ROOT

An Object-Oriented
Data Analysis Framework

Users Guide 5.16

July, 2007

Comments to: rootdoc@root.cern.ch

The ROOT Users Guide:

Authors: René Brun (CERN), Fons Rademakers (CERN), Philippe Canal (FNAL), llka Antcheva (CERN),
Damir Buskulic (LAPP)

Editor: llka Antcheva
Special Thanks to: Nick West (Oxford), Elaine Lyons, Suzanne Panacek and Andrey Kubarovsky (FNAL)

Preface

In late 1994, we decided to learn and investigate Object Oriented programming and C++ to better judge the
suitability of these relatively new techniques for scientific programming. We knew that there is no better way to
learn a new programming environment than to use it to write a program that can solve a real problem. After a
few weeks, we had our first histogramming package in C++. A few weeks later we had a rewrite of the same
package using the, at that time, very new template features of C++. Again, a few weeks later we had another
rewrite of the package without templates since we could only compile the version with templates on one single
platform using a specific compiler. Finally, after about four months we had a histogramming package that was
faster and more efficient than the well-known FORTRAN based HBOOK histogramming package. This gave us
enough confidence in the new technologies to decide to continue the development. Thus was born ROOT.
Since its first public release at the end of 1995, ROOT has enjoyed an ever-increasing popularity. Currently it is
being used in all major High Energy and Nuclear Physics laboratories around the world to monitor, to store and
to analyze data. In the other sciences as well as the medical and financial industries, many people are using
ROOT. We estimate the current user base to be around several thousand people. In 1997, Eric Raymond
analyzed in his paper "The Cathedral and the Bazaar" the development method that makes Linux such a
success. The essence of that method is: "release early, release often and listen to your customers”. This is
precisely how ROOT is being developed. Over the last five years, many of our "customers" became co-
developers. Here we would like to thank our main co-developers and contributors:

Masaharu Goto wrote the CINT C++ interpreter that became an essential part of ROOT. Despite being 8 time
zones ahead of us, we have the feeling he has been sitting in the room next door since 1995.

Andrei and Mihaela Gheata (Alice collaboration) are co-authors of the ROOT geometry classes and Virtual
Monte-Carlo. They have been working with the ROOT team since 2000.

Olivier Couet, who after a successful development and maintenance of PAW, has joined the ROOT team in
2000 and has been working on the graphics sub-system.

llka Antcheva has been working on the Graphical User Interface classes. She is also responsible for this latest
edition of the Users Guide with a better style, improved index and several new chapters (since 2002).

Bertrand Bellenot has been developing and maintaining the Win32GDK version of ROOT. Bertrand has also
many other contributions like the nice RootShower example (since 2001).

Valeriy Onoutchin has been working on several ROOT packages, in particular the graphics sub-system for
Windows and the GUI Builder (since 2000).

Gerri Ganis has been working on the authentication procedures to be used by the root daemons and the
PROOF system (since 2002).

Maarten Ballintijn (MIT) is one of the main developers of the PROOF sub-system (since 1995).

Valeri Fine (now at BNL) ported ROOT to Windows and contributed largely to the 3-D graphics. He is currently
working on the Qt layer of ROOT (since 1995).

Victor Perevoztchikov (BNL) worked on key elements of the I/0 system, in particular the improved support for
STL collections (1997-2001).

Nenad Buncic developed the HTML documentation generation system and integrated the X3D viewer inside
ROOT (1995-1997).

Suzanne Panacek was the author of the first version of this User's Guide and very active in preparing tutorials
and giving lectures about ROOT (1999-2002).

Axel Naumann has been developing further the HTML Reference Guide and helps in porting ROOT under
Windows (cygwin/gcc implementation) (since 2000).

Anna Kreshuk has developed the Linear Fitter and Robust Fitter classes as well as many functions in TMath,
TF1, TGraph (since 2005).

Richard Maunder has contributed to the GL viewer classes (since 2004).

Timur Pocheptsov has contributed to the GL viewer classes and GL in pad classes (since 2004).

Sergei Linev has developed the XML driver and the TSQLFile classes (since 2003).

Stefan Roiser has been contributing to the reflex and cintex packages (since 2005).

Lorenzo Moneta has been contributing the MathCore, MathMore, Smatrix & Minuit2 packages (since 2005).
Wim Lavrijsen is the author of the PyRoot package (since 2004).

Further we would like to thank all the people mentioned in the $ROOTSYS/README/CREDITS file for their
contributions, and finally, everybody who gave comments, reported bugs and provided fixes.

Happy ROOTing!

Rene Brun & Fons Rademakers
Geneva, July 2007

July 2007 v5.16 Preface i

Table of Contents

Preface i
Table of Contents iii
Table of Figures XV
1 Introduction 1
The ROOT Mailing LiStS......cccecvveeveiierienieerieeieeiesieeteereeveseeesreesseeaeenee e 1

Contact INfOrmation..........cceceveriirieriieie et sre e ees 1
Conventions Used in This BOOKccccovvevieriieciieiecieseeeee e 1

The FrameworK..........cooieiieiiieieciecieeee et 2

What Is @ Framework?...........cccevieiieiiiiieiieceeeeee e 2

Why Object-Oriented?.........ccoveriereeieee e 3

Installing ROOTouiiiiie et 3

The Organization of the ROOT Frameworkcccoeoeiiiiinieninieeee 3
SROOTSY S/DIN.eieiiieiieieieiieieiet ettt 4

SROOTSY S/, e 4

SROOTSY S/ULOTIALS........cvevieereeeeeeeeteeeeeeteeeeeeee et 6

FROOTSY S/ESE ..ttt ee et 7

SROOTSY S/ANCIUAEooeeviveeieieeeieteeeeeeee e 7

SROOTSY S/<IBIAry™......coveievieeeiereeeeeereeee et 7

How to Find More Information..............ceeverienieeienieiiesieseeie e 7

2 Getting Started 9
Setting the Environment Variablescccceeoiiienieninnicnieneneenceeeee 9

Start and Quit @ ROOT SeSSI0M ..ecuviereviiiiiieiiieiie ettt 9

USING the GUL......oooiiiiieiicieceeeeee sttt enees 10

Main Menus and Toolbarccceevveeivienieriieieeieceeieee e 11

The Editor Frame..........ccccooeviiiiiieniecieceeeeeeeeeeee e 13

Classes, Methods and ConstrucCtorscceveeeeeiveeeeeieeeeeireeeenns 14

USer INTEractioneecveeeieriieiieieeie ettt 15

Building a Multi-pad Canvas..........cccoceveerieneniienieeeieeieeeeeenn 16

Saving the Canvascccceeierieiieeee e 16

Printing the Canvas..........ccooeeiieierieiiereee e 16

The ROOT Command Lineccccccueeeuiienieeiieiieeeiie e ciee e svee e 17
Multi-line Commands.........c.cceccveerieerieerieenieeree e e eee e 17

CINT EXEENSIONS ..evvveeuvieeiiieeiieiieeeieesreesreesseessseessseenssessssesnsees 17

Helpful Hints for Command Line Typingcccccceevvevvreveenennen. 17

Regular EXPression.........ccueiveiienieeieiienieneeieeveeeeesieeseevesneseees 17

CONVENTIONSveeveeiieiieteeeteetteeteestee e eseeaesaesseesseesseesseessesssessaesseessesssenses 18

Coding CONVENTIONSeevieereereriereieriieieereeeeeeeesseeeeenseeeaesnneseees 18

Machine Independent TYPES.......cccevveeveirierieniierieeeeieseeie e ees 18

10 o] T USRS 19

G1oDbAl Variablesccvieiuiiiiiiciie ettt e 19

GROOT ..t 19

3 U USSR 20

EDATECTOTY .ttt 20

PAA ..o 20

GRANAOIM ..ot 20

GBIV et e s 20

ENvironment SETUDccvevvieeiiiieiieieeieeie ettt seesnesenesnees 20

Logon and Logoff SCripts.......cccccevieriieriieiieieeieseeeeie e 21

HiStOry File.....ooiiiiiiieieeieeieeee e 21

Tracking Memory Leakscccoccvvierienieiiieieeieeeeee e 21

July 2007 v5.16

Table of Contents

Memory ChecKerccuoviiiiiiiiiieiee e 21

Converting from PAW t0 ROOTccooiiiiiiiiiiiiiieeeeeeeeee e 22
Converting HBOOK/PAW Filescccoeevevieniieciieieiienieieeienee. 22
Histograms 23
The Histogram CIaSSEscccueeierierieieiie ettt 23
Creating HiStOZIAMSovvieeieieeieeiieeiceie ettt 24
Fixed or Variable Bin SizZe..........cooiiiriiiiieeeeee e 24
Bin Numbering Convention..........c.cceoeeveerieneenienienieneeneneenee. 24
RE-DINNING ...t 25
Filling HiStOZIAMScveevieieieieieieieeie et eteeste et esbe e esaesreesseeseensesneeees 25
Automatic Re-binning Optionccceeeveeierieriiecienieneeieeeeen 25
Random Numbers and HiStOgramsccecveverienieesieenienie e 25
Adding, Dividing, and Multiplyingccceceerierierincieeienieseereeee e 26
PrOJECIONS ...ttt sne e e 26
Drawing HiStOgrams..........ccceeeeieeriieiiinienieieeeee e 26
Setting the StYle.......coviiiiiiieeee e 27
DIraw OPHONS .. .ceueieeiieeieetiest ettt ettt ettt e e et et eaeenaesaeesneeenes 27
The SCATter Plot Option.......c..ccueeieeieeniieiieieeieeeeeeere e 28
The ARROW OPtiON....ccueiiieiieiiieiieeiiecieeeieesiee e sveeeeveeseve e s 28
The BOX OPtiON ..cccvveeiieiiieeiieciiecieeereeereesvee e seveeaee e ennee s 29
The ERROr Bars Options.........cccccvevvieiinienienieeieereeeesieeieene e 29
The Color OPtioN........cceeeveriieiieieiie ettt see b eeve e seees 29
The TEXT OPtion......ccceevieriieiieieriesieenieeieeeeeeeesreesseesseessesenesenes 30
The CONTOUL OPLIONScevvveeeeeeieeeieriieieeieeeeeevesieeseeese e sneseees 30
The LEGO OPiONS.....c.covvieiieiieieeeieriieieete et sseesseeseeaesnesenes 31
The SURFACE OPLONS ...cuveevieeieeiieriieiieieete e sieeie e eeae e seees 32
The BAR OPtions......ccceeveiieiieieeieeie et 32
The Z Option: Display the Color Palette on the Pad 33
The SPEC OPtion ..c..covuiiiieiiiieeieeieertee e 34
3-D HISTOZIAIMS ...eeutieniiiiieiiieiiie ettt et 36
Drawing a Sub-range of a 2-D HiStogramccoccoceeeeienieiienienienese 36
Superimposing Histograms with Different Scalesc.ccceevevvieciieiennnnns 36
StatiStiCS DISPIAY ...vevviiieiieriieriieie ettt sbe b eaeenaaens 37
Setting Line, Fill, Marker, and Text Attributes...........cceeeververivevreeieneenenns 38
Setting Tick Marks 0n the AXISccvecvreveriereesieeie e sienie e e eeeseeeeeens 38
Giving Titles to the X, Y and Z AXiS....cceccvevcierierieieeiesieie e eee e 38
Making a Copy of an Histogram.............ceccvevureienienieniieeee e 38
Normalizing HiStOZIamScecueeuerieiieiieieeie e 39
Saving/Reading Histograms to/from a File..........ccoccooiiioiniiiiiiiiices 39
Miscellaneous OPerations...........cueeeerueerererieeieeienieieeieeeeseee e seeeseeeeeenes 39
Alphanumeric Bin Labelsc.cccoovveiieviieiiciicieceeeeieeeeeee e 40
HiSto@ram StaCKScoeerieriiiiiiierietee e 41
Profile HiStOGIamscoceeruieiiiiiiiieiieieee e 42
BUild OPtionscccecvieiieieiieiieie ettt e e eseese e 42
Drawing a Profile without Error Bars...........ccccoeoveevivienieniennenen, 43
Create a Profile from a 2D Histogram...........c.cccceevveveerieerennennen. 43
Create a Histogram from a Profile..........ccccoveninnnnicnincnne, 43
Generating a Profile from a TTree......c..cocevvevinenerceicnicnicncnene, 43
2D PrOfil@S.c..ceueieieiiieienieeieriee et 44
ISO SUITACES ...t 44
3D Implicit FUNCLIONSoouiiiieiieiieieee e 45
TPIC. et ettt 45
The User Interface for Histogramscc.ccocceeierienieiinienieniencee e, 46
THIEIOTeeiieeeieeeeeee et 46
TH2EQILOT ...ttt 47
Graphs 51
TGIAPN ...t 51
Graph Draw Options.........cccceeeereereeneeieeieeeesiee e eee e 51
Superimposing TWO Graphscccceoeerierienieniineeieee e 53

Table of Contents July 2007 v5.16

Graphs With EIror Barscccccvevieviiiiiiiiieeceecee et 54

Graphs with Asymmetric Error Barsccocooeieiiiiniiniiiceeeee 55
Graphs with Asymmetric Bent Errors...........cceevvevievieniieciececiecieeeeeee, 56
TGIaphPOIArcc.veiiieiieiiee e 57
TGraph EXCIUSION ZONE.........ccoviiiiieiiiieciieiieieeie e se e eaesaeene e e 57
TGraphQQcoveeeeeieee ettt ee st ettt et e enaeesaenseensees 58
TMUItIGTAPN ...ttt 59
G :15) 117 D BTSSR 60
TGIaph2DEITOTS ...c..eeeiiieiiieiieeee ettt 62
Fitting @ Graph.......ocooiieiieeee e 62
Setting the Graph's AXis Titleooovieiiieieiiiieeee e 62
Z00mMiNg @ Graph.......c.ooiiiiiiieeee e 63
The User Interface for Graphscccecveeevieeciieiiiieniiie e 64
Fitting Histograms 65
The Fit MEthodcc.veiiiiieiiiciieeeeceeee ettt et 65
Fit with a Predefined FUNCtion..........c.ccccuveeieeiiieniiccie e 65
Fit with a User-Defined Functionccccceeevieviieiiiiciecie e 66

