<?xmlversion='1.0' encoding='utf-8'?>version="1.0" encoding="UTF-8"?> <!DOCTYPE rfcSYSTEM "rfc2629.dtd"[ <!ENTITYRFC2119 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml">nbsp " "> <!ENTITYRFC3168 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3168.xml">zwsp "​"> <!ENTITYRFC4774 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4774.xml">nbhy "‑"> <!ENTITYRFC6325 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6325.xml"> <!ENTITY RFC7179 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7179.xml"> <!ENTITY RFC7567 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7567.xml"> <!ENTITY RFC7780 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7780.xml"> <!ENTITY RFC8174 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"> <!ENTITY RFC8311 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8311.xml"> <!ENTITY I-D.ietf-tsvwg-ecn-encap-guidelines SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-tsvwg-ecn-encap-guidelines.xml"> <!ENTITY I-D.ietf-tsvwg-ecn-encap-guidelines SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-tsvwg-ecn-encap-guidelines.xml"> <!ENTITY I-D.ietf-tsvwg-ecn-l4s-id SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-tsvwg-ecn-l4s-id.xml"> <!ENTITY I-D.ietf-tsvwg-ecn-l4s-id SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml3/reference.I-D.ietf-tsvwg-ecn-l4s-id.xml"> <!ENTITY RFC6040 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6040.xml"> <!ENTITY RFC6660 SYSTEM "https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6660.xml">wj "⁠"> ]> <rfc xmlns:xi="http://www.w3.org/2001/XInclude" submissionType="IETF"docName="draft-ietf-trill-ecn-support-07"category="std"ipr="trust200902"> <!-- Generated by id2xml 1.5.0 on 2020-06-08T19:55:39Z --> <?rfc strict="yes"?> <?rfc compact="yes"?> <?rfc subcompact="no"?> <?rfc symrefs="yes"?> <?rfc sortrefs="yes"?> <?rfc text-list-symbols="o+*-"?> <?rfc toc="yes"?>consensus="true" docName="draft-ietf-trill-ecn-support-07" number="9600" ipr="trust200902" obsoletes="" updates="" xml:lang="en" symRefs="true" sortRefs="true" tocInclude="true" version="3"> <front> <title abbrev="TRILL ECNSupport">TRILL (TRansparentSupport">TRansparent Interconnection of Lots ofLinks): ECN (ExplicitLinks (TRILL): Explicit CongestionNotification)Notification (ECN) Support</title> <seriesInfo name="RFC" value="9600"/> <author initials="D."surname="Eastlake"surname="Eastlake 3rd" fullname="Donald E. Eastlake, 3rd"><organization abbrev="Huawei">Huawei Technologies</organization> <address><postal><street>155 Beaver Street</street> <city>Milford</city><region>MA</region><code>01757</code><country>USA</country><organization>Independent</organization> <address> <postal> <street>2386 Panoramic Circle</street> <city>Apopka</city> <region>FL</region> <code>32703</code> <country>United States of America</country> </postal> <phone>+1-508-333-2270</phone> <email>d3e3e3@gmail.com</email> </address> </author> <author initials="B." surname="Briscoe" fullname="Bob Briscoe"><organization>CableLabs</organization> <address><postal> <street></street><city></city> <region></region><code></code> <country>UK</country><organization>Independent</organization> <address> <postal> <country>United Kingdom</country> </postal> <email>ietf@bobbriscoe.net</email> <uri>http://bobbriscoe.net/</uri> </address> </author> <dateyear="2020" month="June"/> <workgroup>TRILL Working Group</workgroup> <abstract><t>year="2024" month="August"/> <area>RTG</area> <workgroup>TRILL</workgroup> <keyword>example</keyword> <abstract> <t> Explicitcongestion notificationCongestion Notification (ECN) allows a forwarding element to notify downstream devices, including the destination, of the onset of congestion without having to drop packets. This can improve network efficiency through better congestion control without packet drops. This document extends ECN toTRILL (TRansparentTRansparent Interconnection of Lots ofLinks)Links (TRILL) switches, including integration with IP ECN, and provides for ECN marking in the TRILLHeader Extension Flags Word (see RFCheader extension flags word (RFC 7179).</t> </abstract> </front> <middle> <sectiontitle="Introduction" anchor="sect-1"><t>anchor="sect-1" numbered="true" toc="default"> <name>Introduction</name> <t> Explicitcongestion notification (ECNCongestion Notification (ECN) <xreftarget="RFC3168"/>target="RFC3168" format="default"/> <xreftarget="RFC8311"/>)target="RFC8311" format="default"/> allows a forwarding element (such as a router) to notify downstream devices, including the destination, of the onset of congestion without having to drop packets. This can improve network efficiency through better congestion control without packet drops. The forwarding element can explicitly mark a proportion of packets in an ECN field instead of droppingthe packet.packets. For example, atwo-bit2-bit field is available for ECN marking in IP headers.