directional DetNet paths.
  </li>
      </ul> -->
      <t>
Operation of a DetNet data plane with an MPLS underlay network is specified in <xref target="RFC8964"/>.
Within the MPLS underlay network, DetNet flows are to be encapsulated analogous to pseudowires (PWs)
as specified in <xref target="RFC3985"/>, target="RFC3985"/> and <xref target="RFC4385"/>. For reference,
the Generic Pseudowire (PW) PW MPLS Control Word (as defined in <xref target="RFC4385"/> and used with DetNet)
is reproduced in <xref target="detnet-pw-cw"/>.
      </t>
      <figure anchor="detnet-pw-cw">
        <name>DetNet
        <name>Generic PW MPLS Control Word Format</name>
<artwork name="" type="" align="left" alt=""><![CDATA[
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |0 0 0 0|                Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
      </figure>
      <t>
PREOF in the DetNet domain is composed of a combination of nodes that perform replication and elimination functions.
The Elimination sub-function always uses the S-Label in conjunction with the packet sequencing information
(i.e., the Sequence Number encoded in the DetNet Control Word). The Replication sub-function uses the S-Label information only.
</t>

      <section anchor="active-oam-data-plane" numbered="true" toc="default">
        <name>DetNet Active OAM Encapsulation</name>
        <t>
DetNet OAM, like PW OAM, uses the PW Associated Channel Header defined in <xref target="RFC4385"/>.
At the same time, a DetNet PW can be viewed as a Multi-Segment PW, where DetNet service
sub-layer functions are at the segment endpoints. However, DetNet service sub-layer functions operate per packet level (not per segment).
These per-packet level characteristics of PREOF require additional fields for proper OAM packet processing.
Encapsulation of a DetNet MPLS encapsulation <xref target="RFC8964"/> of a DetNet active OAM packet is shown in <xref target="detnet-mpls-oam-format"/>.
        </t>
        <figure anchor="detnet-mpls-oam-format">
          <name>DetNet Active OAM Packet Encapsulation in the MPLS Data Plane</name>
<artwork name="" type="" align="left" alt=""><![CDATA[
      +---------------------------------+
      |                                 |
      |        DetNet OAM Packet        |
      |                                 |
      +---------------------------------+ <--\
      | DetNet Associated Channel Header|    |
      +---------------------------------+    +--> DetNet active OAM
      |           S-Label               |    |    MPLS encapsulation
      +---------------------------------+    |
      |         [ F-Label(s) ]          |    |
      +---------------------------------+ <--/
      |           Data-Link             |
      +---------------------------------+
      |           Physical              |
      +---------------------------------+
]]></artwork>
        </figure>
        <t>
    <xref target="detnet-mpls-oam-over-ip-format" format="default"/> displays encapsulation of a test packet of an active for a DetNet active OAM protocol in case of MPLS-over-UDP/IP MPLS over UDP/IP <xref target="RFC9025" format="default"/>.
        </t>
        <figure anchor="detnet-mpls-oam-over-ip-format">
          <name>DetNet Active OAM Packet Encapsulation in MPLS-over-UDP/IP</name> MPLS over UDP/IP</name>
<artwork name="" type="" align="left" alt=""><![CDATA[
      +---------------------------------+
      |                                 |
      |        DetNet OAM Packet        |
      |                                 |
      +---------------------------------+ <--\
      | DetNet Associated Channel Header|    |
      +---------------------------------+    +--> DetNet active OAM
      |             S-Label             |    |    MPLS encapsulation
      +---------------------------------+    |
      |          [ F-label(s) ]         |    |
      +---------------------------------+ <--+
      |           UDP Header            |    |
      +---------------------------------+    +--> DetNet data plane
      |           IP Header             |    |    IP encapsulation
      +---------------------------------+ <--/
      |           Data-Link             |
      +---------------------------------+
      |           Physical              |
      +---------------------------------+
]]></artwork>
        </figure>
        <t>
   <xref target="detnet-ach-oam" format="default"/> displays the format of the DetNet Associated Channel Header (d-ACH).
        </t>
        <figure anchor="detnet-ach-oam">
          <name>d-ACH Format</name>
<artwork name="" type="" align="left" alt=""><![CDATA[