Creating a TF1 with a Formula............ccoocoiiiiiiiiniiiiieeee, 66

Creating a TF1 with Parametersccccoecevinencneeieeiee e, 66

Creating a TF1 with a User Functionccoceoveiieiiieienennee. 66
Fixing and Setting Parameters’ Bounds.........c.ccccoevvevieriinnincienieneeeee 67
Fitting SUD RANEES.....cccveviiiiieiieiieieeeesieee ettt s 67
The Fit Panel.......cccocieiiieiiieiecieceectee ettt 68
Fitting Multiple Sub Rangesccceoveviieiiriinieieieeeceee e 69
Adding Functions to the LiSt...........ccoeeierirriieiiieieeiesieeee e 70
Combining FUNCHONS.......cccuveiirieiieciee ettt 70
Associated FUNCHON.........cccuiiiiiiiiiecieccie e 72
Access to the Fit Parameters and Results...........cccccoevviiiieiiiiecieccieeeeee, 72
ASSOCIALEA EITOTS ..ccuvviieiiiiiieciieceiie ettt ettt e 72
FIE STALISTICS 1uvvieeieeeiieeie et erre et etee et etre et e et e et e steeenbeesnbeeensaesnseennsas 72
The Minimization Packageccccooeeviiiiiiiiiiniiiecee e, 72

Basic Concepts of MINUItccovveeviiieiienieiieieeeeeere e 73

The Transformation of Limited Parameters...........c...ccceevervrrnnnnen. 73

How to Get the Right Answer from Minuit...........c.ccccoeverveenennen. 73

Reliability of Minuit Error EStimatesccccocveevevienvenieennenee. 74
FUMILI Minimization Package..........ccccceerieriieiieniienieieeee e 75
NEUral NEtWOTKS.......ccevieiieiieiieie et 76

INErOAUCHION ... s 76

TRE MLP....c.oiiiiitieeeeeeeeeee ettt et 76

Learning Methods........coeuiiieiiiiieeee e 76

USING the NetWOork........coeiiiiiiiieieieeie e 77

EXAMPIES ..ooviiiiiiiciiiceeeeeeete ettt 78
A Little C++ 81
Classes, Methods and CONSrUCIOLScecveeevereierieriieiiereeeesieee e seees 81
Inheritance and Data Encapsulation............ccoceereereriienienieniee e 81

Method OVerridingccceeveeiiererieiieseee e 82

Data Encapsulation...........cocceeceeveerieiienieneee e 82
Creating Objects on the Stack and Heap..........ccoceoeiiiiiiiincniecee 83
CINT the C++ Interpreter 85
WHhat 1S CINT? ..ottt ettt ne e ees 85
The ROOT Command Line Interfaceccoecveeeierienieceeienieceeeeeeen. 86
The ROOT Script PrOCESSOTc..eeiuieiieieiieiiesieee et 87

UnN-named SCIIPLS ..couveeuviriieirieitieie et seees 87

NAMEA SCTIPLS ..vveerieeiiieiiieeiieeiee ettt ereesreeeteesreesbeesreessee e 88

Executing a Script from a SCript.......c.cceveeviriiniienienieieeieneeee, 89
Resetting the Interpreter Environment............cccooceeiiieienienienieneseseee 89
A Script Containing a Class Definition..........c.cccevvevriecieeciiniieneeneeie e 90
DebUZZING SCIIPLS....uviivieriieiieieiieieere ettt ebeebeeaesaeseeesseesseesseenns 91

July 2007 v5.16

Table of Contents

INSPECHING ODJECLS. ...vivieieeieiieiieieeete ettt 91

ROOT/CINT Extensions t0 CHc.eeieieiiiieiiriesiese e 92
ACLIC - The Automatic Compiler of Libraries for CINT.............c..c.......... 93
USAZE .. tieeiiieeitieeiee ettt st sttt e st e st e st e e st e e ab e e st e enateesnbeenee s 93
Setting the Include Path.........c..cccoovvivieiiiciiiicees 94
Dictionary Generationceceevveeeeereereerereseeeeeseesseessesssesenes 94
Intermediate Steps and Files........ccoocvevieeiieienienieeeieceeeeeee, 95
Moving between Interpreter and Compiler.........c.ccceevevenencnnenne. 95
S i 1o S PRR 96
OVEIVIEW ..cnvieitieiiieiieeiie et te et ettt ettt et e sae et ete e e enteeeeesneesneas 96
GCCXML INStalationeeoveeeerieseieriieieee e 97
Reflex APL.....coiiiiieee e 97
CANTEX 1.ttt ettt ettt sttt ettt saeenaees 99
Object Ownership 101
Ownership by Current Directory (gDirectory)........ccceeveeveereerieenveneeeenne 101
Ownership by the Master TROOT Object (gROOT)......cccoevveviveieriannne 101
The Collection of Specials.........ccoecveviirierieiieeeeceeee e 102
Access to the Collection COntentscoeeeereeereeeeieneeieeans 102
Ownership by Other ObJECtS........cceueriiriiririeiieieieie e 102
Ownership by the USETc.coiiiiiiieiiiie e 102
The kCanDelete Bitcccoviveririiiiieieneenceeeeeeeeene 102
The kMustCleanup Bit.........c.ccceeieviirciiiieiieneeiccee e 103
Graphics and the Graphical User Interface 105
Drawing ODJECLScueeeerieiierieeie ettt ettt et e eeee e sae e e ens 105
Interacting with Graphical ObJECtscocceririeiieiieeriere e 105
Moving, Resizing and Modifying Objects...........cccereeeenieienees 105
Selecting ObBJECtSccueeruieiirieiieniiereee e 106
Context Menus: the Right Mouse Buttoncccccceevveieennnnne. 106
Executing Events when a Cursor Passes on Top of an Object.... 107
Graphical Containers: Canvas and Pad...........c.ccocceeviieviiiiiiienieeeeee 108
The Global Pad: gPad.........ccooveiieiiieieeeeeeceeeee e 109
The Coordinate Systems of a Pad..........coccvevvevviienieieee, 110
Converting between Coordinates Systemsccccccevevereeenne 111
Dividing a Pad into Sub-padscccceoeeiiiiiiiieeeeeee 111
Updating the Padccoooiiiiiie e 112
Making a Pad TransSparent............ceceevuereereeneeneeneeneencenieeieens 112
Setting the Log Scale.......ccooiiiiiiieieeeeeeeeee e 113
WaitPrimitive methodcccooiiiiiiiniiiiiececcecee 113
Locking the Pad...........ccoecvieieiieniieiiciececeereee e 113
GraphiCal ODJECEScouveriieiieiieeieeieeieete ettt re e s esreese s e 113
Lines, Arrows and Polylines...........cccccevverienieeciiicienieneenieenens 113
Circles and EIPSEScevvverieeiiiieiierieieeie et 114
RECtanGLesoooevieieiieiiee e 115
IMATKEIS ...ttt 115
Curly and Wavy Lines for Feynman Diagrams.............cccc........ 116
Text and Latex Mathematical EXpressions...........ccccceveerernennne. 116
GIEeK Lettersooiueeierieiieeiieeieee ettt 117
Mathematical SymbolSccoeoeerieiiiiiiiie e 118
Text in @ Pad......coooeiiieieiee e 120
AAXIS ettt ettt ettt h e heeh e h e n e a s et et e ebe et e eaeeneeneenean 121
AXIS TIIE et 122
Axis Options and CharacteristiCs........ccvvvververeerreereereeseesreennens 122
Setting the Number of DiviSionsccecceveeerienierireieeieseenens 122
Z00MING the AXIS ..eevieiieeienieiieieeeeeeesieesieete e seeseeesaeeeeennens 122
Drawing Axis Independently of Graphs or Histograms 123
Orientation of Tick Marks on AXiS.......cccecceereeoerienieneeeee 123
LabeCLS ..ot 123
AXis With Time UNitsccceceeveeiiieienieiiesieseee e 125
AXIS EXAMPIES....cviiiiiiiiiicrieiecieeee et 128

vi

Table of Contents

July 2007 v5.16

10

11

Graphical Objects AUITDULES........c.ceeeieierierieeieeeeeee e 130

TEXt ATTDULESoeiieeiii ittt 130
Line ATIDULESovviiiieeie e 133
Fill ATIDULES oooevveeeeeeeie e 133
Color and Color Palettes........ccouvvvevivieieerieeeeeeeeeeeeeeeee e 134
The Graphics Editor.......coccvieiirierieiieieeieee e 135
TAXISEQITOT ...eviiiieeee e 135
TPAAEQILOT......ccvviieeeieee e 135
Copy and Pastecc.eeiuiiiieiieeee e 135
Using the GUL.......cooiiiiiiieeeeeeee e 136
Programmaticallycccccovieiieiiniieeee e 136
L@ONAS ..ttt bt 137
The PostScript INterface.........cvevevieeiieiiieeiieceeeeecte e 138
Special Charactersccocvevveeeieriieiieieeie et 139
Writing Several Canvases to the Same PostScript File 139
Create or Modify @ Style.......ccveeiiiiiiieiieieeie e 141
R B A T 7 SRR 143
InvoKing a 3D VIEWETeevvieiieiieieeiieriieieeie e 143
ThEe GL VICWETcoievvieeeeeiee e 143
The X3D VIEWET oot 149
Common 3D Viewer ArchiteCture.........oooovuvvveveiiieiiiiieeeeeeeeinnns 149
Folders and Tasks 155
FOLARTS .ot e et eaaee e 155
WHhy USe FOLACTS?.....ccviiiieeiiesiieie ettt ne 155
HOW t0 USE FOIAETS ... 156
Creating a Folder Hierarchycccooevievieniiniiieciecceeee 156
Posting Data to a Folder (Producer)ccoooeevieniiiiniiinieee 156
Reading Data from a Folder (Consumer)cccceevvevienienncns 156
TASKS ..ttt e e e e et e e e e e senaaaees 157
Execute and Debug Tasks........ooeiiiiiiriiiiieieeee e 158
Input/Output 159
The Physical Layout of ROOT Files........cccoeeevoierieiienieie e 159
The File HEadercooovvveiiiiiieieeeee e 160
The Top Directory Description...........cceceereereeenieneeseeeeeee 160
The Histogram Records...........cooverieiinienieieeeeeeee e 161
The Class Description List (StreamerInfo List)...........cccoveneeee. 161
The List of Keys and the List of Free Blocks.........c..ccoceneenne 162
File RECOVETY ... oottt 162
The Logical ROOT File: TFile and TKeEYccceevvevierieniiiieiieeieieenne 163
Viewing the Logical File Contents............cccoeevevievveneeneeneenenns 164
The Current DIr€CtOryccevvverveecieecieiiereerieeieeeeseeseeseeeneens 165
Objects in Memory and Objects on DisK.........cccoeeeerierieniennnnne. 165
Saving Histograms to DisK..........ccoeeverienieiinienieceeeieeen 167
Histograms and the Current Directory........ccooovevvvevveeceervereeienns 168
Saving Objects t0 DisKooeeiieiiiiiieieeeeeeee e 168
Saving Collections to DisKccccceeveerieriiiiniereeeeeeeeeeee 169
A TFile Object Going Out of SCOPE.....cccverveereeririerierieieeieae 169
Retrieving Objects from DisK.........cccoeeieiienieieniniiiiieieceieene 169
Subdirectories and Navigation............cceceeeeerenerenenenieeeeene 169
SEIFEAIMNETS ...vvvveieeeeieiieeeee ettt e e e e e et e e e e e e e eraaaeeeeeeeeennraareeeeas 171
Automatically Generated Streamers...........ccocevevvevveeceeecieneeniens 171
Transient Data Members (/1)ccveeveeevercieiieneeieeie e 172
The Pointer to ObJECtS (/=) .ccuverieeieieeieiieieeeeeieee e 172
Variable Length AIray........cccoecveeieeiieiieiieciereec e 172
DOoUDIE32 ittt 172
Prevent SpItting (//]])eeeveeeeereeeereeneee et 173
Streamers with Special Additions..........ccceeveeverierieneeeeeeeen 173
WIItINg ODJECLS ...veeneieiieiieiieeieeeteee ettt 174
Ignore Object SIrEAMETScceveruirieeieiieieiereeee e 174

July 2007 v5.16

Table of Contents

vii

12

Streaming @ TCIONESATTAYccevueeuirieieieiee e 174

Pointers and References in Persistency........c.cceevevveienieneinciiienienceee 175
Streaming CH+ POINLETSovvveriieiiiieiierieeieeeeeeese e 175
Motivation for the TRef Classcceceevevienieninininiiiceiee 175
USING TRET ..o 175
How Does It WOrk?......ccooiiiiiiiiiiiiicienicenceceeeeecene 176
Action on Demand........c..ccccoiviiiiiiiiiiiineee 177
ATray Of TR ..o 178

Schema EvOIUtionccooeiiiiiiiiei e 178
The TStreamerInfo Class.........coccveeveierierieiieeeeceeeee e 179
The TStreamerElement Classcccceevevieienieiieneeeee e 179
Example: TH1 StreamerInfocccceevevieniieniiieniieiieeieeiene 179
Optimized StreamerInfoccoooveeiieveiiieiieece e 180
Automatic Schema Evolution..........c.ccceeeveneninincnieiiencenns 180
Manual Schema Evolution...........cccecevieninininininceieeeiens 180
Building Class Definitions with the StreamerInfo...................... 181
Example: MaKeProjectccvvverierieeieiie e 181