</t> <figuretitle="Example Path Forwarding Nodes"anchor="fig-1"><artwork><![CDATA[<name>Example Path-Forwarding Nodes</name> <artwork name="" type="" align="left" alt=""><![CDATA[ ............................. . . +---------+ . +------+ | Ingress | . |Source| +->| RBridge | . +----------+ +---+--+ | | RB1 | . |Forwarding| | | +------+--+ +----------+ . | Element | v | . | | Transit | . | Y | +-------+--+ . +---->| RBridges | . +--------+-+ |Forwarding| . | RBn | . ^ | | Element | . +-------+--+ +---------+ | v | X | . | | Egress | | +-----------+ +----------+ . +---->| RBridge +-+ |Destination| . | RB9 | +-----------+ . TRILL +---------+ . campus . ............................. ]]></artwork> </figure> <t> In <xreftarget="RFC3168"/>,target="RFC3168" format="default"/>, it was recognized that tunnels andlower layerlower-layer protocols would need to support ECN, and ECN markings would need to be propagated, as headers were encapsulated and decapsulated. <xreftarget="I-D.ietf-tsvwg-ecn-encap-guidelines"/>target="RFC9599" format="default"/> gives guidelines on the addition of ECN to protocols like TRILL(TRansparent Interconnection of Lots of Links)that often encapsulate IP packets, including propagation of ECN from and to IP.</t> <t> Inthe figure above,<xref target="fig-1"/>, assuming IP traffic, RB1 is an encapsulator and RB9 is a decapsulator. Traffic from Source to RB1 might or might not get marked as having experienced congestion in forwarding elements, such as X, before being encapsulated at ingress RB1. Any such ECN marking is encapsulated with a TRILLHeaderheader <xreftarget="RFC6325"/>.</t>target="RFC6325" format="default"/>.</t> <t> This document specifies how ECN marking in traffic at the ingress is copied into the TRILLExtension Header Flags Wordextension header flags word and requires such copying for IP traffic. It also enables congestion marking by a congested RBridgesuch(such as RBn or RB1aboveabove) in the TRILLHeader Extension Flags Wordheader extension flags word <xreftarget="RFC7179"/>.</t>target="RFC7179" format="default"/>.</t> <t> At RB9, the TRILL egress, it specifies how any ECN markings in the TRILLHeader Flags Wordheader flags word and in the encapsulated traffic are combined so that subsequent forwarding elements, such as Y and the Destination, can see if congestion was experienced at any previous point in the path from the Source.</t> <t> A large part of the guidelines for adding ECN tolower layerlower-layer protocols <xreftarget="I-D.ietf-tsvwg-ecn-encap-guidelines"/>target="RFC9599" format="default"/> concerns safe propagation of congestion notifications in scenarios where some of the nodes do not support or understand ECN. Such ECN ignorance is not a major problem with RBridges using thisspecificationspecification, because the method specified assures that, if an egress RBridge is ECN ignorant (so it cannot further propagate ECN) and congestion has been encountered, the egress RBridge will at least drop thepacketpacket, and this drop will itself indicate congestion to end stations.</t> <sectiontitle="Conventions usedanchor="sect-1.1" numbered="true" toc="default"> <name>Conventions Used inthis document" anchor="sect-1.1"><t>This Document</name> <t> The terminology and acronyms defined in <xreftarget="RFC6325"/>target="RFC6325" format="default"/> are used herein with the same meaning.</t> <t> In this documents, "IP" refers to both IPv4 and IPv6.</t> <t> The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY","<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", "<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", "<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", "<bcp14>MAY</bcp14>", and"OPTIONAL""<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as described in BCP 14 <xref target="RFC2119"/> <xref target="RFC8174"/> when, and only when, they appear in all capitals, as shownhere.