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 0 0 1|Version|Sequence Number|         Channel Type          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Node ID               |Level|  Flags  |Session|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
]]></artwork>
        </figure>
        <t>
   The
        <dl newline="true" spacing="normal">
          <dt>The d-ACH encodes the following fields:
</t>
        <ul empty="true" spacing="normal">
          <li>
   Bits 0..3 MUST fields:</dt>
	  <dd><dl newline="false">
   <dt>Bits 0..3:</dt><dd>These <bcp14>MUST</bcp14> be 0b0001.  This allows the packet to be distinguished
from an IP packet <xref target="RFC4928"/> and from a DetNet data packet <xref target="RFC8964"/>.
   </li>
          <li>
Version - a
   </dd>
   <dt>Version:</dt><dd>A 4-bit field. This document specifies version 0.
</li>
          <li>
Sequence Number - is an
 </dd>
  <dt>Sequence Number:</dt><dd>An unsigned circular 8-bit field. Because
a test packet of DetNet active OAM test packet includes d-ACH, Section 4.2.1 of <xref target="RFC8964"/> target="RFC8964" sectionFormat="of" section="4.2.1"/>
does not apply to handling the Sequence Number field in DetNet OAM over the MPLS data plane.
The sequence number space is circular with no restriction on the
      initial value. The originator DetNet node MUST <bcp14>MUST</bcp14> set the value of
      the Sequence Number field before the transmission of a packet.
      the
      The initial value SHOULD <bcp14>SHOULD</bcp14> be random (unpredictable).
      The originator node SHOULD <bcp14>SHOULD</bcp14> increase the value of the Sequence Number
      field by 1 for each active OAM packet.
      The originator MAY <bcp14>MAY</bcp14> use other strategies, e.g., for negative testing of Packet Ordering Functions.
</li>
          <li>
Channel Type - is a
</dd>
    <dt>Channel Type:</dt><dd>A 16-bit field, field and the value of the DetNet Associated Channel Type.
It MUST <bcp14>MUST</bcp14> be one of the values listed in the IANA MPLS "MPLS Generalized Associated
Channel (G-ACh) Types (including Pseudowire Associated Channel Types) Types)" registry <xref target="IANA-G-ACh-Types"/>.
</li>
<li>
Node ID - is an
</dd>
<dt>Node ID:</dt><dd>An unsigned 20-bit field.
The value of the Node ID field identifies the DetNet node that originated the packet.
A DetNet node MUST <bcp14>MUST</bcp14> be provisioned with a Node ID that is unique in the DetNet domain.
Methods of for distributing Node ID are outside the scope of this specification.
</li>
<li>Level - is a
</dd>
<dt>Level:</dt><dd>A 3-bit field. Semantically, the Level field is anlogous analogous to the Maintenance Domain Level in <xref target="IEEE.802.1Q"/>.
The Level field is used to cope with the "all active path forwarding" (defined by the TSN Task Group of the IEEE 802.1 WG <xref target="IEEE802.1TSNTG"/>)
characteristics of the PREOF concept. A hierarchical relationship between OAM domains
can be created using the Level field value, as illustrated by Figure 18.7 in <xref target="IEEE.802.1Q"/>.</li>
<li>
Flags - is a target="IEEE.802.1Q"/>.</dd>
<dt>Flags:</dt><dd>A 5-bit field. The Flags field contains five 1-bit flags. <xref target="iana-mpls-oam-flags"/>
creates the IANA d-ACH Flags "DetNet Associated Channel Header (d-ACH) Flags" registry for new flags to be defined.
The flags defined in this specification are presented in <xref target="dach-flags-fig"/>.
</li>
</ul> target="dach-flags-fig"/>.</dd>
<dt>Session ID:</dt><dd><t>A 4-bit field. The Session field distinguishes OAM sessions originating from the same node
(a given Maintenance End Point may have multiple simultaneously active OAM sessions) at the given Level.
</t>
<figure anchor="dach-flags-fig">
          <name>DetNet Associated Channel Header Flags Field Format</name>
<artwork name="" type="" align="left" alt=""><![CDATA[
 0 1 2 3 4
+-+-+-+-+-+
|U|U|U|U|U|
+-+-+-+-+-+
]]></artwork>
        </figure>
<t> U: Unused
      </dd>
    </dl>
     </dd>
	</dl>
<dl spacing="normal">
<dt>U:</dt><dd>Unused and for future use.  MUST  <bcp14>MUST</bcp14> be 0 on transmission and ignored on receipt.</t>
        <ul empty="true" spacing="normal">
<li>Session ID is a 4-bit field. The Session field distinguishes OAM sessions originating from the same node
(a given Maintenance End Point may have multiple simultaneously active OAM sessions) at the given Level.</li>
        </ul> receipt.
</dd></dl>
<t>
A DetNet flow, according
According to <xref target="RFC8964" format="default"/>, a DetNet flow is identified by the S-Label that MUST <bcp14>MUST</bcp14> be at the bottom
of the stack. An Active active OAM packet MUST <bcp14>MUST</bcp14> include d-ACH immediately following the S-Label.
</t>