Migrating to ROOT 3ooiieiiiiecieeet et 183

Compression and Performancecocceeeeeeiereienieneene e 183

Remotely Access to ROOT Files via a rootd..........ccceeveererienieneeniene 184
TNEtFIle URL.....cciiiiieieiiiese e 184
Remote Authenticationcecueveereereeiieiercecee e 184
A STMPIE SESSION...ccuviiirieriieiiieerieeieeeeeereeereeereesaeesveeneaeenes 184
The 1ootd Daemonc.coveeriiiiiiiiiieieeeeeeeecee e 185
Starting rootd via Inetdcoecerieirieiieeee e 185
Command Line Arguments for rootdccceeveeverveneenneennnne. 185

Reading ROOT Files via Apache Web Server.........cccoovvevvieeiiiceenienieenenns 186
Using the General Open Function of TFilec..cccceceveneninin. 186

XML INETTACE ...ttt 186

Trees 189

Why Should You Use @ Tree?ccceveierirerieieieieie e 189

A SIMPIE TTIEE .vveenvieiieiieeieeeete ettt eesreeseensesreessaenseens 189

Show an Entry with TTree::Show.......cccecvieiievienieicececeeseee e 190

Print the Tree Structure with TTree::Print.........cccoocevinininininiinieieene, 190

Scan a Variable the Tree with TTree::Scanccceevvecevcieeieneeneeie e 191

The TTEE VIEWET ...c..euieiiiiiiiriirieeiceieeeeese sttt 191

Creating and Saving TrEES........cccveeuerrierieriieiiee et eeseeeeeens 193
Creating a Tree from a Folder Hierarchy............cccccocvrinnnne 193
Tree and TRef ObJECtS......ccveruieiiieiieieieeeeeee e 193
ATLOSAVE ...ttt ettt ettt ettt ettt esae e e e ens 194
Trees with Circular Bufferscccccooeeveiinininiicee 194
Size of TTree in the File ..o 194
User Info Attached to a TTree Objectccoeevereeerieieieieene 194
INAEXING @ TTEC....veevieieiiecieeieeie ettt 194

BIranchesco.ooioiiioii e 195

Adding a Branch to Hold a List of Variables............ccccccoovvevieviincieneennnns 195

Adding a TBranch to Hold an Objectccceevvrierierienieeeeeeeeeee 196
Setting the Split-levelccoooviieiieii e, 197
Exempt a Data Member from Splittingc.ccceeverevenvenrennnns 198
Adding a Branch to Hold a TClonesAIraycccceeeeeeveneeennenne 198
Identical Branch Names.........cccceeeererrerieiieneeeee e 198

Adding a Branch with a Folder..........ocooiiiiiiiiiiieeee 198

Adding a Branch with a Collection............cceceeieiienieneneneceeeeceeeee 198

Examples for Writing and Reading Trees.........ccccevevereeenenenieieenee. 199

Example 1: A Tree with Simple Variablesccccoeeereiivienienieeieeieens 199
WrIting the Tree ..ocvivveiieiieiiee et 199
ViIeWINg the Treeccvovvieiieieeiesiieieee et 200
Reading the Tree.......coovveiieieeieieieee e 201

Example 2: A Tree with @ C StrUCTUIEeecveeeeeeieiieieeie e 202
Writing the TTEEeecvveiieieeieieeee e 203
ANALYSIS -ttt e 205

viii

Table of Contents

July 2007 v5.16

13

Example 3: Adding Friends to Treescccceeeeierienieneseeeieecececeeene 206

Adding a Branch to an EXisting Treeccccoooeverenieinicninnns 206
TTree:: AddFTiend.........coccoiiiriiieiiieeeeeee e 207
Example 4: A Tree with an Event ClIasscccooevevvieneeniiecieiieeieneenns 209
The Event Class......ccocueveierininiiiiieeeeese e 209
The EventHeader Classcocoverererieienienienineneseneeceieens 209
The Track Class......cccoeeeeeeieiieninienieeeeeeeeteteese e 210
Writing the TTEEeccvveiieiieieieeee e 210
Reading the Tree........oooveiieieiieieeeeee e 211
Example 5: Import an ASCII File into @ TTreeccoceveevveneeieeierieee 212
TTees 1N ANALYSIS ..eueiieieiieiieieeieeee e 213
Simple Analysis Using TTree::Draw.........ccceeeeoiereneneieninceieceeeeene 213
Using Selection with TTree:Drawccccceeeverenereneneeieeans 213
Using TCut Objects in TTree::Drawcccevvvevveecverienienieennene 214
Accessing the Histogram in Batch Modeccccceevvveiiniennns 214
Using Draw Options in TTree::Drawccccceevveeeerciereenneennnne. 214
Superimposing Two HiStogramscccceeveeeevereeneerienieennenenn 215
Setting the Range in TTree:Draw........ccccoceveverenerceienieniennenn 215
TTree::Draw EXamples.......c.cccoevveeiieienienieieeieeieceesieeie e 215
USINg TTree::SCaN......coeieiiertieiieieeie e 221
TEventList and TENtryList.........coocveiiieienieiieeeieeeee e 222
Filling @ HiStOZram...........coceeiieeiieieeiesiiesieee e 224
Using TTree::MaKeCIasscoereririierieieieieie e 225
Using TTree::MaKeSelector.........cocoeuiiiiiieniiieiieiiencenecee e 229
Performance Benchmarks............cccoooeiieiinininiiiiceieeeee 230
Impact of Compression on I/O.........ccceevvieiieeiiiieiieeee e 230
CRAINS .ttt ettt s b et ebe et nean 231
TChain:: AddFriend..........cocooiiiiiniiiieeeeeceeeeeene 232
Math Libraries in ROOT 233
TIMALN <. 233
Random NUMDBETScccueiiiiiiiiiiiieeeeeeeeee e 233
TRANAOM ...c.iiiiiiieiieee e 233
TRANAOMI ...t 234
TRANAOM2 ..o 234
TRANAOM3 ...t 234
Seeding the Generators.cecvvvvvereereerieerieeieseee e eee e 234
Examples of Using the Generatorsccoecvevverieeceenieneennnns 234
Random Number Distributions...........ccocceeveeverierienieneeeeeee 234
UNURAN ..ottt ene e eneennens 235
Performances of Random Numbers............cccoceevienieirniencenens 236
MathCore LIDIATYcc.eeiiiiieieiieieiesiee ettt 237
Generic Vectors for 2, 3 and 4 Dimensions (GenVector)..........ccccveeuvennee 237
Example: 3D Vector Classesccuverveereeeiieeeiiesieeeiieenveenneenns 239
Example: 3D Point Classes........ccovevveecverierienieeniieieseeseesieenens 241
Example: LorentzVector Classes..........cocuevvereerveereeneeneenieenenns 242
Example: Vector Transformations.............cccceeevevievieeeeneeneennenns 244
Example with External Packages...........ccccovevenenencncniineenennens 245
MathMoOre LiDIarycccveeiieiiriieiieiieieeieseee et eneeens 246
Mathematical FUNCHONS........coeeeeiiniiriiniirinerceteeeteesee e 247
Special Functions in MathCoreccooceeveeiinienieneeeeeeen 247
Special Functions in MathMore............ccooceveeiinienieneeeeeeen 247
Probability Density Functions (PDF)c.ccooceviiiiiiiniiniees 249
Cumulative Distribution Functions (CDF)cccceevveviieennnn. 249
Linear Algebra: SMatrix Package.........cocoeoeeeriiieneieiiiciceceeeceee 250
Example: Vector Class (SVECOr)......ccuvvvereerieeriirienienienieenens 251
Example: Matrix Class (SMatriX).......ccoecververeerreeseesveneeneeenens 252
Example: Matrix and Vector Functions and Operators 254
Matrix and Vector FUNCtions...........ccceevenenencnencnceeceeiens 255
Minuit2 PaCKAZEcveeviiieciecieit et 255
ROOT Statistics Classesccoveruererireririreeieienieneniestesie e eeeeeneennes 256
Classes for Computing Limits and Confidence Levels............... 256

July 2007 v5.16

Table of Contents

14

15

16

Specialized Classes for Fitting..........cceceeerenienenencnieieene 256

Multi-variate Analysis Classescccoooerererierienineeieieneiens 256
Linear Algebra in ROOT 257
Overview Of MatriX ClasSes........ccoeeuierierienieseeieeie e see e s 257
MatLIX PrOPEITIES ...ouvieeieiieiieeiiecieeie ettt 258

AcCesSING PTOPEItiesccuevvieriieiiieiieeeeseee e 258

Setting Properties.cceuvereerirrierieiiesieerieee e 258
Creating and Filling @ MatriX........ccoceiirinieneiieieee e 259
Matrix Operators and Methodsc.cccveeieiieiieieiieieeie s 260

Arithmetic Operations between Matricesccoevvevveeveereenenns 261

Arithmetic Operations between Matrices and Real Numbers..... 261

Comparisons and Boolean Operations...........c.cceceeeeeeveneenuennns 261

MatriX NOTINS ...eeeieiieiieieeie ettt e te e see e see e eeeeneeneeeeeens 262

Miscellaneous OPEratorscceceeeveeveruereeseereesreeseeseeseeennens 262
IMALEIX VIEWS ..ueiiitieiieie ettt ettt ettt sttt e te st e sneesseenneeneeene 263

VIEW OPEIAOTS.....ueeeueieieieiieetienieeieeieeeesieeseee e eee e sneesneeneeeeeens 264

View EXamPIes.......cccoeiiiiiiiieieieeeeeeee e 265
Matrix DeCOMPOSILIONS. ..ccvvrerereerirreriieritieerieesieeesieesreesaeessreesneessreesnennns 265

Tolerances and ScaliNg..........cccoveriiieieieiee e 266

Condition NUMDETc..eeuieiieieieiere ettt 267

LU et 268

Bunch-Kaufman ... 268

CROLESKY ..ottt ettt ettt e enae e ens 268

QRH oot 268

SVD e e 269
Matrix Eigen ANALYSIScccccevieriieiiieiieieieie et 269
Speed COMPATISONS.ccueerteereierieeteeteeeeeieeeeeestee et eeeeneeeeeesneesreesseeneeeneeenes 270
Adding a Class 271
The Role 0f TODJECTcveiieiieiieiieieieeeeeee e 271

Introspection, Reflection and Run Time Type Identification 271

COlIECHIONS ...ttt sttt 271

INPUL/OULPUL ...t 271

Paint/DIaWc.oovieiieiieieetesieeee e 271

Clone/DrawCloNnececueeieeieiieeieesieeie et 271

BIOWSE ..ottt 272

SAVEPTIMILIVE ..eovviiiiiiiiiiieiieieee e 272

GetODbJECtINTOevieiceieeieeee e 272

ISFOLA@T ...t 272

Bit Masks and Unique IDcccocvveviieeiirieiieeec e 272
IMOLIVALION. ..ttt ettt st sttt 273

Template SUPPOTLT ...ccvvevieiieieeieceee et 273
The Default CONSIIUCTOTccveviieiieiieieeieeiesieeie et 274
rootcint: The CINT Dictionary Generatorceccereverveneeeseeeeeneennens 274
Adding a Class with a Shared Librarycccocceeeevienieneereeiesceeee 276

The LinkDefh Filecooiiiiiiiieeeeeeeeeeee 277
Adding a Class With ACLICcoocieiiiiiieieeee e 281
Collection Classes 283
Understanding ColleCtions.........c.eccververieriierieiieieeseeneeie e eeeseesieesseens 283

General CharacteriStiCs.......ueruierierireieeierieieeeeie st see e 283

Determining the Class of Contained Objects..........cccceevverevennene 283

Types of ColleCtions........ccccouevieriniriririeieiereseneseeeeeeiens 283

Ordered Collections (SEqUENCES)c.cevereerieeneerierieeieseeeenns 284
Iterators: Processing a Collectionccceeveeoerieiieneene e 284
Foundation CIaSSESceeeuieieieieriee ettt 284
A Collectable Class.......c.eeeeeeieieienieee ettt 285
The TIter Generic Iterator........coueiierieiiiiiiieiie e 286
The TList COllECtiONcc.eiueeuieiieieieieerceerceceteee e 287

