<?xml version='1.0'encoding='utf-8'?>encoding='UTF-8'?> <!DOCTYPE rfc [ <!ENTITY nbsp " "> <!ENTITY zwsp "​"> <!ENTITY nbhy "‑"> <!ENTITY wj "⁠"> ]><?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?> <!-- generated by https://github.com/cabo/kramdown-rfc version 1.7.4 (Ruby 3.2.2) --><rfc xmlns:xi="http://www.w3.org/2001/XInclude" ipr="trust200902" docName="draft-iab-privacy-partitioning-05" number="9614" category="info" submissionType="IAB" consensus="true" tocInclude="true" updates="" obsoletes="" sortRefs="true" symRefs="true" xml:lang="en" version="3"><!-- xml2rfc v2v3 conversion 3.19.0 --><front> <title abbrev="Partitioning for Privacy">Partitioning as an Architecture for Privacy</title> <seriesInfoname="Internet-Draft" value="draft-iab-privacy-partitioning-05"/>name="RFC" value="9614"/> <author fullname="MirjaKühlewind"> <organization>Ericsson Research</organization>Kühlewind" initials="M." surname="Kühlewind"> <address> <email>mirja.kuehlewind@ericsson.com</email> </address> </author> <author fullname="TommyPauly"> <organization>Apple</organization>Pauly" initials="T." surname="Pauly"> <address> <email>tpauly@apple.com</email> </address> </author> <author fullname="Christopher A.Wood"> <organization>Cloudflare</organization>Wood" initials="C. A." surname="Wood"> <address> <email>caw@heapingbits.net</email> </address> </author> <date year="2024"month="January" day="11"/> <keyword>Internet-Draft</keyword> <abstract> <?line 33?> <t>Thismonth="July"/> <keyword>MASQUE</keyword> <keyword>Privacy Pass</keyword> <keyword>Oblivious HTTP</keyword> <keyword>Proxy</keyword> <abstract><t>This document describes the principle of privacy partitioning, which selectively spreads data and communication across multiple parties as a means to improve privacy by separating user identity from user data. This document describes emerging patterns in protocols to partition what data and metadata is revealed through protocol interactions, provides common terminology, and discusses how to analyze such models.</t> </abstract><note removeInRFC="true"> <name>Discussion Venues</name> <t>Discussion of this document takes place on the Internet Architecture Board Internet Engineering Task Force mailing list (iab@iab.org), which is archived at <eref target=""/>.</t> <t>Source for this draft and an issue tracker can be found at <eref target="https://github.com/intarchboard/draft-obliviousness"/>.</t> </note></front> <middle><?line 41?><section anchor="introduction"> <name>Introduction</name> <t>Protocols such as TLS and IPsec provide a secure (authenticated and encrypted) channel between two endpoints over which endpoints transfer information. Encryption and authentication of data in transit are necessary to protect information from being seen or modified by parties other than the intended protocol participants. As such, this kind of security is necessary for ensuring that information transferred over these channels remains private.</t> <t>However, a secure channel between two endpoints is insufficient for the privacy of the endpoints themselves. In recent years, privacy requirements have expanded beyond the need to protect data in transit between two endpoints. Some examples of this expansion include:</t> <ul spacing="normal"><li> <t>A<li>A user accessing a service on a website might not consent to reveal their location, but if that service is able to observe the client's IP address, it can learn something about the user's location. This is problematic for privacy since the service can link user data to the user'slocation.</t> </li> <li> <t>Alocation.</li> <li>A user might want to be able to access content for which they are authorized, such as a newsarticle, without needing to havearticle; but the news service might track whichspecific articles they read onusers access which articles, even if the user doesn't want theiraccount being recorded.activity to be tracked. This is problematic for privacy since the service can link user activity to the user'saccount.</t> </li> <li> <t>Aaccount.</li> <li>A client devicethat needsmight need to upload metrics to an aggregation servicemight want to be able to contribute dataand in doing so allow the service to attribute thesystem without having theirspecific metrics contributionsattributedtothem.that client device. This is problematic for privacy since the service can link client contributions to the specificclient.</t> </li>client.</li> </ul> <t>The commonality in these examples is that clients want to interact with or use a service without exposing too much user-specific or identifying information to that service. In particular, separating the user-specific identity information from user-specific data is necessary for privacy. Thus, in order to protect user privacy, it is important to keep identity (who) and data (what) separate.</t> <t>This document defines "privacy partitioning," sometimes also referred to as the "decoupling principle" <xref target="DECOUPLING"/>, as the general technique used to separate the data and metadata visible to various parties in network communication, with the aim of improving user privacy. Although privacy partitioning cannot guarantee there is no link between user-specific identity and user-specific data, when applied properly it helps ensure that user privacy violations become more technically difficult to achieve over time.</t> <t>Several IETF working groups are working on protocols or systems that adhere to the principle of privacy partitioning, including Oblivious HTTP Application Intermediation (OHAI), Multiplexed Application Substrate over QUIC Encryption (MASQUE), Privacy Pass, and Privacy Preserving Measurement (PPM). This document summarizes work in those groups and describes a framework forreasoningthinking about the resulting privacy posture of different endpoints in practice.</t> <t>Privacy partitioning is particularly relevant as a tool for data minimization, which is described in <xref section="6.1" sectionFormat="of" target="RFC6973"/>. <xref target="RFC6973"/> provides guidance for privacy considerations in Internet protocols, along with a set of questions on how to evaluate the data minimization of a protocol in <xref section="7.1" sectionFormat="of" target="RFC6973"/>. Protocols that employ privacy partitioning ought to consider the questions in that section when evaluating their design, particularly with regard to how identifiers and data can be correlated by protocol participants and observers in each context that has been partitioned. Privacy partitioning can also be used as a way to separate identity providers from relying parties (see <xref section="6.1.4" sectionFormat="of" target="RFC6973"/>), as in the case of Privacy Pass (seeSection<xref target="privacypass"/>).</t> <t>Privacy partitioning is not a panacea; applying it well requires holistic analysis of the system in question to determine whether or not partitioning as a tool, and as implemented, offers meaningful privacy improvements. See <xref target="limits"/> for more information.</t> </section> <section anchor="privacy-partitioning"> <name>Privacy Partitioning</name> <t>For the purposes of user privacy, this document focuses on user-specific information. This might include any identifying information that is specific to a user, such as their email address or IP address, or any data about the user, such as their date of birth. Informally, the goal of privacy partitioning is to ensure that each party in a system beyond the user themselves onlyhavehas access to one type of user-specific information.</t> <t>This is a simple application of the principle of least privilege, wherein every party in a system only has access to the minimum amount of information needed to fulfill their function. Privacy partitioning advocates for this minimization by ensuring that protocols, applications, and systems only reveal user-specific information to parties that need access to the information for their intended purpose.</t> <t>Put simply, privacy partitioning aims to separate <em>who</em> someone is from <em>what</em> they do. In the rest of this section, we describe how privacy partitioning can be used to achieve this goal.</t> <section anchor="privacy-contexts"> <name>Privacy Contexts</name> <t>Each piece of user-specific information exists within some context, where a context is abstractly defined as a set of data, metadata, and the entities that share access to that information. In order to prevent the correlation of user-specific information across contexts, partitions need to ensure that any single entity (other than the client itself) does not participate in more than one context where the information is visible.</t> <t><xref target="RFC6973"/> discusses the importance of identifiers in reducing correlation as a way of improving privacy:</t> <blockquote> <t>Correlation is the combination of various pieces of information related to an individual or that obtain that characteristic whencombined... Correlationcombined....</t> <t>Correlation is closely related to identification. Internet protocols can facilitate correlation by allowing individuals' activities to be tracked and combined overtime.</t>time....</t> <t>Pseudonymity is strengthened when less personal data can be linked to the pseudonym; when the same pseudonym is used less often and across fewer contexts; and when independently chosen pseudonyms are more frequently used for new actions (making them, from an observer's or attacker's perspective, unlinkable).</t> </blockquote> <t>Context separation is foundational to privacy partitioning and reducing correlation. As an example, consider an unencrypted HTTP session over TCP, wherein the context includes both the content of the transaction as well as any metadata from the transport and IP headers; and the participants include the client, routers, other network middleboxes, intermediaries, and the server.MiddlboxesMiddleboxes or intermediaries might simply forwardtraffic,traffic or might terminate the traffic at any layer (such as terminating the TCP connection from the client and creating another TCP connection to the server). Regardless of how the middlebox interacts with the traffic, for the purposes of privacy partitioning, it is able to observe all of the data in the context.</t> <figure anchor="diagram-middlebox"> <name>Diagram of abasic unencrypted client-to-server connectionBasic Unencrypted Client-to-Server Connection withmiddleboxes</name>Middleboxes</name> <artset> <artwork type="svg"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" height="176" width="560" viewBox="0 0 560 176" class="diagram" text-anchor="middle" font-family="monospace" font-size="13px" stroke-linecap="round"> <path d="M 8,32 L 8,160" fill="none" stroke="black"/> <path d="M 32,64 L 32,128" fill="none" stroke="black"/> <path d="M 104,64 L 104,128" fill="none" stroke="black"/> <path d="M 240,64 L 240,128" fill="none" stroke="black"/> <path d="M 336,64 L 336,128" fill="none" stroke="black"/> <path d="M 456,64 L 456,128" fill="none" stroke="black"/> <path d="M 528,64 L 528,128" fill="none" stroke="black"/> <path d="M 552,32 L 552,160" fill="none" stroke="black"/> <path d="M 8,32 L 552,32" fill="none" stroke="black"/> <path d="M 32,64 L 104,64" fill="none" stroke="black"/> <path d="M 240,64 L 336,64" fill="none" stroke="black"/> <path d="M 456,64 L 528,64" fill="none" stroke="black"/> <path d="M 104,80 L 152,80" fill="none" stroke="black"/> <path d="M 192,80 L 240,80" fill="none" stroke="black"/> <path d="M 336,80 L 456,80" fill="none" stroke="black"/> <path d="M 104,112 L 152,112" fill="none" stroke="black"/> <path d="M 184,112 L 240,112" fill="none" stroke="black"/> <path d="M 336,112 L 456,112" fill="none" stroke="black"/> <path d="M 32,128 L 104,128" fill="none" stroke="black"/> <path d="M 240,128 L 336,128" fill="none" stroke="black"/> <path d="M 456,128 L 528,128" fill="none" stroke="black"/> <path d="M 8,160 L 552,160" fill="none" stroke="black"/> <g class="text"> <text x="48" y="52">Context</text> <text x="88" y="52">A</text> <text x="172" y="84">HTTP</text> <text x="68" y="100">Client</text> <text x="288" y="100">Middlebox</text> <text x="492" y="100">Server</text> <text x="168" y="116">TCP</text> <text x="172" y="132">flow</text> </g> </svg> </artwork> <artwork type="ascii-art"><![CDATA[ +-------------------------------------------------------------------+ | Context A | | +--------+ +-----------+ +--------+ | | | +------HTTP------+ +--------------+ | | | | Client | | Middlebox | | Server | | | | +------TCP-------+ +--------------+ | | | +--------+ flow +-----------+ +--------+ | | | +-------------------------------------------------------------------+ ]]></artwork> </artset> </figure> <t>Adding TLS encryption to the HTTP session is a simple partitioning technique that splits the previous context into two separatecontexts: thecontexts. The content of the transaction is now only visible to the client, TLS-terminating intermediaries, andserver;server, while the metadata in transport and IP headers remain in the original context. In this scenario, without any further partitioning, the entities that participate in both contexts can allow the data in both contexts to be correlated.</t> <figure anchor="diagram-https"> <name>Diagram ofhow adding encryption splitsHow Adding Encryption Splits thecontextContext intotwo</name>Two</name> <artset> <artwork type="svg"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" height="304" width="560" viewBox="0 0 560 304" class="diagram" text-anchor="middle" font-family="monospace" font-size="13px" stroke-linecap="round"> <path d="M 8,32 L 8,288" fill="none" stroke="black"/> <path d="M 32,64 L 32,128" fill="none" stroke="black"/> <path d="M 32,192 L 32,256" fill="none" stroke="black"/> <path d="M 104,64 L 104,128" fill="none" stroke="black"/> <path d="M 104,192 L 104,256" fill="none" stroke="black"/> <path d="M 240,192 L 240,256" fill="none" stroke="black"/> <path d="M 336,192 L 336,256" fill="none" stroke="black"/> <path d="M 456,64 L 456,128" fill="none" stroke="black"/> <path d="M 456,192 L 456,256" fill="none" stroke="black"/> <path d="M 528,64 L 528,128" fill="none" stroke="black"/> <path d="M 528,192 L 528,256" fill="none" stroke="black"/> <path d="M 552,32 L 552,288" fill="none" stroke="black"/> <path d="M 8,32 L 552,32" fill="none" stroke="black"/> <path d="M 32,64 L 104,64" fill="none" stroke="black"/> <path d="M 456,64 L 528,64" fill="none" stroke="black"/> <path d="M 104,96 L 256,96" fill="none" stroke="black"/> <path d="M 304,96 L 456,96" fill="none" stroke="black"/> <path d="M 32,128 L 104,128" fill="none" stroke="black"/> <path d="M 456,128 L 528,128" fill="none" stroke="black"/> <path d="M 8,160 L 552,160" fill="none" stroke="black"/> <path d="M 32,192 L 104,192" fill="none" stroke="black"/> <path d="M 240,192 L 336,192" fill="none" stroke="black"/> <path d="M 456,192 L 528,192" fill="none" stroke="black"/> <path d="M 104,224 L 160,224" fill="none" stroke="black"/> <path d="M 192,224 L 240,224" fill="none" stroke="black"/> <path d="M 336,224 L 456,224" fill="none" stroke="black"/> <path d="M 32,256 L 104,256" fill="none" stroke="black"/> <path d="M 240,256 L 336,256" fill="none" stroke="black"/> <path d="M 456,256 L 528,256" fill="none" stroke="black"/> <path d="M 8,288 L 552,288" fill="none" stroke="black"/> <g class="text"> <text x="48" y="52">Context</text> <text x="88" y="52">A</text> <text x="68" y="100">Client</text> <text x="280" y="100">HTTPS</text> <text x="492" y="100">Server</text> <text x="48" y="180">Context</text> <text x="88" y="180">B</text> <text x="68" y="228">Client</text> <text x="176" y="228">TCP</text> <text x="288" y="228">Middlebox</text> <text x="492" y="228">Server</text> <text x="180" y="244">flow</text> </g> </svg> </artwork> <artwork type="ascii-art"><![CDATA[ +-------------------------------------------------------------------+ | Context A | | +--------+ +--------+ | | | | | | | | | Client +-------------------HTTPS-------------------+ Server | | | | | | | | | +--------+ +--------+ | | | +-------------------------------------------------------------------+ | Context B | | +--------+ +-----------+ +--------+ | | | | | | | | | | | Client +-------TCP------+ Middlebox +--------------+ Server | | | | | flow | | | | | | +--------+ +-----------+ +--------+ | | | +-------------------------------------------------------------------+ ]]></artwork> </artset> </figure> <t>Another way to create a partition is to simply use separate connections. For example, to split two separate HTTP requests from one another, a client could issue the requests on separate TCP connections, each on a differentnetwork,network and at differenttimes;times, and avoid including obvious identifiers like HTTP cookies across the requests.