
RFC 9569

The Application-Layer Traffic Optimization (ALTO)

Transport Information Publication Service (TIPS)

Abstract

"Application-Layer Traffic Optimization (ALTO) Protocol" (RFC 7285) leverages HTTP/1.1 and is

designed for the simple, sequential request-reply use case, in which an ALTO client requests a

sequence of information resources and the server responds with the complete content of each

resource, one at a time.

RFC 8895, which describes ALTO incremental updates using Server-Sent Events (SSE), defines a

multiplexing protocol on top of HTTP/1.x, so that an ALTO server can incrementally push

resource updates to clients whenever monitored network information resources change,

allowing the clients to monitor multiple resources at the same time. However, HTTP/2 and later

versions already support concurrent, non-blocking transport of multiple streams in the same

HTTP connection.

To take advantage of newer HTTP features, this document introduces the ALTO Transport

Information Publication Service (TIPS). TIPS uses an incremental RESTful design to give an ALTO

client the new capability to explicitly and concurrently (in a non-blocking manner) request (or

pull) specific incremental updates using HTTP/2 or HTTP/3, while still functioning for HTTP/1.1.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9569

Standards Track

May 2024

2070-1721

K. Gao

Sichuan University

R. Schott

Deutsche Telekom

Y. R. Yang

Yale University

L. Delwiche

Yale University

L. Keller

Yale University

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Gao, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9569

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9569

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. Notations

2. TIPS Overview

2.1. Transport Requirements

2.2. TIPS Terminology

3. TIPS Updates Graph

3.1. Basic Data Model of an Updates Graph

3.2. Updates Graph Modification Invariants

4. TIPS Workflow and Resource Location Schema

4.1. Workflow

4.2. Resource Location Schema

5. TIPS Information Resource Directory (IRD) Announcement

5.1. Media Type

5.2. Capabilities

5.3. Uses

5.4. An Example

4

5

5

6

6

7

9

10

11

12

12

13

14

14

15

15

16

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 2

https://www.rfc-editor.org/info/rfc9569
https://trustee.ietf.org/license-info

6. TIPS Management

6.1. Open Request

6.2. Open Response

6.3. Open Example

6.3.1. Basic Example

6.3.2. Example Using Digest Authentication

6.3.3. Example Using ALTO/SSE

7. TIPS Data Transfers - Client Pull

7.1. Request

7.2. Response

7.3. Example

7.4. New Next Edge Recommendation

7.4.1. Request

7.4.2. Response

7.4.3. Example

8. Operation and Processing Considerations

8.1. Considerations for Load Balancing

8.2. Considerations for Cross-Resource Dependency Scheduling

8.3. Considerations for Managing Shared TIPS Views

8.4. Considerations for Offering Shortcut Incremental Updates

9. Security Considerations

9.1. TIPS: Denial-of-Service Attacks

9.2. ALTO Client: Update Overloading or Instability

10. IANA Considerations

10.1. application/alto-tips+json Media Type

10.2. application/alto-tipsparams+json Media Type

11. References

11.1. Normative References

11.2. Informative References

Appendix A. A High-Level Deployment Model

18

18

19

22

22

23

24

26

26

26

27

27

27

28

28

29

29

30

31

31

32

32

33

33

33

34

35

35

35

36

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 3

Appendix B. Conformance with "Building Protocols with HTTP" (RFC 9205) Best Current

Practices

Appendix C. Push-Mode TIPS Using HTTP Server Push

Appendix D. Persistent HTTP Connections

Acknowledgments

Authors' Addresses

37

38

38

39

39

1. Introduction

The Application-Layer Traffic Optimization (ALTO) protocol provides means for network

applications to obtain network status information. So far, the ALTO information can be

transported in two ways:

Using the ALTO base protocol , which is designed for the simple use case in which

an ALTO client requests a network information resource and the server sends the complete

content of the requested information (if any) resource to the client.

Using ALTO incremental updates using Server-Sent Events (ALTO/SSE) ; this

method is designed for an ALTO client to indicate to the server that it wants to receive

updates for a set of resources, and the server can then concurrently and incrementally push

updates to that client whenever monitored resources change.

Both protocols are designed for HTTP/1.1 . While they still work with HTTP/2

and HTTP/3 , ALTO and ALTO/SSE cannot take full advantage of new features offered

by HTTP/2 and HTTP/3.

First, consider the ALTO base protocol, which is designed to transfer only complete

information resources. A client can run the base protocol on top of HTTP/2 or HTTP/3 to

request multiple information resources in concurrent streams, but each request must be for

a complete information resource: there is no capability for the server to transmit

incremental updates. Hence, there can be a large overhead when the client already has an

information resource and then there are small changes to the resource.

Next, consider ALTO/SSE . Although ALTO/SSE can transfer incremental updates, it

introduces a customized multiplexing protocol on top of HTTP, assuming a total-order

message channel from the server to the client. The multiplexing design does not provide

naming (i.e., a resource identifier) to individual incremental updates. Such a design cannot

use concurrent data streams available in HTTP/2 and HTTP/3 because both cases require a

resource identifier. Additionally, ALTO/SSE is a push-only protocol, which denies the client

flexibility in choosing how and when it receives updates.

1. [RFC7285]

2. [RFC8895]

[RFC9112] [RFC9113]

[RFC9114]

•

• [RFC8895]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 4

To mitigate these concerns, this document introduces a new ALTO service called the Transport

Information Publication Service (TIPS). TIPS uses an incremental RESTful design to provide an

ALTO client with a new capability to explicitly, concurrently issue non-blocking requests for

specific incremental updates using HTTP/2 or HTTP/3, while still functioning for HTTP/1.1.

While both ALTO/SSE and TIPS can transport incremental updates of ALTO

information resources to clients, they have different design goals. The TIPS extension enables

more scalable and robust distribution of incremental updates but is missing the session

management and built-in server push capabilities of ALTO/SSE. From the performance

perspective, TIPS is optimizing throughput by leveraging concurrent and out-of-order transport

of data, while ALTO/SSE is optimizing latency as new events can be immediately transferred to

the clients without waiting for another round of communication when there are multiple

updates. Thus, we do not see TIPS as a replacement for ALTO/SSE, but as a complement to it. One

example of combining these two extensions is shown in Section 6.3.3.

Note that future extensions may leverage server push, a feature of HTTP/2 and HTTP/3

, as an alternative of SSE. We discuss why this alternative design is not ready at the

time of writing in Appendix C.

Specifically, this document specifies:

Extensions to the ALTO Protocol for dynamic subscription and efficient uniform update

delivery of an incrementally changing network information resource.

A new resource type that indicates the TIPS updates graph model for a resource.

URI patterns to fetch the snapshots or incremental updates.

Some operational complexities that must be taken into consideration when implementing this

extension are discussed in Section 8: these include load balancing in Section 8.1 and fetching and

processing incremental updates of dependent resources in Section 8.2.

Appendix B discusses to what extent the TIPS design adheres to the best current practices for

building protocols with HTTP .

[RFC8895]

[RFC9113]

[RFC9114]

•

•

•

[RFC9205]

1.1. Requirements Language

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.2. Notations

This document uses the same syntax and notations as introduced in to

specify the extensions to existing ALTO resources and services.

Section 8.2 of [RFC7285]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc7285#section-8.2

2. TIPS Overview

Incremental updates:

Concurrent, non-blocking update transmission:

Long polling updates:

Backward compatibility:

2.1. Transport Requirements

The ALTO Protocol and its extensions support two transport mechanisms:

A client can directly request an ALTO resource and obtain a complete snapshot of that ALTO

resource, as specified in the base protocol ;

A client can subscribe to incremental changes of one or multiple ALTO resources using the

incremental update extension , and a server pushes the updates to the client

through SSE.

However, the current transport mechanisms are not optimized for storing, transmitting, and

processing (incremental) updates of ALTO information resources. Specifically, the new transport

mechanism must satisfy the following requirements:

Incremental updates only maintain and transfer the "diff" upon changes.

Thus, it is more efficient than storing and transferring the full updates, especially when the

change of an ALTO resource is minor. The base protocol does not support incremental

updates and the current incremental update mechanism in has limitations (as

discussed below).

When a client needs to receive and apply

multiple incremental updates, it is desired to transmit the updates concurrently to fully utilize

the bandwidth and to reduce head-of-line blocking. Unfortunately, the ALTO incremental

update extension does not satisfy this requirement. Even though the updates can

be multiplexed by the server to avoid head-of-line blocking between multiple resources, the

updates are delivered sequentially and can suffer from head-of-line blocking inside the

connection (for example, when there is a packet loss).

