rfc9666xml2.original.xml | rfc9666.xml | |||
---|---|---|---|---|
<?xml version='1.0' encoding='utf-8'?> | ||||
<!DOCTYPE rfc [ | ||||
<!ENTITY nbsp " "> | ||||
<!ENTITY zwsp "​"> | ||||
<!ENTITY nbhy "‑"> | ||||
<!ENTITY wj "⁠"> | ||||
]> | ||||
<rfc xmlns:xi="http://www.w3.org/2001/XInclude" category="exp" docName="draft-ie | ||||
tf-lsr-isis-area-proxy-12" number="9666" consensus="true" ipr="trust200902" obso | ||||
letes="" updates="" submissionType="IETF" xml:lang="en" tocInclude="true" tocDep | ||||
th="4" symRefs="true" sortRefs="true" version="3"> | ||||
<front> | ||||
<title abbrev="Area Proxy for IS-IS">Area Proxy for IS-IS</title> | ||||
<seriesInfo name="RFC" value="9666"/> | ||||
<author fullname="Tony Li" initials="T." surname="Li"> | ||||
<organization>Juniper Networks</organization> | ||||
<address> | ||||
<postal> | ||||
<street>1133 Innovation Way</street> | ||||
<city>Sunnyvale</city> | ||||
<region>CA</region> | ||||
<code>94089</code> | ||||
<country>United States of America</country> | ||||
</postal> | ||||
<phone/> | ||||
<email>tony.li@tony.li</email> | ||||
</address> | ||||
</author> | ||||
<author fullname="Sarah Chen" initials="S." surname="Chen"> | ||||
<organization>Arista Networks</organization> | ||||
<address> | ||||
<postal> | ||||
<street>5453 Great America Parkway</street> | ||||
<city>Santa Clara</city> | ||||
<region>CA</region> | ||||
<code>95054</code> | ||||
<country>United States of America</country> | ||||
</postal> | ||||
<phone/> | ||||
<email>sarahchen@arista.com</email> | ||||
</address> | ||||
</author> | ||||
<author fullname="Vivek Ilangovan" initials="V." surname="Ilangovan"> | ||||
<organization>Arista Networks</organization> | ||||
<address> | ||||
<postal> | ||||
<street>5453 Great America Parkway</street> | ||||
<city>Santa Clara</city> | ||||
<region>CA</region> | ||||
<code>95054</code> | ||||
<country>United States of America</country> | ||||
</postal> | ||||
<phone/> | ||||
<email>ilangovan@arista.com</email> | ||||
</address> | ||||
</author> | ||||
<author initials="G." surname="Mishra" fullname="Gyan S. Mishra"> | ||||
<organization>Verizon Inc.</organization> | ||||
<address> | ||||
<postal> | ||||
<street>13101 Columbia Pike</street> | ||||
<city>Silver Spring</city> | ||||
<region>MD</region> | ||||
<code>20904</code> | ||||
<country>United States of America</country> | ||||
</postal> | ||||
<phone>301 502-1347</phone> | ||||
<email>gyan.s.mishra@verizon.com</email> | ||||
</address> | ||||
</author> | ||||
<date year="2024" month="October"/> | ||||
<area>RTG</area> | ||||
<workgroup>lsr</workgroup> | ||||
<keyword>datacenter</keyword> | ||||
<keyword>IGP</keyword> | ||||
<keyword>routing</keyword> | ||||
<keyword>topology</keyword> | ||||
<keyword>level</keyword> | ||||
<keyword>abstraction</keyword> | ||||
<keyword>IS-IS</keyword> | ||||
<keyword>proxy</keyword> | ||||
<abstract> | ||||
<t> | ||||
Link-state routing protocols have hierarchical abstraction | ||||
already built into them. However, when lower levels are used | ||||
for transit, they must expose their internal topologies to each | ||||
other, thereby leading to scaling issues. | ||||
</t> | ||||
<t> | ||||
To avoid such issues, this document discusses extensions to the | ||||
IS-IS routing protocol that allow Level 1 (L1) areas to provide transi | ||||
t | ||||
but only inject an abstraction of the Level 1 topology into Level 2 (L | ||||
2). | ||||
Each Level 1 area is represented as a single Level 2 node, thereby | ||||
enabling a greater scale. | ||||
</t> | ||||
</abstract> | ||||
</front> | ||||
<middle> | ||||
<section numbered="true" toc="default"> | ||||
<name>Introduction</name> | ||||
<t> | ||||
The IS-IS routing protocol <xref target="ISO10589" format="default"></xre | ||||
f> | ||||
supports a two-level hierarchy of abstraction. The | ||||
fundamental unit of abstraction is the "area", which is a | ||||
(hopefully) connected set of systems running IS-IS at the same | ||||
level. Level 1, the lowest level, is abstracted by routers that | ||||
participate in both Level 1 and Level 2, and they inject area | ||||
information into Level 2. Level 2 systems seeking to access | ||||
Level 1 use this abstraction to compute the shortest path to | ||||
the Level 1 area. | ||||
The full topology database of Level 1 is not injected into Level 2, rather, | ||||
only a summary of the address space contained within the area is injected. | ||||
Therefore, the scalability of the Level 2 Link State Database (LSDB) is | ||||
protected. | ||||
</t> | ||||
<t> | ||||
This works well if the Level 1 area is tangential to the Level | ||||
2 area. This also works well if there are several routers in | ||||
both Levels 1 and 2 and they are adjacent to one another, | ||||
so Level 2 traffic will never need to transit Level 1 only | ||||
routers. Level 1 will not contain any Level 2 topology and | ||||
Level 2 will only contain area abstractions for Level 1. | ||||
</t> | ||||
<t> | ||||
Unfortunately, this scheme does not work so well if the Level 1 | ||||
only area needs to provide transit for Level 2 traffic. For | ||||
Level 2 Shortest Path First (SPF) computations to work | ||||
correctly, the transit topology must also appear in the Level 2 | ||||
LSDB. This implies that all routers that could provide | ||||
transit plus any links that might also provide Level 2 transit | ||||
must also become part of the Level 2 topology. If this is a | ||||
relatively tiny portion of the Level 1 area, this is not | ||||
overly painful. | ||||
</t> | ||||
<t> | ||||
However, with today's data center topologies, this is problematic. A | ||||
common application is to use a Layer 3 Leaf-Spine (L3LS) topology, | ||||
which is a folded 3-stage Clos fabric <xref target="Clos" format="default | ||||
"></xref>. It can also be thought of as a complete bipartite graph. In | ||||
such a topology, the desire is to use Level 1 to contain the routing | ||||