</t> <t>Acronyms: <list> <t>AQM - Activehere. </t> <t>Abbreviations:</t> <dl> <dt>AQM:</dt><dd>Active QueueManagement</t> <t>CCE - CriticalManagement</dd> <dt>CCE:</dt><dd>Critical CongestionExperienced</t> <t>CE -Experienced</dd> <dt>CE:</dt><dd>Congestion Experienced</dd> <dt>CItE:</dt><dd>Critical Ingress-to-Egress</dd> <dt>ECN:</dt><dd>Explicit CongestionExperienced</t> <t>CItE - Critical Ingress-to-Egress</t> <t>ECN - Explicit Congestion Notification</t> <t>ECT - ECN Capable Transport</t> <t>L4S - LowNotification</dd> <dt>ECT:</dt><dd>ECN-Capable Transport</dd> <dt>L4S:</dt><dd>Low Latency, Low Loss, and Scalablethroughput</t> <t>NCHbH - Non-Critical Hop-by-Hop</t> <t>NCCE - Non-Criticalthroughput</dd> <dt>NCHbH:</dt><dd>Non-Critical Hop-by-Hop</dd> <dt>NCCE:</dt><dd>Non-Critical CongestionExperienced</t> <t>Not-ECT - NotExperienced</dd> <dt>Not-ECT:</dt><dd>Not ECN-CapableTransport</t> <t>PCN - Pre-Congestion Notification</t> </list> </t>Transport</dd> <dt>PCN:</dt><dd>Pre-Congestion Notification</dd> </dl> </section> </section> <sectiontitle="The ECN Specificanchor="sect-2" numbered="true" toc="default"> <name>The ECN-Specific Extended HeaderFlags" anchor="sect-2"><t>Flags</name> <t> The extension header fields forexplicit congestion notification (ECN)ECN in TRILL are defined as atwo-bit2-bit TRILL-ECN field and a one-bitCritical Congestion Experienced (CCE)CCE field in the 32-bit TRILLHeader Extension Flags Wordheader extension flags word <xreftarget="RFC7780"/>.</t>target="RFC7780" format="default"/>.</t> <t> These fields are shown inFigure 2<xref target="fig-2"/> as "ECN" and "CCE". The TRILL-ECN field consists of bits 12 and 13, which are in the range reserved fornon-critical hop-by-hop (NCHbH)NCHbH bits. The CCE field consists of bit 26, which is in the range reserved forCritical Ingress-to-Egress (CItE)CItE bits. The CRItE bit is the critical Ingress-to-Egress summary bit and will be oneifif, and onlyifif, any of the bits in the CItE range (21-26) are one or there is a critical feature invoked in some further extension of the TRILLHeaderheader after theExtension Flags Word.extension flags word. The other bits and fields shown inFigure 2<xref target="fig-2"/> are not relevant to ECN. See <xreftarget="RFC7780"/>,target="RFC7780" format="default"/>, <xreftarget="RFC7179"/>,target="RFC7179" format="default"/>, and <xreftarget="IANAthFlags"/>target="IANAthFlags" format="default"/> for the meaning of these other bits and fields.</t> <figuretitle="Theanchor="fig-2"> <name>The TRILL-ECN and CCE TRILL Header Extension Flags WordFields" anchor="fig-2"> <artwork><![CDATA[Fields</name> <artwork name="" type="" align="left" alt=""><![CDATA[ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Crit.| CHbH | NCHbH |CRSV | NCRSV | CItE | NCItE | |.....|.........|...........|.....|.......|...........|.........| |C|C|C| |C|N| | | | | | | | | |R|R|R| |R|C| |ECN| Ext | | |C|Ext| | |H|I|R| |C|C| | | Hop | | |C|Clr| | |b|t|s| |A|A| | | Cnt | | |E| | | |H|E|v| |F|F| | | | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ]]></artwork> </figure> <t>Table 1<xref target="codepoints"/> shows the meaning of the codepoints in the TRILL-ECN field. The first three have the same meaning as the corresponding ECN field codepoints in the IPheaderheader, as defined in[RFC3168].<xref target="RFC3168"/>. However, codepoint 0b11 is calledNon-Critical Congestion Experienced (NCCE)NCEE to distinguish it fromCongestion ExperiencedCE in IP.</t><!-- [rfced] Please review the figure below. It is a table in the original draft --> <figure title="TRILL-ECN<table anchor="codepoints"> <name>TRILL-ECN FieldCodepoints" anchor="fig-3"> <artwork><![CDATA[ Binary Name Meaning ------ ------- ----------------------------------- 00 Not-ECT NotCodepoints</name> <thead> <tr> <th>Binary</th> <th>Name</th> <th>Meaning</th> </tr> </thead> <tbody> <tr> <td align="center">00</td> <td>Not-ECT</td> <td>Not ECN-Capable Transport01 ECT(1) ECN-Capable</td> </tr> <tr> <td align="center">01</td> <td>ECT(1)</td> <td>ECN-Capable Transport(1) 10 ECT(0) ECN-Capable(1)</td> </tr> <tr> <td align="center">10</td> <td>ECT(0)</td> <td>ECN-Capable Transport(0) 11 NCCE Non-Critical(0)</td> </tr> <tr> <td align="center">11</td> <td>NCCE</td> <td>Non-Critical CongestionExperienced ]]></artwork> </figure>Experienced</td> </tr> </tbody> </table> </section> <sectiontitle="ECN Support" anchor="sect-3"><t>anchor="sect-3" numbered="true" toc="default"> <name>ECN Support</name> <t> This section specifies interworking between TRILL and the original standardized form of ECN in IP <xreftarget="RFC3168"/>.</t>target="RFC3168" format="default"/>.</t> <t> The subsections below describe the required behavior to support ECN at TRILL ingress, transit, and egress. The ingress behavior occurs as a native frame is encapsulated with a TRILLHeaderheader to produce a TRILL Data packet. The transit behavior occurs in all RBridges where TRILL Data packets are queued, usually at the outputport.port (including the output port of the TRILL ingress). The egress behavior occurs where a TRILL Data packet is decapsulated and output as a native frame through an RBridge port.