Network Working Group C. Ellison
Request for Comments: 2693 Intel
Category: Experimental B. Frantz
Electric Communities

B. Lampson

Microsoft

R. Rivest

MIT Laboratory for Computer Science
B. Thomas
Southwestern Bell
T. Ylonen
SSH
September 1999

SPKI Certificate Theory
Status of this Memo

This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.

Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract

The SPKI Working Group has developed a standard form for digital
certificates whose main purpose is authorization rather than
authentication. These structures bind either names or explicit
authorizations to keys or other objects. The binding to a key can be
directly to an explicit key, or indirectly through the hash of the

key or a name for it. The name and authorization structures can be
used separately or together. We use S-expressions as the standard
format for these certificates and define a canonical form for those
S-expressions. As part of this development, a mechanism for deriving
authorization decisions from a mixture of certificate types was
developed and is presented in this document.

This document gives the theory behind SPKI certificates and ACLs

without going into technical detail about those structures or their
uses.

Ellison, et al. Experimental [Page 1]

RFC 2693 SPKI Certificate Theory September 1999

Table of Contents

1. Overview of Contents............occcveveeeeneneeeninnns 3

1.1 GlOSSAIY..cceiiiaiiiiiiiiiiiieeee e 4

2. Name Certification............ccccuvviiieeiiieennniinns 5

2.1 First Definition of CERTIFICATE.........ccccccvveeeinnnen. 6
2.2 The X.500 Plan and X.509..........cccccevvniieneennnnnn 6
2.3 X.509, PEM and PGP.........cccooeiiiiiiiiiieeieeeeeeeen, 7
2.4 Rethinking Global Names............ccccoviiiieiiinneen. 7
2.5 Inescapable Identifiers...........ococcvvvieeeeenennnn, 9

2.6 Local Names........cccceeeeiiiiiiiiiiiiiiiieeeeeeen 10

2.6.1 BasiC SDSI NAMES........cccuveveeiiiiiieeeeiiiieeeens 10
2.6.2 Compound SDSI Names...........ccccvvvvvveereeeeeennnnn 10
2.7 Sources of Global Identifiers..............ccccuvvneee. 11
2.8 Fully Qualified SDSI Names.........cccccovvvveeeennnnn 11
2.9 Fully Qualified X.509 Names...........cccevvvuuvvnnneen. 12
2.10 Group NaMES........coeviiriiiieeiiiiiniiiii e 12

3. AUthOriZatioN..........ceveeiiiiiie e, 12

3.1 Attribute Certificates........cccccocvvveveiiniiieenens 13

3.2 X.509V3 EXtENSIONS......cuvviiiriereeeiiiiiirnieeenen 13

3.3 SPKI Certificates..........cccccvvieeiriieeeeiniinns 14

3.4 ACL ENtHES....covvieeieviiiicieen e 15

4. Delegation.........cccueeeeeeieiieiiiiieieeeee 15

4.1 Depth of Delegation...........cccccvvveveeeeeeniiiinnnns 15
4.1.1 NO CONLIOL...ceveieiiiiiiiee e 15

4.1.2 Boolean control..........ccccccvvveeeeeiiiiinniinnn, 16

4.1.3 Integer Control............ccceeeeeiniieeeeniiinennn, 16

4.1.4 The choice: boolean..........ccccceeeeeiiiinnnnnnn.n. 16

4.2 May a Delegator Also Exercise the Permission?............ 17
4.3 Delegation of Authorization vs. ACLs..................... 17
5. Validity Conditions.............coevccvvivieerenneennnn. 18

5.1 Anti-matter CRLS........cooovevcvviiiieieie e 18

5.2 Timed CRLS......cccceeevviiiee e 19

5.3 Timed Revalidations..................ccccevvvvvviinnnnns 20

5.4 Setting the Validity Interval.................ccoo. 20

5.5 One-time Revalidations...........ccccccevvivvveeeennnee. 20
5.6 Short-lived Certificates.........ccccovvveeeininnnnen. 21