Long polling updates can reduce the time to send the request, making it

possible to achieve sub-RTT transmission of ALTO incremental updates. In , this

requirement is fulfilled using SSE and is still desired in the new ALTO transport.

While some of the previous requirements are offered by HTTP/2

 and HTTP/3 , it is desired that the new ALTO transport mechanism can

work with HTTP/1.1 as many development tools and current ALTO implementations are based

on HTTP/1.1.

The new ALTO transport specified in this document satisfies all of the following design

requirements above by:

Reusing the data format introduced in that enables incremental updates using

JSON patches or merge patches.

1.

[RFC7285]

2.

[RFC8895]

[RFC8895]

[RFC8895]

[RFC8895]

[RFC9113] [RFC9114]

• [RFC8895]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 6

Introducing a unified data model to describe the changes (snapshots and incremental

updates) of an ALTO resource, referred to as a "TIPS view". In the data model, snapshots and

incremental updates are indexed as individual HTTP resources following a unified naming

convention, independent of the HTTP version. Thus, these updates can be concurrently

requested and be transferred in a non-blocking manner either by using multiple connections

or leveraging multiplexed data transfer offered by HTTP/2 or HTTP/3.

Basing the unified naming convention on a monotonically increasing sequence number,

making it possible for a client to construct the URL of a future update and send a long polling

request.

Making the unified naming convention independent of the HTTP versions and able to

operate atop HTTP/1.1, HTTP/2, or HTTP/3.

This document assumes the deployment model discussed in Appendix A.

•

•

•

Transport Information Publication Service (TIPS):

Network information resource:

TIPS view (tv):

Updates graph (ug):

Version:

Start sequence number (<start-seq>):

End sequence number (<end-seq>):

2.2. TIPS Terminology

In addition to the terms defined in , this document uses the following terms:

A new type of ALTO service, as specified in

this document, to enable a uniform transport mechanism for updates of an incrementally

changing ALTO network information resource.

A piece of retrievable information about network state, per

.

The container of incremental transport information about the network

information resource. The TIPS view has one basic component, the updates graph (ug), but

may include other transport information.

A directed, acyclic graph whose nodes represent the set of versions of an

information resource and whose edges represent the set of update items to compute these

versions. An ALTO map service (e.g., a cost map or a network map) may need only a single

updates graph. A dynamic network information service (e.g., a filtered cost map) may create

an updates graph (within a new TIPS view) for each unique request. The encoding of an

updates graph is specified in Section 6.1.

The representation of a historical content of an information resource. For an

information resource, each version is associated with and uniquely identified by a

monotonically and consecutively increased sequence number. This document uses the term

"version s" to refer to the version associated with sequence number "s". The version is

encoded as a JSONNumber, as specified in Section 6.1.

The smallest non-zero sequence number in an updates

graph.

The largest sequence number in an updates graph.

[RFC7285]

[RFC7285]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 7

Snapshot:

Incremental update:

Update item:

ID#i-#j:

A full replacement of a resource that is contained within an updates graph.

A partial replacement of a resource contained within an updates graph,

codified in this document as a JSON merge patch or a JSON patch. An incremental update is

mandatory if the source version (i) and the target version (j) are consecutive (i.e., i + 1 = j);

otherwise, it is optional (or a shortcut). Mandatory incremental updates are always in an

updates graph, while optional/shortcut incremental updates may or may not be included in

an updates graph.

The content on an edge of the updates graph, which can be either a snapshot or an

incremental update. An update item can be considered to be a pair (op, data) where op

denotes whether the item is an incremental update or a snapshot and data is the content of

the item.

Denotation of the update item on a specific edge in the updates graph to transition from

version i to version j, where i and j are the sequence numbers of the source node and the

target node of the edge, respectively.

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 8

Figure 1 shows an example illustrating an overview of the ALTO TIPS extension. The server

provides a TIPS information resource of two information resources (#1 and #2) where #1 is an

ALTO map service and #2 is a filterable service. There are three ALTO clients (Client 1, Client 2,

and Client 3) that are connected to the ALTO server.

Each client uses the TIPS view to retrieve updates. Specifically, a TIPS view (tv1) is created for the

map service #1 and is shared by multiple clients. For the filtering service #2, two different TIPS

views (tv2 and tv3) are created upon different client requests with different filter sets.

Figure 1: Overview of ALTO TIPS

 +-------------+
 +-----------+ +--------------+ | Dynamic | +-----------+
 | Routing | | Provisioning | | Network | | External |
 | Protocols | | Policy | | Information | | Interface |
 +-----------+ +--------------+ +-------------+ +-----------+
 | | | |
+---+
| ALTO Server |
| +---+ |
	Network Information							
	+-------------+ +-------------+							
		Information		Information				
		Resource #1		Resource #2				
	+-------------+ +-------------+							
+-----	--------------------------------------/-------\--------+							
	/ \							
+-----	------------------------------------/-----------\------+							
		Transport Information / \						
	+--------+ +--------+ +--------+							
		tv1		tv2		tv3		
	+--------+ +--------+ +--------+							
		/						
	+--------+ +--------+ +--------+							
		tv1/ug		tv2/ug		tv3/ug		
	+--------+ +--------+ +--------+							
+----	----\----------------	-------------------------	--------+					
	\							
+------|------\--------------|-------------------------|----------+
 | +------+ | |
 | \ | |
 +----------+ +----------+ +----------+
 | Client 1 | | Client 2 | | Client 3 |
 +----------+ +----------+ +----------+

tvi = TIPS view i
tvi/ug = incremental updates graph associated with tvi

3. TIPS Updates Graph

In order to provide incremental updates for a resource, an ALTO server creates an updates

graph, which is a directed acyclic graph that contains a sequence of incremental updates and

snapshots (collectively called "update items") of a network information resource.

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 9

3.1. Basic Data Model of an Updates Graph

For each resource (e.g., a cost map or a network map), the incremental updates and snapshots

can be represented using the following directed acyclic graph model, where the server tracks the

change of the resource maps with version IDs that are assigned sequentially (i.e., incremented by

one each time):

Each node in the graph is a version of the resource, which is identified by a sequence

number (defined as a JSONNumber). Version 0 is reserved as the initial state (empty/null).

A tag identifies the content of a node. A tag has the same format as the "tag" field in

 and is valid only within the scope of the resource.

Each edge is an update item. In particular, the edge from i to j is the update item to transit

from version i to version j.

The version is path independent, i.e., different paths arriving at the node associated with the

same version have the same content).

A concrete example is shown in Figure 2. There are seven nodes in the graph, representing seven

different versions of the resource. Edges in the figure represent the updates from the source

version to the target version. Thick lines represent mandatory incremental updates (e.g.,

ID103-104), dotted lines represent optional incremental updates (e.g., ID103-105), and thin lines

represent snapshots (e.g., ID0-103). Note that node content is path independent: the content of

node v can be obtained by applying the updates from any path that ends at v. For example,

assume the latest version is 105 and a client already has version 103. The base version of the

client is 103 as it serves as a base upon which incremental updates can be applied.

The target version 105 can be:

directly fetched as a snapshot;

computed incrementally by applying the incremental updates between 103 and 104, then 104

and 105; or,

computed incrementally by taking the "shortcut" path from 103 to 105 if the optional update

from 103 to 105 exists.

The target version 105 can either be directly fetched as a snapshot, computed incrementally by

applying the incremental updates between 103 and 104 (then 104 and 105), or, if the optional

update from 103 to 105 exists, computed incrementally by taking the "shortcut" path from 103 to

105.