</t> <figure anchor="diagram-dualconnect"> <name>Diagram ofmaking separate connectionsMaking Separate Connections togenerate separate contexts</name>Generate Separate Contexts</name> <artset> <artwork type="svg"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" height="304" width="560" viewBox="0 0 560 304" class="diagram" text-anchor="middle" font-family="monospace" font-size="13px" stroke-linecap="round"> <path d="M 8,32 L 8,288" fill="none" stroke="black"/> <path d="M 32,64 L 32,128" fill="none" stroke="black"/> <path d="M 32,192 L 32,256" fill="none" stroke="black"/> <path d="M 104,64 L 104,128" fill="none" stroke="black"/> <path d="M 104,192 L 104,256" fill="none" stroke="black"/> <path d="M 240,64 L 240,128" fill="none" stroke="black"/> <path d="M 240,192 L 240,256" fill="none" stroke="black"/> <path d="M 336,64 L 336,128" fill="none" stroke="black"/> <path d="M 336,192 L 336,256" fill="none" stroke="black"/> <path d="M 456,64 L 456,128" fill="none" stroke="black"/> <path d="M 456,192 L 456,256" fill="none" stroke="black"/> <path d="M 528,64 L 528,128" fill="none" stroke="black"/> <path d="M 528,192 L 528,256" fill="none" stroke="black"/> <path d="M 552,32 L 552,288" fill="none" stroke="black"/> <path d="M 8,32 L 552,32" fill="none" stroke="black"/> <path d="M 32,64 L 104,64" fill="none" stroke="black"/> <path d="M 240,64 L 336,64" fill="none" stroke="black"/> <path d="M 456,64 L 528,64" fill="none" stroke="black"/> <path d="M 104,96 L 160,96" fill="none" stroke="black"/> <path d="M 192,96 L 240,96" fill="none" stroke="black"/> <path d="M 336,96 L 456,96" fill="none" stroke="black"/> <path d="M 32,128 L 104,128" fill="none" stroke="black"/> <path d="M 240,128 L 336,128" fill="none" stroke="black"/> <path d="M 456,128 L 528,128" fill="none" stroke="black"/> <path d="M 8,160 L 552,160" fill="none" stroke="black"/> <path d="M 32,192 L 104,192" fill="none" stroke="black"/> <path d="M 240,192 L 336,192" fill="none" stroke="black"/> <path d="M 456,192 L 528,192" fill="none" stroke="black"/> <path d="M 104,224 L 160,224" fill="none" stroke="black"/> <path d="M 192,224 L 240,224" fill="none" stroke="black"/> <path d="M 336,224 L 456,224" fill="none" stroke="black"/> <path d="M 32,256 L 104,256" fill="none" stroke="black"/> <path d="M 240,256 L 336,256" fill="none" stroke="black"/> <path d="M 456,256 L 528,256" fill="none" stroke="black"/> <path d="M 8,288 L 552,288" fill="none" stroke="black"/> <g class="text"> <text x="48" y="52">Context</text> <text x="88" y="52">A</text> <text x="124" y="84">IP</text> <text x="144" y="84">A</text> <text x="68" y="100">Client</text> <text x="176" y="100">TCP</text> <text x="288" y="100">Middlebox</text> <text x="492" y="100">Server</text> <text x="172" y="116">flow</text> <text x="200" y="116">A</text> <text x="288" y="116">A</text> <text x="48" y="180">Context</text> <text x="88" y="180">B</text> <text x="124" y="212">IP</text> <text x="144" y="212">B</text> <text x="68" y="228">Client</text> <text x="176" y="228">TCP</text> <text x="288" y="228">Middlebox</text> <text x="492" y="228">Server</text> <text x="172" y="244">flow</text> <text x="200" y="244">B</text> <text x="288" y="244">B</text> </g> </svg> </artwork> <artwork type="ascii-art"><![CDATA[ +-------------------------------------------------------------------+ | Context A | | +--------+ +-----------+ +--------+ | | | | IP A | | | | | | | Client +-------TCP------+ Middlebox +--------------+ Server | | | | | flow A | A | | | | | +--------+ +-----------+ +--------+ | | | +-------------------------------------------------------------------+ | Context B | | +--------+ +-----------+ +--------+ | | | | IP B | | | | | | | Client +-------TCP------+ Middlebox +--------------+ Server | | | | | flow B | B | | | | | +--------+ +-----------+ +--------+ | | | +-------------------------------------------------------------------+ ]]></artwork> </artset> </figure> <t>Using separate connections to create separate contexts can reduce or eliminate the ability of specific parties to correlate activity across contexts. However, any identifier at any layer that is common across different contexts can be used as a way to correlate activity. Beyond IP addresses, many other factors can be used together to create a fingerprint of a specific device (such asMACMedia Access Control (MAC) addresses, device properties, software properties and behavior, application state,etc).</t>etc.).</t> </section> <section anchor="context-separation"> <name>Context Separation</name> <t>In order to define and analyze how various partitioning techniques work, the boundaries of what is being partitioned need to be established. This is the role of context separation. In particular, in order to prevent the correlation of user-specific information across contexts, partitions need to ensure that any single entity (other than the client itself) does not participate in contexts where both identifiers are visible.</t> <t>Context separation can be achieved in different ways, for example, over time, across network paths, based on (en)coding, etc. The privacy-oriented protocols described in this document generally involve more complex partitioning, but the techniques to partition communication contexts still employ the same techniques:</t><ol spacing="normal" type="1"><li> <t>Cryptographic<ul spacing="normal"> <li>Cryptographic protection, such as the use of encryption to specific parties, allows partitioning of contexts between different parties (those with the ability to remove cryptographic protections, and thosewithout).</t> </li> <li> <t>Connectionwithout).</li> <li>Connection separation across time or space to allow partitioning of contexts for different application transactions over thenetwork.</t> </li> </ol>network.</li> </ul> <t>These techniques are frequently used in conjunction for context separation. For example, encrypting an HTTP exchange using TLS between the client and TLS-terminating server might prevent a network middlebox that sees a client IP address from seeing the user account identifier, but it doesn't prevent the TLS-terminating server from observing both identifiers and correlating them. As such, preventing correlation requires separating contexts, such as by using proxying to conceal a client's IP address that would otherwise be used as an identifier.</t> </section> <section anchor="approaches-to-partitioning"> <name>Approaches to Partitioning</name> <t>While all of the partitioning protocols described in this document create separate contexts using cryptographic protection and/or connection separation, each one has a unique approach that results in different sets of contexts. Since many of these protocols are new, it is yet to be seen how each approach will be used at scale across theInternet,Internet and what new models will emerge in the future.</t> <t>There are multiple factors that lead to a diversity in approaches to partitioning, including:</t> <ul spacing="normal"><li> <t>Adding<li>Adding privacy partitioning to existing protocol ecosystems places requirements and constraints on how contexts are constructed. CONNECT-style proxying is intended to work with servers that are unaware of privacy contexts, requiring more intermediaries to provide strong separation guarantees.Oblivious HTTP, onOn the other hand, Oblivious HTTP assumes servers that cooperate with contextseparation, and thusseparation and, thus, reduces the overall number of elements in thesolution.</t> </li> <li> <t>Whethersolution.</li> <li>Whether or not information exchange needs to happen bidirectionally in an interactive fashion determines how contexts can be separated. Some use cases, like metrics collection for PPM, can occurwithwhereby informationflowingonly flows from clients toservers,servers and can function even when clients are no longer connected. Privacy Pass is an example of a case that can be either interactive or not, depending on whether tokens can be cached and reused. CONNECT-style proxying and Oblivious HTTP oftenrequiresrequire bidirectional and interactivecommunication.</t> </li> <li> <t>Thecommunication.</li> <li>The degree to which contexts need to be partitioned depends in part on the client's threat models and level of trust in various protocol participants. For example, in Oblivious HTTP, clients allow relays to learn that clients are accessing a particular application-specific gateway. If clients do not trust relays with this information, they can instead use a multi-hop CONNECT-style proxy approach wherein no single party learns whether specific clients are accessing a specific application. This is the default trust model for systems like Tor, where multiple hops are used to drive down the probability of privacy violations due to collusion or relatedattacks.</t> </li>attacks.</li> </ul> </section> </section> <section anchor="a-survey-of-protocols-using-partitioning"> <name>A Survey of ProtocolsusingUsing Partitioning</name> <t>The following section discusses current on-going work in the IETF that is applying privacy partitioning.</t> <section anchor="masque"> <name>CONNECT Proxying and MASQUE</name><t>HTTP forward proxies, when<t>When using encryption on the connection between the client and the proxy, HTTP forward proxies provide privacy partitioning by separating a connection into multiple segments. When connections to targets via the proxy themselves are encrypted, the proxy cannot see the end-to-end content. HTTP has historically supported forward proxying for TCP-like streams via the CONNECT method. More recently, the Multiplexed Application Substrate over QUIC Encryption (MASQUE)working groupWorking Group has developed protocols to similarly proxy UDP <xreftarget="CONNECT-UDP"/>target="RFC9297"/> and IP packets <xreftarget="CONNECT-IP"/>target="RFC9484"/> based on tunneling.</t> <t>In a single-proxy setup, there is a tunnel connection between the client and proxy and an end-to-end connection that istunnelledtunneled between the client and target. This setup, as shown inthe figure below,<xref target="diagram-1hop"/>, partitions communication into:</t> <ul spacing="normal"><li> <t>a<li>a Client-to-Target encrypted context, which contains the end-to-end content within the TLS session to the target, such as HTTPcontent;</t> </li> <li> <t>acontent;</li> <li>a Client-to-Target proxied context, which is the end-to-end datatoexchanged with the target that is also visible to the proxy, such as a TLSsession;</t> </li> <li> <t>asession;</li> <li>a Client-to-Proxy context, which contains the transport metadata between the client and the target, and the request to the proxy to open a connection to thetarget;</t>target; and </li><li> <t>and a<li>a Proxy-to-Target context, which for TCP and UDP proxying contains any packet header information that is added or modified by the proxy, e.g., the IP and TCP/UDPheaders.</t> </li>headers.</li> </ul> <figure anchor="diagram-1hop"> <name>Diagram ofone-hop proxy contexts</name>One-Hop Proxy Contexts</name> <artset> <artwork type="svg"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" height="560" width="560" viewBox="0 0 560 560" class="diagram" text-anchor="middle" font-family="monospace" font-size="13px" stroke-linecap="round"> <path d="M 8,32 L 8,544" fill="none" stroke="black"/> <path d="M 32,64 L 32,128" fill="none" stroke="black"/> <path d="M 32,192 L 32,256" fill="none" stroke="black"/> <path d="M 32,320 L 32,384" fill="none" stroke="black"/> <path d="M 104,64 L 104,128" fill="none" stroke="black"/> <path d="M 104,192 L 104,256" fill="none" stroke="black"/> <path d="M 104,320 L 104,384" fill="none" stroke="black"/> <path d="M 240,192 L 240,256" fill="none" stroke="black"/> <path d="M 240,320 L 240,384" fill="none" stroke="black"/> <path d="M 240,448 L 240,512" fill="none" stroke="black"/> <path d="M 336,192 L 336,256" fill="none" stroke="black"/> <path d="M 336,320 L 336,384" fill="none" stroke="black"/> <path d="M 336,448 L 336,512" fill="none" stroke="black"/> <path d="M 456,64 L 456,128" fill="none" stroke="black"/> <path d="M 456,192 L 456,256" fill="none" stroke="black"/> <path d="M 456,448 L 456,512" fill="none" stroke="black"/> <path d="M 528,64 L 528,128" fill="none" stroke="black"/> <path d="M 528,192 L 528,256" fill="none" stroke="black"/> <path d="M 528,448 L 528,512" fill="none" stroke="black"/> <path d="M 552,32 L 552,544" fill="none" stroke="black"/> <path d="M 8,32 L 552,32" fill="none" stroke="black"/> <path d="M 32,64 L 104,64" fill="none" stroke="black"/> <path d="M 456,64 L 528,64" fill="none" stroke="black"/> <path d="M 104,96 L 248,96" fill="none" stroke="black"/> <path d="M 296,96 L 456,96" fill="none" stroke="black"/> <path d="M 32,128 L 104,128" fill="none" stroke="black"/> <path d="M 456,128 L 528,128" fill="none" stroke="black"/> <path d="M 8,160 L 552,160" fill="none" stroke="black"/> <path d="M 32,192 L 104,192" fill="none" stroke="black"/> <path d="M 240,192 L 336,192" fill="none" stroke="black"/> <path d="M 456,192 L 528,192" fill="none" stroke="black"/> <path d="M 104,224 L 136,224" fill="none" stroke="black"/> <path d="M 200,224 L 240,224" fill="none" stroke="black"/> <path d="M 336,224 L 456,224" fill="none" stroke="black"/> <path d="M 32,256 L 104,256" fill="none" stroke="black"/> <path d="M 240,256 L 336,256" fill="none" stroke="black"/> <path d="M 456,256 L 528,256" fill="none" stroke="black"/> <path d="M 8,288 L 552,288" fill="none" stroke="black"/> <path