Iterating Over @ TLiStc.cccvevieriiiiieieccereee e 287

Table of Contents

July 2007 v5.16

17

18

The TObjArray ColleCtion........coueiuiieieiieieieie et 287

TClonesArray — An Array of Identical Objectscccoecevevieineeieieenee. 288
The Idea Behind TCIONESAITAYcccevveeveeierieeriieieeeeeeesieeiees 288
Template Containers and STLcccooveviieiiiecieeierieeee e 289
Physics Vectors 291
The Physics Vector CIaSSESsccoueruierirrierieiiesiesieesie e seee e 291
TVECLOI3 ...ttt et ettt sbe et ea 291
Declaration / Access to the Components............cccoeeeveeveeereenenns 291
Other COOTdINALES.........coueruerieieetieeieieie et 292
Arithmetic / COMPATISONccverreerreeierieiieseesreereeeeseesseeseens 292
Related VECIOTScoueeuieiiiiniinienieriteieceeee e 292
Scalar and Vector Products...........ccocevevvenieiiinienieeee e 292
Angle between TWO VECIOrSccuveveeveiieeiieeeie e 292
Rotation around AXESc.cceeeereerieeiieniesienieenee e see e enens 292
Rotation around @ VEeCtOr.......cceeivieiirieiieiieeee e 292
Rotation by TRotation Class..........ccceeeerierieneeneeeeieeieeeee 293
Transformation from Rotated Frame...........cccoooeevviiiiinenne 293
TROTATION ..ttt sttt st st 293
Declaration, Access, COMPATISONSceevveerueerrierreeeeeeenreenens 293
Rotation around AXEScccuereerierieriienienieneee e 293
Rotation around Arbitrary AXiS......c.cccceevvereerreevvesivereeneesseennenns 293
Rotation of Local AXES....c..ccevveerierieriiiieiieseesie e sieeieens 294
INVErse ROtAtION.c.uevveieieriieiieie ettt 294
Compound RoOtationsccevieriieieeienienieeieee e 294
Rotation of TVECOr3......ccuveieeieiieiieieeee e 294
TLOTENIZV ECTOT ...ttt ettt ettt s e aee s 294
DeClarationccoecueiieriienieeeeee e 294
Access t0 COMPONENLS.......ocueruieriieieeieeiesteenie e eeeseee e neeeneene 295
Vector Components in Non-Cartesian Coordinates.................... 295
Arithmetic and Comparison Operators...........c.ccveevveeeereerreeneans 295
Magnitude/Invariant mass, beta, gamma, scalar product............ 296
LoTentZ BOOSE ...cc.veiiiiiiiieiiiecieesteee e 296
ROTATIONS. ...t 296
MISCEIANEOUSevvivieiieiiieeieeiiecieerie e eaeeee e e sreeaeereeeeesreeseens 296
TLOTeNtZROtAtION.ceieieeeieeiieiieie et 297
DeClarationcceecverieriesieieeie et 297
Access to the Matrix Components/Comparisons.................e.e... 297
Transformations of a Lorentz Rotation...........ccccoecerivienennnne. 297
Transformation of a TLorentzZVector..........ccceeveeeeerieiceneeenne 298
Physics Vector Example.........cccocoveoivienieiiiieceeeeeeeeee 298
The Geometry Package 299
Quick Start: Creating the “World”..........ccccovveiieiienieeee e 299
Example 1: Creating the Worldccooceviivieniiiiieieeee 299
Example 2: A Geometrical Hierarchy Look and Feel 300
Materials and Tracking Media...........coooieiieiieiinieieeee e 302
Elements, Materials and MIXtUrescooovevvveeeeeiiiiiiineeeeeeennns 302
RadionuClidescooueeiieiieiecieeeee e 303
Tracking Mediaccocoeieiieieieiece e 304
User Interface for Handling Materials and Media...................... 305
SRAPES ...ttt b et rn e aeesaeeans 305
UDIES 1.ttt st 306
Primitive Shapes.........ccvevieierieiiieieeiecieseeie e 306
ComPOSIte ShAPESeevereieriieiieie et 314
Navigation Methods Performed By Shapes..........c.cccccvvveeennnen. 317
Creating ShaPEScc.evcveiieiieiee e 318
Dividing Shapes.........cocveiirierieiieieeereseee e 318
Parametric Shapescccoceeierieiiieieeeee e 318
GEOMELTY CTEALION.eieietieiieiieeiie ettt ettt ettt see et e e e saeeeeens 318
The Volume Hierarchyccoccevieiiiiinieniiiineiieeceee 319

July 2007 v5.16

Table of Contents

xi

19

20

21

22

Creating and Positioning Volumescccccecevveneencenennee.
Geometrical Transformationscccceeeverenenceceieneeene
Ownership of Geometry Objectsccvevvreverierieenieeierrenenn
Navigation and Trackingccoccvevvieiinienieiieieeeceere e
TGeoNavigator Classcccvevvereerrienieeieniesieseesie e
Initializing the Starting Point..........cccccceieninininininncnenens
Initializing the Direction..........c.cccuevvvereesieniesiesieseeee e
Initializing the State.........ccccvevierierieeee e
Checking the Current State..........cocceereeveieienieneeeeieeeeeen
Saving and Restoring the Current State............cccceveerrennne
Navigation QUETIES........cccveerurerereiierierieieee et
Creating and Visualizing Tracksc.ccoceoeieiiniieninen
Checking the GEOMELIYccueiueriirieiieiieiieieieree et
The Overlap ChecKer..........ccevieriieiieiieieeieseee e
Graphical Checking Methodscccceecvveiinienieniieieeeenenn
The Drawing Package.........cccocvevieriieiieiieieceeeeieee e
Drawing Volumes and Hierarchies of Volumes...................
Visualization Settings and Attributesc..c.cceceveverceeiennene
RAY Tracingcccveviieeieeieeieeeeieeeeee et
Representing Misalignments of the Ideal Geometry.............ccccene..e.
Physical NOAEScccueriiiieiieiieeeeee e
GEOMELTY I/O ..
Navigation AIZOrithmsccccoiiiiiiiiiieeee e
Finding the State Corresponding to a Location (X,y,z).........
Finding the Distance to Next Crossed Boundary..................
Geometry Graphical User Interface..........ceevvevevceenienieciieieeiesieenene
Editing @ GEOMEIIY.......cccvevuieriieiieiieieeeeeeeie e
The Geometry Manager Editor..........cccevvvevieniiicienienienn,
Editing EXisting ObJectS......c.cccuereerveeiieeienienieneere e
Creation of New ObJectsc.cccvevierieriieiieiecieeeie e
Editing VOIUMESoocviiieiieieeeceecee e

How to Create a Valid Geometry with Geometry Editors

Python and Ruby Interfaces

PYROOT OVEIVIEW.....cuvieeviieieiiieiieeieereeeeeitesieeveesesssessnesseesseesseessennns
Glue-ing ApPliCationsSceecveeeerireriieieeieeieseeie e eees
Access to ROOT from Python..........cccceeevreiicieiienieee,
Access to Python from ROOT...........ccooevvvvienienieieeie e
INStallationcc.eeuiiiiie e
Using PYROOTooouiieeeeeeeeeeeeeee e
Memory Handlingccoeoeevienieiieieecesieeeeee e
Performance...........coocevviiiiiiiniee e
Use of Python Functions............cccoceverinenenenieeieieeeene
Working With TIEeScceveiiiirieieieiee e
Using Your Own Classes........c.ccvverueerveeeeneeneenieerenveneennens
How to Use ROOT with RUbY......cccoeviieiieiiieiieiececieeee e
Building and Installing the Ruby Module.............c..cuo........

The Tutorials and Tests

SROOTSY S/AULOTIALS ...ttt
SROOTSY S/EST ..ttt sttt
Event — An Example of a ROOT Application......................
stress - Test and Benchmark............cccooeevveiinienieneciecneen,
guitest — A Graphical User Interfacecccocevevevvveneennnnne.

Example Analysis

Networking

xii

Table of Contents

July 2007 v5.16

23

24

25

26

Setting-up @ CONNECTION.eevieiieiiiiieie ettt 377

Sending Objects over the Networkceceeeeiiiieiiieieeicecececeeee 377
Closing the CONNECLION.........ccvieierieriieiieieeeeseeseesteesteeeeseeeeeesseeseesseees 378
A Server with Multiple SOCKEtScceovierieriieiieiecieeee e 378
Threads 379
Threads and ProCESSESc.eecueeieriieriieiieieee et 379
Process PrOPerti€s.......cevvieeiieriierieeiieeee et 379
Thread Properties.........ccueeveeerieerieerieeeee e eeiee e eieesieeevee e 379
The Initial Thread..........cooeieiiiiiiieeeee e 379
Implementation of Threads in ROOTcccooevevieniieniieiecieseeeeie e 379
INStAllationcceeieiiriiieeeee e 380
CLASSES ..ttt sttt ettt 380
TThread for Pedestrians............cocoeveverieienieiieneniencnencneeieens 380
TThread in More Detailsc.ccoeveririeienienieninenenceeccciene 381
Advanced TThread: Launching a Method in a Threadcccccceeeeneeee 383
Known Problemscoocoiieiieiieieeee e 384
The Signals of ROOTcooiiiiiiiieieieee et 384
GLOSSATY ...ttt ettt sttt st eae et ettt et eaeeneenean 384
PROOF: Parallel Processing 387
Writing a Graphical User Interface 389
The ROOT GUI CIASSESeeeuveruieniieiieiieienie e sieesieenie et siee e 389
Widgets and Frames...........cocceieieiiniineiieeeeeceee e 389
TVITTUALX .t 389
A SImple EXaMPLE....cccviiiiiiiiieiieiieeceteeeee et 390
A Standalone Version.........c.coeceeeririeieieneneneneneeeeeeeeieens 393
WiAGELS OVEIVIEW ...veevvieiiieiieeiieieett ettt st s sseeee e seenseenseens 395
TGODBJECE ...ttt 395
TGWIAZEL ...ttt 395
TGWINAOWeiiiiiieiiieciie ettt ettt aee e siveeereeesaaeesaeenes 396
Framescc.ooiuieiiee et 396
Layout Managementccceeerieriieieeieniieieeieeeesiee e ee e snee e nee e ene 398
Event Processing: Signals and SIOtscceceeieiieneieniniencceececeeeen 400
Widgets in Detailoc.eeiiiiieieieeeee e 404
BULEONS. ..ot 404
TeXt ENLIIES ..eoveeiiinienieieniecie et 406
NUMDBET ENLIIES. ..c..eouieiieiiiiniiniesiceieei e 407
IMIEIUS ..ttt st st 408
TOOIDATL ...t 409
LSt BOXES .cuvevieiieiieiiiientintesteetesi ettt 411
COmMbO BOXESceviieiiriiiiieiicienicsiese sttt 412
SHACTS ...ttt 412
TTIPle SIACT ...t 413
Progress Bars......oo.coieiieiiiieniieeeecee e 413
Static WIA@EtS....ccueiueeeieiieiieieee et 414
Status Baroo.eeiiiiiiiiiee e 414
SPIIEEETS . c.vvevvetiett ettt et et te e ee e e reebeeraeereesseeseessesssessaeseas 415
TGCanvas, ViewPort and Containerccoceeeevvvveeeevneeeennnen. 416
Embedded Canvascccceveeienininiiinieeieeese e 417
The ROOT Graphics Editor (GED)c.cccveieiieniieiieeeee e 418
ODbject EQItOrS......eevieiieiieieeieeeie et 418
Editor Design Elements...........ccoccueverierieiieneeeeie e 418
Drag and DIOPcooueeriieiee ettt 419
Drag and Drop Data Classccceereereriieiieiieriee e 420
Handling Drag and Drop Events..........cccccoeoiiinieniiiieeeieene 420
ROOT/Qt Integration Interfaces 423
Qt-ROOT Implementation of TVirtualX Interface (BNL)cceeuvneene 423

July 2007 v5.16

Table of Contents

xiii

27

28

29

INSEAIlATION ...t 423

APPLICALIONS.eviviirieiieie ettt sreesre v eeeeereesreeveens 424
TQtWidget Class, Qt Signals / Slots and TCanvas Interface...... 429
GSTQIROOT ..ottt 430
Create a New Project in the Designer..........coeeveevevvenienneennnne. 431
IMNAIN) 1uvieerieereeeiee et e et e et e ereeereeebeesareesebeeebeesareessseesaseasaseenes 432
Automatic HTML Documentation 433
Reference GUIAEc.ooeiiieieieieieee e 433
Product and Module Documentation.............cceceeeeereeieneeieenne 433
Converting Sources (and Other Files) to HTMLcccoooveviieviiiienienn, 434
Special Documentation Elements: Directives.........cceeveeverciereenieeneeeennne. 434
LateX DITECtIVEcuveuiiiiniiriiriieiericeeteiteteeree e 434
MaCTO DIFECHIVEeeuviiiiiiiriieieniceitet ettt 435
Customizing HTML........ocoiiiiiiieieieeeecesee e 435
Referencing Documentation for other Libraries.............ccc.c....... 435
Search ENgine.........cooeevieiiiiiiiiecieeeeee e 435
VIEWOCVS .ottt sttt ennens 435
WIKI PAZES.. .ot 435
TULOTIAL 1.ttt 436
Appendix A: Install and Build ROOT 437
ROOT Copyright and Licensing Agreement:ccoecvevveereerevereeneeennenns 437
Installing ROOT ..ottt 437
ChOOSING @ VEISION.eiitieiieiieiieeiieeiiesiee sttt e e ens 437
Installing Precompiled Binaries.........ccceceeiereenennenienieeee e 438
Installing the SOUICEc.ooiiiiiiieee e 438
Installing and Building the Source from a Compressed File....... 438
More Build OPtions........cc.eeveeeerrieniieieeie e eee e 438
File SYStEMLTOOMIC. ..c.vvevieiiieeiieeieeieeteete et eeteesteeste e ssaeseeesreesseesseeseessnenseens 439
TCanvas Specific Settings.......ccccvvereereriieiieriese e 440
THtmI Specific Settings.......c.cccvevvvevieevieiierienieere e eee e 441
GUI Specific Settingscceecverierieeriieieeieneeseeee e 442
TBIrowSer SEtNESccovveiieiereieieeieeie ettt eee e 443
TRint Specific SettiNGS........cevverieriieieeiereeeee e 443
ACLIC Specific Settingscccvereererrerieiiereere e 443
PROOF Related Variables...........ccccceeoerieiienieieiceeeeeeeeee 443
Documentation to Download...........cocooieriiiiiinieniecce e 446
Index 447