•

• Section

10.3 of [RFC7285]

•

•

•

•

•

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc7285#section-10.3
https://www.rfc-editor.org/rfc/rfc7285#section-10.3

Figure 2: TIPS Model Example

 +======+
 ------| 0 |
 / +======+
 ID0-101 / | |
 |/__ | |
 +======+ | |
 tag: 3421097 -> | 101 | | |
 +======+ | |
 ID101-102 || | |
 \/ | |
 +======+ | |
 tag: 6431234 -> | 102 | | |
 +======+ | |
 ID102-103 || | |
 \/ | |
 +======+ / |
+--------------+ tag: 0881080 -> | 103 |<--------/ |
| Base Version | =======> +======+ ID0-103 |
+--------------+ 103-104 || .. |
 \/ .. |
 +======+ .. |
 tag: 6452654 -> | 104 | .. ID103 |
 +======+ .. -105 |
 ID104-105 || .. | ID0-105
 \/ |._ /
 +======+ /
 tag: 7838392 -> | 105 |<-----------/
 +======+
 ID105-106 ||
 \/
 +======+
 tag: 6470983 -> | 106 |
 +======+

Continuity:

3.2. Updates Graph Modification Invariants

A server may change its updates graph (to compact it, to add nodes, etc.), but it must ensure that

any resource state that it makes available is reachable by clients, either directly via a snapshot

(that is, relative to 0) or indirectly by requesting an earlier snapshot and a contiguous set of

incremental updates. Additionally, to allow clients to proactively construct URIs for future update

items, the ID of each added node in the updates graph must increment contiguously by 1. More

specifically, the updates graph satisfy the following invariants:

At any time, let ns denote the smallest non-zero version (i.e., <start-seq>) in the

updates graph and let ne denote the latest version (i.e., <end-seq>). Then, any version in

between ns and ne also exist. This implies that the incremental update from ni to ni + 1

exists for any ns <= ni <= ne, and all the version numbers in the updates graph (except 0)

constitute exactly the integer interval [ns, ne].

MUST

MUST

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 11

Feasibility:

"Right shift" only:

Let ns denote <start-seq> in the updates graph. The server provide a snapshot

of ns; in other words, there is always a direct link to ns in the updates graph.

Assume a server provides versions in [n1, n2] at time t and versions in [n1',

n2'] at time t'. If t' > t, then n1' >= n1 and n2' >= n2.

For example, consider the case that a server compacts a resource's updates graph to conserve

space, using the example model in Section 3.1. Assume at time 0, the server provides the versions

{101, 102, 103, 104, 105, 106}. At time 1, both {103, 104, 105, 106} and {105, 106} are valid sets.

However, {102, 103, 104, 105, 106} and {104, 105, 106} are not valid sets as there is no snapshot to

version 102 or 104 in the updates graph. Thus, there is a risk that the right content of version 102

(in the first example) or 104 (in the second example) cannot be obtained by a client that does not

have the previous version 101 or 103, respectively.

MUST

4. TIPS Workflow and Resource Location Schema

4.1. Workflow

At a high level, an ALTO client first requests the TIPS information resource (denoted as TIPS-F,

where F is for frontend) to indicate the information resource or resources that the client wants to

monitor. For each requested resource, the server returns a JSON object that contains a URI,

which points to the root of a TIPS view (denoted as TIPS-V), and a summary of the current view,

which contains the information to correctly interact with the current view. With the URI to the

root of a TIPS view, clients can construct URIs (see Section 4.2) to fetch incremental updates.

An example workflow is shown in Figure 3. After the TIPS-F receives the request from the client

to monitor the updates of an ALTO resource, it creates a TIPS view resource and returns the

corresponding information to the client. The URI points to that specific TIPS-V instance, and the

summary contains the <start-seq> and <end-seq> of the updates graph and a server-

recommended edge to consume first (e.g., from i to j).

An ALTO client can then continuously pull each additional update with the information. For

example, the client in Figure 3 first fetches the update from i to j and then from j to j+1. Note that

the update item at "<tips-view-uri>/ug/<j>/<j+1>" may not yet exist, so the server holds the

request until the update becomes available (i.e., long polling).

A server close a TIPS view at any time (e.g., under high system load or due to client

inactivity). In the event that a TIPS view is closed, an edge request will receive error code 404

(Not Found) in response, and the client will have to request a new TIPS view URI.

If resources allow, a server avoid closing TIPS views that have active polling edge

requests or have recently served responses until clients have had a reasonable interval to

request the next update, unless guided by specific control policies.

MAY

SHOULD

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 12

Figure 3: ALTO TIPS Workflow Supporting Client Pull

Client TIPS-F TIPS-V
 o . .
 | POST to create/receive a TIPS view . Create TIPS .
 | for resource 1 . View .
 |-------------------------------------> |.-.-.-.-.-.-.-> |
 | <tips-view-uri>, <tips-view-summary> . |
 | <-------------------------------------| <-.-.-.-.-.-.-.|
 | .
 | GET /<tips-view-path>/ug/<i>/<j> .
 |--> |
 | content on edge i to j |
 | <--|
 | .
 | GET /<tips-view-path>/ug/<j>/<j+1> .
 |--> |
 . .
 . .
 | content on edge j to j+1 |
 | <--|
 | .
 o .
 .
 TIPS View Closed o

4.2. Resource Location Schema

The resource location schema defines how a client constructs URIs to fetch incremental updates.

To access each update in an updates graph, consider the model represented as a "virtual" file

system (adjacency list), contained within the root of a TIPS view URI (see Section 6.2 for the

definition of tips-view-uri). For example, assuming that the updates graph of a TIPS view is as

shown in Figure 2, the location schema of this TIPS view will have the format as in Figure 4.

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 13

TIPS uses this directory schema to generate template URIs that allow clients to construct the

location of incremental updates after receiving the tips-view-uri from the server. The generic

template for the location of the update item on the edge from node 'i' to node 'j' in the updates

graph is:

Due to the sequential nature of the update item IDs, a client can long poll a future update that

does not yet exist (e.g., the incremental update from 106 to 107). This can be done by constructing

the URI for the next edge that will be added, starting from the sequence number of the current

last node (denoted as <end-seq>) in the graph to the next sequential node (with the sequence

number of <end-seq + 1>):

Incremental updates of a TIPS view are read-only. Thus, they are fetched using the HTTP GET

method.

Figure 4: Location Schema Example

 <tips-view-path> // root path to a TIPS view
 |_ ug // updates graph
 | |_ 0
 | | |_ 101 // full 101 snapshot
 | | |_ 103
 | | _ 105
 | |_ 101
 | | _ 102 // 101 -> 102 incremental update
 | |_ 102
 | | _ 103
 | |_ 103
 | | |_ 104
 | | _ 105 // optional shortcut 103 -> 105 incr. update
 | |_ 104
 | | _ 105
 | _ 105
 | _ 106
 _ ...

 <tips-view-uri>/ug/<i>/<j>

 <tips-view-uri>/ug/<end-seq>/<end-seq + 1>

5. TIPS Information Resource Directory (IRD) Announcement

To announce a TIPS information resource in the IRD, an ALTO server specify "media-type",

"capabilities", and "uses" as follows.

MUST

5.1. Media Type

The media type of the Transport Information Publication Service (TIPS) resource is "application/

alto-tips+json".

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 14

incremental-change-media-types:

5.2. Capabilities

The "capabilities" field of a TIPS information resource is modeled on that defined in

.

Specifically, the capabilities are defined as an object of the TIPSCapabilities type:

with the field:

If a TIPS information resource can provide updates with

incremental changes for a resource, the "incremental-change-media-types" field has an entry

whose key is the ID of the resource and the value is the supported media types of incremental

changes, separated by commas. For the implementation of this specification, this be

"application/merge-patch+json", "application/json-patch+json", or "application/merge-

patch+json,application/json-patch+json", unless defined by a future extension.

When choosing the media types to encode incremental updates for a resource, the server

 consider the limitations of the encoding. For example, when a JSON merge patch

specifies that the value of a field is null, its semantics are that the field is removed from the

target; hence, the field is no longer defined (i.e., undefined). However, this may not be the

intended result for the resource, when null and undefined have different semantics for the

resource. In such a case, the server choose a JSON patch over a JSON merge patch if the

JSON patch is indicated as a capability of the TIPS information resource. If the server does not

support a JSON patch to handle such a case, the server then needs to send a full replacement.

Section 6.3 of

[RFC8895]

Figure 5: TIPSCapabilities

 object {
 IncrementalUpdateMediaTypes incremental-change-media-types;
 } TIPSCapabilities;

 object-map {
 ResourceID -> String;
 } IncrementalUpdateMediaTypes;

MUST

MUST

MUST

5.3. Uses

The "uses" attribute be an array with the resource IDs of every network information

resource for which this TIPS information resource can provide service.

This set be any subset of the ALTO server's network information resources and include

resources defined in linked IRDs. However, it is that the ALTO server selects a set

that is closed under the resource dependency relationship. That is, if a TIPS information

resource's "uses" set includes resource R1, and resource R1 depends on ("uses") resource R0, then

MUST

MAY MAY

RECOMMENDED

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc8895#section-6.3

the "uses" set should include R0 as well as R1. For example, if a TIPS information resource

provides a TIPS view for a cost map, it should also provide a TIPS view for the network map

upon which that cost map depends.