d="M 32,320 L 104,320" fill="none" stroke="black"/> <path d="M 240,320 L 336,320" fill="none" stroke="black"/> <path d="M 104,352 L 128,352" fill="none" stroke="black"/> <path d="M 208,352 L 240,352" fill="none" stroke="black"/> <path d="M 32,384 L 104,384" fill="none" stroke="black"/> <path d="M 240,384 L 336,384" fill="none" stroke="black"/> <path d="M 8,416 L 552,416" fill="none" stroke="black"/> <path d="M 240,448 L 336,448" fill="none" stroke="black"/> <path d="M 456,448 L 528,448" fill="none" stroke="black"/> <path d="M 336,480 L 352,480" fill="none" stroke="black"/> <path d="M 432,480 L 456,480" fill="none" stroke="black"/> <path d="M 240,512 L 336,512" fill="none" stroke="black"/> <path d="M 456,512 L 528,512" fill="none" stroke="black"/> <path d="M 8,544 L 552,544" fill="none" stroke="black"/> <g class="text"> <text x="84" y="52">Client-to-Target</text> <text x="192" y="52">Encrypted</text> <text x="264" y="52">Context</text> <text x="68" y="100">Client</text> <text x="272" y="100">HTTPS</text> <text x="492" y="100">Target</text> <text x="272" y="116">content</text> <text x="84" y="180">Client-to-Target</text> <text x="184" y="180">Proxied</text> <text x="248" y="180">Context</text> <text x="68" y="228">Client</text> <text x="168" y="228">Proxied</text> <text x="288" y="228">Proxy</text> <text x="492" y="228">Target</text> <text x="152" y="244">TLS</text> <text x="188" y="244">flow</text> <text x="80" y="308">Client-to-Proxy</text> <text x="176" y="308">Context</text> <text x="68" y="356">Client</text> <text x="168" y="356">Transport</text> <text x="288" y="356">Proxy</text> <text x="164" y="372">flow</text> <text x="80" y="436">Proxy-to-Target</text> <text x="176" y="436">Context</text> <text x="288" y="484">Proxy</text> <text x="392" y="484">Transport</text> <text x="492" y="484">Target</text> <text x="388" y="500">flow</text> </g> </svg> </artwork> <artwork type="ascii-art"><![CDATA[ +-------------------------------------------------------------------+ | Client-to-Target Encrypted Context | | +--------+ +--------+ | | | | | | | | | Client +------------------HTTPS--------------------+ Target | | | | | content | | | | +--------+ +--------+ | | | +-------------------------------------------------------------------+ | Client-to-Target Proxied Context | | +--------+ +-----------+ +--------+ | | | | | | | | | | | Client +----Proxied-----+ Proxy +--------------+ Target | | | | | TLS flow | | | | | | +--------+ +-----------+ +--------+ | | | +-------------------------------------------------------------------+ | Client-to-Proxy Context | | +--------+ +-----------+ | | | | | | | | | Client +---Transport----+ Proxy | | | | | flow | | | | +--------+ +-----------+ | | | +-------------------------------------------------------------------+ | Proxy-to-Target Context | | +-----------+ +--------+ | | | | | | | | | Proxy +--Transport---+ Target | | | | | flow | | | | +-----------+ +--------+ | | | +-------------------------------------------------------------------+ ]]></artwork> </artset> </figure> <t>Using two (or more) proxies provides better privacy partitioning. In particular, with two proxies, each proxy sees the Clientmetadata,metadata but not theTarget; theTarget, the Target but not the Clientmetadata;metadata, or neither.</t> <t>In addition to the contexts described above for the single proxy case, the two-hop proxy case shown inthe figure below<xref target="diagram-2hop"/> changes the contexts in several ways:</t> <ul spacing="normal"><li> <t>the<li>the Client-to-Target proxied context only includes the second proxy (referred to here as "ProxyB");</t> </li> <li> <t>aB");</li> <li>a new Client-to-Proxy B context is added, which is the TLS session from the client to Proxy B that is also visible to the first proxy (referred to here as "ProxyA");</t> </li> <li> <t>theA");</li> <li>the contexts that see transport data only (TCP or UDP over IP) are separated out into three separate contexts, a Client-to-Proxy A context, a Proxy A-to-Proxy B context, and a Proxy B-to-Targetcontext.</t> </li>context.</li> </ul> <figure anchor="diagram-2hop"> <name>Diagram oftwo-hop proxy contexts</name>Two-Hop Proxy Contexts</name> <artset> <artwork type="svg"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" height="816" width="560" viewBox="0 0 560 816" class="diagram" text-anchor="middle" font-family="monospace" font-size="13px" stroke-linecap="round"> <path d="M 8,32 L 8,800" fill="none" stroke="black"/> <path d="M 32,64 L 32,128" fill="none" stroke="black"/> <path d="M 32,192 L 32,256" fill="none" stroke="black"/> <path d="M 32,320 L 32,384" fill="none" stroke="black"/> <path d="M 32,448 L 32,512" fill="none" stroke="black"/> <path d="M 104,64 L 104,128" fill="none" stroke="black"/> <path d="M 104,192 L 104,256" fill="none" stroke="black"/> <path d="M 104,320 L 104,384" fill="none" stroke="black"/> <path d="M 104,448 L 104,512" fill="none" stroke="black"/> <path d="M 184,320 L 184,384" fill="none" stroke="black"/> <path d="M 184,448 L 184,512" fill="none" stroke="black"/> <path d="M 184,576 L 184,640" fill="none" stroke="black"/> <path d="M 248,320 L 248,384" fill="none" stroke="black"/> <path d="M 248,448 L 248,512" fill="none" stroke="black"/> <path d="M 248,576 L 248,640" fill="none" stroke="black"/> <path d="M 328,192 L 328,256" fill="none" stroke="black"/> <path d="M 328,320 L 328,384" fill="none" stroke="black"/> <path d="M 328,576 L 328,640" fill="none" stroke="black"/> <path d="M 328,704 L 328,768" fill="none" stroke="black"/> <path d="M 392,192 L 392,256" fill="none" stroke="black"/> <path d="M 392,320 L 392,384" fill="none" stroke="black"/> <path d="M 392,576 L 392,640" fill="none" stroke="black"/> <path d="M 392,704 L 392,768" fill="none" stroke="black"/> <path d="M 456,64 L 456,128" fill="none" stroke="black"/> <path d="M 456,192 L 456,256" fill="none" stroke="black"/> <path d="M 456,704 L 456,768" fill="none" stroke="black"/> <path d="M 528,64 L 528,128" fill="none" stroke="black"/> <path d="M 528,192 L 528,256" fill="none" stroke="black"/> <path d="M 528,704 L 528,768" fill="none" stroke="black"/> <path d="M 552,32 L 552,800" fill="none" stroke="black"/> <path d="M 8,32 L 552,32" fill="none" stroke="black"/> <path d="M 32,64 L 104,64" fill="none" stroke="black"/> <path d="M 456,64 L 528,64" fill="none" stroke="black"/> <path d="M 104,96 L 248,96" fill="none" stroke="black"/> <path d="M 296,96 L 456,96" fill="none" stroke="black"/> <path d="M 32,128 L 104,128" fill="none" stroke="black"/> <path d="M 456,128 L 528,128" fill="none" stroke="black"/> <path d="M 8,160 L 552,160" fill="none" stroke="black"/> <path d="M 32,192 L 104,192" fill="none" stroke="black"/> <path d="M 328,192 L 392,192" fill="none" stroke="black"/> <path d="M 456,192 L 528,192" fill="none" stroke="black"/> <path d="M 104,224 L 184,224" fill="none" stroke="black"/> <path d="M 248,224 L 328,224" fill="none" stroke="black"/> <path d="M 392,224 L 456,224" fill="none" stroke="black"/> <path d="M 32,256 L 104,256" fill="none" stroke="black"/> <path d="M 328,256 L 392,256" fill="none" stroke="black"/> <path d="M 456,256 L 528,256" fill="none" stroke="black"/> <path d="M 8,288 L 552,288" fill="none" stroke="black"/> <path d="M 32,320 L 104,320" fill="none" stroke="black"/> <path d="M 184,320 L 248,320" fill="none" stroke="black"/> <path d="M 328,320 L 392,320" fill="none" stroke="black"/> <path d="M 104,352 L 184,352" fill="none" stroke="black"/> <path d="M 248,352 L 328,352" fill="none" stroke="black"/> <path d="M 32,384 L 104,384" fill="none" stroke="black"/> <path d="M 184,384 L 248,384" fill="none" stroke="black"/> <path d="M 328,384 L 392,384" fill="none" stroke="black"/> <path d="M 8,416 L 552,416" fill="none" stroke="black"/> <path d="M 32,448 L 104,448" fill="none" stroke="black"/> <path d="M 184,448 L 248,448" fill="none" stroke="black"/> <path d="M 104,480 L 184,480" fill="none" stroke="black"/> <path d="M 32,512 L 104,512" fill="none" stroke="black"/> <path d="M 184,512 L 248,512" fill="none" stroke="black"/> <path d="M 8,544 L 552,544" fill="none" stroke="black"/> <path d="M 184,576 L 248,576" fill="none" stroke="black"/> <path d="M 328,576 L 392,576" fill="none" stroke="black"/> <path d="M 248,608 L 328,608" fill="none" stroke="black"/> <path d="M 184,640 L 248,640" fill="none" stroke="black"/> <path d="M 328,640 L 392,640" fill="none" stroke="black"/> <path d="M 8,672 L 552,672" fill="none" stroke="black"/> <path d="M 328,704 L 392,704" fill="none" stroke="black"/> <path d="M 456,704 L 528,704" fill="none" stroke="black"/> <path d="M 392,736 L 456,736" fill="none" stroke="black"/> <path d="M 328,768 L 392,768" fill="none" stroke="black"/> <path d="M 456,768 L 528,768" fill="none" stroke="black"/> <path d="M 8,800 L 552,800" fill="none" stroke="black"/> <g class="text"> <text x="84" y="52">Client-to-Target</text> <text x="192" y="52">Encrypted</text> <text x="264" y="52">Context</text> <text x="68" y="100">Client</text> <text x="272" y="100">HTTPS</text> <text x="492" y="100">Target</text> <text x="272" y="116">content</text> <text x="84" y="180">Client-to-Target</text> <text x="184" y="180">Proxied</text> <text x="248" y="180">Context</text> <text x="68" y="228">Client</text> <text x="216" y="228">Proxied</text> <text x="360" y="228">Proxy</text> <text x="492" y="228">Target</text> <text x="200" y="244">TLS</text> <text x="236" y="244">flow</text> <text x="360" y="244">B</text> <text x="80" y="308">Client-to-Proxy</text> <text x="152" y="308">B</text> <text x="192" y="308">Context</text> <text x="68" y="356">Client</text> <text x="216" y="356">Proxy</text> <text x="360" y="356">Proxy</text> <text x="216" y="372">A</text> <text x="360" y="372">B</text> <text x="80" y="436">Client-to-Proxy</text> <text x="152" y="436">A</text> <text x="192" y="436">Context</text> <text x="68" y="484">Client</text> <text x="216" y="484">Proxy</text> <text x="216" y="500">A</text> <text x="40" y="564">Proxy</text> <text x="108" y="564">A-to-Proxy</text> <text x="160" y="564">B</text> <text x="200" y="564">Context</text> <text x="216" y="612">Proxy</text> <text x="360" y="612">Proxy</text> <text x="216" y="628">A</text> <text x="360" y="628">B</text> <text x="40" y="692">Proxy</text> <text x="112" y="692">B-to-Target</text> <text x="192" y="692">Context</text> <text x="360" y="740">Proxy</text> <text x="492" y="740">Target</text> <text x="360" y="756">B</text> </g> </svg> </artwork> <artwork type="ascii-art"><![CDATA[ +-------------------------------------------------------------------+ | Client-to-Target Encrypted Context | | +--------+ +--------+ | | | | | | | | | Client +------------------HTTPS--------------------+ Target | | | | | content | | | | +--------+ +--------+ | | | +-------------------------------------------------------------------+ | Client-to-Target Proxied Context | | +--------+ +-------+ +--------+ | | | | | | | | | | | Client +----------Proxied----------+ Proxy +-------+ Target | | | | | TLS flow | B | | | | | +--------+ +-------+ +--------+ | | | +-------------------------------------------------------------------+ | Client-to-Proxy B Context | | +--------+ +-------+ +-------+ | | | | | | | | | | | Client +---------+ Proxy +---------+ Proxy | | | | | | A | | B | | | +--------+ +-------+ +-------+ | | | +-------------------------------------------------------------------+ | Client-to-Proxy A Context | | +--------+ +-------+ | | | | | | | | | Client +---------+ Proxy | | | | | | A | | | +--------+ +-------+ | | | +-------------------------------------------------------------------+ | Proxy A-to-Proxy B Context | | +-------+ +-------+ | | | | | | | | | Proxy +---------+ Proxy | | | | A | | B | | | +-------+ +-------+ | | | +-------------------------------------------------------------------+ | Proxy B-to-Target Context | | +-------+ +--------+ | | | | | | | | | Proxy +-------+ Target | | | | B | | | | | +-------+ +--------+ | | | +-------------------------------------------------------------------+ ]]></artwork> </artset> </figure> <t>Forward proxying, such as the modes of proxying in the protocols developed in MASQUE, uses both encryption (via TLS) and separation of connections (via proxy hops that see only the next hop) to achieve privacy partitioning.</t> </section> <section anchor="oblivious-http-and-dns"> <name>Oblivious HTTP and DNS</name> <t>Oblivious HTTP <xreftarget="OHTTP"/>,target="RFC9458"/>, developed in the Oblivious HTTP Application Intermediation (OHAI)working group,Working Group, adds per-message encryption to HTTP exchanges through a relay system. Clients send requests through an Oblivious Relay, which cannot read message contents, to an Oblivious Gateway, which can decrypt the messages but cannot communicate directly with the client or observe client metadata like an IP address. Oblivious HTTP relies on Hybrid Public Key Encryption <xreftarget="HPKE"/>target="RFC9180"/> to perform encryption.</t> <t>Oblivious HTTP uses both encryption and separation of connections to achieve privacy partitioning.</t> <ul spacing="normal"><li> <t>End-to-end<li>End-to-end messages are encrypted between the Client and Gateway. The content of these inner messages are visible to the Client, Gateway, and Target. This is the Client-to-Targetcontext.</t> </li> <li> <t>Thecontext.</li> <li>The encrypted messages exchanged between the Client and Gateway are visible to the Relay, but the Relay cannot decrypt the messages. This is the Client-to-Gatewaycontext.</t> </li> <li> <t>Thecontext.</li> <li>The transport (such as TCP and TLS) connections between the Client, Relay, and Gateway form two separate contexts: a Client-to-Relay context and a Relay-to-Gateway context. It is important to note that the Relay-to-Gateway connection can be a single connection, even if the Relay has many separate Clients. This provides better anonymity by making the pseudonym presented by the Relay to be shared across manyClients.</t> </li>Clients.