</t> <t> An RBridge that supports ECNMUST<bcp14>MUST</bcp14> behave as described in the relevant subsections below, which correspond to the recommended provisions in <xreftarget="sect-3"/>target="sect-3" format="default"/> of this document and Sections5.1-5.4<xref target="RFC9599" sectionFormat="bare" section="4.2"/> through <xref target="RFC9599" sectionFormat="bare" section="4.4"/> of <xreftarget="I-D.ietf-tsvwg-ecn-encap-guidelines"/>.target="RFC9599"/>. Nonetheless, the scheme is designed to safely propagate some form of congestion notification even if some RBridges in the path followed by a TRILL Data packet support ECN and others do not.</t> <sectiontitle="Ingressanchor="sect-3.1" numbered="true" toc="default"> <name>Ingress ECNSupport" anchor="sect-3.1"><t>Support</name> <t> The behavior at an ingress RBridge is as follows:</t><t><list style="symbols"><t>When<ul spacing="normal"> <li> <t>When encapsulating an IP frame, the ingress RBridgeMUST:<list style="symbols"><?rfc subcompact="yes"?> <t>set<bcp14>MUST</bcp14>:</t> <ul spacing="normal"> <li>set the F flag in the main TRILL header <xreftarget="RFC7780"/>;</t> <t>createtarget="RFC7780" format="default"/>;</li> <li>create aFlags Wordflags word as part of the TRILLHeader;</t> <t>copyheader;</li> <li>copy the two ECN bits from the IP header into the TRILL-ECN field(Flags Word(flags word bits 12 and13)</t> <t>ensure13); and</li> <li>ensure the CCE flag is set to zero(Flags Word(flags word bit26).</t> <?rfc subcompact="no"?> </list> </t> <t>When26).</li> </ul> </li> <li>When encapsulating a frame for a non-IPprotocol, whereprotocol (where that protocol has a means of indicatingECNthat ECN is understood by the ingressRBridge, it MUSTRBridge), the ingress RBridge <bcp14>MUST</bcp14> follow the guidelines inSection 5.3 of<xreftarget="I-D.ietf-tsvwg-ecn-encap-guidelines"/>target="RFC9599" sectionFormat="of" section="4.3"/> to add aFlags Wordflags word to the TRILLHeader.header. For a non-IP protocol witha similaran ECN field similar to IP, this would be achieved by copying into the TRILL-ECN field from the encapsulated nativeframe.</t> </list> </t>frame.</li> </ul> </section> <sectiontitle="Transitanchor="sect-3.2" numbered="true" toc="default"> <name>Transit ECNSupport" anchor="sect-3.2"><t>Support</name> <t> The transit behavior, shown below, is required at all RBridges where TRILL Data packets are queued, usually at the output port.</t><t><list style="symbols"><t>An<ul spacing="normal"> <li>An RBridge that supports ECNMUST<bcp14>MUST</bcp14> implement some form ofactive queue management (AQM)AQM according to the guidelines of <xreftarget="RFC7567"/>.target="RFC7567" format="default"/>. The RBridge detects congestion either by monitoring its own queue depth or by participating in a link-specificprotocol.</t> <t>Ifprotocol.</li> <li>If the TRILLHeader Flags Wordheader flags word is present, whenever the AQM algorithm decides to indicate critical congestion on a TRILL Datapacketpacket, itMUST<bcp14>MUST</bcp14> set the CCE flag(Flags Word(flags word bit26).</t>26). Note that Classic ECN marking <xref target="RFC3168"/> only uses critical congestion indications, but the two variants in <xref target="sect-4.1"/> use a combination of critical and non-critical congestion indications.</li> <li> <t>If the TRILL headerFlags Wordflags word is not present,to indicate congestionthe RBridge will either drop the packet or itMAY<bcp14>MAY</bcp14> do all of the followinginstead:<list style="symbols"><t>setinstead to indicate congestion:</t> <ul spacing="normal"> <li>set the F flag in the main TRILLheader;</t> <t>addheader;</li> <li>add aFlags Wordflags word to the TRILLHeader;</t> <t>setheader;</li> <li>set the TRILL-ECN field to Not-ECT(00);</t> <t>and set(00); and</li> <li>set the CCE flag and theIngress-to-Egresscritical Ingress-to-Egress summary bit(CRIbE).</t> </list> </t> </list> </t>(CRItE).</li> </ul> </li> </ul> <t> Note that a transit RBridge that supports ECN does not refer to the TRILL-ECN field before signaling CCE in a packet. It signals CCE irrespective of whether the packet indicates that the transport isECN-capable.ECN capable. The egress/decapsulation behavior(described next)ensures that a CCE indication is converted to a drop if the transport is notECN-capable.</t>ECN capable.</t> </section> <sectiontitle="Egressanchor="sect-3.3" numbered="true" toc="default"> <name>Egress ECNSupport" anchor="sect-3.3"><section title="Non-ECNSupport</name> <section anchor="sect-3.3.1" numbered="true" toc="default"> <name>Non-ECN EgressRBridges" anchor="sect-3.3.1"><t>RBridges</name> <t> If the egress RBridge does not support ECN, that RBridge will ignore bits 12 and 13 of anyFlags Wordflags word that ispresent,present because it does not contain any special ECN logic. Nonetheless, if a transit RBridge has set the CCE flag, the egress will drop the packet. This is because drop is the default behavior for an RBridge decapsulating aCritical Ingress-to-EgressCItE flag when it has no specific logic to understand it. Drop is the intended behavior for such a packet, as required bySection 5.4 of<xreftarget="I-D.ietf-tsvwg-ecn-encap-guidelines"/>.