If the set is not closed, at least one resource R1 in the "uses" field of a TIPS information resource

depends on another resource R0 that is not in the "uses" field of the same TIPS information

resource. Thus, a client cannot receive incremental updates for R0 from the same TIPS

information resource. If the client observes in an update of R1 that the version tag for R0 has

changed, it must request the full content of R0, which is likely to be less efficient than receiving

the incremental updates of R0.

5.4. An Example

Extending the IRD example in , Figure 6 is the IRD of an ALTO server

supporting the ALTO base protocol, ALTO/SSE, and ALTO TIPS.

Section 8.1 of [RFC8895]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc8895#section-8.1

 "my-network-map": {
 "uri": "https://alto.example.com/networkmap",
 "media-type": "application/alto-networkmap+json"
 },
 "my-routingcost-map": {
 "uri": "https://alto.example.com/costmap/routingcost",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-routingcost"]
 }
 },
 "my-hopcount-map": {
 "uri": "https://alto.example.com/costmap/hopcount",
 "media-type": "application/alto-costmap+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-hopcount"]
 }
 },
 "my-simple-filtered-cost-map": {
 "uri": "https://alto.example.com/costmap/filtered/simple",
 "media-type": "application/alto-costmap+json",
 "accepts": "application/alto-costmapfilter+json",
 "uses": ["my-network-map"],
 "capabilities": {
 "cost-type-names": ["num-routingcost", "num-hopcount"],
 "cost-constraints": false
 }
 },
 "update-my-costs": {
 "uri": "https://alto.example.com/updates/costs",
 "media-type": "text/event-stream",
 "accepts": "application/alto-updatestreamparams+json",
 "uses": [
 "my-network-map",
 "my-routingcost-map",
 "my-hopcount-map",
 "my-simple-filtered-cost-map"
],
 "capabilities": {
 "incremental-change-media-types": {
 "my-network-map": "application/json-patch+json",
 "my-routingcost-map": "application/merge-patch+json",
 "my-hopcount-map": "application/merge-patch+json"
 },
 "support-stream-control": true
 }
 },
 "update-my-costs-tips": {
 "uri": "https://alto.example.com/updates-new/costs",
 "media-type": "application/alto-tips+json",
 "accepts": "application/alto-tipsparams+json",
 "uses": [
 "my-network-map",
 "my-routingcost-map",
 "my-hopcount-map",

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 17

Note that it is straightforward for an ALTO server to run HTTP/2 and support concurrent

retrieval of multiple resources such as "my-network-map" and "my-routingcost-map" using

multiple HTTP/2 streams.

The resource "update-my-costs-tips" provides an ALTO TIPS information resource, and this is

indicated by the media type "application/alto-tips+json".

Figure 6: Example of an ALTO Server Supporting the ALTO Base Protocol, ALTO/SSE, and ALTO

TIPS

 "my-simple-filtered-cost-map"
],
 "capabilities": {
 "incremental-change-media-types": {
 "my-network-map": "application/json-patch+json",
 "my-routingcost-map": "application/merge-patch+json",
 "my-hopcount-map": "application/merge-patch+json",
 "my-simple-filtered-cost-map": "application/merge-patch+json"
 }
 }
 },
 "tips-sse": {
 "uri": "https://alto.example.com/updates/tips",
 "media-type": "text/event-stream",
 "accepts": "application/alto-updatestreamparams+json",
 "uses": ["update-my-costs-tips"],
 "capabilities": {
 "incremental-change-media-types": {
 "update-my-costs-tips": "application/merge-patch+json"
 }
 }
 }

6. TIPS Management

Upon request, a server sends a TIPS view to a client. This TIPS view may be created at the time of

the request or may already exist (either because another client has already created a TIPS view

for the same requested network resource or because the server perpetually maintains a TIPS

view for an often-requested resource).

6.1. Open Request

An ALTO client requests that the server provide a TIPS view for a given resource by sending an

HTTP POST body with the media type "application/alto-tipsparams+json". That body contains a

JSON object of the TIPSReq type, where:

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 18

resource-id:

tag:

input:

with the following fields:

This field contains the resource ID of an ALTO resource to be monitored, which

 be in the TIPS information resource's "uses" list (Section 5). If a client does not support

all incremental methods from the set announced in the server's capabilities, the client

 use the TIPS information resource.

If the "resource-id" is associated with a GET-mode resource with a version tag (or "vtag"), as

defined in , and the ALTO client has previously retrieved a version of

that resource from ALTO, the ALTO client set the "tag" field to the tag part of the client's

version of that resource. The server use the tag when calculating a recommended

starting edge for the client to consume. Note that the client support all incremental

methods from the set announced in the server's capabilities for this resource.

If the resource is a POST-mode service that requires input, the ALTO client set the

"input" field to a JSON object with the parameters that the resource expects.

Figure 7: TIPSReq

 object {
 ResourceID resource-id;
 [JSONString tag;]
 [Object input;]
 } TIPSReq;

MUST

MUST

NOT

Section 10.3 of [RFC7285]

MAY

MAY

MUST

MUST

6.2. Open Response

The response to a valid request be a JSON object of the AddTIPSResponse type, denoted as

media type "application/alto-tips+json":

MUST

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc7285#section-10.3

tips-view-uri:

with the following fields:

This is the URI to the requested TIPS view. The value of this field have the

following format:

where scheme be "http" or "https" unless specified by a future extension, and host, port,

and path are as specified in Sections 3.2.2, 3.2.3, and 3.3 in . An ALTO server

use the "https" scheme unless the contents of the TIPS view are intended to be publicly

accessible and do not raise security concerns. The field contain only ASCII characters. In

case the original URL contains international characters (e.g., in the domain name), the ALTO

server implementation properly encode the URL into the ASCII format (e.g., using the

"urlencode" function).

A server use the same URI for different TIPS views, either for different resources or

for different request bodies to the same resource. URI generation is implementation specific;

for example, one may compute a Universally Unique Identifier (UUID) or a hash

value based on the request and append it to a base URL. For performance considerations, it is

 to use properties that are not included in the request body to determine

the URI of a TIPS view, such as cookies or the client's IP address, which may result in

Figure 8: AddTIPSResponse

 object {
 URI tips-view-uri;
 TIPSViewSummary tips-view-summary;
 } AddTIPSResponse;

 object {
 UpdatesGraphSummary updates-graph-summary;
 } TIPSViewSummary;

 object {
 JSONNumber start-seq;
 JSONNumber end-seq;
 StartEdgeRec start-edge-rec;
 } UpdatesGraphSummary;

 object {
 JSONNumber seq-i;
 JSONNumber seq-j;
 } StartEdgeRec;

MUST

 scheme "://" tips-view-host "/" tips-view-path

 tips-view-host = host [":" port]
 tips-view-path = path

MUST

[RFC3986] SHOULD

MUST

MUST

MUST NOT

[RFC4122]

NOT RECOMMENDED

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc3986#section-3.2.2
https://www.rfc-editor.org/rfc/rfc3986#section-3.2.3
https://www.rfc-editor.org/rfc/rfc3986#section-3.3

tips-view-summary:

duplicated TIPS views in cases such as mobile clients. However, this is not mandatory as a

server may intentionally use client information to compute the TIPS view URI to provide

service isolation between clients.

Contains an updates-graph-summary.

The "updates-graph-summary" field contains the <start-seq> of the updates graph (in the

"start-seq" field) and the <end-seq> that is currently available (in the "end-seq" field), along

with a recommended edge to consume (in the "start-edge-rec" field). If the client does not

provide a version tag, the server recommend the edge of the latest available snapshot. If

the client provides a version tag, the server either recommend the first incremental

update edge starting from the client's tagged version or recommend the edge of the latest

snapshot: which edge is selected depends on the implementation. For example, a server

calculate the cumulative size of the incremental updates available from that version onward

and compare it to the size of the complete resource snapshot. If the snapshot is bigger, the

server recommends the first incremental update edge starting from the client's tagged

version. Otherwise, the server recommends the latest snapshot edge.

If the request has any errors, the ALTO server return an HTTP 400 (Bad Request) error code

to the ALTO client; the body of the response follows the generic ALTO error response format

specified in . Hence, an example ALTO error response has the format

shown in Figure 9.

Note that "field" and "value" are optional fields. If the "value" field exists, the "field" field

exist.