</li> </ul> <figure anchor="diagram-ohttp"> <name>Diagram of Oblivious HTTPcontexts</name>Contexts</name> <artset> <artwork type="svg"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" height="560" width="560" viewBox="0 0 560 560" class="diagram" text-anchor="middle" font-family="monospace" font-size="13px" stroke-linecap="round"> <path d="M 8,32 L 8,544" fill="none" stroke="black"/> <path d="M 32,64 L 32,128" fill="none" stroke="black"/> <path d="M 32,192 L 32,256" fill="none" stroke="black"/> <path d="M 32,320 L 32,384" fill="none" stroke="black"/> <path d="M 104,64 L 104,128" fill="none" stroke="black"/> <path d="M 104,192 L 104,256" fill="none" stroke="black"/> <path d="M 104,320 L 104,384" fill="none" stroke="black"/> <path d="M 184,192 L 184,256" fill="none" stroke="black"/> <path d="M 184,320 L 184,384" fill="none" stroke="black"/> <path d="M 184,448 L 184,512" fill="none" stroke="black"/> <path d="M 248,192 L 248,256" fill="none" stroke="black"/> <path d="M 248,320 L 248,384" fill="none" stroke="black"/> <path d="M 248,448 L 248,512" fill="none" stroke="black"/> <path d="M 328,64 L 328,128" fill="none" stroke="black"/> <path d="M 328,192 L 328,256" fill="none" stroke="black"/> <path d="M 328,448 L 328,512" fill="none" stroke="black"/> <path d="M 408,64 L 408,128" fill="none" stroke="black"/> <path d="M 408,192 L 408,256" fill="none" stroke="black"/> <path d="M 408,448 L 408,512" fill="none" stroke="black"/> <path d="M 456,64 L 456,128" fill="none" stroke="black"/> <path d="M 528,64 L 528,128" fill="none" stroke="black"/> <path d="M 552,32 L 552,544" fill="none" stroke="black"/> <path d="M 8,32 L 552,32" fill="none" stroke="black"/> <path d="M 32,64 L 104,64" fill="none" stroke="black"/> <path d="M 328,64 L 408,64" fill="none" stroke="black"/> <path d="M 456,64 L 528,64" fill="none" stroke="black"/> <path d="M 104,96 L 328,96" fill="none" stroke="black"/> <path d="M 408,96 L 456,96" fill="none" stroke="black"/> <path d="M 32,128 L 104,128" fill="none" stroke="black"/> <path d="M 328,128 L 408,128" fill="none" stroke="black"/> <path d="M 456,128 L 528,128" fill="none" stroke="black"/> <path d="M 8,160 L 552,160" fill="none" stroke="black"/> <path d="M 32,192 L 104,192" fill="none" stroke="black"/> <path d="M 184,192 L 248,192" fill="none" stroke="black"/> <path d="M 328,192 L 408,192" fill="none" stroke="black"/> <path d="M 104,224 L 184,224" fill="none" stroke="black"/> <path d="M 248,224 L 328,224" fill="none" stroke="black"/> <path d="M 32,256 L 104,256" fill="none" stroke="black"/> <path d="M 184,256 L 248,256" fill="none" stroke="black"/> <path d="M 328,256 L 408,256" fill="none" stroke="black"/> <path d="M 8,288 L 552,288" fill="none" stroke="black"/> <path d="M 32,320 L 104,320" fill="none" stroke="black"/> <path d="M 184,320 L 248,320" fill="none" stroke="black"/> <path d="M 104,352 L 184,352" fill="none" stroke="black"/> <path d="M 32,384 L 104,384" fill="none" stroke="black"/> <path d="M 184,384 L 248,384" fill="none" stroke="black"/> <path d="M 8,416 L 552,416" fill="none" stroke="black"/> <path d="M 184,448 L 248,448" fill="none" stroke="black"/> <path d="M 328,448 L 408,448" fill="none" stroke="black"/> <path d="M 248,480 L 328,480" fill="none" stroke="black"/> <path d="M 184,512 L 248,512" fill="none" stroke="black"/> <path d="M 328,512 L 408,512" fill="none" stroke="black"/> <path d="M 8,544 L 552,544" fill="none" stroke="black"/> <g class="text"> <text x="84" y="52">Client-to-Target</text> <text x="184" y="52">Context</text> <text x="68" y="100">Client</text> <text x="368" y="100">Gateway</text> <text x="492" y="100">Target</text> <text x="88" y="180">Client-to-Gateway</text> <text x="192" y="180">Context</text> <text x="68" y="228">Client</text> <text x="216" y="228">Relay</text> <text x="368" y="228">Gateway</text> <text x="80" y="308">Client-to-Relay</text> <text x="176" y="308">Context</text> <text x="68" y="356">Client</text> <text x="216" y="356">Relay</text> <text x="84" y="436">Relay-to-Gateway</text> <text x="184" y="436">Context</text> <text x="216" y="484">Relay</text> <text x="368" y="484">Gateway</text> </g> </svg> </artwork> <artwork type="ascii-art"><![CDATA[ +-------------------------------------------------------------------+ | Client-to-Target Context | | +--------+ +---------+ +--------+ | | | | | | | | | | | Client +---------------------------+ Gateway +-----+ Target | | | | | | | | | | | +--------+ +---------+ +--------+ | | | +-------------------------------------------------------------------+ | Client-to-Gateway Context | | +--------+ +-------+ +---------+ | | | | | | | | | | | Client +---------+ Relay +---------+ Gateway | | | | | | | | | | | +--------+ +-------+ +---------+ | | | +-------------------------------------------------------------------+ | Client-to-Relay Context | | +--------+ +-------+ | | | | | | | | | Client +---------+ Relay | | | | | | | | | +--------+ +-------+ | | | +-------------------------------------------------------------------+ | Relay-to-Gateway Context | | +-------+ +---------+ | | | | | | | | + Relay +---------+ Gateway | | | | | | | | | +-------+ +---------+ | | | +-------------------------------------------------------------------+ ]]></artwork> </artset> </figure> <t>Oblivious DNS over HTTPS (ODoH) <xreftarget="ODOH"/>target="RFC9230"/> applies the same principle as ObliviousHTTP,HTTP but operates on DNS messages only. As a precursor to the more generalized Oblivious HTTP, it relies on the same HPKE cryptographicprimitives,primitives and can be analyzed in the same way.</t> </section> <section anchor="privacypass"> <name>Privacy Pass</name> <t>Privacy Pass is an architecture <xreftarget="PRIVACYPASS"/>target="RFC9576"/> and a set of protocols being developed in the Privacy Passworking groupWorking Group that allows clients to present proof of verification in an anonymous and unlinkablefashion,fashion via tokens. These tokensoriginallywere originally designed as a way to prove that a client had solved a CAPTCHA, but they can be applied to other types of user or device attestation checks as well. In Privacy Pass, clients interact with an attester and issuer for the purposes of issuing a token, and clients then interact with an origin server to redeem said token.</t> <t>In Privacy Pass, privacy partitioning is achieved with cryptographic protection (in the form of blind signature protocols or similar) and separation of connections across two contexts: a "redemption context" between clients and origins (servers that request and receive tokens), and an "issuance context" between clients, attestation servers, and token issuance servers. The cryptographic protection ensures that information revealed during the issuance context is separated from information revealed during the redemption context.</t> <figure anchor="diagram-privacypass"> <name>Diagram ofcontextsContexts in Privacy Pass</name> <artset> <artwork type="svg"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" height="304" width="560" viewBox="0 0 560 304" class="diagram" text-anchor="middle" font-family="monospace" font-size="13px" stroke-linecap="round"> <path d="M 8,32 L 8,288" fill="none" stroke="black"/> <path d="M 32,64 L 32,128" fill="none" stroke="black"/> <path d="M 104,64 L 104,128" fill="none" stroke="black"/> <path d="M 184,64 L 184,128" fill="none" stroke="black"/> <path d="M 184,192 L 184,256" fill="none" stroke="black"/> <path d="M 256,64 L 256,128" fill="none" stroke="black"/> <path d="M 256,192 L 256,256" fill="none" stroke="black"/> <path d="M 312,192 L 312,256" fill="none" stroke="black"/> <path d="M 400,192 L 400,256" fill="none" stroke="black"/> <path d="M 456,192 L 456,256" fill="none" stroke="black"/> <path d="M 528,192 L 528,256" fill="none" stroke="black"/> <path d="M 552,32 L 552,288" fill="none" stroke="black"/> <path d="M 8,32 L 552,32" fill="none" stroke="black"/> <path d="M 32,64 L 104,64" fill="none" stroke="black"/> <path d="M 184,64 L 256,64" fill="none" stroke="black"/> <path d="M 104,96 L 184,96" fill="none" stroke="black"/> <path d="M 32,128 L 104,128" fill="none" stroke="black"/> <path d="M 184,128 L 256,128" fill="none" stroke="black"/> <path d="M 8,160 L 552,160" fill="none" stroke="black"/> <path d="M 184,192 L 256,192" fill="none" stroke="black"/> <path d="M 312,192 L 400,192" fill="none" stroke="black"/> <path d="M 456,192 L 528,192" fill="none" stroke="black"/> <path d="M 256,224 L 312,224" fill="none" stroke="black"/> <path d="M 400,224 L 456,224" fill="none" stroke="black"/> <path d="M 184,256 L 256,256" fill="none" stroke="black"/> <path d="M 312,256 L 400,256" fill="none" stroke="black"/> <path d="M 456,256 L 528,256" fill="none" stroke="black"/> <path d="M 8,288 L 552,288" fill="none" stroke="black"/> <g class="text"> <text x="60" y="52">Redemption</text> <text x="136" y="52">Context</text> <text x="68" y="100">Origin</text> <text x="220" y="100">Client</text> <text x="52" y="180">Issuance</text> <text x="120" y="180">Context</text> <text x="220" y="228">Client</text> <text x="356" y="228">Attester</text> <text x="492" y="228">Issuer</text> </g> </svg> </artwork> <artwork type="ascii-art"><![CDATA[ +-------------------------------------------------------------------+ | Redemption Context | | +--------+ +--------+ | | | | | | | | | Origin +---------+ Client | | | | | | | | | +--------+ +--------+ | | | +-------------------------------------------------------------------+ | Issuance Context | | +--------+ +----------+ +--------+ | | | | | | | | | | | Client +------+ Attester +------+ Issuer | | | | | | | | | | | +--------+ +----------+ +--------+ | | | +-------------------------------------------------------------------+ ]]></artwork> </artset> </figure> <t>Since the redemption context and issuance context are separate connections that involve separate entities, they can also be further decoupled by running those parts of the protocols at different times. Clients can fetch tokens through the issuance contextearly,early and cache the tokenstofor later use in redemption contexts. This can aid in partitioning identifiers and data.</t> <t><xreftarget="PRIVACYPASS"/>target="RFC9576"/> describes different deployment models for which entities operate origins, attesters, and issuers; in some models, they are all separate entities,butand inothers,others they can be operated by the same entity. The model impacts the effectiveness of partitioning, and some models (such as when all three are operated by the same entity) only provide effective partitioning when the timing of connections on the two contexts are notcorrelated,correlated and when the client uses different identifiers (such as different IP addresses) on each context.</t> </section> <section anchor="privacy-preserving-measurement"> <name>Privacy Preserving Measurement</name> <t>The Privacy Preserving Measurement (PPM)working groupWorking Group is chartered to develop protocols and systems that help a data aggregation or collection server (ormultiple,multiple non-colluding servers) compute aggregate values without learning the value of any one client's individual measurement. The Distributed Aggregation Protocol (DAP) is the primary working item of the group.</t> <t>At a high level, DAP uses a combination of cryptographic protection (in the form of secret sharing amongst non-colluding servers) to establish twocontexts: ancontexts:</t> <ul spacing="normal"> <li>an "upload context" between clients and non-colluding aggregation servers (in which the servers are separated into "Helper" and "Leader" roles) wherein aggregation servers possibly learn client identity but nothing about their individual measurementreports, and areports; and</li> <li>a "collect context" wherein a collector learns aggregate measurement results and nothing about individual clientdata.</t>data.</li> </ul> <figure anchor="pa-topology"> <name>Diagram ofcontextsContexts in DAP</name> <artset> <artwork type="svg"><svg xmlns="http://www.w3.org/2000/svg" version="1.1" height="224" width="488" viewBox="0 0 488 224" class="diagram" text-anchor="middle" font-family="monospace" font-size="13px" stroke-linecap="round"> <path d="M 8,32 L 8,208" fill="none" stroke="black"/> <path d="M 24,96 L 24,160" fill="none" stroke="black"/> <path d="M 96,96 L 96,160" fill="none" stroke="black"/> <path d="M 128,80 L 128,112" fill="none" stroke="black"/> <path d="M 128,144 L 128,176" fill="none" stroke="black"/> <path d="M 184,64 L 184,96" fill="none" stroke="black"/> <path d="M 184,160 L 184,192" fill="none" stroke="black"/> <path d="M 240,104 L 240,152" fill="none" stroke="black"/> <path d="M 288,64 L 288,96" fill="none" stroke="black"/> <path d="M 288,160 L 288,192" fill="none" stroke="black"/> <path d="M 312,32 L 312,168" fill="none" stroke="black"/> <path d="M 312,184 L 312,208" fill="none" stroke="black"/> <path d="M 344,112 L 344,144" fill="none" stroke="black"/> <path d="M 392,144 L 392,176" fill="none" stroke="black"/> <path d="M 440,112 L 440,144" fill="none" stroke="black"/> <path d="M 480,32 L 480,208" fill="none" stroke="black"/> <path d="M 8,32 L 480,32" fill="none" stroke="black"/> <path d="M 184,64 L 288,64" fill="none" stroke="black"/> <path d="M 128,80 L 176,80" fill="none" stroke="black"/> <path d="M 24,96 L 96,96" fill="none" stroke="black"/> <path d="M 184,96 L 288,96" fill="none" stroke="black"/> <path d="M 96,112 L 128,112" fill="none" stroke="black"/> <path d="M 344,112 L 440,112" fill="none" stroke="black"/> <path d="M 96,144 L 128,144" fill="none" stroke="black"/> <path d="M 344,144 L 440,144" fill="none" stroke="black"/> <path d="M 24,160 L 96,160" fill="none" stroke="black"/> <path d="M 184,160 L 288,160" fill="none" stroke="black"/> <path d="M 128,176 L 176,176" fill="none" stroke="black"/> <path d="M 296,176 L 392,176" fill="none" stroke="black"/> <path d="M 184,192 L 288,192" fill="none" stroke="black"/> <path d="M 8,208 L 480,208" fill="none" stroke="black"/> <polygon class="arrowhead" points="304,176 292,170.4 292,181.6" fill="black" transform="rotate(180,296,176)"/> <polygon class="arrowhead" points="248,152 236,146.4 236,157.6" fill="black" transform="rotate(90,240,152)"/> <polygon class="arrowhead" points="248,104 236,98.4 236,109.6" fill="black" transform="rotate(270,240,104)"/> <polygon class="arrowhead" points="184,176 172,170.4 172,181.6" fill="black" transform="rotate(0,176,176)"/> <polygon class="arrowhead" points="184,80 172,74.4 172,85.6" fill="black" transform="rotate(0,176,80)"/> <g class="text"> <text x="44" y="52">Upload</text> <text x="104" y="52">Context</text> <text x="352" y="52">Collect</text> <text x="416" y="52">Context</text> <text x="236" y="84">Helper</text> <text x="60" y="132">Client</text> <text x="392" y="132">Collector</text> <text x="236" y="180">Leader</text> </g> </svg> </artwork> <artwork type="ascii-art"><![CDATA[ +-------------------------------------+--------------------+ | Upload Context | Collect Context | | +------------+ | | | +----->| Helper | | | | +--------+ | +------------+ | | | | +---+ ^ | +-----------+ | | | Client | | | | Collector | | | | +---+ v | +-----+-----+ | | +--------+ | +------------+ | | | | +----->| Leader |<-----------+ | | +------------+ | | +-------------------------------------+--------------------+ ]]></artwork> </artset> </figure> </section> </section> <section anchor="applying-privacy-partitioning"> <name>Applying Privacy Partitioning</name> <t>Applying privacy partitioning to an existing or new system or protocol requires the following steps:</t> <ol spacing="normal"type="1"><li> <t>Identifytype="1"> <li>Identify the types of information used or exposed in a system or protocol, some of which can be used to identify a user or correlate to othercontexts.</t> </li> <li> <t>Partitioncontexts.</li> <li>Partition data to minimize the amount of user-identifying or correlatable information in any given context to only include what is necessary for thatcontext,context and prevent the sharing of data across contexts whereverpossible.</t> </li>possible.</li> </ol> <t>The most impactful types of information to partition are (a) user-identifying information, such as user identifiers (including account names or IP addresses) that can be linked and (b) non-user-identifying information (including content a user generates or accesses), which can be often sensitive when combined with a user identifier.