</section>
      <section anchor="oam-preof-sec" numbered="true" toc="default">
        <name>DetNet Packet Replication, Elimination, and Ordering Functions PREOF Interaction with Active OAM</name>
        <t>
At the DetNet service sub-layer, special functions (notably PREOF) MAY <bcp14>MAY</bcp14> be applied to the particular
DetNet flow to potentially reduce packet loss, improve the probability of on-time packet delivery,
and ensure in-order packet delivery. PREOF relies on sequencing information in the
DetNet service sub-layer. For a DetNet active OAM packet, PREOF MUST <bcp14>MUST</bcp14>
use the Sequence Number field value as the source of this sequencing information.
App-flow and OAM use different sequence number spaces. PREOF algorithms
are executed with respect to the sequence number space identified by the flow's characteristic information.
Although the Sequence Number field in d-ACH has a range from 0 through 255, it provides sufficient space because
the rate of DetNet active OAM packet packets is significantly lower compared to the rate of DetNet packets
in an App-flow; therefore, wrapping around is not an issue.
</t>
      </section>
    </section>
    <!--
    <section anchor="hybrid-oam" numbered="true" toc="default">
      <name>Use of Hybrid OAM in DetNet</name>
      <t>Hybrid OAM methods are used in performance monitoring; they are defined in <xref target="RFC7799"/> as:
</t>
      <ul empty="true" spacing="normal">
        <li>Hybrid Methods are Methods of Measurement that use a combination of
   Active Methods and Passive Methods.</li>
      </ul>
      <t>
   A hybrid measurement method may produce metrics with results that are close to the results of passive measurement,
   but it inevitably alters something in a data packet even if it is only the value of a designated field in the packet encapsulation.
   One example of such a hybrid measurement method is the Alternate Marking method described in <xref target="RFC8321"/>.
Reserving a field in the DetNet Header for Alternate Marking can be useful in providing additional options to the operator-provided set of DetNet OAM tools.
      </t>
    </section>
    -->
    <section anchor="oam-interworking-sec" numbered="true" toc="default">
      <name>OAM Interworking Models</name>
      <t>
Interworking of two OAM domains that utilize different networking technology can be realized either by either a peering model or a tunneling model.
In a peering model, OAM domains are within the corresponding network domain.
When using the peering model, state changes that are detected by a Fault Management OAM protocol
can be mapped from one OAM domain into another or a notification, e.g., an alarm, alarm can be sent to a central controller.
In the tunneling model of OAM interworking, usually, usually only one active OAM protocol is used. Its test packets
are tunneled through another domain along with the data flow, thus ensuring the fate sharing among test and data packets.
</t>
      <section anchor="ip-over-tsn-sec" numbered="true" toc="default">
        <name>OAM of DetNet MPLS Interworking with OAM of TSN</name>
        <t>
Active
DetNet active OAM can provide the end-to-end (E2E) fault management and performance monitoring for
a DetNet flow. In the case of DetNet with an MPLS data plane and an IEEE 802.1 Time-Sensitive Networking (TSN) <!--<xref target=""/>--> sub-network,
this
it implies the interworking of DetNet active OAM with TSN OAM, of which the data plane aspects are specified in <xref target="RFC9037"/>.
        </t>
        <t>
   When the peering model (<xref target="oam-interworking-sec"/>) is used in the
   Connectivity Fault Management (CFM) OAM protocol <xref target="IEEE.802.1Q"/>,
   then
   the node that borders both TSN and DetNet MPLS domains MUST <bcp14>MUST</bcp14>
   support <xref target="RFC7023" format="default"/>.
   <xref target="RFC7023" format="default"/> specifies the mapping of defect states
   between Ethernet Attachment Circuits and associated Ethernet
   PWs that are part of an E2E emulated Ethernet service, service and are also applicable to E2E OAM across DetNet MPLS and TSN domains.
   The CFM <xref target="IEEE.802.1Q"/> or
   in <xref target="ITU.Y1731"/> can provide fast detection of a failure in the TSN segment of the DetNet service.
   In the DetNet MPLS domain BFD (Bidirectional domain, Bidirectional Forwarding Detection), Detection (BFD), as specified in <xref target="RFC5880"/> and <xref target="RFC5885"/>,
   can be used. To provide E2E failure detection, the TSN and DetNet MPLS segments could be treated as concatenated such that the diagnostic codes
   (see Section 6.8.17 of <xref target="RFC5880"/>) MAY target="RFC5880" sectionFormat="of" section="6.8.17"/>) <bcp14>MAY</bcp14> be used to inform the upstream DetNet MPLS node of a failure of the TSN segment. segment failure.
   Performance monitoring can be supported by <xref target="RFC6374"/> in the DetNet MPLS and by <xref target="ITU.Y1731"/> in the TSN domains, respectively.
   Performance objectives for each domain should refer to metrics that is are composable <xref target="RFC6049"/> or be are defined for each domain separately.
</t>
<t>
The following considerations apply when using the tunneling model of OAM interworking between DetNet MPLS and TSN domains
based on general principles described in Section 4 of <xref target="RFC9037"/>: target="RFC9037" sectionFormat="of" section="4"/>:
</t>
        <ul spacing="normal">
          <li>Active OAM test packets MUST <bcp14>MUST</bcp14> be mapped to the same TSN Stream ID as the monitored DetNet flow.</li>
          <li>Active OAM test packets MUST <bcp14>MUST</bcp14> be treated processed in the TSN domain based on its their S-Label and
          Class of Service marking (the Traffic Class field value).</li>
        </ul>
        <t>
        Mapping between a DetNet flow and TSN Stream in the TSN sub-network is described in Section 4.1 of <xref target="RFC9037"/>. target="RFC9037" sectionFormat="of" section="4.1"/>.
        The mapping has to be done only on the edge node of the TSN sub-network, and intermediate TSN nodes do not need to recognize the S-Label.
        An edge node has two components:
        </t>
        <ol>
        <li>A passive Stream identification function.</li>
        <li>An active Stream identification function.</li>
        </ol>
        <t>The first component identifies the DetNet flow (using Clause 6.8 of <xref target="IEEE.802.1CBdb"/>),
        and the second component creates the TSN Stream by manipulating the Ethernet header.
        That manipulation simplifies the identification of the TSN Stream in the intermediate TSN nodes
        by avoiding the need for them to look outside of the Ethernet header.
        DetNet MPLS OAM packets use the same S-Label as the DetNet flow data packets. The above-described mapping
function treats these OAM packets as data packets of the DetNet flow. As a result,
DetNet MPLS OAM packets are fate-sharing fate sharing within the TSN sub-network.
As an example of the mapping between DetNet MPLS and TSN,
see Annex C.1 of <xref target="IEEE.802.1CBdb"/> that, in support of <xref target="RFC9037"/>,
describes how to match MPLS DetNet flows and achieve TSN Streams can be achieved. Streams.
</t>
        <t>
Note that the tunneling model of the OAM interworking requires that the remote peer of
the E2E OAM domain supports the active OAM protocol selected on the ingress endpoint.
   For example, if BFD is used for proactive path continuity monitoring in the DetNet MPLS
   domain, BFD support (as defined in <xref target="RFC5885"/>) is necessary at any
   TSN endpoint of the DetNet service.
</t>
      </section>
      <section anchor="ip-over-ip-sec" numbered="true" toc="default">
        <name>OAM of DetNet MPLS Interworking with OAM of DetNet IP</name>
        <t>
Interworking between active OAM segments in DetNet MPLS and DetNet IP domains can also be realized
using either the peering model or the tunneling model, as discussed in <xref target="ip-over-tsn-sec" format="default"/>. Using the same protocol, e.g., BFD, BFD
over both segments, simplifies the mapping of errors in the peering model. For example, respective BFD sessions
in DetNet MPLS and DetNet IP domains can be in a concatenated relationship as described in Section 6.8.17 of <xref target="RFC5880"/>. target="RFC5880" sectionFormat="of" section="6.8.17"/>.
To provide performance monitoring over a DetNet IP domain,
STAMP the
Simple Two-way Active Measurement Protocol (STAMP) <xref target="RFC8762"/> and its extensions <xref target="RFC8972"/> can be used to measure packet loss and packet delay metrics.
Such performance metrics can be used to calculate composable metrics <xref target="RFC6049"/>
within DetNet MPLS and DetNet IP domains to reflect the end-to-end DetNet service performance.
</t>
      </section>
    </section>