If the TIPS request does not have a "resource-id" field, the error code of the error message

 be "E_MISSING_FIELD" and the "field" field, if present, be "resource-id". The

ALTO server create any TIPS view.

If the "resource-id" field is invalid or is not associated with the TIPS information resource,

the error code of the error message be "E_INVALID_FIELD_VALUE". If present, the

"field" field be the full path of the "resource-id" field, and the "value" field be the

value of the "resource-id" field in the request.

MUST

MUST

MAY

MUST

Section 8.5.2 of [RFC7285]

Figure 9: ALTO Error Example

 HTTP/1.1 400 Bad Request
 Content-Length: 131
 Content-Type: application/alto-error+json

 {
 "meta":{
 "code": "E_INVALID_FIELD_VALUE",
 "field": "resource-id",
 "value": "my-network-map/#"
 }
 }

MUST

•

MUST MUST

MUST NOT

•

MUST

MUST MUST

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 21

https://www.rfc-editor.org/rfc/rfc7285#section-8.5.2

429 (Too Many Requests):

If the resource is a POST-mode service that requires input, the client set the "input"

field to a JSON object with the parameters that resource expects. If the "input" field is missing

or invalid, the ALTO server return the same error response that resource would return

for missing or invalid inputs (see).

Furthermore, it is that the server use the following HTTP code to indicate other

errors, with the media type "application/alto-error+json".

Indicates when the number of TIPS views open requests exceeds the

server threshold. The server indicate when to retry the request in the "Re-Try After"

headers.

It is that the server provide the ALTO/SSE support for the TIPS resource. Thus,

the client can be notified of the version updates of all the TIPS views that it monitors and make

better cross-resource transport decisions (see Section 8.2 for related considerations).

• MUST

MUST

[RFC7285]

RECOMMENDED

MAY

RECOMMENDED

6.3. Open Example

6.3.1. Basic Example

For simplicity, assume that the ALTO server is using Basic authentication . If a client

with username "client1" and password "helloalto" wants to create a TIPS view of an ALTO cost

map resource with the resource ID "my-routingcost-map", it can send the request depicted in

Figure 10.

If the operation is successful, the ALTO server returns the message shown in Figure 11.

[RFC7617]

Figure 10: Request Example of Opening a TIPS View

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Basic Y2xpZW50MTpoZWxsb2FsdG8K
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 22

Figure 11: Response Example of Opening a TIPS View

 HTTP/1.1 200 OK
 Content-Type: application/alto-tips+json
 Content-Length: 255

 {
 "tips-view-uri": "https://alto.example.com/tips/2718281828",
 "tips-view-summary": {
 "updates-graph-summary": {
 "start-seq": 101,
 "end-seq": 106,
 "start-edge-rec" : {
 "seq-i": 0,
 "seq-j": 105
 }
 }
 }
 }

6.3.2. Example Using Digest Authentication

Below is another example of the same query using Digest authentication, a mandatory

authentication method of ALTO servers as defined in . The content of

the response is the same as in Figure 11; thus, it has been omitted for simplicity.

Section 8.3.5 of [RFC7285]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 23

https://www.rfc-editor.org/rfc/rfc7285#section-8.3.5

Figure 12: Open Example with Digest Authentication

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Basic Y2xpZW50MTpoZWxsb2FsdG8K
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

 HTTP/1.1 401 UNAUTHORIZED
 WWW-Authenticate: Digest
 realm="alto.example.com",
 qop="auth",
 algorithm="MD5",
 nonce="173b5aba4242409ee2ac3a4fd797f9d7",
 opaque="a237ff9ab865379a69d9993162ef55e4"

 POST /tips HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-tips+json, application/alto-error+json
 Authorization: Digest
 username="client1",
 realm="alto.example.com",
 uri="/tips",
 qop=auth,
 algorithm=MD5,
 nonce="173b5aba4242409ee2ac3a4fd797f9d7",
 nc=00000001,
 cnonce="ZTg3MTI3NDFmMDQ0NzI1MDQ3MWE3ZTFjZmM5MTNiM2I=",
 response="8e937ae696c1512e4f990fa21c7f9347",
 opaque="a237ff9ab865379a69d9993162ef55e4"
 Content-Type: application/alto-tipsparams+json
 Content-Length: 41

 {
 "resource-id": "my-routingcost-map"
 }

 HTTP/1.1 200 OK
 Content-Type: application/alto-tips+json
 Content-Length: 258

 {....}

6.3.3. Example Using ALTO/SSE

This section gives an example of receiving incremental updates of the TIPS view summary using

ALTO/SSE . Consider the "tips-sse" resource, as announced by the IRD in Figure 6,

which provides ALTO/SSE for the "update-my-cost-tips" resource; a client may send the following

request to receive updates of the TIPS view (authentication is omitted for simplicity).

[RFC8895]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 24

Then, the client will be able to receive the TIPS view summary as follows.

When there is an update to the TIPS view (for example, when the "end-seq" field is increased by

1), the client will be able to receive the incremental update of the TIPS view summary as follows.

Figure 13: Example of Monitoring TIPS View with ALTO/SSE

 POST /updates/tips HTTP/1.1
 Host: alto.example.com
 Accept: text/event-stream,application/alto-error+json
 Content-Type: application/alto-updatestreamparams+json
 Content-Length: 76

 {
 "add": {
 "tips-123": { "resource-id": "update-my-cost-tips" }
 }
 }

 HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Type: text/event-stream

 event: application/alto-tips+json,tips-123
 data: {
 data: "tips-view-uri": "https://alto.example.com/tips/2718281828",
 data: "tips-view-summary": {
 data: "updates-graph-summary": {
 data: "start-seq": 101,
 data: "end-seq": 106,
 data: "start-edge-rec" : {
 data: "seq-i": 0,
 data: "seq-j": 105
 data: }
 data: }
 data: }
 data: }

 event: application/merge-patch+json,tips-123
 data: {
 data: "tips-view-summary": {
 data: "updates-graph-summary": {
 data: "end-seq": 107
 data: }
 data: }
 data: }

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 25

7. TIPS Data Transfers - Client Pull

TIPS allows an ALTO client to retrieve the content of an update item from the updates graph,

with an update item defined as the content (incremental update or snapshot) on an edge in the

updates graph.

7.1. Request

The client sends an HTTP GET request, where the media type of an update item resource be

the same as the "media-type" field of the update item on the specified edge in the updates graph.

The GET request have the following format:

For example, consider the updates graph in Figure 4. If the client wants to query the content of

the first update item (0 -> 101) whose media type is "application/alto-costmap+json", it sends a

request to "/tips/2718281828/ug/0/101" and sets the "Accept" header to "application/alto-

costmap+json,application/alto-error+json". See Section 7.3 for a concrete example.

MUST

MUST

 GET /<tips-view-path>/ug/<i>/<j>
 HOST: <tips-view-host>

404 (Not Found):

7.2. Response

If the request is valid (i.e., "ug/<i>/<j>" exists), the response is encoded as a JSON object whose

data format is indicated by the media type.

A client conduct proactive fetching of future updates, by long polling updates that have not

been provided in the directory yet. For such updates, the client indicate all media types

that may appear. It is that the server allow for at least the long polling of <end-

seq> -> <end-seq + 1>.

Hence, the server processing logic be:

If a resource with path "ug/<i>/<j>" exists, return content using encoding.

Else, if long polling "ug/<i>/<j>" is acceptable, put request in a backlog queue, then either a

response is triggered when the content is ready or the request is interrupted (e.g., by a

network error).

Else, return error.

It is that the server use the following HTTP codes to indicate errors, with the

media type "application/alto-error+json", regarding update item requests.

Indicates that the requested update does not exist or the requested TIPS view

does not exist or is closed by the server.

MAY

MUST

RECOMMENDED

MUST

•

•

•

RECOMMENDED

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 26

410 (Gone):

415 (Unsupported Media Type):

425 (Too Early):

429 (Too Many Requests):

Indicates an update has a seq that is smaller than the <start-seq>.

Indicates the media type (or types) accepted by the client does

not include the media type of the update chosen by the server.

Indicates the seq exceeds the server long polling window.

Indicates the number of pending (long poll) requests exceeds the

server threshold. The server indicate when to retry the request in the "Re-Try After"

headers.

MAY

7.3. Example

Assume the client wants to get the contents of the update item on edge 0 to 101. The format of the

request is shown in Figure 14.

The response is shown in Figure 15.