</t> <t>In this section, we discuss considerations for partitioning these types of information.</t> <section anchor="user-identifying-information"> <name>User-Identifying Information</name> <t>User data can itself be user-identifying, in which case it should be treated as an identifier. For example, Oblivious DoH and Oblivious HTTP partition the client IP address and client request data into separate contexts, thereby ensuring that no entity beyond the client can observe both. Collusion across contexts could reverse thispartitioning, but can also promotepartitioning and cause non-user-identifying information touser-identifying.become user-identifying information. For example, in CONNECT proxy systems that use QUIC, the QUIC connection ID is inherently non-user-identifying since it is generated randomly (<xref section="5.1"sectionFormat="comma" target="QUIC"/>).sectionFormat="of" target="RFC9000"/>). However, if combined with another context that has user-identifying information such as the client IP address, the QUIC connection ID can become user-identifying information.</t> <t>Some information is innate to client user-agents, including details of the network location and implementation of protocols in hardware andsoftware, and network location.software. This information can be used to construct user-identifying information, which is a process sometimes referred to asfingerprinting."fingerprinting". Depending on the application and system constraints, users may not be able to prevent fingerprinting in privacy contexts. As a result, fingerprinting information, when combined with non-user-identifying user data, couldpromoteturn that otherwise innocuous user datatointo user-identifying information.</t> </section> <section anchor="selecting-client-identifiers"> <name>Selecting Client Identifiers</name> <t>The selection of client identifiers used in the contexts used for privacy partitioning has a large impact on the effectiveness of partitioning. Identifier selection can either undermine or improve the value of partitioning. Generally, each context involves some form of client identifier, which might be directly associated with a clientidentity,identity but can also be a pseudonym or a random one-time identifier.</t> <t>Using the same client identifier across multiple contexts can partly or wholly undermine the effectiveness ofpartitioning,partitioning by allowing the various contexts to be linked back to the same client. For example, if a client uses proxies as described in <xref target="masque"/> to separateconnections,connections but uses the same email address to authenticate to two servers in different contexts, those actions can be linked back to the same client. While this does not undermine all of the partitioning achieved through proxying (the contexts along the network path still cannot correlate the client identity and what servers are being accessed), the overall effect of partitioning is diminished.</t> <t>When possible, using per-context unique client identifiers provides better partitioning properties. For example, a client can use a unique email address as an account identifier with each different server it needs to log into. The same approach can apply across many layers, as seen with per-network MAC address randomization <xref target="I-D.ietf-madinas-mac-address-randomization"/>, use of multiple temporary IP addresses across connections and over time <xref target="RFC8981"/>, and use of unique per-subscription identifiers for HTTP Web Push <xref target="RFC8030"/>.</t> </section> <section anchor="incorrect-or-incomplete-partitioning"> <name>Incorrect or Incomplete Partitioning</name> <t>Privacy partitioning can be applied incorrectly or incompletely. Contexts may contain more user-identifying information than desired, or some information in a context may be more user-identifying than intended. Moreover, splitting user-identifying information over multiple contexts has to be done with care, as creating more contexts can increase the number of entities that need to be trusted to not collude. Nevertheless, partitions can help improve the client's privacy posture when applied carefully.</t> <t>Evaluating and qualifying the resulting privacy of a system or protocol that applies privacy partitioning depends on the contexts that exist and the types of user-identifying information in each context. Such evaluation is helpful for identifying ways in which systems or protocols can improve their privacy posture. For example, considerDNS-over-HTTPSDNS over HTTPS <xreftarget="DOH"/>,target="RFC8484"/>, which produces a single contextwhichthat contains both the client IP address and client query. One application of privacy partitioning results in ODoH, which produces two contexts, one with the client IP address and the other with the client query.</t> </section> <section anchor="selecting-information-within-a-context"> <name>Selecting InformationWithinwithin a Context</name> <t>Recognizing potential applications of privacy partitioning requires identifying the contexts in use, the information exposed in a context, and the intent of information exposed in a context. Unfortunately, determining what information to include in a given context is a non-trivial task. In principle, the information contained in a context should be fit for purpose. As such, new systems or protocols developed should aim to ensure that all information exposed in a context serves as few purposes as possible. Designing with this principle from the start helps mitigate issues that arise if users of the system or protocol inadvertently ossify on the information available in contexts. Legacy systems that have ossified on information available in contexts may be difficult to change in practice. As an example, many existing anti-abuse systems depend on some clientidentifieridentifier, such as the client IP address, coupled with clientdata,data to provide value. Partitioning contexts in these systems such that they no longer determine the client identity requires new solutions to the anti-abuse problem.</t> </section> </section> <section anchor="limits"> <name>Limits of Privacy Partitioning</name> <t>Privacy partitioning aims to increase user privacy,thoughthough, as stated, it is merely one of possibly many architectural tools that help manage privacy risks. Understanding the limits of its benefits requires a more comprehensive analysis of the system in question. Such analysis also helps determine whether or not the tool has been applied correctly. In particular, the value of privacy partitioning depends on numerous factors, including, though not limitedto:</t> <ul spacing="normal"> <li> <t>Non-collusionto, the following: </t> <ul><li>non-collusion acrosscontexts; and</t> </li> <li> <t>Thecontexts and</li> <li>the type of information exposed in eachcontext.</t> </li> </ul>context.</li></ul> <t>We elaborate on eachbelow.</t>in the following sections.</t> <section anchor="violations-by-collusion"> <name>Violations by Collusion</name> <t>Privacy partitions ensure that only the client, i.e., the entitywhichthat is responsible for partitioning, can independently link all user-specific information. No other entity individually knows how to link all the user-specific information as long as they do not collude with each other across contexts. Thus, non-collusion is a fundamental requirement for privacy partitioning to offer meaningful privacy forend-users.end users. In particular, the trust relationships that users have with different parties affect the resulting impact on the user's privacy.</t> <t>As an example, considerOHTTP,Oblivious HTTP (OHTTP), wherein the Oblivious Relay knows the client identity but not the client data, and the Oblivious Gateway knows the client data but not the client identity. If the Oblivious Relay and Gateway collude, they can link client identity and data together for each request and response transaction by simply observing requests in transit.</t> <t>It is not currently possible to guarantee with technical protocol measures that two entities are not colluding. Even if two entities do not collude directly, if both entities reveal information to other parties, it will not be possible to guarantee that the information won't be combined. However, there are some mitigations that can be applied to reduce the risk of collusion happening in practice:</t> <ul spacing="normal"><li> <t>Policy<li>Policy and contractual agreements between entities involved in partitioning to disallow logging or sharing of data, along with auditing to validate that the policies are being followed. For cases where logging is required (such as for service operation), such logged data should be minimized and anonymized to prevent it from being useful forcollusion.</t> </li> <li> <t>Protocolcollusion.</li> <li>Protocol requirements to make collusion or data sharing moredifficult.</t> </li> <li> <t>Addingdifficult.</li> <li>Adding more partitions andcontexts,contexts to make it increasingly difficult to collude with enough parties to recoveridentities.</t> </li>identities.</li> </ul> </section> <section anchor="violations-by-insufficient-or-incorrect-partitioning"> <name>Violations by Insufficient or Incorrect Partitioning</name> <t>Insufficient or incorrect application of privacy partitioning can lessen or negate benefits to users. In particular, it is possible to apply partitioning in a way that is either insufficient or incorrect for meaningful privacy. For example, partitioning at one layer in the stack can fail to account for linkable information at different layers in the stack. Privacy violations can stem from partitioning failures in a multitude of ways, some of which are describedbelow.</t>in the following sections.</t> <section anchor="violations-from-application-information"> <name>Violations from Application Information</name> <t>Partitioning at the network layer can be insufficient when the application layer fails to properly partition. As an example, consider OHTTP used for the purposes of hiding client-identifying information for a browser telemetry system. It is entirely possible for reports in such a telemetry system to contain both client-specific telemetry data, such as information about their specific browser instance, as well as client-identifying information, such as the client's email address, location, or IP address. Even though OHTTP separates the client IP address from the server via a relay, the server can still learn this directly from the client's telemetry report.</t> </section> <section anchor="violations-from-network-information"> <name>Violations from Network Information</name> <t>It is also possible to inadequately partition at the network layer. As an example, consider both TLS Encrypted Client Hello (ECH) <xref target="I-D.ietf-tls-esni"/> and VPNs. ECH uses cryptographic protection (encryption) to hide information from unauthorized parties, but both clients and servers (two entities) can link user-specific data to a user-specific identifier (IP address). Similarly, while VPNs hide identifiers from end servers, the VPN server can still see the identifiers of both the client and server. Applying privacy partitioning would advocate for at least two additional entities to avoid revealing both identity (who) and user actions (what) from each involved party.</t> </section> <section anchor="violations-from-side-channels"> <name>Violations from Side Channels</name> <t>Beyond the information that is intentionally revealed by applying privacy partitioning, it is also possible for the information to be unintentionally revealed through side channels. For example, in the two-hop proxy arrangement described in <xref target="masque"/>, Proxy A sees and proxies TLS data between the client and Proxy B. While it does not directly learn information that Proxy B sees, it does learn information through metadata, such as the timing and size of encrypted data being proxied. Traffic analysis could be exploited to learn more information from such metadata, including, in some cases, application data that Proxy A was never meant to see. Although privacy partitioning does not obviate such attacks, it does increase the cost necessary to carry them out in practice. See <xref target="security-considerations"/> for more discussion on this topic.</t> </section> <section anchor="identifying-partitions"> <name>Identifying Partitions</name> <t>While straightforward violations of user privacy that stem from insufficient partitioning may seem straightforward to mitigate, it remains an open problem to rigorously determine what information needs to be partitioned for meaningfulprivacy,privacy and to implement it in a way that achieves the desired properties. In essence, it is difficult to determine whether a certain set of information reveals "too much" about a specific user, and it is similarly challenging to determine whether or not an implementation of partitioning works as intended. There is ample evidence of data being assumed "private" or "anonymous" but, in hindsight, winds up revealing too much information such that it allows one to link back to individual clients; see <xref target="DataSetReconstruction"/> and <xref target="CensusReconstruction"/> for more examples of this in the real world.</t> </section> </section> </section> <section anchor="partitioning-impacts"> <name>Partitioning Impacts</name> <t>Applying privacy partitioning to communication protocols leads to a substantial change in communication patterns. For example, instead of sending traffic directly to a service, essentially all user traffic is routed through a set of intermediaries, possibly adding more end-to-end round trips in the process (depending on the system and protocol). This has a number of practical implications, described below.</t> <olspacing="normal" type="1"><li> <t>Servicespacing="normal"> <li><t>Service operational or managementchallenges.challenges: Information that istraditionallyusually passively observed in the network or metadata that has been unintentionally revealed to the service providercannotwill no longer beused anymoreavailable; fore.g.,example, this can impact existing security procedures such as application rate limiting or DDoS mitigation.However,Current network management techniques deployedat presentoften rely on information that is exposed bymosttypical trafficbut without any guaranteesthatthe information is accurate. </t> <t> Privacylacks guarantees or accuracy.</t> <t>Privacy partitioning provides an opportunity for improvements in these management techniques by enabling active exchange of information with each entity in a privacy-preserving way and requesting exactly the information needed for a specific task or function rather than relying onthe assumption that areinformation derived from a limited set of unintentionally revealed informationwhichthat cannot be guaranteed to bepresentavailable and maydisappear at any timebe removed infuture.</t> </li> <li> <t>Varyingthe future.