
RFC 9645
YANG Groupings for TLS Clients and TLS Servers

Abstract
This document presents four YANG 1.1 modules -- three IETF modules and one supporting IANA
module.

The three IETF modules are "ietf-tls-common", "ietf-tls-client", and "ietf-tls-server". The "ietf-tls-
client" and "ietf-tls-server" modules are the primary productions of this work, supporting the
configuration and monitoring of TLS clients and servers.

The IANA module is "iana-tls-cipher-suite-algs". This module defines YANG enumerations that
provide support for an IANA-maintained algorithm registry.

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9645
Standards Track
October 2024
2070-1721
K. Watsen
Watsen Networks

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9645

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Watsen Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9645
https://www.rfc-editor.org/info/rfc9645
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Regarding the Three IETF Modules

1.2. Relation to Other RFCs

1.3. Specification Language

1.4. Adherence to the NMDA

1.5. Conventions

2. The "ietf-tls-common" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. The "ietf-tls-client" Module

3.1. Data Model Overview

3.2. Example Usage

3.3. YANG Module

4. The "ietf-tls-server" Module

4.1. Data Model Overview

4.2. Example Usage

4.3. YANG Module

5. Security Considerations

5.1. Considerations for the "iana-tls-cipher-suite-algs" YANG Module

5.2. Considerations for the "ietf-tls-common" YANG Module

5.3. Considerations for the "ietf-tls-client" YANG Module

5.4. Considerations for the "ietf-tls-server" YANG Module

6. IANA Considerations

6.1. The IETF XML Registry

6.2. The YANG Module Names Registry

3

3

4

5

6

6

6

6

9

11

17

17

19

22

31

31

33

35

45

45

45

46

47

47

47

48

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 2

1. Introduction
This document presents four YANG 1.1 modules -- three IETF modules and one IANA
module.

The three IETF modules are "ietf-tls-common" (Section 2), "ietf-tls-client" (Section 3), and "ietf-tls-
server" (Section 4). The "ietf-tls-client" and "ietf-tls-server" modules are the primary productions
of this work, supporting the configuration and monitoring of TLS clients and servers.

The groupings defined in this document are expected to be used in conjunction with the
groupings defined in an underlying transport-level module, such as the groupings defined in

. The transport-level data model enables the configuration of transport-level values
such as a remote address, a remote port, a local address, and a local port.

The IANA module is "iana-tls-cipher-suite-algs". This module defines YANG enumerations that
provide support for an IANA-maintained algorithm registry.

IANA used the script in Appendix A to generate the "iana-tls-cipher-suite-algs" YANG module.
This document does not publish the initial version of the module; it is published and maintained
by IANA.

1.1. Regarding the Three IETF Modules
The three IETF modules define features and groupings to model "generic" TLS clients and TLS
servers, where "generic" should be interpreted as "least common denominator" rather than
"complete." Basic TLS protocol support is afforded by these modules, leaving configuration of
advance features to augmentations made by consuming modules.

6.3. Considerations for the "iana-tls-cipher-suite-algs" YANG Module

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Script to Generate IANA-Maintained YANG Modules

Acknowledgements

Contributors

Author's Address

49

50

50

52

54

58

59

59

[RFC7950]

[RFC9643]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 3

It is intended that the YANG groupings will be used by applications needing to configure TLS
client and server protocol stacks. For instance, these groupings are used to help define the data
model for HTTPS and clients and servers based on the Network Configuration Protocol
(NETCONF) over TLS in and ,
respectively.

The "ietf-tls-client" and "ietf-tls-server" YANG modules each define one grouping, which is
focused on just TLS-specific configuration, and specifically avoid any transport-level
configuration, such as what ports to listen on or connect to. This affords applications the
opportunity to define their own strategy for how the underlying TCP connection is established.
For instance, applications supporting NETCONF Call Home could use the "tls-server-
grouping" grouping for the TLS parts it provides, while adding data nodes for the TCP-level call-
home configuration.

Both TLS 1.2 and TLS 1.3 may be configured. TLS 1.2 is obsoleted by TLS 1.3
but is still in common use, and hence its "feature" statement is marked "status deprecated".

[RFC9110]
[RFC7589] [HTTP-CLIENT-SERVER] [NETCONF-CLIENT-SERVER]

[RFC8071]

[RFC5246] [RFC8446]

1.2. Relation to Other RFCs
This document presents four YANG modules that are part of a collection of RFCs that
work together to ultimately support the configuration of both the clients and servers of the
NETCONF and RESTCONF protocols.

The dependency relationship between the primary YANG groupings defined in the various RFCs
is presented in the diagram below. In some cases, a document may define secondary groupings
that introduce dependencies not illustrated in the diagram. The labels in the diagram are
shorthand names for the defining RFCs. The citation references for the shorthand names are
provided below the diagram.

Please note that the arrows in the diagram point from referencer to referenced. For example, the
"crypto-types" RFC does not have any dependencies, whilst the "keystore" RFC depends on the
"crypto-types" RFC.

[RFC7950]

[RFC6241] [RFC8040]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 4

1.3. Specification Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Label in Diagram Originating RFC

crypto-types

truststore

keystore

tcp-client-server

ssh-client-server

tls-client-server RFC 9645

http-client-server

netconf-client-server

restconf-client-server

Table 1: Labels in Diagram to RFC Mapping

 crypto-types
 ^ ^
 / \
 / \
 truststore keystore
 ^ ^ ^ ^
 | +---------+ | |
 | | | |
 | +------------+ |
tcp-client-server | / | |
 ^ ^ ssh-client-server | |
 | | ^ tls-client-server
 | | | ^ ^ http-client-server
 | | | | | ^
		+-----+ +---------+		
+-----------	--------	--------------+		
 +-----------+ | | | | |
 | | | | | |
 | | | | | |
 netconf-client-server restconf-client-server

[RFC9640]

[RFC9641]

[RFC9642]

[RFC9643]

[RFC9644]

[HTTP-CLIENT-SERVER]

[NETCONF-CLIENT-SERVER]

[RESTCONF-CLIENT-SERVER]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 5

1.4. Adherence to the NMDA
This document is compliant with the Network Management Datastore Architecture (NMDA)

. For instance, as described in and , trust anchors and keys
installed during manufacturing are expected to appear in <operational> (

) and <system> if implemented.

1.5. Conventions
Various examples in this document use "BASE64VALUE=" as a placeholder value for binary data
that has been base64 encoded (per). This placeholder value is used
because real base64-encoded structures are often many lines long and hence distracting to the
example being presented.

Various examples in this document use the XML encoding. Other
encodings, such as JSON , could alternatively be used.

Various examples in this document contain long lines that may be folded, as described in
[RFC8792].

[RFC8342] [RFC9641] [RFC9642]
Section 5.3 of

[RFC8342] [SYSTEM-CONFIG]

Section 9.8 of [RFC7950]

[W3C.REC-xml-20081126]
[RFC8259]

2. The "ietf-tls-common" Module
The TLS common model presented in this section contains features and groupings common to
both TLS clients and TLS servers. The "hello-params-grouping" grouping can be used to configure
the list of TLS algorithms permitted by the TLS client or TLS server. The lists of algorithms are
ordered such that, if multiple algorithms are permitted by the client, the algorithm that appears
first in its list and that is also permitted by the server is used for the TLS transport layer
connection. The ability to restrict the algorithms allowed is provided in this grouping for TLS
clients and TLS servers that are capable of doing so and that may serve to make TLS clients and
TLS servers compliant with local security policies. This model supports both TLS 1.2
and TLS 1.3 .

Thus, in order to support both TLS 1.2 and TLS 1.3, the cipher suites part of the "hello-params-
grouping" grouping should include the following three parameters for configuring its permitted
TLS algorithms: TLS Cipher Suites, TLS SignatureScheme, and TLS Supported Groups.

2.1. Data Model Overview
This section provides an overview of the "ietf-tls-common" module in terms of its features,
identities, and groupings.

[RFC5246]
[RFC8446]

2.1.1. Features

The following diagram lists all the "feature" statements defined in the "ietf-tls-common" module:

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8342#section-5.3
https://www.rfc-editor.org/rfc/rfc7950#section-9.8

2.1.3. Groupings

The "ietf-tls-common" module defines the following "grouping" statement:

hello-params-grouping

This grouping is presented in the following subsection.

The diagram above uses syntax that is similar to but not defined in .

Please refer to the YANG module for a description of each feature.

Features:
 +-- tls12
 +-- tls13
 +-- hello-params
 +-- asymmetric-key-pair-generation
 +-- supported-algorithms

[RFC8340]

2.1.2. Identities

The following diagram illustrates the relationship amongst the "identity" statements defined in
the "ietf-tls-common" module:

The diagram above uses syntax that is similar to but not defined in .

Comments:

The diagram shows that there are two base identities.
One base identity is used to specify TLS versions. This base identity is "abstract" in the object-
oriented programming sense because it defines a "class" of things rather than a specific
thing.
These base identities are "abstract" in the object-oriented programming sense because they
only define a "class" of things rather than a specific thing.

Identities:
 +-- tls-version-base
 +-- tls12
 +-- tls13

[RFC8340]

•
•

•

•

2.1.3.1. The "hello-params-grouping" Grouping
The following tree diagram illustrates the "hello-params-grouping" grouping:[RFC8340]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 7

2.1.4. Protocol-Accessible Nodes

The following tree diagram lists all the protocol-accessible nodes defined in the "ietf-
tls-common" module, without expanding the "grouping" statements:

Comments:

This grouping is used by both the "tls-client-grouping" and the "tls-server-grouping"
groupings defined in Sections 3.1.2.1 and 4.1.2.1, respectively.
This grouping enables client and server configurations to specify the TLS versions and cipher
suites that are to be used when establishing TLS sessions.
The "cipher-suites" list is "ordered-by user".

 grouping hello-params-grouping:
 +-- tls-versions
 | +-- min? identityref
 | +-- max? identityref
 +-- cipher-suites
 +-- cipher-suite* tlscsa:tls-cipher-suite-algorithm

•

•

•

[RFC8340]

module: ietf-tls-common
 +--ro supported-algorithms {algorithm-discovery}?
 +--ro supported-algorithm* tlscsa:tls-cipher-suite-algorithm

 rpcs:
 +---x generate-asymmetric-key-pair
 {asymmetric-key-pair-generation}?
 +---w input
 | +---w algorithm
 | | tlscsa:tls-cipher-suite-algorithm
 | +---w num-bits? uint16
 | +---w private-key-encoding
 | +---w (private-key-encoding)
 | +--:(cleartext) {ct:cleartext-private-keys}?
 | | +---w cleartext? empty
 | +--:(encrypted) {ct:encrypted-private-keys}?
 | | +---w encrypted
 | | +---w ks:encrypted-by-grouping
 | +--:(hidden) {ct:hidden-private-keys}?
 | +---w hidden? empty
 +--ro output
 +--ro (key-or-hidden)?
 +--:(key)
 | +---u ct:asymmetric-key-pair-grouping
 +--:(hidden)
 +--ro location?
 instance-identifier

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 8

Comments:

Protocol-accessible nodes are nodes that are accessible when the module is "implemented",
as described in .
The protocol-accessible nodes for the "ietf-tls-common" module are limited to the "supported-
algorithms" container, which is constrained by the "algorithm-discovery" feature, and the
"generate-asymmetric-key-pair" RPC, which is constrained by the "asymmetric-key-pair-
generation" feature.
The "encrypted-by-grouping" grouping is discussed in .
The "asymmetric-key-pair-grouping" grouping is discussed in .