    <section anchor="iana-considerations" numbered="true" toc="default">
      <name>IANA Considerations</name>
     <section anchor="iana-mpls-oam-flags" numbered="true" toc="default">
      <name>DetNet Associated Channel Header (d-ACH) Flags Registry</name>
           <t>
This document describes a new IANA-managed registry to identify d-ACH Flags bits. The
registration procedure is "IETF Review" <xref target="RFC8126"/>.
The registry name is
           <t>IANA has created the "DetNet Associated Channel Header (d-ACH) Flags".
IANA should treat Flags" registry within the "DetNet Associated Channel Header (d-ACH) Flags" as the name of the registry group. The registration procedure is "IETF Review" <xref target="RFC8126"/>. There are five flags in the five-bit 5-bit Flags field, defined as defined in <xref target="iana-dach-flags-tbl"/>.
      </t>
             <table anchor="iana-dach-flags-tbl" align="center">
          <name>DetNet Associated Channel Header (d-ACH) Flags</name> Flags Registry</name>
          <thead>
            <tr>
              <th align="left">Bit</th>
              <th align="center">Description</th>
              <th align="left">Reference</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td align="left">0-4</td>
              <td align="center">Unassigned</td>
              <td align="left">This&nbsp;document</td>
            </tr>
          </tbody>
        </table>

