<?xml version='1.0'encoding='utf-8'?>encoding='UTF-8'?> <!-- 4/3/2024: SG updated the draft with the update described in https://github.com/cfrg/draft-irtf-cfrg-frost/pull/470 See related mail with subject: Re: Editorial Change to FROST draft --> <!DOCTYPE rfc [ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]><?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?> <!-- generated by https://github.com/cabo/kramdown-rfc version 1.6.39 (Ruby 3.2.2) --><rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902" docName="draft-irtf-cfrg-frost-15" number="9591" category="info" submissionType="IRTF" tocInclude="true" sortRefs="true" symRefs="true" consensus="true" xml:lang="en" updates="" obsoletes="" version="3"><!-- xml2rfc v2v3 conversion 3.18.0 --><front> <titleabbrev="FROST">Two-Roundabbrev="The FROST Protocol">The Flexible Round-Optimized Schnorr Threshold (FROST) Protocol for Two-Round SchnorrSignatures with FROST</title>Signatures</title> <seriesInfoname="Internet-Draft" value="draft-irtf-cfrg-frost-15"/>name="RFC" value="9591"/> <author initials="D." surname="Connolly" fullname="Deirdre Connolly"> <organization>Zcash Foundation</organization> <address> <email>durumcrustulum@gmail.com</email> </address> </author> <author initials="C." surname="Komlo" fullname="Chelsea Komlo"> <organization>University of Waterloo, Zcash Foundation</organization> <address> <email>ckomlo@uwaterloo.ca</email> </address> </author> <author initials="I." surname="Goldberg" fullname="Ian Goldberg"> <organization>University of Waterloo</organization> <address> <email>iang@uwaterloo.ca</email> </address> </author> <author initials="C. A." surname="Wood" fullname="Christopher A. Wood"> <organization>Cloudflare</organization> <address> <email>caw@heapingbits.net</email> </address> </author> <dateyear="2023" month="September" day="19"/> <area>General</area> <workgroup>CFRG</workgroup> <keyword>Internet-Draft</keyword>year="2024" month="June"/> <workgroup>Crypto Forum</workgroup> <abstract><?line 94?><t>This document specifies the Flexible Round-Optimized Schnorr Threshold (FROST) signing protocol. FROST signatures can be issued after a threshold number of entities cooperate to compute a signature, allowing for improved distribution of trust and redundancy with respect to a secret key. FROST depends only on a prime-order group and cryptographic hash function. This document specifies a number of ciphersuites to instantiate FROST using different prime-order groups and hash functions.One such ciphersuite can be used to produce signatures that can be verified with an Edwards-Curve Digital Signature Algorithm (EdDSA, as defined in RFC8032) compliant verifier. However, unlike EdDSA, the signatures produced by FROST are not deterministic.This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.</t> </abstract><note removeInRFC="true"> <name>Discussion Venues</name> <t>Discussion of this document takes place on the Crypto Forum Research Group mailing list (cfrg@ietf.org), which is archived at <eref target="https://mailarchive.ietf.org/arch/search/?email_list=cfrg"/>.</t> <t>Source for this draft and an issue tracker can be found at <eref target="https://github.com/cfrg/draft-irtf-cfrg-frost"/>.</t> </note></front> <middle><?line 106?><section anchor="introduction"> <name>Introduction</name><t>RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for this draft is maintained in GitHub. Suggested changes should be submitted as pull requests at https://github.com/cfrg/draft-irtf-cfrg-frost. Instructions are on that page as well.</t><t>Unlike signatures in a single-party setting, threshold signatures require cooperation among a threshold number of signingparticipantsparticipants, each holding a share of a common private key. The security of threshold schemes in general assumes that an adversary can corrupt strictly fewer than a threshold number of signer participants.</t> <t>This document specifies the Flexible Round-Optimized Schnorr Threshold (FROST) signing protocol based on the original work in <xref target="FROST20"/>. FROST reduces network overhead during threshold signing operations while employing a novel technique to protect against forgery attacks applicable to prior Schnorr-based threshold signature constructions. FROST requires two rounds to compute a signature. Single-round signing variants based on <xref target="FROST20"/> are out of scope.</t> <t>FROST depends only on a prime-order group and cryptographic hash function. This document specifies a number of ciphersuites to instantiate FROST using different prime-order groups and hash functions. Two ciphersuites can be used to produce signatures that are compatible with Edwards-Curve Digital Signature Algorithm (EdDSA) variants Ed25519 and Ed448 as specified in <xref target="RFC8032"/>, i.e., the signatures can be verified withan <xref target="RFC8032"/>a verifier that is compliantverifier.with <xref target="RFC8032"/>. However, unlike EdDSA, the signatures produced by FROST are not deterministic, since deriving nonces deterministically allows for a complete key-recovery attack inmulti-partymulti-party, discrete logarithm-based signatures.</t> <t>Key generation for FROST signing is out of scope for this document. However, for completeness, key generation with a trusted dealer is specified in <xref target="dep-dealer"/>.</t> <t>This document represents the consensus of the Crypto Forum Research Group (CFRG). It is not an IETF product and is not a standard.</t><t>RFC EDITOR: PLEASE REMOVE THE FOLLOWING SUB-SECTION</t> <section anchor="change-log"> <name>Change Log</name> <t>draft-13 and draft-14</t> <ul spacing="normal"> <li>Hash group public key into binding computation (#439)</li> <li>Finalize test vectors (#442)</li> </ul> <t>draft-12</t> <ul spacing="normal"> <li>Address RGLC feedback (#399, #396, #395, #394, #393, #384, #382, #397, #378, #376, #375, #374, #373, #371, #370, #369, #368, #367, #366, #364, #363, #362, #361, #359, #358, #357, #356, #354, #353, #352, #350, #349, #348, #347, #314)</li> <li>Fix bug in signature share serialization (#397)</li> <li>Fix various editorial issues (#385)</li> </ul> <t>draft-11</t> <ul spacing="normal"> <li>Update version string constant (#307)</li> <li>Make SerializeElement reject the identity element (#306)</li> <li>Make ciphersuite requirements explicit (#302)</li> <li>Fix various editorial issues (#303, #301, #299, #297)</li> </ul> <t>draft-10</t> <ul spacing="normal"> <li>Update version string constant (#296)</li> <li>Fix some editorial issues from Ian Goldberg (#295)</li> </ul> <t>draft-09</t> <ul spacing="normal"> <li>Add single-signer signature generation to complement RFC8032 functions (#293)</li> <li>Address Thomas Pornin review comments from https://mailarchive.ietf.org/arch/msg/crypto-panel/bPyYzwtHlCj00g8YF1tjj-iYP2c/ (#292, #291, #290, #289, #287, #286, #285, #282, #281, #280, #279, #278, #277, #276, #275, #273, #272, #267)</li> <li>Correct Ed448 ciphersuite (#246)</li> <li>Various editorial changes (#241, #240)</li> </ul> <t>draft-08</t> <ul spacing="normal"> <li>Add notation for Scalar multiplication (#237)</li> <li>Add secp2561k1 ciphersuite (#223)</li> <li>Remove RandomScalar implementation details (#231)</li> <li>Add domain separation for message and commitment digests (#228)</li> </ul> <t>draft-07</t> <ul spacing="normal"> <li>Fix bug in per-rho signer computation (#222)</li> </ul> <t>draft-06</t> <ul spacing="normal"> <li>Make verification a per-ciphersuite functionality (#219)</li> <li>Use per-signer values of rho to mitigate protocol malleability (#217)</li> <li>Correct prime-order subgroup checks (#215, #211)</li> <li>Fix bug in ed25519 ciphersuite description (#205)</li> <li>Various editorial improvements (#208, #209, #210, #218)</li> </ul> <t>draft-05</t> <ul spacing="normal"> <li>Update test vectors to include version string (#202, #203)</li> <li>Rename THRESHOLD_LIMIT to MIN_PARTICIPANTS (#192)</li> <li>Use non-contiguous signers for the test vectors (#187)</li> <li>Add more reasoning why the coordinator MUST abort (#183)</li> <li>Add a function to generate nonces (#182)</li> <li>Add MUST that all participants have the same view of VSS commitment (#174)</li> <li>Use THRESHOLD_LIMIT instead of t and MAX_PARTICIPANTS instead of n (#171)</li> <li>Specify what the dealer is trusted to do (#166)</li> <li>Clarify types of NUM_PARTICIPANTS and THRESHOLD_LIMIT (#165)</li> <li>Assert that the network channel used for signing should be authenticated (#163)</li> <li>Remove wire format section (#156)</li> <li>Update group commitment derivation to have a single scalarmul (#150)</li> <li>Use RandomNonzeroScalar for single-party Schnorr example (#148)</li> <li>Fix group notation and clarify member functions (#145)</li> <li>Update existing implementations table (#136)</li> <li>Various editorial improvements (#135, #143, #147, #149, #153, #158, #162, #167, #168, #169, #170, #175, #176, #177, #178, #184, #186, #193, #198, #199)</li> </ul> <t>draft-04</t> <ul spacing="normal"> <li>Added methods to verify VSS commitments and derive group info (#126, #132).</li> <li>Changed check for participants to consider only nonnegative numbers (#133).</li> <li>Changed sampling for secrets and coefficients to allow the zero element (#130).</li> <li>Split test vectors into separate files (#129)</li> <li>Update wire structs to remove commitment shares where not necessary (#128)</li> <li>Add failure checks (#127)</li> <li>Update group info to include each participant's key and clarify how public key material is obtained (#120, #121).</li> <li>Define cofactor checks for verification (#118)</li> <li>Various editorial improvements and add contributors (#124, #123, #119, #116, #113, #109)</li> </ul> <t>draft-03</t> <ul spacing="normal"> <li>Refactor the second round to use state from the first round (#94).</li> <li>Ensure that verification of signature shares from the second round uses commitments from the first round (#94).</li> <li>Clarify RFC8032 interoperability based on PureEdDSA (#86).</li> <li>Specify signature serialization based on element and scalar serialization (#85).</li> <li>Fix hash function domain separation formatting (#83).</li> <li>Make trusted dealer key generation deterministic (#104).</li> <li>Add additional constraints on participant indexes and nonce usage (#105, #103, #98, #97).</li> <li>Apply various editorial improvements.</li> </ul> <t>draft-02</t> <ul spacing="normal"> <li>Fully specify both rounds of FROST, as well as trusted dealer key generation.</li> <li>Add ciphersuites and corresponding test vectors, including suites for RFC8032 compatibility.</li> <li>Refactor document for editorial clarity.</li> </ul> <t>draft-01</t> <ul spacing="normal"> <li>Specify operations, notation and cryptographic dependencies.</li> </ul> <t>draft-00</t> <ul spacing="normal"> <li>Outline CFRG draft based on draft-komlo-frost.</li> </ul> </section></section> <section anchor="conventions-and-definitions"> <name>Conventions and Definitions</name><t>The<t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described inBCP 14BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shown here.<?line -6?></t> <t>The following notation is used throughout the document.</t><ul<dl spacing="normal"><li>byte: A<dt>byte:</dt><dd>A sequence of eightbits.</li> <li> <tt>random_bytes(n)</tt>: Outputsbits.</dd> <dt> <tt>random_bytes(n)</tt>:</dt><dd>Outputs <tt>n</tt> bytes, sampled uniformly at random using a cryptographically secure pseudorandom number generator(CSPRNG).</li> <li>(CSPRNG).</dd> <dt> <tt>count(i,L)</tt>: OutputsL)</tt>:</dt><dd>Outputs the number of times the element <tt>i</tt> is represented in the list<tt>L</tt>.</li> <li> <tt>len(l)</tt>: Outputs<tt>L</tt>.</dd> <dt> <tt>len(l)</tt>:</dt><dd>Outputs the length of list <tt>l</tt>, e.g., <tt>len([1,2,3]) =3</tt>.</li> <li> <tt>reverse(l)</tt>: Outputs3</tt>.</dd> <dt> <tt>reverse(l)</tt>:</dt><dd>Outputs the list <tt>l</tt> in reverse order, e.g., <tt>reverse([1,2,3]) =[3,2,1]</tt>.</li> <li>[3,2,1]</tt>.</dd> <dt> <tt>range(a,b)</tt>: Outputsb)</tt>:</dt><dd>Outputs a list of integers from <tt>a</tt> to <tt>b-1</tt> in ascending order, e.g., <tt>range(1, 4) =[1,2,3]</tt>.</li> <li>[1,2,3]</tt>.</dd> <dt> <tt>pow(a,b)</tt>: Outputsb)</tt>:</dt><dd>Outputs the result, a Scalar, of <tt>a</tt> to the power of <tt>b</tt>, e.g., <tt>pow(2, 3) = 8</tt> modulo the relevant group order<tt>p</tt>.</li> <li>|| denotes<tt>p</tt>.</dd> <dt>||:</dt><dd>Denotes concatenation of byte strings, i.e., <tt>x || y</tt> denotes the byte string <tt>x</tt>, immediately followed by the byte string <tt>y</tt>, with no extra separator, yielding<tt>xy</tt>.</li> <li>nil denotes<tt>xy</tt>.</dd> <dt>nil:</dt><dd>Denotes an empty bytestring.</li> </ul>string.</dd> </dl> <t>Unless otherwise stated, we assume that secrets are sampled uniformly at random using acryptographically secure pseudorandom number generator (CSPRNG);CSPRNG; see <xref target="RFC4086"/> for additional guidance on the generation of random numbers.</t> </section> <section anchor="cryptographic-dependencies"> <name>Cryptographic Dependencies</name> <t>FROST signing depends on the following cryptographic constructs:</t> <ul spacing="normal"> <li>Prime-orderGroup, <xref target="dep-pog"/>;</li>group (<xref target="dep-pog"/>)</li> <li>Cryptographic hashfunction, <xref target="dep-hash"/>;</li>function (<xref target="dep-hash"/>)</li> </ul><t>These are described in the<t>The followingsections.</t>sections describe these constructs in more detail.</t> <section anchor="dep-pog"> <name>Prime-Order Group</name> <t>FROST depends on an abelian group of prime order <tt>p</tt>. We represent this group as the object <tt>G</tt> that additionally defines helper functions described below. The group operation for <tt>G</tt> is addition <tt>+</tt> with identity element <tt>I</tt>. For any elements <tt>A</tt> and <tt>B</tt> of the group <tt>G</tt>, <tt>A + B = B + A</tt> is also a member of <tt>G</tt>. Also, for any <tt>A</tt> in <tt>G</tt>, there exists an element <tt>-A</tt> such that <tt>A + (-A) = (-A) + A = I</tt>. For convenience, we use <tt>-</tt> to denote subtraction, e.g., <tt>A - B = A + (-B)</tt>. Integers, taken modulo the group order <tt>p</tt>, are calledscalars;"Scalars"; arithmetic operations onscalarsScalars are implicitly performed modulo <tt>p</tt>. Since <tt>p</tt> is prime,scalarsScalars form a finite field. Scalar multiplication is equivalent to the repeated application of the group operation on an element <tt>A</tt> with itself <tt>r-1</tt> times, denoted as <tt>ScalarMult(A, r)</tt>. We denote the sum, difference, and product of twoscalarsScalars using the <tt>+</tt>, <tt>-</tt>, and <tt>*</tt> operators, respectively. (Note that this means <tt>+</tt> may refer to group element addition orscalarScalar addition, depending on the type of the operands.) For any element <tt>A</tt>, <tt>ScalarMult(A, p) = I</tt>. We denote <tt>B</tt> as a fixed generator of the group. Scalar base multiplication is equivalent to the repeated application of the group operation on <tt>B</tt> with itself <tt>r-1</tt> times,this isdenoted as <tt>ScalarBaseMult(r)</tt>. The set ofscalarsScalars corresponds to <tt>GF(p)</tt>, which we refer to as thescalarScalar field. It is assumed that group element addition, negation, and equality comparison can be efficiently computed for arbitrary group elements.</t> <t>This document uses types <tt>Element</tt> and <tt>Scalar</tt> to denote elements of the group <tt>G</tt> and its set ofscalars,Scalars, respectively. We denote Scalar(x) as the conversion of integer input <tt>x</tt> to the corresponding Scalar value with the same numeric value. For example, Scalar(1) yields a Scalar representing the value 1. Moreover, we use the type <tt>NonZeroScalar</tt> to denote a <tt>Scalar</tt> value that is not equal to zero, i.e., Scalar(0). We denote equality comparison of these types as <tt>==</tt> and assignment of values by <tt>=</tt>. When comparing Scalar values, e.g., for the purposes of sorting lists of Scalar values, the least nonnegative representation mod <tt>p</tt> is used.</t> <t>We now detail a number of member functions that can be invoked on <tt>G</tt>.</t><ul<dl spacing="normal"><li>Order(): Outputs<dt>Order():</dt><dd>Outputs the order of <tt>G</tt> (i.e.,<tt>p</tt>).</li> <li>Identity(): Outputs<tt>p</tt>).</dd> <dt>Identity():</dt><dd>Outputs the identity <tt>Element</tt> of the group (i.e.,<tt>I</tt>).</li> <li>RandomScalar(): Outputs<tt>I</tt>).</dd> <dt>RandomScalar():</dt><dd>Outputs a random <tt>Scalar</tt> element in GF(p), i.e., a randomscalarScalar in [0, p -1].</li> <li>ScalarMult(A, k): Outputs1].</dd> <dt>ScalarMult(A, k):</dt><dd>Outputs thescalarScalar multiplication between Element <tt>A</tt> and Scalar<tt>k</tt>.</li> <li>ScalarBaseMult(k): Outputs<tt>k</tt>.</dd> <dt>ScalarBaseMult(k):</dt><dd>Outputs thescalarScalar multiplication between Scalar <tt>k</tt> and the group generator<tt>B</tt>.</li> <li>SerializeElement(A): Maps<tt>B</tt>.</dd> <dt>SerializeElement(A):</dt><dd>Maps an <tt>Element</tt> <tt>A</tt> to a canonical byte array <tt>buf</tt> of fixed length <tt>Ne</tt>. This function raises an error if <tt>A</tt> is the identity element of thegroup.</li> <li>DeserializeElement(buf): Attemptsgroup.</dd> <dt>DeserializeElement(buf):</dt><dd>Attempts to map a byte array <tt>buf</tt> to an <tt>Element</tt><tt>A</tt>,<tt>A</tt> and fails if the input is not the valid canonical byte representation of an element of the group. This function raises an error if deserialization fails or if <tt>A</tt> is the identity element of the group; see <xref target="ciphersuites"/> for group-specific input validationsteps.</li> <li>SerializeScalar(s): Mapssteps.</dd> <dt>SerializeScalar(s):</dt><dd>Maps a Scalar <tt>s</tt> to a canonical byte array <tt>buf</tt> of fixed length<tt>Ns</tt>.</li> <li>DeserializeScalar(buf): Attempts<tt>Ns</tt>.</dd> <dt>DeserializeScalar(buf):</dt><dd>Attempts to map a byte array <tt>buf</tt> to a <tt>Scalar</tt> <tt>s</tt>. This function raises an error if deserialization fails; see <xref target="ciphersuites"/> for group-specific input validationsteps.</li> </ul>steps.</dd> </dl> </section> <section anchor="dep-hash"> <name>Cryptographic Hash Function</name> <t>FROST requires the use of a cryptographically secure hash function, generically written as H, which is modeled as a random oracle in security proofs for the protocol (see <xref target="FROST20"/> and <xref target="StrongerSec22"/>). For concrete recommendations on hash functionswhich SHOULDthat <bcp14>SHOULD</bcp14> be used in practice, see <xref target="ciphersuites"/>. Using H, we introduce distinct domain-separatedhashes,hashes H1, H2, H3, H4, and H5:</t> <ul spacing="normal"> <li>H1, H2, and H3 map arbitrary byte strings to Scalar elements associated with the prime-order group.</li> <li>H4 and H5 are aliases for H with distinct domain separators.</li> </ul> <t>The details of H1, H2, H3, H4, and H5 vary based onciphersuite.the ciphersuite used. See <xref target="ciphersuites"/> for more details about each.</t> </section> </section> <section anchor="helpers"> <name>Helper Functions</name> <t>Beyond the core dependencies, the protocol in this document depends on the following helper operations:</t> <ul spacing="normal"> <li>Noncegeneration, <xref target="dep-nonces"/>;</li> <li>Polynomials, <xref target="dep-polynomial"/>;</li> <li>Encoding operations, <xref target="dep-encoding"/>;</li> <li>Signature bindinggeneration (<xref target="dep-nonces"/>);</li> <li>Polynomials (<xref target="dep-polynomial"/>);</li> <li>List operations (<xref target="dep-encoding"/>);</li> <li>Binding factors computation<xref target="dep-binding-factor"/>;</li>(<xref target="dep-binding-factor"/>);</li> <li>Group commitment computation<xref target="dep-group-commit"/>;(<xref target="dep-group-commit"/>); and</li> <li>Signature challenge computation<xref target="dep-sig-challenge"/>.</li>(<xref target="dep-sig-challenge"/>).</li> </ul> <t>The following sections describe these operations in more detail.</t> <section anchor="dep-nonces"> <name>Noncegeneration</name>Generation</name> <t>To hedge against a badRNGrandom number generator (RNG) that outputs predictable values, nonces are generated with the <tt>nonce_generate</tt> function by combining fresh randomness with the secret key as input to a domain-separated hash function built from the ciphersuite hash function <tt>H</tt>. This domain-separated hash function is denoted as <tt>H3</tt>. This function always samples 32 bytes of fresh randomness to ensure that the probability of nonce reuse is at most 2<sup>-128</sup> as long as no more than 2<sup>64</sup> signatures are computed by a given signing participant.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - secret, a Scalar. Outputs: - nonce, a Scalar. def nonce_generate(secret): random_bytes = random_bytes(32) secret_enc = G.SerializeScalar(secret) return H3(random_bytes || secret_enc)]]></artwork>]]></sourcecode> </section> <section anchor="dep-polynomial"> <name>Polynomials</name> <t>This section defines polynomials over Scalars that are used in the main protocol. A polynomial of maximum degree t is represented as a list of t+1 coefficients, where the constant term of the polynomial is in the first position and the highest-degree coefficient is in the last position. For example, the polynomial<tt>x^2<tt>x<sup>2</sup> + 2x + 3</tt> has degree 2 and is represented as a list of3three coefficients <tt>[3, 2, 1]</tt>. A point on the polynomial <tt>f</tt> is a tuple (x, y), where <tt>y = f(x)</tt>.