dynamics of the entire L3LS topology and then use Level 2 for the | ||||
remainder of the network. Leaves in the L3LS topology are appropriate | ||||
for connection outside of the data center itself, so they would provide | ||||
connectivity for Level 2. If there are multiple connections to Level 2 | ||||
for redundancy or other areas, these would also be made to the leaves | ||||
in the topology. This creates a difficulty because there are now | ||||
multiple Level 2 leaves in the topology, with connectivity between the | ||||
leaves provided by the spines. | ||||
</t> | ||||
<t> | ||||
Following the current rules of IS-IS, all spine routers would | ||||
necessarily be part of the Level 2 topology plus all links | ||||
between a Level 2 leaf and the spines. In the limit, where all | ||||
leaves need to support Level 2, it implies that the entire L3LS | ||||
topology becomes part of Level 2. This is seriously problematic, | ||||
as it more than doubles the LSDB held in the | ||||
L3LS topology and eliminates any benefits of the hierarchy. | ||||
</t> | ||||
<t> | ||||
This document discusses the handling of IP traffic. Supporting | ||||
MPLS-based traffic is a subject for future work. | ||||
</t> | ||||
<section numbered="true" toc="default"> | ||||
<name>Requirements Language</name> | ||||
<t> | ||||
The key words "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>", | ||||
"<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14> | ||||
", | ||||
"<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>", | ||||
"<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>", | ||||
"<bcp14>MAY</bcp14>", and "<bcp14>OPTIONAL</bcp14>" in this document are to | ||||
be | ||||
interpreted as described in BCP 14 <xref target="RFC2119"/> <xref | ||||
target="RFC8174"/> when, and only when, they appear in all capitals, as | ||||
shown here. | ||||
</t> | ||||
</section> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Area Proxy</name> | ||||
<t> In this specification, we completely abstract away the details of | ||||
the Level 1 area topology within Level 2, making the entire area look | ||||
like a single proxy system directly connected to all of the area's Level | ||||
2 neighbors. By only providing an abstraction of the topology, Level | ||||
2's requirement for connectivity can be satisfied without the full | ||||
overhead of the area's internal topology. It then becomes the | ||||
responsibility of the Level 1 area to provide the forwarding | ||||
connectivity that's advertised. | ||||
</t> | ||||
<t> | ||||
For this discussion, we'll consider a single Level 1 IS-IS area to be | ||||
the Inside Area and the remainder of the Level 2 area to be the Outside | ||||
Area. All routers within the Inside Area speak Level 1 and Level 2 | ||||
IS-IS on all of the links within the topology. We propose to implement | ||||
Area Proxy by having a Level 2 Proxy Link State PDU (LSP) that | ||||
represents the entire Inside Area. We will refer to this as the Proxy | ||||
LSP. This is the only LSP from the area that will be flooded into the | ||||
overall Level 2 LSDB. | ||||
</t> | ||||
<t> | ||||
There are four classes of routers that we need to be concerned | ||||
with in this discussion: | ||||
</t> | ||||
<dl newline="false" spacing="normal"> | ||||
<dt>Inside Router:</dt> | ||||
<dd> | ||||
A router within the Inside Area that runs Level 1 and Level 2 | ||||
IS-IS. A router is recognized as an Inside Router by the | ||||
existence of its LSP in the Level 1 LSDB. | ||||
</dd> | ||||
<dt>Area Leader:</dt> | ||||
<dd> | ||||
The Area Leader is an Inside Router that is | ||||
elected to represent the Level 1 area by injecting the | ||||
Proxy LSP into the Level 2 LSDB. There may be | ||||
multiple candidates for Area Leader, but only one is | ||||
elected at a given time. Any Inside Router can be the Area | ||||
Leader. | ||||
</dd> | ||||
<dt>Inside Edge Router:</dt> | ||||
<dd> | ||||
An Inside Edge Router is an Inside Area Router that has at | ||||
least one Level 2 interface outside of the Inside Area. An | ||||
interface on an Inside Edge Router that is connected to an | ||||
Outside Edge Router is an Area Proxy Boundary. | ||||
</dd> | ||||
<dt>Outside Edge Router:</dt> | ||||
<dd> | ||||
An Outside Edge Router is a Level 2 router that is outside | ||||
of the Inside Area that has an adjacency with an Inside | ||||
Edge Router. | ||||
</dd> | ||||
</dl> | ||||
<figure> | ||||
<name>An Example of Router Classes</name> | ||||
<artwork align="left" name="" type="" alt=""><![CDATA[ | ||||
Inside Area | ||||
+--------+ +--------+ | ||||
| Inside |-----------------| Inside | | ||||
| Router | | Edge | | ||||
+--------+ +------------| Router | | ||||
| / +--------+ | ||||
| / | | ||||
+--------+ / =============|====== | ||||
| Area |/ || | | ||||
| Leader | || +---------+ | ||||
+--------+ || | Outside | | ||||
|| | Edge | | ||||
|| | Router | | ||||
|| +---------+ | ||||
Outside Area | ||||
]]></artwork> | ||||
</figure> | ||||
<t> | ||||
All Inside Edge Routers learn the Area Proxy System Identifier | ||||
from the Area Proxy TLV advertised by the Area Leader and use | ||||
that as the system identifier in their Level 2 IS-IS Hello (IIH) PDUs | ||||
on all Outside interfaces. Outside Edge Routers will | ||||
then advertise an adjacency to the Area Proxy System | ||||
Identifier. This allows all Outside Routers to use the Proxy | ||||
LSP in their SPF computations without seeing the full topology | ||||
of the Inside Area. | ||||
</t> | ||||
<t> | ||||
Area Proxy functionality assumes that all circuits on Inside | ||||
Routers are either Level 1-2 circuits within the Inside Area, | ||||
or Level 2 circuits between Outside Edge Routers and Inside | ||||
Edge Routers. | ||||
</t> | ||||
<t> | ||||
Area Proxy Boundary multi-access circuits (i.e., Ethernets in LAN mode) | ||||
with multiple Inside Edge Routers on them are not supported. The Inside | ||||