2.2. Example Usage
The following example illustrates the "hello-params-grouping" grouping when populated with
some data.

The following example illustrates operational state data indicating the TLS algorithms supported
by the server.

•
Section 5.6.5 of [RFC7950]

•

• Section 2.1.3.1 of [RFC9642]
• Section 2.1.4.6 of [RFC9640]

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<hello-params
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common"
 xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <tls-versions>
 <min>tlscmn:tls12</min>
 <max>tlscmn:tls13</max>
 </tls-versions>
 <cipher-suites>
 <cipher-suite>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</cipher-suite>
 <cipher-suite>TLS_DHE_RSA_WITH_AES_128_CBC_SHA256</cipher-suite>
 <cipher-suite>TLS_RSA_WITH_3DES_EDE_CBC_SHA</cipher-suite>
 </cipher-suites>
</hello-params>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc7950#section-5.6.5
https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.1
https://www.rfc-editor.org/rfc/rfc9640#section-2.1.4.6

The following example illustrates the "generate-asymmetric-key-pair" RPC.

REQUEST

=============== NOTE: '\' line wrapping per RFC 8792 ================

<supported-algorithms
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <supported-algorithm>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA</support\
ed-algorithm>
 <supported-algorithm>TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384</supp\
orted-algorithm>
 <supported-algorithm>TLS_DHE_RSA_WITH_AES_128_CBC_SHA256</supporte\
d-algorithm>
 <supported-algorithm>TLS_RSA_WITH_3DES_EDE_CBC_SHA</supported-algo\
rithm>
 <supported-algorithm>TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384</suppor\
ted-algorithm>
 <supported-algorithm>TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256</su\
pported-algorithm>
 <supported-algorithm>TLS_ECCPWD_WITH_AES_256_GCM_SHA384</supported\
-algorithm>
 <supported-algorithm>TLS_PSK_WITH_AES_256_CCM</supported-algorithm>
 <supported-algorithm>TLS_PSK_WITH_AES_256_CCM_8</supported-algorit\
hm>
 <supported-algorithm>TLS_DHE_PSK_WITH_CAMELLIA_256_CBC_SHA384</sup\
ported-algorithm>
 <supported-algorithm>TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384</support\
ed-algorithm>
 <supported-algorithm>TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA</supported\
-algorithm>
 <supported-algorithm>TLS_DH_DSS_WITH_AES_128_GCM_SHA256</supported\
-algorithm>
</supported-algorithms>

=============== NOTE: '\' line wrapping per RFC 8792 ================

<rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <generate-asymmetric-key-pair
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <algorithm>TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256</algorithm>
 <num-bits>521</num-bits>
 <private-key-encoding>
 <encrypted>
 <asymmetric-key-ref>hidden-asymmetric-key</asymmetric-key-re\
f>
 </encrypted>
 </private-key-encoding>
 </generate-asymmetric-key-pair>
</rpc>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 10

RESPONSE

=============== NOTE: '\' line wrapping per RFC 8792 ================

<rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <tlscmn:public-key-format>ct:subject-public-key-info-format</tlscm\
n:public-key-format>
 <tlscmn:public-key>BASE64VALUE=</tlscmn:public-key>
 <tlscmn:private-key-format>ct:ec-private-key-format</tlscmn:privat\
e-key-format>
 <tlscmn:cleartext-private-key>BASE64VALUE=</tlscmn:cleartext-priva\
te-key>
</rpc-reply>

2.3. YANG Module
This YANG module has normative references to , , , ,

, , and .

This YANG module has informative references to and .

[RFC5288] [RFC5289] [RFC8422] [RFC9640]
[RFC9642] [FIPS180-4] [FIPS186-5]

[RFC5246] [RFC8446]

<CODE BEGINS> file "ietf-tls-common@2024-03-16.yang"

module ietf-tls-common {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-common";
 prefix tlscmn;

 import iana-tls-cipher-suite-algs {
 prefix tlscsa;
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }

 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG List: NETCONF WG list <mailto:netconf@ietf.org>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 11

 WG Web: https://datatracker.ietf.org/wg/netconf
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>
 Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>
 Author: Gary Wu <mailto:garywu@cisco.com>";

 description
 "This module defines common features and groupings for
 Transport Layer Security (TLS).

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9645
 (https://www.rfc-editor.org/info/rfc9645); see the RFC
 itself for full legal notices.";

 revision 2024-03-16 {
 description
 "Initial version.";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 // Features

 feature tls12 {
 description
 "TLS Protocol Version 1.2 is supported. TLS 1.2 is obsolete,
 and thus it is NOT RECOMMENDED to enable this feature.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 feature tls13 {
 description
 "TLS Protocol Version 1.3 is supported.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }

 feature hello-params {
 description

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 12

 "TLS hello message parameters are configurable.";
 }

 feature algorithm-discovery {
 description
 "Indicates that the server implements the
 'supported-algorithms' container.";
 }

 feature asymmetric-key-pair-generation {
 description
 "Indicates that the server implements the
 'generate-asymmetric-key-pair' RPC.";
 }

 // Identities

 identity tls-version-base {
 description
 "Base identity used to identify TLS protocol versions.";
 }

 identity tls12 {
 if-feature "tls12";
 base tls-version-base;
 description
 "TLS Protocol Version 1.2.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity tls13 {
 if-feature "tls13";
 base tls-version-base;
 description
 "TLS Protocol Version 1.3.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }

 // Typedefs

 typedef epsk-supported-hash {
 type enumeration {
 enum sha-256 {
 description
 "The SHA-256 hash.";
 }
 enum sha-384 {
 description
 "The SHA-384 hash.";
 }
 }
 description
 "As per Section 4.2.11 of RFC 8446, the hash algorithm
 supported by an instance of an External Pre-Shared

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 13

 Key (EPSK).";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }

 // Groupings

 grouping hello-params-grouping {
 description
 "A reusable grouping for TLS hello message parameters.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2
 RFC 8446: The Transport Layer Security (TLS) Protocol
 Version 1.3";
 container tls-versions {
 description
 "Parameters limiting which TLS versions, amongst
 those enabled by 'features', are presented during
 the TLS handshake.";
 leaf min {
 type identityref {
 base tls-version-base;
 }
 description
 "If not specified, then there is no configured
 minimum version.";
 }
 leaf max {
 type identityref {
 base tls-version-base;
 }
 description
 "If not specified, then there is no configured
 maximum version.";
 }
 }
 container cipher-suites {
 description
 "Parameters regarding cipher suites.";
 leaf-list cipher-suite {
 type tlscsa:tls-cipher-suite-algorithm;
 ordered-by user;
 description
 "Acceptable cipher suites in order of descending
 preference. The configured host key algorithms should
 be compatible with the algorithm used by the configured
 private key. Please see Section 5 of RFC 9645 for
 valid combinations.

 If this leaf-list is not configured (has zero elements),
 the acceptable cipher suites are implementation-
 defined.";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 14

 }
 } // hello-params-grouping

 // Protocol-accessible Nodes

 container supported-algorithms {
 if-feature "algorithm-discovery";
 config false;
 description
 "A container for a list of cipher suite algorithms supported
 by the server.";
 leaf-list supported-algorithm {
 type tlscsa:tls-cipher-suite-algorithm;
 description
 "A cipher suite algorithm supported by the server.";
 }
 }

 rpc generate-asymmetric-key-pair {
 if-feature "asymmetric-key-pair-generation";
 description
 "Requests the device to generate an 'asymmetric-key-pair'
 key using the specified key algorithm.";
 input {
 leaf algorithm {
 type tlscsa:tls-cipher-suite-algorithm;
 mandatory true;
 description
 "The cipher suite algorithm that the generated key
 works with. Implementations derive the public key
 algorithm from the cipher suite algorithm. For
 example, cipher suite
 'tls-rsa-with-aes-256-cbc-sha256' maps to the RSA
 public key.";
 }
 leaf num-bits {
 type uint16;
 description
 "Specifies the number of bits to create in the key.
 For RSA keys, the minimum size is 1024 bits, and
 the default is 3072 bits. Generally, 3072 bits is
 considered sufficient. DSA keys must be exactly
 1024 bits as specified by FIPS 186-2. For
 elliptical keys, the 'num-bits' value determines
 the key length of the curve (e.g., 256, 384, or 521),
 where valid values supported by the server are
 conveyed via an unspecified mechanism. For some
 public algorithms, the keys have a fixed length, and
 thus the 'num-bits' value is not specified.";
 }
 container private-key-encoding {
 description
 "Indicates how the private key is to be encoded.";
 choice private-key-encoding {
 mandatory true;
 description
 "A choice amongst optional private key handling.";

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 15

 case cleartext {
 if-feature "ct:cleartext-private-keys";
 leaf cleartext {
 type empty;
 description
 "Indicates that the private key is to be returned
 as a cleartext value.";
 }
 }
 case encrypted {
 if-feature "ct:encrypted-private-keys";
 container encrypted {
 description
 "Indicates that the key is to be encrypted using
 the specified symmetric or asymmetric key.";
 uses ks:encrypted-by-grouping;
 }
 }
 case hidden {
 if-feature "ct:hidden-private-keys";
 leaf hidden {
 type empty;
 description
 "Indicates that the private key is to be hidden.

 Unlike the 'cleartext' and 'encrypt' options, the
 key returned is a placeholder for an internally
 stored key. See Section 3 of RFC 9642 ('Support
 for Built-In Keys') for information about hidden
 keys.";
 }
 }
 }
 }
 }
 output {
 choice key-or-hidden {
 case key {
 uses ct:asymmetric-key-pair-grouping;
 }
 case hidden {
 leaf location {
 type instance-identifier;
 description
 "The location to where a hidden key was created.";
 }
 }
 description
 "The output can be either a key (for cleartext and
 encrypted keys) or the location to where the key
 was created (for hidden keys).";
 }
 }
 } // end generate-asymmetric-key-pair

}

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 16

<CODE ENDS>

3. The "ietf-tls-client" Module
This section defines a YANG 1.1 module called "ietf-tls-client". A high-level overview of
the module is provided in Section 3.1. Examples illustrating the module's use are provided in
Section 3.2 ("Example Usage"). The YANG module itself is defined in Section 3.3.

[RFC7950]

3.1. Data Model Overview
This section provides an overview of the "ietf-tls-client" module in terms of its features and
groupings.

3.1.2. Groupings

The "ietf-tls-client" module defines the following "grouping" statement:

tls-client-grouping

This grouping is presented in the following subsection.

3.1.1. Features

The following diagram lists all the "feature" statements defined in the "ietf-tls-client" module:

The diagram above uses syntax that is similar to but not defined in .

Please refer to the YANG module for a description of each feature.

Features:
 +-- tls-client-keepalives
 +-- client-ident-x509-cert
 +-- client-ident-raw-public-key
 +-- client-ident-psk
 +-- server-auth-x509-cert
 +-- server-auth-raw-public-key
 +-- server-auth-psk

[RFC8340]

•

3.1.2.1. The "tls-client-grouping" Grouping
The following tree diagram illustrates the "tls-client-grouping" grouping:[RFC8340]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 17

Comments:

The "client-identity" node, which is optionally configured (as client authentication occur
at a higher protocol layer), configures identity credentials, each enabled by a "feature"
statement defined in Section 3.1.1.
The "server-authentication" node configures trust anchors for authenticating the TLS server,
with each option enabled by a "feature" statement.