Xiv

Table of Contents

July 2007 v5.16

Table of Figures

Figure 1-1 ROOT framework dir€Ctories.covireriririeieienieneneeeseei e 4
Figure 1-2 ROOT libraries dependencies..........c.coeereeieieienienenenenieneeieeieeeeee e 5
Figure 2-1 A canvas With draWingcccoevererinininieieieeneseseeee et 11
Figure 2-2 A CONEXE MEMU ...ouviuiriiiiiriieiieiieieiesteetesie ettt ettt et eaenae e 15
Figure 2-3 The SaveAs... dialog......c.coceeieiirinininiiceiceceesee ettt 16
Figure 3-1 The class hierarchy of histogram classes..........ccccoeevererreroeicieneeneeeene 23
Figure 3-2 The "E1" bars' OPtiOn.ccueeuerieriereierieeie ettt et 29
Figure 3-3 Different draw OptionsS.........cueeeerierienieeie ettt 29
Figure 3-4 The TEXT OPtON ..ccueeuiiieieieieeeeie ettt 30
Figure 3-5 Different contour Optionsc.ccceceereerienienienienieieee e 30
Figure 3-6 The earth.C macro OULPUL.....cccuevuiiruieriieieeieeieieee et 31
Figure 3-7 "LEGO" and "SURF" OPtiONSc.ceceeiereieriieieeeeieseeie e 31
Figure 3-8 Different surface optionscceceeeierierierieeiieniereeeee e 32
Figure 3-9 Vertical bar Charts............cocooiiiiiiiiieeeeee e 32
Figure 3-10 Horizontal bar Chartsccocooviiiinieniiiiieneeeee et 33
Figure 3-11 The picture produced by spectrumpainter.C macro............ccccecvereeuennee 35
Figure 3-12 The picture produced by fit2a.C Macrococeverereriririeieierieeene 36
Figure 3-13 Superimposed histograms with different scales.........c..cccceoererinencnnene 36
Figure 3-14 Histograms with alphanumeric bin labels...........cc.ccocevininiiiininenenene 40
Figure 3-15 Using a *char variable type in TTree::Drawccccocvevevcriieiicncncnnns 40
Figure 3-16 Stacked hiStOZramscecuerverenininininieececieteeseees e 41
Figure 3-17 A profile histogram eXamplecoceverierienieneninienininceieeneneene 43
Figure 3-18 A TProfile2D histogram example............cccoeveerienienieienieiie e 44
Figure 3-19 ISO SUITACESeeeuieiieiieieee ettt 45
Figure 3-20 3D implicit fUnCtioncceocieiiiiiinieieeee e 45
Figure 3-21 The picture generated by tutorial macro piechart.C..............ccoceeveennene 46
Figure 4-1 A graph drawn with axis, * markers and continuous line (option AC¥).. 51
Figure 4-2 A graph drawn with axis and bar (option AB).......ccccccereieninienciinenee. 52
Figure 4-3 A graph drawn with axis and fill (option AF)cccooeviiinininiiiiens 52
Figure 4-4 Graph markers created in different ways.........ccccoceveveneneniceienenenenene 53
Figure 4-5 Superimposing tWo Sraphscecueverirerenerreeienienenesenieeieereeenie e 54
Figure 4-6 Graphs with different draw options of error barsc..cccceceecverincncnnene 54
Figure 4-7 A graph with asymmetric eIror barscccceeeeeeeienienienenenencneeeenes 55
Figure 4-8 A graph with asymmetric bent error barsccoccveveererieierieneee 56
Figure 4-9 A polar graphi.........cocooiiiiiiiii e 57
Figure 4-10 Graphs with eXclusion ZONesccceeveeiieiinienieneeeee e 58
Figure 4-11 Examples of qq-plots of 2 datasetsccceoveeerenenieniienceceieeeee 59
Figure 4-12 Examples of qq-plots of 1 dataset..........cceceeoeeieieneneneiiiieeeeeeee 59
Figure 4-13 A multigraph eXamplecccoooiiiiiiiiieieeeeseeeeee e 60
Figure 4-14 Delaunay triangles and Voronoi diagramc.cceceeeevereneeieienenennens 60
Figure 4-15 Graph2D drawn with option "surfl" and "tril p0".........cccceceeiieiininennene 61
Figure 4-16 Output of macro graph2dfit.Cc.coeceiiiiiiieiiininceeeee e 62
Figure 4-17 A graph with axis titles.........coceveriririiniiiiiiieeneceeeeeeae 63
Figure 4-18 A zoomed raphccveiuieiiieiiieieeie ettt 63
Figure 5-1 The function X®S1m (X) .ecceeeeeeeierierenere et 66
Figure 5-2 Fitting a histogram with several Gaussian functions.............c.cccccecevenee 69
Figure 5-3 The output of the FittingDemo() example..........cccccveveevierierieneenreennenne 71
Figure 5-4 The neural net OULPUL..........ceveiirieiiiiiiiieeeeeeee e 79
Figure 5-5 The original and the neural net for Br..........c.ccccoinnnninniiiinincnne 79
Figure 7-1 ROOT object inspector of TFile.........ccceeoieviinininininininieceieicieiene 92
Figure 7-2 The object inspector of fKeys, the list of keys in the memory.............. 92
Figure 8-1 The ROOT Object BrOWSETcccecueruiriiniiriiniiiieieieeie e 102
Figure 9-1 Context menus of different objects in @ canvasc.ccecceceeveevenvenennn 106
Figure 9-2 A histogram drawn in @ pad..........ccccocevererinienienieninenceneeceeeeeenne 109
Figure 9-3 Pad coordinate SYSteIMS.cceeouerierieririeneriiniieeeieneeniesie et 110
Figure 9-4 The Status Dar.......c..coccvireriririiieieeee et 110
Figure 9-5 Dividing a pad into 6 sub-padscccevierieiiiiinieeeeeeee e 112

July 2007 v5.16

Table of Figures

XV

Figure 9-6 Different arrow formats...........ccoooeiieriiniiniiiiieneeeeeeeseseeen 114

Figure 9-7 Different types of ellipses......cccereiirieieieieeere e 114
Figure 9-8 A rectangle with @ bordercccovvvevieriiniieciiiieceeeeeeeeee e 115
FAigUre 9-9 MArKeTS.......ccovieiieiiieieeiiesieeieete ettt et nb e esssessaennees 115
Figure 9-10 Different marker SIZeScoccvevvverieniieriiiieiieneere e 115
Figure 9-11 The use of non-symmetric markersccoccvevveeeeeceeneeneereeiesneenn 116
Figure 9-12 The picture generated by the tutorial macro feynman.C...................... 116
Figure 9-13 The picture generated by the tutorial macro latex.C..........ccccccueneeuenn. 119
Figure 9-14 The picture generated by the tutorial macro latex2.C............ccceeueeneee. 120
Figure 9-15 The picture generated by the tutorial macro latex3.C...........ccccceeueenee. 120
Figure 9-16 PaveLabels drawn with different options............ccoeevevvevieevennennen. 121
Figure 9-17 PaveText eXampPles.......cccverierieeieiieiieiieie e see et eeee e seeeneeas 121
Figure 9-18 A PaveText eXample.........cccvecveeieiienieniieieeie e 121
Figure 9-19 Y-axis with and without exponent labels.............ccoeeerieiiniiieninnen. 124
Figure 9-20 Time axiS €XamPIescceerueerierrierierierienie ettt 126
Figure 9-21 A histogram with time aXiS X........cceeeeerierierieiieereeeeeee e 127
Figure 9-22 The first axis €Xamplecccerererieirieieieiee e 128
Figure 9-23 The second axis eXample.........c.cooeviririiiiieneeeee e 129
Figure 9-24 An axis example with time display.........cccccoeverininieneiinineeee 129
Figure 9-25 Font’s €Xamples........cccvevieiiieciiiieiieneeieeie e seesieeseesseessesseesseeseessens 131
Figure 9-26 The various Patternsccceeveevueeeiereerierieeieeeeeeesreesseeseesesssesseesses 133
Figure 9-27 The basic ROOT COLOTScovieiiiiiiieiieriieie et 134
Figure 9-28 Diferent draw OPtioNScccveeierierierierieeee e eeeseeeie e eveeeeeseeeneees 136
Figure 9-29 A legend eXample.........cccoevieiiieienieiienieie e 138
Figure 9-30 Invoking external 3D viewers from canvas menus..........c..ccccecvevveneene. 143
Figure 9-31 The GL 3D VIEWETcoiiiiieiieieee ettt 144
Figure 9-32 GL Viewer camera interactionscccverueerereeeeeeneenieenieeeeeeeseeennees 145
Figure 9-33 GL Viewer draw StYlescoooivoeriiiiinieeee e 146
Figure 9-34 GL Viewer interactive boX Clippingcceceeveeierierieneneneneeeecene 146
Figure 9-35 GL Viewer object manipulatorsccooceevieriinienienieneeecieneeneen 147
Figure 9-36 Overview of 3D viewer architecture.............ccceveruerereneneneeieene 150
Figure 9-37 TBuffer3D class hierarchy...........ccccooevevienieniiiciicieeieeeeeeee e 151
Figure 10-1 Tasks in the ROOT DIOWSETcccvevieriieiieiiiieeieieeieere e 158
Figure 11-1 The browser with 15 created histograms..........ccccoceeverererercrneneennn. 159
Figure 11-2 ROOT File/Directory/Key descriptioncceeceevereerieeceesveneenns 164
Figure 11-3 The structure 0f TFle.......cccveiiriieiiieiieeieeee e 165
Figure 11-4 The file before and after the call to Write....ccooineninininiininneene 167
Figure 11-5 Compression and precision of Double32 t.........ccccevvevveniieiencveneennen. 173
Figure 11-6 A diagram of a streamed THI1F in the buffer............ccccoevvevvecrnnnnnnen. 174
Figure 11-7 Streaming 0bject POINLETSc.eevververieriereieieeeeeie et eee e seees 175
Figure 11-8 The ROOT schema eVOIUtioncccuevieriieiieienienieieeee e 178
Figure 11-9 The schema evolution for objects written on disk and in memory...... 179
Figure 12-1 Activating the tre€ VIEWET.........cccevveiieiieriieie e 191
Figure 12-2 The TreEVIEWETcccuieiiieiieieeieeie sttt ettt sttt neas 191
Figure 12-3 A couple of graphs..........ccooieiieiiiiiii e 192
Figure 12-4 The TTIee Classccceieieieiieieree ettt 193
Figure 12-5 The treel.root file and its tree in the Browser...........ccccevceeerceeecencnne. 200
Figure 12-6 A leaf NiStOZramcccoociiieiiieieeee e 200
Figure 12-7 TR tre€ VIEWETcceecvieriieiieieeieiiesieesteeveeeeeseeeseeesseesseesseesaesseesseensens 201
Figure 12-8 The tree viewer with treed4 example..........ccoeeevvevirienieniieciieieeieseennn 212
Figure 12-9 Using draw Options iN trEESceerveeireierieriierriereereesteesseesesressnessees 215
Figure 13-1 Math libraries and packagescccecveeverierieniieciieieeieeeeee e 233
Figure 13-2 PDF, CDF and quantiles in the case of the normal distribution 250
Figure 14-1 Overview of matrix Classes........ccevruerierierieniieeeereeieee e 257
Figure 14-2 Speed comparison between the different matrix packages.................. 270
Figure 16-1 The inheritance hierarchy of the primary collection classes................ 284
Figure 16-2 The internal data structure of @ TLiStcceveieiiiineneeiececeeee 287
Figure 16-3 The internal data structure of @ TODJAITAYceceveererieieieieieieee 288
Figure 16-4 The internal data structure of a TCloneSAITay........ccooeeeeereeieeenenne. 288
Figure 18-1Concentration of C14 derived elementscccecvevveveecrieceenreneennen. 304
Figure 18-2 Concentracion of elements derived fromCa53+St78.........cccveeveeennnnen. 304
Figure 18-3 Primitive Shapes - the general inheritance scheme.............cc.ccccoueuiee. 305
Figure 18-4 TGEOBBOX Class........cvecuieiiirieiierierieeieeie et 306

