
RFC 9653
Zero Checksum for the Stream Control Transmission
Protocol

Abstract
The Stream Control Transmission Protocol (SCTP) uses a 32-bit checksum in the common header
of each packet to provide some level of data integrity. If another method used by SCTP already
provides the same or a higher level of data integrity, computing this checksum does not provide
any additional protection but does consume computing resources.

This document provides a simple extension allowing SCTP to save these computing resources by
using zero as the checksum in a backwards-compatible way. It also defines how this feature can
be used when SCTP packets are encapsulated in Datagram Transport Layer Security (DTLS)
packets.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9653
Standards Track
September 2024
2070-1721
M. Tüxen
Münster Univ. of Appl. Sciences

V. Boivie
Google

F. Castelli
Google

R. Jesup
Mozilla

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9653

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

Tüxen, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9653
https://www.rfc-editor.org/info/rfc9653

1. Introduction
SCTP as specified in uses a CRC32c checksum to provide some level of data integrity.
When using, for example, Datagram Transport Layer Security (DTLS) as the lower layer for SCTP
as specified in , using the CRC32c checksum does not provide any additional protection

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions

3. Alternate Error Detection Methods

4. A New Chunk Parameter

5. Procedures

5.1. Declaration of Feature Support

5.2. Sender-Side Considerations

5.3. Receiver-Side Considerations

6. Error Detection via SCTP over DTLS

7. Socket API Considerations

7.1. Set Accepting a Zero Checksum (SCTP_ACCEPT_ZERO_CHECKSUM)

8. IANA Considerations

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Authors' Addresses

2

3

3

5

6

6

6

7

7

7

7

8

9

9

9

10

10

10

[RFC9260]

[RFC8261]

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

over that already provided by DTLS. However, computing the CRC32c checksum at the sender
and receiver sides does consume computational resources for no benefit. This is particularly
important for endpoints that are computationally limited and use SCTP over DTLS.

The extension described in this document allows an SCTP endpoint to declare that it accepts SCTP
packets with a checksum of zero when using a specific alternate error detection method. This
declaration happens during the setup of the SCTP association and allows endpoints that support
this extension to be interoperable with endpoints that don't. To provide this backwards
compatibility, endpoints using this extension still need to implement the CRC32c checksum
algorithm.

2. Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Alternate Error Detection Methods
SCTP uses a CRC32c checksum to provide some level of data integrity. The CRC32c checksum is
computed based on the SCTP common header and the chunks contained in the packet. In
particular, the computation of the CRC32c checksum does not involve a pseudo header for IPv4
or IPv6 like the computation of the TCP checksum, as specified in , or the UDP
checksum, as specified in .

Zero is a valid result of the CRC32c checksum algorithm. For example, the following figure
depicts an SCTP packet containing a minimal INIT chunk with a correct CRC32c checksum of
zero.

[RFC9293]
[RFC0768]

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 3

Using SCTP in combination with other mechanisms or protocol extensions might provide data
integrity protection with an equal or lower probability of false negatives than the one provided
by using the CRC32c checksum algorithm. When using such alternate error detection methods,
the SCTP common header containing the 32-bit checksum field might or might not be visible to
middleboxes on the paths between the two endpoints.

Alternate error detection methods have two requirements:

An alternate error detection method provide an equal or lower probability of false
negatives than the one provided by using the CRC32c checksum algorithm. This only
apply to packets satisfying some method-specific constraints.
Using an alternate error detection method result in a path failure for more than
two retransmission timeouts (RTOs) due to middleboxes on the path expecting correct
CRC32c checksums.

To fulfill the second requirement, alternate error detection methods could use a heuristic to
detect the existence of such middleboxes and use correct CRC32c checksums on these affected
paths.

Using DTLS as the lower layer of SCTP as specified in is one example that fulfills the
first requirement. Another example is using SCTP Authentication as specified in . Of
course, this only applies to each SCTP packet having an AUTH chunk as its first chunk. However,
using SCTP Authentication without any heuristic does not fulfill the second requirement. Since
using DTLS as the lower layer of SCTP as specified in also fulfills the second
requirement, it can be used as an alternate error detection method (see Section 6).