=============== NOTE: '\' line wrapping per RFC 8792 ================

 grouping tls-client-grouping:
 +-- client-identity!
 | +-- (auth-type)
 | +--:(certificate) {client-ident-x509-cert}?
 | | +-- certificate
 | | +---u ks:inline-or-keystore-end-entity-cert-with-key\
-grouping
 | +--:(raw-public-key) {client-ident-raw-public-key}?
 | | +-- raw-private-key
 | | +---u ks:inline-or-keystore-asymmetric-key-grouping
 | +--:(tls12-psk) {client-ident-tls12-psk}?
 | | +-- tls12-psk
 | | +---u ks:inline-or-keystore-symmetric-key-grouping
 | | +-- id?
 | | string
 | +--:(tls13-epsk) {client-ident-tls13-epsk}?
 | +-- tls13-epsk
 | +---u ks:inline-or-keystore-symmetric-key-grouping
 | +-- external-identity
 | | string
 | +-- hash?
 | | tlscmn:epsk-supported-hash
 | +-- context?
 | | string
 | +-- target-protocol?
 | | uint16
 | +-- target-kdf?
 | uint16
 +-- server-authentication
 | +-- ca-certs! {server-auth-x509-cert}?
 | | +---u ts:inline-or-truststore-certs-grouping
 | +-- ee-certs! {server-auth-x509-cert}?
 | | +---u ts:inline-or-truststore-certs-grouping
 | +-- raw-public-keys! {server-auth-raw-public-key}?
 | | +---u ts:inline-or-truststore-public-keys-grouping
 | +-- tls12-psks? empty {server-auth-tls12-psk}?
 | +-- tls13-epsks? empty {server-auth-tls13-epsk}?
 +-- hello-params {tlscmn:hello-params}?
 | +---u tlscmn:hello-params-grouping
 +-- keepalives {tls-client-keepalives}?
 +-- peer-allowed-to-send? empty
 +-- test-peer-aliveness!
 +-- max-wait? uint16
 +-- max-attempts? uint8

• MAY

•

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 18

3.1.3. Protocol-Accessible Nodes

The "ietf-tls-client" module defines only "grouping" statements that are used by other modules to
instantiate protocol-accessible nodes. Thus, this module does not itself define any protocol-
accessible nodes when implemented.

The "hello-params" node, which must be enabled by a feature, configures parameters for the
TLS sessions established by this configuration.
The "keepalives" node, which must be enabled by a feature, configures a "presence"
container to test the aliveness of the TLS server. The aliveness-test occurs at the TLS protocol
layer.
For the referenced grouping statement(s):

The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is discussed in
.

The "inline-or-keystore-asymmetric-key-grouping" grouping is discussed in
.

The "inline-or-keystore-symmetric-key-grouping" grouping is discussed in
.

The "inline-or-truststore-certs-grouping" grouping is discussed in
.

The "inline-or-truststore-public-keys-grouping" grouping is discussed in
.

The "hello-params-grouping" grouping is discussed in Section 2.1.3.1 in this document.

•

•

•

◦
Section 2.1.3.6 of [RFC9642]

◦ Section
2.1.3.4 of [RFC9642]

◦ Section 2.1.3.3
of [RFC9642]

◦ Section 2.1.3.3 of
[RFC9641]

◦ Section 2.1.3.4 of
[RFC9641]

◦

3.2. Example Usage
This section presents two examples showing the "tls-client-grouping" grouping populated with
some data. These examples are effectively the same except the first configures the client identity
using a local key while the second uses a key configured in a keystore. Both examples are
consistent with the examples presented in and

.

The following configuration example uses inline-definitions for the client identity and server
authentication:

Section 2.2.1 of [RFC9641] Section 2.2.1 of
[RFC9642]

=============== NOTE: '\' line wrapping per RFC 8792 ================

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-client
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- how this client will authenticate itself to the server -->
 <client-identity>
 <certificate>
 <inline-definition>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.6
https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.4
https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.4
https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.3
https://www.rfc-editor.org/rfc/rfc9641#section-2.1.3.3
https://www.rfc-editor.org/rfc/rfc9641#section-2.1.3.4
https://www.rfc-editor.org/rfc/rfc9641#section-2.2.1
https://www.rfc-editor.org/rfc/rfc9642#section-2.2.1

 <private-key-format>ct:rsa-private-key-format</priva\
te-key-format>
 <cleartext-private-key>BASE64VALUE=</cleartext-priva\
te-key>
 <cert-data>BASE64VALUE=</cert-data>
 </inline-definition>
 </certificate>
 </client-identity>

 <!-- which certificates will this client trust -->
 <server-authentication>
 <ca-certs>
 <inline-definition>
 <certificate>
 <name>Server Cert Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Server Cert Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </ca-certs>
 <ee-certs>
 <inline-definition>
 <certificate>
 <name>My Application #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>My Application #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </ee-certs>
 <raw-public-keys>
 <inline-definition>
 <public-key>
 <name>corp-fw1</name>
 <public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>corp-fw2</name>
 <public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </inline-definition>
 </raw-public-keys>
 <tls12-psks/>
 <tls13-epsks/>
 </server-authentication>

 <keepalives>
 <test-peer-aliveness>
 <max-wait>30</max-wait>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 20

The following configuration example uses central-keystore-references for the client identity and
central-truststore-references for server authentication from the keystore:

 <max-attempts>3</max-attempts>
 </test-peer-aliveness>
 </keepalives>

</tls-client>

=============== NOTE: '\' line wrapping per RFC 8792 ================

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

 <!-- how this client will authenticate itself to the server -->
 <client-identity>
 <certificate>
 <central-keystore-reference>
 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
 <certificate>ex-rsa-cert</certificate>
 </central-keystore-reference>
 </certificate>
 </client-identity>

 <!-- which certificates will this client trust -->
 <server-authentication>
 <ca-certs>
 <central-truststore-reference>trusted-server-ca-certs</c\
entral-truststore-reference>
 </ca-certs>
 <ee-certs>
 <central-truststore-reference>trusted-server-ee-certs</c\
entral-truststore-reference>
 </ee-certs>
 <raw-public-keys>
 <central-truststore-reference>Raw Public Keys for TLS Se\
rvers</central-truststore-reference>
 </raw-public-keys>
 <tls12-psks/>
 <tls13-epsks/>
 </server-authentication>

 <keepalives>
 <test-peer-aliveness>
 <max-wait>30</max-wait>
 <max-attempts>3</max-attempts>
 </test-peer-aliveness>
 </keepalives>

</tls-client>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 21

3.3. YANG Module
This YANG module has normative references to , , , ,

, , and and informative references to , ,
, , and .

[RFC4279] [RFC5280] [RFC6520] [RFC7250]
[RFC9640] [RFC9641] [RFC9642] [RFC5056] [RFC5246]
[RFC8446] [RFC9258] [RFC9257]

<CODE BEGINS> file "ietf-tls-client@2024-03-16.yang"
module ietf-tls-client {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-client";
 prefix tlsc;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }
 import ietf-truststore {
 prefix ts;
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 }
 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }
 import ietf-tls-common {
 prefix tlscmn;
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG List: NETCONF WG list <mailto:netconf@ietf.org>
 WG Web: https://datatracker.ietf.org/wg/netconf
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>
 Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>";
 description
 "This module defines reusable groupings for TLS clients that
 can be used as a basis for specific TLS client instances.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 22

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9645
 (https://www.rfc-editor.org/info/rfc9645); see the RFC
 itself for full legal notices.";

 revision 2024-03-16 {
 description
 "Initial version";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 // Features

 feature tls-client-keepalives {
 description
 "Per-socket TLS keepalive parameters are configurable for
 TLS clients on the server implementing this feature.";
 }

 feature client-ident-x509-cert {
 description
 "Indicates that the client supports identifying itself
 using X.509 certificates.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile";
 }

 feature client-ident-raw-public-key {
 description
 "Indicates that the client supports identifying itself
 using raw public keys.";
 reference
 "RFC 7250:
 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)";
 }

 feature client-ident-tls12-psk {
 if-feature "tlscmn:tls12";
 description
 "Indicates that the client supports identifying itself
 using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 23

 (TLS)";
 }

 feature client-ident-tls13-epsk {
 if-feature "tlscmn:tls13";
 description
 "Indicates that the client supports identifying itself
 using TLS 1.3 External PSKs (pre-shared keys).";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 feature server-auth-x509-cert {
 description
 "Indicates that the client supports authenticating servers
 using X.509 certificates.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile";
 }

 feature server-auth-raw-public-key {
 description
 "Indicates that the client supports authenticating servers
 using raw public keys.";
 reference
 "RFC 7250:
 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)";
 }

 feature server-auth-tls12-psk {
 description
 "Indicates that the client supports authenticating servers
 using PSKs (pre-shared or pairwise symmetric keys).";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
 }

 feature server-auth-tls13-epsk {
 description
 "Indicates that the client supports authenticating servers
 using TLS 1.3 External PSKs (pre-shared keys).";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 // Groupings

 grouping tls-client-grouping {
 description
 "A reusable grouping for configuring a TLS client without
 any consideration for how an underlying TCP session is

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 24

 established.

 Note that this grouping uses fairly typical descendant
 node names such that a stack of 'uses' statements will
 have name conflicts. It is intended that the consuming
 data model will resolve the issue (e.g., by wrapping
 the 'uses' statement in a container called
 'tls-client-parameters'). This model purposely does
 not do this itself so as to provide maximum flexibility
 to consuming models.";
 container client-identity {
 nacm:default-deny-write;
 presence "Indicates that a TLS-level client identity has been
 configured. This statement is present so the
 mandatory descendant nodes do not imply that this
 node must be configured.";
 description
 "Identity credentials the TLS client MAY present when
 establishing a connection to a TLS server. If not
 configured, then client authentication is presumed to
 occur in a protocol layer above TLS. When configured,
 and requested by the TLS server when establishing a
 TLS session, these credentials are passed in the
 Certificate message defined in Section 7.4.2 of
 RFC 5246 and Section 4.4.2 of RFC 8446.";
 reference
 "RFC 5246: The Transport Layer Security (TLS)
 Protocol Version 1.2
 RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9642: A YANG Data Model for a Keystore";
 choice auth-type {
 mandatory true;
 description
 "A choice amongst authentication types, of which one must
 be enabled (via its associated 'feature') and selected.";
 case certificate {
 if-feature "client-ident-x509-cert";
 container certificate {
 description
 "Specifies the client identity using a certificate.";
 uses "ks:inline-or-keystore-end-entity-cert-with-key-"
 + "grouping" {
 refine "inline-or-keystore/inline/inline-definition" {
 must 'not(public-key-format) or derived-from-or-self'
 + '(public-key-format, "ct:subject-public-key-'
 + 'info-format")';
 }
 refine "inline-or-keystore/central-keystore/"
 + "central-keystore-reference/asymmetric-key" {
 must 'not(deref(.)/../ks:public-key-format) or '
 + 'derived-from-or-self(deref(.)/../ks:public-'
 + 'key-format, "ct:subject-public-key-info-'
 + 'format")';
 }
 }
 }
 }

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 25

 case raw-public-key {
 if-feature "client-ident-raw-public-key";
 container raw-private-key {
 description
 "Specifies the client identity using a raw
 private key.";
 uses ks:inline-or-keystore-asymmetric-key-grouping {
 refine "inline-or-keystore/inline/inline-definition" {
 must 'not(public-key-format) or derived-from-or-self'
 + '(public-key-format, "ct:subject-public-key-'
 + 'info-format")';
 }
 refine "inline-or-keystore/central-keystore/"
 + "central-keystore-reference" {
 must 'not(deref(.)/../ks:public-key-format) or '
 + 'derived-from-or-self(deref(.)/../ks:public-'
 + 'key-format, "ct:subject-public-key-info-'
 + 'format")';
 }
 }
 }
 }
 case tls12-psk {
 if-feature "client-ident-tls12-psk";
 container tls12-psk {
 description
 "Specifies the client identity using a PSK (pre-shared
 or pairwise symmetric key).";
 uses ks:inline-or-keystore-symmetric-key-grouping;
 leaf id {
 type string;
 description
 "The key 'psk_identity' value used in the TLS
 'ClientKeyExchange' message.";
 reference
 "RFC 4279: Pre-Shared Key Ciphersuites for
 Transport Layer Security (TLS)";
 }
 }
 }
 case tls13-epsk {
 if-feature "client-ident-tls13-epsk";
 container tls13-epsk {
 description
 "An External Pre-Shared Key (EPSK) is established
 or provisioned out of band, i.e., not from a TLS
 connection. An EPSK is a tuple of (Base Key,
 External Identity, Hash). EPSKs MUST NOT be
 imported for (D)TLS 1.2 or prior versions. When
 PSKs are provisioned out of band, the PSK identity
 and the Key Derivation Function (KDF) hash algorithm
 to be used with the PSK MUST also be provisioned.