Xvi

Table of Figures

July 2007 v5.16

Figure 18-5 TGEOPara Classccoceeieieieiiieie et 306

Figure 18-6 TGEOTTd] Classcccoieuirieieieiee et 307
Figure 18-7 TGEOTTd2 ClaSSccuevuiruiiieiieieiee et 307
Figure 18-8 TGEOTTaP Class.......coceeueririeieieieniesienieetteieetee e 307
Figure 18-9 TGEOGHIa ClasSccuevuiruiriieieieiee sttt 308
Figure 18-10 TGEOATIDSE Classc..coereeieiiniiniiriininceieeteeereeese e 308
Figure 18-11 TGEOTUDE Classcccuerueieriiriririinieneeiieteieieneesie e 309
Figure 18-12 TGe0oTUbESEZ Classccceeeeeeieniinienieniiniieieeiteecienie et 309
Figure 18-13 TGEOCHUD CIaSSoovieiieiiieiieeiieciiesie ettt 309
Figure 18-14 TGEOEIU Class.....c.cecueeieiieitieieeie ettt 310
Figure 18-15 TGEOHYPE Class......cueiueeiuieiiieieiieiierit ettt 310
Figure 18-16 TGE0CONE ClaASS....c.eeueruiruieieieieiieeteeie ettt 311
Figure 18-17 TGeoConeSeg Class.......cccerueririririniieiieieieie et 311
Figure 18-18 TGeoSphere Classccecuerierireririnieiieieieiereee e 311
Figure 18-19 TGeOTOrUS Classccereriruirieieieienie sttt 312
Figure 18-20 TGeoParaboloid ClIass...........cceoueruerieriiriininieieieiene e 312
Figure 18-21 TGeoPCON ClaSScc.eeueiieiiiiniinieriiniericciteteteesee e 313
Figure 18-22 TGeOPZON Classcccuerieieriininiininieneciteeeteteneese e 313
Figure 18-23 TGeOXLrU Classc..ceereeieiiniinieniinienienieeieeteteneesesie e 314
Figure 18-24 The composite shapes StrucCture...........cceveeveveieeeienienieeeeeeeseeeenn 315
Figure 18-25 Representation of A+B+Coccoiiiiiiiiiiieeeeeeeee e 315
Figure 18-26 Internal representation for composite shapes..........ccoeceeveerveceneennen. 316
Figure 18-27 A composite shape eXampleccceeerieierieiienieneie e 317
Figure 18-28 A geometry hierarchy in Memory.........ccccecevererereneneneeieieeeenes 319
Figure 18-29 Assemblies of VOIUMES..........cceiiiiiriiiiieieeeee e 326
Figure 18-30 EXtruding VOIUMES........c.cocueieiiiiniiniiiiiieeeeeesc e 335
Figure 18-31 Overlap checKing..........ccocveviiriiiieiieiieiccee e 336
Figure 18-32 Safety computation checking............ccocceveiinieiininincnnenceeee 336
Figure 18-33 Random POints.......c..coevererieieiieniinenenieeieeceteeeese e 337
Figure 18-34 RaNdOm Tays.......ccceviriiririeieieienentenie ettt 337
Figure 18-35 Ray-traced view in @ padc.cccceverenireninieicnicencncee e 339
Figure 18-36 Ray-tracing example with boxX-Clippingcccecvvverieiiecenieneennen. 339
Figure 18-37 Navigation in the geometry hierarchycccoccovinieiiiiniinienenen. 342
Figure 18-38 Finding the location of a point in the geometry hierarchy................. 343
Figure 18-39 Finding the distance to the next crossed boundarycccccceeevee. 344
Figure 18-40 The geometry manager €ditor..........ccoeeeierieriererienene e 346
Figure 18-41 Accessing/creating different categories of editable objects............... 346
Figure 18-42 Selection dialogs for different TGeo objects........ccevvevviereeveneeennen. 347
Figure 18-43 Editors for shapes, materials, media, matrices............cceeevervverrernennen. 347
Figure 18-44 Setting volume properties and modifying volume hierarchy............. 348
Figure 18-45 Volume visualisation settings and division interface for volumes 348
Figure 20-1 Native GUI WIdZets.......ccceeeeiiriiriiniiniinienieeieeeeteeeteie e 370
Figure 22-1 Server - Client setting-up and closing the connectioncc............ 378
Figure 24-1 The Multi-tier structure of a PROOF cluster.........cccevveiieinienennnen. 387
Figure 25-1 Widgets created by ROOT GUI Classescccecveeeeeeneeenieeienieneennenn 395
Figure 25-2 The GUI classes hierarchy...........coceeiiiiieiienieiiniceceeeeeeee 396
Figure 25-3 The layout classes hierarchy..........ocooeeoeeieiienieienineseceeeeceeee 399
Figure 25-4 Histogram, pad and axis €ditorscceeuerierierenereneeeeeeceeeeene 418

July 2007 v5.16

Table of Figures

xvii

1 Introduction

In the mid 1990's, René Brun and Fons Rademakers had many years of experience developing interactive tools
and simulation packages. They had lead successful projects such as PAW, PIAF, and GEANT, and they knew
the twenty-year-old FORTRAN libraries had reached their limits. Although still very popular, these tools could
not scale up to the challenges offered by the Large Hadron Collider, where the data is a few orders of
magnitude larger than anything seen before.

At the same time, computer science had made leaps of progress especially in the area of Object Oriented
Design, and René and Fons were ready to take advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49 has generated an impressive
amount of data, around 10 Terabytes per run. This rate provided the ideal environment to develop and test the
next generation data analysis.

One cannot mention ROOT without mentioning CINT, its C++ interpreter. CINT was created by Masa Goto in
Japan. Itis an independent product, which ROOT is using for the command line and script processor.

ROOT was, and still is, developed in the "Bazaar style", a term from the book "The Cathedral and the Bazaar"
by Eric S. Raymond. It means a liberal, informal development style that heavily relies on the diverse and deep
talent of the user community. The result is that physicists developed ROOT for themselves; this made it specific,
appropriate, useful, and over time refined and very powerful. The development of ROOT is a continuous
conversation between users and developers with the line between the two blurring at times and the users
becoming co-developers.

When it comes to storing and mining large amount of data, physics plows the way with its Terabytes, but other
fields and industry follow close behind as they acquiring more and more data over time. They are ready to use
the true and tested technologies physics has invented. In this way, other fields and industries have found ROOT
useful and they have started to use it also.

In the bazaar view, software is released early and frequently to expose it to thousands of eager co-developers
to pound on, report bugs, and contribute possible fixes. More users find more bugs, because they stress the
program in different ways. By now, after ten years, the age of ROOT is quite mature. Most likely, you will find
the features you are looking for, and if you have found a hole, you are encouraged to participate in the dialog
and post your suggestion or even implementation on roottalk, the ROOT mailing list.

The ROOT Mailing Lists

The roottalk was the very first active ROOT mailing list. People can subscribe to it by registering at the
ROOT web site: http://root.cern.ch/root/Registration.phtml. The RootTalk Forum http://root.cern.ch/phpBB2/
has been gradually replaced this mailing list since September 2003. The RootTalk Forum is a web-based
news group with about 10 discussion sub-units.

If you have a question, it is likely that it has been asked, answered, and stored in the roottalk or RootTalk
Forum archives. Please use the search engine to see if your question has already been answered before
sending a mail to the roottalk list or post a topic in the Forum.

You can browse the roottalk archives at: http://root.cern.ch/root/roottalk/AboutRootTalk.html. You can send
your question without subscribing to: roottalk@root.cern.ch

Contact Information

Several authors wrote this book and you may see a "change of voice" from one chapter to the next. We felt we
could accept this in order to have the expert explain what they know best. If you would like to contribute a
chapter or add to a section, please contact rootdoc@root.cern.ch. We count on you to send us suggestions on
additional topics or on the topics that need more documentation. Please send your comments, corrections,
questions, and suggestions to the rootdoc list: rootdoc@root.cern.ch

We attempt to give the user insight into the many capabilities of ROOT. The book begins with the elementary
functionality and progresses in complexity reaching the specialized topics at the end. The experienced user

looking for special topics may find these chapters useful: see “Networking”, “Writing a Graphical User Interface”,
“Threads”, and “PROOF: Parallel Processing”.

Conventions Used in This Book

We tried to follow a style convention for the sake of clarity. The styles in used are described below.
To show source code in scripts or source files:

July 2007 v5.16 Introduction 1

http://root.cern.ch/root/Registration.phtml
http://root.cern.ch/phpBB2/
http://root.cern.ch/root/roottalk/AboutRootTalk.html
mailto:roottalk@root.cern.ch
mailto:rootdoc@root.cern.ch
mailto:rootdoc@root.cern.ch

cout << " Hello" << endl;

float x = 3.;

float y = 5.;

int i =101;

cout <<M" x = "K<<K y = "<K<y<<" 1 = "<<i<< endl;

}

To show the ROOT command line, we show the ROOT prompt without numbers. In the interactive system, the
ROOT prompt has a line number (root[12]); for the sake of simplicity, the line numbers are left off. Bold
monotype font indicates the ROOT class names as TObject, TClass, and text for you to enter at verbatim.

root[] TLine 1
root[] 1.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example gDirectory. We also used the italic font to
highlight the comments in the code listing.

When a variable term is used, it is shown between angled brackets. In the example below the variable term
<library> can be replaced with any library in the $SROOTSYS directory: SROOTSYS/<library>/inc.

The Framework

ROOT is an object-oriented framework aimed at solving the data analysis challenges of high-energy physics.
There are two key words in this definition, object oriented and framework. First, we explain what we mean by a
framework and then why it is an object-oriented framework.

What Is a Framework?

Programming inside a framework is a little like living in a city. Plumbing, electricity, telephone, and
transportation are services provided by the city. In your house, you have interfaces to the services such as light
switches, electrical outlets, and telephones. The details, for example, the routing algorithm of the phone
switching system, are transparent to you as the user. You do not care; you are only interested in using the
phone to communicate with your collaborators to solve your domain specific problems.

Programming outside of a framework may be compared to living in the country. In order to have transportation
and water, you will have to build a road and dig a well. To have services like telephone and electricity you will
need to route the wires to your home. In addition, you cannot build some things yourself. For example, you
cannot build a commercial airport on your patch of land. From a global perspective, it would make no sense for
everyone to build his or her own airport. You see you will be very busy building the infrastructure (or framework)
before you can use the phone to communicate with your collaborators and have a drink of water at the same
time. In software engineering, it is much the same way. In a framework, the basic utilities and services, such as
I/0 and graphics, are provided. In addition, ROOT being a HEP analysis framework, it provides a large selection
of HEP specific utilities such as histograms and fitting. The drawback of a framework is that you are constrained
to it, as you are constraint to use the routing algorithm provided by your telephone service. You also have to
learn the framework interfaces, which in this analogy is the same as learning how to use a telephone.

If you are interested in doing physics, a good HEP framework will save you much work. Next is a list of the more
commonly used components of ROOT: Command Line Interpreter, Histograms and Fitting, Writing a Graphical
User Interface, 2D Graphics, Input/Output , Collection Classes, Script Processor.

There are also less commonly used components, as: 3D Graphics, Parallel Processing (PROOF), Run Time
Type Identification (RTTI), Socket and Network Communication, Threads.

Advantages of Frameworks

The benefits of frameworks can be summarized as follows:

e Less code to write — the programmer should be able to use and reuse the majority of the existing
code. Basic functionality, such as fitting and histogramming are implemented and ready to use
and customize.

e More reliable and robust code — the code inherited from a framework has already been tested
and integrated with the rest of the framework.

e More consistent and modular code — the code reuse provides consistency and common
capabilities between programs, no matter who writes them. Frameworks make it easier to break
programs into smaller pieces.

e More focus on areas of expertise — users can concentrate on their particular problem domain.
They do not have to be experts at writing user interfaces, graphics, or networking to use the
frameworks that provide those services.

2 Introduction July 2007 v5.16

Why Object-Oriented?
Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented Programming:

e Encapsulation enforces data abstraction and increases opportunity for reuse.

e Sub classing and inheritance make it possible to extend and modify objects.

e Class hierarchies and containment hierarchies provide a flexible mechanism for modeling real-
world objects and the relationships among them.

e Complexity is reduced because there is little growth of the global state, the state is contained
within each object, rather than scattered through the program in the form of global variables.

e Objects may come and go, but the basic structure of the program remains relatively static,
increases opportunity for reuse of design.

Installing ROOT

To install ROOT you will need to go to the ROOT website at: http://root.cern.ch/root/Availability.html. You have
a choice to download the binaries or the source. The source is quicker to transfer since it is only ~22 MB, but
you will need to compile and link it. The binaries compiled with no degug information range from ~35 MB to ~45
MB depending on the target platform.

The installation and building of ROOT is described in Appendix A: Install and Build ROOT. You can download
the binaries, or the source. The GNU g++ compiler on most UNIX platforms can compile ROOT.

Before downloading a binary version make sure your machine contains the right run-time environment. In most
cases it is not possible to run a version compiled with, e.g., gcc4.0 on a platform where only gcc 3.2 is installed.
In such cases you'll have to install ROOT from source.

ROOQOT is currently running on the following platforms:

GNU/Linux x86-32 (IA32) and x86-64 (AMD64) (GCC,Intel/icc,Portland/PGCC,KAI/KCC)
Intel Itanium (IA64) GNU/Linux (GCC, Intel/ecc, SGI/CC)
FreeBSD and OpenBSD (GCC)

GNU/Hurd (GCC)

HP HP-UX 10.x (IA32) and 11 (IA64) (HP CC, aCC, GCC)

IBM AIX 4.1 (x1C compiler, GCC)

Sun Solaris for SPARC (SUN C++ compiler, GCC)

Sun Solaris for x86 (SUN C++ compiler, KAI/KCC)

Compag Alpha (GCC, KAI/KCC, DEC/CXX)

SGI Irix 32 and 64 bits (GCC, KAI/KCC, SGI C++ compiler)
Windows 2 95 (Microsoft Visual C++ compiler, Cygwin/GCC)
MacOS X PPC, x86-32, x86-64 (GCC, Intel/ICC, IBM/x1)
PowerPC with GNU/Linux and GCC, Debian v2

PowerPC64 with GNU/Linux and GCC

ARM with GNU/Linux and GCC

Lynx0OS

The Organization of the ROOT Framework

Now after we know in abstract terms what the ROOT framework is, let us look at the physical directories and
files that come with the ROOT installation. You may work on a platform where your system administrator has
already installed ROOT. You will need to follow the specific development environment for your setup and you
may not have write access to the directories. In any case, you will need an environment variable called
ROOTSYS, which holds the path of the top ROOT directory.

> echo $ROOTSYS
/opt/root

In the ROOTSYS directory are examples, executables, tutorials, header files, and, if you opted to download it, the
source is here. The directories of special interest to us are bin, tutorials, 1ib, test, and include. The
next figure shows the contents of these directories.