</t></li> <li><t>Varying performance effects andcosts.costs: Depending on how context separation is done, privacy partitioning may affect application performance. As an example, Privacy Pass introduces an entire end-to-end round trip to issue a token before it can be redeemed, thereby decreasing performance. In contrast, while systems like CONNECT proxying may seem like they wouldregressreduce performance, oftentimes the highly optimized nature of proxy-to-proxy paths leads to improvedperformance. </t> <t> Performance may also push back against the desire toperformance.</t> <t>Reduced performance can be a reason that protocols and deployments will not apply privacy partitioning. For example, HTTPS connection reuse<xref(<xref section="9.1.1"sectionFormat="comma" target="HTTP2"/>sectionFormat="of" target="RFC9113"/>) allows clients to use an existing HTTPS session created for one origin to interact with different origins (provided that the original origin is authoritative for these alternative origins). Reusing connections saves the cost of connectionestablishment,establishment but means that the server can now link the client's activity with these two or more origins together. Applying privacy partitioning would prevent this,whilebut typically at the cost ofless performance. </t> <t> Inperformance.</t> <t>In general, while performance and privacytradeoffstrade-offs are often cast as a zero-sum game, in practice this is often not the case. The relationship between privacy and performance varies depending on a number of related factors, such as application characteristics, network path properties, and so on.</t> </li><li> <t>Increased<li><t>Increased attacksurface.surface: Even in the event that information is adequately partitioned across non-colluding parties, the resulting effects on theend-userend user may not always be positive. For example, using OHTTP as a basis for illustration, consider a hypothetical scenario where the Oblivious Gateway has an implementation flaw that causes all of its decrypt requests to be inappropriately loggedtoin a public or otherwise compromised location. Moreover, assume that the Target Resource for which these requests are destined does not have such an implementation flaw. Applicationswhichthat use OHTTP with this flawed Oblivious Gateway to interact with the Target Resource risk their user request information being made public, albeit in a way that is decoupled from user identifying information, whereas applications that do not use OHTTP to interact with the Target Resource do not risk this type ofdisclosure.</t> </li> <li> <t>Centralization.disclosure.</t></li> <li><t>Centralization: Depending on the protocol and system, as well as the desired privacy properties, the use of partitioning may inherently force centralization to a selected set of trusted participants. As an example, the impact of OHTTP on end-user privacy generally increases proportionally to the number of users that exist behind a given Oblivious Relay. That is, the probability of an Oblivious Gateway determining the client associated with a request forwarded through an Oblivious Relay decreases as the number of possible clients behind the Oblivious Relay increases. Thistradeofftrade-off encourages the centralization of the ObliviousRelays.</t> </li>Relays.</t></li> </ol> </section> <section anchor="security-considerations"> <name>Security Considerations</name> <t><xref target="limits"/> discusses some of the limitations of privacy partitioning inpractice,practice and advocates for holistic analysis to understand the extent to which privacy partitioning offers meaningful privacy improvements. Applied correctly, partitioning helps improve an end-user's privacy posture, thereby making violations harder to do via technical, social, or policy means. For example, side channels such as traffic analysis <xref target="I-D.irtf-pearg-website-fingerprinting"/> or timing analysis are still possible and can allow an unauthorized entity to learn information about a context they are not a participant of. Proposed mitigations for these types of attacks, e.g., padding application traffic or generating fake traffic, can be very expensive and are therefore not typically applied in practice. Nevertheless, privacy partitioning moves the threat vector from one that has direct access to user-specific information to onewhichthat requires more effort, e.g., computational resources, to violate end-user privacy.</t> </section> <section anchor="iana-considerations"> <name>IANA Considerations</name> <t>This document has no IANA actions.</t> </section> </middle> <back> <displayreference target="RFC9297" to="CONNECT-UDP"/> <displayreference target="RFC9484" to="CONNECT-IP"/> <displayreference target="RFC9458" to="OHTTP"/> <displayreference target="RFC9180" to="HPKE"/> <displayreference target="RFC9230" to="ODOH"/> <displayreference target="RFC9000" to="QUIC"/> <displayreference target="I-D.ietf-madinas-mac-address-randomization" to="RANDOM-MAC"/> <displayreference target="RFC8484" to="DOH"/> <displayreference target="I-D.ietf-tls-esni" to="TLS-ESNI"/> <displayreference target="RFC9113" to="HTTP2"/> <displayreference target="I-D.irtf-pearg-website-fingerprinting" to="FINGERPINT"/> <references anchor="sec-informative-references"> <name>Informative References</name> <reference anchor="CensusReconstruction" target="https://www.census.gov/data/academy/webinars/2021/disclosure-avoidance-series/simulated-reconstruction-abetted-re-identification-attack-on-the-2010-census.html"> <front> <title>The Census Bureau's Simulated Reconstruction-Abetted Re-identification Attack on the 2010 Census</title> <author><organization/><organization>United States Consensus Bureau</organization> </author><date>n.d.</date><date month="May" year="2021"/> </front> </reference> <reference anchor="DECOUPLING"> <front> <title>The decoupling principle: a practical privacy framework</title> <author fullname="Paul Schmitt" initials="P." surname="Schmitt"> <organization>University of Hawai'i</organization> </author> <author fullname="Jana Iyengar" initials="J." surname="Iyengar"> <organization>Fastly</organization> </author> <author fullname="Christopher Wood" initials="C." surname="Wood"> <organization>Cloudflare</organization> </author> <author fullname="Barath Raghavan" initials="B." surname="Raghavan"> <organization>USC</organization> </author> <date month="November" year="2022"/> </front><seriesInfo name="Proceedings<refcontent>Proceedings of the 21st ACM Workshop on Hot Topicsin" value="Networks"/> <seriesInfo name="DOI" value="10.1145/3563766.3564112"/> <refcontent>ACM</refcontent> </reference> <reference anchor="RFC6973"> <front> <title>Privacy Considerations for Internet Protocols</title> <author fullname="A. Cooper" initials="A." surname="Cooper"/> <author fullname="H. Tschofenig" initials="H." surname="Tschofenig"/> <author fullname="B. Aboba" initials="B." surname="Aboba"/> <author fullname="J. Peterson" initials="J." surname="Peterson"/> <author fullname="J. Morris" initials="J." surname="Morris"/> <author fullname="M. Hansen" initials="M." surname="Hansen"/> <author fullname="R. Smith" initials="R." surname="Smith"/> <date month="July" year="2013"/> <abstract> <t>This document offers guidance for developing privacy considerations for inclusion in protocol specifications. It aims to make designers, implementers, and users of Internet protocols aware of privacy-related design choices. It suggests that whether any individual RFC warrants a specific privacy considerations section will depend on the document's content.</t> </abstract> </front> <seriesInfo name="RFC" value="6973"/> <seriesInfo name="DOI" value="10.17487/RFC6973"/> </reference> <reference anchor="CONNECT-UDP"> <front> <title>HTTP Datagrams and the Capsule Protocol</title> <author fullname="D. Schinazi" initials="D." surname="Schinazi"/> <author fullname="L. Pardue" initials="L." surname="Pardue"/> <date month="August" year="2022"/> <abstract> <t>This document describes HTTP Datagrams, a convention for conveying multiplexed, potentially unreliable datagrams inside an HTTP connection.</t> <t>In HTTP/3, HTTP Datagrams can be sent unreliably using the QUIC DATAGRAM extension. When the QUIC DATAGRAM frame is unavailable or undesirable, HTTP Datagrams can be sent using the Capsule Protocol, which is a more general convention for conveying datainHTTP connections.</t> <t>HTTP Datagrams and the Capsule Protocol are intended for use by HTTP extensions, not applications.</t> </abstract> </front> <seriesInfo name="RFC" value="9297"/>Networks</refcontent> <seriesInfo name="DOI"value="10.17487/RFC9297"/>value="10.1145/3563766.3564112"/> </reference><reference anchor="CONNECT-IP"> <front> <title>Proxying IP in HTTP</title> <author fullname="Tommy Pauly" initials="T." surname="Pauly"> <organization>Apple Inc.</organization> </author> <author fullname="David Schinazi" initials="D." surname="Schinazi"> <organization>Google LLC</organization> </author> <author fullname="Alex Chernyakhovsky" initials="A." surname="Chernyakhovsky"> <organization>Google LLC</organization> </author> <author fullname="Mirja Kühlewind" initials="M." surname="Kühlewind"> <organization>Ericsson</organization> </author> <author fullname="Magnus Westerlund" initials="M." surname="Westerlund"> <organization>Ericsson</organization> </author> <date day="28" month="April" year="2023"/> <abstract> <t>This document describes how to proxy IP packets in HTTP. This protocol is similar to UDP proxying in HTTP but allows transmitting arbitrary IP packets. More specifically, this document defines a protocol that allows an HTTP client to create an IP tunnel through an HTTP server that acts<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6973.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9297.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9484.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9458.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9180.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9230.xml"/> <!-- [I-D.ietf-privacypass-architecture] Published asan IP proxy. This document updatesRFC9298. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-masque-connect-ip-13"/> </reference> <reference anchor="OHTTP"> <front> <title>Oblivious HTTP</title> <author fullname="Martin Thomson" initials="M." surname="Thomson"> <organization>Mozilla</organization> </author> <author fullname="Christopher A. Wood" initials="C. A." surname="Wood"> <organization>Cloudflare</organization> </author> <date day="25" month="August" year="2023"/> <abstract> <t> This document describes Oblivious HTTP, a protocol for forwarding encrypted HTTP messages. Oblivious HTTP allows a client to make multiple requests to an origin server without that server being able to link those requests to the client or to identify the requests as having come from the same client, while placing only limited trust in the nodes used to forward the messages. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-ohai-ohttp-10"/> </reference> <reference anchor="HPKE"> <front> <title>Hybrid Public Key Encryption</title> <author fullname="R. Barnes" initials="R." surname="Barnes"/> <author fullname="K. Bhargavan" initials="K." surname="Bhargavan"/> <author fullname="B. Lipp" initials="B." surname="Lipp"/> <author fullname="C. Wood" initials="C." surname="Wood"/> <date month="February" year="2022"/> <abstract> <t>This document describes a scheme for hybrid public key encryption (HPKE). This scheme provides a variant of public key encryption of arbitrary-sized plaintexts for a recipient public key. It also includes three authenticated variants, including one that authenticates possession of a pre-shared key and two optional ones that authenticate possession of a key encapsulation mechanism (KEM) private key. HPKE works for any combination of an asymmetric KEM, key derivation function (KDF), and authenticated encryption with additional data (AEAD) encryption function. Some authenticated variants may not be supported by all KEMs. We provide instantiations of the scheme using widely used and efficient primitives, such9576--> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9576.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9000.xml"/> <!-- [I-D.ietf-madinas-mac-address-randomization] [QUIC] IESG state: RFC Ed Queue asElliptic Curve Diffie-Hellman (ECDH) key agreement, HMAC-based key derivation function (HKDF), and SHA2.</t> <t>This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.</t> </abstract> </front> <seriesInfo name="RFC" value="9180"/> <seriesInfo name="DOI" value="10.17487/RFC9180"/> </reference> <reference anchor="ODOH"> <front> <title>Oblivious DNS over HTTPS</title> <author fullname="E. Kinnear" initials="E." surname="Kinnear"/> <author fullname="P. McManus" initials="P." surname="McManus"/> <author fullname="T. Pauly" initials="T." surname="Pauly"/> <author fullname="T. Verma" initials="T." surname="Verma"/> <author fullname="C.A. Wood" initials="C.A." surname="Wood"/> <date month="June" year="2022"/> <abstract> <t>This document describes a protocol that allows clients to hide their IP addresses from DNS resolvers via proxying encrypted DNS over HTTPS (DoH) messages. This improves privacy of DNS operations by not allowing any one server entity to be aware of both the client IP address and the contentofDNS queries and answers.</t> <t>This experimental protocol has been developed outside the IETF and is published here7/30/24; updated toguide implementation, ensure interoperability among implementations, and enable wide-scale experimentation.</t> </abstract> </front> <seriesInfo name="RFC" value="9230"/> <seriesInfo name="DOI" value="10.17487/RFC9230"/> </reference> <reference anchor="PRIVACYPASS"> <front> <title>The Privacy Pass Architecture</title> <author fullname="Alex Davidson" initials="A." surname="Davidson"> <organization>LIP</organization> </author> <author fullname="Jana Iyengar" initials="J." surname="Iyengar"> <organization>Fastly</organization> </author> <author fullname="Christopher A. Wood" initials="C. A." surname="Wood"> <organization>Cloudflare</organization> </author> <date day="25" month="September" year="2023"/> <abstract> <t> This document specifies the Privacy Pass architecture and requirements for its constituent protocols used for authorization based on privacy-preserving authentication mechanisms. It describes the conceptual model of Privacy Pass and its protocols, its security and privacy goals, practical deployment models, and recommendations for each deployment model that helps ensure the desired security and privacy goals are fulfilled. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-privacypass-architecture-16"/> </reference> <reference anchor="QUIC"> <front> <title>QUIC: A UDP-Based Multiplexed and Secure Transport</title> <author fullname="J. Iyengar" initials="J." role="editor" surname="Iyengar"/> <author fullname="M. Thomson" initials="M." role="editor" surname="Thomson"/> <date month="May" year="2021"/> <abstract> <t>This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection,long version because missing editor role andan exemplary congestion control algorithm.