</t>target="RFC9599" sectionFormat="of" section="4.4"/>.</t> </section> <sectiontitle="ECNanchor="sect-3.3.2" numbered="true" toc="default"> <name>ECN EgressRBridges" anchor="sect-3.3.2"><t>RBridges</name> <t> If an RBridge supports ECN, for the two cases of an IP and a non-IP inner packet, the egress behavior is as follows:<list style="hanging" hangIndent="3"> <t hangText="Decapsulating</t> <dl newline="false" spacing="normal" indent="3"> <dt>Decapsulating an inner IPpacket:"> Thepacket:</dt> <dd><t>The RBridge sets the ECN field of the outgoing native IP packet usingTable 3.<xref target="egress-ecn"/>. ItMUST<bcp14>MUST</bcp14> set the ECN field of the outgoing IP packet to the codepoint at the intersection of the row for the arriving encapsulated IP packet and the column for 3-bit ECN codepoint in the arriving outer TRILL Data packet TRILLHeader.header. If no TRILLHeader Extension Flags Wordheader extension flags word is present, the 3-bit ECN codepoint is assumed to be all zero bits.</t> <t>The name of the TRILL 3-bit ECN codepoint used in <xref target="egress-ecn"/> is defined using the combination of the TRILL-ECN and CCE fields inTable 2.<xref target="mapping"/>. Specifically, the TRILL 3-bit ECN codepoint is called CE if either NCCE or CCE is set in the TRILLHeader Extension Flags Word. Otherwiseheader extension flags word. Otherwise, it has the same name as the 2-bit TRILL-ECN codepoint.</t><t>In<t> In the case where the TRILL 3-bit ECN codepoint indicatescongestion experienced (CE)CE but the encapsulated native IP frame indicates anot ECN-capable transport (Not-ECT),Not-ECT, it can be seen that the RBridgeMUST<bcp14>MUST</bcp14> drop the packet. Such packet dropping is necessary because a transport above the IP layer that is notECN-capableECN capable will have no ECN logic, so it will only understand dropped packets as an indication ofcongestion.</t> </list> <list style="hanging" hangIndent="3"> <t hangText="Decapsulatingcongestion.</t></dd> </dl> <dl newline="false" spacing="normal" indent="3"> <dt>Decapsulating a non-IP protocolframe:"> Ifframe:</dt> <dd>If the frame has a means of indicating ECN that is understood by the RBridge, itMUST<bcp14>MUST</bcp14> follow the guidelines inSection 5.4 of<xreftarget="I-D.ietf-tsvwg-ecn-encap-guidelines"/>target="RFC9599" sectionFormat="of" section="4.4"/> when setting the ECN information in the decapsulated native frame. For a non-IP protocol witha similaran ECN field similar to IP, this would be achieved by combining the information in the TRILLHeader Flags Wordheader flags word with the encapsulated non-IP native frame, as specified inTable 3.</t> </list> </t> <texttable anchor="tab-2" title="Mapping<xref target="egress-ecn"/>.</dd> </dl> <table anchor="mapping" align="center"> <name>Mapping of TRILL-ECN and CCE Fields to the TRILL3-bit3-Bit ECN CodepointName" style="full"> <ttcol> TRILL-ECN </ttcol> <ttcol> CCE </ttcol> <ttcol> ArrivingName</name> <thead> <tr> <th rowspan ="1" colspan="2">TRILL-ECN</th> <th rowspan="2">CCE</th> <th rowspan="2">Arriving TRILL3-bit ECN codepoint name</ttcol> <c>Not-ECT 00</c> <c>0</c> <c>Not-ECT</c> <c>ECT(1) 01</c> <c>0</c> <c>ECT(1)</c> <c>ECT(0) 10</c> <c>0</c> <c>ECT(0)</c> <c>NCCE 11</c> <c>0</c> <c>CE</c> <c>Not-ECT 00</c> <c>1</c> <c>CE</c> <c>ECT(1) 01</c> <c>1</c> <c>CE</c> <c>ECT(0) 10</c> <c>1</c> <c>CE</c> <c>NCCE 11</c> <c>1</c> <c>CE</c> </texttable> <!-- [rfced] Please review the figure below. It is a table in the original draft --> <figure title="Egress3-Bit ECNBehavior" anchor="fig-4"> <artwork><![CDATA[ +---------+----------------------------------------------+ | Inner | ArrivingCodepoint Name</th> </tr> <tr> <th>Name</th> <th>Bits</th> </tr> </thead> <tbody> <tr> <td>Not-ECT</td> <td align="center">00</td> <td align="center">0</td> <td>Not-ECT</td> </tr> <tr> <td>ECT(1)</td> <td align="center">01</td> <td align="center">0</td> <td>ECT(1)</td> </tr> <tr> <td>ECT(0)</td> <td align="center">10</td> <td align="center">0</td> <td>ECT(0)</td> </tr> <tr> <td>NCCE</td> <td align="center">11</td> <td align="center">0</td> <td>CE</td> </tr> <tr> <td>Not-ECT</td> <td align="center">00</td> <td align="center">1</td> <td>CE</td> </tr> <tr> <td>ECT(1)</td> <td align="center">01</td> <td