 The structure of this container is designed to satisfy
 the requirements in Section 4.2.11 of RFC 8446, the
 recommendations from Section 6 of RFC 9257, and the
 EPSK input fields detailed in Section 5.1 of RFC 9258.
 The base-key is based upon

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 26

 'ks:inline-or-keystore-symmetric-key-grouping' in
 order to provide users with flexible and secure
 storage options.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9257: Guidance for External Pre-Shared Key
 (PSK) Usage in TLS
 RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 uses ks:inline-or-keystore-symmetric-key-grouping;
 leaf external-identity {
 type string;
 mandatory true;
 description
 "As per Section 4.2.11 of RFC 8446 and Section 4.1
 of RFC 9257, a sequence of bytes used to identify
 an EPSK. A label for a pre-shared key established
 externally.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9257: Guidance for External Pre-Shared Key
 (PSK) Usage in TLS";
 }
 leaf hash {
 type tlscmn:epsk-supported-hash;
 default "sha-256";
 description
 "As per Section 4.2.11 of RFC 8446, for EPSKs,
 the hash algorithm MUST be set when the PSK is
 established; otherwise, default to SHA-256 if
 no such algorithm is defined. The server MUST
 ensure that it selects a compatible PSK (if any)
 and cipher suite. Each PSK MUST only be used
 with a single hash function.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }
 leaf context {
 type string;
 description
 "As per Section 5.1 of RFC 9258, context MUST
 include the context used to determine the EPSK,
 if any exists. For example, context may include
 information about peer roles or identities
 to mitigate Selfie-style reflection attacks.
 Since the EPSK is a key derived from an external
 protocol or a sequence of protocols, context MUST
 include a channel binding for the deriving
 protocols (see RFC 5056). The details of this
 binding are protocol specific and out of scope
 for this document.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 27

 leaf target-protocol {
 type uint16;
 description
 "As per Section 3 of RFC 9258, the protocol
 for which a PSK is imported for use.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 leaf target-kdf {
 type uint16;
 description
 "As per Section 3 of RFC 9258, the Key Derivation
 Function (KDF) for which a PSK is imported for
 use.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 }
 }
 }
 } // container client-identity
 container server-authentication {
 nacm:default-deny-write;
 must "ca-certs or ee-certs or raw-public-keys or tls12-psks
 or tls13-epsks";
 description
 "Specifies how the TLS client can authenticate TLS servers.
 Any combination of credentials is additive and unordered.

 Note that no configuration is required for authentication
 based on PSK (pre-shared or pairwise symmetric key) as
 the key is necessarily the same as configured in the
 '../client-identity' node.";
 container ca-certs {
 if-feature "server-auth-x509-cert";
 presence "Indicates that Certification Authority (CA)
 certificates have been configured. This
 statement is present so the mandatory
 descendant nodes do not imply that this
 node must be configured.";
 description
 "A set of CA certificates used by the TLS client to
 authenticate TLS server certificates. A server
 certificate is authenticated if it has a valid chain of
 trust to a configured CA certificate.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-certs-grouping;
 }
 container ee-certs {
 if-feature "server-auth-x509-cert";
 presence "Indicates that End-Entity (EE) certificates have
 been configured. This statement is present so
 the mandatory descendant nodes do not imply
 that this node must be configured.";
 description

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 28

 "A set of server certificates (i.e., EE certificates) used
 by the TLS client to authenticate certificates presented
 by TLS servers. A server certificate is authenticated if
 it is an exact match to a configured server certificate.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-certs-grouping;
 }
 container raw-public-keys {
 if-feature "server-auth-raw-public-key";
 presence "Indicates that raw public keys have been
 configured. This statement is present so
 the mandatory descendant nodes do not imply
 that this node must be configured.";
 description
 "A set of raw public keys used by the TLS client to
 authenticate raw public keys presented by the TLS
 server. A raw public key is authenticated if it
 is an exact match to a configured raw public key.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-public-keys-grouping {
 refine "inline-or-truststore/inline/inline-definition/"
 + "public-key" {
 must 'derived-from-or-self(public-key-format,'
 + ' "ct:subject-public-key-info-format")';
 }
 refine "inline-or-truststore/central-truststore/"
 + "central-truststore-reference" {
 must 'not(deref(.)/../ts:public-key/ts:public-key-'
 + 'format[not(derived-from-or-self(., "ct:subject-'
 + 'public-key-info-format"))])';
 }
 }
 }
 leaf tls12-psks {
 if-feature "server-auth-tls12-psk";
 type empty;
 description
 "Indicates that the TLS client can authenticate TLS servers
 using configured PSKs (pre-shared or pairwise symmetric
 keys).

 No configuration is required since the PSK value is the
 same as the PSK value configured in the 'client-identity'
 node.";
 }
 leaf tls13-epsks {
 if-feature "server-auth-tls13-epsk";
 type empty;
 description
 "Indicates that the TLS client can authenticate TLS servers
 using configured External PSKs (pre-shared keys).

 No configuration is required since the PSK value is the
 same as the PSK value configured in the 'client-identity'
 node.";
 }

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 29

 } // container server-authentication
 container hello-params {
 nacm:default-deny-write;
 if-feature "tlscmn:hello-params";
 uses tlscmn:hello-params-grouping;
 description
 "Configurable parameters for the TLS hello message.";
 } // container hello-params
 container keepalives {
 nacm:default-deny-write;
 if-feature "tls-client-keepalives";
 description
 "Configures the keepalive policy for the TLS client.";
 leaf peer-allowed-to-send {
 type empty;
 description
 "Indicates that the remote TLS server is allowed to send
 HeartbeatRequest messages, as defined by RFC 6520,
 to this TLS client.";
 reference
 "RFC 6520: Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) Heartbeat Extension";
 }
 container test-peer-aliveness {
 presence "Indicates that the TLS client proactively tests the
 aliveness of the remote TLS server.";
 description
 "Configures the keepalive policy to proactively test
 the aliveness of the TLS server. An unresponsive
 TLS server is dropped after approximately max-wait
 * max-attempts seconds. The TLS client MUST send
 HeartbeatRequest messages, as defined in RFC 6520.";
 reference
 "RFC 6520: Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) Heartbeat Extension";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units "seconds";
 default "30";
 description
 "Sets the amount of time in seconds, after which a
 TLS-level message will be sent to test the
 aliveness of the TLS server if no data has been
 received from the TLS server.";
 }
 leaf max-attempts {
 type uint8;
 default "3";
 description
 "Sets the maximum number of sequential keepalive
 messages that can fail to obtain a response from
 the TLS server before assuming the TLS server is
 no longer alive.";
 }
 }
 }

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 30

 } // grouping tls-client-grouping

}

<CODE ENDS>

4. The "ietf-tls-server" Module
This section defines a YANG 1.1 module called "ietf-tls-server". A high-level overview of the
module is provided in Section 4.1. Examples illustrating the module's use are provided in Section
4.2 ("Example Usage"). The YANG module itself is defined in Section 4.3.

4.1. Data Model Overview
This section provides an overview of the "ietf-tls-server" module in terms of its features and
groupings.

4.1.2. Groupings

The "ietf-tls-server" module defines the following "grouping" statement:

tls-server-grouping

This grouping is presented in the following subsection.

4.1.1. Features

The following diagram lists all the "feature" statements defined in the "ietf-tls-server" module:

The diagram above uses syntax that is similar to but not defined in .

Please refer to the YANG module for a description of each feature.

Features:
 +-- tls-server-keepalives
 +-- server-ident-x509-cert
 +-- server-ident-raw-public-key
 +-- server-ident-psk
 +-- client-auth-supported
 +-- client-auth-x509-cert
 +-- client-auth-raw-public-key
 +-- client-auth-psk

[RFC8340]

•

4.1.2.1. The "tls-server-grouping" Grouping
The following tree diagram illustrates the "tls-server-grouping" grouping:[RFC8340]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 31

Comments:

The "server-identity" node configures identity credentials, each of which is enabled by a
"feature".
The "client-authentication" node, which is optionally configured (as client authentication

 occur at a higher protocol layer), configures trust anchors for authenticating the TLS
client, with each option enabled by a "feature" statement.

=============== NOTE: '\' line wrapping per RFC 8792 ================

 grouping tls-server-grouping:
 +-- server-identity
 | +-- (auth-type)
 | +--:(certificate) {server-ident-x509-cert}?
 | | +-- certificate
 | | +---u ks:inline-or-keystore-end-entity-cert-with-key\
-grouping
 | +--:(raw-private-key) {server-ident-raw-public-key}?
 | | +-- raw-private-key
 | | +---u ks:inline-or-keystore-asymmetric-key-grouping
 | +--:(tls12-psk) {server-ident-tls12-psk}?
 | | +-- tls12-psk
 | | +---u ks:inline-or-keystore-symmetric-key-grouping
 | | +-- id-hint?
 | | string
 | +--:(tls13-epsk) {server-ident-tls13-epsk}?
 | +-- tls13-epsk
 | +---u ks:inline-or-keystore-symmetric-key-grouping
 | +-- external-identity
 | | string
 | +-- hash?
 | | tlscmn:epsk-supported-hash
 | +-- context?
 | | string
 | +-- target-protocol?
 | | uint16
 | +-- target-kdf?
 | uint16
 +-- client-authentication! {client-auth-supported}?
 | +-- ca-certs! {client-auth-x509-cert}?
 | | +---u ts:inline-or-truststore-certs-grouping
 | +-- ee-certs! {client-auth-x509-cert}?
 | | +---u ts:inline-or-truststore-certs-grouping
 | +-- raw-public-keys! {client-auth-raw-public-key}?
 | | +---u ts:inline-or-truststore-public-keys-grouping
 | +-- tls12-psks? empty {client-auth-tls12-psk}?
 | +-- tls13-epsks? empty {client-auth-tls13-epsk}?
 +-- hello-params {tlscmn:hello-params}?
 | +---u tlscmn:hello-params-grouping
 +-- keepalives {tls-server-keepalives}?
 +-- peer-allowed-to-send? empty
 +-- test-peer-aliveness!
 +-- max-wait? uint16
 +-- max-attempts? uint8

•

•
MAY

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 32

4.1.3. Protocol-Accessible Nodes

The "ietf-tls-server" module defines only "grouping" statements that are used by other modules to
instantiate protocol-accessible nodes. Thus, this module does not itself define any protocol-
accessible nodes when implemented.