</t> </abstract> </front> <seriesInfo name="RFC" value="9000"/> <seriesInfo name="DOI" value="10.17487/RFC9000"/> </reference>not showing initials correctly --> <referenceanchor="I-D.ietf-madinas-mac-address-randomization">anchor="I-D.ietf-madinas-mac-address-randomization" target="https://datatracker.ietf.org/doc/html/draft-ietf-madinas-mac-address-randomization-12"> <front> <title>Randomized and Changing MAC Address state of affairs</title> <author initials="JC." surname="Zuniga" fullname="Juan-CarlosZúñiga" initials="J. C." surname="Zúñiga">Zuniga"> <organization>CISCO</organization> </author> <author initials="CJ." surname="Bernardos" fullname="Carlos J. Bernardos"initials="C. J." surname="Bernardos">role="editor"> <organization>Universidad Carlos III de Madrid</organization> </author> <authorfullname="Amelia Andersdotter"initials="A."surname="Andersdotter">surname="Andersdotter" fullname="Amelia Andersdotter"> <organization>Safespring AB</organization> </author> <dateday="11" month="January" year="2024"/> <abstract> <t> Internet privacy has become a major concern over the past few years. Users are becoming more aware that their online activity leaves a vast digital footprint, that communications are not always properly secured, and that their location and actions can be easily tracked. One of the main factors for the location tracking issue is the wide use of long-lasting identifiers, such as MAC addresses. There have been several initiatives at the IETF and the IEEE 802 standards committees to overcome some of these privacy issues. This document provides an overview of these activities, with the intention to inform the technical community about them, and help coordinate between present and future standardization activities. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-ietf-madinas-mac-address-randomization-10"/> </reference> <reference anchor="RFC8981"> <front> <title>Temporary Address Extensions for Stateless Address Autoconfiguration in IPv6</title> <author fullname="F. Gont" initials="F." surname="Gont"/> <author fullname="S. Krishnan" initials="S." surname="Krishnan"/> <author fullname="T. Narten" initials="T." surname="Narten"/> <author fullname="R. Draves" initials="R." surname="Draves"/> <datemonth="February"year="2021"/> <abstract> <t>This document describes an extension to IPv6 Stateless Address Autoconfiguration that causes hosts to generate temporary addresses with randomized interface identifiers for each prefix advertised with autoconfiguration enabled. Changing addresses over time limits the window of time during which eavesdroppers and other information collectors may trivially perform address-based network-activity correlation when the same address is employed for multiple transactions by the same host. Additionally, it reduces the window of exposure of a host as being accessible via an address that becomes revealed as a result of active communication. This document obsoletes RFC 4941.</t> </abstract> </front> <seriesInfo name="RFC" value="8981"/> <seriesInfo name="DOI" value="10.17487/RFC8981"/> </reference> <reference anchor="RFC8030"> <front> <title>Generic Event Delivery Using HTTP Push</title> <author fullname="M. Thomson" initials="M." surname="Thomson"/> <author fullname="E. Damaggio" initials="E." surname="Damaggio"/> <author fullname="B. Raymor" initials="B." role="editor" surname="Raymor"/> <date month="December" year="2016"/> <abstract> <t>This document describes a simple protocol for the delivery of real- time events to user agents. This scheme uses HTTP/2 server push.</t> </abstract> </front> <seriesInfo name="RFC" value="8030"/> <seriesInfo name="DOI" value="10.17487/RFC8030"/> </reference> <reference anchor="DOH"> <front> <title>DNS Queries over HTTPS (DoH)</title> <author fullname="P. Hoffman" initials="P." surname="Hoffman"/> <author fullname="P. McManus" initials="P." surname="McManus"/> <date month="October" year="2018"/> <abstract> <t>This document defines a protocol for sending DNS queries and getting DNS responses over HTTPS. Each DNS query-response pair is mapped into an HTTP exchange.</t> </abstract> </front> <seriesInfo name="RFC" value="8484"/> <seriesInfo name="DOI" value="10.17487/RFC8484"/> </reference> <reference anchor="I-D.ietf-tls-esni"> <front> <title>TLS Encrypted Client Hello</title> <author fullname="Eric Rescorla" initials="E." surname="Rescorla"> <organization>RTFM, Inc.</organization> </author> <author fullname="Kazuho Oku" initials="K." surname="Oku"> <organization>Fastly</organization> </author> <author fullname="Nick Sullivan" initials="N." surname="Sullivan"> <organization>Cloudflare</organization> </author> <author fullname="Christopher A. Wood" initials="C. A." surname="Wood"> <organization>Cloudflare</organization> </author> <date day="9" month="October" year="2023"/> <abstract> <t> This document describes a mechanism in Transport Layer Security (TLS) for encrypting a ClientHello message under a server public key. Discussion Venues This note is to be removed before publishing as an RFC. Source for this draft and an issue tracker can be found at https://github.com/tlswg/draft-ietf-tls-esni (https://github.com/tlswg/draft-ietf-tls-esni). </t> </abstract>day="28" year="2024"/> </front> <seriesInfo name="Internet-Draft"value="draft-ietf-tls-esni-17"/>value="draft-ietf-madinas-mac-address-randomization-12"/> </reference> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8981.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8030.xml"/> <xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8484.xml"/> <!-- [I-D.ietf-tls-esni] IESG state: I-D Exists 7/30/2024 --> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-ietf-tls-esni.xml"/> <reference anchor="DataSetReconstruction"> <front> <title>Robust De-anonymization of Large Sparse Datasets</title> <author fullname="Arvind Narayanan" initials="A." surname="Narayanan"> <organization/> </author> <author fullname="Vitaly Shmatikov" initials="V." surname="Shmatikov"> <organization/> </author> <date month="May" year="2008"/> </front><seriesInfo name="2008 IEEE<refcontent>IEEE Symposium on Security andPrivacy (sp" value="2008)"/>Privacy</refcontent> <seriesInfo name="DOI" value="10.1109/sp.2008.33"/><refcontent>IEEE</refcontent></reference><reference anchor="HTTP2"> <front> <title>HTTP/2</title> <author fullname="M. Thomson" initials="M." role="editor" surname="Thomson"/> <author fullname="C. Benfield" initials="C." role="editor" surname="Benfield"/> <date month="June" year="2022"/> <abstract> <t>This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9113.xml"/> <!-- [I-D.irtf-pearg-website-fingerprinting] IESG state: Expired asHTTP version 2 (HTTP/2). HTTP/2 enables a more efficient useofnetwork resources and a reduced latency by introducing field compression and allowing multiple concurrent exchanges on7/30/24--> <xi:include href="https://datatracker.ietf.org/doc/bibxml3/draft-irtf-pearg-website-fingerprinting.xml"/> </references> <section numbered="false" anchor="iab-members"> <name>IAB Members at thesame connection.</t> <t>This document obsoletes RFCs 7540 and 8740.</t> </abstract> </front> <seriesInfo name="RFC" value="9113"/> <seriesInfo name="DOI" value="10.17487/RFC9113"/> </reference> <reference anchor="I-D.irtf-pearg-website-fingerprinting"> <front> <title>Network-Based Website Fingerprinting</title> <author fullname="Ian Goldberg" initials="I." surname="Goldberg"> <organization>University of Waterloo</organization> </author> <author fullname="Tao Wang" initials="T." surname="Wang"> <organization>HK UniversityTime ofScience and Technology</organization> </author> <author fullname="Christopher A. Wood" initials="C. A." surname="Wood"> <organization>Cloudflare</organization> </author> <date day="8" month="September" year="2020"/> <abstract> <t> The IETF is well on its way to protecting connection metadata with protocols such as DNS-over-TLS and DNS-over-HTTPS, and work-in- progress towards encrypting the TLS SNI. However, more work is needed to protect traffic metadata, especially inApproval</name> <t>Internet Architecture Board members at thecontext of web traffic. Intime thisdocument, we survey Website Fingerprinting attacks, which are a class of attacks that use machine learning techniques to attack web privacy, and highlight metadata leaks used by said attacks. We also survey proposed mitigations for such leakage and discuss their applicability to IETF protocols such as TLS, QUIC, and HTTP. We endeavor to show that Website Fingerprinting attacks are a serious problem that affect all Internet users, and we pose open problems and directionsdocument was approved forfuture research in this area. </t> </abstract> </front> <seriesInfo name="Internet-Draft" value="draft-irtf-pearg-website-fingerprinting-01"/> </reference> </references> <?line 834?>publication were:</t> <ul empty="true" spacing="compact" bare="false" indent="3"> <li> <t><contact fullname="Dhruv Dhody"/></t> </li> <li> <t><contact fullname="Lars Eggert"/></t> </li> <li> <t><contact fullname="Wes Hardaker"/></t> </li> <li> <t><contact fullname="Cullen Jennings"/></t> </li> <li> <t><contact fullname="Mallory Knodel"/></t> </li> <li> <t><contact fullname="Suresh Krishnan"/></t> </li> <li> <t><contact fullname="Mirja Kühlewind"/></t> </li> <li> <t><contact fullname="Tommy Pauly"/></t> </li> <li> <t><contact fullname="Alvaro Retana"/></t> </li> <li> <t><contact fullname="David Schinazi"/></t> </li> <li> <t><contact fullname="Christopher Wood"/></t> </li> <li> <t><contact fullname="Qin Wu"/></t> </li> <li> <t><contact fullname="Jiankang Yao"/></t> </li> </ul> </section> <section numbered="false" anchor="acknowledgments"> <name>Acknowledgments</name> <t>We would like to thankMartin Thomson, Eliot Lear, Mark Nottingham, Niels<contact fullname="Martin Thomson"/>, <contact fullname="Eliot Lear"/>, <contact fullname="Mark Nottingham"/>, <contact fullname="Niels tenOever, Vittorio Bertola, Antoine Fressancourt, Cullen Jennings, and Dhruv DhodyOever"/>, <contact fullname="Vittorio Bertola"/>, <contact fullname="Antoine Fressancourt"/>, <contact fullname="Cullen Jennings"/>, and <contact fullname="Dhruv Dhody"/> for their reviews and feedback.</t> </section> </back><!-- ##markdown-source: H4sIAAAAAAAAA+1923bbRrbge30FlvohUpuk7aQviTPpbll22ppOYp3I6ax5 mbVAokjiGATYKFAKY7u/bN7mx2Zf6wKAshTLM52ew4fEIoG67Nq175fpdGq6 sqvsk+zoIm/hn2VTl/Uqy12W19lpu1iXnV10u9Zmy6bNLtryKl/sj0w+n7f2 qv9W8sgi7+yqafdPsrJeNsZ1rc03T7Lz06fGFM2izjcwa9Hmy25a5vPplt+b bqMBp49+b2CSz8xru79u2gLerjvb1rabPsMXjcl33bppn5hsajL4LHdVxQN/ W7b/mWd/+9//a13Z67Iu6OemXeV1+XOOwz/Jnrflwrmmzr63zuawVXrGbvKy epJt8P3Z652V9/9i5enZotkMp3vVbDb77CLfVfuRmU6328rGo3dbfPIvOX4/ PuDZui1d12zXts1OZ9mPTTO2hbOq2RXLKm+T0Rf59V/WNt8CBOdl52YAL2Pq pt3AW1f2iTF4IP6vLDuztdu57+2iqeGUdgsamwYU3Hi1tvJQ9hRQId994rLL crOr4IiLLH1xejq3HX89LQtbd+WyXNBys9OuyxevM/hXBwN++ujxIxmV58rb le2eZOuu27onDx9eX1/PFvTzbNVcPSzyLn+YL/LCbvYPr+28rPPWPfz00aeP HxalW1SNg5VN86umLPJ6YacODsy6h06XOW3TZea8TPi6t8xpTsucwr9gmVNc 5lTWse42lTFmOp1m+RyGyhcA2Ffr0mWA0LsNjJIV1i3acm4d7RGQul6UcMhZ s8wEw7MYwyfZ9bpcrDNnK7hmcB7VPnNbAHEBY8KO4RYWGSDIZlcrFPNF2zhn YFsdjUzDwXx4ZbONzWuYusnKzbZtrqyfdA7jWngUxoCLugPoZLztbp8t22bD X+GUs4M7shvbrvD1LYAIrqGDmw0TNF2zaCqa1W8NtpV3YQcb2+X0R+kM0A2b V4Ag3bptdqu1HwFGg1FzOh43wa+vYImOto84Y9tNWTdVs9pPaFA89p1z8MS6 uTYwe17n1f5nm7kdQHTTFLZyMz6tTVkUcAPNb5CAtE3BOGDMhV88vQMgfPXN JQ1+fuHsQtcAgIW/kAgeI8FBsC0I9fFJWy/a/Rb+OskW67yubWUAta6thSVf N/BzsW1gZy6D42jluMOXgES1W+Jp6J0EEpM95zHpuGGKaFJcNuASA7Pm18su AwqQ1XZhncvbPZ0E7AwwKh6Wz3lu8QQdLg+oNUAJEB92Mt8rIpmmQ6LTwV4I h/FU6gIe8edEDwJa57CBWXbKwJvAw4A2r4FWIrITvBC54LuwMGQQeJVaXAPM 0Jl4fQqLFiYjYMH0zipUXdYifQOsI5zuLJzti+YasKmdhAOSh7PxIygRZd1u CXe9RNzG9cg9pVsCC8c//QsG/trA3byysNHzGlawwNf2wC4IQ/mt1v5jV8Li LE6xzuHW2Z8AOAizud03dUGD1hZxPpxM7wjHkWaWXTYbHC/fwF13vEDYBU3g EGhAYKpdgVR9mp3yLc4XCG9i4wCW9qpcWCS6eQZkE2aycB1W6y6rmy5Dkog7 gnXxvcSllm1WNYxrEzPfARIt6bD8YLCAfA6kB95q5vilpR0uKgQq8Ibziywv ihYWMckAOReASRWArM4cbAbWX69AgGhgYHwLlwzv6IyzjMhPicfcwCSIGws6 KAU37GzBE+p6aIKyfm08EcOljQ0eQYmBcJ3z7ufWb4nBh6DpFEf41sKAe7pp LHWUP9tiYpRw5HDA1/A/vBqVBbpewjOwRTx2wvaGUUPo/dYukOPo88Qu9gYJ v/DHks6x2cEK+Moi/2oBp34BgIwCSPEDOA3ezRRIMp3AiA8TqD9BmI4ft0Jk fretmpyoOgpFBDNAr9WqtSu+yXowfRgbhTECF5jKDpAxPi63d53deNgBwJhQ IDQ8yPy7yCcMsCIeqJBBNh+CQbJtk8zhV+dXQA/NkPdbYU95RcSuFprlL2zp GHb8ivOwUF5He0VKDIcQrqtRCMA9bxyjT5NtENXwsKZ+JY2y8eUen0qoaZNc WqJfTLlBIGoBcYM4oEgQxvWywYB/pM8JU09JvBE440HskAQgqymQngfqR4go zxGRwBPbbJu2EwC9tnYblnF8vW5OmOvDjOYYxYsTlWjsbCiFLcsaoH80KnMd MR0qNyg1VQ5Jn3AdxGSW3I4KuG6A5yTuqBR3ZN68+fOz52cvf7j45vy7v371 7OX57PGj2ePHv/v9w89+/4fP/viHP8zg/797/PjTd+8mOtTK1nDUQFntYl2X /9gRrGkuXT89RhtLhKWr0pVyX67ytmxA/FZhD0AKUj3oRK9T6ZDpDo2Xlxtk FywIIsmNQQ5su0IMI/FrCCK8D8geVjtYH2AqrbAlwl83fFGUXSX4YPyB4UaG qILiLryDek/JEsXWtiDywvmvbbV1LBwIuYnXC7Boqpxv/BxOBnjipsEHCaaL vIJBQJJZInJ3TMTXJTA0kSPgqAFHLlFWgIM4f/7q6wxhhztdgRC6dUTW9asm lmrhhjFVkoucFwQJIQkeNcxBAZ8ZNI77cl4B3cVjfPHq1QVphSrUk167AU7B fx6/fHF6fjLJvhUh/ydbmPjxyx2pH53s7z9+OD+LZcbjb08v/+OH5zCAaOOg mSIvxkPx3wB7RsoA6/rW5gh1ujnHFxffnggF9dfJ7TabHPmdM4RyROYaIFgK PLyXXk3IgVCADktPItUFpubEquCZPkyOW+PLxUBrHJkZULiFgwQYAxmOJDc8 E2RcCzzJizGcLV1E3yoUyyp7hdSEuDMQ0IqWQ1cLNIlyI2q06mC4Y9lEAXJp 9ubNpSU9IfvD7DGu68/ff332hy/++Nm7dzP40f8RNJXVjpXPhNmgiAW/toy9 sBGjRoyAZXA0VQNboMuLXKDD+YBUOH4J1gA6DiId7KjaxSQj2QpiYR4rVNEm /jjcRFB/CLUtsKxmP4rGBklFJ5ybtkMLCCsklCBusxD9D+65LDbwcABSuQKA x+dEvC5D0aEloogbVY3cts4TfeLRc+S3QKrZ8oBKy5hSgu8YkUxbWpsFesAS 3U8dL3QNWDFHAua3iaLVKGLhxMQnQIAh0k0IdZ3vExruSZ+gA0xMDBMWu2el mdWrY9C9Utya/Q4Pxp/LCXEOFiVgbkd3Ir7IPIQO8OaNHNgWfoK3b7geSNIB PUBPXtj8SyLDLDaAGGKrShUZVKir0qHURCq1K51qRkwK8Xbo0SMMCsvKOUq3 lrRHwH+cbNu3KdI1ZEKUE8OviOyAIA0zwKV3Bi0Y8PRyV3lEFFsG6VegEBH4 KsD5DrZLV41YQaxAo6YfIBahsflaNb5dCxSHNapUFukS0reEf9BjdV9CivV1 JJeGhV3Rx2CL+8OiGSIgzOIHQ4ZF40+8IYIvDFn0jChTCNVYtVJilupS/SEK YhPLbF623RqlQFoHMMyJIemkAY54gHmR9NokTJkuEj5Dwm6uEnuk5+IaIr0Z IAe0mFQfUaxQawRU6fZbq9AfB6tIdahtgsiOuMKSgzBBQcnExgZqputoL2Vl V5bkjdYiAQBKsPcLN37hsjoXLQ4HJaK622T5hjQwlKOi80NFiCU4QNNlWYnW bJa7esEIMXoD8+IK9VCACdsdYGMx8UZylhhHIv5goo0LI1ephHYgyvtBWHrj nHVBl5M9G9lzIurzNSnbyPzDNwbJC2Abncd+Mo42IHq6hDb+FsT335LUjSdf CmX8LUrxv2W1umhIQYF/gxLsOm/oEH4CB2k9dyYWcUhsRRah8rUKgTQSIjoS hkAZzpgfOGOeE1aXdnEzRoI6BmTREZsu2ZqhTEUwDTBVvjBkJGEjMQqnpJEI 6xD+zhKxivt8qmx+wh3pSbk1mRyio8q7lPqcJ/oVbLhmaqCcUi7L4W2JSVlW 7iYBqM6brWIigLQNtdJK1gr6Wc9oKNYDING2Wp6YorEuMATk0sgwa5Hh8SXE C+XPDMk+SgI8RSGCUwQ9LMhfwRBM74gWyWcZSxIlGvCK3YIwJYKNsnMTq0uK YE9gsif/2IHW+s78CVAmvFY6gfIGnREKZa+pITa5PuVQyYVNJmVdAKEqdnkF Q9ONA+A28y5XaWoBZw/4Y1vmxiRU8XwgrMxm/eWgF8Sy5CuzwLipd2OWZUPx k+7NMl+UVdnhycTAAaIEzKK5Zh6m63WfwMhiRyJMJQsaIvtrMYvrMmMN7E/w 0oWzu6Kp9xsxDqNfsF6hfRuepQ1WSIdBL3RoVUlEP1Q8vZ0n2+pIX9J7MDZJ KKB6hJ9wBqIGNGiz7KxY1Anjs6W9hsUp3n9JP9EaYKd2i3SvhssLIy9Q3anD uKwwEvouUWqi53gmJJ21vc7EkZEdb/LXIgFvJkz4EN9FOv0EuTrCkpxO9Ddu fcveoEm2q3HTaDZDwU4olnfl8LEvgUcV9BdaGZoDNBm2Nob9M3NKvl6xWE2C gA9f7mrv3WCd1aFhGREdD/XV2UVgsHwVeHkiA4GA3bAxwqgxVXg22bwZQHj7 SPgkl/M+WD8IUv5hvNPimMnWNkfx+kslmCaR/VUAC2RokoGaCjiPIhORKTWd sFto3vxkyUqlKjg6DoXH0hnNzLf4ID1HFrfkSTFyMkPE078mRabN0RpBQho/ wCKyqG5Gfs+Emlb5HtZ17CU3eVaNcwBpBG4tIr8HjZBZum+gZnd80LRJ03tH