Edge Router on any boundary LAN <bcp14>MUST NOT</bcp14> flood Inside | ||||
Router LSPs on this link. Boundary LANs <bcp14>SHOULD NOT</bcp14> be | ||||
enabled for Level 1. An Inside Edge Router may be elected as the | ||||
Designated Intermediate System (DIS) for a Boundary LAN. In this case, | ||||
using the Area Proxy System ID as the basis for the LAN pseudonode | ||||
identifier could create a collision, so the Insider Edge Router | ||||
<bcp14>SHOULD</bcp14> compose the pseudonode identifier using its | ||||
built-in system identifier. This choice of pseudonode identifier may | ||||
confuse neighbors with an extremely strict implementation. In this | ||||
case, the Inside Edge Router may be configured with priority 0, causing | ||||
an Outside Router to be elected as the DIS. | ||||
</t> | ||||
<section numbered="true" toc="default"> | ||||
<name>Segment Routing</name> | ||||
<t> | ||||
If the Inside Area supports Segment Routing (SR) <xref target="RFC8402" | ||||
format="default"/>, then all Inside Nodes <bcp14>MUST</bcp14> | ||||
advertise a Segment Routing Global Block (SRGB). The first value of | ||||
the SRGB advertised by all Inside Nodes <bcp14>MUST</bcp14> start at | ||||
the same value. If the Area Leader detects SRGBs that do not start | ||||
with the same value, it <bcp14>MUST</bcp14> log an error and not | ||||
advertise an SRGB in the Proxy LSP. The range advertised for the area | ||||
will be the minimum of that advertised by all Inside Nodes. | ||||
</t> | ||||
<t> | ||||
To support SR, the Area Leader will take the SRGB information | ||||
found in the L1 LSDB and convey that to L2 through the Proxy LSP. | ||||
Prefixes with Segment Identifier (SID) assignments will be copied to the Proxy | ||||
LSP. Adjacency SIDs for Outside Edge Nodes will be copied to the Proxy LSP. | ||||
</t> | ||||
<t> | ||||
To further extend SR, it is helpful to | ||||
have a segment that refers to the entire Inside Area. This | ||||
allows a path to refer to an area and have any node within | ||||
that area accept and forward the packet. In effect, this | ||||
becomes an anycast SID that is accepted by all Inside Edge | ||||
Nodes. The information about this SID is distributed in the | ||||
Area SID sub-TLV as part of the Area Leader's Area | ||||
Proxy TLV (<xref target="AreaSIDsubTLV" format="default"/>). The Inside | ||||
Edge | ||||
Nodes <bcp14>MUST</bcp14> establish forwarding based on this SID. The A | ||||
rea | ||||
Leader <bcp14>SHALL</bcp14> also include the Area SID in the Proxy LSP | ||||
so | ||||
that the remainder of L2 can use it for path construction. | ||||
(<xref target="AreaSIDBinding" format="default"/>). | ||||
</t> | ||||
</section> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Inside Router Functions</name> | ||||
<t> | ||||
All Inside Routers run Level 1-2 IS-IS and must be explicitly | ||||
instructed to enable the Area Proxy functionality. To signal | ||||
their readiness to participate in Area Proxy functionality, | ||||
they will advertise the Area Proxy TLV in their L2 LSP. | ||||
</t> | ||||
<section numbered="true" toc="default"> | ||||
<name>The Area Proxy TLV</name> | ||||
<t> | ||||
The Area Proxy TLV serves multiple functions: | ||||
</t> | ||||
<ul spacing="normal"> | ||||
<li> | ||||
<t> | ||||
The presence of the Area Proxy TLV in a node's LSP | ||||
indicates that the node is enabled for Area Proxy. | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
An LSP containing the Area Proxy TLV is also an Inside | ||||
Node. All Inside Nodes, including pseudonodes, <bcp14>MUST</bcp14> | ||||
advertise the Area Proxy TLV. | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
It is a container for sub-TLVs with Area Proxy information. | ||||
</t> | ||||
</li> | ||||
</ul> | ||||
<t> | ||||
A node advertises the Area Proxy TLV in fragment 0 of its L2 | ||||
LSP. Nodes <bcp14>MUST NOT</bcp14> advertise the Area Proxy TLV in an | ||||
L1 | ||||
LSP. Nodes <bcp14>MUST</bcp14> ignore the Area Proxy TLV if it is found | ||||
in an | ||||
L1 LSP. The Area Proxy TLV is not used in the Proxy LSP. The | ||||
format of the Area Proxy TLV is: | ||||
</t> | ||||
<artwork align="left" name="" type="" alt=""><![CDATA[ | ||||
0 1 2 | ||||
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||||
| TLV Type | TLV Length | Sub-TLVs ... | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||||
]]></artwork> | ||||
<dl> | ||||
<dt>TLV Type:</dt> | ||||
<dd>20</dd> | ||||
<dt>TLV Length:</dt> | ||||
<dd>Length of the sub-TLVs.</dd> | ||||
</dl> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Level 2 SPF Computation</name> | ||||
<t> | ||||
When Outside Routers perform a Level 2 SPF computation, they | ||||
will use the Proxy LSP for computing a path transiting | ||||
the Inside Area. Because the topology has been abstracted | ||||
away, the cost for transiting the Inside Area will be zero. | ||||
</t> | ||||
<t> | ||||
When Inside Routers perform a Level 2 SPF computation, they | ||||
<bcp14>MUST</bcp14> ignore the Proxy LSP. Because these systems | ||||
see the Inside Area topology, the link metrics internal to | ||||
the area are visible. This could lead to different and | ||||
possibly inconsistent SPF results, potentially leading to | ||||
forwarding loops. | ||||
</t> | ||||
<t> | ||||
To prevent this, the Inside Routers <bcp14>MUST</bcp14> consider the me | ||||
trics | ||||
of links outside of the Inside Area (inter-area metrics) | ||||
separately from the metrics of the Inside Area links | ||||
(intra-area metrics). Intra-area metrics <bcp14>MUST</bcp14> be treated | ||||
as | ||||
less than any inter-area metric. Thus, if two paths have | ||||
different total inter-area metrics, the path with the lower | ||||
inter-area metric would be preferred regardless of any | ||||
intra-area metrics involved. However, if two paths have equal | ||||