Figure 14: GET Example

 GET /tips/2718281828/ug/0/101 HTTP/1.1
 Host: alto.example.com
 Accept: application/alto-costmap+json, \
 application/alto-error+json

Figure 15: Response to a GET Request

 HTTP/1.1 200 OK
 Content-Type: application/alto-costmap+json
 Content-Length: 50

 { ... full replacement of my-routingcost-map ... }

7.4. New Next Edge Recommendation

While intended TIPS usage is for the client to receive a recommended starting edge in the TIPS

summary, consume that edge, and then construct all future URIs by incrementing the sequence

count by one, there may be cases in which the client needs to request a new next edge to

consume. For example, if a client has an open TIPS view but has not polled in a while, the client

may request the next logical incremental URI; however, the server has compacted the updates

graph, so it no longer exists. Thus, the client request a new next edge to consume based on

its current version of the resource.

MAY

7.4.1. Request

An ALTO client requests that the server provide a next edge recommendation for a given TIPS

view by sending an HTTP POST request with the media type "application/alto-tipsparams+json".

The URL of the request have the following format:MUST

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 27

and the "HOST" field be "<tips-view-host>".

The POST body has the same format as the TIPSReq in Figure 7. The "resource-id" field be

the same as the resource ID used to create the TIPS view, and the optional "input" field

be present.

 <tips-view-path>/ug

MUST

MUST

MUST NOT

404 (Not Found):

7.4.2. Response

The response to a valid request be a JSON merge patch to the object of the

AddTIPSResponse type (defined in Section 6.2), denoted as media type "application/merge-

patch+json". The "updates-graph-summary" field be present in the response; hence, its

parent field "tips-view-summary" be present as well.

If the "tag" field is present in the request, the server check if any version within the range

[<start-seq>, <end-seq>] has the same tag value. If the version exists (e.g., denoted as <tag-seq>),

the server compute the paths from both <tag-seq> and 0 to the <end-seq> and choose the

one with the minimal cost. The cost be implementation specific (e.g., number of messages,

accumulated data size, etc.). The first edge of the selected path be returned as the

recommended next edge.

If the "tag" field is not present, the interpretation be that the <tag-seq> is 0.

It is that the server use the following HTTP code to indicate errors, with the

media type "application/alto-error+json", regarding new next edge requests.

Indicates that the requested TIPS view does not exist or has been closed by the

server.

MUST

MUST

MUST

MUST

MUST

MAY

MUST

MUST

RECOMMENDED

7.4.3. Example

In this section, we give an example of the new next edge recommendation service. Assume that a

client already creates a TIPS view (as in Section 6.3) whose updates graph is as shown in Figure 2.

Now assume that the client already has tag 0881080, whose corresponding sequence number is

103, and sends the following new next edge recommendation request (authentication is omitted

for simplicity):

 POST /tips/2718281828/ug HTTP/1.1
 HOST alto.example.com
 Accept: application/merge-patch+json, application/alto-error+json
 Content-Type: application/alto-tipsparams+json
 Content-Length: 62

 {
 "resource-id": "my-routingcost-map",
 "tag": "0881080"
 }

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 28

According to Figure 2, there are three potential paths: 103 -> 104 -> 105 -> 106, 103 -> 105 -> 106,

and 0 -> 105 -> 106. Assume that the server chooses the shortest update path by the accumulated

data size and the best path is 103 -> 105 -> 106. Thus, the server responds with the following

message:

 HTTP/1.1 200 OK
 Content-Type: application/merge-patch+json
 Content-Length: 193

 {
 "tips-view-summary": {
 "updates-graph-summary": {
 "start-seq": 101,
 "end-seq": 106,
 "start-edge-rec": {
 "seq-i": 103,
 "seq-j": 105
 }
 }
 }
 }

8. Operation and Processing Considerations

TIPS has some common operational considerations as ALTO/SSE , including:

the server choosing update messages ();

the client processing update messages ();

the updates of filtered map services (); and

the updates of ordinal mode costs ().

There are also some operational considerations specific to TIPS, which we discuss below.

[RFC8895]

• Section 9.1 of [RFC8895]

• Section 9.2 of [RFC8895]

• Section 9.3 of [RFC8895]

• Section 9.4 of [RFC8895]

8.1. Considerations for Load Balancing

There are two levels of load balancing in TIPS: the first level is to balance the load of TIPS views

for different clients and the second is to balance the load of incremental updates.

Load balancing of TIPS views can be achieved either at the application layer or at the

infrastructure layer. For example, an ALTO server set <tips-view-host> to different

subdomains to distribute TIPS views or simply use the same host of the TIPS information

resource and rely on load balancers to distribute the load.

MAY

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 29

https://www.rfc-editor.org/rfc/rfc8895#section-9.1
https://www.rfc-editor.org/rfc/rfc8895#section-9.2
https://www.rfc-editor.org/rfc/rfc8895#section-9.3
https://www.rfc-editor.org/rfc/rfc8895#section-9.4

Using a stateless architecture:

Configuring the load balancers properly:

TIPS allows a client to make concurrent pulls of incremental updates for the same TIPS view,

potentially through different HTTP connections. As a consequence, TIPS introduces additional

complexities when the ALTO server balances the load by distributing the requests to a set of

backend servers. For example, a request may be directed to the wrong backend server and get

processed incorrectly if the following two conditions both hold:

these backend servers are stateful (i.e., the TIPS view is created and stored only on a single

server); and

the ALTO server is using Layer 4 load balancing (i.e., the requests are distributed based on

the TCP 5-tuple).

Thus, additional considerations are required to enable correct load balancing for TIPS, including:

One solution is to follow the stateless computing pattern: states

about the TIPS view are not maintained by the backend servers but are stored in a distributed

database. Thus, concurrent requests to the same TIPS view can be processed on arbitrary

stateless backend servers, which all fetch data from the same database.

In the case that the backend servers are stateful, the

load balancers must be properly configured to guarantee that requests of the same TIPS view

always arrive at the same server. For example, an operator or a provider of an ALTO server

 configure Layer 7 load balancers that distribute requests based on the tips-view-path

component in the URI.

•

•

MAY

8.2. Considerations for Cross-Resource Dependency Scheduling

Dependent ALTO resources result in cross-resource dependencies in TIPS. Consider the following

pair of resources, where my-cost-map (C) is dependent on my-network-map (N). The updates

graph for each resource is shown, along with links between the respective updates graphs to

show dependency:

In Figure 16, the cost-map versions 101 and 102 (denoted as C101 and C102) are dependent on the

network-map version 89 (denoted as N89). The cost-map version 103 (C103) is dependent on the

network-map version 90 (N90), and so on.

Figure 16: Example Dependency Model

 +---+ +---+ +---+ +---+ +---+
 my-network-map (N) | 0 |-->|89 |-->|90 |-->|91 |-->|92 |
 +---+ +---+ +---+ +---+ +---+
 | \ \ \
 | \ \ \
 +---+ +---+ +---+ +---+ +---+
 my-cost-map (C) | 0 |-->|101|-->|102|-->|103|-->|104|
 +---+ +---+ +---+ +---+ +---+
 |_______________________|

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 30

Example 1:

Example 2:

Thus, the client must decide the order in which to receive and apply the updates. The order may

affect how fast the client can build a consistent view and how long the client needs to buffer the

update.

The client requests N89, N90, N91, C101, C102 in that order. The client either gets no

consistent view of the resources or has to buffer N90 and N91.

The client requests C101, C102, C103, N89. The client either gets no consistent view

or has to buffer C103.

To get consistent ALTO information, a client must process the updates following the guidelines

specified in . If resources permit (i.e., sufficient updates can be buffered),

an ALTO client can safely use long polling to fetch all the updates. This allows a client to build

consistent views quickly as the updates are already stored in the buffer. Otherwise, it is

 to request a full snapshot if the client does not have enough local resources to

buffer and process the incremental updates.

Section 9.2 of [RFC8895]

RECOMMENDED

8.3. Considerations for Managing Shared TIPS Views

From a client's point of view, it sees only one copy of the TIPS view for any resource. However,

on the server side, there are different implementation options, especially for common resources

(e.g., network maps or cost maps) that may be frequently queried by many clients. Some

potential options are listed below:

An ALTO server creates one TIPS view of the common resource for each client.

An ALTO server maintains one copy of the TIPS view for each common resource and all

clients requesting the same resources use the same copy. There are two ways to manage the

storage for the shared copy:

the ALTO server maintains the set of clients that have sent a polling request to the TIPS

view and only removes the view from the storage when the set becomes empty and no

client immediately issues a new edge request; or

the TIPS view is never removed from the storage.