      </section>
    </section>

    <section anchor="security-considerations" numbered="true" toc="default">
      <name>Security Considerations</name>
      <t>
   Security considerations discussed in DetNet specifications <xref target="RFC8655"/>,
   <xref target="RFC9055"/>, <xref target="RFC8964"/>, <xref target="RFC9055"/>, and <xref target="I-D.ietf-detnet-oam-framework"/> are applicable to this document.
   Security concerns and issues related to MPLS OAM tools like LSP Ping <xref target="RFC8029"/>, target="RFC8029"/>
   and BFD over PW <xref target="RFC5885"/> also apply to this specification.
      </t>
    </section>
    <section anchor="ack" numbered="true" toc="default">
      <name>Acknowledgment</name>
      <t>
  Authors extend their appreciation to Pascal Thubert for his insightful comments and productive discussion
  that helped to improve the document. The authors are enormously grateful to Janos Farkas for his detailed
  comments and the inspiring discussion that made this document clearer and stronger. The authors recognize
  helpful reviews and suggestions from Andrew Malis, David Black, Tianran Zhou, and Kiran Makhijani. And special thanks
  are addressed to Ethan Grossman for his fantastic help in improving the document.
      </t>
    </section>

  </middle>
  <back>
    <!-- References split into informative and normative -->
    <displayreference target="I-D.ietf-detnet-oam-framework" to="OAM-FRAMEWORK"/>

    <references>
      <name>References</name>
      <references>
        <name>Normative References</name>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>
        <!--
    <?rfc include="reference.RFC.5586"?>
    <?rfc include="reference.RFC.6423"?>
    --> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7023.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7023.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8655.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8655.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8964.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8964.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9025.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9025.xml"/>

      </references>

      <references>
        <name>Informational
        <name>Informative References</name>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7799.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7799.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6374.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6374.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3985.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.3985.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4385.xml"/>
  <!-- href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4385.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8321.xml"/> --> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4928.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4928.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5880.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5880.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5885.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5885.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8029.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8029.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8762.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8762.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8972.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8972.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9055.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9055.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9037.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9037.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8126.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8126.xml"/>
        <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6049.xml"/>

        <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-ietf-detnet-oam-framework.xml"/> href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6049.xml"/>