inter-area metrics, then the intra-area metrics would be used | ||||
to compare the paths. | ||||
</t> | ||||
<t> | ||||
Point-to-point links between two Inside Routers are | ||||
considered to be Inside Area links. LAN links that have a | ||||
pseudonode LSP in the Level 1 LSDB are considered to be | ||||
Inside Area links. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Responsibilities Concerning the Proxy LSP</name> | ||||
<t>The Area Leader will generate a Proxy LSP that will be flooded across | ||||
the Inside Area. Inside Routers <bcp14>MUST</bcp14> flood the Proxy LSP and <bc | ||||
p14>MUST</bcp14> ignore its contents. | ||||
The Proxy LSP uses the Area Proxy System Identifier as its Source ID. | ||||
</t> | ||||
</section> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Area Leader Functions</name> | ||||
<t> | ||||
The Area Leader has several responsibilities. First, it <bcp14>MUST</bcp | ||||
14> | ||||
inject the Area Proxy System Identifier into the Level 2 | ||||
LSDB. Second, the Area Leader <bcp14>MUST</bcp14> generate the Proxy LSP | ||||
for | ||||
the Inside Area. | ||||
</t> | ||||
<section numbered="true" toc="default"> | ||||
<name>Area Leader Election</name> | ||||
<t> | ||||
The Area Leader is selected using the election mechanisms and | ||||
TLVs described in "Dynamic Flooding on Dense Graphs" <xref target="RFC9 | ||||
667"/>. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Redundancy</name> | ||||
<t> | ||||
If the Area Leader fails, another candidate may become Area | ||||
Leader and <bcp14>MUST</bcp14> regenerate the Proxy LSP. The | ||||
failure of the Area Leader is not visible outside of the area | ||||
and appears to simply be an update of the Proxy | ||||
LSP. | ||||
</t> | ||||
<t> | ||||
For consistency, all Area Leader candidates <bcp14>SHOULD</bcp14> be | ||||
configured with the same Proxy System ID, Proxy Hostname, and | ||||
any other information that may be inserted into the Proxy LSP. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Distributing Area Proxy Information</name> | ||||
<t> | ||||
The Area Leader is responsible for distributing information | ||||
about the area to all Inside Nodes. In particular, the Area | ||||
Leader distributes the Proxy System ID and the Area SID. | ||||
This is done using two sub-TLVs of the Area Proxy TLV. | ||||
</t> | ||||
<section numbered="true" toc="default"> | ||||
<name>The Area Proxy System Identifier Sub-TLV</name> | ||||
<t> | ||||
The Area Proxy System Identifier sub-TLV <bcp14>MUST</bcp14> be used | ||||
by the Area | ||||
Leader to distribute the Area Proxy System ID. This is an | ||||
additional system identifier that is used by Inside Nodes | ||||
as an indication that Area Proxy is active. The format of | ||||
this sub-TLV is: | ||||
</t> | ||||
<artwork align="left" name="" type="" alt=""><![CDATA[ | ||||
0 1 2 | ||||
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||||
| Type | Length | | | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Proxy System Identifier | | ||||
| | | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||||
]]></artwork> | ||||
<dl> | ||||
<dt>Type:</dt><dd>1</dd> | ||||
<dt>Length:</dt><dd>Length of a system ID (6).</dd> | ||||
<dt>Proxy System Identifier:</dt><dd>The Area Proxy System Identifier.</dd> | ||||
</dl> | ||||
<t> | ||||
The Area Leader <bcp14>MUST</bcp14> advertise the Area Proxy System | ||||
Identifier sub-TLV when it observes that all Inside Routers | ||||
are advertising the Area Proxy TLV. Their advertisements | ||||
indicate that they are individually ready to perform Area | ||||
Proxy functionality. The Area Leader then advertises the | ||||
Area Proxy System Identifier TLV to indicate that the | ||||
Inside Area <bcp14>MUST</bcp14> enable Area Proxy functionality. | ||||
</t> | ||||
<t> | ||||
Other candidates for Area Leader <bcp14>MAY</bcp14> also advertise | ||||
the Area Proxy System Identifier when they observe that all Inside | ||||
Routers are advertising the Area Proxy TLV. All candidates | ||||
advertising the Area Proxy System Identifier TLV | ||||
<bcp14>SHOULD</bcp14> be advertising the same system | ||||
identifier. Multiple proxy system identifiers in a single area is a | ||||
misconfiguration and each unique occurrence <bcp14>SHOULD</bcp14> | ||||
be logged. Systems should use the Proxy System ID advertised by the | ||||
Area Leader. | ||||
</t> | ||||
<t> | ||||
The Area Leader and other candidates for Area Leader | ||||
<bcp14>MAY</bcp14> withdraw the Area Proxy System Identifier when | ||||
one or more Inside Routers are not advertising the Area Proxy | ||||
TLV. This will disable Area Proxy functionality. However, before | ||||
withdrawing the Area Proxy System Identifier, an implementation | ||||
<bcp14>SHOULD</bcp14> protect against unnecessary churn from | ||||
transients by delaying the withdrawal. The amount of delay is | ||||
implementation dependent. | ||||
</t> | ||||
</section> | ||||
<section anchor="AreaSIDsubTLV" numbered="true" toc="default"> | ||||
<name>The Area SID Sub-TLV</name> | ||||
<t> | ||||
The Area SID sub-TLV allows the Area Leader to advertise a | ||||
prefix and SID that represent the entirety of the Inside | ||||
Area to the Outside Area. This sub-TLV is learned by all | ||||
of the Inside Edge Nodes who should consume this SID at | ||||
forwarding time. The Area SID sub-TLV has the following format: | ||||
</t> | ||||
<artwork align="left" name="" type="" alt=""><![CDATA[ | ||||
0 1 2 | ||||
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||||
| Type | Length | Flags | | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||||
| SID/Index/Label (variable) | | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||||
| Prefix Length | Prefix (variable) | | ||||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||||
]]></artwork> | ||||
<t> | ||||
where:</t> | ||||
<dl> | ||||
<dt>Type:</dt><dd>2</dd> | ||||