July 2007 v5.16 Introduction 3

http://root.cern.ch/root/Availability.html

Figure 1-1 ROOT framework directories

$ROOTSYS
bin lib tutorials test include

o
makecint libCare Dfoan hsimple: cxx -
rlibmap IbEG geom MainEvent.cxx
root “ibEGPythia = Event.cxx
oty “ibEGPythiat Oaraphics minexam.cxx
roofcint libFitPanel Cagraphs ctorture.cxx
rootn libGed Cgui tcollex.cxx
rootd libGeom Chist teollbm.cxx
genmap libGpad (Zimage tstring.cxx
h2root libGraf Die vmatrix.cxx
hadd libGrafad Dimath vvector.cxx
rmkdepend libGui e stressLinear.cxx
proofd libGuiBld Smip QpRandomDriver.cxx
proofsery | CInet

libGuiHtml 3 viazy cxx

; Caphysics hworld.cxx

libGX11 Eapyroot ‘

“lbGX11TTF Capvihis guitest cxx
* Optional libHbook s guiviewer.cxx
Installation libHist by Hello.cxx

libHtml Caspectrum Aclu‘ck‘cxx

ibMatrix Ssplot st

libMathCore Dsd SUSSS e

libMathMore Cothread stress’.cxx

libMinuit Ctree bench.cxx

libNet Cunuran

libNew el DrawTest sh & dt_"\

libPhysics benchmarks.C

libPostscript demos.C

libProof demoshelp.C

libPython geant3tasks.C

“libRFIO hsimple.C

“libRGL htmlex.C

libReflex MyTasks.cxx

libRint README

libRIO regexp.C

libRooFit rootalias.C

libRuby rootlogon.C

libSpectrum rootlogoff.C

“libThread rootmarks.C

libTMVA staff.root

libTree hsimple. root

libTreePlayer gallery.root

libTreeViewer tasks C

$ROOTSYS/bin

The bin directory contains several executables.

root

root.exe

rootcint
rmkdepend

root-config

cint

makecint

proofd

proofserv

rootd

shows the ROOT splash screen and calls root .exe

the executable that root calls, if you use a debugger such as gdb, you will need to run
root .exe directly

is the utility ROOT uses to create a class dictionary for CINT
a modified version of makedepend that is used by the ROOT build system

a script returning the needed compile flags and libraries for projects that compile and link
with ROOT

the C++ interpreter executable that is independent of ROOT

the pure CINT version of rootcint, used to generate a dictionary; It is used by some of
CINT install scripts to generate dictionaries for external system libraries

a small daemon used to authenticate a user of ROOT parallel processing capability
(PROOF)

the actual PROOF process, which is started by proofd after a user, has successfully
been authenticated

is the daemon for remote ROOT file access (see the TNetFile)

$ROOTSYS/lib

There are several ways to use ROOT, one way is to run the executable by typing root at the system prompt

another way is to link with the ROOT libraries and make the ROOT classes available in your own program.

Here is a short description of the most relevant libraries, the ones marked with a * are only installed when the

options specified them.

e libAsImage is the image manipulation library

e 1libCint is the C++ interpreter (CINT)

e libCore is the Base classes

e 1iDbEG is the abstract event generator interface classes
e *1ibEGPythia is the Pythia5 event generator interface

Introduction July 2007 v5.16

e *1libEGPythiaé is the Pythiab event generator interface

e 1libFitPanel contains the GUI used for fitting

e 1ibGed contains the GUI used for editing the properties of histograms, graphs, etc.

e 1libGeom is the geometry package (with builder and painter)

e 1ibGpad is the pad and canvas classes which depend on low level graphics

e 1libGraf is the 2D graphics primitives (can be used independent of libGpad)

e 1libGraf3dis the 3D graphics primitives

e 1ibGui is the GUI classes (depend on low level graphics)

e 1ibGuiBld is the GUI designer

e 1ibGuiHtml contains the embedded HTML browser

e 1ibGX11 is the low level graphics interface to the X11 system

e *1ibGX11TTF is an add-on library to libGX11 providing TrueType fonts

e libHbook is for interface ROOT - HBOOK

e 1ibHist is the histogram classes (with accompanying painter library)

e 1libHtml is the HTML documentation generation system

e libMatrix is the matrix and vector manipulation

e libMathCore contains the core mathematics and physics vector classes

e libMathMore contains additional functions, interfacing the GSL math library

e 1libMinuit is the MINUIT fitter

e 1ibNet contains functionality related to network transfer

e 1libNew is the special global new/delete, provides extra memory checking and interface for
shared memory (optional)

e 1libPhysics contains the legacy physics classes (TLorentzVector, etc.)

e libPostscript is the PostScript interface

e 1libProof is the parallel ROOT Facility classes

e 1libPython provides the interface to Python

e *1ipRFIOis the interface to CERN RFIO remote I/O system.

e *1ibRGL is the interface to OpenGL.

e libReflex is the runtime type database library used by CINT

e 1libRint is the interactive interface to ROOT (provides command prompt)

e 1ibRIO provides the functionality to write and read objects to and from ROOT files

e 1libRooFit is the RooFit fitting framework

e libRuby is the interface to Ruby

e libSpectrum provides functionality for spectral analysis

e *libThread is the interface to TThread classes

e 1ibTMVA contains the multivariate analysis toolkit

e libTree is the TTree object container system

e libTreePlayer is the TTree drawing classes

e libTreeViewer is the graphical TTree query interface

Library Dependencies
Figure 1-2 ROOT libraries dependencies

Root CORE Classes |

Base Jcont]| metaf zi | unxfm|ver] e ‘

' Physics] Geom | " Matrix ‘ Hist | | Tree | Rint
[[3 .-. "_J * '_' T

EG ' | Quadp | A L

—|—l | Quac | Graf | [HistPainter | RXML Chirp

| \ J— T Dcache RFIO

[EGPythia ' . Minuit Fumili
[Geompaintar | o Grafad |\ RGL R0

| VirtualMC | 4 Postscript html

[Gs_vmc. Gﬂ_Ivmc' L'Eﬁ'—l T 1.1

e h mLe I | Proof] Table Hbook
P i h ~ Thread Aslmage
o Gui | [feeviewsr] _Ruby | Pyroor

I Al libs nesd Cors 1 Gwiniz] r T
e o) Con) g (oo |
e | | ROOT Libraries Dependencies |

July 2007 v5.16 Introduction 5

The libraries are designed and organized to minimize dependencies, such that you can load just enough code
for the task at hand rather than having to load all libraries or one monolithic chunk. The core library
(libCore.so) contains the essentials; it is a part of all ROOT applications. In the Figure 1-2 you see that
libCore.so is made up of base classes, container classes, meta information classes, operating system specific
classes, and the ZIP algorithm used for compression of the ROOT files.

The CINT library (1ibCint. so) is also needed in all ROOT applications, and even by 1ibCore. It can be used
independently of 1ibCore, in case you only need the C++ interpreter and not ROOT. A program referencing
only TObject only needs 1ibCore and 1ibCint. To add the ability to read and write ROOT objects one also
has to load libRIO. As one would expect, none of that depends on graphics or the GUI.

Library dependencies have different consequences; depending on whether you try to build a binary, or you just
try to access a class that is defined in a library.

Linktime Library Dependencies

When building your own executable you will have to link against the libraries that contain the classes you use.
The ROOT reference guide states the library a class is defined in. AImost all relevant classes can be found in
libraries returned by root-config -glibs; the graphics libraries are retuned by root-config --1ibs.
These commands are commonly used in Makefiles. Using root-config instead of enumerating the
libraries by hand allows you to link them in a platform independent way. Also, if ROOT library names change
you will not need to change your Makefile.

A batch program that does not have a graphic display, which creates, fills, and saves histograms and trees, only
needs to link the core libraries (1ibCore, 1ibCint, 1ibRIO), 1ibHist and 1ibTree. If ROOT needs access
to other libraries, it loads them dynamically. For example, if the TreeViewer is used, 1ibTreePlayer and all
libraries 1ibTreePlayer depends on are loaded also. The dependent libraries are shown in the ROOT
reference guide’s library dependency graph. The difference between 1ibHist and 1ibHistPainter is that
the former needs to be explicitly linked and the latter will be loaded automatically at runtime when ROOT needs
it, by means of the Plugin Manager.

In the Figure 1-2, the libraries represented by green boxes outside of the core are loaded via the plugin
manager or equivalent techniques, while the white ones are not. Of course, if one wants to access a plugin
library directly, it has to be explicitly linked. An example of a plugin library is 1ibMinuit. To create and fill
histograms you need to link 1ibHist. so. If the code has a call to fit the histogram, the "fitter" will dynamically
load libMinuit if it is not yet loaded.

Plugins: Runtime Library Dependenciesfor Linking

The Plugin Manager TPluginManager allows postponing library dependencies to runtime: a plugin library will
only be loaded when it is needed. Non-plugins will need to be linked, and are thus loaded at start-up. Plugins
are defined by a base class (e.g. TFile) that will be implemented in a plugin, a tag used to identify the plugin
(e.g. “rfio: as part of the protocol string), the plugin class of which an object will be created (e.g.
TRFIOFile), the library to be loaded (in short 1ibRFIO.so to RFIO), and the constructor to be called (e.g.
“TRFIOFile ()”). This can be specified in the . rootrc which already contains many plugin definitions, or by
calls to grROOT->GetPluginManager () —>AddHandler ().

Library Autoloading

When using a class in CINT, e.g. in an interpreted source file, ROOT will automatically load the library that
defines this class. On start-up, ROOT parses all files ending on .rootmap that are in one of the
$LD LIBRARY PATH (or $DYLD LIBRARY PATH for MacOS, or $PATH for Windows). They contain class
names and the library names that the class depends on. After reading them, ROOT knows which classes are
available, and which libraries to load for them.

When TSystem::Load ("ALib") is called, ROOT uses this information to determine which libraries

1libALib. so depends on. It will load these libraries first. Otherwise, loading the requested library could cause a
system (dynamic loader) error due to unresolved symbols.

$ROOTSYS/tutorials

The tutorials directory contains many example scripts. They assume some basic knowledge of ROOT, and for
the new user we recommend reading the chapters: “Histograms” and “Input/Output” before trying the examples.
The more experienced user can jump to chapter “The Tutorials and Tests” to find more explicit and specific
information about how to build and run the examples.

The SROOTSYS/tutorials/ directory include the following sub-directories:

fft: Fast Fourier Transform with the fftw package

fit: Several examples illustrating minimization/fitting

foam: Random generator in multidimensional space

geomn: Examples of use of the geometry package (TGeo classes)

Introduction July 2007 v5.16

gl: Visualisation with OpenGL

graphics: Basic graphics

graphs: Use of TGraph, TGraphErrors, etc.

gui: Scripts to create Graphical User Interface

hist: Histograming

image: Image Processing

io: Input/Output

math: Maths and Statistics functions

matrix: Matrices (TMatrix) examples

mlp: Neural networks with TMultiLayerPerceptron
net: Network classes (client/server examples)
physics: LorentzVectors, phase space

pyroot: Python tutorials

pythia: Example with pythia6

quadp: Quadratic Programming

ruby: ruby tutorials

smatrix: Matrices with a templated package

spectrum: Peak finder, background, deconvolutions

splot: Example of the TSplot class (signal/background estimator)
sql: Interfaces to SQL (mysq|, oracle, etc)

thread: Using Threads

tmva: Examples of the MultiVariate Analysis classes
tree: Creating Trees, Playing with Trees

unuran: Interface with the unuram random generator library
xml: Writing/Reading xml files

You can execute the scripts in SROOTSYS/tutorials (or sub-directories) by setting your current directory in
the script directory or from any user directory with write access. Several tutorials create new files. If you have
write access to the tutorials directory, the new files will be created in the tutorials directory, otherwise they will
be created in the user directory.

$ROOTSYS/test

The test directory contains a set of examples that represent all areas of the framework. When a new release is
cut, the examples in this directory are compiled and run to test the new release's backward compatibility. The
list of source files is described in chapter “The Tutorials and Tests”.

The sSROOTSYS/test directory is a gold mine of ROOT-wisdom nuggets, and we encourage you to explore and
exploit it. We recommend the new users to read the chapter “Getting Started”. The chapter “The Tutorials and
Tests” has instructions on how to build all the programs and it goes over the examples Event and stress.

$ROOTSYS/include

The include directory contains all header files. It is especially important because the header files contain the
class definitions.

$ROOTSYS/<library>

The directories we explored above are available when downloading the binaries. When downloading the source
you also get a directory for each library with the corresponding header and source files, located in the inc and
src subdirectories. To see what classes are in a library, you can check the <1ibrary>/inc directory for the
list of class definitions. For example, the physics library 1ibPhysics. so contains these class definitions:

> 1ls -m $ROOTSYS/physics/inc
CVS,LinkDef.h, TLorentzRotation.h, TLorentzVector.h, TRotation.h, TVector2.h,
TVector3.h

How to Find More Information

The ROOT web site has up to date documentation. The ROOT source code automatically generates this
documentation, so each class is explicitly documented on its own web page, which is always up to date with the
latest official release of ROOT.

The ROOT Reference Guide web pages can be found at http://root.cern.ch/root/html/Classindex.html. Each
page contains a class description, and an explanation of each method. It shows the class inheritance tree and
lets you jump to the parent class page by clicking on the class name. If you want more details, you can even
see the source. There is a help page available in the little box on the upper right hand side of each class
documentation page. You can see on the next page what a typical class documentation web page looks like.

July 2007 v5.16 Introduction 7

http://root.cern.ch/root/html/ClassIndex.html

The ROOT web site also contains in addition to this Reference Guide, "How
example applications.

Class Reference Guide

To's", a list of publications and

The top of any class reference page lets you jump to different parts of the documentation. The first line links to

the class index and the index for the current module (a group of classes, often

a library). The second line links

to the ROOT homepage and the class overviews. The third line links the source information — a HTML version

of the source and header file as well as the CVS (the source manageme
development) information of the files. The last line links the different parts of the

Location: [ROOT »i BASE »i TAttText

Quick Links: { ROOT : Class Index : Class Hierarchy

Source: . header file | source file { viewCWS header | viewCWS source
Sections: i class description | function members | data members | class chars

nt system used for the ROOT
current pages.