The "hello-params" node, which must be enabled by a feature, configures parameters for the
TLS sessions established by this configuration.
The "keepalives" node, which must be enabled by a feature, configures a flag enabling the
TLS client to test the aliveness of the TLS server as well as a "presence" container to test the
aliveness of the TLS client. The aliveness-tests occur at the TLS protocol layer.
For the referenced grouping statement(s):

The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is discussed in
.

The "inline-or-keystore-asymmetric-key-grouping" grouping is discussed in
.

The "inline-or-keystore-symmetric-key-grouping" grouping is discussed in
.

The "inline-or-truststore-public-keys-grouping" grouping is discussed in
.

The "inline-or-truststore-certs-grouping" grouping is discussed in
.

The "hello-params-grouping" grouping is discussed in Section 2.1.3.1 in this document.

•

•

•

◦
Section 2.1.3.6 of [RFC9642]

◦ Section
2.1.3.4 of [RFC9642]

◦ Section 2.1.3.3
of [RFC9642]

◦ Section 2.1.3.4 of
[RFC9641]

◦ Section 2.1.3.3 of
[RFC9641]

◦

4.2. Example Usage
This section presents two examples showing the "tls-server-grouping" grouping populated with
some data. These examples are effectively the same except the first configures the server identity
using a local key while the second uses a key configured in a keystore. Both examples are
consistent with the examples presented in and

.

The following configuration example uses inline-definitions for the server identity and client
authentication:

Section 2.2.1 of [RFC9641] Section 2.2.1 of
[RFC9642]

=============== NOTE: '\' line wrapping per RFC 8792 ================

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- how this server will authenticate itself to the client -->
 <server-identity>
 <certificate>
 <inline-definition>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 33

https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.6
https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.4
https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.4
https://www.rfc-editor.org/rfc/rfc9642#section-2.1.3.3
https://www.rfc-editor.org/rfc/rfc9641#section-2.1.3.4
https://www.rfc-editor.org/rfc/rfc9641#section-2.1.3.3
https://www.rfc-editor.org/rfc/rfc9641#section-2.2.1
https://www.rfc-editor.org/rfc/rfc9642#section-2.2.1

 <private-key-format>ct:rsa-private-key-format</private\
-key-format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private\
-key>
 <cert-data>BASE64VALUE=</cert-data>
 </inline-definition>
 </certificate>
 </server-identity>

 <!-- which certificates will this server trust -->
 <client-authentication>
 <ca-certs>
 <inline-definition>
 <certificate>
 <name>Identity Cert Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Identity Cert Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </ca-certs>
 <ee-certs>
 <inline-definition>
 <certificate>
 <name>Application #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Application #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </inline-definition>
 </ee-certs>
 <raw-public-keys>
 <inline-definition>
 <public-key>
 <name>User A</name>
 <public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>User B</name>
 <public-key-format>ct:subject-public-key-info-fo\
rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </inline-definition>
 </raw-public-keys>
 <tls12-psks/>
 <tls13-epsks/>
 </client-authentication>

 <keepalives>
 <peer-allowed-to-send/>
 </keepalives>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 34

The following configuration example uses central-keystore-references for the server identity and
central-truststore-references for client authentication from the keystore:

</tls-server>

=============== NOTE: '\' line wrapping per RFC 8792 ================

<!-- The outermost element below doesn't exist in the data model. -->
<!-- It simulates if the "grouping" were a "container" instead. -->

<tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

 <!-- how this server will authenticate itself to the client -->
 <server-identity>
 <certificate>
 <central-keystore-reference>
 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
 <certificate>ex-rsa-cert</certificate>
 </central-keystore-reference>
 </certificate>
 </server-identity>

 <!-- which certificates will this server trust -->
 <client-authentication>
 <ca-certs>
 <central-truststore-reference>trusted-client-ca-certs</c\
entral-truststore-reference>
 </ca-certs>
 <ee-certs>
 <central-truststore-reference>trusted-client-ee-certs</c\
entral-truststore-reference>
 </ee-certs>
 <raw-public-keys>
 <central-truststore-reference>Raw Public Keys for TLS Cl\
ients</central-truststore-reference>
 </raw-public-keys>
 <tls12-psks/>
 <tls13-epsks/>
 </client-authentication>

 <keepalives>
 <peer-allowed-to-send/>
 </keepalives>

</tls-server>

4.3. YANG Module
This YANG module has normative references to , , , ,

, , and and informative references to , ,
, , and .

[RFC4279] [RFC5280] [RFC6520] [RFC7250]
[RFC9640] [RFC9641] [RFC9642] [RFC5056] [RFC5246]
[RFC8446] [RFC9258] [RFC9257]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 35

<CODE BEGINS> file "ietf-tls-server@2024-03-16.yang"

module ietf-tls-server {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";
 prefix tlss;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }
 import ietf-truststore {
 prefix ts;
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 }
 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore";
 }
 import ietf-tls-common {
 prefix tlscmn;
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG List: NETCONF WG list <mailto:netconf@ietf.org>
 WG Web: https://datatracker.ietf.org/wg/netconf
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>
 Author: Jeff Hartley <mailto:intensifysecurity@gmail.com>";
 description
 "This module defines reusable groupings for TLS servers that
 can be used as a basis for specific TLS server instances.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 36

 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9645
 (https://www.rfc-editor.org/info/rfc9645); see the RFC
 itself for full legal notices.";

 revision 2024-03-16 {
 description
 "Initial version.";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 // Features

 feature tls-server-keepalives {
 description
 "Per-socket TLS keepalive parameters are configurable for
 TLS servers on the server implementing this feature.";
 }

 feature server-ident-x509-cert {
 description
 "Indicates that the server supports identifying itself
 using X.509 certificates.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile";
 }

 feature server-ident-raw-public-key {
 description
 "Indicates that the server supports identifying itself
 using raw public keys.";
 reference
 "RFC 7250:
 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)";
 }

 feature server-ident-tls12-psk {
 if-feature "tlscmn:tls12";
 description
 "Indicates that the server supports identifying itself
 using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
 }

 feature server-ident-tls13-epsk {
 if-feature "tlscmn:tls13";
 description
 "Indicates that the server supports identifying itself

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 37

 using TLS 1.3 External PSKs (pre-shared keys).";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 feature client-auth-supported {
 description
 "Indicates that the configuration for how to authenticate
 clients can be configured herein. TLS-level client
 authentication may not be needed when client authentication
 is expected to occur only at another protocol layer.";
 }

 feature client-auth-x509-cert {
 description
 "Indicates that the server supports authenticating clients
 using X.509 certificates.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile";
 }

 feature client-auth-raw-public-key {
 description
 "Indicates that the server supports authenticating clients
 using raw public keys.";
 reference
 "RFC 7250:
 Using Raw Public Keys in Transport Layer Security (TLS)
 and Datagram Transport Layer Security (DTLS)";
 }

 feature client-auth-tls12-psk {
 description
 "Indicates that the server supports authenticating clients
 using PSKs (pre-shared or pairwise symmetric keys).";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
 }

 feature client-auth-tls13-epsk {
 description
 "Indicates that the server supports authenticating clients
 using TLS 1.3 External PSKs (pre-shared keys).";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 // Groupings

 grouping tls-server-grouping {
 description
 "A reusable grouping for configuring a TLS server without

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 38

 any consideration for how underlying TCP sessions are
 established.

 Note that this grouping uses fairly typical descendant
 node names such that a stack of 'uses' statements will
 have name conflicts. It is intended that the consuming
 data model will resolve the issue (e.g., by wrapping
 the 'uses' statement in a container called
 'tls-server-parameters'). This model purposely does
 not do this itself so as to provide maximum flexibility
 to consuming models.";
 container server-identity {
 nacm:default-deny-write;
 description
 "A locally defined or referenced End-Entity (EE) certificate,
 including any configured intermediate certificates, that
 the TLS server will present when establishing a TLS
 connection in its Certificate message, as defined in
 Section 7.4.2 of RFC 5246 and Section 4.4.2 of RFC 8446.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2
 RFC 8446: The Transport Layer Security (TLS) Protocol
 Version 1.3
 RFC 9642: A YANG Data Model for a Keystore";
 choice auth-type {
 mandatory true;
 description
 "A choice amongst authentication types, of which one must
 be enabled (via its associated 'feature') and selected.";
 case certificate {
 if-feature "server-ident-x509-cert";
 container certificate {
 description
 "Specifies the server identity using a certificate.";
 uses "ks:inline-or-keystore-end-entity-cert-with-key-"
 + "grouping" {
 refine "inline-or-keystore/inline/inline-definition" {
 must 'not(public-key-format) or derived-from-or-self'
 + '(public-key-format,'
 + ' "ct:subject-public-'
 + 'key-info-format")';
 }
 refine "inline-or-keystore/central-keystore/"
 + "central-keystore-reference/asymmetric-key" {
 must 'not(deref(.)/../ks:public-key-format) or '
 + 'derived-from-or-self(deref(.)/../ks:public-key'
 + '-format, "ct:subject-public-key-info-format")';
 }
 }
 }
 }
 case raw-private-key {
 if-feature "server-ident-raw-public-key";
 container raw-private-key {
 description
 "Specifies the server identity using a raw
 private key.";

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 39

 uses ks:inline-or-keystore-asymmetric-key-grouping {
 refine "inline-or-keystore/inline/inline-definition" {
 must 'not(public-key-format) or derived-from-or-self'
 + '(public-key-format,'
 + ' "ct:subject-public-'
 + 'key-info-format")';
 }
 refine "inline-or-keystore/central-keystore/"
 + "central-keystore-reference" {
 must 'not(deref(.)/../ks:public-key-format) or '
 + 'derived-from-or-self(deref(.)/../ks:public-key'
 + '-format, "ct:subject-public-key-info-format")';
 }
 }
 }
 }
 case tls12-psk {
 if-feature "server-ident-tls12-psk";
 container tls12-psk {
 description
 "Specifies the server identity using a PSK (pre-shared
 or pairwise symmetric key).";
 uses ks:inline-or-keystore-symmetric-key-grouping;
 leaf id-hint {
 type string;
 description
 "The key 'psk_identity_hint' value used in the TLS
 'ServerKeyExchange' message.";
 reference
 "RFC 4279: Pre-Shared Key Ciphersuites for
 Transport Layer Security (TLS)";
 }
 }
 }
 case tls13-epsk {
 if-feature "server-ident-tls13-epsk";
 container tls13-epsk {
 description
 "An External Pre-Shared Key (EPSK) is established
 or provisioned out of band, i.e., not from a TLS
 connection. An EPSK is a tuple of (Base Key,
 External Identity, Hash). EPSKs MUST NOT be
 imported for (D)TLS 1.2 or prior versions.
 When PSKs are provisioned out of band, the PSK
 identity and the KDF hash algorithm to be used
 with the PSK MUST also be provisioned.