<dt>Length:</dt><dd>Variable (1 + SID length)</dd> | ||||
<dt>Flags:</dt><dd><t>1 octet, defined as follows.</t> | ||||
<artwork align="left" name="" type="" alt=""><![CDATA[ | ||||
0 1 2 3 4 5 6 7 | ||||
+-+-+-+-+-+-+-+-+ | ||||
|F|V|L| | | ||||
+-+-+-+-+-+-+-+-+ | ||||
]]></artwork> | ||||
<dl indent="4"> | ||||
<dt>F:</dt><dd>Address-Family Flag. If this flag is not set, | ||||
then this proxy SID is used when forwarding IPv4-encapsulated | ||||
traffic. If set, then this proxy SID is used when forwarding | ||||
IPv6-encapsulated traffic.</dd> | ||||
<dt>V:</dt><dd>Value Flag. If set, then the proxy SID carries | ||||
a value, as defined in <xref target="RFC8667" | ||||
sectionFormat="comma" section="2.1.1.1"/>.</dd> | ||||
<dt>L:</dt><dd>Local Flag. If set, then the value/index | ||||
carried by the proxy SID has local significance, as defined in | ||||
<xref target="RFC8667" sectionFormat="comma" | ||||
section="2.1.1.1"/>. | ||||
</dd> | ||||
<dt>Other bits:</dt><dd><bcp14>MUST</bcp14> be zero when | ||||
originated and ignored when received.</dd></dl></dd> | ||||
<dt>SID/Index/Label:</dt><dd>As defined in <xref target="RFC8667" sectionFormat= | ||||
"comma" section="2.1.1.1"/>.</dd> | ||||
<dt>Prefix Length:</dt><dd>1 octet</dd> | ||||
<dt>Prefix:</dt><dd>0-16 octets</dd> | ||||
</dl> | ||||
</section> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Proxy LSP Generation</name> | ||||
<t> | ||||
Each Inside Router generates a Level 2 LSP and the Level 2 | ||||
LSPs for the Inside Edge Routers will include adjacencies to | ||||
Outside Edge Routers. Unlike normal Level 2 operations, | ||||
these LSPs are not advertised outside of the Inside Area and | ||||
<bcp14>MUST</bcp14> be filtered by all Inside Edge Routers to not be fl | ||||
ooded | ||||
to Outside Routers. Only the Proxy LSP is injected into | ||||
the overall Level 2 LSDB. | ||||
</t> | ||||
<t> | ||||
The Area Leader uses the Level 2 LSPs generated by the Inside | ||||
Edge Routers to generate the Proxy LSP. This LSP is | ||||
originated using the Area Proxy System Identifier. The Area | ||||
Leader can also insert the following additional TLVs into the | ||||
Proxy LSP for additional information for the Outside | ||||
Area. LSPs generated by unreachable nodes <bcp14>MUST NOT</bcp14> be | ||||
considered. | ||||
</t> | ||||
<section numbered="true" toc="default"> | ||||
<name>The Protocols Supported TLV</name> | ||||
<t> | ||||
The Area Leader <bcp14>SHOULD</bcp14> insert a Protocols Supported TL | ||||
V (129) | ||||
<xref target="RFC1195" format="default"/> into the Proxy LSP. The | ||||
values included in the TLV <bcp14>SHOULD</bcp14> be the protocols | ||||
supported by the Inside Area. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The Area Address TLV</name> | ||||
<t> | ||||
The Area Leader <bcp14>SHOULD</bcp14> insert an Area Addresses TLV (1 | ||||
) | ||||
<xref target="ISO10589" format="default"/> into the Proxy LSP. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The Dynamic Hostname TLV</name> | ||||
<t> | ||||
It is <bcp14>RECOMMENDED</bcp14> that the Area Leader insert the Dyna | ||||
mic | ||||
Hostname TLV (137) <xref target="RFC5301" format="default"/> into the | ||||
Proxy | ||||
LSP. The contents of the hostname may be specified by | ||||
configuration. The presence of the hostname helps to | ||||
simplify network debugging. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The IS Neighbors TLV</name> | ||||
<t> | ||||
The Area Leader can insert the IS Neighbors TLV (2) <xref target="ISO | ||||
10589" format="default"/> into the Proxy LSP for Outside | ||||
Edge Routers. The Area Leader learns of the Outside Edge | ||||
Routers by examining the LSPs generated by the Inside Edge | ||||
Routers copying any IS Neighbors TLVs referring to Outside | ||||
Edge Routers into the Proxy LSP. Since the Outside Edge | ||||
Routers advertise an adjacency to the Area Proxy System | ||||
Identifier, this will result in a bidirectional adjacency. | ||||
</t> | ||||
<t> | ||||
An entry for a neighbor in both the IS Neighbors TLV and | ||||
the Extended IS Neighbors TLV would be functionally redundant, | ||||
so the Area Leader <bcp14>SHOULD NOT</bcp14> do this. The Area Leader | ||||
<bcp14>MAY</bcp14> | ||||
omit either the IS Neighbors TLV or the Extended IS | ||||
Neighbors TLV, but it <bcp14>MUST</bcp14> include at least one of the | ||||
m. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The Extended IS Neighbors TLV</name> | ||||
<t> | ||||
The Area Leader can insert the Extended IS Reachability TLV | ||||
(22) <xref target="RFC5305" format="default"/> into the Proxy LSP. Th | ||||
e | ||||
Area Leader <bcp14>SHOULD</bcp14> copy each Extended IS Reachability | ||||
TLV | ||||
advertised by an Inside Edge Router about an Outside Edge | ||||
Router into the Proxy LSP. | ||||
</t> | ||||
<t> | ||||
If the Inside Area supports Segment Routing, and Segment | ||||
Routing selects a SID where the L-Flag is not set, then the | ||||
Area Lead <bcp14>SHOULD</bcp14> include an Adjacency Segment Identifi | ||||
er | ||||
sub-TLV (31) <xref target="RFC8667" format="default"/> using the sele | ||||
cted | ||||
SID. | ||||
</t> | ||||
<t> | ||||
If the inside area supports SRv6, the Area Leader <bcp14>SHOULD</bcp1 | ||||
4> | ||||
copy the "SRv6 End.X SID" and "SRv6 LAN End.X SID" sub-TLVs | ||||
of the Extended IS Reachability TLVs advertised by Inside | ||||
Edge Routers about Outside Edge Routers. | ||||
</t> | ||||
<t> | ||||
If the inside area supports Traffic Engineering (TE), the | ||||
Area Leader <bcp14>SHOULD</bcp14> copy TE-related sub-TLVs | ||||
(<xref target="RFC5305" sectionFormat="comma" section="3"/>) to each | ||||
Extended IS | ||||
Reachability TLV in the Proxy LSP. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The MT Intermediate Systems TLV</name> | ||||
<t> | ||||
If the Inside Area supports Multi-Topology (MT), then the Area | ||||