Figure 1: SCTP Packet with a Correct CRC32c Checksum of Zero

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port Number = 5001 |Destination Port Number = 5001 |
+-+
| Verification Tag = 0 |
+-+
| Checksum = 0 |
+-+
| Type = 1 |Chunk Flags = 0| Chunk Length = 20 |
+-+
| Initiate Tag = 0xFCB75CCA |
+-+
| Advertised Receiver Window Credit (a_rwnd) = 1500 |
+-+
|Number of Outbound Streams = 1 | Number of Inbound Streams = 1 |
+-+
| Initial TSN = 0 |
+-+

1. MUST
MAY

2. MUST NOT

[RFC8261]
[RFC4895]

[RFC8261]

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 4

4. A New Chunk Parameter
The Zero Checksum Acceptable Chunk Parameter is defined by the following figure.

Type: 16 bits (unsigned integer)
This field holds the IANA-defined parameter type for the "Zero Checksum Acceptable" chunk
parameter. IANA has assigned the value 32769 (0x8001) for this parameter type.

Length: 16 bits (unsigned integer)
This field holds the length in bytes of the chunk parameter; the value be 8.

Error Detection Method Identifier (EDMID): 32 bits (unsigned integer)
An IANA-registered value specifying the alternate error detection method the sender of this
parameter is willing to use for received packets.

All transported integer numbers are in network byte order, a.k.a. big endian.

The Zero Checksum Acceptable Chunk Parameter appear in INIT and INIT ACK chunks and
 appear in any other chunk. The Parameter appear more than once in any

chunk.

If an endpoint not supporting the extension described in this document receives this parameter
in an INIT or INIT ACK chunk, it is to skip this parameter and continue to process
further parameters in the chunk. This behavior is specified by because the highest-
order two bits of the Type are '10'.

If an alternate error detection method is used, the computation of the CRC32c checksum
consumes computational resources without providing any benefit. To avoid this, an SCTP
endpoint could be willing to accept SCTP packets with an incorrect CRC32c checksum value of
zero in addition to SCTP packets with correct CRC32c checksum values.

Because zero is a valid result of the CRC32c checksum algorithm, a receiver of an SCTP packet
containing a checksum value of zero cannot determine whether the sender included an incorrect
CRC32c checksum of zero to reduce the CPU cost or the result of the CRC32c checksum
computation was actually zero. However, if the receiver is willing to use an alternate error
detection method, this ambiguity is irrelevant, since the receiver is fine with not using the
CRC32c checksum to protect incoming packets.

Figure 2: Zero Checksum Acceptable Chunk Parameter

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type = 0x8001 | Length = 8 |
+-+
| Error Detection Method Identifier (EDMID) |
+-+

MUST

MAY
MUST NOT MUST NOT

REQUIRED
[RFC9260]

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 5

5. Procedures

5.1. Declaration of Feature Support
An endpoint willing to accept SCTP packets with an incorrect checksum of zero include the
Zero Checksum Acceptable Chunk Parameter indicating the alternate error detection method it is
willing to use in the INIT or INIT ACK chunk it sends.

An SCTP implementation also require the upper layer to indicate that it is fine to use a
specific alternate error detection method before including the corresponding Zero Checksum
Acceptable Chunk Parameter.

MUST

MAY

a.

b.

5.2. Sender-Side Considerations
An SCTP endpoint cannot just use an incorrect CRC32c checksum value of zero for all SCTP
packets it sends. The following restrictions apply:

If an endpoint has not received an INIT or INIT ACK chunk containing a Zero Checksum
Acceptable Chunk Parameter indicating an alternate error detection method it supports from
its peer during the association setup, it use a correct CRC32c checksum. In particular,
when an endpoint

sends a packet containing an INIT chunk, it include a correct CRC32c checksum
in the packet containing the INIT chunk.

responds to an "Out of the Blue" (OOTB) SCTP packet, it include a correct CRC32c
checksum in the response packet.

When an endpoint sends a packet containing a COOKIE ECHO chunk, it include a
correct CRC32c checksum in the packet containing the COOKIE ECHO chunk.
When an endpoint supports the dynamic address reconfiguration specified in and
sends a packet containing an ASCONF chunk, it include a correct CRC32c checksum in
the packet containing the ASCONF chunk.
If an alternate error detection method has some method-specific constraints, the sender

 include a correct CRC32c checksum in all packets that don't fulfill these method-
specific constraints.

The first restriction allows backwards compatibility. The second and third restrictions allow a
simpler implementation of the extension defined in this document, because looking up the
association for SCTP packets containing a COOKIE ECHO chunk or an ASCONF chunk might be
more complex than for other packets. Finally, the last restriction covers constraints specific to the
alternate error detection method.