Developers may choose different implementation options depending on criteria such as request

frequency, available resources of the ALTO server, the ability to scale, and programming

complexity.

•

•

◦

◦

8.4. Considerations for Offering Shortcut Incremental Updates

Besides the mandatory stepwise incremental updates (from i to i+1), an ALTO server

optionally offer shortcut incremental updates, or simple shortcuts, between two non-consecutive

versions i and i+k (k > 1). Such shortcuts offer alternative paths in the updates graph and can

MAY

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 31

https://www.rfc-editor.org/rfc/rfc8895#section-9.2

potentially speed up the transmission and processing of incremental updates, leading to faster

synchronization of ALTO information, especially when the client has limited bandwidth and

computation. However, implementors of an ALTO server must be aware that:

optional shortcuts may increase the size of the updates graph, worst case scenario being the

square of the number of updates (i.e., when a shortcut is offered for each version to all

future versions).

optional shortcuts require additional storage on the ALTO server.

optional shortcuts may reduce concurrency when the updates do not overlap (e.g., when the

updates apply to different parts of an ALTO resource). In such a case, the total size of the

original updates is close to the size of the shortcut, but the original updates can be

transmitted concurrently while the shortcut is transmitted in a single connection.

1.

2.

3.

9. Security Considerations

The security considerations of the base protocol () fully apply to this

extension. For example, the same authenticity and integrity considerations (

) still fully apply; the same considerations for the privacy of ALTO users (

) also still fully apply. Additionally, operators of the ALTO servers follow the

guidelines in to avoid new TLS vulnerabilities discovered after was

published.

The additional services (the addition of update read service and update push service) provided

by this extension extend the attack surface described in . The

following subsections discuss the additional risks and their remedies.

Section 15 of [RFC7285]

Section 15.1 of

[RFC7285] Section 15.4 of

[RFC7285] MUST

[RFC9325] [RFC7285]

Section 15.1.1 of [RFC7285]

9.1. TIPS: Denial-of-Service Attacks

Allowing TIPS views enables new classes of DoS attacks. In particular, for the TIPS server, one or

multiple malicious ALTO clients might create an excessive number of TIPS views, to exhaust the

server resource and/or to block normal users from accessing the service.

To avoid such attacks, the server choose to limit the number of active views and reject new

requests when that threshold is reached. TIPS allows predictive fetching and the server also

choose to limit the number of pending requests. If a new request exceeds the threshold, the

server log the event and return the HTTP status 429 (Too Many Requests).

It is important to note that the preceding approaches are not the only possibilities. For example,

it may be possible for a TIPS server to use somewhat more clever logic involving TIPS view

eviction policies, IP reputation, rate-limiting, and compartmentalization of the overall threshold

into smaller thresholds that apply to subsets of potential clients. If service availability is a

concern, ALTO clients establish service level agreements with the ALTO server.

MAY

MAY

MAY

MAY

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 32

https://www.rfc-editor.org/rfc/rfc7285#section-15
https://www.rfc-editor.org/rfc/rfc7285#section-15.1
https://www.rfc-editor.org/rfc/rfc7285#section-15.4
https://www.rfc-editor.org/rfc/rfc7285#section-15.1.1

9.2. ALTO Client: Update Overloading or Instability

The availability of continuous updates can also cause overload for an ALTO client, in particular,

an ALTO client with limited processing capabilities. The current design does not include any flow

control mechanisms for the client to reduce the update rates from the server. For example, TCP,

HTTP/2, and QUIC provide stream and connection flow control data limits, which might help

prevent the client from being overloaded. Under overloading, the client choose to remove

the information resources with high update rates.

Also, under overloading, the client may no longer be able to detect whether information is still

fresh or has become stale. In such a case, the client should be careful in how it uses the

information to avoid stability or efficiency issues.

MAY

10. IANA Considerations

IANA has registered the following media types from the registry available at :

application/alto-tips+json: as described in Section 6.2;

application/alto-tipsparams+json: as described in Section 6.1;

[IANA-Media-Type]

•

•

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

10.1. application/alto-tips+json Media Type

application

alto-tips+json

N/A

N/A

Encoding considerations are identical to those specified for the

"application/json" media type. See .

See the Security Considerations section of RFC 9569.

N/A

Section 6.2 of RFC 9569.

ALTO servers and ALTO clients either stand alone or are

embedded within other applications.

N/A

N/A

N/A

[RFC8259]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 33

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

RFC 9569 uses the media type to refer to protocol messages; thus, it does

not require a file extension.

N/A

See the Authors' Addresses section of RFC 9569.

COMMON

N/A

See the Authors' Addresses section of RFC 9569.

Internet Engineering Task Force (iesg@ietf.org).

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

10.2. application/alto-tipsparams+json Media Type

application

alto-tipsparams+json

N/A

N/A

Encoding considerations are identical to those specified for the

"application/json" media type. See .

See the Security Considerations section of RFC 9569.

N/A

Section 6.1 of RFC 9569.

ALTO servers and ALTO clients either stand alone or are

embedded within other applications.

N/A

N/A

N/A

This document uses the media type to refer to protocol messages; thus, it

does not require a file extension.

N/A

See the Authors' Addresses section of RFC 9569.

COMMON

N/A

[RFC8259]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 34

[RFC2119]

[RFC3986]

[RFC7285]

[RFC8174]

[RFC8259]

[RFC8895]

[RFC9112]

[RFC9113]

[RFC9114]

[RFC9325]

11. References

11.1. Normative References

, , ,

, , March 1997,

.

, , and ,

, , , , January 2005,

.

, , , , , ,

, and ,

, , , September 2014,

.

, ,

, , , May 2017,

.

, ,

, , , December 2017,

.

 and ,

, ,

, November 2020, .

, , and , , ,

, , June 2022,

.

 and , , ,

, June 2022, .

, , , , June 2022,

.

, , and ,

,

, , , November 2022,

.

11.2. Informative References

Author:

Change controller:

See the Authors' Addresses section of RFC 9569.

Internet Engineering Task Force (iesg@ietf.org).

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Alimi, R., Ed. Penno, R., Ed. Yang, Y., Ed. Kiesel, S. Previdi, S. Roome, W.

Shalunov, S. R. Woundy "Application-Layer Traffic Optimization (ALTO)

Protocol" RFC 7285 DOI 10.17487/RFC7285 <https://www.rfc-

editor.org/info/rfc7285>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

Roome, W. Y. Yang "Application-Layer Traffic Optimization (ALTO)

Incremental Updates Using Server-Sent Events (SSE)" RFC 8895 DOI 10.17487/

RFC8895 <https://www.rfc-editor.org/info/rfc8895>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC

9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/

rfc9112>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/

RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Bishop, M., Ed. "HTTP/3" RFC 9114 DOI 10.17487/RFC9114 <https://

www.rfc-editor.org/info/rfc9114>

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"

BCP 195 RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-

editor.org/info/rfc9325>

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 35

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc7285
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8895
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325

[IANA-Media-Type]

[RFC4122]

[RFC7617]

[RFC9205]

, , .

, , and ,

, , , July 2005,

.

, , ,

, September 2015, .

, , , ,

, June 2022, .

IANA "Media Types" <https://www.iana.org/assignments/media-types>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN

Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-

editor.org/info/rfc4122>

Reschke, J. "The 'Basic' HTTP Authentication Scheme" RFC 7617 DOI 10.17487/

RFC7617 <https://www.rfc-editor.org/info/rfc7617>

Nottingham, M. "Building Protocols with HTTP" BCP 56 RFC 9205 DOI

10.17487/RFC9205 <https://www.rfc-editor.org/info/rfc9205>

(R1):

(R2):

(R3):

Design 1 (Single):

Appendix A. A High-Level Deployment Model

Conceptually, the TIPS system consists of three types of resources:

The TIPS frontend to create TIPS views.

The TIPS view directory, which provides metadata (e.g., references) about the network

resource data.

The actual network resource data, encoded as complete ALTO network resources (e.g., a

cost map or a network map) or incremental updates.

Design Point: Component Resource Location

Figure 17: Sample TIPS Deployment Model

 +--+
 | |
 +------+ |R1: Frontend/Open R2: Directory/Meta R3: Data |
	"iget" base	+-----+ +-----+ +-----+						
	resource 1							
	-------------	---->						
	incremental					-------->		
	transfer							
	resource							
	<------------	-----------------------						
Client				+-----+ +-----+				
	"iget" base							
	resource 2			+-----+ +-----+				
	-------------	---->						
	incremental							
	transfer	+-----+		------->				
	resource							
	<------------	-----------------------						
 +------+ | +-----+ +-----+ |
 | |
 +--+

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 36

https://www.iana.org/assignments/media-types
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc9205

Design 2 (Flexible):

Design 3 (Dir + Data):

all the three resource types at the same single server (accessed via relative reference).

all three resource types can be at their own server (accessed via absolute

reference).