Leader <bcp14>SHOULD</bcp14> copy each Outside Edge Router advertisem | ||||
ent | ||||
that is advertised by an Inside Edge Router in an MT | ||||
Intermediate Systems TLV into the Proxy LSP. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Reachability TLVs</name> | ||||
<t> | ||||
The Area Leader <bcp14>SHOULD</bcp14> insert additional TLVs describi | ||||
ng | ||||
any routing prefixes that should be advertised on behalf of | ||||
the area. These prefixes may be learned from the Level 1 | ||||
LSDB, Level 2 LSDB, or redistributed from another routing | ||||
protocol. This applies to all of the various types of TLVs | ||||
used for prefix advertisement: | ||||
</t> | ||||
<ul spacing="normal"> | ||||
<li> | ||||
<t> | ||||
IP Internal Reachability Information TLV (128) <xref target="RFC1 | ||||
195" format="default"/> | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
IP External Reachability Information TLV (130) <xref target="RFC1 | ||||
195" format="default"/> | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
Extended IP Reachability TLV (135) <xref target="RFC5305" format= | ||||
"default"/> | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
IPv6 Reachability TLV (236) <xref target="RFC5308" format="defaul | ||||
t"/> | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
Multi-Topology Reachable IPv4 Prefixes TLV (235) <xref target="RF | ||||
C5120" format="default"/> | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
Multi-Topology Reachable IPv6 Prefixes TLV (237) <xref target="RF | ||||
C5120" format="default"/> | ||||
</t> | ||||
</li> | ||||
</ul> | ||||
<t> | ||||
For TLVs in the Level 1 LSDB, for a given TLV type and | ||||
prefix, the Area Leader <bcp14>SHOULD</bcp14> select the TLV with the | ||||
lowest metric and copy that TLV into the Proxy LSP. | ||||
</t> | ||||
<t> | ||||
When examining the Level 2 LSDB for this function, the Area Leader | ||||
<bcp14>SHOULD</bcp14> only consider TLVs advertised by Inside | ||||
Routers. Further, for prefixes that represent Boundary links, the | ||||
Area Leader <bcp14>SHOULD</bcp14> copy all TLVs that have unique | ||||
sub-TLV contents. | ||||
</t> | ||||
<t> | ||||
If the Inside Area supports SR and the | ||||
selected TLV includes a Prefix Segment Identifier sub-TLV | ||||
(3) <xref target="RFC8667" format="default"/>, then the sub-TLV <bcp1 | ||||
4>SHOULD</bcp14> be | ||||
copied as well. The P-Flag <bcp14>SHOULD</bcp14> be set in the copy o | ||||
f the | ||||
sub-TLV to indicate that penultimate hop popping should not | ||||
be performed for this prefix. The E-Flag <bcp14>SHOULD</bcp14> be res | ||||
et in | ||||
the copy of the sub-TLV to indicate that an explicit NULL | ||||
is not required. The R-Flag <bcp14>SHOULD</bcp14> simply be copied. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The Router Capability TLV</name> | ||||
<t> | ||||
The Area Leader <bcp14>MAY</bcp14> insert the Router Capability TLV ( | ||||
242) | ||||
<xref target="RFC7981" format="default"/> into the Proxy LSP. If | ||||
SR is supported by the inside area, as | ||||
indicated by the presence of an SRGB being advertised by | ||||
all Inside Nodes, then the Area Leader <bcp14>SHOULD</bcp14> advertis | ||||
e an | ||||
SR-Capabilities sub-TLV (2) <xref target="RFC8667" format="default"/> | ||||
with | ||||
an SRGB. The first value of the SRGB is the same as | ||||
the first value advertised by all Inside Nodes. The range | ||||
advertised for the area will be the minimum of all ranges | ||||
advertised by Inside Nodes. The Area Leader <bcp14>SHOULD</bcp14> use | ||||
its | ||||
Router ID in the Router Capability TLV. | ||||
</t> | ||||
<t> | ||||
If SRv6 Capability sub-TLV <xref target="RFC7981" format="default"/> | ||||
is | ||||
advertised by all Inside Routers, the Area Leader should | ||||
insert an SRv6 Capability sub-TLV in the Router Capability | ||||
TLV. Each flag in the SRv6 Capability sub-TLV should be set | ||||
if the flag is set by all Inside Routers. | ||||
</t> | ||||
<t> | ||||
If the Node Maximum SID Depth (MSD) sub-TLV <xref target="RFC8491" fo | ||||
rmat="default"/> is advertised by all Inside Routers, the | ||||
Area Leader should advertise the intersection of the | ||||
advertised MSD types and the smallest supported MSD values | ||||
for each type. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The Multi-Topology TLV</name> | ||||
<t> | ||||
If the Inside Area supports multi-topology, then the Area | ||||
Leader <bcp14>SHOULD</bcp14> insert the Multi-Topology TLV (229) <xre | ||||
f target="RFC5120" format="default"/>, including the topologies supported by | ||||
the Inside Nodes. | ||||
</t> | ||||
<t> | ||||
If any Inside Node is advertising the O (Overload) bit | ||||
for a given topology, then the Area Leader <bcp14>MUST</bcp14> advert | ||||
ise | ||||
the O bit for that topology. If any Inside Node is | ||||
advertising the A (Attach) bit for a given topology, then | ||||
the Area Leader <bcp14>MUST</bcp14> advertise the A bit for that | ||||
topology. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The SID/Label Binding and the Multi-Topology SID/Label Binding T | ||||
LV</name> | ||||
<t> | ||||
If an Inside Node advertises the SID/Label Binding or | ||||
Multi-Topology SID/Label Binding TLV <xref target="RFC8667" format="d | ||||
efault"/>, then the Area Leader <bcp14>MAY</bcp14> copy the TLV | ||||
to the Proxy LSP. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>The SRv6 Locator TLV</name> | ||||
<t> | ||||
If the inside area supports SRv6, the Area Leader <bcp14>SHOULD</bcp1 | ||||
4> | ||||
copy all SRv6 locator TLVs <xref target="RFC9352" format="default"/> | ||||
advertised by Inside Routers to the Proxy LSP. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Traffic Engineering Information</name> | ||||
<t> | ||||
If the inside area supports TE, the Area Leader <bcp14>SHOULD</bcp14> | ||||