bZi0I9DwvyeFS64Fa5ck9whEvIHSBYuS7sksR4ToA8aPbsxZAARFMcF7QQL6 AJ7/85//zPLcXa3Mg+mHfx6Yt8rrs9Psl37ewiiZX86D/s/xQh8c+OmBjPK2 9wtereGbva37n976Uc74+N9mvc/b7Ft/jm/7P10SBkSjpNMB2ozs4n1r6cNl CRzj7nD54M/be8IXwD/g+tlv4Iqv2nwzDdeCIiK+OnrGP2Rkb5nnDm5yTCv5 Xk67Zsr3Lb6IdJ0iynP0zpjTggyE6Hy2wYwnVzYhvLEylND3YF1mqRHUhc4x dQSRkESSQJ5x5OtIPlcO+CTcw3FiTUaEa9Y5RBpT9UFpLWxiGtOvw3QV+XZZ MaUOEQJ1SvBNIPjiAFZy0bTlqkSWp3SDFQiUKRa2RjEseOGQxi53LVH/hEKZ ocDdk1GJhymAxBZUCbnUFafPsDAU7FS/ToJ2w+cwQbvLJY5fSgnaGIzwFlyO weIgQfugtdwPXD74c18ELeDL0w9Yy/0zwBHWNf7v7Db44nnXg4gBDljX+/DF 8667rOV+4PLBn4/FACkob4T5odyYM/OKGFdgPgOeQ9yOJVS1oJPkaskwrdFj bHcUkRo94zGnEkbqZhkac73eAsouzZtyNmKepKGh4YYEZzQ1iJCMgUMiQy+a XVXAxG5nxUMl7zS18aOlMjUwMzKHUmyNd1qpdiFW7i76hVzOrLZQoKIJvsFm zjw6tldU5WvZwKJpXlOMH6ut8fp+nczlFxILkAXiJf2/JxZEK07DF6e3Wsu/ GbH412UugC/xkv5F8OVp+OLprdbyb4YvfeaCBkWhqiMsRsxnYxwAmQRH13R2 qMwgq/nB3fSucJ7BmyTlk7EMtYzMorMRLTekLOTzkmK9MMhVjenetdIEsT+E 2QnV1tFnmYatmshJWKLFLTYGqZNQwp9lkMBMksWOeaaHK5llT9lPF7yIqJFt cFJmyUt4tGmdSR0pK3bqxrx6CXC1LfreOlaCQ5wPRwyqLct8e3oWTyY/c+hP Rxqha5bdNdpTw5fEI+cWAwAb5NKR28+hiRo4b7c4YXeOEp9LbxQ1JnaJsOuF ua5EiKPYkoRUDbRolzEPxxOfk32VbH2w1Ws+F8NRmVH0gHeVAOCAM+fzqnTr OF6T2HbDjsrFwJI7CNAr78et4xFl4NYxH+jWyQ65dXRGw54c0o6TkA74Mvhy Rozagn7ivytwzID4gN6wl2Us+3kfw0Q3rSZeWNIanp7ngMkGQ6NsfbJoCjJO AgrNKLdFc4+atqRghMgz4iOC2OoQhwZIXB+Gr9VXTXVlDfkD4L5ixFbPEDoX D32EYEm+RJrj4e+269C7LIE5aMwh90YY5Ikxj2fZGQreDRDM7bpcaIgleU2j UACSowFfUgNTn4RN2LpBKTnJzQg463zsXzgTJYDHHBcWghCFWFJ8+QaOCcdd HFiuUxeoDtHsOrjjuMFgPouwRKVhOHcK09vmCw7gJvvMwdVTEJgPMYP1xNQl MnY5n4Sg2MQRvy45xXzEBcRX4D8lGoAmHLvvsfpi9FjIgs9Sv/0JsxlWeHJq HVTIR4b/vr1NLI7sdBC6YfKhz0PjtShiT8YLfIFVJfg1jg/2EenhMkuCQEe0 oP6kSyjVgaWxFjbX8MMheSD3oRC5emU4qNvnmcgMfS+uD16KApsD6dOLMN8L NAHtftpzZDV6pxYYPpGPpTAwnK5JPSRyeF0CBihz5ETJsHpmSadbGB6oF9/y NALpR7J5Ri6QBFFvRXmYC5uh3MJbO3S/ELAPm8QYHdDR67KWw2HMjq3JuWyF wcBxmy4lyM52Lr5hs+ySAuxZrlgaDokPO+NkpWv1Du2tZmBQVhLyZlqKn/ka aaCXcGC+RY4QDLqwerQn4sCl+JZrSQHj1yl3zYrp2Cx3GGvK1xmDK9CXq/l0 IgLxfitMyKDorKLEWEIJ8s/j8zUH4n05JYeNI6MuWWS/GFASn3tmF41G9mwr IGiYMBelF/HdwDzGnJPKGGAeA3LiQJLniMLH2cvvvnt+9mrqun2FvgDBesqE ksgeWAeRBqLaGjTJEgGMtqtzEs4iH5+/VrI2HFBi8BLPKMf7UwYdLKgJkjii no8tdzOTRkZPNEWUpQ+ggQWGRLrdhm53tL5FgwIjXgFau4bexFjNHGXnRJ5n hGkoELzK6t1mjtGKwBUrAbA4F1xT7XzG0I9pVGMaESQ02ifHrAE5AI3nZQGH tmCvfMVYUxuf4niFiObWOISPnnTpUYoQpLe8kFwwZOMYFQrQJwORZuEA8lQ2 MJyLi28nNESzWOxahk8S4SUxHeTKQYpsNEWFArcIyAw9Cg5RXoakV+JQ5HG6 zU2G8cvB0YVOjzhklfxWPsiANQYKbeVj5J3akqAcw4ghPjEcjSHB+Rpk2jWv QXz1ccF4HwuJc0BS0cP9QPHRq9SLxefIEM9CksOjIeNFJbIaIQgKkYVdtZbk Dw4n9+cYqQWxtsBb4sh2+No0sYj9CeIpUnklYriGCoDPXKPdOUTDoMOMp2Ym AgY83r9m/ghJYEJOuqfj52S9JG8pxKBxXmFQVOLQxKCHrABjQVAHpWbpxyga uj68eplNJEUiRx45JxwTuKALA7QwLyQ9ioj0dN1sx442YhgSk1I3qs9w4Cft i7QSwp9ePtdwkyFLL2wxVedAt8wp44T2RGdF0RFKwumGvkIVllUhz2VgDzyf xioWLaJW0VzXEtXazCNLg1BeE9JgsmInmXRVteOYnNYHfnE0kaM46NPscge3 ec9R5MqDWVJIJRPE4mWjwV4ayR+i64COEL+Hc141+EhIBrGUVGPUZuEjy8f4 nmjtfIC4JH8rM85byd78ZpM7ED7eGUO3U4Nq8JhJRyECxFuI1JnGh5GoeONz atNYGfaKw7w+y3ycQadJ83k8Mvkz/Gk6u+LodJDuKEQvMTNxZQMMX8z1bH8i bU5DpBEPfPAAu6T5GUnDcpyAhWnBGFNgWQZAH/2MyRdKbGusF9FKLpTbbdGB zuFoHnYIZ0JPtGUSanJVjrA0PRVM022Agn6LXJ2znqs9W0OinKQ4hcncMicp TbyilRdI14CRFyYpJuDKTcmZPAyMH55dZG/e/FlvPvz51fdfn33x6Rd/fPdO Q8O2GETXORM9d37x1fn02ay03XLKaDWV85mWW3iTTAOEOzvMHGcEPafYdqId U54dhNzddhLy4HJ5/hboJtQJuA6ywOQMfXSWXBwes6LM8XHUJVwSIsRrMgBC t0bCIVdxWa7QpjMHoF4nRp/UyIAoTDJqLqZuXNcrGj+LQllCfLNyNUrCH8dH I6HRov35sBWJEeHVB21MnFv06pcHlsKXfrCQcrCEOJGYJ1KwGsreidIp/Q0L S8nj9Q7WcsHX8QZYhKAVH8oyPEKjId4KCP1bvHnJ2ihiDkXJhPAkG+R1omGT 6WgEtt5a5dbTw3iRPDnwm0Blja+PxNuMpqyAUoy3Ja0cEcBp7Gw1YzpxzpPB pA9xQonh+Tjuyj7OPPfoq8bF97o2fkWxMIdCYWAJsv9bxMJokNct1vLvFwvT x5cLoTG3xJZ/+VgY2Y+fn8nXSBjnjfiCBFGDYf4/joV5O+ADt0aTaC2/FC6D UX4RvoyMEuHLK+VdfXx5/yjJdCHq905ruR+4fPDn/vClz4t/Ib4c/tzPPbrL nb55lIi+xLg0oC93WEvApTus5VdJX/rhEI/RvjGMg2hqS5aPbSyKUpCDRDlg 3NuxZEOfqK4cihNQvbt2XCPvuZ7FKnPdeI3bcN6vaEJiRRUKEhIY0RVEFh6U /llAjf6d/s4vG335SzL1sQVQ9K+iKGOJ19vTgmMkn2OJO81GUVOPaM7OsiYN 24jhhkbHg9pSxsbcJHTRoeXMSekQ9D2TzhS2cFhVYduqT4bi9JtFoxqhOY7r zrAjwmVHfJeeHp2IEoKejD4DehriKkUk76lFkS5j+tlC6JGSUbxUP6IfLcvW dbdY6amsNDkj9S1GahGpRASRY1RE4NBQLSBbwfnFiUEbiDd1ZxizzyGjazSq DjxdkxHt7NR4nUfUoex0BGSTWGHKng5Vpv9SUcbnj/7xXyrK+OdXpKKMwOFB 7++74cvbA/+/EV9iRUWm5HsZ1nQLfIkVFf/b05vWcj9w+eDPx1NRnt5Z6DwE lz4Uxr7pjTJyRoOTGPlmMMoAX/rYEb65YZTRmU8H3zzNbljL/cDlgz8fD19O PyK+vHeUW+HLLUY5iC93GmV0LSm+vHeU+4HLB3/uWaVN5ak7IsyhHd3PPfoF 9GV0lDvTlwNruSN9Gfn8uunLULr+RfTlVp/74dPvlV9uOcp75Jdbr+VG+eVW n1+P/NI3gXw6bgLpqfKRCeTrnpc7jXyOgyrF1YzaP3ukJxkVeKMo1CiY4Bhd 4iBYUtXZKKJMAh29f5+e4wVRTIfXfEnV5eBhwHr47SQuSXU4MKIXmYTK6rPv Lk0/YunNmz+/xH8E53azzkv4T9dtsfhsslNcxuHqo2a0+mjqqJ+gmYFq00w3 WOl3ZU0aSJ5ELFP0ElWXzTnQRwJiZsKi0XVNcVqSY+mfjmOUvscXJ0Z8rRwJ QQWyZQGqH7qJlFMKr/6Vo4+8ozbHKDtarRQboAEcGqSMjBx84zbj4C84Ph/H LqaTpvU1TBap8YsjfULUcD+mEcFQch3BF/t5WxbZxQ4eWGR/s/s4TAKO9cXF 355TZMPjzx+9e0dBlLZFT2yEnrMBPowiMddaOIS670fHKSzN+9c91JJwlcTL fRYCFf6qAWCvBuV/HAaK1hijHo/YMz+dSTkJf5R4DV/F0Q+lG7fCBTMOB+aF pfr5FE/ft3ozsjBGS5/QQX8qeo4h2cyMr1amGCw3WMx8OSB13BM5ik9wuPqJ kfVFu8gIeQ4U/IjtaPSqWtHETEbfja03O0+LdmM2EcBAQjo9aHqvahiDZvio 1Tb8NDEUY1ouI/BilBBFk/sNCB0RVOgbufNaKoyZ+T4L9beiumBbLH9cdyF+ gSeSOHQsueeLhNHEOt//Fdvgnf1Fd7dp6FMfZuvRf93JNhitQBHjgfx9e9vg HdZyP3D54M/H0N0Vfh/f1jMGvbvbesZO8rDuzlcy/kb3e3CU+1jL/cDlgz8f A18YovcXvvCvZevh3X24reeOa/m3s/UM+PYv40cjn/u5R7/gTo+t5e705eOt 5V7gcrfPx9LdSQMdUd57+kqsvYefQNNllzA5EEnJffbyBcd5f4baELcOEWc6 lXr15b9BRuwnuKCQLhliVMgHh/dKACrolFaK+jt2D3NN6+t/Y9y7JHhjn6fB yGUXaXS6GIOq2yD9EivVl1c2yqZCwZcrEXjtnPaC+lJSoZpSp978Ji7wb8by qvK4UScA7eL787+fnv2Pi9PLy2AfiEaZxi9I9LwvS+2tJVLiYGBJSBaQhvNz 1iBlkPusGi5fQG3GYGiMZFlmcMShLyTWY69FZkcIU+8YX/dW8+QmnKRAOV+k VWL2GGeAaSVA1NgxOIHbTPTKYVAPAc5Q8fnO67zATD8sMQB60OnFq7MXp4w1 ekzSqQZDsTnnbL+NmgZgJjnXs8COiFiZgnSbtV28dkYK21JwTdqHRSGTNoFC GNAopMBILao2Gyu2ij9xSgpBYEJx5R7eXMC4NzTDSFOwKR+/sHYDiFcWPAqH 3aQrPdQVwFdm4LzLQwnHxxpjgwoo9iCosBUrHk5OqJq22eF8j5P3WC007/e6 CVqsybMj3M9mG5dPOOqlyzNmMSAcaNdxJqkG4HP64MJiMhZj14kEjNTmCMFO hcUPTTBJ8CDJoqTBMj+C/Mb1JxL4mQh+XJ1DlpjWEZcmmoW2C7BZf3VUXdtH 1FAUUDSEGRtiCMOPovB+H6a5uywaWOANgtftJK/3CYG3kwJllJd8wWLGfag+ 70dey/3A5YM/9yeQnitm/0Jseb/gpXCJVtz/5gZDQP+M3g5+uo0Dp6/TPMCG ycwO/DfnzBNuHOU+1nI/cLnb52MJpJHcMyKW+pDFMuV9KJde+j6RQ8LoWXRC cuMoxphrSWYs1wkKT2jh4ZDwrI2mfLVi6UNIhkrT7mquHEElcpAp+85MUXmN QcnJ4HbBlOql7bCcB4tO6nkZZSAWsy9VbF2sGRT8Ilp7MdeYG1dyZ40ehNQ4 S7sqC010D2JEKPlitMkXtfaIpFfs7uEby4VdFRYLIlEtFMmPD11afTFnEfyN MPyJl66EI7N85b7MtJULDyVnQbngVeXPyoSzooo3NQuE8dHBqcmc3qpMYj0X 02JPCM2BRnMqrU8ZjLApqitQSy3+tJwICUNhdcY7BbiTIvUewhBZKtFxePYT 9keKodz4SdMjoTHpkLHi3aoveomqA6KX7xUj5R+6qNy1VmFJk1fJPxXKLsX1 fvyWwgHHBepw6UkDt56ONNrIkLPZb9PssKfBIMKuASZWop1F+4nvV2i+xNca W1dihRjqxRV1waVSO74oh0jeFKEvKdQTgFw9pQz+ItRHcidUQwx74+po1mAn Pet8PXOqZKBSG/1GNTWw3k4d1ZAIDVuwM7zue5Y9K53vmnsaVuz7oWfHz04v TtRnhSostnZVQJXUOIvJDgENDuQUtap1CZSEqlRMMhiAzzzvd8i5tbbg7KK1 3ACJlJ1NU69cZw7ADKvpaNW9VDtA9edIehbfqBokI5t+Q2NC1bIOzaD9t2ns OsWtH70ApLDtEY179A0lvx5R9T9YqtaniGYwOhboeOhulGIVvuKeNheUFIp1 0k6T2nSNnTRQZfTOMcFDJUnwMYDBL0VRFdCTy2QE5OuNyBWgGF5xM+9oCdo8 min6XRWI0adQDvyBz/BGKRCL0fIeo8feK+aoIDMul7wde+tP+C2fcsay1KGX E2Hq7R1n9j88mPal9/8Z9jyS+sQvH1RBEjnRA61p+Yf3zHw1nPlBOvPd9hwL qTdAm68RPvTf+rs98HIyxnuh/UHoqWLnNp92zbapmtX+PeImkEiUMqlcHJdL Ge9ZeXpTNRWJffGFxKT7lLY3bENtIF/dqEvrvHR2K3Ukz6VfJXN5tXTFdgeq VkNVhdAWVSQ9IKO5JiSyGKqWqgE4UV8+7YspTS+ZUWqxWm9q82IkLi2AxNd5 kN6JLJWGRo1UDzXuvBmNjvZEkzSVq4lprlD88mIvNagMmVta8TVtck42mSjj iLK6QulDZVrS5q9fi5XpLsoDQu+lGB1IeVjZicRDbIE6eghJ4VDkPcf5yXDb cT0loxIWgTuRvUIJei3uWOcb2+s1ikwrqtRlpBEbbvp4fkJ886b541k0FIiP 3mj5ZpqQay9ZNLkleMPVuRyoHWRJT/vgadPk3tbYmjnsIcnVjHyXMymmRA2b k1vF9uUR8LP0+QNu9zza7nlkWjP4a+hcx+Vy5QIkQMJqgX6rqEehtEOVJqmb nuViToMSk0nfg8h50rygI+l5WgKuROJ4VN8y2I69FVT62mBLhWHmHZXAGfQq rRstGhz1gtXeCqHhHYWozYjdcNWq3sUw3IeB7oaTzp3DSrpeUQaCs8GYo/di INyZ/u89OMJJaPUjyXON276jlosljbi2CRU3iqKZzp9xQcU1aS9AOsbWYxyZ E7jopeI9bBXg32wwLfLNmz/jwOTtevTo0cS3eP797DE2dvZ1wzE4qof+dUIz M9/ierCIGChxjOwALw7ulC/lQmoRHgQ53BOqV9jr4VnWtVD5oBi203zF5vNA Jwrb5WXFl0/bRKsKEdWJglMDSltQhUpWlbmWOFNkLXpbNWnxtmhJPdbka2ea GwlqyLal4F9qHYwsj8wtWZwtC+CNaqUT2j2LixkS84oKEAftMq7zSUHKLcai 7UnbRteUxCQq10lnwaTlfrlOcXayBD/pvdDf3oDCjqL0TgndRBqo6IX0P4zd vCE5vbSkJsNPIrCeR8YhYozOqiLdLFOtiBmZFl5O0pB9Q85RyYnq3GYVxpwZ Zrl6IDfaZGbR4qJlISJJBctdXUg/dOwWuVHPY6Spp+P9VSuJT9JG9WIvZNTy avFg8xojzSWf51H8cu5csyiJzAiX7OmTPXJKEZk+SNIgSxb6ROUHqNJ2wmKl 8oDamgZL8zGUWikvqW6KUIBVkumuQe9tAByW6HuPZSzuTMvAbeM2d9qHTWSV eb547ZtghrX2mcAywIisF1pGIe8VZH7zRkoUvksaXS/i5kAIWhzEBFsctnMP haWBOuzQW9tx2LnvyseWgKTGcsx+0farJcqTzrjm0CazH6XRHlWRlqL9AdiH ilF7L69YiUP54OPkmuVY/FVyHULZfSle7+PrvYC/tgOzBponrjlzIphUOPxA hMLihBmSlu5l5OhjBVLkAm2X3HrBcD1GlbEnWvsbyJHeMSlzPUJRBpUzenW6 pVVFD4PyWOjhqqUyRXr4LNUNC6rzRSUyEKylYjssu1BmGPRLktDYg0yH7euf 0n1GpTEJYaa2ImgKclxoGycyCAo9tKhTh9x67UwPkklUQxFYV+7g/4upPD1N nsbsE+41YPy1B3a2bVpUnWKlIhL+gnu/jlpGZ9zn+/MvPn+Mo1JgCI8sMMXl u90cLyb7HuIDRMJPEvCPdp5d7Nxah3uEoUTMeM5rQswF5XbgH3iKgKSpBn5x Q7N5DREpdSSmaKUfC6OMzvSqbCSCHrg6t4u4WWpdU+aKA3peUCthN5Co6tBy ngafS/DSgFXTWFrzmyt7NiRMUtc04r03roUOZUjHkYkyoQWeYQ3Hg7AA5kJT YumMEdF+gA/86JgcRHW4k1acUelkqrDLfzE5QTMtaM3foUQMY1QkssbFLmES sswLA47oDjbZ1hMFfRsjUdibIkeJ6wftu8JoLPMcmba2Vi6yf+zySqDDjkEU pmLjDHfDGZpfOPJIwtdG5RGpCO0rQSfFVMjA4+tFJmFIB4+s7PlNsksU+K1s iORxgyBCSwNelngcrHQTtFPVhaINyTEG4JZtH6q9CtSqc2OU3xTRaeqj/CTI 7/Pfff47vOg8KYzMJdvjLBFC9F79TW0zHpQYM6LcAr1o4Sq+rFOB+0Dv6rjV wUvQrAeLil0ME4Nul362WE/H7nxF+/6DvLKeIBwZFLIfuapqrnTEmO9BAVvV 5c+EeQ1aVEqsVB72dbApd7ADxsedIFxJnIv5bRwylFj9EtMXP6k5XmmB/OE7 s+wHfKLboSqIUq+WwGcfZN6ZnuquljgaJDXWkQqGukkHe0UYdLl7zQWtNDJ0 sBHFHIsdGCP6GWwvS2C1pDdw0F3UfSQYV3u3IYRJyjB5ucHuEEmHJRBc3gcc FoFIQFjCXD7sL3fBVpg9owhHApcWUDchEtZXfHIdHDxRQWxT35XkzSG/t2/w gM1MyqWolyIEjlAvYPkFEloybxhcx3Kv2lLSc+oKhBxSTcs4EOAbu0I8TEwq 6xwL/ONIJRdgHh3HROMog0PBCEuVkalW+i+QvotS8YJPK3QbkAZn3kKeA9JP 8zm1FRU3LlNeXAMx2KEao5aSESuJhmcw5wuOr0nU/oLdt7NEqkiuG5sbFTw0 m6bR7aPuCr5VxKgQ7S824KjRBhZO9YFo21hcvrIbKg//DYYnOy4OP3Q+ZG9+ U9ED7w4IQYDkTm4os3NS/IXukLJCeb2O27YV2vNlA3Jtxc5qJFPq88SDMlFs Ml7nhsqBez87PIK5v0rZAH9fO6QnWFy4y8msQvpW5fdVUseq2i7xHx5Geea7 dbV2jablK4nKdmX/IsABkV2UzBXEQ/2DpDbzBQuHc532C+GoGbhEKCvNbSxo qMQ4aP6WWgtukBYQaUF8si2qvtK7JrKj+SPAhRBMSIaiGnbfqbt7zBBLbWo1 JRWkjRvoei8240dQdeDqNlwLXn6m8nrM4v4eehjM98ESPIJgLmlP5xPqtdN8 ObNSa1ougDfKwQFvUdig8PGm3/KdxU+GH5trUX0m4nywmd4MoCXcWyYL7m4g iK9rjHjH9i2omulouLQb2vM5utZigN1rewyRbCM9kKY1gy6Sr9Y7F0WQODGw 5tispcjJXuqdfuS6P2QIw1iuBlVNdPTjFygP6oPUZ68uyPTnBoUiCbV9Pw86 s3W5DTbz1hGZZ7Vg2C4uZyU+FaRTUxwOEuR1jDRJabsXKl9yYoYGNKQlDzjV h09pjHRKWIWJfmMarsLNoLbAcDCu+R6VuOxNMjPny9FlxanacvpRVBlh04i9 RK2r3JyT2joQtqSR7HQPbNzWjrpacGft0IPNV2IopQVeiTeZM7wJKbn1R7X3 Mgj1XtUWTiKFUFe8RV4FsUEiRwQhMHDMK3ghcEwCbmbZc038vm6CIti7Fmrb JFud1DuQJzmivS878qX17Q3LjhuCiRV9fDs+hT0e67qpP+nM3Hq7eOSQ6Xwf MY7VY1mL2W/U4UjovuH0i50GlwIP49gAvcbcQ4rVOS/WEM2+aEDA32sbsA5/ woCbHHsPcQMrDWzyYBEr8jAAE6PbSkc2VFM1q5U4y3uu64mY99iAvMOirPwu sKeyyOOE/y0uTs+WrXccZ4CmOFQFqW+VtMLRGUvPlIsQCUg9dBA3FxrVCGs+ kaou+KYV/GdZG09FwwEKSdegCgA/s8VAfSQo1aNszGsD0qKarwf9DGHci5hg uGLEQf7apg13ZA15aIHmZdNZ6P5GP0RcTU9PDLoyMEpGLEWhsrvvSbkRV4A7 RCw96joMd4LsM0IgyCw55LXnwE1xTK1lEoxfqbmr/5w3bd1KcSaihfa9moNR SOnwApi4g2B9PVbCgmF8H9mEmZp3a03okpgM3zPswIqJLg7ZWmqZ6Im0Hcml 3IVZ0/OwnxJ3QkMjLlVOYcstjG98qlrC3uMwbLa9JqPNvMAdNXXCGUjkJDRN mDROTKSUYECGuA4xAoNsqCMuUR4fcpNzHpx4LIL4leAEzRJVAkqjGC56UIkN /AwdIWsJ9H3gb4wr/PiSPLqsFsGlBrnJ73Cgs6V8PXjy+qlw65JEfmaQBy1h S3JlzVtg2Whapm5/XRvKEjGnw3dJL/FYuKSmWhRDSWWgiTwN3hfHMZoUmCXJ arzYF15giqpkLjauxNGc/kVdMbZBw9B8sqpiVmFQRg/7qIfu/U+cSbwQE+8Z n6QBP8KLRXfgI1An14F4AW91UG8FpmtK+adJFC4rOI48WPvMkdNGTOe9atXY CM8Dj0/iABp/J5iZoPB5KG8dUxa0ZgBtJ+tTHEs1guOHEZNOGkvPRqWcGSgv 4ICa7Pj52YuTxHXSVW5qXV2+e0cJD3+/+A4BffaCXY2H46JDRScKc16XRUpq aP+7Gp2JTUs8T8Ud6s4boaREr2s0cyxonQRpM9VZEi9+0GSCceQ4IMEJ6Mfa tosspgBv3KasOXbO4JptWAyjCDw7RBNtfxa/3iy91ddE7bH43Vl2c8gkN/PN i6uG/K5EHCim3pGM6kvPg2AV/BHw9VVTFpI3WaaNi7FX+vW6OVEXVesdtMdo zzyR7aJ87sUx6kl4AJkvEVxn6xy7gTljnoaQqrGmTGx5LaXTqE/snO9vbsSn PDe5HkaJbE+MxhiZ+sBEmkSE94LscbjqHostfe4IlvAz0hOtbdF4R9rpAff6 REuPSqvq2rcBpLt3oNEWGS+kBqV6v6VJNUn+ntwwCRoAVWuc4pwT/+bYw+wY Dz0QYqIrWTSEmBioGrqvq/jKgqj0DQCVvs2X1G9SzUsLNUjbn7ZVg8Yb4/tz SsfdHhmg+cNyIkOQpjlx89iEPfMVDxs/BZHCmZoCVFF46jjIAS2rlfCEcZuU wreZX2HYiUCDu1EGOCa+v0WDOR0+tBZZKaAF90eUPgCRZffSolPYYbkGuHTT NIzz3Tu6yyKHU6BnqX0hMZel2ZYLuXBx6KaXc5x256awq9W60+aJkYSmqf+6 f6736EW2RBRKYIO2a0cZ9+nghkKZ2TYvdSU20pCN27+JtZbE/HLVoKEPtYPI 2thLDvcxAr2Os6kobLyRltPTQ5gdayKxoC2BINrzlPzRcQgEmoVI4l9YJSqJ 9uIX63uv5tkC3s2pIsHAZ8SExWVHXYNNNhfrI8l1iVqy4iFIHh9nuvtukUCA qsrWK1VxB3OLWZa9l2lkYZ9PtK8dy2nqNn/l+z9SI2OL1n2M6tQ4b4lZoWbV RXZEMO7sEYZSHfkKF0doJqILuS7rwiEyYM8VtObutllgMLr9BDjBOVD6Uhuo r6jhUWOAgn1SOzt/SZwUva2w0kvboQ9Roh1h4K+evTyfPX40e/z40RcPLy9m nz569Pnss8+kOsibN2doi3XpOyDI+AsnlF5s56VXduCmVwjJqiB/Q6JUnHMe 5C1SHNLWlcHrhg3amTlnGAeChQjRCRicQr0XMQe0rftBO9plmJLOODSzE1Ls OQXPwTaJCWM7TlXtveHYv4MmjYaS65Q/5AHN4w7pk+D6yCNTQdTUEl7H29mi UbX0rYEp3vS46MeRsjZihEcShE4k5JVjHUOchVDUnHJRvc94MqIyPkai27PE wGt47OSKIYqhd45pwVBCAcioSEUSt0N3i7dA+shNk2Ve+iZiJcVVfTgzeU8O yyGN1zNwueJ8azUETcN8c7yFLU1GVlNqWendg8pbGM4Fqdy+SWjEM8m9QR4V sZs9e9ZcRpa/GY7vDYS6qwhmbC5Fu6vkM1PjZl8rR1uSk5tsVOxTF8x8j1NR 5ohiIIr9mitKCS5q2lRL7HoQmJ1jn3jYExx5lmWjzj4fEUesaUsefITUMoS5 sq3MezTHt8sLtjUma1KEH2V1aFHWPjcIjhDveaGoa1rgdBtSe6/Fli7GbDQL 4DQ/5Xx/e1tGLilMMWIrGD2Ah+kb3gNIqO4PRk/hYcRh20jlt/5IcDK2umAr b6m4knunmxCAg8ibbDmueQxo649PoqFwKsUT3DHKFmjK3W5BMkQkwjPnaF0Q C3cUi0M3+e8gYkkEJM2GrIsjKdUq6dC1lESoo1crxCb4sjwUSlrbAzWCYEUE D3bwxPcmmnqgW6elrerOBwDVYpsZkEacBKkjcTwMbNCaSAClJQnI3vjOBY/Q B60ZLFiul82t6arOazGuu06UWJwm6emepIok4h39TN6ba0llWZF5JJphwpeb kwUQkzBxuiKANdtOrNhSIokLcnE7QVaaMLY2Ynxy8YpkC3yHo0PG5bGeh3GQ JCPkKxQzu0imi4yuo13iEp5JsVs4TZQd0loML8Aa1vDjp1zE+vFnIZHli9lj TGUZqRBGkbJRGiNHhmn76AWnQinFprABLrdDgk5c6irYXH2hJyFbEoEltcJ0 AKR8bDdBIZDbyRFSEf3KKxQX+AcZDzjq95bjiOO4VZerfIx3KK2cEBLTN+S4 RuqMgrjzdKNnHqvhypEwlxjCiE6Sn1vixxzp05lKYLph9QkOzSBEN4aWkJC4 WDq12nT7rfSSF3ah26p6yMy4BldGyuXpADGJYYlEFCYQBWyzXLKXiLncAi0v JKH8bNtmCmQ1W+Ubthqo7sdBTjAVhWfgW97PmmOE1iuSNYMT2lsFdGJaRLSo KxLBskSKUhGJruIyk4oWIa5iTBDAchHwO1B9QN2Fm6RB8EFL0loeGSW9YLqt qMGFaMgwegszWXWESi6KHE1PyaPGf0Mbpi9bTaJUUinBu0BTd7uSf019EV+/ TzXKKwoFZV8p5V/2wjphIr4ObCamY5znaL0guQC9ZV0rRmZvPM2z9X6LrlkW Qt0CpIG2bMQ3mHjJcQJ1j68lGTLV25ZVfq1+Vq45wQkNJXWL5JLsodeAMlCg AhgwD+jBMBS3Isn5Wy7Oj7QGb9I1RslRqFCzKfHAQkJZiKNmpY9vcx43wQR6 4Zpdu7BRlRq+vX5R4q3pKN3KW1EoQo5RrqYVD7c9i903TgZHYsqH4aMD6eGk jqWCtGsYGDERHVs7eanZPUH4oXEGMVKy9rsBxBQIEnbkFXzfNymULiptxAbs KIF3LOHO4mVJQlw9rCVGIOx7wBbGdiRvycZQS5E4J7QdVY3zUhOovh0VApUz HyTw+XiHkL2XeGpSs4mw1ogwiOrDuQ1Ds1GUWAoQwQJNyYJUNcXI4SBoasA8 +1jLbU7l62GWnsxFcrGE3CwFfFR6UOiArnelSWrefEcpMqgFqCzL+hdRHq9o chBQFMI+t2j08HG8vWAYpOOEHRMF7DyflxVyPSpwM04W4vjh2Ag8SH9TpBXb W2S7HrYeUfHQ0lRyipEGrf4klWJkY2MRPh5ioo0rD0RzMOAilqNVKaB3tM1o yBB591GqYk31LLGCYgktCdp8p2ZQzSGU4ejn94SJR6xXKmCKv4Tp+rqpiN8Z b6tGKc6HYTIv+YkiwrvGx86PzEORZ24s9CxWKWdkIkpiJntuew7C1HyEPGDw MNsjaADSGyKy72I2MRVINUXDFWc1qgk97IBNFblKtxyHQ1JcTzBOvCDBH9Az 7Rt1DLZYmhfUttX02s6BwdppmpgLh9i0wZWgcacYakTeMY+HWl2YA3ow+yz2 CIru7L0HSaiCGFdD9rgUQCP+H1MQOK0Z+lXY8BCHOYnbKC6a4O3+bGHZiokr lp0UKvCyZMRzqMNrqz9NVH0DHotB3FsfqlvQEukkSdMjcTBIrT4tK3gP+slC o4pro3I81lUDUnTFZXGIRZGdVW1RbBmU/EREmMOhnlRRxMot8CHIbOtbYiaE wogLf6mNrRVO5SboJGAktQPKTLTg/PS70wEdeMX5nosdGWBwzXXDT4p3EvOb ptMp6YNUiGaBUY3AkVd06cybJ0zvbPHV0RLUR4v1an60ojawptuQbeR19i1C sQb61mwcMuznVQkH8o3F2B747XX2XUNZZusceON3Jd4NFOJfsn3s72UHUAYB 8CkcEOxzYk7rrkH3xteoPedEJwFMZzu0M2b/3VIhRJGpn63b3RX8tym0NAtK KaDUlPaa7RpLawvc5Mz8HytzxXjzzgAA --></rfc>