align="center">1</td> <td>CE</td> </tr> <tr> <td>ECT(0)</td> <td align="center">10</td> <td align="center">1</td> <td>CE</td> </tr> <tr> <td>NCCE</td> <td align="center"> 11</td> <td align="center">1</td> <td>CE</td> </tr> </tbody> </table> <table anchor="egress-ecn"> <name>Egress ECN Behavior</name> <thead> <tr> <th rowspan="2" align="center">Inner Native Header</th> <th colspan="4" align="center">Arriving TRILL3-bit3-Bit ECN CodepointName | | Native +---------+------------+------------+----------+ | Header | Not-ECT | ECT(0) | ECT(1) | CE | +---------+---------+------------+------------+----------+ | Not-ECT | Not-ECT | Not-ECT(*) | Not-ECT(*) | <drop> | | ECT(0) | ECT(0) | ECT(0) | ECT(1) | CE | | ECT(1) | ECT(1) | ECT(1)(*) | ECT(1) | CE | | CE | CE | CE | CE(*) | CE | +---------+---------+------------+------------+----------+ ]]></artwork> </figure>Name</th> </tr> <tr> <th align="center">Not-ECT</th> <th align="center">ECT(0)</th> <th align="center">ECT(1)</th> <th align="center">CE</th> </tr> </thead> <tbody> <tr> <td align="center">Not-ECT</td> <td align="center">Not-ECT</td> <td align="center">Not-ECT(*)</td> <td align="center">Not-ECT(*)</td> <td align="center"><drop></td> </tr> <tr> <td align="center">ECT(0)</td> <td align="center">ECT(0)</td> <td align="center">ECT(0)</td> <td align="center">ECT(1)</td> <td align="center">CE</td> </tr> <tr> <td align="center">ECT(1)</td> <td align="center">ECT(1)</td> <td align="center">ECT(1)(*)</td> <td align="center">ECT(1)</td> <td align="center">CE</td> </tr> <tr> <td align="center">CE</td> <td align="center">CE</td> <td align="center">CE</td> <td align="center">CE(*)</td> <td align="center">CE</td> </tr> </tbody> </table> <t> An asterisk inthe above table<xref target="egress-ecn"/> indicates a combination that is currently unused in all variants of ECN marking (see <xreftarget="sect-4"/>)target="sect-4" format="default"/>) and thereforeSHOULD<bcp14>SHOULD</bcp14> be logged.</t> <t> With one exception, the mappings inTable 3<xref target="egress-ecn"/> are consistent with those for IP-in-IP tunnels <xreftarget="RFC6040"/>,target="RFC6040" format="default"/>, which ensures backward compatibility with all current and past variants of ECN marking (see <xreftarget="sect-4"/>).target="sect-4" format="default"/>). It also ensures forward compatibility with any future form of ECN marking that complies with the guidelines in <xreftarget="I-D.ietf-tsvwg-ecn-encap-guidelines"/>,target="RFC9599" format="default"/>, including cases where ECT(1) represents a second level of marking severity below CE.</t> <t> The one exception is that the drop condition inTable 3<xref target="egress-ecn"/> need not be logged because, with TRILL, it is the result of a valid combination of events.</t> </section> </section> </section> <sectiontitle="TRILLanchor="sect-4" numbered="true" toc="default"> <name>TRILL Support for ECNVariants" anchor="sect-4"><t>Variants</name> <t> This section is informative, not normative; it discusses interworking between TRILL and variants of the standardized form of ECN in IP <xreftarget="RFC3168"/>.target="RFC3168" format="default"/>. See also <xreftarget="RFC8311"/>.</t>target="RFC8311" format="default"/>.</t> <t> The ECN wire protocol for TRILL (<xreftarget="sect-2"/>)target="sect-2" format="default"/>) and the ingress (<xreftarget="sect-3.1"/>)target="sect-3.1" format="default"/>) and egress (<xreftarget="sect-3.3"/>)target="sect-3.3" format="default"/>) ECN behaviors have been designed to support the other known variants ofECN,ECN as detailed below. New variants of ECN will have to comply with the guidelines for defining alternative ECN semantics <xreftarget="RFC4774"/>.target="RFC4774" format="default"/>. It is expected that the TRILL ECN wire protocol is generic enough to support such potential future variants.</t> <sectiontitle="Pre-Congestionanchor="sect-4.1" numbered="true" toc="default"> <name>Pre-Congestion Notification(PCN)" anchor="sect-4.1"><t>(PCN)</name> <t> The PCN wire protocol <xreftarget="RFC6660"/>target="RFC6660" format="default"/> is recognized by the use of a PCN-compatible Diffserv codepoint in the IP header and anon-zerononzero IP-ECN field. For TRILL or anylower layerlower-layer protocol, equivalenttraffic classificationtraffic-classification codepoints would have to be defined, but that is outside the scope ofthe currentthis document.</t> <t> The PCN wire protocol is similar to ECN, except it indicates congestion with two levels of severity. It uses:</t><t><list style="symbols"><t>11<ul spacing="normal"> <li>11 (CE) as the most severe, termed theExcess-traffic-markedExcess-Traffic-Marked (ETM)codepoint</t> <t>01codepoint</li> <li>01 ECT(1) as a lesser severity level, termed the Threshold-Marked (ThM) codepoint.