</t> <t>The function <tt>derive_interpolating_value</tt> derives a value that is used for polynomial interpolation. It is provided a list of x-coordinates as input, each of which cannot equal 0.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - L, the list of x-coordinates, each a NonZeroScalar. - x_i, an x-coordinate contained in L, a NonZeroScalar. Outputs: - value, a Scalar. Errors: - "invalid parameters", if 1) x_i is not in L, or if 2) any x-coordinate is represented more than once in L. def derive_interpolating_value(L, x_i): if x_i not in L: raise "invalid parameters" for x_j in L: if count(x_j, L) > 1: raise "invalid parameters" numerator = Scalar(1) denominator = Scalar(1) for x_j in L: if x_j == x_i: continue numerator *= x_j denominator *= x_j - x_i value = numerator / denominator return value]]></artwork>]]></sourcecode> </section> <section anchor="dep-encoding"> <name>List Operations</name> <t>This section describes helper functions that work on lists of values produced during the FROST protocol. The following function encodes a list of participant commitments into a byte string for use in the FROST protocol.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of commitments issued by each participant, where each element in the list indicates a NonZeroScalar identifier i and two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i). This list MUST be sorted in ascending order by identifier. Outputs: - encoded_group_commitment, the serialized representation of commitment_list, a byte string. def encode_group_commitment_list(commitment_list): encoded_group_commitment = nil for (identifier, hiding_nonce_commitment, binding_nonce_commitment) in commitment_list: encoded_commitment = ( G.SerializeScalar(identifier) || G.SerializeElement(hiding_nonce_commitment) || G.SerializeElement(binding_nonce_commitment)) encoded_group_commitment = ( encoded_group_commitment || encoded_commitment) return encoded_group_commitment]]></artwork>]]></sourcecode> <t>The following function is used to extract identifiers from a commitment list.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of commitments issued by each participant, where each element in the list indicates a NonZeroScalar identifier i and two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i). This list MUST be sorted in ascending order by identifier. Outputs: - identifiers, a list of NonZeroScalar values. def participants_from_commitment_list(commitment_list): identifiers = [] for (identifier, _, _) in commitment_list: identifiers.append(identifier) return identifiers]]></artwork> <t>The]]></sourcecode> <t keepWithNext="true">The following function is used to extract a binding factor from a list of binding factors.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - binding_factor_list = [(i, binding_factor), ...], a list of binding factors for each participant, where each element in the list indicates a NonZeroScalar identifier i and Scalar binding factor. - identifier, participant identifier, a NonZeroScalar. Outputs: - binding_factor, a Scalar. Errors: - "invalid participant", when the designated participant is not known. def binding_factor_for_participant(binding_factor_list, identifier): for (i, binding_factor) in binding_factor_list: if identifier == i: return binding_factor raise "invalid participant"]]></artwork>]]></sourcecode> </section> <section anchor="dep-binding-factor"> <name>Binding Factors Computation</name> <t>This section describes the subroutine for computing binding factors based on the participant commitment list, message to be signed, and group public key.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - group_public_key, the public key corresponding to the group signing key, an Element. - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of commitments issued by each participant, where each element in the list indicates a NonZeroScalar identifier i and two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i). This list MUST be sorted in ascending order by identifier. - msg, the message to be signed. Outputs: - binding_factor_list, a list of (NonZeroScalar, Scalar) tuples representing the binding factors. def compute_binding_factors(group_public_key, commitment_list, msg): group_public_key_enc = G.SerializeElement(group_public_key) // Hashed to afixed-length.fixed length. msg_hash = H4(msg) // Hashed to afixed-length.fixed length. encoded_commitment_hash = H5(encode_group_commitment_list(commitment_list)) // The encoding of the group public key is a fixed length // within a ciphersuite. rho_input_prefix = group_public_key_enc || msg_hash || encoded_commitment_hash binding_factor_list = [] for (identifier, hiding_nonce_commitment, binding_nonce_commitment) in commitment_list: rho_input = rho_input_prefix || G.SerializeScalar(identifier) binding_factor = H1(rho_input) binding_factor_list.append((identifier, binding_factor)) return binding_factor_list]]></artwork>]]></sourcecode> </section> <section anchor="dep-group-commit"> <name>Group Commitment Computation</name> <t>This section describes the subroutine for creating the group commitment from a commitment list.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of commitments issued by each participant, where each element in the list indicates a NonZeroScalar identifier i and two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i). This list MUST be sorted in ascending order by identifier. - binding_factor_list = [(i, binding_factor), ...], a list of (NonZeroScalar, Scalar) tuples representing the binding factor Scalar for the given identifier. Outputs: - group_commitment, an Element. def compute_group_commitment(commitment_list, binding_factor_list): group_commitment = G.Identity() for (identifier, hiding_nonce_commitment, binding_nonce_commitment) in commitment_list: binding_factor = binding_factor_for_participant( binding_factor_list, identifier) binding_nonce = G.ScalarMult( binding_nonce_commitment, binding_factor) group_commitment = ( group_commitment + hiding_nonce_commitment + binding_nonce) return group_commitment]]></artwork>]]></sourcecode> <t>Note that the performance of this algorithm is defined naively and scales linearly relative to the number of signers. For improved performance, the group commitment can be computed usingmulti-exponentationmulti-exponentiation techniques such as Pippinger's algorithm; see <xref target="MultExp"/> for more details.</t> </section> <section anchor="dep-sig-challenge"> <name>Signature Challenge Computation</name> <t>This section describes the subroutine for creating the per-message challenge.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - group_commitment, the group commitment, an Element. - group_public_key, the public key corresponding to the group signing key, an Element. - msg, the message to be signed, a byte string. Outputs: - challenge, a Scalar. def compute_challenge(group_commitment, group_public_key, msg): group_comm_enc = G.SerializeElement(group_commitment) group_public_key_enc = G.SerializeElement(group_public_key) challenge_input = group_comm_enc || group_public_key_enc || msg challenge = H2(challenge_input) return challenge]]></artwork>]]></sourcecode> </section> </section> <section anchor="frost-spec"> <name>Two-Round FROST Signing Protocol</name> <t>This section describes the two-round FROST signing protocol for producing Schnorr signatures. The protocol is configured to run with a selection of <tt>NUM_PARTICIPANTS</tt> signer participants and a Coordinator. <tt>NUM_PARTICIPANTS</tt> is a positive and non-zero integerwhich MUSTthat <bcp14>MUST</bcp14> be at least<tt>MIN_PARTICIPANTS</tt><tt>MIN_PARTICIPANTS</tt>, butMUST NOT<bcp14>MUST NOT</bcp14> be larger than <tt>MAX_PARTICIPANTS</tt>, where <tt>MIN_PARTICIPANTS <=MAX_PARTICIPANTS</tt>,MAX_PARTICIPANTS</tt> and <tt>MIN_PARTICIPANTS</tt> is a positivenon-zero integerand non-zero integer. Additionally, <tt>MAX_PARTICIPANTS</tt>MUST<bcp14>MUST</bcp14> be a positive integer less than the group order. A signer participant, or simplyparticipant,"participant", is an entity that is trusted to hold and use a signing key share. The Coordinator is an entity with the following responsibilities:</t> <ol spacing="normal" type="1"><li>Determiningwhichthe participants that will participate (at least MIN_PARTICIPANTS in number);</li> <li>Coordinating rounds (receiving and forwarding inputs amongparticipants); and</li>participants);</li> <li>Aggregating signature shares output by eachparticipant, and publishingparticipant; and</li> <li>Publishing the resulting signature.</li> </ol> <t>FROST assumes that the Coordinator and the set of signer participants are chosen externally to the protocol. Note that it is possible to deploy the protocol without designating a single Coordinator; see <xref target="no-coordinator"/> for more information.</t> <t>FROST produces signatures that can be verified as if they were produced from a single signer using a signing key <tt>s</tt> with corresponding public key <tt>PK</tt>, where <tt>s</tt> is a Scalar value and <tt>PK = G.ScalarBaseMult(s)</tt>. As a threshold signing protocol, the group signing key <tt>s</tt> is Shamir secret-shared amongst each of the <tt>MAX_PARTICIPANTS</tt> participants and is used to produce signatures; see <xref target="dep-shamir"/> for more information about Shamir secret sharing. In particular, FROST assumes each participant is configured with the following information:</t> <ul spacing="normal"> <li>An identifier, which is a NonZeroScalar value denoted as <tt>i</tt> in the range <tt>[1, MAX_PARTICIPANTS]</tt> andMUST<bcp14>MUST</bcp14> be distinct from the identifier of every other participant.</li> <li>A signing key <tt>sk_i</tt>, which is a Scalar value representing the i-th Shamir secret share of the group signing key <tt>s</tt>. In particular, <tt>sk_i</tt> is the value <tt>f(i)</tt> on a secret polynomial <tt>f</tt> of degree <tt>(MIN_PARTICIPANTS - 1)</tt>, where <tt>s</tt> is <tt>f(0)</tt>. The public key corresponding to this signing key share is <tt>PK_i = G.ScalarBaseMult(sk_i)</tt>.</li> </ul><t>The<t>Additionally, the Coordinator and each participant areadditionallyconfigured with common group information, denoted as "group info," which consists of the following:</t> <ul spacing="normal"> <li>Group public key, which is an <tt>Element</tt> in <tt>G</tt> denoted as <tt>PK</tt>.</li> <li>Public keys <tt>PK_i</tt> for each participant, which are <tt>Element</tt> values in <tt>G</tt> denoted as <tt>PK_i</tt> for each <tt>i</tt> in <tt>[1, MAX_PARTICIPANTS]</tt>.</li> </ul> <t>This document does not specify how this information, including the signing key shares, are configured and distributed to participants. In general, twopossibleconfiguration mechanisms are possible: one that requires asingle,single trusteddealer,dealer andthe other whichone that requires performing a distributed key generation protocol. We highlight the key generation mechanism by a trusted dealer in <xref target="dep-dealer"/> for reference.</t> <t>FROST requires two rounds to complete. In the first round, participants generate and publish one-time-use commitments to be used in the second round. In the second round, each participant produces a share of the signature over the Coordinator-chosen message and the other participant commitments. After the second roundcompletes,is completed, the Coordinator aggregates the signature shares to produce a final signature. The CoordinatorSHOULD<bcp14>SHOULD</bcp14> abort the protocol if the signature is invalid; see <xref target="abort"/> for more information about dealing with invalid signatures and misbehaving participants. This completeinteraction, without abort,interaction (without being aborted) is shown in <xref target="fig-frost"/>.</t> <figure anchor="fig-frost"> <name>FROSTprotocol overview</name>Protocol Overview</name> <artwork><![CDATA[ (group info) (group info, (group info, | signing key share) signing key share) | | | v v v Coordinator Signer-1 ... Signer-n ------------------------------------------------------------messagesigning request ------------> | == Round 1 (Commitment) == | participant commitment | | |<-----------------------+ | | ... | | participant commitment (commit state) ==\ |<-----------------------------------------+ | | == Round 2 (Signature Share Generation) == | message ------------> | | | participant input | | | +------------------------> | | | signature share | | | |<-----------------------+ | | | ... | | | participant input | | +------------------------------------------> / | signature share |<=======/ <------------------------------------------+ | == Aggregation == | signature | <-----------+ ]]></artwork> </figure> <t>Details for round one are described in <xreftarget="frost-round-one"/>,target="frost-round-one"/> and details for round two are described in <xref target="frost-round-two"/>. Note that each participant persists some state between the tworounds, androunds; this state is deleted as described in <xref target="frost-round-two"/>. The final Aggregation step is described in <xref target="frost-aggregation"/>.</t> <t>FROST assumes that all inputs to each round, especially thoseof whichthat are received over the network, are validated before use. In particular, this means that any value of type Element or Scalar received over the networkMUST<bcp14>MUST</bcp14> be deserialized using DeserializeElement and DeserializeScalar, respectively, as these functions perform the necessary input validationsteps, and thatsteps. Additionally, all messages sent over the wireMUST<bcp14>MUST</bcp14> be encodedappropriately,using their respective functions, e.g.,thatScalars and Elements are encoded usingtheir respective functionsSerializeScalar and SerializeElement.</t> <t>FROST assumes reliable message delivery between the Coordinator and participants in order for the protocol to complete. An attacker masquerading as another participant will result only in an invalid signature; see <xref target="sec-considerations"/>. However, in order to identify misbehaving participants, we assume that the network channel is additionally authenticated; confidentiality is not required.</t> <section anchor="frost-round-one"> <name>Round One - Commitment</name> <t>Round one involves each participant generating nonces and their corresponding public commitments. A nonce is a pair of Scalar values, and a commitment is a pair of Element values. Each participant's behavior in this round is described by the <tt>commit</tt> function below. Note that this function invokes <tt>nonce_generate</tt> twice, once for each type of nonce produced. The output of this function is a pair of secret nonces <tt>(hiding_nonce, binding_nonce)</tt> and their corresponding public commitments <tt>(hiding_nonce_commitment, binding_nonce_commitment)</tt>.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - sk_i, the secret key share, a Scalar. Outputs: - (nonce, comm), a tuple of nonce and nonce commitment pairs, where each value in the nonce pair is a Scalar and each value in the nonce commitment pair is an Element. def commit(sk_i): hiding_nonce = nonce_generate(sk_i) binding_nonce = nonce_generate(sk_i) hiding_nonce_commitment = G.ScalarBaseMult(hiding_nonce) binding_nonce_commitment = G.ScalarBaseMult(binding_nonce) nonces = (hiding_nonce, binding_nonce) comms = (hiding_nonce_commitment, binding_nonce_commitment) return (nonces, comms)]]></artwork>]]></sourcecode> <t>The outputs <tt>nonce</tt> and <tt>comm</tt> from participant <tt>P_i</tt> are both stored locally and kept for use in the second round. The <tt>nonce</tt> value is secret andMUST NOT<bcp14>MUST NOT</bcp14> be shared, whereas the public output <tt>comm</tt> is sent to the Coordinator. The nonce values produced by this functionMUST NOT<bcp14>MUST NOT</bcp14> be used in more than one invocation of <tt>sign</tt>, and the noncesMUST<bcp14>MUST</bcp14> be generated from a source of secure randomness.</t> </section> <section anchor="frost-round-two"> <name>Round Two - Signature Share Generation</name> <t>In round two, the Coordinator is responsible for sending the message to besigned,signed andforchoosingwhichthe participants that will participate(of(a number of at least MIN_PARTICIPANTS). Signers additionally require locally helddata; specifically,data, specifically their private key and the nonces corresponding to their commitment issued in round one.</t> <t>The Coordinator begins by sending each participant the message to be signed along with the set of signing commitments for all participants in the participant list. Each participantMUST<bcp14>MUST</bcp14> validate the inputs before processing the Coordinator's request. In particular, theSigner MUSTsigner <bcp14>MUST</bcp14> validate commitment_list, deserializing each group Element in the list using DeserializeElement from <xref target="dep-pog"/>. If deserialization fails, theSigner MUSTsigner <bcp14>MUST</bcp14> abort the protocol. Moreover, each participantMUST<bcp14>MUST</bcp14> ensure that its identifier and commitments (from the first round) appear in commitment_list. Applicationswhich requirethat restrict participantsnot processfrom processing arbitrary input messages are also required to perform relevant application-layer input validation checks; see <xref target="message-validation"/> for more details.</t> <t>Upon receipt and successful input validation, eachSignersigner then runs the following procedure to produce its own signature share.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - identifier, identifier i of the participant, a NonZeroScalar. - sk_i,Signersigner secret key share, a Scalar. - group_public_key, public key corresponding to the group signing key, an Element. - nonce_i, pair of Scalar values (hiding_nonce, binding_nonce) generated in round one. - msg, the message to be signed, a byte string. - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of commitments issued by each participant, where each element in the list indicates a NonZeroScalar identifier i and two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i). This list MUST be sorted in ascending order by identifier. Outputs: - sig_share, a signature share, a Scalar. def sign(identifier, sk_i, group_public_key, nonce_i, msg, commitment_list): # Compute the binding factor(s) binding_factor_list = compute_binding_factors(group_public_key, commitment_list, msg) binding_factor = binding_factor_for_participant( binding_factor_list, identifier) # Compute the group commitment group_commitment = compute_group_commitment( commitment_list, binding_factor_list) # Compute the interpolating value participant_list = participants_from_commitment_list( commitment_list) lambda_i = derive_interpolating_value(participant_list, identifier) # Compute the per-message challenge challenge = compute_challenge( group_commitment, group_public_key, msg) # Compute the signature share (hiding_nonce, binding_nonce) = nonce_i sig_share = hiding_nonce + (binding_nonce * binding_factor) + (lambda_i * sk_i * challenge) return sig_share]]></artwork>]]></sourcecode> <t>The output of this procedure is a signature share. Each participantthensends these shares back to the Coordinator. Each participantMUST<bcp14>MUST</bcp14> delete the nonce and corresponding commitment after completing<tt>sign</tt>,<tt>sign</tt> andMUST NOT<bcp14>MUST NOT</bcp14> use the nonce as input more than once to <tt>sign</tt>.</t> <t>Note that the <tt>lambda_i</tt> value derived during this procedure does not change across FROST signing operations for the same signing group. As such, participants can compute it once and store it for reuse across signing sessions.</t> </section> <section anchor="frost-aggregation"> <name>Signature Share Aggregation</name> <t>After participants perform round two and send their signature shares to the Coordinator, the Coordinator aggregates each share to produce a final signature. Before aggregating, the CoordinatorMUST<bcp14>MUST</bcp14> validate each signature share using DeserializeScalar. If validation fails, the CoordinatorMUST<bcp14>MUST</bcp14> abort theprotocolprotocol, as the resulting signature will be invalid. If all signature shares are valid, the Coordinator aggregates them to produce the final signature using the following procedure.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of commitments issued by each participant, where each element in the list indicates a NonZeroScalar identifier i and two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i). This list MUST be sorted in ascending order by identifier. - msg, the message to be signed, a byte string. - group_public_key, public key corresponding to the group signing key, an Element. - sig_shares, a set of signature shares z_i, Scalar values, for each participant, of length NUM_PARTICIPANTS, where MIN_PARTICIPANTS <= NUM_PARTICIPANTS <= MAX_PARTICIPANTS. Outputs: - (R, z), a Schnorr signature consisting of an Element R and Scalar z. def aggregate(commitment_list, msg, group_public_key, sig_shares): # Compute the binding factors binding_factor_list = compute_binding_factors(group_public_key, commitment_list, msg) # Compute the group commitment group_commitment = compute_group_commitment( commitment_list, binding_factor_list) # Compute aggregated signature z = Scalar(0) for z_i in sig_shares: z = z + z_i return (group_commitment, z)]]></artwork>]]></sourcecode> <t>The output from the aggregation step is the output signature (R, z). The canonical encoding of this signature is specified in <xref target="ciphersuites"/>.