5.7 Other possibilities..........ccccccviiiiiieniiiennn 21

5.7.1 Micali’s Inexpensive On-line Results................... 21
5.7.2 Rivest’s Reversal of the CRL Logic..................... 21
6. Tuple Reduction............coccviiiieeieiieeins 22

6.1 5-tuple Defined.........ccocvvveeeeeiiiiiiiieee, 23

6.2 4-tuple Defined........ccccccevveeeeiiinieee, 24

6.3 5-tuple Reduction Rules............cccccvvvvvveeennnnn. 24
6.3.1 AINTEISECT....cevviiiiiiiiiiiiceeeee e 25

6.3.2 VINtersect......ccooevvvvveiiiiiiiiieeiicee e, 27

6.3.3 Threshold Subjects.........ccccceeiiiiiiiiiiiennnn. 27
6.3.4 Certificate Path Discovery..........cccoccvveeeeennn. 28

Ellison, et al. Experimental [Page 2]

RFC 2693 SPKI Certificate Theory September 1999

6.4 4-tuple Reduction...........ccccceveeeeeeein e, 28

6.4.1 4-tuple Threshold Subject Reduction.................... 29
6.4.2 4-tuple Validity Intersection..............ccceeeennee 29

6.5 Certificate Translation..............cccccceeeeeennn. 29

7. Key Management.......ccceceeeeieieeieeeeeeeeeeeeeeeeeeees 33

7.1 Through Inescapable Names.........ccccccvveerninnenn. 33
7.2 Through a Naming Authority............cccceovvieeeennnns 33
7.3 Through <name,key> Certificates................c.ueeeeee. 34
7.4 Increasing Key Lifetimes........ccccccoovviiiiiiinenn. 34
7.5 One Root Per Individual............ccoceeevviiieeenns 35
7.6 Key Revocation Service.......cccccvveeeeevinccenvnnnen, 36
7.7 Threshold ACL Subjects.........occcvvveiniiiineennnn 36

8. Security Considerations.............cccccvueeeeereeennn. 37
References.........oooocviiiiiici e, 38
Acknowledgments. ..., 40
AUthOrs’ AddreSSES......covvvvivieiiiiiiee e 41

Full Copyright Statement..........cccccceeeeveiiiiciinnnnen, 43

1. Overview of Contents
This document contains the following sections:
Section 2: history of name certification, from 1976 on.

Section 3: discussion of authorization, rather than authentication,
as the desired purpose of a certificate.

Section 4: discussion of delegation.

Section 5: discussion of validity conditions: date ranges, CRLs, re-
validations and one-time on-line validity tests.

Section 6: definition of 5-tuples and their reduction.
Section 7: discussion of key management.

Section 8: security considerations.

Ellison, et al. Experimental [Page 3]

RFC 2693 SPKI Certificate Theory September 1999

The References section lists all documents referred to in the text as
well as readings which might be of interest to anyone reading on this
topic.

The Acknowledgements section, including a list of contributors
primarily from the start of the working group. [The archive of
working group mail is a more accurate source of contributor
information.]

The Authors’ Addresses section gives the addresses, telephone numbers
and e-mail addresses of the authors.

1.1 Glossary

We use some terms in the body of this document in ways that could be
specific to SPKI:

ACL: an Access Control List: a list of entries that anchors a
certificate chain. Sometimes called a "list of root keys", the ACL

is the source of empowerment for certificates. That is, a

certificate communicates power from its issuer to its subject, but
the ACL is the source of that power (since it theoretically has the
owner of the resource it controls as its implicit issuer). An ACL
entry has potentially the same content as a certificate body, but has
no Issuer (and is not signed). There is most likely one ACL for each
resource owner, if not for each controlled resource.

CERTIFICATE: a signed instrument that empowers the Subject. It
contains at least an Issuer and a Subject. It can contain validity
conditions, authorization and delegation information. Certificates

come in three categories: ID (mapping <name,key>), Attribute (mapping
<authorization,name>), and Authorization (mapping
<authorization,key>). An SPKI authorization or attribute certificate

can pass along all the empowerment it has received from the Issuer or
it can pass along only a portion of that empowerment.