An SCTP endpoint require that the upper layer allow the use of the alternate error detection
method that was announced by the peer before sending packets with an incorrect checksum of
zero.

1.

MUST

MUST

MUST

2. MUST

3. [RFC5061]
MUST

4.
MUST

MAY

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 6

SCTP_EDMID_NONE:

5.3. Receiver-Side Considerations
If an endpoint has sent the Zero Checksum Acceptable Chunk Parameter indicating the support
of an alternate error detection method in an INIT or INIT ACK chunk, in addition to SCTP packets
containing the correct CRC32c checksum value it accept SCTP packets that have an
incorrect checksum value of zero and that fulfill the requirements of the announced alternate
error detection method used for this association. Otherwise, the endpoint drop all SCTP
packets with an incorrect CRC32c checksum.

In addition to processing OOTB packets with a correct CRC32c checksum as specified in
, an SCTP implementation also process OOTB packets having an incorrect zero

checksum. Doing so might result in faster SCTP association failure detection.

7. Socket API Considerations
This section describes how the socket API defined in needs to be extended to provide a
way for the application to control the acceptance of a zero checksum.

A 'Socket API Considerations' section is contained in all SCTP-related specifications published
after describing an extension for which implementations using the socket API as
specified in would require some extension of the socket API. Please note that this
section is informational only.

A socket API implementation based on is extended by supporting one new write-only
IPPROTO_SCTP-level socket option.

7.1. Set Accepting a Zero Checksum (SCTP_ACCEPT_ZERO_CHECKSUM)
This IPPROTO_SCTP-level socket option with the name SCTP_ACCEPT_ZERO_CHECKSUM can be
used to control the acceptance of a zero checksum. It is a write-only socket option and applies
only to future SCTP associations on the socket.

This option expects an unsigned integer. Possible values include:

If none of the above restrictions apply, an endpoint use zero as the checksum when
sending an SCTP packet.

SHOULD

MUST

MUST

[RFC9260] MAY

6. Error Detection via SCTP over DTLS
Using SCTP over DTLS as specified in provides a stronger error detection method than
using the CRC32c checksum algorithm. Since middleboxes will not observe the unencrypted SCTP
packet, there is no risk in interfering with using zero as an incorrect checksum. There are no
additional constraints (specific to the error detection method) on packets when using DTLS
encapsulation.

[RFC8261]

[RFC6458]

[RFC6458]
[RFC6458]

[RFC6458]

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 7

SCTP_EDMID_LOWER_LAYER_DTLS:

(a)

(b)

(c)

(d)

Disable the use of any alternate error detection method. This means that all SCTP packets
being received are only accepted if they have a correct CRC32c checksum value.

Use the alternate error detection method described in
Section 6.

An implementation might only send packets with an incorrect checksum of zero, if the alternate
error detection method announced by the peer is also enabled locally via this socket option.

The default for this socket option is that the use of alternate error detection methods is disabled.

8. IANA Considerations
A new chunk parameter type has been assigned by IANA in the "Chunk Parameter Types"
registry for SCTP:

ID Value Chunk Parameter Type Reference

32769 Zero Checksum Acceptable (0x8001) RFC 9653

Table 1: New Entry in "Chunk Parameter Types" Registry

Furthermore, IANA has established a new "Error Detection Method" registry for SCTP. The
assignment of new error detection methods is done through the Specification Required policy as
defined in . Documentation for a new error detection method contain the
following information:

A name of an alternate error detection method.
A reference to a specification describing:

the alternate error detection method,

why the alternate error detection method provides an equal or lower probability of
false negatives than the one provided by using the CRC32c checksum,

any constraints (specific to the alternate error detection method) that are referred to
in the fourth exception in Section 5.2, and

why using the alternate error detection method does not result in path failures due to
middleboxes expecting correct CRC32c checksums for more than two RTOs. In case the
alternate error detection method uses a heuristic for detecting such middleboxes, this
heuristic needs to be described.

The initial contents of the registry are as follows:

ID Value Error Detection Method Reference

0 Reserved RFC 9653

[RFC8126] MUST

1.
2.

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 8

[RFC2119]

[RFC5061]

[RFC8126]

[RFC8174]

[RFC8261]

ID Value Error Detection Method Reference

1 SCTP over DTLS RFC 9653

2 - 4294967295 Unassigned

Table 2: Initial Contents of the "Error Detection Method"
Registry

A designated expert (DE) is expected to ascertain the existence of suitable documentation (a
specification) as described in and to verify that the document is permanently and
publicly available. Furthermore, the DE is expected to ensure that the above four points have
been addressed appropriately.