</t> <t>The CoordinatorSHOULD<bcp14>SHOULD</bcp14> verify this signature using the group public key before publishing or releasing the signature. Signature verification is as specified for the corresponding ciphersuite; see <xref target="ciphersuites"/> for details. The aggregate signature will verify successfully if all signature shares are valid. Moreover, subsets of valid signature shares willthemselvesnot yield a valid aggregatesignature.</t>signature themselves.</t> <t>If the aggregate signature verification fails, the CoordinatorMAY<bcp14>MAY</bcp14> verify each signature share individually to identify and act on misbehaving participants. The mechanism for acting on a misbehaving participant is out of scope for this specification; see <xref target="abort"/> for more information about dealing with invalid signatures and misbehaving participants.</t> <t>The function for verifying a signature share, denoted as <tt>verify_signature_share</tt>, is described below. Recall that the Coordinator is configured with "group info"whichthat contains the group public key <tt>PK</tt> and public keys <tt>PK_i</tt> for eachparticipant, so theparticipant. The <tt>group_public_key</tt> and <tt>PK_i</tt> function argumentsMUST<bcp14>MUST</bcp14> come from that previously stored group info.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - identifier, identifier i of the participant, a NonZeroScalar. - PK_i, the public key for the i-th participant, where PK_i = G.ScalarBaseMult(sk_i), an Element. - comm_i, pair of Element values in G (hiding_nonce_commitment, binding_nonce_commitment) generated in round one from the i-th participant. - sig_share_i, a Scalar value indicating the signature share as produced in round two from the i-th participant. - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of commitments issued by each participant, where each element in the list indicates a NonZeroScalar identifier i and two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i). This list MUST be sorted in ascending order by identifier. - group_public_key, public key corresponding to the group signing key, an Element. - msg, the message to be signed, a byte string. Outputs: - True if the signature share is valid, and False otherwise. def verify_signature_share( identifier, PK_i, comm_i, sig_share_i, commitment_list, group_public_key, msg): # Compute the binding factors binding_factor_list = compute_binding_factors(group_public_key, commitment_list, msg) binding_factor = binding_factor_for_participant( binding_factor_list, identifier) # Compute the group commitment group_commitment = compute_group_commitment( commitment_list, binding_factor_list) # Compute the commitment share (hiding_nonce_commitment, binding_nonce_commitment) = comm_i comm_share = hiding_nonce_commitment + G.ScalarMult( binding_nonce_commitment, binding_factor) # Compute the challenge challenge = compute_challenge( group_commitment, group_public_key, msg) # Compute the interpolating value participant_list = participants_from_commitment_list( commitment_list) lambda_i = derive_interpolating_value(participant_list, identifier) # Compute relation values l = G.ScalarBaseMult(sig_share_i) r = comm_share + G.ScalarMult(PK_i, challenge * lambda_i) return l == r]]></artwork>]]></sourcecode> <t>The Coordinator can verify each signature share beforefirstaggregating and verifying the signature under the group public key. However, since the aggregate signature is valid if all signature shares are valid, this order of operations is more expensive if the signature is valid.</t> </section> <section anchor="abort"> <name>Identifiable Abort</name> <t>FROST does not provide robustness; i.e, all participants are required to complete the protocol honestly in order to generate a valid signature. When the signing protocol does not produce a valid signature, the CoordinatorSHOULD<bcp14>SHOULD</bcp14> abort; see <xref target="sec-considerations"/> for more information about FROST's security properties and the threat model.</t> <t>As a result of this property, a misbehaving participant can cause adenial-of-servicedenial of service (DoS) on the signing protocol by contributing malformed signature shares or refusing to participate. Identifying misbehaving participants that produce invalid shares can be done by checking signature shares from each participant using <tt>verify_signature_share</tt> as described in <xref target="frost-aggregation"/>. FROST assumes the network channel is authenticated to identifywhichthe signer that misbehaved. FROST allows for identifying misbehaving participants that produce invalid signature shares as described in <xref target="frost-aggregation"/>. FROST does not provide accommodations for identifying participants that refuse to participate, though applications are assumed to detect when participants fail to engage in the signing protocol.</t> <t>In both cases, preventing this type of attack requires the Coordinator to identify misbehaving participants such that applications can take corrective action. The mechanism for acting on misbehaving participants is out of scope for this specification. However, one reasonable approach would be to remove the misbehaving participant from the set of allowed participants in future runs of FROST.</t> </section> </section> <section anchor="ciphersuites"> <name>Ciphersuites</name> <t>A FROST ciphersuite must specify the underlying prime-order group details and cryptographic hash function. Each ciphersuite is denoted as (Group, Hash), e.g., (ristretto255, SHA-512). This section contains some ciphersuites. Each ciphersuite also includes a context string, denoted as <tt>contextString</tt>, which is an ASCII string literal (with noNULLterminating NUL character).</t> <t>TheRECOMMENDED<bcp14>RECOMMENDED</bcp14> ciphersuite is (ristretto255, SHA-512) as described in <xref target="recommended-suite"/>. The (Ed25519, SHA-512) and (Ed448, SHAKE256) ciphersuites are included for compatibility with Ed25519 and Ed448 as defined in <xref target="RFC8032"/>.</t> <t>The DeserializeElement and DeserializeScalar functions instantiated for a particular prime-order group corresponding to a ciphersuiteMUST<bcp14>MUST</bcp14> adhere to the description in <xref target="dep-pog"/>. Validation steps for these functions are described for each of the ciphersuites below. Future ciphersuitesMUST<bcp14>MUST</bcp14> describe how input validation is done for DeserializeElement and DeserializeScalar.</t> <t>Each ciphersuite includes explicit instructions for verifying signatures produced by FROST. Note that these instructions are equivalent to those produced by a single participant.</t> <t>Each ciphersuite adheres to the requirements in <xref target="ciphersuite-reqs"/>. Future ciphersuitesMUST<bcp14>MUST</bcp14> also adhere to these requirements.</t> <section anchor="frosted25519-sha-512"> <name>FROST(Ed25519, SHA-512)</name> <t>This ciphersuite uses edwards25519 for the Group and SHA-512 for theHashhash function <tt>H</tt> meant to produce Ed25519-compliant signatures as specified in <xref section="5.1" sectionFormat="of" target="RFC8032"/>. The value of the contextString parameter is "FROST-ED25519-SHA512-v1".</t><ul<dl newline="false" spacing="normal"><li> <t>Group: edwards25519<dt>Group:</dt> <dd><t>edwards25519 <xref target="RFC8032"/>, where Ne = 32 and Ns =32. </t> <ul32.</t> <dl newline="false" spacing="normal"><li>Order(): Return 2^252<dt>Order():</dt> <dd>Return 2<sup>252</sup> + 27742317777372353535851937790883648493 (see <xreftarget="RFC7748"/>).</li> <li>Identity(): Astarget="RFC7748"/>).</dd> <dt>Identity():</dt> <dd>As defined in <xreftarget="RFC7748"/>.</li> <li>RandomScalar(): Implementedtarget="RFC7748"/>.</dd> <dt>RandomScalar():</dt> <dd>Implemented by returning a uniformly random Scalar in the range [0, <tt>G.Order()</tt> - 1]. Refer to <xref target="random-scalar"/> for implementationguidance.</li> <li>SerializeElement(A): Implementedguidance.</dd> <dt>SerializeElement(A):</dt> <dd>Implemented as specified in <xref section="5.1.2" sectionFormat="comma" target="RFC8032"/>. Additionally, this function validates that the input element is not the group identityelement.</li> <li>DeserializeElement(buf): Implementedelement.</dd> <dt>DeserializeElement(buf):</dt> <dd>Implemented as specified in <xref section="5.1.3" sectionFormat="comma" target="RFC8032"/>. Additionally, this function validates that the resulting element is not the group identity element and is in the prime-order subgroup. If any of these checks fail, deserialization returns an error. The latter check can be implemented by multiplying the resulting point by the order of the group and checking that the result is the identity element. Note that optimizations for this check exist; see <xreftarget="Pornin22"/>.</li> <li>SerializeScalar(s): Implementedtarget="Pornin22"/>.</dd> <dt>SerializeScalar(s):</dt> <dd>Implemented by outputting the little-endian 32-byte encoding of the Scalar value with the top three bits set tozero.</li> <li>DeserializeScalar(buf): Implementedzero.</dd> <dt>DeserializeScalar(buf):</dt> <dd>Implemented by attempting to deserialize a Scalar from a little-endian 32-byte string. This function can fail if the input does not represent a Scalar in the range [0, <tt>G.Order()</tt> - 1]. Note that this means the top three bits of the inputMUST<bcp14>MUST</bcp14> bezero.</li> </ul> </li> <li> <t>Hash (<tt>H</tt>): SHA-512,zero.</dd> </dl> </dd> <dt>Hash (<tt>H</tt>):</dt> <dd><t>SHA-512, which has64 bytes ofan output</t> <ulof 64 bytes.</t> <dl newline="false" spacing="normal"><li>H1(m): Implemented<dt>H1(m):</dt> <dd>Implemented by computing H(contextString || "rho" || m), interpreting the 64-byte digest as a little-endian integer, and reducing the resulting integer modulo2^252+27742317777372353535851937790883648493.</li> <li>H2(m): Implemented2<sup>252</sup> + 27742317777372353535851937790883648493.</dd> <dt>H2(m):</dt> <dd>Implemented by computing H(m), interpreting the 64-byte digest as a little-endian integer, and reducing the resulting integer modulo2^252+27742317777372353535851937790883648493.</li> <li>H3(m): Implemented2<sup>252</sup> + 27742317777372353535851937790883648493.</dd> <dt>H3(m):</dt> <dd>Implemented by computing H(contextString || "nonce" || m), interpreting the 64-byte digest as a little-endian integer, and reducing the resulting integer modulo2^252+27742317777372353535851937790883648493.</li> <li>H4(m): Implemented2<sup>252</sup> + 27742317777372353535851937790883648493.</dd> <dt>H4(m):</dt> <dd>Implemented by computing H(contextString || "msg" ||m).</li> <li>H5(m): Implementedm).</dd> <dt>H5(m):</dt> <dd>Implemented by computing H(contextString || "com" ||m).</li> </ul> </li> </ul> <t>Normallym).</dd> </dl> </dd> </dl> <t>Normally, H2 would also include a domainseparator, butseparator; however, for compatibility with <xref target="RFC8032"/>, it is omitted.</t> <t>Signature verification is as specified in <xref section="5.1.7" sectionFormat="of" target="RFC8032"/> with the constraint that implementationsMUST<bcp14>MUST</bcp14> check the group equation <tt>[8][z]B = [8]R + [8][c]PK</tt> (changed to use the notation in this document).</t> <t>Canonical signature encoding is as specified in <xref target="sig-encoding"/>.</t> </section> <section anchor="recommended-suite"> <name>FROST(ristretto255, SHA-512)</name> <t>This ciphersuite uses ristretto255 for the Group and SHA-512 for theHashhash function <tt>H</tt>. The value of the contextString parameter is "FROST-RISTRETTO255-SHA512-v1".</t><ul<dl newline="false" spacing="normal"><li> <t>Group: ristretto255<dt>Group:</dt> <dd><t>ristretto255 <xreftarget="RISTRETTO"/>,target="RFC9496"/>, where Ne = 32 and Ns =32. </t> <ul32.</t> <dl newline="false" spacing="normal"><li>Order(): Return 2^252<dt>Order():</dt> <dd>Return 2<sup>252</sup> + 27742317777372353535851937790883648493 (see <xreftarget="RISTRETTO"/>).</li> <li>Identity(): Astarget="RFC9496"/>).</dd> <dt>Identity():</dt> <dd>As defined in <xreftarget="RISTRETTO"/>.</li> <li>RandomScalar(): Implementedtarget="RFC9496"/>.</dd> <dt>RandomScalar():</dt> <dd>Implemented by returning a uniformly random Scalar in the range [0, <tt>G.Order()</tt> - 1]. Refer to <xref target="random-scalar"/> for implementationguidance.</li> <li>SerializeElement(A): Implementedguidance.</dd> <dt>SerializeElement(A):</dt> <dd>Implemented using the'Encode'"Encode" function from <xreftarget="RISTRETTO"/>.target="RFC9496"/>. Additionally, this function validates that the input element is not the group identityelement.</li> <li>DeserializeElement(buf): Implementedelement.</dd> <dt>DeserializeElement(buf):</dt> <dd>Implemented using the'Decode'"Decode" function from <xreftarget="RISTRETTO"/>.target="RFC9496"/>. Additionally, this function validates that the resulting element is not the group identity element. If either'Decode'the "Decode" function orthatthe check fails, deserialization returns anerror.</li> <li>SerializeScalar(s): Implementederror.</dd> <dt>SerializeScalar(s):</dt> <dd>Implemented by outputting the little-endian 32-byte encoding of the Scalar value with the top three bits set tozero.</li> <li>DeserializeScalar(buf): Implementedzero.</dd> <dt>DeserializeScalar(buf):</dt> <dd>Implemented by attempting to deserialize a Scalar from a little-endian 32-byte string. This function can fail if the input does not represent a Scalar in the range [0, <tt>G.Order()</tt> - 1]. Note that this means the top three bits of the inputMUST<bcp14>MUST</bcp14> bezero.</li> </ul> </li> <li> <t>Hash (<tt>H</tt>): SHA-512,zero.</dd> </dl> </dd> <dt>Hash (<tt>H</tt>):</dt> <dd><t>SHA-512, which has 64 bytes ofoutput </t> <uloutput.</t> <dl newline="false" spacing="normal"><li>H1(m): Implemented<dt>H1(m):</dt> <dd>Implemented by computing H(contextString || "rho" || m) and mapping the output to a Scalar as described in <xref section="4.4" sectionFormat="comma"target="RISTRETTO"/>.</li> <li>H2(m): Implementedtarget="RFC9496"/>.</dd> <dt>H2(m):</dt> <dd>Implemented by computing H(contextString || "chal" || m) and mapping the output to a Scalar as described in <xref section="4.4" sectionFormat="comma"target="RISTRETTO"/>.</li> <li>H3(m): Implementedtarget="RFC9496"/>.</dd> <dt>H3(m):</dt> <dd>Implemented by computing H(contextString || "nonce" || m) and mapping the output to a Scalar as described in <xref section="4.4" sectionFormat="comma"target="RISTRETTO"/>.</li> <li>H4(m): Implementedtarget="RFC9496"/>.</dd> <dt>H4(m):</dt> <dd>Implemented by computing H(contextString || "msg" ||m).</li> <li>H5(m): Implementedm).</dd> <dt>H5(m):</dt> <dd>Implemented by computing H(contextString || "com" ||m).</li> </ul> </li> </ul>m).</dd> </dl> </dd> </dl> <t>Signature verification is as specified in <xref target="prime-order-verify"/>.</t> <t>Canonical signature encoding is as specified in <xref target="sig-encoding"/>.</t> </section> <section anchor="frosted448-shake256"> <name>FROST(Ed448, SHAKE256)</name> <t>This ciphersuite uses edwards448 for the Group and SHAKE256 for theHashhash function <tt>H</tt> meant to produce Ed448-compliant signatures as specified in <xref section="5.2" sectionFormat="of" target="RFC8032"/>. Unlike Ed448 in <xref target="RFC8032"/>, this ciphersuite does not allow applications to specify a context string and always sets the context of <xref target="RFC8032"/> to the empty string. Note that this ciphersuite does not allow applications to specify a context string as is allowed for Ed448 in <xref target="RFC8032"/>, and always sets the <xref target="RFC8032"/> context string to the empty string. The value of the (internal to FROST) contextString parameter is "FROST-ED448-SHAKE256-v1".</t><ul<dl newline="false" spacing="normal"><li> <t>Group: edwards448<dt>Group:</dt> <dd><t>edwards448 <xref target="RFC8032"/>, where Ne = 57 and Ns =57. </t> <ul57.</t> <dl newline="false" spacing="normal"><li>Order(): Return 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885.</li> <li>Identity(): As<dt>Order():</dt> <dd>Return 2<sup>446</sup> - 13818066809895115352007386748515426880336692474882178609894547503885.</dd> <dt>Identity():</dt> <dd>As defined in <xreftarget="RFC7748"/>.</li> <li>RandomScalar(): Implementedtarget="RFC7748"/>.</dd> <dt>RandomScalar():</dt> <dd>Implemented by returning a uniformly random Scalar in the range [0, <tt>G.Order()</tt> - 1]. Refer to <xref target="random-scalar"/> for implementationguidance.</li> <li>SerializeElement(A): Implementedguidance.</dd> <dt>SerializeElement(A):</dt> <dd>Implemented as specified in <xref section="5.2.2" sectionFormat="comma" target="RFC8032"/>. Additionally, this function validates that the input element is not the group identityelement.</li> <li>DeserializeElement(buf): Implementedelement.</dd> <dt>DeserializeElement(buf):</dt> <dd>Implemented as specified in <xref section="5.2.3" sectionFormat="comma" target="RFC8032"/>. Additionally, this function validates that the resulting element is not the group identity element and is in the prime-order subgroup. If any of these checks fail, deserialization returns an error. The latter check can be implemented by multiplying the resulting point by the order of the group and checking that the result is the identity element. Note that optimizations for this check exist; see <xreftarget="Pornin22"/>.</li> <li>SerializeScalar(s): Implementedtarget="Pornin22"/>.</dd> <dt>SerializeScalar(s):</dt> <dd>Implemented by outputting the little-endian 57-byte encoding of the Scalarvalue.</li> <li>DeserializeScalar(buf): Implementedvalue.</dd> <dt>DeserializeScalar(buf):</dt> <dd>Implemented by attempting to deserialize a Scalar from a little-endian 57-byte string. This function can fail if the input does not represent a Scalar in the range [0, <tt>G.Order()</tt> -1].</li> </ul> </li> <li> <t>Hash (<tt>H</tt>): SHAKE2561].</dd> </dl> </dd> <dt>Hash (<tt>H</tt>):</dt> <dd><t>SHAKE256 with 114 bytes ofoutput </t> <uloutput.</t> <dl newline="false" spacing="normal"><li>H1(m): Implemented<dt>H1(m):</dt> <dd>Implemented by computing H(contextString || "rho" || m), interpreting the 114-byte digest as a little-endian integer, and reducing the resulting integer modulo2^4462<sup>446</sup> -13818066809895115352007386748515426880336692474882178609894547503885.</li> <li>H2(m): Implemented13818066809895115352007386748515426880336692474882178609894547503885.</dd> <dt>H2(m):</dt> <dd>Implemented by computing H("SigEd448" || 0 || 0 || m), interpreting the 114-byte digest as a little-endian integer, and reducing the resulting integer modulo2^4462<sup>446</sup> -13818066809895115352007386748515426880336692474882178609894547503885.</li> <li>H3(m): Implemented13818066809895115352007386748515426880336692474882178609894547503885.</dd> <dt>H3(m):</dt> <dd>Implemented by computing H(contextString || "nonce" || m), interpreting the 114-byte digest as a little-endian integer, and reducing the resulting integer modulo2^4462<sup>446</sup> -13818066809895115352007386748515426880336692474882178609894547503885.</li> <li>H4(m): Implemented13818066809895115352007386748515426880336692474882178609894547503885.</dd> <dt>H4(m):</dt> <dd>Implemented by computing H(contextString || "msg" ||m).</li> <li>H5(m): Implementedm).</dd> <dt>H5(m):</dt> <dd>Implemented by computing H(contextString || "com" ||m).</li> </ul> </li> </ul> <t>Normallym).</dd> </dl> </dd> </dl> <t>Normally, H2 would also include a domainseparator, butseparator. However, it is omitted for compatibility with <xreftarget="RFC8032"/>, it is omitted.</t>target="RFC8032"/>.</t> <t>Signature verification is as specified in <xref section="5.2.7" sectionFormat="of" target="RFC8032"/> with the constraint that implementationsMUST<bcp14>MUST</bcp14> check the group equation <tt>[4][z]B = [4]R + [4][c]PK</tt> (changed to use the notation in this document).</t> <t>Canonical signature encoding is as specified in <xref target="sig-encoding"/>.</t> </section> <section anchor="frostp-256-sha-256"> <name>FROST(P-256, SHA-256)</name> <t>This ciphersuite uses P-256 for the Group and SHA-256 for theHashhash function <tt>H</tt>. The value of the contextString parameter is "FROST-P256-SHA256-v1".</t><ul<dl newline="false" spacing="normal"><li> <t>Group: P-256<dt>Group:</dt> <dd><t>P-256 (secp256r1) <xref target="x9.62"/>, where Ne = 33 and Ns =32. </t> <ul32.</t> <dl newline="false" spacing="normal"><li>Order(): Return 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551.</li> <li>Identity(): As<dt>Order():</dt> <dd>Return 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551.</dd> <dt>Identity():</dt> <dd>As defined in <xreftarget="x9.62"/>.</li> <li>RandomScalar(): Implementedtarget="x9.62"/>.</dd> <dt>RandomScalar():</dt> <dd>Implemented by returning a uniformly random Scalar in the range [0, <tt>G.Order()</tt> - 1]. Refer to <xref target="random-scalar"/> for implementationguidance.