ISSUER: the signer of a certificate and the source of empowerment
that the certificate is communicating to the Subject.

KEYHOLDER: the person or other entity that owns and controls a given
private key. This entity is said to be the keyholder of the keypair

or just the public key, but control of the private key is assumed in

all cases.

PRINCIPAL: a cryptographic key, capable of generating a digital

signature. We deal with public-key signatures in this document but
any digital signature method should apply.

Ellison, et al. Experimental [Page 4]

RFC 2693 SPKI Certificate Theory September 1999

SPEAKING: A Principal is said to "speak" by means of a digital
signature. The statement made is the signed object (often a
certificate). The Principal is said to "speak for" the Keyholder.

SUBJECT: the thing empowered by a certificate or ACL entry. This can
be in the form of a key, a name (with the understanding that the name
is mapped by certificate to some key or other object), a hash of some
object, or a set of keys arranged in a threshold function.

S-EXPRESSION: the data format chosen for SPKI/SDSI. This is a LISP-
like parenthesized expression with the limitations that empty lists

are not allowed and the first element in any S-expression must be a
string, called the "type" of the expression.

THRESHOLD SUBJECT: a Subject for an ACL entry or certificate that
specifies K of N other Subjects. Conceptually, the power being
transmitted to the Subject by the ACL entry or certificate is
transmitted in (1/K) amount to each listed subordinate Subject. K of
those subordinate Subjects must agree (by delegating their shares
along to the same object or key) for that power to be passed along.
This mechanism introduces fault tolerance and is especially useful in
an ACL entry, providing fault tolerance for "root keys".

2. Name Certification

Certificates were originally viewed as having one function: binding
names to keys or keys to names. This thought can be traced back to
the paper by Diffie and Hellman introducing public key cryptography
in 1976. Prior to that time, key management was risky, involved and
costly, sometimes employing special couriers with briefcases
handcuffed to their wrists.

Diffie and Hellman thought they had radically solved this problem.

"Given a system of this kind, the problem of key distribution is

vastly simplified. Each user generates a pair of inverse

transformations, E and D, at his terminal. The deciphering
transformation, D, must be kept secret but need never be communicated
on any channel. The enciphering key, E, can be made public by

placing it in a public directory along with the user’'s name and

address. Anyone can then encrypt messages and send them to the user,
but no one else can decipher messages intended for him." [DH]

This modified telephone book, fully public, took the place of the

trusted courier. This directory could be put on-line and therefore

be available on demand, worldwide. In considering that prospect,

Loren Kohnfelder, in his 1978 bachelor’s thesis in electrical

engineering from MIT [KOHNFELDER], noted: "Public-key communication
works best when the encryption functions can reliably be shared among

Ellison, et al. Experimental [Page 5]

RFC 2693 SPKI Certificate Theory September 1999

the communicants (by direct contact if possible). Yet when such a
reliable exchange of functions is impossible the next best thing is
to trust a third party. Diffie and Hellman introduce a central
authority known as the Public File."

2.1 First Definition of CERTIFICATE

Kohnfelder then noted, "Each individual has a name in the system by
which he is referenced in the Public File. Once two communicants
have gotten each other’s keys from the Public File they can securely
communicate. The Public File digitally signs all of its

transmissions so that enemy impersonation of the Public File is
precluded." In an effort to prevent performance problems, Kohnfelder
invented a new construct: a digitally signed data record containing a
name and a public key. He called this new construct a CERTIFICATE.
Because it was digitally signed, such a certificate could be held by
non-trusted parties and passed around from person to person,
resolving the performance problems involved in a central directory.