 The structure of this container is designed to
 satisfy the requirements in Section 4.2.11 of
 RFC 8446, the recommendations from Section 6 of
 RFC 9257, and the EPSK input fields detailed in
 Section 5.1 of RFC 9258. The base-key is based
 upon 'ks:inline-or-keystore-symmetric-key-grouping'
 in order to provide users with flexible and
 secure storage options.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 40

 RFC 9257: Guidance for External Pre-Shared Key
 (PSK) Usage in TLS
 RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 uses ks:inline-or-keystore-symmetric-key-grouping;
 leaf external-identity {
 type string;
 mandatory true;
 description
 "As per Section 4.2.11 of RFC 8446 and Section 4.1
 of RFC 9257, a sequence of bytes used to identify
 an EPSK. A label for a pre-shared key established
 externally.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3
 RFC 9257: Guidance for External Pre-Shared Key
 (PSK) Usage in TLS";
 }
 leaf hash {
 type tlscmn:epsk-supported-hash;
 default "sha-256";
 description
 "As per Section 4.2.11 of RFC 8446, for EPSKs,
 the hash algorithm MUST be set when the PSK is
 established; otherwise, default to SHA-256 if
 no such algorithm is defined. The server MUST
 ensure that it selects a compatible PSK (if any)
 and cipher suite. Each PSK MUST only be used
 with a single hash function.";
 reference
 "RFC 8446: The Transport Layer Security (TLS)
 Protocol Version 1.3";
 }
 leaf context {
 type string;
 description
 "As per Section 5.1 of RFC 9258, context MUST
 include the context used to determine the EPSK,
 if any exists. For example, context may include
 information about peer roles or identities
 to mitigate Selfie-style reflection attacks.
 Since the EPSK is a key derived from an external
 protocol or sequence of protocols, context MUST
 include a channel binding for the deriving
 protocols (see RFC 5056). The details of this
 binding are protocol specific and out of scope
 for this document.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 leaf target-protocol {
 type uint16;
 description
 "As per Section 3.1 of RFC 9258, the protocol
 for which a PSK is imported for use.";
 reference

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 41

 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 leaf target-kdf {
 type uint16;
 description
 "As per Section 3 of RFC 9258, the KDF for
 which a PSK is imported for use.";
 reference
 "RFC 9258: Importing External Pre-Shared Keys
 (PSKs) for TLS 1.3";
 }
 }
 }
 }
 } // container server-identity
 container client-authentication {
 if-feature "client-auth-supported";
 nacm:default-deny-write;
 must "ca-certs or ee-certs or raw-public-keys or tls12-psks
 or tls13-epsks";
 presence "Indicates that client authentication is supported
 (i.e., that the server will request clients send
 certificates). If not configured, the TLS server
 SHOULD NOT request that TLS clients provide
 authentication credentials.";
 description
 "Specifies how the TLS server can authenticate TLS clients.
 Any combination of credentials is additive and unordered.

 Note that no configuration is required for authentication
 based on PSK (pre-shared or pairwise symmetric key) as the
 the key is necessarily the same as configured in the
 '../server-identity' node.";
 container ca-certs {
 if-feature "client-auth-x509-cert";
 presence "Indicates that Certification Authority (CA)
 certificates have been configured. This
 statement is present so the mandatory
 descendant nodes do not imply that this node
 must be configured.";
 description
 "A set of CA certificates used by the TLS server to
 authenticate TLS client certificates. A client
 certificate is authenticated if it has a valid chain
 of trust to a configured CA certificate.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-certs-grouping;
 }
 container ee-certs {
 if-feature "client-auth-x509-cert";
 presence "Indicates that EE certificates have been
 configured. This statement is present so the
 mandatory descendant nodes do not imply that
 this node must be configured.";
 description
 "A set of client certificates (i.e., EE certificates)

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 42

 used by the TLS server to authenticate
 certificates presented by TLS clients. A client
 certificate is authenticated if it is an exact
 match to a configured client certificate.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-certs-grouping;
 }
 container raw-public-keys {
 if-feature "client-auth-raw-public-key";
 presence "Indicates that raw public keys have been
 configured. This statement is present so
 the mandatory descendant nodes do not imply
 that this node must be configured.";
 description
 "A set of raw public keys used by the TLS server to
 authenticate raw public keys presented by the TLS
 client. A raw public key is authenticated if it
 is an exact match to a configured raw public key.";
 reference
 "RFC 9641: A YANG Data Model for a Truststore";
 uses ts:inline-or-truststore-public-keys-grouping {
 refine "inline-or-truststore/inline/inline-definition/"
 + "public-key" {
 must 'derived-from-or-self(public-key-format,'
 + ' "ct:subject-public-key-info-format")';
 }
 refine "inline-or-truststore/central-truststore/"
 + "central-truststore-reference" {
 must 'not(deref(.)/../ts:public-key/ts:public-key-'
 + 'format[not(derived-from-or-self(., "ct:subject-'
 + 'public-key-info-format"))])';
 }
 }
 }
 leaf tls12-psks {
 if-feature "client-auth-tls12-psk";
 type empty;
 description
 "Indicates that the TLS server can authenticate TLS clients
 using configured PSKs (pre-shared or pairwise symmetric
 keys).

 No configuration is required since the PSK value is the
 same as PSK value configured in the 'server-identity'
 node.";
 }
 leaf tls13-epsks {
 if-feature "client-auth-tls13-epsk";
 type empty;
 description
 "Indicates that the TLS 1.3 server can authenticate TLS
 clients using configured External PSKs (pre-shared keys).

 No configuration is required since the PSK value is the
 same as PSK value configured in the 'server-identity'
 node.";
 }

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 43

 } // container client-authentication
 container hello-params {
 nacm:default-deny-write;
 if-feature "tlscmn:hello-params";
 uses tlscmn:hello-params-grouping;
 description
 "Configurable parameters for the TLS hello message.";
 } // container hello-params
 container keepalives {
 nacm:default-deny-write;
 if-feature "tls-server-keepalives";
 description
 "Configures the keepalive policy for the TLS server.";
 leaf peer-allowed-to-send {
 type empty;
 description
 "Indicates that the remote TLS client is allowed to send
 HeartbeatRequest messages, as defined by RFC 6520,
 to this TLS server.";
 reference
 "RFC 6520: Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) Heartbeat Extension";
 }
 container test-peer-aliveness {
 presence "Indicates that the TLS server proactively tests the
 aliveness of the remote TLS client.";
 description
 "Configures the keepalive policy to proactively test
 the aliveness of the TLS client. An unresponsive
 TLS client is dropped after approximately max-wait
 * max-attempts seconds.";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units "seconds";
 default "30";
 description
 "Sets the amount of time in seconds, after which a
 TLS-level message will be sent to test the
 aliveness of the TLS client if no data has been
 received from the TLS client.";
 }
 leaf max-attempts {
 type uint8;
 default "3";
 description
 "Sets the maximum number of sequential keepalive
 messages that can fail to obtain a response from
 the TLS client before assuming the TLS client is
 no longer alive.";
 }
 }
 } // container keepalives
 } // grouping tls-server-grouping

}

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 44

5. Security Considerations
The three IETF YANG modules in this document define groupings and will not be deployed as
standalone modules. Their security implications may be context dependent based on their use in
other modules. The designers of modules that import these grouping must conduct their own
analysis of the security considerations.

5.1. Considerations for the "iana-tls-cipher-suite-algs" YANG Module
This section is modeled after the template defined in .

The "iana-tls-cipher-suite-algs" YANG module defines a data model that is designed to be accessed
via YANG-based management protocols, such as NETCONF and RESTCONF .
These protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)

, TLS , and QUIC) and mandatory-to-implement mutual
authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

This YANG module defines YANG enumerations, for a public IANA-maintained registry.

YANG enumerations are not security-sensitive, as they are statically defined in the publicly
accessible YANG module. IANA deprecate and/or obsolete enumerations over time as
needed to address security issues found in the algorithms.

This module does not define any writable nodes, RPCs, actions, or notifications, and thus the
security considerations for such are not provided here.

5.2. Considerations for the "ietf-tls-common" YANG Module
This section is modeled after the template defined in .

The "ietf-tls-common" YANG module defines a data model that is designed to be accessed via
YANG-based management protocols, such as NETCONF and RESTCONF .
These protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)

, TLS , and QUIC) and mandatory-to-implement mutual
authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

<CODE ENDS>

Section 3.7.1 of [RFC8407]

[RFC6241] [RFC8040]

[RFC4252] [RFC8446] [RFC9000]

[RFC8341]

MAY

Section 3.7.1 of [RFC8407]

[RFC6241] [RFC8040]

[RFC4252] [RFC8446] [RFC9000]

[RFC8341]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 45

https://www.rfc-editor.org/rfc/rfc8407#section-3.7.1
https://www.rfc-editor.org/rfc/rfc8407#section-3.7.1

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the Security Considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

None of the readable data nodes defined in this YANG module are considered sensitive or
vulnerable in network environments. The NACM "default-deny-all" extension has not been set for
any data nodes defined in this module.

None of the writable data nodes defined in this YANG module are considered sensitive or
vulnerable in network environments. The NACM "default-deny-write" extension has not been set
for any data nodes defined in this module.

This module defines the "generate-asymmetric-key-pair" RPC that may, if the "ct:cleartext-private-
keys" feature is enabled and the client requests it, return the private clear in cleartext form. It is

 for private keys to pass the server's security perimeter.

This module does not define any actions or notifications, and thus the security considerations for
such are not provided here.

5.3. Considerations for the "ietf-tls-client" YANG Module
This section is modeled after the template defined in .

The "ietf-tls-client" YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF and RESTCONF . These
protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)

, TLS , and QUIC) and mandatory-to-implement mutual
authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the Security Considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

None of the readable data nodes defined in this YANG module are considered sensitive or
vulnerable in network environments. The NACM "default-deny-all" extension has not been set for
any data nodes defined in this module.

All the writable data nodes defined by this module may be considered sensitive or vulnerable in
some network environments. For instance, any modification to a key or reference to a key may
dramatically alter the implemented security policy. For this reason, the NACM extension "default-
deny-write" has been set for all data nodes defined in this module.

NOT RECOMMENDED

Section 3.7.1 of [RFC8407]

[RFC6241] [RFC8040]

[RFC4252] [RFC8446] [RFC9000]

[RFC8341]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 46

https://www.rfc-editor.org/rfc/rfc8407#section-3.7.1

URI:
Registrant Contact:

This module does not define any RPCs, actions, or notifications, and thus the security
considerations for such are not provided here.

5.4. Considerations for the "ietf-tls-server" YANG Module
This section is modeled after the template defined in .

The "ietf-tls-server" YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF and RESTCONF . These
protocols have mandatory-to-implement secure transport layers (e.g., Secure Shell (SSH)

, TLS , and QUIC) and mandatory-to-implement mutual
authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the Security Considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

None of the readable data nodes defined in this YANG module are considered sensitive or
vulnerable in network environments. The NACM "default-deny-all" extension has not been set for
any data nodes defined in this module.

Please be aware that this module uses the "key" and "private-key" nodes from the "ietf-crypto-
types" module , where said nodes have the NACM extension "default-deny-all" set, thus
preventing unrestricted read access to the cleartext key values.

All the writable data nodes defined by this module may be considered sensitive or vulnerable in
some network environments. For instance, any modification to a key or reference to a key may
dramatically alter the implemented security policy. For this reason, the NACM extension "default-
deny-write" has been set for all data nodes defined in this module.

This module does not define any RPCs, actions, or notifications, and thus the security
considerations for such are not provided here.