</li> <li>SerializeElement(A): Implementedguidance.</dd> <dt>SerializeElement(A):</dt> <dd>Implemented using the compressed Elliptic-Curve-Point-to-Octet-String method according to <xref target="SEC1"/>, yielding a 33-byte output. Additionally, this function validates that the input element is not the group identityelement.</li> <li>DeserializeElement(buf): Implementedelement.</dd> <dt>DeserializeElement(buf):</dt> <dd>Implemented by attempting to deserialize a 33-byte input string to a public key using the compressed Octet-String-to-Elliptic-Curve-Point method according to <xreftarget="SEC1"/>,target="SEC1"/> and thenperforms public-keyperforming public key validation as defined insectionSection 3.2.2.1 of <xref target="SEC1"/>. This includes checking that the coordinates of the resulting point are in the correct range, that the point is on the curve, and that the point is not the point at infinity. (As noted in the specification, validation of the point order is not required since the cofactor is 1.) If any of these checks fail, deserialization returns anerror.</li> <li>SerializeScalar(s): Implementederror.</dd> <dt>SerializeScalar(s):</dt> <dd>Implemented using the Field-Element-to-Octet-String conversion according to <xreftarget="SEC1"/>.</li> <li>DeserializeScalar(buf): Implementedtarget="SEC1"/>.</dd> <dt>DeserializeScalar(buf):</dt> <dd>Implemented by attempting to deserialize a Scalar from a 32-byte string using Octet-String-to-Field-Element from <xref target="SEC1"/>. This function can fail if the input does not represent a Scalar in the range [0, <tt>G.Order()</tt> -1].</li> </ul> </li> <li> <t>Hash (<tt>H</tt>): SHA-256,1].</dd> </dl> </dd> <dt>Hash (<tt>H</tt>):</dt> <dd><t>SHA-256, which has 32 bytes ofoutput </t> <uloutput.</t> <dl newline="false" spacing="normal"><li>H1(m): Implemented<dt>H1(m):</dt> <dd>Implemented as hash_to_field(m, 1)from(see <xref section="5.2" sectionFormat="comma"target="HASH-TO-CURVE"/>target="RFC9380"/>) using <tt>expand_message_xmd</tt> with SHA-256 with parameters DST = contextString || "rho", F set to thescalarScalar field, p set to <tt>G.Order()</tt>, m = 1, and L =48.</li> <li>H2(m): Implemented48.</dd> <dt>H2(m):</dt> <dd>Implemented as hash_to_field(m, 1)from(see <xref section="5.2" sectionFormat="comma"target="HASH-TO-CURVE"/>target="RFC9380"/>) using <tt>expand_message_xmd</tt> with SHA-256 with parameters DST = contextString || "chal", F set to thescalarScalar field, p set to <tt>G.Order()</tt>, m = 1, and L =48.</li> <li>H3(m): Implemented48.</dd> <dt>H3(m):</dt> <dd>Implemented as hash_to_field(m, 1)from(see <xref section="5.2" sectionFormat="comma"target="HASH-TO-CURVE"/>target="RFC9380"/>) using <tt>expand_message_xmd</tt> with SHA-256 with parameters DST = contextString || "nonce", F set to thescalarScalar field, p set to <tt>G.Order()</tt>, m = 1, and L =48.</li> <li>H4(m): Implemented48.</dd> <dt>H4(m):</dt> <dd>Implemented by computing H(contextString || "msg" ||m).</li> <li>H5(m): Implementedm).</dd> <dt>H5(m):</dt> <dd>Implemented by computing H(contextString || "com" ||m).</li> </ul> </li> </ul>m).</dd> </dl> </dd> </dl> <t>Signature verification is as specified in <xref target="prime-order-verify"/>.</t> <t>Canonical signature encoding is as specified in <xref target="sig-encoding"/>.</t> </section> <section anchor="frostsecp256k1-sha-256"> <name>FROST(secp256k1, SHA-256)</name> <t>This ciphersuite uses secp256k1 for the Group and SHA-256 for theHashhash function <tt>H</tt>. The value of the contextString parameter is "FROST-secp256k1-SHA256-v1".</t><ul<dl newline="false" spacing="normal"><li> <t>Group: secp256k1<dt>Group:</dt> <dd><t>secp256k1 <xref target="SEC2"/>, where Ne = 33 and Ns =32. </t> <ul32.</t> <dl newline="false" spacing="normal"><li>Order(): Return 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141.</li> <li>Identity(): As<dt>Order():</dt> <dd>Return 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141.</dd> <dt>Identity():</dt> <dd>As defined in <xreftarget="SEC2"/>.</li> <li>RandomScalar(): Implementedtarget="SEC2"/>.</dd> <dt>RandomScalar():</dt> <dd>Implemented by returning a uniformly random Scalar in the range [0, <tt>G.Order()</tt> - 1]. Refer to <xref target="random-scalar"/> for implementationguidance.</li> <li>SerializeElement(A): Implementedguidance.</dd> <dt>SerializeElement(A):</dt> <dd>Implemented using the compressed Elliptic-Curve-Point-to-Octet-String method according to <xref target="SEC1"/>, yielding a 33-byte output. Additionally, this function validates that the input element is not the group identityelement.</li> <li>DeserializeElement(buf): Implementedelement.</dd> <dt>DeserializeElement(buf):</dt> <dd>Implemented by attempting to deserialize a 33-byte input string to a public key using the compressed Octet-String-to-Elliptic-Curve-Point method according to <xreftarget="SEC1"/>,target="SEC1"/> and thenperforms public-keyperforming public key validation as defined insectionSection 3.2.2.1 of <xref target="SEC1"/>. This includes checking that the coordinates of the resulting point are in the correct range,thatthe point is on the curve, andthatthe point is not the point at infinity. (As noted in the specification, validation of the point order is not required since the cofactor is 1.) If any of these checks fail, deserialization returns anerror.</li> <li>SerializeScalar(s): Implementederror.</dd> <dt>SerializeScalar(s):</dt> <dd>Implemented using the Field-Element-to-Octet-String conversion according to <xreftarget="SEC1"/>.</li> <li>DeserializeScalar(buf): Implementedtarget="SEC1"/>.</dd> <dt>DeserializeScalar(buf):</dt> <dd>Implemented by attempting to deserialize a Scalar from a 32-byte string using Octet-String-to-Field-Element from <xref target="SEC1"/>. This function can fail if the input does not represent a Scalar in the range [0, <tt>G.Order()</tt> -1].</li> </ul> </li> <li> <t>Hash (<tt>H</tt>): SHA-256,1].</dd> </dl> </dd> <dt>Hash (<tt>H</tt>):</dt> <dd><t>SHA-256, which has 32 bytes ofoutput </t> <uloutput.</t> <dl newline="false" spacing="normal"><li>H1(m): Implemented<dt>H1(m):</dt> <dd>Implemented as hash_to_field(m, 1)from(see <xref section="5.2" sectionFormat="comma"target="HASH-TO-CURVE"/>target="RFC9380"/>) using <tt>expand_message_xmd</tt> with SHA-256 with parameters DST = contextString || "rho", F set to thescalarScalar field, p set to <tt>G.Order()</tt>, m = 1, and L =48.</li> <li>H2(m): Implemented48.</dd> <dt>H2(m):</dt> <dd>Implemented as hash_to_field(m, 1)from(see <xref section="5.2" sectionFormat="comma"target="HASH-TO-CURVE"/>target="RFC9380"/>) using <tt>expand_message_xmd</tt> with SHA-256 with parameters DST = contextString || "chal", F set to thescalarScalar field, p set to <tt>G.Order()</tt>, m = 1, and L =48.</li> <li>H3(m): Implemented48.</dd> <dt>H3(m):</dt> <dd>Implemented as hash_to_field(m, 1)from(see <xref section="5.2" sectionFormat="comma"target="HASH-TO-CURVE"/>target="RFC9380"/>) using <tt>expand_message_xmd</tt> with SHA-256 with parameters DST = contextString || "nonce", F set to thescalarScalar field, p set to <tt>G.Order()</tt>, m = 1, and L =48.</li> <li>H4(m): Implemented48.</dd> <dt>H4(m):</dt> <dd>Implemented by computing H(contextString || "msg" ||m).</li> <li>H5(m): Implementedm).</dd> <dt>H5(m):</dt> <dd>Implemented by computing H(contextString || "com" ||m).</li> </ul> </li> </ul>m).</dd> </dl> </dd> </dl> <t>Signature verification is as specified in <xref target="prime-order-verify"/>.</t> <t>Canonical signature encoding is as specified in <xref target="sig-encoding"/>.</t> </section> <section anchor="ciphersuite-reqs"> <name>Ciphersuite Requirements</name> <t>Future documents that introduce new ciphersuitesMUST<bcp14>MUST</bcp14> adhere to the following requirements.</t> <ol spacing="normal" type="1"><li>H1, H2, and H3 all have output distributions that are close to (indistinguishable from) the uniform distribution.</li> <li>All hash functionsMUST<bcp14>MUST</bcp14> bedomain separateddomain-separated with a per-suite context string. Note that the FROST(Ed25519, SHA-512) ciphersuite does not adhere to this requirement for H2 alone in order to maintain compatibility with <xref target="RFC8032"/>.</li> <li>The groupMUST<bcp14>MUST</bcp14> be ofprime-order,prime order and all deserialization functionsMUST<bcp14>MUST</bcp14> output elements that belong to their respective sets of Elements or Scalars, orfailure when deserialization fails.</li>else fail.</li> <li>The canonical signature encoding details are clearly specified.</li> </ol> </section> </section> <section anchor="sec-considerations"> <name>Security Considerations</name> <t>A security analysis of FROSTexistsis documented in <xref target="FROST20"/> and <xref target="StrongerSec22"/>. At a high level, FROST provides security against Existential Unforgeability Under Chosen MessageAttackAttacks (EUF-CMA)attacks,as defined in <xref target="StrongerSec22"/>.SatisfyingTo satisfy thisrequirement requiresrequirement, the ciphersuite needs to adhere to the requirements in <xreftarget="ciphersuite-reqs"/>, as well astarget="ciphersuite-reqs"/> and the following assumptionstomust hold.</t> <ul spacing="normal"> <li>The signer key shares are generated and distributed securely, e.g., via a trusted dealer that performs key generation (see <xref target="dep-vss"/>) or through a distributed key generation protocol.</li> <li>The Coordinator and at most <tt>(MIN_PARTICIPANTS-1)</tt> participants may be corrupted.</li> </ul> <t>Note that the Coordinator is not trusted with any privateinformationinformation, and communication at the time of signing can be performed over a publicchannel,channel as long as it is authenticated and reliable.</t> <t>FROST provides security againstdenial of serviceDoS attacks under the following assumptions:</t> <ul spacing="normal"> <li>The Coordinator does not perform adenial of serviceDoS attack.</li> <li>The Coordinator identifies misbehaving participants such that they can be removed from future invocations of FROST. The Coordinator may also abort upon detecting a misbehaving participant to ensure that invalid signatures are not produced.</li> </ul> <t>FROST does not aim to achieve the following goals:</t> <ul spacing="normal"> <li>Post-quantum security. FROST, like plain Schnorr signatures, requires the hardness of the Discrete Logarithm Problem.</li> <li>Robustness. Preventingdenial-of-serviceDoS attacks against misbehaving participants requires the Coordinator to identify and act on misbehaving participants; see <xref target="abort"/> for more information. While FROST does not provide robustness, <xref target="ROAST"/> isasa wrapper protocol around FROST that does.</li> <li>Downgrade prevention. All participants in the protocol are assumed to agree onwhatwhich algorithms to use.</li> <li>Metadata protection. If protection for metadata is desired, a higher-level communication channel can be used to facilitate key generation and signing.</li> </ul> <t>The rest of this section documents issues particular to implementations or deployments.</t> <section anchor="side-channel-mitigations"><name>Side-channel mitigations</name><name>Side-Channel Mitigations</name> <t>Several routines process secret values (nonces, signing keys / shares), and depending on the implementation and deployment environment, mitigating side-channels may be pertinent. Mitigating these side-channels requires implementing <tt>G.ScalarMult()</tt>, <tt>G.ScalarBaseMult()</tt>, <tt>G.SerializeScalar()</tt>, and <tt>G.DeserializeScalar()</tt> in constant (value-independent) time. The various ciphersuites lend themselves differently to specific implementation techniques and ease of achieving side-channel resistance, though ultimately avoiding value-dependent computation or branching is the goal.</t> </section> <section anchor="optimizations"> <name>Optimizations</name> <t><xref target="StrongerSec22"/> presented an optimization to FROST that reduces the total number ofscalarScalar multiplications from linear in the number of signing participants to a constant. However, as described in <xref target="StrongerSec22"/>, this optimization removes the guarantee that the set of signer participants that started round one of the protocol is the same set of signing participants that produced the signature output by round two. As such, the optimization isNOT RECOMMENDED,<bcp14>NOT RECOMMENDED</bcp14> anditis not covered in this document.</t> </section> <section anchor="nonce-reuse-attacks"> <name>Nonce Reuse Attacks</name> <t><xref target="dep-nonces"/> describes the procedure that participants use to produce nonces during the first round of signing. The randomness produced in this procedureMUST<bcp14>MUST</bcp14> be sampled uniformly at random. The resulting nonces produced via <tt>nonce_generate</tt> are indistinguishable from values sampled uniformly at random. This requirement is necessary to avoid replay attacks initiated by otherparticipants, whichparticipants that allow for a complete key-recovery attack. The CoordinatorMAY<bcp14>MAY</bcp14> further hedge against nonce reuse attacks by tracking participant nonce commitments used for a given groupkey,key at the cost of additional state.</t> </section> <section anchor="protocol-failures"> <name>Protocol Failures</name> <t>We do not specify what implementations should do when the protocolfails,fails other than requiringthatthe protocol to abort. Examples of viablefailurefailures include when a verification check returns invalid orifthe underlying transport failed to deliver the required messages.</t> </section> <section anchor="no-coordinator"> <name>Removing the Coordinator Role</name> <t>In some settings, it may be desirable to omit the role of the Coordinator entirely. Doing so does not change the security implications ofFROST, but insteadFROST; instead, it simply requires each participant to communicate with all other participants. We loosely describe how to perform FROST signing among participants without this coordinator role. We assume that every participant receivesas input from an external source thea message to be signed from an external source as input prior to performing the protocol.</t> <t>Every participant begins by performing <tt>commit()</tt> as is done in the setting where a Coordinator is used. However, instead of sending the commitment to the Coordinator, every participantinsteadwill publish this commitment to every other participant.Then, inIn the second round, participants will already have sufficient information to performsigning. Theysigning, and they will directly perform <tt>sign()</tt>. All participants will then publish their signature shares to one another. After having received all signature shares from all other participants, each participant will then perform <tt>verify_signature_share</tt> and then <tt>aggregate</tt> directly.</t> <t>The requirements for the underlying network channel remain the same in the setting where all participants play the role of the Coordinator, in that allmessages that areexchanged messages are public andsothe channelsimplymust be reliable. However, in the settingthatwhere a player attempts to split the view of all other players by sending disjoint values to a subset of players, the signing operation will output an invalid signature. To avoid thisdenial of service,DoS, implementations may wish to define a mechanism where messages areauthenticated,authenticated so that cheating players can be identified and excluded.</t> </section> <section anchor="pre-hashing"> <name>Input Message Hashing</name> <t>FROST signatures do not pre-hash message inputs. This means that the entire message must be known in advance of invoking the signing protocol. Applications can apply pre-hashing in settings where storing the full message is prohibitively expensive. In such cases, pre-hashingMUST<bcp14>MUST</bcp14> use a collision-resistant hash function with a security level commensurate with the security inherent to the ciphersuite chosen.It is RECOMMENDED thatFor applicationswhichthat choose to applypre-hashingpre-hashing, it is <bcp14>RECOMMENDED</bcp14> that they use the hash function (<tt>H</tt>) associated with the chosen ciphersuite in a manner similar to how <tt>H4</tt> is defined. In particular, a different prefixSHOULD<bcp14>SHOULD</bcp14> be used to differentiate this pre-hash from <tt>H4</tt>. For example, if a fictional protocol Quux decided to pre-hash its input messages, one possible way to do so is via <tt>H(contextString || "Quux-pre-hash" || m)</tt>.</t> </section> <section anchor="message-validation"> <name>Input Message Validation</name> <t>Message validation varies by application. For example, some applications may require that participants only process messages of a certain structure. In digital currency applications, wherein multiple participants may collectively sign a transaction, it is reasonable to requirethateach participant to check that the input messageto beis a syntactically valid transaction.</t> <t>As another example, some applications may require that participants only process messages with permitted content according to some policy. In digital currency applications, this might mean that a transaction being signed is allowed and intended by the relevant stakeholders. Another instance of this type of message validation is in the context of <xreftarget="TLS"/>,target="RFC8446"/>, wherein implementations may use threshold signing protocols to produce signatures of transcript hashes. In this setting, signing participants might require the raw TLS handshake messages to validate before computing the transcript hash that is signed.</t> <t>In general, input message validation is an application-specific consideration that varies based on the use case and threat model. However, it isRECOMMENDED<bcp14>RECOMMENDED</bcp14> that applications take additional precautions and validate inputs so that participants do not operate as signing oracles for arbitrary messages.</t> </section> </section> <section anchor="iana-considerations"> <name>IANA Considerations</name> <t>This documentmakeshas no IANArequests.</t>actions.</t> </section> </middle> <back> <displayreference target="RFC9496" to="RISTRETTO"/> <displayreference target="RFC9380" to="HASH-TO-CURVE"/> <displayreference target="RFC8446" to="TLS"/> <references> <name>References</name> <references> <name>Normative References</name> <reference anchor="x9.62"> <front> <title>Public Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital Signature Algorithm (ECDSA)</title> <author><organization>ANS</organization><organization>American National Standards Institute</organization> </author> <date year="2005" month="November"/> </front> <seriesInfoname="ANS"name="ANSI" value="X9.62-2005"/> </reference> <reference anchor="SEC1" target="https://secg.org/sec1-v2.pdf"> <front><title>Elliptic<title>SEC 1: Elliptic CurveCryptography, StandardsCryptography</title> <author> <organization>Standards for EfficientCryptography Group, ver. 2</title> <author> <organization/>Cryptography</organization> </author> <dateyear="2009"/>year="2009" month="May"/> </front> <refcontent>Version 2.0</refcontent> </reference> <reference anchor="SEC2" target="https://secg.org/sec2-v2.pdf"> <front><title>Recommended<title>SEC 2: Recommended Elliptic Curve DomainParameters, StandardsParameters</title> <author> <organization>Standards for EfficientCryptography Group, ver. 2</title> <author> <organization/>Cryptography</organization> </author> <dateyear="2010"/>year="2010" month="January"/> </front> <refcontent>Version 2.0</refcontent> </reference><reference anchor="RFC8032"> <front> <title>Edwards-Curve Digital Signature Algorithm (EdDSA)</title> <author fullname="S. Josefsson" initials="S." surname="Josefsson"/> <author fullname="I. Liusvaara" initials="I." surname="Liusvaara"/> <date month="January" year="2017"/> <abstract> <t>This document describes elliptic curve signature scheme Edwards-curve Digital Signature Algorithm (EdDSA). The algorithm is instantiated with recommended parameters for the edwards25519 and edwards448 curves. An example implementation and test vectors are provided.</t> </abstract> </front> <seriesInfo name="RFC" value="8032"/> <seriesInfo name="DOI" value="10.17487/RFC8032"/> </reference> <reference anchor="RFC2119"> <front> <title>Key words for use in RFCs to Indicate Requirement Levels</title> <author fullname="S. Bradner" initials="S." surname="Bradner"/> <date month="March" year="1997"/> <abstract> <t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8032.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <!-- [I-D.irtf-cfrg-ristretto255-decaf448] Published asthey should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="2119"/> <seriesInfo name="DOI" value="10.17487/RFC2119"/> </reference> <reference anchor="RFC8174"> <front> <title>Ambiguity of Uppercase vs Lowercase inRFC2119 Key Words</title> <author fullname="B. Leiba" initials="B." surname="Leiba"/> <date month="May" year="2017"/> <abstract> <t>RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t> </abstract> </front> <seriesInfo name="BCP" value="14"/> <seriesInfo name="RFC" value="8174"/> <seriesInfo name="DOI" value="10.17487/RFC8174"/> </reference> <reference anchor="RISTRETTO"> <front> <title>The ristretto255 and decaf448 Groups</title> <author fullname="Henry de Valence" initials="H." surname="de Valence"> </author> <author fullname="Jack Grigg" initials="J." surname="Grigg"> </author> <author fullname="Mike Hamburg" initials="M." surname="Hamburg"> </author> <author fullname="Isis Lovecruft" initials="I." surname="Lovecruft"> </author> <author fullname="George Tankersley" initials="G." surname="Tankersley"> </author> <author fullname="Filippo Valsorda" initials="F." surname="Valsorda"> </author> <date day="5" month="September" year="2023"/> <abstract> <t> This memo specifies two prime-order groups, ristretto255 and decaf448, suitable for safely implementing higher-level and complex cryptographic protocols. The ristretto255 group can be implemented using Curve25519, allowing existing Curve25519 implementations to be reused and extended to provide a prime-order group. Likewise, the decaf448 group can be implemented using edwards448. This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-irtf-cfrg-ristretto255-decaf448-08"/> </reference> <reference anchor="HASH-TO-CURVE"> <front> <title>Hashing to Elliptic Curves</title> <author fullname="Armando Faz-Hernandez" initials="A." surname="Faz-Hernandez"> <organization>Cloudflare, Inc.</organization> </author> <author fullname="Sam Scott" initials="S." surname="Scott"> <organization>Cornell Tech</organization> </author> <author fullname="Nick Sullivan" initials="N." surname="Sullivan"> <organization>Cloudflare, Inc.</organization> </author> <author fullname="Riad S. Wahby" initials="R. S." surname="Wahby"> <organization>Stanford University</organization> </author> <author fullname="Christopher A. Wood" initials="C. A." surname="Wood"> <organization>Cloudflare, Inc.</organization> </author> <date day="15" month="June" year="2022"/> <abstract> <t>This document specifies a number of algorithms for encoding or hashing an arbitrary string to a point on an elliptic curve. This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-irtf-cfrg-hash-to-curve-16"/> </reference>9496 --> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9496.xml"/> <!-- [I-D.irtf-cfrg-hash-to-curve] Published as RFC 9380 --> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9380.xml"/> </references> <references> <name>Informative References</name> <reference anchor="FROST20" target="https://eprint.iacr.org/2020/852.pdf"> <front><title>Two-Round<title>FROST: Flexible Round-Optimized Schnorr ThresholdSignatures with FROST</title>Signatures</title> <author initials="C." surname="Komlo" fullname="Chelsea Komlo"> <organization/> </author> <author initials="I." surname="Goldberg" fullname="Ian Goldberg"> <organization/> </author> <date year="2020"month="December" day="22"/>month="December"/> </front> </reference> <reference anchor="StrongerSec22" target="https://crypto.iacr.org/2022/papers/538806_1_En_18_Chapter_OnlinePDF.pdf"> <front> <title>Better than Advertised Security for Non-interactive Threshold Signatures</title> <author initials="M." surname="Bellare" fullname="Mihir Bellare"> <organization/> </author> <author initials="E." surname="Crites" fullname="Elizabeth Crites"> <organization/> </author> <author initials="C." surname="Komlo" fullname="Chelsea Komlo"> <organization/> </author> <author initials="M." surname="Maller" fullname="Mary Maller"> <organization/> </author> <author initials="S." surname="Tessaro" fullname="Stefano Tessaro"> <organization/> </author> <author initials="C." surname="Zhu" fullname="Chenzhi Zhu"> <organization/> </author> <dateyear="2022" month="June" day="01"/>month="August" year="2022"/> </front> <seriesInfo name="DOI" value="10.1007/978-3-031-15985-5_18"/> </reference> <reference anchor="Pornin22" target="https://eprint.iacr.org/2022/1164.pdf"> <front> <title>Point-Halving and Subgroup Membership in Twisted Edwards Curves</title> <author initials="T." surname="Pornin" fullname="Thomas Pornin"> <organization/> </author> <date year="2022"month="September" day="06"/>month="September"/> </front> </reference> <reference anchor="ROAST" target="https://eprint.iacr.org/2022/550"> <front> <title>ROAST: Robust Asynchronous Schnorr Threshold Signatures</title> <author initials="T." surname="Ruffing" fullname="Tim Ruffing"> <organization/> </author> <author initials="V." surname="Ronge" fullname="Viktoria Ronge"> <organization/> </author> <author initials="E." surname="Jin" fullname="Elliott Jin"> <organization/> </author> <author initials="J." surname="Schneider-Bensch" fullname="Jonas Schneider-Bensch"> <organization/> </author> <author initials="D." surname="Schröder" fullname="Dominique Schröder"> <organization/> </author> <date year="2022"month="September" day="18"/>month="November"/> </front> <seriesInfo name="DOI" value="10.1145/3548606"/> <refcontent>Paper 2022/550</refcontent> </reference> <reference anchor="MultExp" target="https://zfnd.org/speeding-up-frost-with-multi-scalar-multiplication/"> <front> <title>Speeding up FROST with multi-scalar multiplication</title> <author initials="D." surname="Connolly" fullname="Deirdre Connolly"> <organization/> </author> <author initials="C." surname="Gouvea" fullname="Conrado Gouvea"> <organization/> </author><date>n.d.</date> </front> </reference> <reference anchor="RFC4086"> <front> <title>Randomness Requirements for Security</title> <author fullname="D. Eastlake 3rd" initials="D." surname="Eastlake 3rd"/> <author fullname="J. Schiller" initials="J." surname="Schiller"/> <author fullname="S. Crocker" initials="S." surname="Crocker"/> <date month="June" year="2005"/> <abstract> <t>Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.</t> <t>Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t> </abstract> </front> <seriesInfo name="BCP" value="106"/> <seriesInfo name="RFC" value="4086"/> <seriesInfo name="DOI" value="10.17487/RFC4086"/> </reference> <reference anchor="RFC7748"> <front> <title>Elliptic Curves for Security</title> <author fullname="A. Langley" initials="A." surname="Langley"/> <author fullname="M. Hamburg" initials="M." surname="Hamburg"/> <author fullname="S. Turner" initials="S." surname="Turner"/><datemonth="January" year="2016"/> <abstract> <t>This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.</t> </abstract> </front> <seriesInfo name="RFC" value="7748"/> <seriesInfo name="DOI" value="10.17487/RFC7748"/> </reference> <reference anchor="TLS"> <front> <title>The Transport Layer Security (TLS) Protocol Version 1.3</title> <author fullname="E. Rescorla" initials="E." surname="Rescorla"/> <date month="August" year="2018"/> <abstract> <t>This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.</t> <t>This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.</t> </abstract>year="2023" month="June"/> </front><seriesInfo name="RFC" value="8446"/> <seriesInfo name="DOI" value="10.17487/RFC8446"/></reference> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.4086.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7748.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8446.xml"/> <reference anchor="ShamirSecretSharing"> <front> <title>How to share a secret</title> <author fullname="Adi Shamir" initials="A." surname="Shamir"> <organization>Massachusetts Institute ofTechnology, Cambridge</organization>Technology</organization> </author> <date month="November" year="1979"/> </front> <seriesInfoname="Communications of the ACM" value="vol. 22, no. 11, pp. 612-613"/> <seriesInfoname="DOI" value="10.1145/359168.359176"/> <refcontent>Association for Computing Machinery (ACM)</refcontent> <refcontent>Communications of the ACM, Vol. 22, Issue 11, pp. 612-613</refcontent> </reference> <reference anchor="FeldmanSecretSharing"> <front> <title>A practical scheme for non-interactive verifiable secret sharing</title> <author fullname="Paul Feldman" initials="P."surname="Feldman">surname="Feldman" > <organization/> </author> <date month="October" year="1987"/> </front> <seriesInfoname="28thname="DOI" value="10.1109/sfcs.1987.4"/> <refcontent>IEEE</refcontent> <refcontent>28th Annual Symposium on Foundations of Computer Science(sfcs" value="1987)"/> <seriesInfo name="DOI" value="10.1109/sfcs.1987.4"/> <refcontent>IEEE</refcontent>(sfcs 1987)</refcontent> </reference> </references> </references><?line 1380?> <section anchor="acknowledgments"> <name>Acknowledgments</name> <t>This document was improved based on input and contributions by the Zcash Foundation engineering team. In addition, the authors of this document would like to thank Isis Lovecruft, Alden Torres, T. Wilson-Brown, and Conrado Gouvea for their inputs and contributions.</t> </section><section anchor="sig-encoding"> <name>Schnorr Signature Encoding</name> <t>This section describes one possible canonical encoding of FROST signatures. Using notation from <xref section="3" sectionFormat="of"target="TLS"/>,target="RFC8446"/>, the encoding of a FROST signature (R, z) is as follows:</t><artwork><![CDATA[<sourcecode type=""><![CDATA[ struct { opaque R_encoded[Ne]; opaque z_encoded[Ns]; } Signature;]]></artwork>]]></sourcecode> <t>Where Signature.R_encoded is<tt>G.SerializeElement(R)</tt> and<tt>G.SerializeElement(R)</tt>, Signature.z_encoded is<tt>G.SerializeScalar(z)</tt><tt>G.SerializeScalar(z)</tt>, and <tt>G</tt> is determined by ciphersuite.</t> </section> <section anchor="prime-order-verify"> <name>Schnorr Signature Generation and Verification for Prime-Order Groups</name> <t>This section contains descriptions of functions for generating and verifying Schnorr signatures. It is included to complement the routines present in <xref target="RFC8032"/> for prime-order groups, including ristretto255, P-256, and secp256k1. The functions for generating and verifying signatures are <tt>prime_order_sign</tt> and <tt>prime_order_verify</tt>, respectively.</t> <t>The function <tt>prime_order_sign</tt> produces a Schnorr signature over a message given a full secret signing key as input (as opposed to a keyshare.)</t> <artwork><![CDATA[share).</t> <sourcecode type="pseudocode"><![CDATA[ Inputs: - msg, message to sign, a byte string. - sk, secret key, a Scalar. Outputs: - (R, z), a Schnorr signature consisting of an Element R and Scalar z. def prime_order_sign(msg, sk): r = G.RandomScalar() R = G.ScalarBaseMult(r) PK = G.ScalarBaseMult(sk) comm_enc = G.SerializeElement(R) pk_enc = G.SerializeElement(PK) challenge_input = comm_enc || pk_enc || msg c = H2(challenge_input) z = r + (c * sk) // Scalar addition and multiplication return (R, z)]]></artwork>]]></sourcecode> <t>The function <tt>prime_order_verify</tt> verifies Schnorr signatures with validated inputs. Specifically, it assumes that the signature R component and public key belong to the prime-order group.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - msg, signed message, a byte string. - sig, a tuple (R, z) output from signature generation. - PK, public key, an Element. Outputs: - True if signature is valid, and False otherwise. def prime_order_verify(msg, sig = (R, z), PK): comm_enc = G.SerializeElement(R) pk_enc = G.SerializeElement(PK) challenge_input = comm_enc || pk_enc || msg c = H2(challenge_input) l = G.ScalarBaseMult(z) r = R + G.ScalarMult(PK, c) return l == r]]></artwork>]]></sourcecode> </section> <section anchor="dep-dealer"> <name>Trusted Dealer Key Generation</name> <t>One possible key generation mechanism is to depend on a trusted dealer, wherein the dealer generates a group secret <tt>s</tt> uniformly at random and uses Shamir and Verifiable Secret Sharing <xreftarget="ShamirSecretSharing"/>,target="ShamirSecretSharing"/> as described in Appendices <xreftarget="dep-shamir"/>target="dep-shamir" format="counter"/> and <xreftarget="dep-vss"/>target="dep-vss" format="counter"/> to create secret shares of s, denoted as <tt>s_i</tt> for <tt>i = 1, ..., MAX_PARTICIPANTS</tt>, to be sent to all <tt>MAX_PARTICIPANTS</tt> participants. This operation is specified in the <tt>trusted_dealer_keygen</tt> algorithm. The mathematical relation between the secret key <tt>s</tt> and the <tt>MAX_PARTICIPANTS</tt> secret shares is formalized in the <tt>secret_share_combine(shares)</tt> algorithm, defined in <xref target="dep-shamir"/>.</t> <t>The dealer that performs <tt>trusted_dealer_keygen</tt> is trusted to 1) generate good randomness,and2) delete secret values after distributing shares to each participant, and 3) keep secret values confidential.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - secret_key, a group secret, a Scalar, that MUST be derived from at least Ns bytes of entropy. - MAX_PARTICIPANTS, the number of shares to generate, an integer. - MIN_PARTICIPANTS, the threshold of the secret sharing scheme, an integer. Outputs: - participant_private_keys, MAX_PARTICIPANTS shares of the secret key s, each a tuple consisting of the participant identifier (a NonZeroScalar) and the key share (a Scalar). - group_public_key, public key corresponding to the group signing key, an Element. - vss_commitment, a vector commitment of Elements in G, to each of the coefficients in the polynomial defined by secret_key_shares and whose first element is G.ScalarBaseMult(s). def trusted_dealer_keygen( secret_key, MAX_PARTICIPANTS, MIN_PARTICIPANTS): # Generate random coefficients for the polynomial coefficients = [] for i in range(0, MIN_PARTICIPANTS - 1): coefficients.append(G.RandomScalar()) participant_private_keys, coefficients = secret_share_shard( secret_key, coefficients, MAX_PARTICIPANTS) vss_commitment = vss_commit(coefficients): return participant_private_keys, vss_commitment[0], vss_commitment]]></artwork>]]></sourcecode> <t>It is assumed that the dealer then sends one secret key share to each of the <tt>NUM_PARTICIPANTS</tt> participants, along with <tt>vss_commitment</tt>. After receiving their secret key share and <tt>vss_commitment</tt>, participantsMUST<bcp14>MUST</bcp14> abort if they do not have the same view of <tt>vss_commitment</tt>. The dealer can use a secure broadcast channel to ensure each participant has a consistent view of this commitment. Furthermore, each participantMUST<bcp14>MUST</bcp14> perform <tt>vss_verify(secret_key_share_i,vss_commitment)</tt>,vss_commitment)</tt> and abort if the check fails. The trusted dealerMUST<bcp14>MUST</bcp14> delete the secret_key and secret_key_shares upon completion.</t> <t>Use of this method for key generation requires a mutually authenticated secure channel between the dealer and participants to send secret key shares, wherein the channel provides confidentiality and integrity. Mutually authenticated TLS is one possible deployment option.</t> <section anchor="dep-shamir"> <name>Shamir Secret Sharing</name> <t>In Shamir secret sharing, a dealer distributes a secret <tt>Scalar</tt> <tt>s</tt> to <tt>n</tt> participants in such a way that any cooperating subset of at least <tt>MIN_PARTICIPANTS</tt> participants can recover the secret. There are two basic steps in this scheme:(1)1) splitting a secret into multipleshares,shares and(2)2) combining shares to reveal the resulting secret.</t> <t>This secret sharing scheme works over any field <tt>F</tt>. In this specification, <tt>F</tt> is thescalarScalar field of the prime-order group <tt>G</tt>.</t> <t>The procedure for splitting a secret into shares is as follows. The algorithm <tt>polynomial_evaluate</tt> is defined in <xref target="dep-extended-polynomial-operations"/>.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - s, secret value to be shared, a Scalar. - coefficients, an array of size MIN_PARTICIPANTS - 1 with randomly generated Scalars, not including the 0th coefficient of the polynomial. - MAX_PARTICIPANTS, the number of shares to generate, an integer less than the group order. Outputs: - secret_key_shares, A list of MAX_PARTICIPANTS number of secret shares, each a tuple consisting of the participant identifier (a NonZeroScalar) and the key share (a Scalar). - coefficients, a vector of MIN_PARTICIPANTS coefficients which uniquely determine a polynomial f. def secret_share_shard(s, coefficients, MAX_PARTICIPANTS): # Prepend the secret to the coefficients coefficients = [s] + coefficients # Evaluate the polynomial for each point x=1,...,n secret_key_shares = [] for x_i in range(1, MAX_PARTICIPANTS + 1): y_i = polynomial_evaluate(Scalar(x_i), coefficients) secret_key_share_i = (x_i, y_i) secret_key_shares.append(secret_key_share_i) return secret_key_shares, coefficients]]></artwork>]]></sourcecode> <t>Let <tt>points</tt> be the output of this function. The i-th element in <tt>points</tt> is the share for the i-th participant, which is the randomly generated polynomial evaluated at coordinate <tt>i</tt>. We denote a secret share as the tuple <tt>(i,points[i])</tt>,points[i])</tt> and the list of these shares as <tt>shares</tt>. <tt>i</tt>MUST<bcp14>MUST</bcp14> never equal <tt>0</tt>; recall that <tt>f(0) = s</tt>, where <tt>f</tt> is the polynomial defined in a Shamir secret sharing operation.</t> <t>The procedure for combining a <tt>shares</tt> list of length <tt>MIN_PARTICIPANTS</tt> to recover the secret <tt>s</tt> is as follows; the algorithm <tt>polynomial_interpolate_constant</tt> is defined in <xref target="dep-extended-polynomial-operations"/>.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - shares, a list of at minimum MIN_PARTICIPANTS secret shares, each a tuple (i, f(i)) where i and f(i) are Scalars. Outputs: - s, the resulting secret that was previously split into shares, a Scalar. Errors: - "invalid parameters", if fewer than MIN_PARTICIPANTS input shares are provided. def secret_share_combine(shares): if len(shares) < MIN_PARTICIPANTS: raise "invalid parameters" s = polynomial_interpolate_constant(shares) return s]]></artwork>]]></sourcecode> <section anchor="dep-extended-polynomial-operations"> <name>Additionalpolynomial operations</name>Polynomial Operations</name> <t>This section describes two functions. One function, denoted as <tt>polynomial_evaluate</tt>, is for evaluating a polynomial <tt>f(x)</tt> at a particular point <tt>x</tt> using Horner's method, i.e., computing <tt>y = f(x)</tt>. The other function, <tt>polynomial_interpolate_constant</tt>, is for recovering the constant term of an interpolating polynomial defined by a set of points.</t> <t>The function <tt>polynomial_evaluate</tt> is defined as follows.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - x, input at which to evaluate the polynomial, a Scalar - coeffs, the polynomial coefficients, a list of Scalars Outputs: Scalar result of the polynomial evaluated at input x def polynomial_evaluate(x, coeffs): value = Scalar(0) for coeff in reverse(coeffs): value *= x value += coeff return value]]></artwork> <t>The]]></sourcecode> <t keepWithNext="true">The function <tt>polynomial_interpolate_constant</tt> is defined as follows.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - points, a set of t points with distinct x coordinates on a polynomial f, each a tuple of two Scalar values representing the x and y coordinates. Outputs: - f_zero, the constant term of f, i.e., f(0), a Scalar. def polynomial_interpolate_constant(points): x_coords = [] for (x, y) in points: x_coords.append(x) f_zero = Scalar(0) for (x, y) in points: delta = y * derive_interpolating_value(x_coords, x) f_zero += delta return f_zero]]></artwork>]]></sourcecode> </section> </section> <section anchor="dep-vss"> <name>Verifiable Secret Sharing</name> <t>Feldman's Verifiable Secret Sharing (VSS) <xref target="FeldmanSecretSharing"/> builds upon Shamir secret sharing, adding a verification step to demonstrate the consistency of a participant's share with a public commitment to the polynomial <tt>f</tt> for which the secret <tt>s</tt> is the constant term. This check ensures that all participants have a point (their share) on the same polynomial, ensuring that they canlaterreconstruct the correctsecret.</t>secret later.</t> <t>The procedure for committing to a polynomial <tt>f</tt> of degree at most <tt>MIN_PARTICIPANTS-1</tt> is as follows.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - coeffs, a vector of the MIN_PARTICIPANTS coefficientswhichthat uniquely determine a polynomial f. Outputs: - vss_commitment, a vector commitment to each of the coefficients in coeffs, where each item of the vector commitment is an Element. def vss_commit(coeffs): vss_commitment = [] for coeff in coeffs: A_i = G.ScalarBaseMult(coeff) vss_commitment.append(A_i) return vss_commitment]]></artwork>]]></sourcecode> <t>The procedure for verification of a participant's share is as follows. If <tt>vss_verify</tt> fails, the participantMUST<bcp14>MUST</bcp14> abort the protocol, and the failure should be investigated out of band.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - share_i: A tuple of the form (i, sk_i), where i indicates the participant identifier (a NonZeroScalar), and sk_i the participant's secret key, a secret share of the constant term of f, where sk_i is a Scalar. - vss_commitment, a VSS commitment to a secret polynomial f, a vector commitment to each of the coefficients in coeffs, where each element of the vector commitment is an Element. Outputs: - True if sk_i is valid, and False otherwise. def vss_verify(share_i, vss_commitment) (i, sk_i) = share_i S_i = G.ScalarBaseMult(sk_i) S_i' = G.Identity() for j in range(0, MIN_PARTICIPANTS): S_i' += G.ScalarMult(vss_commitment[j], pow(i, j)) return S_i == S_i']]></artwork>]]></sourcecode> <t>We now define how the Coordinator and participants can derive group info, which is an input into the FROST signing protocol.