2.2 The X.500 Plan and X.509

Ten years after Kohnfelder’s thesis, the ISO X.509 recommendation was
published as part of X.500. X.500 was to be a global, distributed
database of named entities: people, computers, printers, etc. In

other words, it was to be a global, on-line telephone book. The
organizations owning some portion of the name space would maintain
that portion and possibly even provide the computers on which it was
stored. X.509 certificates were defined to bind public keys to X.500
path names (Distinguished Names) with the intention of noting which
keyholder had permission to modify which X.500 directory nodes. In
fact, the X.509 data record was originally designed to hold a
password instead of a public key as the record-access authentication
mechanism.

The original X.500 plan is unlikely ever to come to fruition.
Collections of directory entries (such as employee lists, customer
lists, contact lists, etc.) are considered valuable or even
confidential by those owning the lists and are not likely to be
released to the world in the form of an X.500 directory sub-tree.
For an extreme example, imagine the CIA adding its directory of
agents to a world-wide X.500 pool.

The X.500 idea of a distinguished name (a single, globally unique
name that everyone could use when referring to an entity) is also not
likely to occur. That idea requires a single, global naming

discipline and there are too many entities already in the business of
defining names not under a single discipline. Legacy therefore
militates against such an idea.

Ellison, et al. Experimental [Page 6]

RFC 2693 SPKI Certificate Theory September 1999

2.3 X.509, PEM and PGP

The Privacy Enhanced Mail [PEM] effort of the Internet Engineering
Task Force [RFC1114] adopted X.509 certificates, but with a different
interpretation. Where X.509 was originally intended to mean "the
keyholder may modify this portion of the X.500 database", PEM took
the certificate to mean "the key speaks for the named person”. What
had been an access control instrument was now an identity instrument,
along the lines envisioned by Diffie, Hellman and Kohnfelder.

The insistence on X.509 certificates with a single global root

delayed PEM'’s adoption past its window of viability. RIPEM, by Mark
Riordan of MSU, was a version of PEM without X.509 certificates. It
was distributed and used by a small community, but fell into disuse.
MOSS (a MIME-enhanced version of PEM, produced by TIS (www.tis.com))
made certificate use optional, but received little distribution.

At about the same time, in 1991, Phil Zimmermann’s PGP was introduced
with a different certificate model. Instead of waiting for a single

global root and the hierarchy of Certificate Authorities descending
from that root, PGP allowed multiple, (hopefully) independent but not
specially trusted individuals to sign a <name,key> association,
attesting to its validity. The theory was that with enough such
signatures, that association could be trusted because not all of

these signer would be corrupt. This was known as the "web of trust"
model. It differed from X.509 in the method of assuring trust in the
<name,key> binding, but it still intended to bind a globally unique
name to a key. With PEM and PGP, the intention was for a keyholder
to be known to anyone in the world by this certified global name.

2.4 Rethinking Global Names

The assumption that the job of a certificate was to bind a name to a
key made sense when it was first published. In the 1970’s, people
operated in relatively small communities. Relationships formed face
to face. Once you knew who someone was, you often knew enough to
decide how to behave with that person. As a result, people have
reduced this requirement to the simply stated: "know who you're
dealing with".

Names, in turn, are what we humans use as identifiers of persons. We
learn this practice as infants. In the family environment names work
as identifiers, even today. What we learn as infants is especially
difficult to re-learn later in life. Therefore, it is natural for

people to translate the need to know who the keyholder is into a need
to know the keyholder's name.

Ellison, et al. Experimental [Page 7]

RFC 2693 SPKI Certificate Theory September 1999

Computer applications need to make decisions about keyholders. These
decisions are almost never made strictly on the basis of a

keyholder's name. There is some other fact about the keyholder of
interest to the application (or to the human being running the
application). If a name functions at all for security purposes, it

is as an index into some database (or human memory) of that other
information. To serve in this role, the name must be unique, in

order to serve as an index, and there must be some information to be
indexed.

The names we use to identify people are usually unique, within our

local domain, but that is not true on a global scale. Itis

extremely unlikely that the name by which we know someone, a given
name, would function as a unique identifier on the Internet. Given

names continue to serve the social function of making the named

person feel recognized when addressed by name but they are inadequate
as the identifiers envisioned by Diffie, Hellman and Kohnfelder.