R2 and R3 must remain together, though R1 might not be on the same

server.

This document supports Designs 1 and 3. For Design 1, the ALTO server simply needs to always

use the same host for the TIPS views. For Design 3, the ALTO server can set tips-view-host to a

different server. Note that the deployment flexibility is at the logical level, as these services can

be distinguished by different paths and potentially be routed to different physical servers by

Layer 7 load balancing. See Section 8.1 for a discussion on load balancing considerations. Future

documents may extend the protocol to support Design 2.

Appendix B. Conformance with "Building Protocols with

HTTP" (RFC 9205) Best Current Practices

This specification adheres fully to as further elaborated below:

TIPS does not (as described in):

...redefine, refine, or overlay the semantics of generic protocol elements such as

methods, status codes, or existing header fields.

and instead focuses on

...protocol elements that are specific to [the TIPS] application -- namely, [its] HTTP

resources.

There are no statically defined URI components ().

No minimum version of HTTP is specified by TIPS, which is recommended (in

).

The TIPS design follows the advice (in) that:

When specifying examples of protocol interactions, applications should document both

the request and response messages with complete header sections, preferably in HTTP/

1.1 format...

TIPS uses URI templates, which is recommended (in).

TIPS follows the pattern (in) that:

[RFC9205]

• Section 3.1 of [RFC9205]

• Section 3.2 of [RFC9205]

• Section 4.1 of

[RFC9205]

• Section 4.1 of [RFC9205]

• Section 4.2 of [RFC9205]

• Section 4.4.1 of [RFC9205]

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 37

https://www.rfc-editor.org/rfc/rfc9205#section-3.1
https://www.rfc-editor.org/rfc/rfc9205#section-3.2
https://www.rfc-editor.org/rfc/rfc9205#section-4.1
https://www.rfc-editor.org/rfc/rfc9205#section-4.1
https://www.rfc-editor.org/rfc/rfc9205#section-4.2
https://www.rfc-editor.org/rfc/rfc9205#section-4.4.1

Generally, a client will begin interacting with a given application server by requesting

an initial document that contains information about that particular deployment,

potentially including links to other relevant resources. Doing so ensures that the

deployment is as flexible as possible (potentially spanning multiple servers), allows

evolution, and also gives the application the opportunity to tailor the "discovery

document" to the client.

TIPS uses existing HTTP schemes ().

TIPS defines its errors "to use the most applicable status code" ().

TIPS does not (as in):

...make assumptions about the relationship between separate requests on a single

transport connection; doing so breaks many of the assumptions of HTTP as a stateless

protocol and will cause problems in interoperability, security, operability, and evolution.

The only relationship between requests is that a client must first discover where a TIPS view

of a resource will be served, which is consistent with the URI discovery in

.

• Section 4.4.2 of [RFC9205]

• Section 4.6 of [RFC9205]

• Section 4.11 of [RFC9205]

Section 4.4.1 of

[RFC9205]

Appendix C. Push-Mode TIPS Using HTTP Server Push

TIPS allows ALTO clients to subscribe to incremental updates of an ALTO resource, and the

specification in this document is based on the current best practice of building such a service

using basic HTTP. Earlier versions of this document had investigated the possibility of enabling

push-mode TIPS (i.e., by taking advantage of the server push feature in HTTP/2 and HTTP/3).

In the ideal case, push-mode TIPS can potentially improve performance (e.g., latency) in more

dynamic environments and use cases with wait-free message delivery. Using the built-in HTTP

server push also results in minimal changes to the current protocol. While not adopted due to the

lack of server push support and increased protocol complexity, push-mode TIPS remains a

potential direction of protocol improvement.

Appendix D. Persistent HTTP Connections

Previous draft versions of this document use persistent HTTP connections to detect the liveness

of clients. However, this design does not conform well with the best current practices of HTTP.

For example, if an ALTO client is accessing a TIPS view over an HTTP proxy, the connection is not

established directly between the ALTO client and the ALTO server, but between the ALTO client

and the proxy and between the proxy and the ALTO server. Thus, using persistent connections

may not correctly detect the right liveness state.

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 38

https://www.rfc-editor.org/rfc/rfc9205#section-4.4.2
https://www.rfc-editor.org/rfc/rfc9205#section-4.6
https://www.rfc-editor.org/rfc/rfc9205#section-4.11
https://www.rfc-editor.org/rfc/rfc9205#section-4.4.1

Acknowledgments

The authors of this document would like to thank and for

providing invaluable reviews of earlier draft versions of this document; , ,

and for their continuous feedback; , ,

, , , , and for the directorate

reviews; for the area director review; , ,

, , and for the telechat and IESG reviews; and

 for shepherding the document.

Mark Nottingham Spencer Dawkins

Adrian Farrel Qin Wu

Jordi Ros Giralt Russ White Donald Eastlake 3rd Martin

Thomson Bernard Adoba Spencer Dawkins Linda Dunbar Sheng Jiang

Martin Duke Francesca Palombini Wesley Eddy Roman

Danyliw Murray Kucherawy Zaheduzzaman Sarker

Mohamed Boucadair

Authors' Addresses

Kai Gao

Sichuan University

No.24 South Section 1, Yihuan Road

Chengdu

610000

China

 kaigao@scu.edu.cn Email:

Roland Schott

Deutsche Telekom

Ida-Rhodes-Straße 2

 64295 Darmstadt

Germany

 Roland.Schott@telekom.de Email:

Yang Richard Yang

Yale University

51 Prospect Street

, New Haven CT 06511

United States of America

 yry@cs.yale.edu Email:

Lauren Delwiche

Yale University

51 Prospect Street

, New Haven CT 06511

United States of America

 lauren.delwiche@yale.edu Email:

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 39

mailto:kaigao@scu.edu.cn
mailto:Roland.Schott@telekom.de
mailto:yry@cs.yale.edu
mailto:lauren.delwiche@yale.edu

Lachlan Keller

Yale University

51 Prospect Street

, New Haven CT 06511

United States of America

 lachlan.keller@yale.edu Email:

RFC 9569 ALTO TIPS May 2024

Gao, et al. Standards Track Page 40

mailto:lachlan.keller@yale.edu

	RFC 9569
	The Application-Layer Traffic Optimization (ALTO) Transport Information Publication Service (TIPS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Notations

	2. TIPS Overview
	2.1. Transport Requirements
	2.2. TIPS Terminology

	3. TIPS Updates Graph
	3.1. Basic Data Model of an Updates Graph
	3.2. Updates Graph Modification Invariants

	4. TIPS Workflow and Resource Location Schema
	4.1. Workflow
	4.2. Resource Location Schema

	5. TIPS Information Resource Directory (IRD) Announcement
	5.1. Media Type
	5.2. Capabilities
	5.3. Uses
	5.4. An Example

	6. TIPS Management
	6.1. Open Request
	6.2. Open Response
	6.3. Open Example
	6.3.1. Basic Example
	6.3.2. Example Using Digest Authentication
	6.3.3. Example Using ALTO/SSE

	7. TIPS Data Transfers - Client Pull
	7.1. Request
	7.2. Response
	7.3. Example
	7.4. New Next Edge Recommendation
	7.4.1. Request
	7.4.2. Response
	7.4.3. Example

	8. Operation and Processing Considerations
	8.1. Considerations for Load Balancing
	8.2. Considerations for Cross-Resource Dependency Scheduling
	8.3. Considerations for Managing Shared TIPS Views
	8.4. Considerations for Offering Shortcut Incremental Updates

	9. Security Considerations
	9.1. TIPS: Denial-of-Service Attacks
	9.2. ALTO Client: Update Overloading or Instability

	10. IANA Considerations
	10.1. application/alto-tips+json Media Type
	10.2. application/alto-tipsparams+json Media Type

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. A High-Level Deployment Model
	Appendix B. Conformance with "Building Protocols with HTTP" (RFC 9205) Best Current Practices
	Appendix C. Push-Mode TIPS Using HTTP Server Push
	Appendix D. Persistent HTTP Connections
	Acknowledgments
	Authors' Addresses