</t><artwork><![CDATA[<sourcecode type="pseudocode"><![CDATA[ Inputs: - MAX_PARTICIPANTS, the number of shares to generate, an integer. - MIN_PARTICIPANTS, the threshold of the secret sharing scheme, an integer. - vss_commitment, a VSS commitment to a secret polynomial f, a vector commitment to each of the coefficients in coeffs, where each element of the vector commitment is an Element. Outputs: - PK, the public key representing the group, an Element. - participant_public_keys, a list of MAX_PARTICIPANTS public keys PK_i for i=1,...,MAX_PARTICIPANTS, where each PK_i is the public key, an Element, for participant i. def derive_group_info(MAX_PARTICIPANTS, MIN_PARTICIPANTS,vss_commitment)vss_commitment): PK = vss_commitment[0] participant_public_keys = [] for i in range(1, MAX_PARTICIPANTS+1): PK_i = G.Identity() for j in range(0, MIN_PARTICIPANTS): PK_i += G.ScalarMult(vss_commitment[j], pow(i, j)) participant_public_keys.append(PK_i) return PK, participant_public_keys]]></artwork>]]></sourcecode> </section> </section> <section anchor="random-scalar"> <name>Random Scalar Generation</name> <t>Two popular algorithms for generating a random integer uniformly distributed in the range [0, G.Order() -1] areas follows:</t>described in the sections that follow.</t> <section anchor="rejection-sampling"> <name>Rejection Sampling</name> <t>Generate a random byte array with <tt>Ns</tt>bytes,bytes and attempt to map to a Scalar by calling <tt>DeserializeScalar</tt> in constant time. If it succeeds, return the result. If it fails, try again with another random byte array, until the procedure succeeds. Failure to implement <tt>DeserializeScalar</tt> in constant time can leak information about the underlying corresponding Scalar.</t> <t>As an optimization, if the group order is very close to a power of 2, it is acceptable to omit the rejection test completely. In particular, if the group order isp,p and there is an integer b such that |p - 2<sup>b</sup>| is less than 2<sup>(b/2)</sup>, then <tt>RandomScalar</tt> can simply return a uniformly random integer of at most b bits.</t> </section> <section anchor="wide-reduction"> <name>Wide Reduction</name> <t>Generate a random byte array with <tt>l = ceil(((3 * ceil(log2(G.Order()))) / 2) / 8)</tt>bytes,bytes and interpret it as an integer; reduce the integer modulo <tt>G.Order()</tt> and return the result. See <xref section="5" sectionFormat="of"target="HASH-TO-CURVE"/>target="RFC9380"/> for the underlying derivation of <tt>l</tt>.</t> </section> </section> <section anchor="test-vectors"> <name>Test Vectors</name> <t>This section contains test vectors for all ciphersuites listed in <xref target="ciphersuites"/>. All <tt>Element</tt> and <tt>Scalar</tt> values are represented in serialized form and encoded in hexadecimal strings. Signatures are represented as the concatenation of their constituent parts. The input message to be signed is also encoded as a hexadecimal string.</t> <t>Each test vector consists of the following information.</t> <ul spacing="normal"> <li>Configuration. This lists the fixed parameters for the particular instantiation of FROST, including MAX_PARTICIPANTS, MIN_PARTICIPANTS, and NUM_PARTICIPANTS.</li> <li>Group input parameters. This lists the group secret key and shared public key, generated by a trusted dealer as described in <xref target="dep-dealer"/>, as well as the input message to be signed. The randomly generated coefficients produced by the trusted dealer to share the group signing secret are also listed. Each coefficient is identified by its index, e.g., <tt>share_polynomial_coefficients[1]</tt> is the coefficient of the first term in the polynomial. Note that the 0-th coefficient isomittedomitted, as this is equal to the group secret key. All values are encoded as hexadecimal strings.</li> <li>Signer input parameters. This lists the signing key share for each of the NUM_PARTICIPANTS participants.</li> <li>Round one parameters and outputs. This lists the NUM_PARTICIPANTS participants engaged in the protocol, identified by their NonZeroScalar identifier, and the following for each participant: the hiding and binding commitment values produced in <xref target="frost-round-one"/>; the randomness values used to derive the commitment nonces in <tt>nonce_generate</tt>; the resulting group binding factor input computed in part from the group commitment list encoded as described in <xref target="dep-encoding"/>; and the group binding factor as computed in <xreftarget="frost-round-two"/>).</li>target="frost-round-two"/>.</li> <li>Round two parameters and outputs. This lists the NUM_PARTICIPANTS participants engaged in the protocol, identified by their NonZeroScalar identifier, along with their corresponding output signature share as produced in <xref target="frost-round-two"/>.</li> <li>Final output. This lists the aggregate signature as produced in <xref target="frost-aggregation"/>.</li> </ul> <section anchor="frosted25519-sha-512-1"> <name>FROST(Ed25519, SHA-512)</name><artwork><![CDATA[<sourcecode type="test-vectors"><![CDATA[ // Configuration information MAX_PARTICIPANTS: 3 MIN_PARTICIPANTS: 2 NUM_PARTICIPANTS: 2 // Group input parameters participant_list: 1,3 group_secret_key: 7b1c33d3f5291d85de664833beb1ad469f7fb6025a0ec78b3a7 90c6e13a98304 group_public_key: 15d21ccd7ee42959562fc8aa63224c8851fb3ec85a3faf66040 d380fb9738673 message: 74657374 share_polynomial_coefficients[1]: 178199860edd8c62f5212ee91eff1295d0d 670ab4ed4506866bae57e7030b204 // Signer input parameters P1 participant_share: 929dcc590407aae7d388761cddb0c0db6f5627aea8e217f 4a033f2ec83d93509 P2 participant_share: a91e66e012e4364ac9aaa405fcafd370402d9859f7b6685 c07eed76bf409e80d P3 participant_share: d3cb090a075eb154e82fdb4b3cb507f110040905468bb9c 46da8bdea643a9a02 // Signer round one outputs P1 hiding_nonce_randomness: 0fd2e39e111cdc266f6c0f4d0fd45c947761f1f5d 3cb583dfcb9bbaf8d4c9fec P1 binding_nonce_randomness: 69cd85f631d5f7f2721ed5e40519b1366f340a87 c2f6856363dbdcda348a7501 P1 hiding_nonce: 812d6104142944d5a55924de6d49940956206909f2acaeedecda 2b726e630407 P1 binding_nonce: b1110165fc2334149750b28dd813a39244f315cff14d4e89e61 42f262ed83301 P1 hiding_nonce_commitment: b5aa8ab305882a6fc69cbee9327e5a45e54c08af6 1ae77cb8207be3d2ce13de3 P1 binding_nonce_commitment: 67e98ab55aa310c3120418e5050c9cf76cf387cb 20ac9e4b6fdb6f82a469f932 P1 binding_factor_input: 15d21ccd7ee42959562fc8aa63224c8851fb3ec85a3f af66040d380fb9738673504df914fa965023fb75c25ded4bb260f417de6d32e5c442c 6ba313791cc9a4948d6273e8d3511f93348ea7a708a9b862bc73ba2a79cfdfe07729a 193751cbc973af46d8ac3440e518d4ce440a0e7d4ad5f62ca8940f32de6d8dc00fc12 c660b817d587d82f856d277ce6473cae6d2f5763f7da2e8b4d799a3f3e725d4522ec7 0100000000000000000000000000000000000000000000000000000000000000 P1 binding_factor: f2cb9d7dd9beff688da6fcc83fa89046b3479417f47f55600b 106760eb3b5603 P3 hiding_nonce_randomness: 86d64a260059e495d0fb4fcc17ea3da7452391baa 494d4b00321098ed2a0062f P3 binding_nonce_randomness: 13e6b25afb2eba51716a9a7d44130c0dbae0004a 9ef8d7b5550c8a0e07c61775 P3 hiding_nonce: c256de65476204095ebdc01bd11dc10e57b36bc96284595b8215 222374f99c0e P3 binding_nonce: 243d71944d929063bc51205714ae3c2218bd3451d0214dfb5ae ec2a90c35180d P3 hiding_nonce_commitment: cfbdb165bd8aad6eb79deb8d287bcc0ab6658ae57 fdcc98ed12c0669e90aec91 P3 binding_nonce_commitment: 7487bc41a6e712eea2f2af24681b58b1cf1da278 ea11fe4e8b78398965f13552 P3 binding_factor_input: 15d21ccd7ee42959562fc8aa63224c8851fb3ec85a3f af66040d380fb9738673504df914fa965023fb75c25ded4bb260f417de6d32e5c442c 6ba313791cc9a4948d6273e8d3511f93348ea7a708a9b862bc73ba2a79cfdfe07729a 193751cbc973af46d8ac3440e518d4ce440a0e7d4ad5f62ca8940f32de6d8dc00fc12 c660b817d587d82f856d277ce6473cae6d2f5763f7da2e8b4d799a3f3e725d4522ec7 0300000000000000000000000000000000000000000000000000000000000000 P3 binding_factor: b087686bf35a13f3dc78e780a34b0fe8a77fef1b9938c563f5 573d71d8d7890f // Signer round two outputs P1 sig_share: 001719ab5a53ee1a12095cd088fd149702c0720ce5fd2f29dbecf24 b7281b603 P3 sig_share: bd86125de990acc5e1f13781d8e32c03a9bbd4c53539bbc106058bf d14326007 sig: 36282629c383bb820a88b71cae937d41f2f2adfcc3d02e55507e2fb9e2dd3cbe bd9d2b0844e49ae0f3fa935161e1419aab7b47d21a37ebeae1f17d4987b3160b]]></artwork>]]></sourcecode> </section> <section anchor="frosted448-shake256-1"> <name>FROST(Ed448, SHAKE256)</name><artwork><![CDATA[<sourcecode type="test-vectors"><![CDATA[ // Configuration information MAX_PARTICIPANTS: 3 MIN_PARTICIPANTS: 2 NUM_PARTICIPANTS: 2 // Group input parameters participant_list: 1,3 group_secret_key: 6298e1eef3c379392caaed061ed8a31033c9e9e3420726f23b4 04158a401cd9df24632adfe6b418dc942d8a091817dd8bd70e1c72ba52f3c00 group_public_key: 3832f82fda00ff5365b0376df705675b63d2a93c24c6e81d408 01ba265632be10f443f95968fadb70d10786827f30dc001c8d0f9b7c1d1b000 message: 74657374 share_polynomial_coefficients[1]: dbd7a514f7a731976620f0436bd135fe8dd dc3fadd6e0d13dbd58a1981e587d377d48e0b7ce4e0092967c5e85884d0275a7a740b 6abdcd0500 // Signer input parameters P1 participant_share: 4a2b2f5858a932ad3d3b18bd16e76ced3070d72fd79ae44 02df201f525e754716a1bc1b87a502297f2a99d89ea054e0018eb55d39562fd0100 P2 participant_share: 2503d56c4f516444a45b080182b8a2ebbe4d9b2ab509f25 308c88c0ea7ccdc44e2ef4fc4f63403a11b116372438a1e287265cadeff1fcb0700 P3 participant_share: 00db7a8146f995db0a7cf844ed89d8e94c2b5f259378ff6 6e39d172828b264185ac4decf7219e4aa4478285b9c0eef4fccdf3eea69dd980d00 // Signer round one outputs P1 hiding_nonce_randomness: 9cda90c98863ef3141b75f09375757286b4bc323d d61aeb45c07de45e4937bbd P1 binding_nonce_randomness: 781bf4881ffe1aa06f9341a747179f07a49745f8 cd37d4696f226aa065683c0a P1 hiding_nonce: f922beb51a5ac88d1e862278d89e12c05263b945147db04b9566 acb2b5b0f7422ccea4f9286f4f80e6b646e72143eeaecc0e5988f8b2b93100 P1 binding_nonce: 1890f16a120cdeac092df29955a29c7cf29c13f6f7be60e63d6 3f3824f2d37e9c3a002dfefc232972dc08658a8c37c3ec06a0c5dc146150500 P1 hiding_nonce_commitment: 3518c2246c874569e54ab254cb1da666ca30f7879 605cc43b4d2c47a521f8b5716080ab723d3a0cd04b7e41f3cc1d3031c94ccf3829b23 fe80 P1 binding_nonce_commitment: 11b3d5220c57d02057497de3c4eebab384900206 592d877059b0a5f1d5250d002682f0e22dff096c46bb81b46d60fcfe7752ed47cea76 c3900 P1 binding_factor_input: 3832f82fda00ff5365b0376df705675b63d2a93c24c6 e81d40801ba265632be10f443f95968fadb70d10786827f30dc001c8d0f9b7c1d1b00 0e9a0f30b97fe77ef751b08d4e252a3719ae9135e7f7926f7e3b7dd6656b27089ca35 4997fe5a633aa0946c89f022462e7e9d50fd6ef313f72d956ea4571089427daa1862f 623a41625177d91e4a8f350ce9c8bd3bc7c766515dc1dd3a0eab93777526b616cccb1 48fe1e5992dc1ae705c8ba2f97ca8983328d41d375ed1e5fde5c9d672121c9e8f177f 4a1a9b2575961531b33f054451363c8f27618382cd66ce14ad93b68dac6a09f5edcbc cc813906b3fc50b8fef1cc09757b06646f38ceed1674cd6ced28a59c93851b325c6a9 ef6a4b3b88860b7138ee246034561c7460db0b3fae501000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000 P1 binding_factor: 71966390dfdbed73cf9b79486f3b70e23b243e6c40638fb559 98642a60109daecbfcb879eed9fe7dbbed8d9e47317715a5740f772173342e00 P3 hiding_nonce_randomness: b3adf97ceea770e703ab295babf311d77e956a20d 3452b4b3344aa89a828e6df P3 binding_nonce_randomness: 81dbe7742b0920930299197322b255734e52bbb9 1f50cfe8ce689f56fadbce31 P3 hiding_nonce: ccb5c1e82f23e0a4b966b824dbc7b0ef1cc5f56eeac2a4126e2b 2143c5f3a4d890c52d27803abcf94927faf3fc405c0b2123a57a93cefa3b00 P3 binding_nonce: e089df9bf311cf711e2a24ea27af53e07b846d09692fe11035a 1112f04d8b7462a62f34d8c01493a22b57a1cbf1f0a46c77d64d46449a90100 P3 hiding_nonce_commitment: 1254546d7d104c04e4fbcf29e05747e2edd392f67 87d05a6216f3713ef859efe573d180d291e48411e5e3006e9f90ee986ccc26b7a4249 0b80 P3 binding_nonce_commitment: 3ef0cec20be15e56b3ddcb6f7b956fca0c8f7199 0f45316b537b4f64c5e8763e6629d7262ff7cd0235d0781f23be97bf8fa8817643ea1 9cd00 P3 binding_factor_input: 3832f82fda00ff5365b0376df705675b63d2a93c24c6 e81d40801ba265632be10f443f95968fadb70d10786827f30dc001c8d0f9b7c1d1b00 0e9a0f30b97fe77ef751b08d4e252a3719ae9135e7f7926f7e3b7dd6656b27089ca35 4997fe5a633aa0946c89f022462e7e9d50fd6ef313f72d956ea4571089427daa1862f 623a41625177d91e4a8f350ce9c8bd3bc7c766515dc1dd3a0eab93777526b616cccb1 48fe1e5992dc1ae705c8ba2f97ca8983328d41d375ed1e5fde5c9d672121c9e8f177f 4a1a9b2575961531b33f054451363c8f27618382cd66ce14ad93b68dac6a09f5edcbc cc813906b3fc50b8fef1cc09757b06646f38ceed1674cd6ced28a59c93851b325c6a9 ef6a4b3b88860b7138ee246034561c7460db0b3fae503000000000000000000000000 000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000 P3 binding_factor: 236a6f7239ac2019334bad21323ec93bef2fead37bd5511435 6419f3fc1fb59f797f44079f28b1a64f51dd0a113f90f2c3a1c27d2faa4f1300 // Signer round two outputs P1 sig_share: e1eb9bfbef792776b7103891032788406c070c5c315e3bf5d64acd4 6ea8855e85b53146150a09149665cbfec71626810b575e6f4dbe9ba3700 P3 sig_share: 815434eb0b9f9242d54b8baf2141fe28976cabe5f441ccfcd5ee7cd b4b52185b02b99e6de28e2ab086c7764068c5a01b5300986b9f084f3e00 sig: cd642cba59c449dad8e896a78a60e8edfcbd9040df524370891ff8077d47ce72 1d683874483795f0d85efcbd642c4510614328605a19c6ed806ffb773b6956419537c dfdb2b2a51948733de192dcc4b82dc31580a536db6d435e0cb3ce322fbcf9ec23362d da27092c08767e607bf2093600]]></artwork>]]></sourcecode> </section> <section anchor="frostristretto255-sha-512"> <name>FROST(ristretto255, SHA-512)</name><artwork><![CDATA[<sourcecode type="test-vectors"><![CDATA[ // Configuration information MAX_PARTICIPANTS: 3 MIN_PARTICIPANTS: 2 NUM_PARTICIPANTS: 2 // Group input parameters participant_list: 1,3 group_secret_key: 1b25a55e463cfd15cf14a5d3acc3d15053f08da49c8afcf3ab2 65f2ebc4f970b group_public_key: e2a62f39eede11269e3bd5a7d97554f5ca384f9f6d3dd9c3c0d 05083c7254f57 message: 74657374 share_polynomial_coefficients[1]: 410f8b744b19325891d73736923525a4f59 6c805d060dfb9c98009d34e3fec02 // Signer input parameters P1 participant_share: 5c3430d391552f6e60ecdc093ff9f6f4488756aa6cebdba d75a768010b8f830e P2 participant_share: b06fc5eac20b4f6e1b271d9df2343d843e1e1fb03c4cbb6 73f2872d459ce6f01 P3 participant_share: f17e505f0e2581c6acfe54d3846a622834b5e7b50cad9a2 109a97ba7a80d5c04 // Signer round one outputs P1 hiding_nonce_randomness: f595a133b4d95c6e1f79887220c8b275ce6277e7f 68a6640e1e7140f9be2fb5c P1 binding_nonce_randomness: 34dd1001360e3513cb37bebfabe7be4a32c5bb91 ba19fbd4360d039111f0fbdc P1 hiding_nonce: 214f2cabb86ed71427ea7ad4283b0fae26b6746c801ce824b83c eb2b99278c03 P1 binding_nonce: c9b8f5e16770d15603f744f8694c44e335e8faef00dad182b8d 7a34a62552f0c P1 hiding_nonce_commitment: 965def4d0958398391fc06d8c2d72932608b1e625 5226de4fb8d972dac15fd57 P1 binding_nonce_commitment: ec5170920660820007ae9e1d363936659ef622f9 9879898db86e5bf1d5bf2a14 P1 binding_factor_input: e2a62f39eede11269e3bd5a7d97554f5ca384f9f6d3d d9c3c0d05083c7254f572889dde2854e26377a16caf77dfee5f6be8fe5b4c80318da8 4698a4161021b033911db5ef8205362701bc9ecd983027814abee94f46d094943a2f4 b79a6e4d4603e52c435d8344554942a0a472d8ad84320585b8da3ae5b9ce31cd1903f 795c1af66de22af1a45f652cd05ee446b1b4091aaccc91e2471cd18a85a659cecd11f 0100000000000000000000000000000000000000000000000000000000000000 P1 binding_factor: 8967fd70fa06a58e5912603317fa94c77626395a695a0e4e4e fc4476662eba0c P3 hiding_nonce_randomness: daa0cf42a32617786d390e0c7edfbf2efbd428037 069357b5173ae61d6dd5d5e P3 binding_nonce_randomness: b4387e72b2e4108ce4168931cc2c7fcce5f345a5 297368952c18b5fc8473f050 P3 hiding_nonce: 3f7927872b0f9051dd98dd73eb2b91494173bbe0feb65a3e7e58 d3e2318fa40f P3 binding_nonce: ffd79445fb8030f0a3ddd3861aa4b42b618759282bfe24f1f93 04c7009728305 P3 hiding_nonce_commitment: 480e06e3de182bf83489c45d7441879932fd7b434 a26af41455756264fbd5d6e P3 binding_nonce_commitment: 3064746dfd3c1862ef58fc68c706da287dd92506 6865ceacc816b3a28c7b363b P3 binding_factor_input: e2a62f39eede11269e3bd5a7d97554f5ca384f9f6d3d d9c3c0d05083c7254f572889dde2854e26377a16caf77dfee5f6be8fe5b4c80318da8 4698a4161021b033911db5ef8205362701bc9ecd983027814abee94f46d094943a2f4 b79a6e4d4603e52c435d8344554942a0a472d8ad84320585b8da3ae5b9ce31cd1903f 795c1af66de22af1a45f652cd05ee446b1b4091aaccc91e2471cd18a85a659cecd11f 0300000000000000000000000000000000000000000000000000000000000000 P3 binding_factor: f2c1bb7c33a10511158c2f1766a4a5fadf9f86f2a92692ed33 3128277cc31006 // Signer round two outputs P1 sig_share: 9285f875923ce7e0c491a592e9ea1865ec1b823ead4854b48c8a462 87749ee09 P3 sig_share: 7cb211fe0e3d59d25db6e36b3fb32344794139602a7b24f1ae0dc4e 26ad7b908 sig: fc45655fbc66bbffad654ea4ce5fdae253a49a64ace25d9adb62010dd9fb2555 2164141787162e5b4cab915b4aa45d94655dbb9ed7c378a53b980a0be220a802]]></artwork>]]></sourcecode> </section> <section anchor="frostp-256-sha-256-1"> <name>FROST(P-256, SHA-256)</name><artwork><![CDATA[<sourcecode type="test-vectors"><![CDATA[ // Configuration information MAX_PARTICIPANTS: 3 MIN_PARTICIPANTS: 2 NUM_PARTICIPANTS: 2 // Group input parameters participant_list: 1,3 group_secret_key: 8ba9bba2e0fd8c4767154d35a0b7562244a4aaf6f36c8fb8735 fa48b301bd8de group_public_key: 023a309ad94e9fe8a7ba45dfc58f38bf091959d3c99cfbd02b4 dc00585ec45ab70 message: 74657374 share_polynomial_coefficients[1]: 80f25e6c0709353e46bfbe882a11bdbb1f8 097e46340eb8673b7e14556e6c3a4 // Signer input parameters P1 participant_share: 0c9c1a0fe806c184add50bbdcac913dda73e482daf95dcb 9f35dbb0d8a9f7731 P2 participant_share: 8d8e787bef0ff6c2f494ca45f4dad198c6bee01212d6c84 067159c52e1863ad5 P3 participant_share: 0e80d6e8f6192c003b5488ce1eec8f5429587d48cf00154 1e713b2d53c09d928 // Signer round one outputs P1 hiding_nonce_randomness: ec4c891c85fee802a9d757a67d1252e7f4e5efb8a 538991ac18fbd0e06fb6fd3 P1 binding_nonce_randomness: 9334e29d09061223f69a09421715a347e4e6deba 77444c8f42b0c833f80f4ef9 P1 hiding_nonce: 9f0542a5ba879a58f255c09f06da7102ef6a2dec6279700c656d 58394d8facd4 P1 binding_nonce: 6513dfe7429aa2fc972c69bb495b27118c45bbc6e654bb9dc9b e55385b55c0d7 P1 hiding_nonce_commitment: 0213b3e6298bf8ad46fd5e9389519a8665d63d98f 4ec6a1fcca434e809d2d8070e P1 binding_nonce_commitment: 02188ff1390bf69374d7b272e454b1878ef10a6b 6ea3ff36f114b300b4dbd5233b P1 binding_factor_input: 023a309ad94e9fe8a7ba45dfc58f38bf091959d3c99c fbd02b4dc00585ec45ab70825371853e974bc30ac5b947b216d70461919666584c70c 51f9f56f117736c5d178dd0b521ad9c1abe98048419cbdec81504c85e12eb40e3bcb6 ec73d3fc4afd000000000000000000000000000000000000000000000000000000000 0000001 P1 binding_factor: 7925f0d4693f204e6e59233e92227c7124664a99739d2c06b8 1cf64ddf90559e P3 hiding_nonce_randomness: c0451c5a0a5480d6c1f860e5db7d655233dca2669 fd90ff048454b8ce983367b P3 binding_nonce_randomness: 2ba5f7793ae700e40e78937a82f407dd35e847e3 3d1e607b5c7eb6ed2a8ed799 P3 hiding_nonce: f73444a8972bcda9e506bbca3d2b1c083c10facdf4bb5d47fef7 c2dc1d9f2a0d P3 binding_nonce: 44c6a29075d6e7e4f8b97796205f9e22062e7835141470afe94 17fd317c1c303 P3 hiding_nonce_commitment: 033ac9a5fe4a8b57316ba1c34e8a6de453033b750 e8984924a984eb67a11e73a3f P3 binding_nonce_commitment: 03a7a2480ee16199262e648aea3acab628a53e9b 8c1945078f2ddfbdc98b7df369 P3 binding_factor_input: 023a309ad94e9fe8a7ba45dfc58f38bf091959d3c99c fbd02b4dc00585ec45ab70825371853e974bc30ac5b947b216d70461919666584c70c 51f9f56f117736c5d178dd0b521ad9c1abe98048419cbdec81504c85e12eb40e3bcb6 ec73d3fc4afd000000000000000000000000000000000000000000000000000000000 0000003 P3 binding_factor: e10d24a8a403723bcb6f9bb4c537f316593683b472f7a89f16 6630dde11822c4 // Signer round two outputs P1 sig_share: 400308eaed7a2ddee02a265abe6a1cfe04d946ee8720768899619cf abe7a3aeb P3 sig_share: 561da3c179edbb0502d941bb3e3ace3c37d122aaa46fb54499f15f3 a3331de44 sig: 026d8d434874f87bdb7bc0dfd239b2c00639044f9dcb195e9a04426f70bfa4b7 0d9620acac6767e8e3e3036815fca4eb3a3caa69992b902bcd3352fc34f1ac192f]]></artwork>]]></sourcecode> </section> <section anchor="frostsecp256k1-sha-256-1"> <name>FROST(secp256k1, SHA-256)</name><artwork><![CDATA[<sourcecode type="test-vectors"><![CDATA[ // Configuration information MAX_PARTICIPANTS: 3 MIN_PARTICIPANTS: 2 NUM_PARTICIPANTS: 2 // Group input parameters participant_list: 1,3 group_secret_key: 0d004150d27c3bf2a42f312683d35fac7394b1e9e318249c1bf e7f0795a83114 group_public_key: 02f37c34b66ced1fb51c34a90bdae006901f10625cc06c4f646 63b0eae87d87b4f message: 74657374 share_polynomial_coefficients[1]: fbf85eadae3058ea14f19148bb72b45e439 9c0b16028acaf0395c9b03c823579 // Signer input parameters P1 participant_share: 08f89ffe80ac94dcb920c26f3f46140bfc7f95b493f8310 f5fc1ea2b01f4254c P2 participant_share: 04f0feac2edcedc6ce1253b7fab8c86b856a797f44d83d8 2a385554e6e401984 P3 participant_share: 00e95d59dd0d46b0e303e500b62b7ccb0e555d49f5b849f 5e748c071da8c0dbc // Signer round one outputs P1 hiding_nonce_randomness: 7ea5ed09af19f6ff21040c07ec2d2adbd35b759da 5a401d4c99dd26b82391cb2 P1 binding_nonce_randomness: 47acab018f116020c10cb9b9abdc7ac10aae1b48 ca6e36dc15acb6ec9be5cdc5 P1 hiding_nonce: 841d3a6450d7580b4da83c8e618414d0f024391f2aeb511d7579 224420aa81f0 P1 binding_nonce: 8d2624f532af631377f33cf44b5ac5f849067cae2eacb88680a 31e77c79b5a80 P1 hiding_nonce_commitment: 03c699af97d26bb4d3f05232ec5e1938c12f1e6ae 97643c8f8f11c9820303f1904 P1 binding_nonce_commitment: 02fa2aaccd51b948c9dc1a325d77226e98a5a3fe 65fe9ba213761a60123040a45e P1 binding_factor_input: 02f37c34b66ced1fb51c34a90bdae006901f10625cc0 6c4f64663b0eae87d87b4fff9b5210ffbb3c07a73a7c8935be4a8c62cf015f6cf7ade 6efac09a6513540fc3f5a816aaebc2114a811a415d7a55db7c5cbc1cf27183e79dd9d ef941b5d4801000000000000000000000000000000000000000000000000000000000 0000001 P1 binding_factor: 3e08fe561e075c653cbfd46908a10e7637c70c74f0a77d5fd4 5d1a750c739ec6 P3 hiding_nonce_randomness: e6cc56ccbd0502b3f6f831d91e2ebd01c4de0479e 0191b66895a4ffd9b68d544 P3 binding_nonce_randomness: 7203d55eb82a5ca0d7d83674541ab55f6e76f1b8 5391d2c13706a89a064fd5b9 P3 hiding_nonce: 2b19b13f193f4ce83a399362a90cdc1e0ddcd83e57089a7af0bd ca71d47869b2 P3 binding_nonce: 7a443bde83dc63ef52dda354005225ba0e553243402a4705ce2 8ffaafe0f5b98 P3 hiding_nonce_commitment: 03077507ba327fc074d2793955ef3410ee3f03b82 b4cdc2370f71d865beb926ef6 P3 binding_nonce_commitment: 02ad53031ddfbbacfc5fbda3d3b0c2445c8e3e99 cbc4ca2db2aa283fa68525b135 P3 binding_factor_input: 02f37c34b66ced1fb51c34a90bdae006901f10625cc0 6c4f64663b0eae87d87b4fff9b5210ffbb3c07a73a7c8935be4a8c62cf015f6cf7ade 6efac09a6513540fc3f5a816aaebc2114a811a415d7a55db7c5cbc1cf27183e79dd9d ef941b5d4801000000000000000000000000000000000000000000000000000000000 0000003 P3 binding_factor: 93f79041bb3fd266105be251adaeb5fd7f8b104fb554a4ba9a 0becea48ddbfd7 // Signer round two outputs P1 sig_share: c4fce1775a1e141fb579944166eab0d65eefe7b98d480a569bbbfcb 14f91c197 P3 sig_share: 0160fd0d388932f4826d2ebcd6b9eaba734f7c71cf25b4279a4ca25 81e47b18d sig: 0205b6d04d3774c8929413e3c76024d54149c372d57aae62574ed74319b5ea14 d0c65dde8492a7471437e6c2fe3da49b90d23f642b5c6dbe7e36089f096dd97324]]></artwork>]]></sourcecode> </section> </section> <section anchor="acknowledgments" numbered="false"> <name>Acknowledgments</name> <t>This document was improved based on input and contributions by the Zcash Foundation engineering team. In addition, the authors of this document would like to thank <contact fullname="Isis Lovecruft"/>, <contact fullname="Alden Torres"/>, <contact fullname="T. Wilson-Brown"/>, and <contact fullname="Conrado Gouvea"/> for their input and contributions.