6. IANA Considerations

6.1. The IETF XML Registry
IANA has registered the following four URIs in the "ns" registry of the "IETF XML Registry"

.

urn:ietf:params:xml:ns:yang:iana-tls-cipher-suite-algs
The IESG

Section 3.7.1 of [RFC8407]

[RFC6241] [RFC8040]

[RFC4252] [RFC8446] [RFC9000]

[RFC8341]

[RFC9640]

[RFC3688]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 47

https://www.rfc-editor.org/rfc/rfc8407#section-3.7.1

XML:

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

name:
Maintained by IANA:
namespace:
prefix:
reference:

name:
Maintained by IANA:
namespace:
prefix:
reference:

name:
Maintained by IANA:
namespace:
prefix:
reference:

name:
Maintained by IANA:
namespace:
prefix:
reference:

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:ietf-tls-common
The IESG

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:ietf-tls-client
The IESG

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:ietf-tls-server
The IESG

N/A; the requested URI is an XML namespace.

6.2. The YANG Module Names Registry
IANA has registered the following four YANG modules in the "YANG Module Names" registry

.

iana-tls-cipher-suite-algs
Y

urn:ietf:params:xml:ns:yang:iana-tls-cipher-suite-algs
tlscsa

RFC 9645

ietf-tls-common
N

urn:ietf:params:xml:ns:yang:ietf-tls-common
tlscmn

RFC 9645

ietf-tls-client
N

urn:ietf:params:xml:ns:yang:ietf-tls-client
tlsc

RFC 9645

ietf-tls-server
N

urn:ietf:params:xml:ns:yang:ietf-tls-server
tlss

RFC 9645

[RFC6020]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 48

6.3. Considerations for the "iana-tls-cipher-suite-algs" YANG Module
This section follows the template defined in .

IANA used the script in Appendix A to generate the IANA-maintained "iana-tls-cipher-suite-algs"
YANG module. The YANG module is available from the "YANG Parameters" registry

.

IANA has added the following note to the registry:

New values must not be directly added to the "iana-tls-cipher-suite-algs" YANG module.
They must instead be added to the "TLS Cipher Suites" registry in the "Transport Layer
Security (TLS) Parameters" registry group .

When a value is added to the "TLS Cipher Suites" registry, a new "enum" statement must be
added to the "iana-tls-cipher-suite-algs" YANG module. The "enum" statement, and substatements
thereof, should be defined as follows:

enum
Replicates a name from the registry.

value
Contains the decimal value of the IANA-assigned value.

status
Include only if a registration has been deprecated or obsoleted. An IANA "Recommended"
value "N" maps to YANG status "deprecated". Since the registry is unable to express a logical
" " recommendation, there is no mapping to YANG status "obsolete", which is
unfortunate given the moving of single-DES and International Data Encryption Algorithm
(IDEA) TLS cipher suites to Historic .

description
Contains "Enumeration for the 'TLS_FOO' algorithm", where "TLS_FOO" is a placeholder for
the algorithm's name (e.g., "TLS_PSK_WITH_AES_256_CBC_SHA").

reference
Replicates the reference(s) from the registry with the title of the document(s) added.

Unassigned or reserved values are not present in the module.

When the "iana-tls-cipher-suite-algs" YANG module is updated, a new "revision" statement with a
unique revision date must be added in front of the existing revision statements. The "revision"
must have a "description" statement explaining why the the update occurred and must have a
"reference" substatement that points to the document defining the registry update that resulted
in this change. For instance:

Section 4.30.3.1 of [RFC8407BIS]

[IANA-YANG-
PARAMETERS]

[IANA-CIPHER-ALGS]

MUST NOT

[RFC8996]

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 49

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-17#section-4.30.3.1

[FIPS180-4]

[FIPS186-5]

[RFC2119]

[RFC4252]

[RFC4279]

[RFC5280]

IANA has added the following note to the "TLS Cipher Suites" registry under the "Transport Layer
Security (TLS) Parameters" registry group .

When this registry is modified, the YANG module "iana-tls-cipher-suite-algs"
 must be updated as defined in RFC 9645.

7. References

7.1. Normative References

,
, , , August 2015,

.

,
, , , February 2023,

.

, , ,
, , March 1997,
.

 and , ,
, , January 2006,
.

 and ,
, , , December

2005, .

, , , , , and ,

, , , May 2008,
.

revision 2024-02-02 {
 description
 "This update reflects the update made to the underlying
 'Foo Bar' registry per RFC XXXX.";
 reference
 "RFC XXXX: Extend the Foo Bar Registry
 to Support Something Important";
}

[IANA-CIPHER-ALGS]

[IANA-
YANG-PARAMETERS]

National Institute of Standards and Technology (NIST) "Secure Hash Standard
(SHS)" FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.180-4 <https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>

National Institute of Standards and Technology (NIST) "Digital Signature
Standard (DSS)" FIPS 186-5 DOI 10.6028/NIST.FIPS.186-5
<https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Authentication Protocol"
RFC 4252 DOI 10.17487/RFC4252 <https://www.rfc-editor.org/info/
rfc4252>

Eronen, P., Ed. H. Tschofenig, Ed. "Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS)" RFC 4279 DOI 10.17487/RFC4279

<https://www.rfc-editor.org/info/rfc4279>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 50

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280

[RFC5288]

[RFC5289]

[RFC6020]

[RFC6241]

[RFC6520]

[RFC7250]

[RFC7589]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8341]

[RFC8422]

, , and ,
, , , August 2008,

.

,
, , , August 2008,

.

,
, , , October

2010, .

, , , and ,
, , ,

June 2011, .

, , and ,
, ,

, February 2012,
.

, , , , and ,

, , , June 2014,
.

, , and ,
, ,

, June 2015, .

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, ,
, , , May 2017,

.

 and , ,
, , , March 2018,

.

, , and ,
,

, , August 2018,
.

Salowey, J. Choudhury, A. D. McGrew "AES Galois Counter Mode (GCM)
Cipher Suites for TLS" RFC 5288 DOI 10.17487/RFC5288 <https://
www.rfc-editor.org/info/rfc5288>

Rescorla, E. "TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois
Counter Mode (GCM)" RFC 5289 DOI 10.17487/RFC5289 <https://
www.rfc-editor.org/info/rfc5289>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Seggelmann, R. Tuexen, M. M. Williams "Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS) Heartbeat Extension" RFC 6520
DOI 10.17487/RFC6520 <https://www.rfc-editor.org/info/
rfc6520>

Wouters, P., Ed. Tschofenig, H., Ed. Gilmore, J. Weiler, S. T. Kivinen "Using
Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)" RFC 7250 DOI 10.17487/RFC7250 <https://
www.rfc-editor.org/info/rfc7250>

Badra, M. Luchuk, A. J. Schoenwaelder "Using the NETCONF Protocol over
Transport Layer Security (TLS) with Mutual X.509 Authentication" RFC 7589
DOI 10.17487/RFC7589 <https://www.rfc-editor.org/info/rfc7589>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

Nir, Y. Josefsson, S. M. Pegourie-Gonnard "Elliptic Curve Cryptography
(ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier"
RFC 8422 DOI 10.17487/RFC8422 <https://www.rfc-editor.org/info/
rfc8422>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 51

https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5289
https://www.rfc-editor.org/info/rfc5289
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7589
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422

[RFC8446]

[RFC9000]

[RFC9640]

[RFC9641]

[RFC9642]

[HTTP-CLIENT-SERVER]

[IANA-CIPHER-ALGS]

[IANA-YANG-PARAMETERS]

[NETCONF-CLIENT-SERVER]

[RESTCONF-CLIENT-SERVER]

[RFC3688]

[RFC5056]

[RFC5246]

, , ,
, August 2018, .

 and ,
, , , May 2021,

.

, , ,
, October 2024, .

, , ,
, October 2024, .

, , ,
, October 2024, .

7.2. Informative References

, ,
, , 15

August 2024,
.

, ,
.

, ,
.

, ,
, , 14 August

2024,
.

, ,
, , 14 August

2024,
.

, , , , ,
January 2004, .

, , ,
, November 2007,

.

 and ,
, , , August 2008,

.

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Watsen, K. "YANG Data Types and Groupings for Cryptography" RFC 9640 DOI
10.17487/RFC9640 <https://www.rfc-editor.org/info/rfc9640>

Watsen, K. "A YANG Data Model for a Truststore" RFC 9641 DOI 10.17487/
RFC9641 <https://www.rfc-editor.org/info/rfc9641>

Watsen, K. "A YANG Data Model for a Keystore" RFC 9642 DOI 10.17487/
RFC9642 <https://www.rfc-editor.org/info/rfc9642>

Watsen, K. "YANG Groupings for HTTP Clients and HTTP Servers"
Work in Progress Internet-Draft, draft-ietf-netconf-http-client-server-23

<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-
server-23>

IANA "TLS Cipher Suites" <https://www.iana.org/assignments/tls-
parameters/>

IANA "YANG Parameters" <https://www.iana.org/assignments/
yang-parameters>

Watsen, K. "NETCONF Client and Server Models" Work in
Progress Internet-Draft, draft-ietf-netconf-netconf-client-server-37

<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-
server-37>

Watsen, K. "RESTCONF Client and Server Models" Work in
Progress Internet-Draft, draft-ietf-netconf-restconf-client-server-38

<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-
server-38>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Williams, N. "On the Use of Channel Bindings to Secure Channels" RFC 5056
DOI 10.17487/RFC5056 <https://www.rfc-editor.org/info/
rfc5056>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 52

https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9640
https://www.rfc-editor.org/info/rfc9641
https://www.rfc-editor.org/info/rfc9642
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://www.iana.org/assignments/tls-parameters/
https://www.iana.org/assignments/tls-parameters/
https://www.iana.org/assignments/yang-parameters
https://www.iana.org/assignments/yang-parameters
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc5056
https://www.rfc-editor.org/info/rfc5056
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246

[RFC8071]

[RFC8259]

[RFC8340]

[RFC8342]

[RFC8407]

[RFC8407BIS]

[RFC8996]

[RFC9110]

[RFC9257]

[RFC9258]

[RFC9643]

[RFC9644]

[SYSTEM-CONFIG]

, , ,
, February 2017, .

, ,
, , , December 2017,

.

 and , , , ,
, March 2018, .

, , , , and ,
, , ,

March 2018, .

,
, , , , October 2018,

.

, , and ,
, ,

, 27 September 2024,
.

 and , , , ,
, March 2021, .

, , and , ,
, , , June 2022,

.

, , , and ,
, , , July 2022,

.

 and ,
, , , July 2022,

.

 and , ,
, , October 2024,
.

, , ,
, October 2024, .

, , and , ,
, , 29 September 2024,

.