(ThisThis difference between ECT(1) and ECT(0) only applies to PCN, not to the classic ECN support specified for TRILL in this document before <xreftarget="sect-4"/>.)</t> </list> </t>target="sect-4" format="default"/>.</li> </ul> <t> To implement PCN on a transit RBridge would require a detailed specification.But inIn brief:</t><t><list style="symbols"><t>the<ul spacing="normal"> <li>the TRILLCritical Congestion Experienced (CCE)CCE flag would be used for the Excess-Traffic-Marked (ETM)codepoint;</t> <t>ECT(1)codepoint;</li> <li>ECT(1) in the TRILL-ECN field would be used for the Threshold-Markedcodepoint.</t> </list> </t>codepoint.</li> </ul> <t>ThenThen, the ingress and egress behaviors defined in <xreftarget="sect-3"/>target="sect-3" format="default"/> would not need to be altered to ensure support for PCN as well as ECN.</t> </section> <sectiontitle="Lowanchor="sect-4.2" numbered="true" toc="default"> <name>Low Latency, Low Loss, and Scalable Throughput(L4S)" anchor="sect-4.2"><t>(L4S)</name> <t> L4S is currently on the IETF's experimental track. An outline of how a transit TRILL RBridge would support L4S <xreftarget="I-D.ietf-tsvwg-ecn-l4s-id"/>target="RFC9331" format="default"/> is given inAppendix A.</t><xref target="sect-a"/>.</t> </section> </section> <sectiontitle="IANA Considerations" anchor="sect-5"><t>anchor="sect-5" numbered="true" toc="default"> <name>IANA Considerations</name> <t> IANAis requested to updatehas updated theTRILL"TRILL Extended HeaderFlagsFlags" registry by replacing the lines for bits 9-13 andfor bits21-26 with the following:</t><figure><artwork><![CDATA[ Bits Purpose Reference ----- ------- --------- 9-11 available<table anchor="iana"> <name>Updated "TRILL Extended Header Flags" Registry</name> <thead> <tr> <th>Bits</th> <th>Purpose</th> <th>Reference</th> </tr> </thead> <tbody> <tr> <td>9-11</td> <td>available non-critical hop-by-hopflags 12-13 TRILL-ECNflags</td> <td><xref target="RFC7179"/></td> </tr> <tr> <td>12-13</td> <td>TRILL-ECN (Explicit CongestionNotification) [this doc] 21-25 availableNotification)</td> <td>RFC 9600</td> </tr> <tr> <td>21-25</td> <td>available critical ingress-to-egressflags 26 Criticalflags</td> <td><xref target="RFC7179"/></td> </tr> <tr> <td>26</td> <td>Critical Congestion Experienced(CCE) [this doc] ]]></artwork> </figure>(CCE)</td> <td>RFC 9600</td> </tr> </tbody> </table> </section> <sectiontitle="Security Considerations" anchor="sect-6"><t>anchor="sect-6" numbered="true" toc="default"> <name>Security Considerations</name> <t> TRILL support of ECN is a straightforward combination of previously specified ECN and TRILL with no significant new security considerations.</t> <t> ForECN tunnelinggeneral securityconsiderations,considerations regarding adding ECN to lower layer protocols, see <xref target="RFC9599"/> and <xref target="RFC6040"/>.</t> <t> For general TRILL protocol security considerations, see <xref target="RFC6325"/>.</t> </section><section title="Acknowledgements" anchor="sect-7"><t> The helpful comments of Loa Andersson and Adam Roach are hereby acknowledged.</t> <t> This document was prepared with basic NROFF. All macros used were defined in the source file.</t> </section></middle> <back><references title="Normative References"> &RFC2119; &RFC3168; &RFC4774; &RFC6325; &RFC7179; &RFC7567; &RFC7780; &RFC8174; &RFC8311; &I-D.ietf-tsvwg-ecn-encap-guidelines;<references> <name>References</name> <references> <name>Normative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2119.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3168.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4774.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6325.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7179.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7567.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7780.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8174.