9. Security Considerations
This document does not change the considerations given in .

Due to the first requirement in Section 3, using an alternate error detection method provides an
equal or better level of data integrity than the one provided by using the CRC32c checksum
algorithm. The second requirement in Section 3 ensures that the existence of middleboxes
expecting correct CRC32c checksums does not result in permanent path failures.

10. References

10.1. Normative References

, , ,
, , March 1997,
.

, , , , and ,
, ,

, September 2007, .

, , and ,
, , , , June

2017, .

, ,
, , , May 2017,

.

, , , and ,
, ,

, November 2017, .

[RFC8126]

[RFC9260]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Stewart, R. Xie, Q. Tuexen, M. Maruyama, S. M. Kozuka "Stream Control
Transmission Protocol (SCTP) Dynamic Address Reconfiguration" RFC 5061 DOI
10.17487/RFC5061 <https://www.rfc-editor.org/info/rfc5061>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Tuexen, M. Stewart, R. Jesup, R. S. Loreto "Datagram Transport Layer
Security (DTLS) Encapsulation of SCTP Packets" RFC 8261 DOI 10.17487/
RFC8261 <https://www.rfc-editor.org/info/rfc8261>

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 9

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5061
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8261

[RFC9260]

[RFC0768]

[RFC4895]

[RFC6458]

[RFC9293]

, , and , ,
, , June 2022,
.

10.2. Informative References

, , , , ,
August 1980, .

, , , and ,
, , ,

August 2007, .

, , , , and ,
, ,

, December 2011, .

, , , ,
, August 2022, .

Acknowledgments
The authors wish to thank , , , ,

, , , , , , , and
 for their invaluable comments.

Stewart, R. Tüxen, M. K. Nielsen "Stream Control Transmission Protocol"
RFC 9260 DOI 10.17487/RFC9260 <https://www.rfc-editor.org/info/
rfc9260>

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768
<https://www.rfc-editor.org/info/rfc768>

Tuexen, M. Stewart, R. Lei, P. E. Rescorla "Authenticated Chunks for the
Stream Control Transmission Protocol (SCTP)" RFC 4895 DOI 10.17487/RFC4895

<https://www.rfc-editor.org/info/rfc4895>

Stewart, R. Tuexen, M. Poon, K. Lei, P. V. Yasevich "Sockets API Extensions
for the Stream Control Transmission Protocol (SCTP)" RFC 6458 DOI 10.17487/
RFC6458 <https://www.rfc-editor.org/info/rfc6458>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI
10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

Bernard Aboba Deb Cooley Martin Duke Gorry Fairhurst Mike
Heard Peter Lei Nils Ohlmeier Claudio Porfiri Greg Skinner Timo Völker Éric Vyncke
Magnus Westerlund

Authors' Addresses
Michael Tüxen
Münster University of Applied Sciences
Stegerwaldstrasse 39
48565 Steinfurt
Germany

tuexen@fh-muenster.deEmail:

Victor Boivie
Google
Kungsbron 2
SE-11122 Stockholm
Sweden

boivie@google.comEmail:

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 10

https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc4895
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc9293
mailto:tuexen@fh-muenster.de
mailto:boivie@google.com

Florent Castelli
Google
Kungsbron 2
SE-11122 Stockholm
Sweden

orphis@google.comEmail:

Randell Jesup
Mozilla Corporation
1835 Horse Shoe Trl

, Malvern PA 19355
United States of America

randell-ietf@jesup.orgEmail:

RFC 9653 Zero Checksum for SCTP September 2024

Tüxen, et al. Standards Track Page 11

mailto:orphis@google.com
mailto:randell-ietf@jesup.org

	RFC 9653
	Zero Checksum for the Stream Control Transmission Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Alternate Error Detection Methods
	4. A New Chunk Parameter
	5. Procedures
	5.1. Declaration of Feature Support
	5.2. Sender-Side Considerations
	5.3. Receiver-Side Considerations

	6. Error Detection via SCTP over DTLS
	7. Socket API Considerations
	7.1. Set Accepting a Zero Checksum (SCTP_ACCEPT_ZERO_CHECKSUM)

	8. IANA Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Authors' Addresses