Watsen, K. "NETCONF Call Home and RESTCONF Call Home" RFC 8071 DOI
10.17487/RFC8071 <https://www.rfc-editor.org/info/rfc8071>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Bierman, A. "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models" BCP 216 RFC 8407 DOI 10.17487/RFC8407
<https://www.rfc-editor.org/info/rfc8407>

Bierman, A. Boucadair, M. Q. Wu "Guidelines for Authors and Reviewers
of Documents Containing YANG Data Models" Work in Progress Internet-Draft,
draft-ietf-netmod-rfc8407bis-17 <https://datatracker.ietf.org/
doc/html/draft-ietf-netmod-rfc8407bis-17>

Moriarty, K. S. Farrell "Deprecating TLS 1.0 and TLS 1.1" BCP 195 RFC 8996
DOI 10.17487/RFC8996 <https://www.rfc-editor.org/info/rfc8996>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Housley, R. Hoyland, J. Sethi, M. C. A. Wood "Guidance for External Pre-
Shared Key (PSK) Usage in TLS" RFC 9257 DOI 10.17487/RFC9257
<https://www.rfc-editor.org/info/rfc9257>

Benjamin, D. C. A. Wood "Importing External Pre-Shared Keys (PSKs) for
TLS 1.3" RFC 9258 DOI 10.17487/RFC9258 <https://www.rfc-
editor.org/info/rfc9258>

Watsen, K. M. Scharf "YANG Groupings for TCP Clients and TCP Servers"
RFC 9643 DOI 10.17487/RFC9643 <https://www.rfc-editor.org/info/
rfc9643>

Watsen, K. "YANG Groupings for SSH Clients and SSH Servers" RFC 9644 DOI
10.17487/RFC9644 <https://www.rfc-editor.org/info/rfc9644>

Ma, Q. Wu, Q. C. Feng "System-defined Configuration" Work in
Progress Internet-Draft, draft-ietf-netmod-system-config-09
<https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-09>

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 53

https://www.rfc-editor.org/info/rfc8071
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8407
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-17
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-17
https://www.rfc-editor.org/info/rfc8996
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9257
https://www.rfc-editor.org/info/rfc9258
https://www.rfc-editor.org/info/rfc9258
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9644
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-09

[W3C.REC-xml-20081126] , , , , and ,
,

, November 2008, .

Bray, T. Paoli, J. Sperberg-McQueen, C. M. Maler, E. F. Yergeau
"Extensible Markup Language (XML) 1.0 (Fifth Edition)" W3C Recommendation
REC-xml-20081126 <https://www.w3.org/TR/xml/>

Appendix A. Script to Generate IANA-Maintained YANG
Modules
This section is not normative.

The Python script contained in this section was used to create the
initial IANA-maintained "iana-tls-cipher-suite-algs" YANG module maintained at

.

Run the script using the command 'python gen-yang-modules.py' to produce the YANG module
file in the current directory.

Be aware that the script does not attempt to copy the "revision" statements from the previous/
current YANG module. Copying the revision statements must be done manually.

<https://www.python.org>
[IANA-YANG-

PARAMETERS]

<CODE BEGINS>
=============== NOTE: '\\' line wrapping per RFC 8792 ===============

import re
import csv
import requests
import textwrap
import requests_cache
from io import StringIO
from datetime import datetime

Metadata for the one YANG module produced by this script
MODULES = [
 {
 "csv_url": "https://www.iana.org/assignments/tls-parameters/\
\tls-parameters-4.csv",
 "spaced_name": "cipher-suite",
 "hypenated_name": "cipher-suite",
 "prefix": "tlscsa",
 }
]

def create_module_begin(module, f):

 # Define template for all four modules
 PREAMBLE_TEMPLATE="""
module iana-tls-HNAME-algs {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:iana-tls-HNAME-algs";
 prefix PREFIX;

 organization
 "Internet Assigned Numbers Authority (IANA)";

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 54

https://www.w3.org/TR/xml/
https://www.python.org

 contact
 "Postal: ICANN
 12025 Waterfront Drive, Suite 300
 Los Angeles, CA 90094-2536
 United States of America
 Tel: +1 310 301 5800
 Email: <iana@iana.org>";

 description
 "This module defines enumerations for the cipher suite
 algorithms defined in the 'TLS Cipher Suites' registry
 under the 'Transport Layer Security (TLS) Parameters'
 registry group maintained by IANA.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 The initial version of this YANG module is part of RFC 9645
 (https://www.rfc-editor.org/info/rfc9645); see the RFC
 itself for full legal notices.

 All versions of this module are published by IANA
 (https://www.iana.org/assignments/yang-parameters).";

 revision DATE {
 description
 "This initial version of the module was created using
 the script defined in RFC 9645 to reflect the contents
 of the SNAME algorithms registry maintained by IANA.";
 reference
 "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
 }

 typedef tls-HNAME-algorithm {
 type enumeration {
"""
 # Replacements
 rep = {
 "DATE": datetime.today().strftime('%Y-%m-%d'),
 "YEAR": datetime.today().strftime('%Y'),
 "SNAME": module["spaced_name"],
 "HNAME": module["hypenated_name"],
 "PREFIX": module["prefix"]
 }

 # Do the replacement
 rep = dict((re.escape(k), v) for k, v in rep.items())
 pattern = re.compile("|".join(rep.keys()))
 text = pattern.sub(lambda m: rep[re.escape(m.group(0))], PREAMBL\
\E_TEMPLATE)

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 55

 # Write preamble into the file
 f.write(text)

def create_module_body(module, f):

 # Fetch the current CSV file from IANA
 r = requests.get(module["csv_url"])
 assert r.status_code == 200, "Could not get " + module["csv_url"]

 # Parse each CSV line
 with StringIO(r.text) as csv_file:
 csv_reader = csv.DictReader(csv_file)
 for row in csv_reader:

 # Skip reserved algs
 if row["Description"].startswith("Unassigned"):
 continue

 # Skip unassigned algs
 if row["Description"].startswith("Reserved"):
 continue

 # Ensure this is the TLS line
 assert row["Description"].startswith("TLS_"), "Unrecogni\
\zed description: '" + row["Description"] + "'"

 # Set the 'refs' and 'titles' lists
 if row["Reference"] == "":
 pass # skip when the Reference field is empty

 else:

 # There may be more than one ref
 refs = row["Reference"][1:-1] # remove the '[' and \
\']' chars
 refs = refs.split("][")
 titles = []
 for ref in refs:

 # Ascertain the ref's title
 if ref.startswith("RFC"):

 # Fetch the current BIBTEX entry
 bibtex_url="https://datatracker.ietf.org/doc\
\/"+ ref.lower() + "/bibtex/"
 r = requests.get(bibtex_url)
 assert r.status_code == 200, "Could not GET \
\" + bibtex_url

 # Append to 'titles' value from the "title" \
\line
 for item in r.text.split("\n"):
 if "title =" in item:
 title = re.sub('.*{{(.*)}}.*', r'\g<\
\1>', item)
 if title.startswith("ECDHE_PSK"):

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 56

 title = re.sub("ECDHE_PSK", \
\"ECDHE_PSK", title)
 titles.append(re.sub('.*{{(.*)}}.*',\
\ r'\g<1>', title))
 break
 else:
 raise Exception("RFC title not found")

 # Insert a space: "RFC9645" --> "RFC 9645"
 index = refs.index(ref)
 refs[index] = "RFC " + ref[3:]

 elif ref == "IESG Action 2018-08-16":

 # Rewrite the ref value
 index = refs.index(ref)
 refs[index] = "IESG Action"

 # Let title be something descriptive
 titles.append("IESG Action 2018-08-16")

 elif ref == "draft-irtf-cfrg-aegis-aead-08":

 # Manually set the document's title
 titles.append("The AEGIS Family of Authentic\
\ated Encryption Algorithms")

 elif ref:
 raise Exception(f'ref "{ref}" not found')

 else:
 raise Exception(f'ref missing: {row}')

 # Write out the enum
 f.write(f' enum {row["Description"]} {{\n');
 if row["Recommended"] == 'N':
 f.write(f' status deprecated;\n')
 f.write(f' description\n')
 description = f' "Enumeration for the \'{row["D\
\escription"]}\' algorithm.";'
 description = textwrap.fill(description, width=69, subse\
\quent_indent=" ")
 f.write(f'{description}\n')
 f.write(' reference\n')
 f.write(' "')
 if row["Reference"] == "":
 f.write('Missing in IANA registry.')
 else:
 ref_len = len(refs)
 for i in range(ref_len):
 ref = refs[i]
 f.write(f'{ref}:\n')
 title = " " + titles[i]
 if i == ref_len - 1:
 title += '";'
 title = textwrap.fill(title, width=69, subsequen\
\t_indent=" ")

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 57

Acknowledgements
The authors would like to thank the following for lively discussions on list and in the halls
(ordered by first name): , , , , ,

, , , , , ,
, , , , , ,
, , , , , , ,

, , , , and .

 f.write(f'{title}')
 if i != ref_len - 1:
 f.write('\n ')
 f.write('\n')
 f.write(' }\n')

def create_module_end(module, f):

 # Close out the enumeration, typedef, and module
 f.write(" }\n")
 f.write(" description\n")
 f.write(f' "An enumeration for TLS {module["spaced_name"]} \
\algorithms.";\n')
 f.write(" }\n")
 f.write('\n')
 f.write('}\n')

def create_module(module):

 # Install cache for 8x speedup
 requests_cache.install_cache()

 # Ascertain the yang module's name
 yang_module_name = "iana-tls-" + module["hypenated_name"] + "-al\
\gs.yang"

 # Create yang module file
 with open(yang_module_name, "w") as f:
 create_module_begin(module, f)
 create_module_body(module, f)
 create_module_end(module, f)

def main():
 for module in MODULES:
 create_module(module)

if __name__ == "__main__":
 main()

<CODE ENDS>

Alan Luchuk Andy Bierman Balázs Kovács Benoit Claise Bert Wijnen
David Lamparter Dhruv Dhody Éric Vyncke Gary Wu Henk Birkholz Jeff Hartley Jürgen
Schönwälder Ladislav Lhotka Liang Xia Martin Björklund Martin Thomson Mehmet Ersue
Michal Vaško Murray Kucherawy Paul Wouters Phil Shafer Qin Wu Radek Krejci Rob Wilton
Roman Danyliw Russ Housley Sean Turner Thomas Martin Tom Petch

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 58

Contributors
Special acknowledgement goes to who contributed the "ietf-tls-common" module and

 who carefully ensured that references were set correctly throughout.
Gary Wu

Tom Petch

Author's Address
Kent Watsen
Watsen Networks

kent+ietf@watsen.netEmail:

RFC 9645 Groupings for TLS Clients and Servers October 2024

Watsen Standards Track Page 59

mailto:kent+ietf@watsen.net

	RFC 9645
	YANG Groupings for TLS Clients and TLS Servers
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Regarding the Three IETF Modules
	1.2. Relation to Other RFCs
	1.3. Specification Language
	1.4. Adherence to the NMDA
	1.5. Conventions

	2. The "ietf-tls-common" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Identities
	2.1.3. Groupings
	2.1.3.1. The "hello-params-grouping" Grouping

	2.1.4. Protocol-Accessible Nodes

	2.2. Example Usage
	2.3. YANG Module

	3. The "ietf-tls-client" Module
	3.1. Data Model Overview
	3.1.1. Features
	3.1.2. Groupings
	3.1.2.1. The "tls-client-grouping" Grouping

	3.1.3. Protocol-Accessible Nodes

	3.2. Example Usage
	3.3. YANG Module

	4. The "ietf-tls-server" Module
	4.1. Data Model Overview
	4.1.1. Features
	4.1.2. Groupings
	4.1.2.1. The "tls-server-grouping" Grouping

	4.1.3. Protocol-Accessible Nodes

	4.2. Example Usage
	4.3. YANG Module

	5. Security Considerations
	5.1. Considerations for the "iana-tls-cipher-suite-algs" YANG Module
	5.2. Considerations for the "ietf-tls-common" YANG Module
	5.3. Considerations for the "ietf-tls-client" YANG Module
	5.4. Considerations for the "ietf-tls-server" YANG Module

	6. IANA Considerations
	6.1. The IETF XML Registry
	6.2. The YANG Module Names Registry
	6.3. Considerations for the "iana-tls-cipher-suite-algs" YANG Module

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Script to Generate IANA-Maintained YANG Modules
	Acknowledgements
	Contributors
	Author's Address