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.8311.xml"/> <reference anchor="RFC9599" target="https://www.rfc-editor.org/info/rfc9599"> <front> <title>Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP</title> <author initials='B.' surname='Briscoe' fullname='Bob Briscoe'> <organization>Independent</organization> </author> <author initials='J.' surname='Kaippallimalil' fullname='John Kaippallimalil'> <organization>Futurewei</organization> </author> <date month='August' year='2024'/> </front> <seriesInfo name="RFC" value="9599"/> <seriesInfo name="DOI" value="10.17487/RFC9599"/> </reference> </references><references title="Informative References"> &I-D.ietf-tsvwg-ecn-l4s-id;<references> <name>Informative References</name> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.9331.xml"/> <reference anchor="IANAthFlags"target="http://www.iana.org/assignments/trill-parameters/trill-parameters.xhtml#extended-header-flags"><front>target="http://www.iana.org/assignments/trill-parameters/"> <front> <title>TRILL Extended Headerword flags</title>Flags</title> <author> <organization>IANA</organization> </author><date/></front> </reference>&RFC6040; &RFC6660;<xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6040.xml"/> <xi:include href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6660.xml"/> </references> </references> <sectiontitle="TRILLanchor="sect-a" numbered="true" toc="default"> <name>TRILL Transit RBridge Behavior to SupportL4S" anchor="sect-a"><t>L4S</name> <t> The specification of the Low Latency, Low Loss, and Scalable throughput (L4S) wire protocol for IP is given in <xreftarget="I-D.ietf-tsvwg-ecn-l4s-id"/>.target="RFC9331" format="default"/>. L4S is one example of the ways TRILL ECN handling may evolve <xreftarget="RFC8311"/>.target="RFC8311" format="default"/>. It is similar to the original ECN wire protocol for IP <xreftarget="RFC3168"/>,target="RFC3168" format="default"/>, except:</t><t><list style="symbols"><t>An<ul spacing="normal"> <li>An AQM that supports L4S classifies packets with ECT(1) or CE in the IP header into an L4S queue and a "Classic" queueotherwise.</t> <t>Theotherwise.</li> <li>The meaning of CE markings applied by an L4S queue is not the same as the meaning of a drop by a "Classic" queue (contrary to the original requirement for ECN <xreftarget="RFC3168"/>).target="RFC3168" format="default"/>). Instead, the likelihood that the Classic queue drops packets is defined as the square of the likelihood that the L4S queue marks packets(e.g.,-- e.g., when there is a drop probability of 0.0009(0.09%)(0.09%), the L4S marking probability will be 0.03(3%)).</t> </list> </t>(3%).</li> </ul> <t> This seems to present a problem for the way that a transit TRILL RBridge defers the choice between marking and dropping to the egress. Nonetheless, the following pseudocode outlines how a transit TRILL RBridge can implement L4S marking in such a way that the egress behavior already described in <xreftarget="sect-3.3"/>target="sect-3.3" format="default"/> for Classic ECN <xreftarget="RFC3168"/>target="RFC3168" format="default"/> will produce the desired outcome.</t><figure><artwork><![CDATA[<sourcecode type="pseudocode"> /* p is an internal variable calculated by any L4S AQM * dependent on the delay being experienced in the Classic queue. * bit13 is the least significant bit of the TRILL-ECN field */ % On TRILL transit if (bit13 == 0 ) { % Classic Queue if (p > max(random(), random()) ) mark(CCE) % likelihood: p^2 } else { % L4S Queue if (p > random() ) { if (p > random() ) mark(CCE) % likelihood: p^2 else mark(NCCE) % likelihood: p - p^2 } }]]></artwork> </figure></sourcecode> <t> With the above transit behavior, an egress that supports ECN (<xreftarget="sect-3.3"/>)target="sect-3.3" format="default"/>) will drop packets or propagate their ECN markings depending on whether the arriving inner header is froma non-ECN-capablean ECN-capable or not ECN-capable transport.</t> <t> Even if an egress has no L4S-specific logic of its own, it will drop packets with the square of the probability that an egress would if it did support ECN, for the following reasons:</t><t><list style="symbols"><t>Egress<ul spacing="normal"> <li> <t>Egress with ECNsupport:<list style="symbols"><t>L4S: propagatessupport:</t> <ul spacing="normal"> <li> <t>L4S: Propagates both the Critical and Non-Critical CE marks (CCE&and NCCE) as a CEmark.<vspace blankLines="1"/>mark.</t> <t> Likelihood:p^2p<sup>2</sup> + p -p^2p<sup>2</sup> = p </t> </li> <li> <t>Classic: Propagates CCE marks as CE or drop, depending oninner.<vspace blankLines="1"/>the inner header.</t> <t> Likelihood:p^2 </t> </list>p<sup>2</sup> </t> </li> </ul> </li> <li> <t>Egress without ECNsupport:<list style="symbols"><t>L4S: doessupport:</t> <ul spacing="normal"> <li> <t>L4S: Does not propagate NCCE as a CE mark, but drops CCEmarks.<vspace blankLines="1"/>marks.</t> <t> Likelihood:p^2p<sup>2</sup> </t> </li> <li> <t>Classic:dropsDrops CCEmarks.<vspace blankLines="1"/>marks.</t> <t> Likelihood:p^2 </t> </list> </t> </list>p<sup>2</sup> </t> </li> </ul> </li> </ul> </section> <section anchor="sect-7" numbered="false" toc="default"> <name>Acknowledgements</name> <t> The helpful comments of <contact fullname="Loa Andersson"/> and <contact fullname="Adam Roach"/> are hereby acknowledged.</t> </section> </back> </rfc>