In the 1970’s and even through the early 1990’s, relationships formed

in person and one could assume having met the keyholder and therefore
having acquired knowledge about that person. If a name could be

found that was an adequate identifier of that keyholder, then one

might use that name to index into memories about the keyholder and
then be able to make the relevant decision.

In the late 1990's, this is no longer true. With the explosion of

the Internet, it is likely that one will encounter keyholders who are
complete strangers in the physical world and will remain so. Contact
will be made digitally and will remain digital for the duration of

the relationship. Therefore, on first encounter there is no body of
knowledge to be indexed by any identifier.

One might consider building a global database of facts about all
persons in the world and making that database available (perhaps for
a fee). The name that indexes that database might also serve as a
globally unique ID for the person referenced. The database entry
under that name could contain all the information needed to allow
someone to make a security decision. Since there are multiple
decision-makers, each interested in specific information, the
database would need to contain the union of multiple sets of
information. However, that solution would constitute a massive
privacy violation and would probably be rejected as politically
impossible.

A globally unique ID might even fail when dealing with people we do
know. Few of us know the full given names of people with whom we
deal. A globally unique name for a person would be larger than the
full given name (and probably contain it, out of deference to a

Ellison, et al. Experimental [Page 8]

RFC 2693 SPKI Certificate Theory September 1999

person’s fondness for his or her own name). It would therefore not
be a name by which we know the person, barring a radical change in
human behavior.

A globally unique ID that contains a person’s given name poses a
special danger. If a human being is part of the process (e.g.,
scanning a database of global IDs in order to find the ID of a
specific person for the purpose of issuing an attribute certificate),
then it is likely that the human operator would pay attention to the
familiar portion of the ID (the common name) and pay less attention
to the rest. Since the common name is not an adequate ID, this can
lead to mistakes. Where there can be mistakes, there is an avenue
for attack.

Where globally unique identifiers need to be used, perhaps the best

ID is one that is uniform in appearance (such as a long number or
random looking text string) so that it has no recognizable sub-field.

It should also be large enough (from a sparse enough name space) that
typographical errors would not yield another valid identifier.

2.5 Inescapable Identifiers

Some people speak of global IDs as if they were inescapable
identifiers, able to prevent someone from doing evil under one name,
changing his name and starting over again. To make that scenario
come true, one would have to have assignment of such identifiers
(probably by governments, at birth) and some mechanism so that it is
always possible to get from any flesh and blood person back to his or
her identifier. Given that latter mechanism, any Certificate

Authority desiring to issue a certificate to a given individual would
presumably choose the same, inescapable name for that certificate. A
full set of biometrics might suffice, for example, to look up a

person without danger of false positive in a database of globally
assigned ID numbers and with that procedure one could implement
inescapable IDs.

The use of an inescapable identifier might be possible in some
countries, but in others (such as the US) it would meet strong
political opposition. Some countries have government-assigned 1D
numbers for citizens but also have privacy regulations that prohibit
the use of those numbers for routine business. In either of these
latter cases, the inescapable ID would not be available for use in
routine certificates.

There was a concern that commercial Certificate Authorities might
have been used to bring inescapable hames into existence, bypassing
the political process and the opposition to such names in those
countries where such opposition is strong. As the (hame,key)

Ellison, et al. Experimental [Page 9]

RFC 2693 SPKI Certificate Theory September 1999

certificate business is evolving today, there are multiple competing
CAs each creating disjoint Distinguished Name spaces. There is also
no real block to the creation of new CAs. Therefore a person is able
to drop one Distinguished Name and get another, by changing CA,
making these names not inescapable.

2.6 Local Names

Globally unique names may be politically undesirable and relatively
useless, in the world of the Internet, but we use names all the time.