</t> </section> </back><!-- ##markdown-source: H4sIAAAAAAAAA+y96WIbR5Iu+r+eosb+0WQbgFALNrnVfWjtp63liHL3zLh9 iFoSZLVAFAcFiKKXeZb7FPcB7n2x+0VEZlbWAkrydj1zrJmmSaAql8hYvoiM jBwOh96u2K3VXf+T19fl8FW53+T+64utqi7Kde6fZhebcrv1T4vzTbLb42P/ uthd+I9evTh9/YmXpOlWvcW7+u+8zDbJJRrLt8lqNyy2u9UwW23Ph6ttWe2G wcTLkp06L7c3d/1isyq9ap9eFlVVlJvdzRXee/rq9SPPK662d/3ddl/twvF4 MQ69ZKuSu/5jtVHbZO1dl9s359tyf3XXv//o1WPvjbrBRzne3uzUdqN2wwfU vedVu2STnyXrcoOmb1TlVZfJdnf2H/typ6q7/qb0roq7/te7Mhv4VbndbdWq wm83l/TLN56X7HcX5fau5w99DBdvPBj598vNplyvbzwf/2SyD1Sxzbeq+VW5 PU82xbfJDnO76/97llSgGlGXP+FH1GVSrEGr/XZ/mdFs9+v95f84p09HWXlZ d3t/5P+1vFyXTp/3L9S6UonzebPDrzbFW7Wtit2NX678v4Pq23VZDm4dSPaG Gvsf+2v99ChL6jE8HfmPwRGp2p47w3iabJoff8go3D6LZHN+oEfM+mTk/70s 88a8t0W1K68u1LbxbbPf++tyn6/WYJvG/JLr/3Ghkqtic54Wu2oETvE8sPcl 3nqrsMz+u8VoGt7ld4xUvNyn6yLz/6pu/Pvbm6tdeb5Nri5u/FW59XcXyn9U bJJNViRr/1Rt3xYZJOTpJsdiEo/TAw/X6+Jqhybu77dvlf+gOC929LSRKP9k DYGAUF36Rw/vPzg9Of6EB4D1Qf/Py7cDH1Iw4c8qtS1URZIjg/T9T06en35y 1/9XGvjQPmcZl/8N9X+ZSnd9vIEPTh/eD5ozbQ3Une3APyVRSrZ5xRN/uFoV WaE2uyZNHpNQDnws+cgPZRa7ZHuudnf9i93uqrp7506lsvMRhkG/BMO34egq XznTJXmXwbWW4ZWCRFyqTa7yDkVLLO/Gf5lswSHgo+qXGW3YN9pg7NFqOCzE mjAc3+1tT11ti81uVCTZlpsNx+H4znxSt3urLu7XwT3rfVBH1N91BNfMKBwP A3BSSKuw25abc7U9xeTD/gllTNDGhMI7V8kVVuHOJJrPx9Oz4Ozh5iyYn92/ SK6wOmcvNutio14+eNSZ9BdqhwcgNBjbSY512RUVlhvd77ekQmgtn5ebYUFq PsmI4r3kuY0mz4qLYut/odZWOdTfPVxDgaQKpL2P/mAuPpycz5LtDX6s12rb +uZ0p1bJpvRfq6pKtu330Obm24vC//eLfXMVwuF4OhwH+PBlud0Um0ML0MNR 4Z0gmMYd6r4s8eDwSbJ+C/3nQz78033KZtR/pi7BB9VFcQXN67++hoYlMcuv WYRYym4l6usLiGClR9qZxwJTwYevXpycvv6ISUwm46YG4Pf9V2UK5eqfVDeb 7AL8We4ri1I+lhleF5f+qz20w+a89c3fijc7KOUE3UECOnyyLsrdzv+ferL1 N/+z3CQyHFXkajv8Qm2q7KL1EPRVsSn+Y6/owe3/+3/nmmeaNAvm+PDZfr17 +O6qn2rfrja5KKcrpXLMYbi/0kCL9MPwEi8XwypLwOryxxUsGVvIOw3Knur3 fbACKxXRL+77fvP924jai4Ycji832yQvoXz2b1XiecPh0E9SmEsItOe9vigq Hyhyf0nqGhPLihUsnljatXpXpGvls2IcvoAJuCy+VXnP8h/xNI79CmxAE7va lgB55XrkyfyqWpVmUDap8gFC92gKsBEaKEF/pqnNnmSD4AtGVOxoMFlZQsFh tfxd6cEsXe3xa1I3OvChCMpr6phUVnGJ7t+i8RxytS3SPVGQGmSES5LobVVO gGyT3Qjp0TmmvkP71K7KtmrnA+WO9PLk6gqWsPLLzRrAaoNnIECXaggQjKGK TJOAZ7W5KzLvgpDfar/JqP+Rf4jUiTPlrCCgVe1JG9JggMtgWXcFzV2Gsq9o mnmxWqkt2vE6A6l4JI2+q5H/YqP8ap9duD2YpdiT0kdnoFq+z5SzWB5Mw848 BvtAA86FYvhM66vhh+CsHDgLywQCKEg/GoHee/Xo/nwchce8pGsA053pAwDh SXmt8NfA38N8vQGqkxaILx1m0kPO/fRG0wdWBn7GDv2AsUjuKwCXUYvPi4qX kN7dMWNcGPgFpA7nwH+lYHi2IBdjFv+I3J5jGjM9ST7TSATpssjztfK8T8kV kvYI43uYmv/wwdPXL17d9V9++fDk9KH/6uGzF3976L9+8tB/9OLLL1/8/enz x/7Lk1cnj1+dvHwC7sDEyv0W9BekS+MlrwqD9Qhv7RJDt8fF7sk+HcGcnJ8r thwZLDh+9SFBe4hQSmsNP29H34HmV/v1GiwODVjtKg8rajQaVuwCLYH+d8hr vNPrRY4wN8iRTK1iApdECLRzlZxDECvvGuYdFPlKlspZn2LDcro5X6vhFVzB GwjXboe/B47EO/xGgyzQgZF4EtzksiT72asirL5B24CcV+ChylcJFo4eZLsL ohDywMOJT5AWLUJm3pJEsYQz4Q3iYV6w48ou1KVM4lw8Ycy1AgdpuYAIJISa KsIiJCQZlOL+CrINrZPtoCpW6trgq8Pjx2/u8Ee/uFL20oQkvhRuhoiew6Va ++Tl01y/+05D6h9+MPqP1CU5WnDg+Clo1y0cu5xcabLlzbWkvuzyATtfFBiu goiXN7IiG7y/9ncKI2azLLpnRwo4OU9I55EMAAjfgFl3SfYGXHfFtpAmzk8X kBE946FMp4efsCAO59aTYR7DIl6X/paoyKq2x65AxIR1+Sk7t7fJtmBGs3R0 SCbysWe1UmUgA9bzJxgR/8OMiPeTjEh3IL1GxIOT1Gz8vQZE1ETCS3F5BYag BWT70Ws8vMPG47gm+8M8nEyCBQ/xYR7Hc9JxhhS5sPC/aOPyww8DvxipEVsO rwtDOkbNfdX/OMPkfbxhGpByBMVA+ILdhE25IUFrPARwcyMIp/LINiQyLiUa bLiFp44B4RGWFZq/IElRuABBBGeUvy7PE6aoFph6tGBRCreIkmOdS93UyI0G BrZzudoxUpoZHcrQd2aIG7hhA4oYus0LsQWPEU5TCfw46qK1ihCZoXwJXdTW i1t4MTDTxBGkx0jWgf7hndxm0D3XoMOyMRagZcHSP334+pFFBcRc5iu/0uGN 0Ydb9tOvvhiePrz/+umL54AHn8LxJBPtf1mee54ndjaIuBf9RwxE4T8hiRNV cCVxMKIcjH/pp8WGDZroKaHj0adxtDjGexQUgzMN5QgTD2bN4ExV9HUMeGW6 C6mHkxy+QlX5rx5/eR/2SeUp8czRp9FiMfDxc8o/J/wz5p8R/Zzz7/OQP5nR z9mcf/LzM35+xs/M+PlZwD/H9HPKLU/5+Sm/O+W3pvz8lJ+fcstTfmvCz0/4 +Qk/P+HnJ/z8hJ+f8PMTbj/m52N+Pubng1iI8s5P9+fESrVJYDTAcT0imCEj 5mTeIDVDPi48NPZI1+KqEDWj+aSmZkDU/OqKnEifY65oiAw/L5FoXHplzA0/ S6ApTnWn6uFaaQ7+JzsdYFZ4r+Tt3PhKf0evTu2rLmrX9uuSOV+9I7tYyPPh h8xhzPQbE6VDXvOQ5m5mNf6gWYWLqemqKi9Vtx8Ax8tGyItfqqk3XmheNOBQ A6F6nRxtoY2zJozWzrVd4qajY4e3G+ER0Ottoa59CWfu9NgMAqZANemF4q0a FWq3Yv+ePrhzWZ3raBsU6Uat76Qvb/7t2+vdk/X9f47H5/N/exTs/vnPYfFv L8PsDo8hZGIKYYkxwzmTdz7jn1P+OeGf/OScn5zzkzN+kkUqnPHzLFghC1bI IhXO+K0p89N94B5iHTF/LndgIDEvzt86PGC8BHqE+47H9YLMzYJA49U24LQv GEENRLNjs4Aquwon0+BN0B5HyIvySl3CPPmvoOrKS91eYVZT2oO1wzLwwKLA tJtLlLlSMGP1gC4pqkdOBwElrGixY6bIC/KEuIVwXk9q5jXVAEDpcHtRGtjd VKVhWOvK8dQzoieWX8884SbceRo2hGBDetFKwAr5q0rxo7qnt8maxAKWiboH Q2PgxTkJmQHl/iUFM5O0sO00FtpFaJUJI8I/IWxMDzOfBEFL7SmNlNwB5wp4 gML5MunxpJ9ZdBBFRIaeY94cM58GzLOBQ+iJozYaJojhZ7be5x11Qm0yR481 m1C4Ckb01cPTJy++fHD25dNnT1/T+8+ePj+Dn/z66f2nL0+evz7Fm8EiNEQG YBpCM4Gae5qA0Luyu0UtexjMLd9ellvSpUlVMr65vrjRMAJEhjXFC/6zrwi3 peV2x68aHQMuMKtO49OaShnsRo+G5lFuQkAwfPCGm3qRQCw4nkETZx0F/vjb 6anL2GhsFpu5tolDwJ68MAI8LBHPTv61SSrniQ23xRxyyijrBnNOxPrUAMxA MswrL+mNKSuT+5BaeoM2jZmNn3/1rNkTdd8eH73O7HVSweDuhA7Un/EjSSNB tYoDQUtm0GYdyKCYJ5lG2sfOuUVXq1xTsEC2g0gRaaYOJjxozY9aVhxlodj/ 18vHy2CCFL5EX6HvuJmxobxor+fl5lu1LbUSk/E6oQ3jgat3Cek3aiGeG4mU UVjlyvpLE/WSdwMaBi2IJ84M4PFXOwbhDb2J1WKHGI9HB1R+S4qDiPREEEf8 c8Y/SaIDBlUBQ66AoVjAQC2Yyif8DIO5gC1SwNYpYEsVsNUKGCAGbOUChozB gj9fLGotEWsbg4W8VLuLUhxvVrA3LcYXB5RXyqwg7fvRHELuIwqPR8SYbNNy UYW8JA0ZY+iwqWhvQPxuyOhGnfPmofaYhS5Ro7WKFtCEkyUcXGmTo8zeJjfO XhmzNDGGA96CaMwtnqKdXVMLMZrXZg3MW6xFZ4QLZ8WZryV0wf1shd0dJmYc S8EVpf3Kjcp4x+uGG5sbBbSCZeVQiLEVQTjrCAeT1lHVHEFzCPmHiv0Ql2kv MG/HRbmkhAIBgH6Z6lgldcZMEwZMjAcc+8UsVgmRwoyJiNywsngvmH8AQ9N4 kpxWZSNxfq3kQ+bFkLkwYN4NmGcC/mTscGTksS7R49lJKLBEsxLxAUmgmsj9 o5Ui3EiPrIotllOeOPp0EfPcHsL13CpRcY3J6Cif431UdVON3tBV1RCB23s0 OtkAYt6l5bibBhE2PPUSXXOYAi/Pp5ovxQQ4Q2u4RPZdw9JEa7011Xae4BWN tJZrRIz6IRw4ZSf2fy5CxyirFQpoxQsa4RBa4bGQgI1xDuZgAKbDfRQrpyib y8AgTq7eKWEZttOgNuFIaos1GrtFrLLgDnHbV1fQFz2elMOBI8tI7Fs/2lOk ptKkTUvaWJL4IpiAwym8BULRcvrvrXM202vE20QFbWm3qpRogKtZBlp+2YDK CyRahj9MBI6ZY+TyvQ2p0OOOv0AMRo+aSbLLazinjvAOWmatEb+UqKfaQGc6 5GI388V+R5kJnFOm9zos28lznB+ldyFok+V+uXlLYID3IdAVKxRe/YqiQxwP ozg2KP4JIa9PBvJf//kL/v3Vw//11dNXDx/Q76dPTr780v7i6ScAX7768kH9 W/3m/RfPnj18/kBexqd+4yPvk2cn/4ZvaFSfvHhJYZ+TLz+RHSM3aEXBBwrm KBHXK4rM0R6NJ7A8lcjXF/df/j//VxDrYCRw/eKHH0xkEngQf0Dvb6Q3Nmvy J1TFjZdcXSlysTaMOLPkigKrFTMeUNX1xieLMfL+9Bem/XD6lz97QrtVaTZR 7XJi5HsdWy/35xcUAGS4aEJ+nvdHP72hXfQTSPl/7BUJFu3cFucXWEzK+cIT yy2jpzN6sjraHC/v0tLD86r85WbJDVAWIIMmaMFNQVqCQp5QefymJ/HqpMla HBblnRt4UZXa56U8bSLhWpbA0kf3T1++ev74mAeTQSJ3R8XA/9IdCKNSG0Hf FZd6u8Wov2WxJGrYmKOsEz2xhlLyl18uufG12hyt2+3iw3OoArQrz66XA1+N zkcDef7rYBAOom+O/Xt+JK1sKYxaqZ6W9Pu+hDXoIZ99QtugedVp9OsIvwbf LM1SnKujZOCnbtuJtIwREleeswNFtmeZLIlbl+kw4D6TKlOid1q9cqvBwI+5 Q+lbOrwqrzvd0VRAxv16B7bUMYYB9a77o+/xnqzFMq3JRY0BnUbUy3wJFy7f r0vd3Fq9JUUvgEYc5eUVj+Ef3//je+ihTclbFlD+sOYba5yJ/bRPWpm9guU7 //vv/ZulfYu6cB7EAxhUcXkJZYnGaKePhYfj/Z7fffwGj3PQewOQ+A42yhjF EhO/KZTsVS7f3fCAN8Xa9pxsaOuMrHndnmy1UqQLJkZtrwuDUXL0ovQmpUAR C1636teQsM/xuPK+++4v0FTxeD6FpuIdi9pGn+8LyrtQZvvRsfIUHXHbr0Tn N8zJA8eceF5zi6LeYBPQZPVZ0yLZTcHqLlmhl05kRWcoysbDVXn+ww+fE9A6 vCFnnqUP6WFSpFgMonZDoTfHoz1Vnt+negAv6gH4331q+u/uHfKuc6poV8rw +kqiQw7T+39XtapiC+Tp/UVh5TLlwPPy8VLHJuz6YMElQ6OCnVhfNdzSekbo v7yWrXM9BgMGeIOK2qUUC92qv/xsKdzfiXIvn2Kwj4hDNvZDWIWTJZu25RdL s5kj3aDhgbc88T/zv4AG+AL/PZGe1hUl7mhHmpTGY7R7gk9lM4pap0axEtQE tbjVbrVImPTsLYd4iNNkmCzc09HwhNQN/wf94Vcz5ozRSEFGj+WOXIXlkDWY SC9l23OeFXOK1mEn/pBHL21/cbwccRr9OefR7oCFN65ea6mzgeylUqgw9wSO V5/7sq2nCBs7++4UapMn+CWKHdBOAVYYz5ACIDdcemKeOeWdSPxKFGWOGpgu GLdT2IvQFrkjUFijA8FhvEwbFG+BaTc7o83BjIr0k6f38W1GVpeDNI9bDjkx vLOr1BoruyVbxAZ6oMnM+Gkpo6EEvqOTgb89FimQJ8TX2l8O7J43LRmxmJsE dF1agok6pLfAuwNa1YHHHPnHpR4p422dNla8hQkY+UfPpatERA7smGAZiPkv kxs8u6JckFLP1/pVRkjKraa2/WigxZ7tregQir8ZuvE4oBRGx20JIqJh0E2K XB0L63o1VUi+korX9R2oWKtzd2XsOhM2/6jF9p3F9g4vNo3i4AozIQlA25U2 8/oCw+G58VJLFg+to+XZ2lHiEMry8aOjq2Oyw9DiFySvdkW0VtTk19wtW8Ni S3NeVa9/5eD+cESp1IAcBJHNAHa4tkWFOepsAxs8Wt+YfBOOe3rJFmB5S8Gb Rh/dZCCOEUgUdqm3EbWuFKo42qfWp20dyimQoLammOH6Nj/XjCJtH707NqRi 1Sfh/Bo04r+YEWEjT3NC01fVfMR7IbLiNvoNg6+2UF/8nWhXHUUdmM6DYwFK lOuiW7ImzgirNB2M/GflVpWci6D1shWe5fNy8+82iOuSK7E09KQdlmSdA8CL Sg9TnM/ARD2y8bFLq77llwWoZAiYABbv3j1ZNzAY4AuvLZ7S+0QpzNU9UmBw 60w7LQJWxqCYnY6r/faqBHeQpNHZKnphzQYOH7TeFK8kAeR346GWnCKasA3G GpATCFb8O0Uar/V2XSNvtRPCdhNHi83b8o249WSX2fUng3Z03HQJxMqJ9faP NBK/WnI05qlGDu13LKKopaHB7aaZp9KMuwvpNpUY5GnFyEg55VuS4jBrbp/U 2gLf/+PrMdQrzHrwj284ttbQu29aI+7N7waZdtcKi/3QMXt8ZECeXr5Z1i1b zfdxTddNccs1jWq9D1XM3bQSFY5OjunEBWeFOYSmMXLCNNa53JC7IE5Kst3C 3i3T/YoXQ4yLdoKXz9VSstjgJtlA4TYpKu3rbLeUwb0SuNZaY7MmDfPEceWq PWJ0jjGf7HbkPLH+v0wAf7sDpAm0JjXA0IhCK96ULqQz0W1aG2hdU+TtqbdE iJJON86wtWuo7Spr9ttokKtmqJUH5NGpso+hEPtk8FPcSKL2y/j7oU66yjxf z5KnJl1WO3VVNXhCC09lWcIyVvVj2KFatlZQt/9RC1iL7ZLa838kacV79T+E VgcpxbleDYeRc7oembGIb8f+onHuTEIqLxkZK8lVPuSJtxxQll55wrveUs43 xWn8JwboEBAtc7UW8GTVF1z5bK04N8okPwMLl6t669ymCx8J/zgprhCO775r nFb74Ydj6xRJuuHWHCCs3ZFmPqkn49NxVpNGSlka7DIRQu9j3JH/FYPzJ2zb C512r/iwBzyYnSe7DkOzwyZprGT1ngT4X4j/RfhfLGDtyYSDAOYr/igSVrOQ zI0QEbtpfrfwCia8zAruyqKaTkYtcfmTWPfJDhlYJ6l0jP6JvGnm0No5KbcC BJXNlAGH9M+GNiycnR+HdMDxPdRkf51TIUzTSUphXtoB5PDLE4kCPLKW/btP JTBQgX+/UDelNiWZtFFHZwYNJupGwpvRGq+Ojui4Q+3J8go9502bOlpkIi+S dCGBmpfl+mZTXhYc7zZBHPORPPJwk5V5M0HdPKr0V/JgnYncl3gpb+hvhrKN Iu89bmcbdF8TTSKP4CVG426H2QX595Qt2n0XYHFov9dJsX2hJRus0cDTiQtQ fnC94KKx2tTVakoTF52UWJac8q50fj4UcZL7r54/FqRXahQC65cXmaQlGLCp 02LoEIZJlXEEZclfn5lvlrXWThlCg8a8EU/J/Vp3UUqxV/sP9rQW6TdRy2wT evWA0/y+WO88u8Xqpkg1H1w+Wdq8+9ta9Bw3dfkkWrYNfLK+Tm4qHYWt/CiU nQ+2ie3ZYQLK2VDWkpSanV1K5+EV2yqyF+Sn7rCoWJfwT9X+6s/DIJz/6Q79 Rr7Gms/PEHKRhefzKPLgNJbH3JR9k63PzikWIfHP4R1svJ6zNmCe//zP//Se EtEhpkO9GHVUHw9ogErf8pgbX+ZKz8QywJE0cUynHN19I/9e488jOjfm6/7O ILr4/vGoA1KkLWpKYXIbKMujRqPff+80ccyT4ZBsrUhsMNbqEe2Sm3QjEy69 ct4h11NP0jkCYewbrSar9/qU5InzOvtTybvicn+Jxs+30Nq79t5T4u7Z7D4L GokpA0+yQkxWPCft0ga6gYVOX0Vlw9OcYwAXsrA7uaSXL4pzKJDdUI/E6cd5 d504r7bc92aH3vLd/w79z/zwHX5ES5IgM8nQ5NwfnGjUzL9Zfg3TBwvIe1tE wYKQ76Y9xeVKYsT+bs9ZWe8G/s3xQGfOLG/AOKujd8dLo0qt2Evy0Zns05br hDzqM1ZqS52YRI1KqMAmsDkzdV4kokg8iXIHCkqAqmf1bmhzDqlFrcMGkoSD 7xkmeQDVdRxi3BG8Lwf1BmG7Td1U4jdCHwRI3p0VBBwaj3M2jT1r+OWg+54r 0jz9hkg/JIjN330Cx5+dpCtbKeKTAYHv4Jh6Ns6U9CKwPDymOCYVBnFH1OKJ WomxDqT3tSo5vGRH6AJ9slpBP9S96VvOU7OP0DtkclQxundn/3QeRxuykYyP aSvZ/7MfmIPZtzSFJzjUxd72vTq0hc/JdFzqxNPmN7290wf37tFE7vKKFZu9 HJuv2/8jff1POeruNC4f+7z6NCDh4HvOi3fc52vlyQ9aHfklsdqLGlaInrQg qqMlBY70bCuxfpRjhZs6YqUjYeYclScnDeUIJHtNVnn6TQRkBZiHolz94Vgu z82z4oy8pLFjSzRn07rp67ItfXVjZ9zXPf9ryjC4KIgUZ2LgnGcKijBo8Njz LZTTaDT6ZuCMvDFaOTnPG83tRD2j1vhzJ4RldQN1momiwesNwdZRBDrl5hei /69LF8ma2JQsDV4/OjzB26angRGNh0ouUH4OnVgutzqropVlQBikHlpT/cga 52cMqZ1e9EFxAwfybmAGPbdWbdBkAa1SpIdOB/zGUetv1i6HhkQSVqy1OB/V EzrIJgNTRegQKflAemsIoh/MGBq9H9mqRF2gVA/nGJio70ETWDsw2Pe9dnAO x40B9xCtHvbBh5yuuzN30N+hBkSnHVAjNgdKZ27AO6+ppfNkEldMaBl+1xC/ FQ3hrJVLrua8ZLxa4t0E8jNa3g8Se5cnsLjf9An6Gf7/sNA6LYwoiW+Tu2JZ c7Hz3McybmKDGTrzU3OvoUrz26rDxWbJ5PsGJze/MgxKkfRDrUu26QewJ8el exn0fewpn9eipLseNfhi0EwUdj6/Ffk2J/wBENh08QnPcaMP3ojjrfLmIEh2 CJ++2ZTXG82XLeKDemfOO0c9azNwZsNMKhzZWSwib8/rFms6dAXkLCzOFX5s vun14V87dYsev9AL8kjzwn030vVpT3DtIJ6U1I4UKn1HCa3m7PmeN0DbLMeB Uc/4iA7FW/p7YA8aSrIuHyvLJcjaPp7dkRIxL/LAGR7QPnB9WKKVwu1m+ugg C6jILyZ2R3D0uxH5dY3I0L+szmXp+njhNmVg4aSh61GDAiZx4FgiEhWr9lYm Q1cTkwrQYbmzZnfVUZfjOtgWk2EV0H60GzszkK39JJmgO3d4O0usis4bGspe Hm27oZMzjone85/ER9Tl+9/pIjbdhNYyTyZHH4XBdZdkFJUN9rspAW5hhTr5 SW9IUliZixa5Oye0QBflGcdlzrBQeAMz7KXk99/XRMDvBybnOYLZsqW9wOHn 9xDsfCiu2p4bBn6ri+C5fWokgRUPjmxLfY9w7wbZNKbXMkcO1ulpwZoQ2Wm5 XyuOrg1p7LR8lAXZqsTKYvsAqfc75v8tquufBk5vV9EHFTRJqwiAcyqYmYb2 TA56Jd14hWvpG7q+/Whb4bVnV7skPc7041GdSPXrKJqOmngPjLWe/PvwrNcZ j5ixOvmq09TBabUZhD+/NRbR+fIz+9UBGjpPNMbjaLv+uISbVaxM7naiT1rx nnpia2UVtsCit0k4jdMe3FQkWxuVbNeUi7yWlD+NPdsF6SrZwzGFND2n00Gv SjSpfnbfUBKopQ6Vegeoa0Jvni37VkmmPRVqKa6oRrja/sGZi0lb0iVZdRaO m6oAQSE7UG+c37cb511T0Nw4/9G2gGp6GDhomzvgAbTDkW2iteH9L+Y33Apk u2FPR0/ZKXZ2bY16sk8cdSfdnVAThdKz78OfzUDeT0OvdqwW+rTGAeBzC6pz WyC8Ex61GnRE2X6j4YpfFxiXvYRTvZv+0iTIfPeplBKmDLPb+RMGWFckbJ5/ srk2vBHJGyeSNSxlKdx6b68bqTl8Km5VnOM7BunbvS3RVgEuZCaXcdmu+rHs K2Apac0QQVtIZeT1vCk1WHnP+K2UceESCiaXXJLDDAyA8pN85WW7GszST/c7 zxzypWfXVLZZV91ctiuiLO3Gb6eszJ/udeqn0GmjbofvGTln43daqqdSv6rf 8PgoH4+3deRnROdqOxTmzdKKzvPcND8uJMdRUkFN9ro+ZU4pJVwdM5FKA7rO JTEIqRYuTCBbac7CNVu0KTd1sFHUUSWHygtFqVrByH9gjutzXZ2iCUapmL5b CodqRdnl7SwKYIUYp+PPvXBUj407l7P1R1uVqcIWWQfzU2VJLpeykeRuLiDr DuFYkq4i0Pf8fMv575Q71S7TIFlNhDS7iJoPD5GWqC6MbZAjrY2WbPFPXTi2 tuMulU06tjmO0SdTnBdWAoF66h1dusIZoeasrN0KrbFCIekGZVUVumgqrOC6 vGlm5dGSYpaeiUPKIVBdC8cZojHGm3LoFEhybbK9lYFKF3h2v1TqxrYLgraL byYmzRpMRsJpq2dqT8sU52HC2LOqLv9S8jHzZ9NGOsZz+fKvtfBXWop1gFi2 wFlwX/7VgZE2076iM0YnVaOKb1vtDnrMsRkaOju9SC4LU01myByWC2tWO5vr wRlxXd3hsoKnBfhAxVWzUox5uMsDq6QTPRvDYsZnEPDUlM/YszfUZOK2NLQs SI+ecPrlbM6TTSPQbjOV2xF9WRibVVcsjdvKJ8795dfBoKO0v1nq/H2jcW1W rU32c3xaqlbA1VP5KHUzuW2o1W/NZG/OimVjuI1xdpzEYghKdClMiRqNkFSL k+lEaIP80rHJ9pfOlquj4ngphYSlbbTaSnsqVya5annUUa1DPzhuSwQaHZvj dLXs8F55B3oWVdeCcBsv/3pW9AoRJmHzrNr6r8NTnCLtnktuc5gu5s0U9BwG q4+FflJXNxp8oleNy0FV9aE4y6PMl49bEUJ3rd1TInKQuGZM6BZil5f2RU2G 5cFNLmqVpli3qTNeuk2jGe2rc0NaCg7wfufEYF4qybMydWkuuGIVJ+85NKtL x7Alai9sNfAkL9SuAdfnMhcsaG3kljEnHtZl0wccM7K2yDQi/uCloipwRXUp Rs48dRecrU2ZPR9hDMGgVTpnYC0oC7E+WGBf096rGA13yK0qQ7UZ/bvyKe9x TWVM2rWL7XglN7Zdw7hdtpjXjU+a0qHjUffMR6cIOVVNZurVWZn8wKCJCEzC rOcgEaLZkE7ODgnhueFB8fjcDFS39JTtTj70dH8dmbQGXVfVN0JUIyfOfG3h m6EGLm7tTrtYB3bhwD8nq53qqcllSCQHDLyGHtFgzvjxbTznGEw+yw4t6dR6 b2klTx9MkfqPRXuiLD+8wWksLj94u7ElpiBYIMed9f6om3qN+V0WVaoukret VOtKx0dt6W97KROk19M4TgbLjoDU+mF2hLBJDSU+L0D+qAlEHdUK8th3/jmf DzofeO6T3/vNfx3Fcdz74a1t3PLN940X3x58sfPNW/uiyzDNf6cML4cBfh2N RvUHcunQ8Cf8owY093vu539u0kH/de+eXO7gB/7RfSfEeu9ei2wHNrC79GyS 7fs/HRjmZ+97sf5VCHT4X/vFA0N1/um4thSyocn+48MGfds0mqP4Uf86ixL6 R3XE8ZS14GNrHWjc76XFTxhF3USzuB25qb1t1580m/jsEPH+/MFNyOftyuof NYqP4cRbR8H/3suTtzXRS88PbuIgOW8j8J0PI2fPKP50T/41W/hwCRl+dkjx 2HgIbFZb33ju8L73/tRoj8zKd3f9T62xkdvO7n3STJ1mgEC1jj/xf/C8B/rM IWMkli4CfZ3qSTBhHBrlR4Z4hG71kPqw7fcBp7z3vI9H6BRpHSrpwhwqbUE+ Ahe3l+qf+hS9pwOwGrMZ5EkGd6ePKtBZW3105f2j4Nw9QiKeS3k6SyxN9byf 1A+yQe8JMFHlPx38ouw/mp+BdOwFSPCIUJk9YMJUl0gaZUgZGKcrNUvdIX3a mQtArUo50dTxVZ3SN/qWpBt9coDAIpXgMDvG9aap6ddv91v78MpJ5pYAUPfU vyc1IVtHyZtlTQa6hEmlnCMI2kPQPZs6uv1HvKUQkCWzNusUq6cpmfFzAV8z eJ0FQvVwtuXVVkrGmfod3JI5K8ZX2thzxVvlmVdtQaJi60zHmUIrXUPSH1v0 6TDLluqIkUtmoDl4t+BoiCka0ReqbLghxcaT/fj2sfGmO3Oy0dfT4MnLpPqP PQym3M9Fk+54Ah7HiCWgKhUuC64K1cHMBnzDRRiaSs9yIIWky95IU2wkoE5R cB38uTmItAGnm0X0XIY0Jcud+mZyP49bp/xz8XG5IykGU1Qe+eDa7cvl1K0A Crqab+jmsZidoFrded4rqx2pmsr6bV8Uzjip9TVC2tMqtv1hUdfd8k70kVLZ 3UiKbU/dGNnZcfBb4+FmJsjIf9ipIu0JvcutPQ4uWruh6lKJUS+lG/dAsFSd a1XZqo/fcpmZqnuieHfNxQR4djaKYippyaRNwFkUso77m+11J6Paq2er43ma 0stG1ksr0eV4+REr4S0PJdAcTp/hqFrrJO4byrdpHZBmTHHodO6RHjo1ezyw 5yUtjerSyQ4DEDUqcgmdDCOJT+owg6YvEc0NmNqQn3nY853HWx3o8FsnPwbP SFCRtpRdotFZm9apYnqsnV91+LFDORw9UU330U4P73m3kwiiuemefys76bNL nec+jFfqTWpZ8UqWvDquTxOUtjwvPaALjNFDS4mhu1pn+ZLCnAQPuOB1BStB 6ZSlvrZsk3tv1NWufaCuGX16bQsBLA1DVIZvbSRfb+/KzomOWyeV5+RIaLnV Iy20TdabZO5+NHcoLNA6ZyjaB4Juhd7t28TP3BOoopHrkoZLsk3LOiSpl9Rg AVsCwWQR6ks/RaMQsq7LALhWgu7ec4tEtD3PltUgeOnRLo6FxYOOLedjtXr/ dq30XQcbGwM+mAHPNUOyi7KsPniDl5SI5Bgd3Oo9Hul4C5Ssa1jNlaCGoy7U Oqerm5PPzW1x/PlAq1fnbk97hl0vQV/6DCtkx5xxEmWxqb2Rnu2KVJ0XGy7S ZsjVMcWH6AfISHvRZofMc3Z8CykxUhf/J7TVvjOm6J5c4NTTjq2VjAgD2GUz ShwCDd3B8IRzzWI78/tDZe6KbWN7ljVZJL/Zficnscbrlj4SQnzYSD/1OP3y EJ4XZeNU48WADpRuEu6WsXnOvT3N7fG6LGBnxfgdp+YG10d09gmbF05V/lHf 5QzHfl19vUUSAKy6GmblN7YofH2ZrrPQBBb1EtWViDzxSKzLIVWEqtLCSo5w a1/GVsR2qnAO18mNqdPoOY6NXMRhsLRuf1g/0J9899UV1dYi1+1K3w+xz2jA q/264ztpimvmIahMWUZVcwvO4xnn+61yQ/W0EBTLboVGOojH3VBuJC2bqheN 9I1uMQRBTHqEt4Gmvky9nyFLTwx1MegH3+9FBHVtnab6+tj0v9/z1n/ds6ou BMeSnFl2a/F7JwOTvm8kbwsDd3izDuJZDmOO6DvF+qnOnFU9h5COKhfeNrPs f+LBpE67H5wn/t4s8c6kOqc5ejO9D2bf634/KAm/23mjMokOizViz4ag7z+E 3D8QIuU6uUzzhHMwbimI0u70PWTrTXxuZcR2c4L1ID80NbjbbUsI2mLa1oPW oyskWC3ShE8b3uFnftPz8v/YORFrAuRHlph/ZPnCf+zseLjalbJ9tZ0oG0Wo bVtRdaW7i+DESBLCZB+nsrvYfGFvn1PTaYGVkYSjHeeaEHzTRjmcn/Cmu47b 0XeuO2NdIVNRmRv0bNm1VmEeKrrNb4/ahxiWhqpLm+G15fivrfLSIJhNYZEb TL0kg6dTtbKfnQp3JhTJpaXN97ro6okcO2gmU1B1JcO9lDlp4x3szdInksXB ebPSub2pkEC0vcuh7Z+5QX3joLnxe8+TLIcG9rMIzrhuMhRlQ0h9iQ0tbhCs fiA5gu2pSMbtKRFfiK+Q1Emy3XabjoA03drE6uB7bccIzdcQ0XOAfKeDLpo3 pch7sm7FAZXK09T8yENH5Et1CGd3NbrdNpNJLl1K7eymTd1gfWNAnfVoOfj3 o4G/4ZPcPQj4F8H31kRwIRLH829w5LfshDTD7iZo3YQKfGOSPrbcPl6hl5Wo 1XPMoXN5a8/Rh1Zs+NXA//ZYIGjrNInJqCzknHU9Z/8VmxrfzOZbjVutYHVP MvI6dYlfU+69ILX6xSDqbwdIWgI6+2B44Nu6bNzYHO78lsrsOeikkkOZ9Oi3 gEHfMk4y0eAuSvu2ExOuc6iTnv3qXf1czR/COxJzrUuDm7P5nsFHjdQ6Hdkz G9+tCtDdkJzO1dNXybbaq1VzpwCACYbVBznKrUeRk8S+45jD2ro3bvjka0Kc IRv40VAUnjOHWyqym+gKU8sudNu06XnW8Zb1jVe8z8S54a9qn1bKFtpzN1Tt xbLUDxm+SvFuI8Evvn/DS/QrPaPDyjxdNbjDHXqDaIeM/cm/mdk1oYSn88tB zLdFvjfHX+xmLm9NZlz/87YMSuXk73KENRPFtcG0DrzHV9ru9UUpQJl6fWsu lRl9SBqo10gD9X9UGmirTKm9PPemPhTTiBrYRHJ56sw+IBphOWjtvvImq/dK UVS9/7hSz2kPJ9PeSbSnMqKyQdMRPMqYr89QfUjKfCWGdtnW13KbjXnVFlve nu8F/TBcyCiRR6suCrVu1Vu61pWK6st+VT3+nz2uSCPrHOU1OoJPiHTxGLTy raco+ioDuaHDJvLiS0xugV+3bBY2wopkK2weQn2YpjWFBtbhArPNUzIaUXb0 q3YWEjLhdjuucHawbu/yd0j9q0LqXwQi//iD6q+3xFntJH17Jkn7eETQR8m6 UvXFmRqU9ivHut6DqwREoI3INVi9jeZa9SL6jsL//4Nm/08JuDp99AYQP1AL 3tPLrTMvesOKjVofvZVIDtYh6dQf6c7j1wu5/teMUUtJk3JTa8Z1r/WspZUT YczKyoK2lk0LuiX3H+2w3dDvmvKmt7Wj5EIliiv2wlmtmrT/IVvITpiNNVUN 6zhVoPZnNrnOMu2UIqwzHiu+zfMQFDcqESrTe39gjACwuZvNvUikEoCr3l2p TcUFDVatoZp+JDr6VC8ep5yecETvu08FL9uLbk2oVxfKh/VP99WOsmE+pxvY Bt2cCElcrjfA7QkpGoqNFl4As1Q7SSSVydBVnBrc+EnbDdJ37xlzUjjnvD13 jDpy2nq769e4h8luy1n1+twGfXqMKfSHqnFhE1aD6i7YbCM6ns53geSKypTz kXWTRltvRNBbZHwPujwcD0+kTAQWrUjWw3I1rCh1n69u9voIIze2bOR4JX1x maz1PbPd0gp8KFJ75s7JUaq2p9mEOf+QG2RwvE4RMD6UNK7LC+QEU2lMlN1A mKMzCgaUnVQQGdUhf+lgXn8rL7+dlt+fQuxmDTf8WXGidCkIQwVKHNbtUoxZ djqKH0+uFj28D5uaf0BUk4yPZOfOLowzNq87HuYA1Vp/kp1yf37h5q3oVBdz FyvVstjRBdZcR7exkUNhBT7zsDkn/Fj0i/CIU+M4XzGjO7gG7BEqc3C/qGx6 sCStN69oc+XaWTLvIPHrG6UbcyI2pQufBS5LQr8c6GxFKrxGpOLwIn9YoKI2 Eh4JCCVRlhtWyXw+gaThutyvKRTAxYDUZflWLMkhbWH9Mh3UZuaksmGt1LXV npmNE3/wGLOR3PHuBMJgEhpxMSgxzXDuFU2XMAr2RDt1zUZxfSOr3Lp7zUTV +ORGdvg2d72F6vbTvHr4SF8QT/VMjweeHOA42tKRcrXbleFkMoCmPxlOgtB4 WKaEkwmHyJkid4Yjr9MrJ3XJiXw+bE0vq3c77fk4MR39xSl/vhx4brWCk9P7 T5+a+yzWBZ0WXvtHHK7ZlP7zr7780pcyPYI4wGt0nBjASoeYXj28/+LZs4fP Hzx80CbJgSn3qEZ7C6DKh/w6qUZq/ehhjneDhfs2Vgcfx/GcP/zrw3AyPW6Q Si4yF7roNFS6HHdX6HuxeHK6YTlLQ63JsFbmSpvvvvuXV4/uz8dRaEPJPamH vUeJnPM2hdyrJNf+sXx6daZkDwt2XOJGiVm9yZlz7Ef7y0LJKwkxb5ppkH9r HUoy8ST3VFPrHJyNqumwVYOu+mjFIxHQxlc0Ms/eJkfFIzrnorjchK6W96Gk pDLpHWEzHA9EyXfVM5W3+6w2KDUmduKl9pIYGHtRKo1DIorTzp2GiDDta8vp LJybBG5qTXiNMFOPqPKa2S14bSh0lKi1dzHEt3wuSejsdegsgi9N6harZpsC pHmSXQnSpT/c4fF94SqniliViIWJPEqpEz4mJq/bb560r7/z6Djfzt0B110P GWsX9KUbvu7s35xqJTgZBcR+rvyR+Elc0PClq9Lqy5OIyeQs6fDhA+kc48aw h2+DT0a2dsvd5mRdWTdxuefkN0dy29jzin+nCs/OpdSvxLEL/3c44bvKZrM4 jIIZ/kWzMJrQ/83RejSbLcbzeTSN5/Ei8vU1qX9Bh3hhTjeicrPu1dUnLU1k n5VH29dTPyVPhtZdeFIcTonz7zcFYWtKkJcLXU0A0amPxO433069fDzSs1vq e6oxyZU4QVDS3MJQro/WWxeF6VpE/HwPYecCJjTO3gui3cF2WcCsA7i1ZoZR KDP3/RMn5X/QOnZlkkuc6mmigmxwtb6VWaoB1RG7+k5kGfnBq6J/zOijHzn6 OmXlo2Zg7sczhwAcG1PtU53fRJkum5v6xnlJ7ebtNolGttPnhanq25EFe64B fCkRjN4moMqvUkZNkyP1VeMmSOHMTG7j02f5bPSgDlpIaoBvnbM2dQ5dbe2q 9hLG8VLPg80Dt8jkl4Grd8Apxt1+WZLshKERtr4brVsCJ3vZdqsCGGO3VkMK jINaUTjkcLRTZV73r5obHrYe2q68YgedwrzkFijWqVQ8ssOcjVuwW6NK5FJs jSOck9H1ToucLeLh9A9ax9BbV5SSR8IeVOPSc+PocXO2xlndWaMk2yF10zq1 aQ6Ii45qEaZ0ezd7E0ImukWZzNMRzBIoo02XKahFt0lO4/peVVk/pu2T4Oiy S8rM3hTy5KhpeP7x/T++9z/ZXpSfyK90JFJClFtlGWIaCzXz4lxVQh99YaVL c13mU7YftkqXZW2KiykeCvd5vy65JTY/n32Y8RH+eRK+b47/JWYR/ZiV4pj6 f6W1in/MLC+rcztH3c7kx7SD7512KD13e8kpFU9C7fy7Lqi9TLm+kHxAZXf9 Ax5YE3VJJdLykq6mp0DwB2bRtIHjaEYSbdutz9DxFbfbpOCUaap82kAuJgGA 7UFtfugeVYG3X8+/+frbb76g/eL5N68A9+iD7JuXf116R5JvzBGnOuVZI6L2 heZEx/s2vakOrVnz0DtBKkteXzzuovsDLvZ3n3Zd6kO4323ix+D+H4XOXz09 ff3q4evXL9DpAYjeGBcxi3nl3tPhg1Gx3a2G2Wp7PnSfG+YqS1YxYeX6uPkv DOXtuD4My9dP/zdD83UC3R8ecj2SPzj5R3JE819as/+NIXpnBg/ULzSDH4nq GbKrgvIR6sGxRFKhZFZbOlfuvcj9d1j7O6x9j/n/3oBautJAQq6XCd++YUet E3g5RGmqdXTiurW01C5xPIqN6ns/Eu0Oi/bZf/Fx/QzY8pcb3G8JEn4MSnMi