<!-- [I-D.ietf-detnet-oam-framework] IESG State: RFC Ed Queue as of 2/21/24. Entered long way to get the correct initials-->
<reference anchor="I-D.ietf-detnet-oam-framework" target="https://datatracker.ietf.org/doc/html/draft-ietf-detnet-oam-framework-11">
  <front>
    <title>Framework of Operations, Administration and Maintenance (OAM) for Deterministic Networking (DetNet)</title>
    <author fullname="Greg Mirsky" initials="G." surname="Mirsky">
      <organization>Ericsson</organization>
    </author>
    <author fullname="Fabrice Theoleyre" initials="F." surname="Theoleyre">
      <organization>CNRS</organization>
    </author>
    <author fullname="Georgios Z. Papadopoulos" initials="G. Z." surname="Papadopoulos">
      <organization>IMT Atlantique</organization>
    </author>
    <author fullname="Carlos J. Bernardos" initials="CJ." surname="Bernardos">
      <organization>Universidad Carlos III de Madrid</organization>
    </author>
    <author fullname="Balazs Varga" initials="B." surname="Varga">
      <organization>Ericsson</organization>
    </author>
    <author fullname="János Farkas" initials="J." surname="Farkas">
      <organization>Ericsson</organization>
    </author>
    <date day="8" month="January" year="2024"/>
  </front>
  <seriesInfo name="Internet-Draft" value="draft-ietf-detnet-oam-framework-11"/>
</reference>

        <reference anchor="IEEE.802.1CBdb">
          <front>
            <title>IEEE Standard for Local and metropolitan area networks--Frame Replication and Elimination for Reliability Amendment Reliability--Amendment 2: Extended Stream Identification Functions</title>
            <author>
              <organization>IEEE</organization>
            </author>
            <date month="December" year="2021"/>
          </front>
          <seriesInfo name="IEEE" value="802.1CBdb"/> name="IEEE Std" value="802.1CBdb-2021"/>
        </reference>

        <reference anchor="IEEE.802.1Q">
          <front>
            <title>Bridges
            <title>IEEE Standard for Local and Metropolitan Area Network--Bridges and Bridged Networks</title>
            <author>
              <organization>IEEE</organization>
            </author>
            <date year="2014"/> month="July" year="2018"/>
          </front>
          <seriesInfo name="IEEE" value="802.1Q"/> name="IEEE Std" value="802.1Q-2018"/>
	  <seriesInfo name="DOI" value="10.1109/IEEESTD.2018.8403927"/>
        </reference>

        <reference anchor="IEEE802.1TSNTG" target="https://1.ieee802.org/tsn/" quoteTitle="true" derivedAnchor="IEEE802.1TSNTG">
          <front>
            <title>Time-Sensitive Networking (TSN) Task Group</title>
            <author>
              <organization showOnFrontPage="true">IEEE</organization>
              <organization>IEEE 802.1</organization>
            </author>
          </front>
          <seriesInfo name="IEEE" value="802.1Q"/>
	  <refcontent>TSN Standards</refcontent>
        </reference>

        <reference anchor="ITU.Y1731">
          <front>
            <title>OAM
            <title>Operation, administration and maintenance (OAM) functions and mechanisms for Ethernet based Networks</title> Ethernet-based networks</title>
            <author>
              <organization>ITU-T</organization>
            </author>
            <date month="November" year="2013"/> month="June" year="2023"/>
          </front>
          <seriesInfo name="ITU-T Recommendation" value="G.8013/Y.1731"/>
        </reference>

        <reference anchor="IANA-G-ACh-Types" target="https://www.iana.org/assignments/g-ach-parameters/g-ach-parameters.xhtml#mpls-g-ach-types"> target="https://www.iana.org/assignments/g-ach-parameters/">
          <front>
            <title>MPLS Generalized Associated Channel (G-ACh) Types (including Pseudowire Associated Channel Types)</title>
            <author>
              <organization>IANA</organization>
            </author>
          </front>
        </reference>
      </references>
    </references>
      <section anchor="ack" numbered="false" toc="default">
      <name>Acknowledgments</name>
      <t>
  The authors extend their appreciation to <contact fullname="Pascal Thubert"/> for his insightful comments and productive discussion
  that helped to improve the document. The authors are enormously grateful to  <contact fullname="János Farkas"/> for his detailed
  comments and the inspiring discussion that made this document clearer and stronger. The authors recognize
  helpful reviews and suggestions from <contact fullname="Andrew Malis"/>, <contact fullname="David Black"/>, <contact fullname="Tianran Zhou"/>, and <contact fullname="Kiran Makhijani"/>. And special thanks
  to <contact fullname="Ethan Grossman"/> for his fantastic help in improving the document.
      </t>
    </section>
  </back>
</rfc>