The names we use are local names. These are the names we write in
our personal address books or use as nicknames or aliases with e-mail
agents. They can be IDs assigned by corporations (e.g., bank account
numbers or employee numbers). Those names or IDs do not need to be
globally unique. Rather, they need to be unique for the one entity

that maintains that address book, e-mail alias file or list of

accounts. More importantly, they need to be meaningful to the person
who uses them as indexes.

Ron Rivest and Butler Lampson showed with SDSI 1.0 [SDSI] that one
can not only use local names locally, one can use local names
globally. The clear security advantage and operational simplicity of
SDSI names caused us in the SPKI group to adopt SDSI nhames as part of
the SPKI standard.

2.6.1 Basic SDSI Names

A basic SDSI 2.0 name is an S-expression with two elements: the word
"name" and the chosen name. For example,

george: (name fred)

represents a basic SDSI name "fred" in the name space defined by
george.

2.6.2 Compound SDSI Names
If fred in turn defines a name, for example,
fred: (name sam)
then george can refer to this same entity as

george: (name fred sam)

Ellison, et al. Experimental [Page 10]

RFC 2693 SPKI Certificate Theory September 1999

2.7 Sources of Global Identifiers

Even though humans use local names, computer systems often need
globally unique identifiers. Even in the examples of section 2.6.2
above, we needed to make the local names more global and did so by
specifying the name-space owner.

If we are using public key cryptography, we have a ready source of
globally unique identifiers.

When one creates a key pair, for use in public key cryptography, the
private key is bound to its owner by good key safeguarding practice.
If that private key gets loose from its owner, then a basic premise

of public key cryptography has been violated and that key is no
longer of interest.

The private key is also globally unique. If it were not, then the
key generation process would be seriously flawed and we would have to
abandon this public key system implementation.

The private key must be kept secret, so it is not a possible
identifier, but each public key corresponds to one private key and
therefore to one keyholder. The public key, viewed as a byte string,
is therefore an identifier for the keyholder.

If there exists a collision-free hash function, then a collision-free
hash of the public key is also a globally unique identifier for the
keyholder, and probably a shorter one than the public key.

2.8 Fully Qualified SDSI Names

SDSI local names are of great value to their definer. Each local
name maps to one or more public keys and therefore to the
corresponding keyholder(s). Through SDSI's name chaining, these
local names become useful potentially to the whole world. [See
section 2.6.2 for an example of SDSI name chaining.]

To a computer system making use of these names, the name string is
not enough. One must identify the name space in which that byte
string is defined. That name space can be identified globally by a
public key.

Itis SDSI 1.0 convention, preserved in SPKI, that if a (local) SDSI

name occurs within a certificate, then the public key of the issuer
is the identifier of the name space in which that name is defined.

Ellison, et al. Experimental [Page 11]

RFC 2693 SPKI Certificate Theory September 1999

However, if a SDSI name is ever to occur outside of a certificate,
the name space within which it is defined must be identified. This
gives rise to the Fully Qualified SDSI Name. That name is a public
key followed by one or more names relative to that key. If there are
two or more names, then the string of names is a SDSI name chain.
For example,

(name (hash shal |TLCgPLFIGTzgUbcaYLW8KGTENUK=]) jim therese)

is a fully qualified SDSI name, using the SHA-1 hash of a public key
as the global identifier defining the name space and anchoring this
name string.

2.9 Fully Qualified X.509 Names

An X.509 Distinguished Name can and sometimes must be expressed as a
Fully Qualified Name. If the PEM or original X.500 vision of a

single root for a global name space had come true, this wouldn’t be
necessary because all names would be relative to that same one root

key. However, there is not now and is not likely ever to be a single

root key. Therefore, every X.509 name should be expressed as the

pair

(name <root key> <leaf name>)
if all leaf names descending from that root are unique. |If
uniqueness is enforced only within each individual CA, then one would
build a Fully Qualified Name chain from an X.509 certificate chain,
yielding the form
(name <root key> <CA(1)> <CA(2)> ... <CA(k)> <leaf name>).
2.10 Group Names
SPKI/SDSI does not claim to enforce one key per name. Therefore, a
named group can be defined by issuing multiple (name,key)
certificates with the same name -- one for each group member.
3. Authorization
Fully qualified SDSI names represent globally unique names, but at
every step of their construction the local name used is presumably

meaningful to the issuer. Therefore, with SDSI name certificates one
can identify the keyholder by a name relevant to someone.