advertise a TE Router ID TLV (134) <xref target="RFC5305" format="def | ||||
ault"/> | ||||
in the Proxy LSP. It <bcp14>SHOULD</bcp14> copy the Shared Risk | ||||
Link Group (SRLS) TLVs (138) <xref target="RFC5307" format="default"/ | ||||
> | ||||
advertised by Inside Edge Routers about links to Outside | ||||
Edge Routers. | ||||
</t> | ||||
<t> | ||||
If the inside area supports IPv6 TE, the Area Leader <bcp14>SHOULD</b | ||||
cp14> | ||||
advertise an IPv6 TE Router ID TLV (140) | ||||
<xref target="RFC6119" format="default"/> in the Proxy LSP. It <bcp14 | ||||
>SHOULD</bcp14> also | ||||
copy the IPv6 SRLG TLVs (139) <xref target="RFC6119" format="default | ||||
"/> | ||||
advertised by Inside Edge Routers about links to Outside | ||||
Edge Routers. | ||||
</t> | ||||
</section> | ||||
<section anchor="AreaSIDBinding" numbered="true" toc="default"> | ||||
<name>The Area SID</name> | ||||
<t> | ||||
When SR is enabled, it may be useful to advertise an Area | ||||
SID that will direct traffic to any of the Inside | ||||
Edge Routers. The information for the Area SID is | ||||
distributed to all Inside Edge Routers using the Area SID | ||||
sub-TLV (<xref target="AreaSIDsubTLV" format="default"/>) by the Area | ||||
Leader. | ||||
</t> | ||||
<t> | ||||
The Area Leader <bcp14>SHOULD</bcp14> advertise the Area SID informat | ||||
ion | ||||
in the Proxy LSP as a Node SID as defined in <xref target="RFC8667" s | ||||
ectionFormat="comma" section="2.1"/>. The advertisement in the | ||||
Proxy LSP informs the Outside Area that packets directed to | ||||
the SID will be forwarded to one of the Inside Edge Nodes | ||||
and the Area SID will be consumed. | ||||
</t> | ||||
<t> | ||||
Other uses of the Area SID and Area SID prefix are outside | ||||
the scope of this document. Documents that define other | ||||
use cases for the Area SID <bcp14>MUST</bcp14> specify whether the SID | ||||
value should be the same or different from that used in | ||||
support of Area Proxy. | ||||
</t> | ||||
</section> | ||||
</section> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Inside Edge Router Functions</name> | ||||
<t> | ||||
The Inside Edge Router has two additional and important | ||||
functions. First, it <bcp14>MUST</bcp14> generate IIHs that appear to hav | ||||
e | ||||
come from the Area Proxy System Identifier. Second, it <bcp14>MUST</bcp14 | ||||
> | ||||
filter the L2 LSPs, Partial Sequence Number PDUs (PSNPs), and | ||||
Complete Sequence Number PDUs (CSNPs) that are being advertised | ||||
to Outside Routers. | ||||
</t> | ||||
<section numbered="true" toc="default"> | ||||
<name>Generating L2 IIHs to Outside Routers</name> | ||||
<t> | ||||
The Inside Edge Router has one or more Level 2 interfaces to | ||||
the Outside Routers. These may be identified by explicit | ||||
configuration or by the fact that they are not also Level 1 | ||||
circuits. On these Level 2 interfaces, the Inside Edge Router | ||||
<bcp14>MUST NOT</bcp14> send an IIH until it has learned the Area Proxy | ||||
System ID from the Area Leader. Then, once it has learned the | ||||
Area Proxy System ID, it <bcp14>MUST</bcp14> generate its IIHs on the | ||||
circuit using the Proxy System ID as the source of the IIH. | ||||
</t> | ||||
<t> | ||||
Using the Proxy System ID causes the Outside Router to | ||||
advertise an adjacency to the Proxy System ID, not to the | ||||
Inside Edge Router, which supports the proxy function. The | ||||
normal system ID of the Inside Edge Router <bcp14>MUST NOT</bcp14> be u | ||||
sed | ||||
as it will cause unnecessary adjacencies to form. | ||||
</t> | ||||
</section> | ||||
<section numbered="true" toc="default"> | ||||
<name>Filtering LSP Information</name> | ||||
<t> | ||||
For the area proxy abstraction to be effective the L2 LSPs | ||||
generated by the Inside Routers <bcp14>MUST</bcp14> be restricted to th | ||||
e | ||||
Inside Area. The Inside Routers know which system IDs are | ||||
members of the Inside Area based on the advertisement of the | ||||
Area Proxy TLV. To prevent unwanted LSP information from | ||||
escaping the Inside Area, the Inside Edge Router <bcp14>MUST</bcp14> pe | ||||
rform | ||||
filtering of LSP flooding, CSNPs, and PSNPs. Specifically: | ||||
</t> | ||||
<ul spacing="normal"> | ||||
<li> | ||||
<t> | ||||
A Level 2 LSP with a source system identifier that is | ||||
found in the Level 1 LSDB <bcp14>MUST NOT</bcp14> be flooded to an | ||||
Outside Router. | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
A Level 2 LSP that contains the Area Proxy TLV <bcp14>MUST NOT</bcp | ||||
14> | ||||
be flooded to an Outside Router. | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
A Level 2 CSNP sent to an Outside Router <bcp14>MUST NOT</bcp14> co | ||||
ntain | ||||
any information about an LSP with a system identifier | ||||
found in the Level 1 LSDB. If an Inside Edge Router | ||||
filters a CSNP and there is no remaining content, then | ||||
the CSNP <bcp14>MUST NOT</bcp14> be sent. The source address of the | ||||
CSNP | ||||
<bcp14>MUST</bcp14> be the Area Proxy System ID. | ||||
</t> | ||||
</li> | ||||
<li> | ||||
<t> | ||||
A Level 2 PSNP sent to an Outside Router <bcp14>MUST NOT</bcp14> co | ||||
ntain | ||||
any information about an LSP with a system identifier | ||||
found in the Level 1 LSDB. If an Inside Edge Router | ||||
filters a PSNP and there is no remaining content, then | ||||
the PSNP <bcp14>MUST NOT</bcp14> be sent. The source address of the | ||||
PSNP | ||||
<bcp14>MUST</bcp14> be the Area Proxy System ID. | ||||
</t> | ||||
</li> | ||||
</ul> | ||||
</section> | ||||
</section> | ||||
<section anchor="IANA" numbered="true" toc="default"> | ||||
<name>IANA Considerations</name> | ||||
<t> | ||||
IANA has assigned code point 20 | ||||
from the "IS-IS TLV Codepoints" registry for the Area Proxy TLV. | ||||
The registry fields are IIH:n, LSP:y, SNP:n, and Purge:n. | ||||
</t> | ||||