EUMJ0DKU+TnRUHtb4D2hTor69wIefvvjIp1o6+PjnGEDrLb1hBv5rfdRedus uUWIgZhNrvYuEBfNr8xeG0+Jx+qZwKLB35wZvb5Oblg1S1TFeaDdrA5kkyq+ sal2HRx4xP4VHRfD87xExx8UuSVimmU4ELmltTsYt53MarA3mR0Ce3E8JQUd zYP5eDqdjxfzxSQIgPXC8XgWzaezGKBvEofTObqIptNFGOOjeRjM5lN6OJ7E s8k4ms8nv4dwbw+Chv+lQ7jh7yHc/6NDuJPZh2HdXw3HmgH92ji2B4CKpWSQ HwS/XkyVZ4EO3WDdzxqo+7ltw/uh7ifAUmya9bTHjf+0iWAZ8OclAjcrhPgl iPCLxGz/6/HCbwnB//ZjuuEvFtONbUw3lphu/JuI6b4cQqdKMPc2J4YfOxCw vdV9+VEB25cExdF0DyKXgRxVKrvCL9vgGLN7txhNO9kU0ftDsON3K/1vrP+t Wv/STE1XSZIns2C2UPN4FaWLLMnCVTaNKJ3j/Vhcj+2/GRKvg5ckl1BpVIXy 4XpNuWHZ8P5++1YNXxJWG+7K4Ytsp3ZDWW7R+Wp3UeacnLs1uWcQwof3A1pE PtIrRIgi0bNi4Ecfhoi1tfogTP9T8Px7cJUZuwzAerKyy+eeTOulpUszomEf bW+no3QkOfgbU8Cl0h0PqWMnXa6ZjmgSRCPypSQ/yjQrnslruatJp8Z1wba9 kE/ZEGMbw8vBJ9/ws843Fr4e1C3Jw6TY9XM0fVPJtP2MQZz1h6SnN5gXVnjk H53wI859Q24O8sClhzlHS41IMI19Dc0+9mhHfaIlK/WhNTwSjI5/Bofpg7yJ mncekdQMNbe2pY5U7lu6QaAUl6uXY34Zj8LEwblfLQUy6jaLN2ZgtkD00G73 OjQjuZ7Hz+h1iIGsw95R+KGeBx6mZO6zXXm2oskdXQ58GCyzu/Pk5PTJ8PWL 4f2vXv3tYWufkd4jomh+dwDKDz/wdPWJEPXuCrJwpg+nnr27zPWlk8Yw8x/W xlb+A6CUe35/BF4485HZLmER0WtJwx/4V+Yrh3AD/xINBiKTX+LXeH7QC/kY gvwak+b4/s88667b8Vubtfg4P/O0f0tuxm9so0Bj1TfB+2G2ffRXg9q2xwN4 ux4RK+OfBrMP/FNpkqgcUDtZxfNkHKXpKg8nap7l42gaB/EHwGwZ2u8o+3eU /TvK/h1l/46yf0fZv6Ps3wre/B1l/46yf0mU7RzVBh5zDjs2jm3LSUfP0wdK TTxdb6DDAunsmo267p42rQ9AcpmJup5u6yBkMIKGGkAoZe2eRFwbhMokmHQs e9m3JNPwCXw637ouuewAlueICu9w8dJ9UV3wKXhi4mNmHg1YG82MvBCgjftx PIL6fp/mpoqpj5dw/XShml5tz7e7vM3i2AcOd/p9OUNoxD0tWlQujRgUPwn5 zhl+gEZGh9Cb+zuUTS07PM6xzEhyCARRmrnBOji8ZTKL1t0bWRpU8Wx2nDI3 G/Jc6cyxzTdqXmtoalPaqxDtVZF81xj+IlPJ5TAJCfbeCDPy4nbN0R6+NzeI CluoZEslAY0UcG2CU1Nt5X6jVAv4vad+CxUrsOVZEoD6m6qoax1IMoM+F8yf hGP4LkRGwALIBKz4Fv1xgoN/QnaerqH31uqtWg98e5MqVdtwysAk51RYYOc/ pNYVXznof0XVY85VorfwvuKSQff5Hnb/mb6J+kRqWxw9/OrR8P6zk2Nd7KIa dA7Md8Z2ivlWpjZRk+u8Rq0Ml2l3raPNH3RYmgdzrdZrL2ndFiP1QK5sotxF uaYV+yMvui6cYu9vkRWuixny7bFGrAn28t1b9a2cb4uEbsDb7iv6lgp20uWR XETFuB3U9nl9/5Y+M0CH9N9WGPixJHFvpZZJo7PWm3VVkj+2L6EXEaN6Pljf 5VG7mPMwAMprVNm4TKioLfse+yvZm21ql1YhT3Yd9SxFU21u7B1ajRJE+v6j /UbbHk83uINCaNxhJcV3NJmUvtPVuoe6+A0vK8s/pTHu+GrFRi0c2cqX60nt vaWHeV+KFMktalKkSDOzUy2rl3Puej1Ur0vb6FL8ycEO+hbNFimrDtdqqWvC YGg3hmpSbCVnGwRFpwum1BfMOXVTOr3S0kv9AK6stafbmaROjkQenKF4zfuu uV6OvfmqtyLtVrkVr/JRp15XUnCJ/CS7KJQuF1PT+7zEwJjSL6mc0H/s0ev+ 0q6irig08NfFG3DOmkxUp854NWhW4YFU51QWzDi2D4qKrmxS/pfleYJWLy79 l9sS3HNJS/TKlhEb4WNb66db28qwjWGsgwt4qCSQ539sXeIPqRxM9ciKtQYH 6OKWOmkDsuQvTk5foymBdYl/vaWLybbO5QlSVVUWkVedWiRKPSivN+fbJFe2 JhL1fnLoJrq6wUaBpuScjj1g0tdyUfJ5yUtS6bQL6ugZTC/d48dtKF2A5+nK +VMoYR6TMsXFViqBkmEEpGLT2FJMpr6Wlim+tBHdrpKMjKG5HNBRwHy9hqgv XRBmq6q6YJqJHdUolsu/Vs7VeLzkrRwVruZ9tS5vnMIdp1iqoRnfZbErpKhW BYBPFZmgYLAu4ExV2dvf9E1k5hYwc2WnUbdcOPmONnLH5lr0Kyne6ukQUysy qp/RQ4Psvy1g3+n3gR3Uhiqs1IM1lsXjgnMbzuJ8Vj8qEaHmC1ZAbO/s8zUq LJL7tewUacSnHn3aitoc62to8FU3pANDyMBWyvL4R0yvIdA904JyedhSmbD9 lso/N12Ptb5gxVQ8z4vVCmBls5NK4yay1iYmePViU9B9iZ5caiuXqosibJOR GKugEWZ1nTOKIV7yleB+8rbkgqKy2kM7dk+8RR3I2/rpFi1caL+NI79QsMJh L9yEWs/rYDdfx5DYxDbSb20mv6+Ls5Gml+Z35Q6sqW/w5PJi7FXr1GFzWkFu NF2DO+rIlPOOqcHWKANXyrkGXjSnemX37ExrGnQPDSFrd/xiPDVB9nC/MEsH +Tg3brRv3OFnMAauflyXuC5XXkPHaWLLtULNmzsPFtuTsoy156FdIdoaMXWt R569lIgzrd05oUu6cMmpxSUyUNjAf0b4ygSAndw1YYfnfJXRK765SPA+MwWh VNEk4AhD6cpodHMHY+dWSlOtz3jvcq+qXNokvnp9F6ZDHcEq9b22jfLerbue bCnqhMQs9+pNo2Snm9DN2ei7HoZtlLB75xJwc3lAw9cXjtWqVffoH+ix5VsT 9RUp6GTL6oFFF74P0MuNBREUpZcKYZSJvmtdcl+ZEKwc/OEiYnX1Uij2IR31 xureWKzZxnx0XcJqv+WWL1R+rixukbu+9JVVejiUyr9NZGPDxX9yjZdb35xt pgzoHA75RgcCpGS32RARE1lf1ksSRPU7ie9eGpl5JI46uO7vFLZgljVHmq77 UjurC85VxaPXpgKrFUB9EFYoyReNyZKYnZqmuDKeGsEt5oWVyy6k9qyJHphc WO4paYbWJLvU7GEYTAx8p5PvnYKDIOqmuiLQTQ2bCpXr4q12POzmirm5VV/s TPrKbHa4q/qqxBi/+3RTDrP6U7nOmasHQvcQF1ech6s9PoZGPDl0Tom50nO5 ttvTbg9kjMndHXkPSrZRZfuSNa0ytZtFi1S0XRDJFyZuUwkBKDxzU3v/3TuR Swen6ePDFD3qygXALt33XMIQ3zRLzzn32zZvf0suy7YWpg6oHKYcJnEmT0QZ ETsKXhU9p1jO3PHyzbZv5Zyf7MTI9s/GV+/02Td9dzft1/Te9gxHWmqE6kGb xXbqkD7s9FtfL+28tRTpJJgj5/5yuXncWDY+OSCpAknbxydhdmyrWTB2Zevr vp0C7T3XyfXQx7Qjt33LDTqeJrYthE6uJb/ZWWXW4ptBPYf6QvhBeyHRQbLe orMbDu961X4FOS1YDzsxCoc7XMtzIy3kBW3Hri1Z5XJCUBT2t+3dmNtvNmZi OkbZd/MeLUSy4fnBT+Lr/LSXrTko77+YR7ipVwB67qd2RiTD9w4XKDY75Etb +ntpZ28dHCf0ZpJcHJXWrlWMRxOzUgR/+jmvTUY2hrfoIb367CGu63utWZVz kcZ3Jls/2drrU9hbEw41oxPdI0VhOYqi40Yu03vOeHWfPD6+k553fvVx27XW nW8Lda2r2Zol4sdJND0jOQAU/+RteQ0iGNDK7UocLpc3BhYE0ju2hLosqt5w 5XMsnSrkrzWy0NiuHYQadMwnmYNrlsRSx3Ap9GPvPJKFat4g7sbd9D07UnpC fDs9B0+70za4JTE6LBFXY9UV3qW2gdaFtOtMLXz3KZwO3v+ljSQTOnLCSxoX mKfs9R9yZb1GX6a2gsYfYsLMo55Z+zcbuiucbjDJ35KbRcSi+Nkbo+c6taD9 k3ZRZjqCfeM5Y5YMEjG6moR0b5Bpki7gqsfMSPSiSAvaygBX2vL4IzbgFPer i07bHhj3SsF1DAoqB6MZGm9x19xtMntKxjx7dRSE43jWvDZt+OaC3VkTfXdD 8xnvDIz8pxyJdSv/dstW6+udLkrZRBNqNeZiztU0Bu1x+gHZ3DIr6p0xEWPe l2iWgiW2JekmpXtZ6BgLYYDlk3gpwSDeoWCq1pGYAcfatedOo1oV70z1fScY ZB+hoRgfRHMfB1+pl5H/iLCS4McBZWbQHamZRrsWZ/6v/f4dRpNBMnJxj3RD xc7ejKsFTkpuX5VVVRBUu07YdwD708GsSjyXvtoY1MXQtKuLZCz7RM4pDPzd p7rXYZ0FBOEzTzqpQRQOUYw4nIVuTZ6BZ4MPoGkM2utxFcsNM4XEsKy+IXXq Z2rLu5BSkZfVHJYwL86LXbL2wK1Yl6wxlkqnQeIlHXNQ3W0PEhvZP6Q9PEg5 b+BAZ0hN9YEnPrNT75yrmzsT6Bjd+oRZYxk1yEu86gZ6NyPVSefsRHk7XeoL GAQbvIeU/oeR0rOklNQIKuBNZ/BkV5lSg9w8KO7pqkRHNy6NfUNjr0ljKWFT nF/sWNkaK+nMCNOWkBbDW6f8BJ0FpyOWVJXMHBmnexTfcs0MqnJP23OQbqhb TQ+poJ0pG2c1NfeNSm9WmLZZdVKtghP4/vL6y9N7tGsdx1ObK4sHe4yiJ0oJ GpUG0rEClRvXcCwTjY2mz5W4WaHBewMpPR0ZZpsw6A8DCSXrdaUQyLWPIaOd TQ6w9qa2xGSu7SXK+laYOkWEY3DNYeitmkqvhdxoIOGO9aDFrk1CagOnl31o 45qNrWzZ6zSKISGtqWPJREeyXxpmOteNOGiLR+aYEa9rRvjmAyd4AO2WJTpT g2+/MdQQEGBwSfNSAQ0cBFEpTmExIGubZOT0cxBjC2O8pUCN64D7T0+en7R2 9XWquImhgXHesFcsz9JSqopj+cPhkC9ip3ZOMgId8PvPGU6327hOOAS+5Y09 S0pZIdlV3ThJKlp2/j2jNX5E3pAsnNrAK1RKMIdKLtnsGfIJviQgV24rK0/1 CDiiwptrbPuTzRvvKSUmfIkxZdv9ajeACwRcB7hJVeoH3mu44MUaenL4xRZ4 asChbZBqm4Dij8v9W5V42msotmaFOpOR/Am9kVdnMD00yRfffdrIMNKEs9st NizZsJndK2Tr/IpacEf+V5XEBnf6cnGdfGnygOkliCJpDUGTdVtJuzV9ha3e TZNtTdrOpCuffG3G/O8kqfYqAY/4r864QZV//Vx987n7zbf1NxV/80NNmc/l Eqm/M8C0n45sYzQAd1/EJHK/Ohanr37lW+eVvq2Ub/Uby8caSslNEDo1rcZh B1bwcXPv7G+Ni13BFi85S4gz7ORoQ8U+QCctrbXi9o4M5+oDZuc6oYhaNzt3 m/Y1Wd09Y0jJzq8Tu537oSQ6wa6p3XCT5Npm/STusXOdA4XeuEl28xuVOvUZ b/ZSzXEOiVh/4Cya2+7ekjs/487Z19cr534sLy8HTg6V9fTrQyvdhrTBq3rv 9dZ5G8aISBw4EWdHb0qayxxpP9VGyY4S2peBvOqd4DoJZ3TcvluVL3x0UBU1 2HMfe/VmYLqUELRvL5H4hS4pb9PqiEdaveErG7d8s1zz5As+ftV34dyWvnn5 1/6bXOk7vn4O0ipPdEWbcjXeHH7g5V+5EXNH3Zmswb26WfgK+n3yGirK/aCm noRHrZeoHboYfOt/5h9l/h9ptv6dO7acnbY1Uv6usfPn1XeIv2peGt7PfJpd dbwd7NcVXIG3BgPkJhLgnZrzDXxcptg5F2wl7qXjr1jMy42pudS489vJO+yK duf+X1l5QbyaVftYtDinT3d78k20vXCvTK+HViceyO3A7s2pzQtR+y447d6t d9u1pl2qH5npYKWNwICH7v62ONE7cH3jt+bSxlfduxoHfnbs9d7K+ClRj1Pc HnAin/9XsIFjw777lPZDJckPNumFCzdaqSJ1JK2oZJuHtugJ0LWzBWtvhLYH 5DObgEgaV9+HK2ptWS37Nh55afmw4ulFcllsHXPL+5en8ja+ZGAIj0iek8/1 x/cevHg6CsajIIgnd6LJIpjOR/Sf2VSnV7a22okYFTdjk1NtViMbUML8So/c Mxf6gTWdi6kqc5H3spDs+tFoNPCfnfxrI38RFkvvl+i4FMVal52nWhegv5ad f7MkRStvnaR6qdfiTOhO152C9Ms6EUnfsJZQvkfCDry9QdRL1e5aKbstoa0O L5G5ZrFnjMYkCjkKNvKXLCD1qOQZfQEp5CIF8DjSqTtLzw5u0My+dddDG3XN Ts2E1EOTJk7VrAkSB/Wd3v55WebOvrxokvCYNi+VXWET2k54a6POhSeoYjdB updgU1PRMSinrloN8eXxuSQqd7StJpE2866M1GZfH6azKfd8gWyuN1QoJ36t kmpH52TtqSZFRw6ubkjjtpdu0E5UsZMydGKtrAtIcQutNFxpoQ4u6I0OhyOY WBl4TVH+utuaq+Pd6251Di4RouoKjl9LXd2T5wvU0rtHxhg1oQ/bPHcXz16o S6chWtfXH1uGtxiOntFf/mLXgEPTNG4upp15PonobCy6pwPoevuB5UKu4Seh ImW2Cet8xXJ9sykvaRfFyBg8nprpzky2OIPCa74WTJJanPO2XSR3rO1trwTW t4i7zN1lwzZb6evBHxtp1SahMS2zdVfPiw2588Q9/+tvKJWY9oKJCnxW8Gjc 7Y6OC3KXzQZGlDm6yY/agPe4mUTcYtjWEBqKj37mhiguSdyXugSiDpucgYbr D47ctwWmCxI4PMhma1+Pv2l/JPBBXEib3OqqX7XhPXQJUTi2QkSl5khR/8+/ enaLYRvwQZ1zQb7L5kBoj5rVr2wp65ggbUi3+2TfsPVyaz9dzlhxkrjkstyY OBqfnbJ7vGYDtDsWxwTRfplsW8kRCj/dlkmekf41u7N1enknwH6R6OstKzm6 Yvts5RGMvEeS5UR50T274zwlu69P49Voty3ZdKF3czomq9QliFt3X2bbxHbS n7aStQI+Yz9YHP+WPuFsfJ3bJTsDX1V15FufeicZbeFNm04DR3y/2/M+Q/Og hCa7JnYDvOjBsv/Tyrokru0wT9XArHb97KkL13DTtiMnIpIhkyT+Z/0DpIB3 0QriOdnH5ZUmCKVHC8hto9pPHQTEcW79XNPA8s6fzLg+bFMJYzLEFs21ZCBH Z0A3Tfmjwtm8O5vIvhxHrDdkxTTWJBtud/bxpaCMZVuPtk7kZJylxnl87AnI aBh/kriSmrguKS4Moyl3eZqkSAEMd/0jQDZOS9AHOfR8QPnSs9thZgH5ElU6 LcjosgnSKJ8/Weu9GZM9qcdTh+K6mMWnVJBKB4RAET5N6y8fLXlTqXvD8IC+ o8jjrnUC1wKQzvWoy8dLDW3rVFAShwPzdmB2HZEVSbUo2l/WRvFMEfbkRJii 6qJrSuji+3TqN4b1RfeMulsoddDAtMaLoUHlbnhq2LJptPey3SY3khz7reo1 wmIBxNqv6XhmfWzNHIJkbW0jkEzTMV1mXXemSU1G2s7pp6Nf8HxVMbxKNg6a 45VsYtmOChz4J/66kJzRDpx1+jdQ1rz162HZ1lIZ0Enjba9SA95wQgR63PMx AOg/G06nFKMacK40SOwBQ9V7wY9gwZdbiTc47oXJ5nBe74GA1Tf+Z81nuL2H Wiza2NheFiw1R97dCwbkwFOkr2vbHIT57szBmEGP3/KZxZg3ZxQZ6BHRI40w 0dZxkyzHXhMxGpNOoax3ZNnRZv8zFsV2X3ZiRj082yAZo8EvyZQwWWBGUqGc DvQZc17fJ04KqRhCMq33sKlfNgqSWdEAeX664UjbO713Nol+fePoBAf6GxLy mdG6Yo2/LJacUyvhmVqVasioD3mwhC2PQEcZ4dfFN3QSx4iNEd6dnPXRflIF c8q/ogd0I8hoQ9vAXI937S/Hy8/JACacvwj3fLk6Gh+TT7A0xa2Wq6WZX49/ xqlAvRa/DgL12o7aBCZ2kHYWFG4knN213mwo2/aaQUPD2nwue6691kYKWZdr cjXM6Zafy/IYO29nQvvvmObl/rKrpxpBKaNLSX9LmBpLvToqjo/1OhSsIukT xiXa2LT0+qAXPwhcoq1uOjVIh6v4IP26aNhrDn7UezcPqSoQt/qJSX2sa318 wglXK3VtUv07k9NlqLhlanirDFTN+zRtK95GWqhgPjCf+H/q9CGqapsU4Pi+ MZI+bGqxvqU3HTiaRgemgXlPnBSImvlrHvA1/n0PpxzcPCd0aXceRz4Ft82f Try2DyoNPIli+voTkSRnkJDkd7SRzKm09VlIsRnLd0td5uVJuYWu+oNxc9Ds SI0GTnrL8gY05LZEY0p+UD3K94rWQMdbPS24dU67Pg5I9lhv/NUNSOWuvnhQ Yo53iSLs7qS+B1i6mLQlv+9Mcg6JC2t2TpHvNcM1kjToREufM+o2aDFaQQtv LbtmH0/fzWHLgdmWGsZDxvhO7yL1GOl32jaKIAkKvqf7gH7XeIAfYURAFqFS R8475q0/3kM/9Z+f3ZO3amHhz3v3FD9C496yJLLIg3rVd/ojAeJyZiwDNZpF 4DaszFzQ1AKr1BKEz71IpKqLeGkeRSPvWO3euK03de7qjG6JG/SzNHoVeSKz 2tgaby1dr2aSifJ6vDvjATTwHC3zzTEtoDwo62aeNKDqHW/YySh7mKC/kVyt dwmevvH/qCP4Zw3RPGOCHZm+Bv47gXa6G7AJt+DVfCLfGM3qbJP1BxRoP8vz HsEtvUw20E6Hnz/62+kplb7/i374wO7aeHHn9NH901GwmM/oVjcv3RfrXMd+ DoUscl0XsnH2jOIAsrt4KRch7JRdfA6UZTeSqOQAxT9UshVnCw7pehuNszgt kSfgRSukFVHtVADteBqRNRhOp+Lrq3k4qGfqKrXPfnAsMdH1Bo90tJIGeGwy CTnI6Go7btAez9iZuhjEsRz5ZFrsMznmZ8orOvGLHgB4qaMHnIjSmjkomCuu U2ArrHQLrCzbMYaW8jBq2XUXaXg/n8voKIIP2RhpBZ1bmyDGNTShPnm22KlL 80K3RckZrbMSSK+04+7aDLTD81aRWEMgT4sKOGHXrbObwo+IsDcbNPrmpOG1 9YXsu7zQkK+u7GhXqLXWT1duMHlpzp+24w5OQH3nnO6TYJw5a6rPtaZczkVV XDqBUkHFb0zxaD/WPyvu+ieORbng+VwyeK/esI9s0Dudb870PWWqVeOljo10 IyM6Ww2NdV/8Q+WEiQdt17GufNw2Sp65o5mbLapGUKzLx9CwLSa2PTUtrGF5 na/yQUzfw/J43bjkH8z3fdk4enLvTcRxtyQO7ENwNTq9puQey2OUmtYvJvyg fP0H/r4u2ayF7p+37vdpEMavf3avmU3T2hn75zcUE7im4f3z2BE9Htk9bkKn rlJRgGtz8IxP7F50C1p14uNi/0394s2qHHg26pGYXGn2I6m55slf5yxtU3p+ W/v8/w2YnlKsWL/VO/xtNCtL2N7Pb+zA2lSBhrvSCRTWnVScQAlO4y1sHYns Lq5jzvhpE1Didrp5BgNJ7HU1pBZVDUYls4GY8ej9W/V9wsxJn50t5vaueU2O Azv1PVHUz0wMlSfaEf2PEH7dxMeK/8E5GAtNrTp6gpMc+98wGXqvGiXhG8l5 zVrvMO5wqq7KK441OJWl2knVJl/CbF3U6XVuLT59MNipoGxLw/rD4B/f6MJW TtY/V274p46znNKZLkpk8Wyahu2YM0Rlu0f29J9TxJgykvSOsxw7lsqcV+7d 0R5l4QNRc3CkU+uoWemIqxpR3axiR9uXmVI5l0pjwpM5F4ffPGIgzFbXzjNV /yTm0hn5AGTbFbxn6NWAyvQzMuU9GvWvPmjIfJx4rZI3zSqDqVRsaJxFb6YR WfeWj9Y1quUMzPa9syvF1pkKEJiirwywr9kEeKE5qpRgPle7bvkMu847Kghm arOsb0Y+nQFzT53293xl6rorDS7rnbTUq0sAfn/lD/3wT9X+6s/pn+7Qf76n p2mzTWKf8t1Reic8lu9ZE2+8pZuTs2Rbqs/CawbouXXBDIBDxx77PSlfUC97 8H+nanKvqPgTJ0N+CF9Tqm6mivXR0VEEb55/XZfn4ZEVJfzz71Bm4R1/frz0 HCGwdz5KMrdDoc91CSrZFmlc39ioci6VIjvsfso19WzpaZpuoyy1PtrR4jVW /tZJWK5pV5ryh2n5/8bGsjp0aIVZRAyqPnYGl7hZYayodib4735BYX4qQbHU tkmf8DCravIvt6q2t+ZWAy1lufgEfCDfHPzZeBfqXULnki+5Ng+BE0jsaeN4 SaPFxHr85EVs3HsDiq3cyVjs9nyuGpxf6e2tnpOx7vnQqrRD4mQfZ1CeSZ/3 HpLZdghoIh1V7fKYWpJuUUQqbX+fklLO93ofSOITa36V3yveKTdiXyfM1fFq OYhKJ8HlLENd36beYf8QCMB3s7RSvEbmchdNp3oknaE28sFtJhGnFLgnBBr5 AByrbuUm9Sd06+z2up6uXm3Pv2UF3cJdjT3HBta0hbfk7CJtLzVHZPZ/uvmf ZrpsZIlVRERGPjOE0wsNs3JrT6AvOV6fq3emaK9s8p05MU93nF8H39htxmbL hsc4z5Nd2E62aLtI93jYSreor0MVwhaVDFk2QZu5r3aJpa6mI9+OpPQJL5jp VMrXvZebnPqQzg6z4y9geG1mbeXZD/1XthSeI0HElrLh3e311hbpDCs4LPfs FSl1pKS5shItbAQpnACGjqvYFIW6i7s68/dCqijSY2khsMFxcTS93SJ03323 2lJlWi4/NMSEf/jhc2e/fSNZL/pFW0NCvFbhJ9u6rkZHG/2tGnSft3ZOzTXx ZojmuhVeWtkdk9HRDCW7vWYip0f2oWrO8fw++a/r+H/OdJFWWl0nVaPfJlV2 1+UPPxzXbEF7G78xtqjzZ+XRBnKs69C3SjH5yW3MwNOmWT8qaI/W3NvUmqGt tOQ0fqBZ8yiV4/iB4cWnh2r+S0jjzp2mkXNNoNc2THf9yOvsYvuh114C+oxa 7jdO7in7M5rlXT8YRJ74xHWazF1/lgZZFOXRahIugnw+ydV0Gs+jKFVpkOTx dLGardLpOJwkY5XN5mmUzLzFOJuqIEoW82gce+0TBOhpkodBluUzpeJwMVlM puEqmyfJNArDOJvPJ8EqjVQ2nyTRKllNp+N47OXRfLxKF3xpd2SKZGB48XQy i2ax9z7LgF5n82CxmE/HKs/nGbqchEGo1CLAcwGGkY9zbzobJ2ms8ngyns6n 0zRRk5majaNxGmImRM4D6tl7GTQcYB7OXX8RLvIsmywwg1mSqBlmMZ9NgyzP 03E2ztPpCnOfJSqZqzCYrbw4GUfRKsTco3wRTcYL72XY126CUU+naowJxNE0 TrJFkiTxeLLKklUezdBdmC/mEyxOOp3OJ142Bq3z2TRdxeOFmmOmL6O+dvMo S8eLcTKeTbC+k1jNw1Wexik+noxnqyAYo+nFeBJP52m6yLx4mifzFChgGmO5 k3Ho0sipsypqg4gkmvtMNGetfO/641UeqmihggDkycLpdDXNxqs4x+fxJFvE M9BtFawmuUeDAX1WWbpI02Q1z+NssVIZta7VXU/z00UG7l1NoyCfgGXDWRio fKJAs2CRBhG6i+JxMp95WbgCxabRNMrTPMuTKJ4ns8k4aA/+rj8PwnwajOMA TBzH+SSZTBZhDAHJ48UCZMLSjqeL8WIVJlkC8iu05oXpLJyqaUQc0RnxXT/F 9MfBFAsZRhFaXqDrNJyDYyFPEZqPV1EwycCxcY7VWahp4MXhKpyGKodUdofp hHnQ+iRJ5kkajSfzeZhMVxmokkIEonCmJkk8UZM4G88hcl4AZp1l6Twcz1IV 5WEGec5V1KWx2/x0phZofoJeomCcRQGEJpiryXgyzhbZajbNVtEcrXrhGByr YrA/iQCGQnoEo3CbF4sl50U/TmV4Wmc0VMZkHOerRRCvksV0Mg6jVTqbZCHU WR6naTgFpwUzWrooVJMsjsPMg/RHQTRboNtFEi/ieQ5RjdQ8jyZBgNGCMVQy S2Yg2CKdT8M0m0VpEiYzTDVfqfFsFi4SL1hEs0mQpRnGkawgL/Mki+J4rCYB Ma7Cr9CcszxOwJfTMEvmYJ1VFNJY5nk2Hq+yIPQyTCidY4ST+SyHTIJB8xAL pKbxLAJz4a/VZDaNVrM8CdU8jfPZYgFSRGqGOcaTECpl5o2D8U/6112eu/4q hBjmszxfpNCj0/k8J76C/lphJuN4mkbxbAHaruLZajKZjsepF4ynM2jhNErx d0Sa6KBSmE9zaDcsz3gCfiEdvUpjNB/MVBLlyQwzixZBmiQeFggrOR5HYTBe zFUeJuMxeIRaP6wUgkhNU5iuVRqqNJkEs2AKLYbFiIOI9XOiMO048RYKamYG zgYnz7Fe41k2DWazSXvwd33w1BRrN4lnkH5SAgpaZBykeRDkWYBln6XRFNww Decx2BgSFky8MAxhw1aLRTZWnRHDkMdRPgtIx8CejKdRmgE7jCezIE5UlIVh ABUcxZMgH4dQCytIufJUFiaww+BVre0PKoVsleYpVE4K1kzyqUpni1yl8zyc z9Isgz2cTidzMoTeCraMaBuE2Xg6XSgYCpUtgi6N3eZnMbUTB8lUzcjeJtBW ySqEBQmgxoEuVgF4djb3VAKxUlBq6WweLeYQ01UQTSah2/zvSuHnVwrRT1UK 7eWBnRkD5cyBNqJJEqDDHMhQzeZjGNN0vFIwqLOVWgXpYhHNM9ja1cQDigOP Y3YzqI1VF0aQM+LACIBwg1nGY8jtAmYnmURKBQlEYzHJ8vF8vsrJgI7BrbNw nKkJEMYKgCxVGfjPgyEGC2oN5LQHOZgGxAQL8DfAmwLsiIAd87mK0BRwTppi kSbRJMJvkOkpzGm68tBZRJpq5nloDTAdIg67vMiieZSSJU3mYO0AC4PVz+Ng RYIAFJNFkFtFqmWmQrCmCnOCYcpL80UegpRxDNUHTbSCTgUoDKaBCmLMOEln aTyDCCTRTKUqoYGi4QXkLQrAGjZRyjgfcTxn1+OvD+XW5N+67wHizVWg1CrK IHJAPxndbDzG/CEwQBhRBBSxUFEMlBJOV2GUxh4QB7RVPAaIXOSkZiIiMtQ8 kEgOGBni1fEiILHJoTZnYxVksxDKP0Qv4Oaut4Llg2wBB8OirFaTCJpyHM2m +Wo2nkxnkxRAEaoWejiG1wM2icdzWFoI/RScHaYqgBqJoxX003S+SvJ0Ns6D 8Ww+nYezVTQmaQ6yOQzbIp1lQR6kJFM/xr8BXJ3BhsUrqJ8oWMymMECrMdwD 2J5oAqnLcy/PwEM5lDzGQPgWpAoW80CRBolmYJ65GmMY0MLjMWzNdAb2nwMs AoaHswkpthh8NU0IGQPVjX+ESwRznkIvoVUQDWsD3zIlAxbAPkzhSUdjEGgG cs/A8zEWNMQyjgH8w4mawazCRAeQunSOyY7DcAEsnywWOaBwAr8E4wbihKHO IzYHOWGeA05UOBlH+WSaxSvIVBzHAMCQNrwfpnMozDRVMLhpCM1CGH7iReM5 jApMdDKD0YE9UKFaAY3E8Cpi6IUgAHqfRjOYa5BVwX6CBbIkJ/8SzgrmNT7g do0BNWbJPIinwAAT+IboYUVyj2lB7SziLEwnGAIUxxwgy5vCUcoD6K9wDjMF zp4kGRwPQOwwAE6CKxjP8N0kJUDBY8xyqH24aQsANQCC5sp9nKMGR4qQxWI+ n0YQTagiWM3VmEwa/i+E2o/TLAojcNsUbkQK720MKwrvIsYz0J23O2rQtPBS 5/NgtYIyT8YgCRwhMN4smC1WcKOh0uPJau5lOanR6QKCH07pwcl0DhFOuo7a ahFCDtNJkIBOQKiBgmUG5CCmISwzCYGpFgBQ0KbpOE7BOVMvyVIQHeZqFodh lqkE+AyTAzHnY6iTaQx+BdwiqirAJDUBQVZYjnQRBU2orEcRkGEj7oUtgsec QcDA2VjvSQIjgQXHTxjLKXx2BXgMtTL1YDvnYbwKMVUFQwINhHcUOYdg/BC6 Y07YbA71mAHojKfJOJsAZsbTYMLieZszSNAQ4DGeZnMQFHBuEicAw3GWApBN p9MsiTD5+WzhwcBlWQztCj8whtiFASYK+DmFtMAIYakxMiiEOJ0p2LUI+Bxi HAVQtxm5fCGkKPKggbpkaYwIAgSBDEGfyQwKBwgXaw2vM4sV4HkazeMFCDCe evCz8/kM+ncBUQFMxEsTYuoQSnU1ViGIBIaEZE9heIMUAAtYLlvBpZ3AT46h 4JLZ1MuiRZ9PY9Dlx+h9Tyv+n6b3vbFaJDDzY+BTGqxaASVCJcHTDychrDyM vlpAmavZaraAxZupKIUdA0CHGwPMucCaTeAK0esTwOAIYrGgBYbg0EqHCmyU T8YrWABILpBhmIPZwdtYTbweh4CKSTAnx2kaRkkcTEN4RbN8EUCrzAHnAKMW GbkbALYZTMwkIH7LiQFUAtafEYkhHcE0y8BIXjyHFEM2sGAZxRTASXOQaLWY EaidR1GI2YFbZhO4FYTQALQX+RSSBWS/UHMgGg6LBUBdIfTLApwdgU2iFZQ9 JDaaRtl8Fc6mwRx8loEUGcBRki+idApXNINELFZoG1jbg1caYMnhkq6yCZAz QVBI7gJaK4U/A+ULNKowjuksRkuwReE8mSwygFQsQxRO0NrCU6tpEsN3nUP/ wVYG0VwpkHYMB2wKKIHfoEPQBTymw/6299Mw9y2t9Pno4JvpFDPPV8C+OXwD 4jn4LpgwuFIBN8FkKYgLfMs53MfJwlvMp3GYTDGDRQ79lsJ+QROAOAswZg7T CKQOSwOgMZsFQN7ABSv4NsEMHlCoxNAdtCBpBEgGDoDqhBBTfBWKB75wAocB bjIYH0yZhPBbQdSQwo9wjhLwSwKjBrfmPV49RDGF9MTAzgv4AtEYShZ4CE4h WAhoKlZoNE0XHkDFGFoBiz6FhEymJKWZioIerz5LJ1lA0dAwUmOsPwgKSB/j efAO89EEDWBCcLvjIJyqMPXIOuBjiBEMDXRaCO9sTnMF/eMFtEACRA+iwz6m 4PcIVCR9olZJlDb9Kj0KBREF4ZhKsPUBMEYSxvCoZwn0E5zLdA5VB8W3CCF1 wMcTuJpBAJWIEaRgTawoYC7+yMbwjKIEFEGfcEQBUDCraQZRn8YwqjEcjoVA p1siB/CS4gl6nEGxxdkYbsoqJTOmSHPDmVHQCxjKdOYBXo6hkMIALAeRUfBV Fwo6Ck4fxSdC0i/zGBOaKLijU7VYLQBcwITQIlAnMPphvPAgs12yNG2aWkFD ZeEY6neioBWjHKJPJhUctcpgpeag2wJNrWLokWk6ASIBfosJ58JVVgDNC6BP kGk1g0ULo0kOnR2Qb6EWs3QFTQ5oMptCXpLAAxTqc4B/tyC/W5CfyYIcDM78 khakG9AJo2kCZgmjBRTcOKA4V5rkYQCYrzC7VK2gceDLzeBSTgLovYkHt2RB +i2AQVmA2Wbg5TEQPFyWIJmSz5XnY/hM4O/xKgS2DTLwTriC87IKoj4H5XAI CAySQi1iGGDq2QwKA8pvvsAPaNw5zBo8ECjgLIJSiNLVhILKWR7Dj4I0T8jF hSIQ1EzBgRjafQKlqDJgXGDKYAw1OVHA/jAsixRiJFRyRjAPJjEMC9YNqiuM w3wSp2DTFWxAsIIrCHc8S1KwZxyDY1ZZPlEKCsaDcQOcRv9jOA4L2DY8C60O kSVlPMXQ59kkgVKYgCTQh2h+PI/hyxGBOMwEPovDLCU2g9bOE/iL88U0mc1h vdVc0TZZTvuPOTzoOCIRh2c1H5OzDws8C70gh98EFyCeR7MFHLl8PlH0EjUL +RhPKa4FTp0kwSKbwvDDJVulsxnkA5KPVYYOzTzCFrCvySQAsAAKyFVAEpuB DPgPCA9XARowT6c5uEONsxSWDiaZLMZC0W7XNITHCFsGo51R/HAGLwgalyz4 FLNtBrOaJZn/62ynB7TdAI6LoXVWOe3kQddMoPwoDEhOG9QStE4MFZnAYyFg 5E3h+qs0g/85G6c9ASolZp3QGax++P+1d265cd1KFP3naPgovobD5/yHcNdu GwGkbrVj5eYjgAMEjqyo+zRZtWvtYtHGySXScKC5NWcSDUknZPotm2qIi1yA Fe4Qs1yjvl+/1W4yqpOgwiZyEDNhBVnWBHsk3BhJDEVSNzwFFEG7ExVshPAm SxKZ9fGo+G/2jshgo/ClHnKGK2STF2Wwp6uPR261ViHHgfLOPYfb6lkVaqq0 uiUdrrzsBCHeCLrgzYsGDrtUw6N/yPvtRrEPBx3zONE1Z3E1XXV3tpF0yIIP X/R1qD06/ZQlzS0g/tBmts12IKcxNlSUSjypidSbQSp6sKvOUQdQBBba97s0 LL967zLtPWscA2lkdWSuG58u89woJRjgCkqB0PARazDBhLrQ+RfH6UAkLOKp nv4kiijpXOeZF43jVxsprgxiBzdRjTvJeYLAs3EB0uTr9dylQSqpAwPHjsjw KLHqJGUbyzQ9xVBQUIUiUA8kjrCk5Y4aLmg+RPt8OI04djY+H+qx2EnHjZeI va10U/8uoUSQFdDoEc5H42+7OpKxO4ow//SYH2izl7yPRhR61okVn+4uX6Dr CEJ2HQZQ61jn7HKMSDt4jGsibsYKgEp+HgD48PJnQU6yMIUXilTmCrsdUAcv l6hQEDRBdGXW2NvetlYuT7VDkM0R7Ovexu9IhvupGR8kIzasiIpVhiwL0Dbg tYEF3PdQ5cpkXXkWY7dSQNCas9KbcDD4CJEmhcIm+uFjRI9YpMaBa2traIj9 RBY1mWD34WisG27l6tCmj3JkUXzCxi1qySaNjKeGPQcmpqrDr5zldamrvHcC pJAfjN3aoRMCjjoHS96ichvHDdDrLbwan/EcszLDNDhgoMoLcI1W9aNtNJBY Kc8X4f4rx+mU7np3Jd59GbnBvewOqxVwi8QsSMBqk9mUXngZx3UcFtLg6KIj bAXsG+MNmmN4WSdiEyxubC8+y68KJhAyR4ka2bHqfOkJqCUAWb0CIuydYZb3 xnsaHAFSzHioDpAw2906y77iqnfpBA7GHdlF3DjfYcVDm/muZlU4/uQ20ZkH 0aFbSED3YkbinELzyHtAzXjAOY+/Z5Y8Eu4kN7fTiUTdHcjZCxt9dbZAyJCN 8DXGl7KIJhf226ZFrAdVpEfUAHIDRm9PDn8L9JG7ROfTqf+HrLXGipYjANIr EJyYKssb3eF1O7LA27NS5vB541ogdilaESQmBbFVv3C4vhgqCG6lJZt1bm53 QYkV5RlUJVYoZl+QdRiWkoZlwa/wnaXJgzS/tqt/ROH/IQr/wnE6ZTFMPD5u PJADAZheEbYo+MiRr5pplDSdg7Fp8eyUXArEb61QJSJVfsdLEfj5PhIAQK+I g/GZ+YrSI1+fj87esH1UZvZ5WoNUrUTXajVCRyOLH5xRXTNqsANO2LnvmLEA J8lCY4jZJE0HpV58HHUq28bxeyFrJAd50n376XOQuVwySbtKmfPyqQthNuxx rg8d5AQ1Dxk7/hua4m1wqp50uGr7IToBs4JeNJm6RxgOJIRfSXt+APLl0WaH PVbCPeU0AdbhwSEd3cOrHx3Iz78GRtbjv3Gajh3VvGRELEEUSkYNYlHqyJT+ RB2ADuL/JhgLbayYeCS0zaTxpbbPC+vhYxoJaGX5Tn8MdkwtJjDdbmrzki+d TU+rd40ZYXLNqW9FEh72c8z6vbPu5m/EkMvWU6cSdkruX0ONgWedM9zmUGvZ LMh2atZn1iOpxTQsIuUb5kMzjGFofMUXpNcGJdFPUHYgB5SQQVUyzO64Pe81 Xb9JAYWfHh0NVFv5pfloW7MxUDNgfAuJjWgtiY+JSXtb6KYmfTVtSqWkNLNx feVIgSlp7PzVobLmfAuSW4IctU8z44+WBirY36yJqaYT/wX9EglO/J9m3Bld 7xSR9n3zwd4uDOFCSQ5PgTDhxOoodYfIc9drB5GfbbicWkdfWE+FB4Xzaij0 xZzphxPohImMnRLgS4gx3dLVpYxBRxHJ2HY1UvB/SJLxJFdHAauldIkbOxDz k/no6gbGkeegRgNehBf+i9+lqFaqk3p2cZ9FTcKF+1Vy2U7UbxvOUC/p2XwU fBGVr7LSgzq1oIdVSEHrWf4ykIR4JLwZQobwbMyKO5kVyVNvvutb80HFTDMd zchAGRrFx1Gcznrm0EfDH+ySKJzXGY89sCYEFevW2FyqIZlz3tsP3qC1e9Xw nKwwiYkexwrb8bigTDs3+FGmumgY8FRuCIZYYKE1WRKTWOMrA/I7wuF+Kscn 4WhIfg2N7O9VEwd+YDm78YyhQNBG2Ovcq+QmdlsuA3I65AmQLxKXN6Vgb6/+ G49Bas+D4OsYoq/JVreQoT7eL0DWqEiaC+t/VtVtiGXj7u8X+R+/hJeHdeDb 9RpsSDd6IvmoFPMhY4x11RANtz46BM0+Yjdnc2Hdgh8XIGMK3zqA5S0HdRQH YoA8LJQSC49QVeqpNg09i6V0d3dHj7QeamWuo1Z7qfO9A9AgFVrXkxr1+BOP shE5o6FqHjSV3yY/4ZMdHu29jPeAB3Yc7Wg88dkB3Jo0m9PInqnJkwPckjVA e5xhiT6DVwZecihv02Chhvh1pqDJ+x/Dr58yE1Egnbuv4m3k4rbZeWqAId+u eq9zjpYyuGDVjwtyOhzYxoatQKQ9Dy1/SBw4bSEiVycek5IGgA9+jNwb6gJk XoByhN05uHbrke1sxjLAy4hw0rTqWw/g06gjymgc0Ll3Tf8Xa4M8HEBN0aED ATNdW6Fb9hU5IzwoVWgFMJ5K/9oF/MlM/kmvMPxAk+yVpgtTjY83vZLzxae9 bHLumNo0MRuXiO83YMJKgkBxUy1iS34Hw42H8O0MsoLCsyGAqHNBlgItX+C0 CVmprjX6WjBenVVd16kBJ3MzP2F4xsQPcqUCuEBJ1gUhw1WkQ8wcDVhSm6Nu EVGCs1nn+bHrbqSUwtYg3g8M91EjyBSSVkmbCmzVuTRZEFOfwgwNGhg2EQQi UHQcaaaDRooI9ro6v5VnxOkq6vG3wxN4Fi7o8hJZQPStMUonrKF/5XxKmeqZ 5A2I53g/gfhffwnjfwnGNa1khPFG05O6dYbzxnM3QhhHRyh3iqyGWwkdIwfm dXCTx6SOlii0L2H8ag7Mpo4wt87dJDqD8r11j6F0H6jYJeZF2dDUohGgaXqC TAPkOgj/Foxf+CPjB8fRxSJcIjvVA8ZhItka+0vd9eVnwOQ1Nv76hNXuaqdj JHPt34HxdskwsThSi/7MHv0izNJFXYxYWxUMB7VgPiywu0RXOAMODNBgtvUF jHuDwnUQcDZruHQWjJjNegc1sFFscxk/zjI3W9VcHOBazirT5oF1+3LC8+AK 0M2t0s6aJ7UqYKUSMfaL3+BVtiGDk4pwXQYbG/aGpG26iLK+D+P1jHxg5cGu 4O5uDN68LgRSJCM2mYCjGPUNjGtuWrfpeMyo+ZYEw8/4HsatquZ4AD5ogz3l WBfzumaE+RaIOE6Y1twa8v3U5TxQzkMAnLz2yi8u1uk8HytPetTcxJPE/Gqn 4LqCbgT6aGq2x6GhziBv0Z0MLLoyWrivpi8bnyjazSkOXQJMFclOi32cPE6+ Gi0sdY0T2fzZWiGwXAq6BFc7/0t7P0tJKKNYOL+qheOB1c6MKR5dH9AlhxAv wDOO65odwZJouSjHEZVPbIx/NhCfYPyOqNbTzoFS2lbXNESKedcaY9G9O91y OTos1BE15qCWoAGuqKuGutv3Dsb/vnC4n8rxSTgulZByDTFSUgguzPCoeEBi SxSEb8JmIvFlURs3j3muJmCHPFI2j7xfFjkUgmWuiL7xRRgopGbaRacrrwl7 XYxTS6dqjnk7rBw1jLxp/6AX/w7G0/FqWZZwYEVMX1rzCs19GwG2LSwbAEMl 9KPWnfmeg150X1QKju96C+OnrJX5d6qNGqdmfxErjcrANdsHzXR7o2I7pCXo Jm/XwSpkrtEUivR7GIcM0s75kMgjL0iYvQLh4fmgS5pXA/c34B8yyYSXIGR8 0ZSdL4aXnC9gHOTWbVkCFqFdp+lOKtTzuGpGQB5gZ/EmJ2vOAEi9hBCJj4xZ bXjf+ALG6zBLYB16ujRRnsGdoaAggyKGXNKYSHiDgEzjPyc6fOkAyz1y2dsv YNxXtgOITbFeItMouZ0ClM9NxiYeUjWxRA6Q2yuyBlf3kAqBS1EhTssvYBwN FdEHEfYcC1CGioeuNVCRzPIS4uBsiF/DW+1JHkfdjywt8/mI/3cw/iczX8N4 18mQfxAs7FlK8HyemIMwZJKIFU9HodM0q8Gdow/n59EYP9aCJK6/A+MsLCBA HI3H1SteFKtqFko5lD6M8zn3VEJRn3dkNXk0MesgISpo6PUTjHsqJSZFfxqA zoOsAdUa8dhldl6RLbIrr8+iwjDE61DkZNfCwUWFtv+CcT512XgB6plablHN dGi+UokNhQigI15lZ/3pA4RJNfyEJZI4i9PcVicLdyEX+rhiYake9SBP0hAK AL7VXrOIUS+aqqWCe80C9sI2V9LyQdr/A98269/1jAEA --></rfc>