Ellison, et al. Experimental [Page 12]

RFC 2693 SPKI Certificate Theory September 1999

However, what an application needs to do, when given a public key
certificate or a set of them, is answer the question of whether the
remote keyholder is permitted some access. That application must
make a decision. The data needed for that decision is almost never
the spelling of a keyholder's name.

Instead, the application needs to know if the keyholder is authorized

for some access. This is the primary job of a certificate, according

to the members of the SPKI WG, and the SPKI certificate was designed
to meet this need as simply and directly as possible.

We realize that the world is not going to switch to SPKI certificates
overnight. Therefore, we developed an authorization computation
process that can use certificates in any format. That process is
described below in section 6.

The various methods of establishing authorization are documented
below, briefly. (See also [UPKI])

3.1 Attribute Certificates
An Attribute Certificate, as defined in X9.57, binds an attribute
that could be an authorization to a Distinguished Name. For an
application to use this information, it must combine an attribute
certificate with an ID certificate, in order to get the full mapping:
authorization -> name -> key
Presumably the two certificates involved came from different issuers,
one an authority on the authorization and the other an authority on
names. However, if either of these issuers were subverted, then an
attacker could obtain an authorization improperly. Therefore, both
the issuers need to be trusted with the authorization decision.
3.2 X.509v3 Extensions
X.509v3 permits general extensions. These extensions can be used to
carry authorization information. This makes the certificate an
instrument mapping both:
authorization -> key
and

name -> key

In this case, there is only one issuer, who must be an authority on
both the authorization and the name.

Ellison, et al. Experimental [Page 13]

RFC 2693 SPKI Certificate Theory September 1999

Some propose issuing a master X.509v3 certificate to an individual
and letting extensions hold all the attributes or authorizations the
individual would need. This would require the issuer to be an
authority on all of those authorizations. In addition, this
aggregation of attributes would result in shortening the lifetime of
the certificate, since each attribute would have its own lifetime.
Finally, aggregation of attributes amounts to the building of a
dossier and represents a potential privacy violation.

For all of these reasons, it is desirable that authorizations be
limited to one per certificate.

3.3 SPKI Certificates
A basic SPKI certificate defines a straight authorization mapping:
authorization -> key

If someone wants access to a keyholder's name, for logging purposes
or even for punishment after wrong-doing, then one can map from key
to location information (name, address, phone, ...) to get:

authorization -> key -> name

This mapping has an apparent security advantage over the attribute
certificate mapping. In the mapping above, only the

authorization -> key

mapping needs to be secure at the level required for the access
control mechanism. The

key -> name

mapping (and the issuer of any certificates involved) needs to be
secure enough to satisfy lawyers or private investigators, but a
subversion of this mapping does not permit the attacker to defeat the
access control. Presumably, therefore, the care with which these
certificates (or database entries) are created is less critical than

the care with which the authorization certificate is issued. It is

also possible that the mapping to name need not be on-line or
protected as certificates, since it would be used by human
investigators only in unusual circumstances.

Ellison, et al. Experimental [Page 14]

RFC 2693 SPKI Certificate Theory September 1999

3.4 ACL Entries

SDSI 1.0 defined an ACL, granting authorization to names. It was
then like an attribute certificate, except that it did not need to be
signed or issued by any key. It was held in local memory and was
assumed issued by the owner of the computer and therefore of the
resource being controlled.