<t> | ||||
In association with this, IANA has created a "IS-IS Sub-TLVs for the Area | ||||
Proxy TLV" registry. Temporary registrations may | ||||
be made via early allocation <xref target="RFC7120" format="default"/ | ||||
>.</t> | ||||
<t>The registration procedure is Expert Review <xref target="RFC8126" | ||||
/>. The values are from 0-255, and the fields are Value, Name, and Reference. Th | ||||
e initial assignments are as follows.</t> | ||||
<table align="center"> | ||||
<thead> | ||||
<tr> | ||||
<th align="center">Value</th> | ||||
<th align="center">Name</th> | ||||
<th align="center">Reference</th> | ||||
</tr> | ||||
</thead> | ||||
<tbody> | ||||
<tr> | ||||
<td align="center">1</td> | ||||
<td align="center">Area Proxy System Identifier</td> | ||||
<td align="center">RFC 9666</td> | ||||
</tr> | ||||
<tr> | ||||
<td align="center">2</td> | ||||
<td align="center">Area SID</td> | ||||
<td align="center">RFC 9666</td> | ||||
</tr> | ||||
</tbody> | ||||
</table> | ||||
</section> | ||||
<section anchor="Security" numbered="true" toc="default"> | ||||
<name>Security Considerations</name> | ||||
<t> | ||||
This document introduces no new security issues. Security of routing | ||||
within a domain is already addressed as part of the routing protocols | ||||
themselves. This document proposes no changes to those security | ||||
architectures. Security for IS-IS is provided by "IS-IS Cryptographic | ||||
Authentication" <xref target="RFC5304"/> and "IS-IS Generic | ||||
Cryptographic Authentication" <xref target="RFC5310"/>. | ||||
</t> | ||||
</section> | ||||
</middle> | ||||
<back> | ||||
<references> | ||||
<name>References</name> | ||||
<references> | ||||
<name>Normative References</name> | ||||
<!-- [I-D.ietf-lsr-dynamic-flooding] RFC 9667; companion document--> | ||||
<reference anchor="RFC9667" target="https://www.rfc-editor.org/info/rfc9667"> | ||||
<front> | ||||
<title>Dynamic Flooding on Dense Graphs</title> | ||||
<author initials="T." surname="Li" fullname="Tony Li"> | ||||
<organization>Juniper Networks</organization> | ||||
</author> | ||||
<author initials="P." surname="Psenak" fullname="Peter Psenak"> | ||||
<organization>Cisco Systems, Inc.</organization> | ||||
</author> | ||||
<author initials="H." surname="Chen" fullname="Huaimo Chen"> | ||||
<organization>Futurewei</organization> | ||||
</author> | ||||
<author initials="L." surname="Jalil" fullname="Luay Jalil"> | ||||
<organization>Verizon</organization> | ||||
</author> | ||||
<author initials="S." surname="Dontula" fullname="Srinath Dontula"> | ||||
<organization>ATT</organization> | ||||
</author> | ||||
<date month="October" year="2024"/> | ||||
</front> | ||||
<seriesInfo name="RFC" value="9667"/> | ||||
<seriesInfo name="DOI" value="10.17487/RFC9667"/> | ||||
</reference> | ||||
<reference anchor="ISO10589"> | ||||
<front> | ||||
<title>Information technology — Telecommunications and information | ||||
exchange between systems — Intermediate System to Intermediate System intra-doma | ||||
in | ||||
routeing information exchange protocol for use in conjunction with the protocol | ||||
for providing the connectionless-mode network service (ISO 8473)</title> | ||||
<author> | ||||
<organization abbrev="ISO">International Organization for | ||||
Standardization</organization> | ||||
</author> | ||||
<date month="11" year="2002"/> | ||||
</front> | ||||
<seriesInfo name="ISO/IEC" value="10589:2002"/> | ||||
<refcontent>Second Edition</refcontent> | ||||
</reference> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.11 | ||||
95.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.2 | ||||
119.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5 | ||||
120.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5 | ||||
301.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5 | ||||
304.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5 | ||||
305.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5 | ||||
307.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5 | ||||
308.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.5 | ||||
310.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.6 | ||||
119.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7 | ||||
981.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8 | ||||
174.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8 | ||||
402.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8 | ||||
667.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8 | ||||
491.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.9 | ||||
352.xml"/> | ||||
</references> | ||||
<references> | ||||
<name>Informative References</name> | ||||
<reference anchor="Clos"> | ||||
<front> | ||||
<title>A study of non-blocking switching networks</title> | ||||
<author fullname="Charles Clos" initials="C." surname="Clos"/> | ||||
<date month="March" year="1953"/> | ||||
</front> | ||||
<seriesInfo name="DOI" value="10.1002/j.1538-7305.1953.tb01433.x"/> | ||||
<refcontent>The Bell System Technical Journal, Volume 32, Issue 2, pp. | ||||
406-424</refcontent> | ||||
</reference> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.7 | ||||
120.xml"/> | ||||
<xi:include href="https://bib.ietf.org/public/rfc/bibxml/reference.RFC.8 | ||||
126.xml"/> | ||||
</references> | ||||
</references> | ||||
<section anchor="Acknowledgements" numbered="false" toc="default"> | ||||
<name>Acknowledgements</name> <t> | ||||
The authors would like to thank <contact fullname="Bruno Decraene"/> | ||||
and <contact fullname="Gunter Van De Velde"/> for their many helpful | ||||
comments. The authors would also like to thank a small group that | ||||
wishes to remain anonymous for their valuable contributions. | ||||
</t> | ||||
</section> | ||||
</back> | ||||
</rfc> | ||||
End of changes. 1 change blocks. | ||||
lines changed or deleted | lines changed or added | |||
This html diff was produced by rfcdiff 1.48. |