In SPKI, an ACL entry is free to be implemented in any way the
developer chooses, since it is never communicated and therefore does
not need to be standardized. However, a sample implementation is
documented, as a certificate body minus the issuer field. The ACL
entry can have a name as a subject, as in SDSI 1.0, or it can have a
key as a subject. Examples of the latter include the list of SSL

root keys in an SSL capable browser or the file .ssh/authorized_keys
in a user's home UNIX directory. Those ACLs are single-purpose, so
the individual entries do not carry explicit authorizations, but SPKI
uses explicit authorizations so that one can use common authorization
computation code to deal with multiple applications.

4. Delegation

One of the powers of an authorization certificate is the ability to
delegate authorizations from one person to another without bothering
the owner of the resource(s) involved. One might issue a simple
permission (e.g., to read some file) or issue the permission to
delegate that permission further.

Two issues arose as we considered delegation: the desire to limit
depth of delegation and the question of separating delegators from
those who can exercise the delegated permission.

4.1 Depth of Delegation

There were three camps in discussing depth of delegation: no control,
boolean control and integer control. There remain camps in favor of
each of these, but a decision was reached in favor of boolean

control.

4.1.1 No control

The argument in favor of no control is that if a keyholder is given
permission to do something but not the permission to delegate it,
then it is possible for that keyholder to loan out the empowered
private key or to set up a proxy service, signing challenges or
requests for the intended delegate. Therefore, the attempt to
restrict the permission to delegate is ineffective and might back-
fire, by leading to improper security practices.

Ellison, et al. Experimental [Page 15]

RFC 2693 SPKI Certificate Theory September 1999

4.1.2 Boolean control

The argument in favor of boolean control is that one might need to

specify an inability to delegate. For example, one could imagine the

US Commerce Department having a key that is authorized to declare a
cryptographic software module exportable and also to delegate that
authorization to others (e.g., manufacturers). It is reasonable to

assume the Commerce Department would not issue permission to delegate
this further. That is, it would want to have a direct legal

agreement with each manufacturer and issue a certificate to that
manufacturer only to reflect that the legal agreement is in place.

4.1.3 Integer control

The argument in favor of integer control is that one might want to
restrict the depth of delegation in order to control the
proliferation of a delegated permission.

4.1.4 The choice: boolean

Of these three, the group chose boolean control. The subject of a
certificate or ACL entry may exercise any permission granted and, if
delegation is TRUE, may also delegate that permission or some subset
of it to others.

The no control argument has logical appeal, but there remains the
assumption that a user will value his or her private key enough not
to loan it out or that the key will be locked in hardware where it
can’t be copied to any other user. This doesn’t prevent the user
from setting up a signing oracle, but lack of network connectivity
might inhibit that mechanism.

The integer control option was the original design and has appeal,
but was defeated by the inability to predict the proper depth of
delegation. One can always need to go one more level down, by
creating a temporary signing key (e.g., for use in a laptop).
Therefore, the initially predicted depth could be significantly off.

As for controlling the proliferation of permissions, there is no

control on the width of the delegation tree, so control on its depth
is not a tight control on proliferation.

Ellison, et al. Experimental [Page 16]

RFC 2693 SPKI Certificate Theory September 1999

4.2 May a Delegator Also Exercise the Permission?

We decided that a delegator is free to create a new key pair, also
controlled by it, and delegate the rights to that key to exercise the
delegated permission. Therefore, there was no benefit from
attempting to restrict the exercise of a permission by someone
permitted to delegate it.

4.3 Delegation of Authorization vs. ACLs

One concern with defining an authorization certificate is that the

function can be performed by traditional <authorization,name> ACLs

and <name,key> ID certificates defining groups. Such a mechanism was
described in SDSI 1.0. A new mechanism needs to add value or it just
complicates life for the developer.

The argument for delegated authorization as opposed to ACLs can be
seen in the following example.

Imagine a firewall proxy permitting telnet and ftp access from the
Internet into a network of US DoD machines. Because of the
sensitivity of that destination network, strong access control would
be desired. One could use public key authentication and public key
certificates to establish who the individual keyholder was. Both the
private key and the keyholder’s certificates could be kept on a
Fortezza card. That card holds X.509v1 certificates, so all that can
be established i