This is an example for function documentation, with automatically generated LaTeX-like graphics:

Int_t GetQuantiles (Int_t nprobSum, Double_t* q, const Double_t* probSum)

Compute Quantiles for density distribution of this function
Quantile x_q of a probability distribution Function F is defined as

Xg
F(Xq)= J. fdx=qwith0 <=q<=1.

xmin

The class diagrams show e. g. the inheritance tree, so you know what the curre
classes inherit from it:

nt class derives from, and which

TVirwalX 11— Tﬁ;&' TGX1ITTF
TStyle
TPaveLabel «——— TPaveClass
TPie TSVG

TGmphPol:lrgram/ TPDF
—

TVirtualPS -—— TPostScript
_—

TInspectCanvas TImageDump
TText — TLatex
—
TLegend TLink
TLegendEntry
TGaxis
TDialogCanvas TPaveStats
" TPavesText
TPaveText T TDiamond
TButton TGroupButton

The HTML version of the source file links all types and most functions so you can study what’s happening inside

ROOT itself:

viold TList::AddLast(TObject *obj)
{

// Bdd object at the end of the list.
if (IsArgNull ("RddLast™, obj)) return;

if (1fFirst) |
fFirst = NewLink {ocbhj) :
flast = [Fizee:

} else [TObiLink* TList: NewLink(TObject™ obj, TObiLink* prev=0) |
fLazt = NewlLink {(ocbj, fLast):

fSize++;

Changed() :

Introduction

July 2007 v5.16

2 Getting Started

We begin by showing you how to use ROOT interactively. There are two examples to click through and learn
how to use the GUI. We continue by using the command line, and explaining the coding conventions, global
variables and the environment setup. If you have not installed ROOT, you can do so by following the
instructions in the appendix, or on the ROOT web site: http://root.cern.ch/root/Availability.html

Setting the Environment Variables

Before you can run ROOT you need to set the environment variable ROOTSYS and change your path to include
root/bin and library path variables to include root/1ib. Please note: the syntax is for bash, if you are
running tcsh you will have to use setenv instead of export.

1. Define the variable $ROOTSYS to the directory where you unpacked the ROOT:
|$ export ROOTSYS=$HOME/root-5-16 |
2. Add ROOTSYS/bin to your PATH:
| $§ export PATH=$PATH:$ROOTSYS/bin |
3. Setting the Library Path
On HP-UX, before executing the interactive module, you must set the library path:
$ export SHLIB PATH=$SHLIB PATH:$ROOTSYS/lib |

On AlX, before executing the interactive module, you must set the library path:

$ [-z "SLIBPATH"] && export LIBPATH=/lib:/usr/lib
$ export LIBPATH=$LIBPATH:$ROOTSYS/lib

On Linux, Solaris, Alpha OSF and SGl, before executing the interactive module, you must set the library path:

$ export LD_LIBRARY PATH=$LD_LIBRARY PATH:$ROOTSYS/lib |
On Solaris, in case your LD_LIBRARY_PATH is empty, you should set it:

$ export LD_LIBRARY PATH=$LD_ LIBRARY PATH:$ROOTSYS/lib:/usr/dt/lib |

If you use the afs version you should set:
|$ export ROOTSYS=/afs/cern.ch/sw/lcg/external/root/5.14.00/slc3_ia32_gcc323/root |

If ROOT was installed in $SHOME /myroot directory on a local machine, one can do:

cd $HOME/myroot
. bin/thisroot.sh // or source bin/thisroot.sh

The new $ROOTSYS/bin/thisroot. [c]sh scripts will set correctly the ROOTSYS, LD LIBRARY PATH or
other paths depending on the platform and the MANPATH. To run the program just type: root.

Start and Quit a ROOT Session

5
% root
R i I S 2 b b i b b b b b b b I b i

*

WELCOME to ROOT

Version 5.16/00 27 June 2007

http://root.cern.ch

o % X X ok % X X

*
*
*
* You are welcome to visit our Web site
*
*
*

KA KAKRAKRKA AR A AR A A A AR AR A AR A A AR A AR A AR AR A Ak kA kK

FreeType Engine v2.1.9 used to render TrueType fonts.
Compiled on 28 June 2007 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.21, June 22, 2007
Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0]

July 2007 v5.16 Getting Started 9

http://root.cern.ch/root/Availability.html

To start ROOT you can type root at the system prompt. This starts up CINT, the ROOT command line C/C++
interpreter, and it gives you the ROOT prompt (root [0])

It is possible to launch ROOT with some command line options, as shown below:

$ root -/?
Usage: root [-1] [-b] [-n] [-g] [filel.C ... fileN.C]
Options:
-b : run in batch mode without graphics
-n : do not execute logon and logoff macros as
specified in .rootrc
-q : exit after processing command line script files

-1 : do not show the image logo (splash screen)
e b ROOT session runs in batch mode, without graphics display. This mode is useful in
case one does not want to set the DISPLAY or cannot do it for some reason.
e - usually, launching a ROOT session will execute a logon script and quitting will
execute a logoff script. This option prevents the execution of these two scripts.
. it is also possible to execute a script without entering a ROOT session. One simply

adds the name of the script(s) after the ROOT command. Be warned: after finishing
the execution of the script, ROOT will normally enter a new session.

e process command line script files and exit.

For example if you would like to run a script myMacro.C in the background, redirect the output into a file
myMacro. log, and exit after the script execution, use the following syntax:

root -b -gq myMacro.C > myMacro.log |

If you need to pass a parameter to the script use:

root -b -g ‘'myMacro.C(3)’ > myMacro.log |

Be mindful of the quotes, i.e. if you need to pass a string as a parameter, the syntax is:

root -b -g 'myMacro.C(\”text\”)’ > myMacro.log |

You can build a shared library with ACLIC and then use this shared library on the command line for a quicker
execution (i.e. the compiled speed rather than the interpreted speed). See also “CINT the C++ Interpreter”.

|root -b -g myMacro.so > myMacro.log |

ROOT has a powerful C/C++ interpreter giving you access to all available ROOT classes, global variables, and
functions via the command line. By typing C++ statements at the prompt, you can create objects, call functions,
execute scripts, etc. For example:

root[] 1l+sqgrt(9)

(const double)4.00000000000000000e+00

root[] for (int i = 0; i<4; i++) cout << "Hello " << i << endl
Hello 0

Hello 1

Hello 2

Hello 3

root[] .q

To exit the ROOT session, type . q.

| root[] .q

Using the GUI

The basic whiteboard on which an object is drawn in ROOT is called a canvas (defined by the class TCanvas).
Every object in the canvas is a graphical object in the sense that you can grab it, resize it, and change some
characteristics using the mouse. The canvas area can be divided in several sub areas, so-called pads (the class
TPad). A pad is a canvas sub area that can contain other pads or graphical objects. At any one time, just one
pad is the so-called active pad. Any object at the moment of drawing will be drawn in the active pad. The
obvious question is: what is the relation between a canvas and a pad? In fact, a canvas is a pad that spans
through an entire window. This is nothing else than the notion of inheritance. The TPad class is the parent of the
TCanvas class. In ROOT, most objects derive from a base class TObject. This class has a virtual method
Draw () such as all objects are supposed to be able to be "drawn". If several canvases are defined, there is
only one active at a time. One draws an object in the active canvas by using the statement:

object.Draw()

This instructs the object "object" to draw itself. If no canvas is opened, a default one (named "c1") is created.
In the next example, the first statement defines a function and the second one draws it. A default canvas is
created since there was no opened one. You should see the picture as shown in the next figure.

10 Getting Started July 2007 v5.16

root[] TF1l £1("funcl","sin(x)/x",0,10)
root[] f£1l.Draw()

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

Figure 2-1 A canvas with drawing

'EIH Edit Wiew Optioes |nipect Classes . Menu bar
| clalslal #lo] wiml| Hlelsixlelol {ol|o|s|lk|<o|L|s] «———— Tool bar
style I sin(x)/x

Hamg

FadiCanvas
™ Fiead azpect rasn
™ Crosshakr F Edit
M Gagx [Gridy
I omckx T Ty
Log Scale
i i s
Baordes Mode
™ Sunken border
Mo border
& Ralied border

Canvas

S |2

Fill

[s [Brer [16732 [Ge2 714, 0 142017) +——4—— Statusbar
Editor frame
The following components comprise the canvas window:

Menu bar — contains main menus for global operations with files, print, clear canvas, inspect, etc.

Tool bar — has buttons for global and drawing operations; such as arrow, ellipse, latex, pad, etc.
e Canvas — an area to draw objects.

e Status bar — displays descriptive messages about the selected object.

Editor frame - responds dynamically and presents the user interface according to the selected
object in the canvas.

Main Menus and Toolbar

At the top of the canvas window are File, Edit, View, Options, Inspect, Classes and Help menus.

File Menu

e New Canvas: creates a new canvas window in the current ROOT session.
e Open...: popup a dialog to open a file.

e Close Canvas: close the canvas window.

Save: save the drawing of the current canvas in a format selectable from

Mew Canvas

Save 4
the submenu. The current canvas name is used as a file name for various Save As..
formats such as PostScript, GIF, JPEG, C macro file, root file. B

e Save As...: popup a dialog for saving the current canvas drawinginanew ——
filename. Guit ROOT

e Print. popup a dialog to print the current canvas drawing
e Quit ROOT: exit the ROOT session

Edit Menu
There is only one active menu entry in the Edit menu. The others menu entries will be implemented and will

become active in the near future.

e Clear: delete all objects in the canvas or in the selected pad according to the selected entry in the

submenu.
View Menu Loolbar
Event status
e Editor: toggles the view of the editor. If it is selected activates and shows up Calars
the editor on the left side of the canvas window. According to the selected Eonts

object, the editor loads the corresponding user interface for easy change of | pjarkers
the object’s attributes. =

| ift
e Toolbar: toggles the view of the toolbar. If it is selected activates and shows L
up the toolbar. It contains buttons for easy and fast access to most frequently | 184 With =~ *

July 2007 v5.16 Getting Started

1"

used commands and for graphics primitive drawing. Tool tips are provided for helping users.
Status Bar. toggles the view of the status bar. If it is selected, the status bar below the canvas
window shows up. There the identification of the objects is displayed when moving the mouse
(such as the object’s name, the object’s type, its coordinates, etc.).

Colors: creates a new canvas showing the color palette.
Markers: creates a new canvas showing the various marker styles.
Iconify: create the canvas window icon, does not close the canvas

View With...: If the last selected pad contains a 3-d structure, a new canvas is created with a 3-D
picture according to the selection made from the cascaded menu: X3D or OpenGL. The 3-D
image can be interactively rotated, zoomed in wire-frame, solid, hidden line or stereo mode.

Options Menu

Auto Resize Canvas: turns auto-resize of the canvas on/off: « Auto Resize Canvas
ON - the canvas fits to the window when changing the window size; Resize Canvas
OFF - the canvas stays fixed when changing the window size.
Resize Canvas: resizes and fits the canvas to the window size.
Move Opaque: if selected, graphics objects are moved in opaque Interrupt
mode; otherwise, only the outline of objects is drawn when moving Refresh

them. The option opaque produces the pest effect but it requires a Pad Autn Exec
reasonably fast workstation or response time.

Resize Opaque: if selected, graphics objects are resized in opaque v Statistics

mode; otherwise, only the outline of objects is drawn when resizing ¥ Histogram Title
them. Eit Parameters

Move Opague

Resize Opague

Interrupt: interrupts the current drawing process. -an Edit Histograms
Refresh: redraws the canvas contents.

Pad Auto Exec: executes the list of TExecs in the current pad.

Statistics: toggles the display of the histogram statistics box.

Histogram Title: toggles the display of the histogram title.

Fit Parameters: toggles the display of the histogram or graph fit parameters.

Can Edit Histogram: enables/disables the possibility to edit histogram bin contents.

Inspect Menu ROOT

. . . atart Browser
ROOT: inspects the top-level grROOT object (in a new canvas). Gui Builder

Start Browser: starts a new object browser (in a separate window).
GUI Builder. starts the GUI builder application (in a separate window).

Classes Menu

Help Menu Basic Help On... |

Toolbar

Classes: starts the ClassTree viewer that draws inheritance tree for a list of classes.

Canvas: help on canvas as a whiteboard area for drawing.
Menus: help on canvas menus.
Graphics Editor: help on primitives’ drawing and objects’ editor.

Browser: help on the ROOT objects’ and files’ browser. EBrowser
Objects: help on DrawClass, Inspect and Dump context menu items. Objects
PostScript: help on how to print a canvas to a PostScript file format. Bostseript
About ROOT: pops up the ROOT Logo with the version number. Ahout ROOT...

The following menu shortcuts and utilities are available from the toolbar:

DI Create a new canvas window.

ﬂ Popup the Open File dialog.

Popup the Save As... dialog.

% Popup the Print dialog.

ﬂ Interrupts the current drawing process.

12

Getting Started July 2007 v5.16

Y
Q Redraw the canvas.
ﬂ Inspect the grROOT object.

Create a new objects’ browser.

You can create the following graphical objects using the toolbar buttons for primitive drawing. Tool tips are
provided for helping your choice.

LI An Arc or circle: Click on the center of the arc, and then move the mouse. A rubber band circle is shown.
Click again with the left button to freeze the arc.

ll A Line: Click with the left button at the point where you want to start the line, then move the mouse and
click again with the left button to freeze the line.

M An Arrow: Click with the left button at the point where you want to start the arrow, then move the mouse
and click again with the left button to freeze the arrow.

ﬂ A Diamond: Click with the left button and freeze again with the left button. The editor draws a rubber band
box to suggest the outline of the diamond.

o | An Ellipse: Proceed like for an arc. You can grow/shrink the ellipse by pointing to the sensitive points. They
are highlighted. You can move the ellipse by clicking on the ellipse, but not on the sensitive points. If, with the
ellipse context menu, you have selected a fill area color, you can move a filled-ellipse by pointing inside the
ellipse and dragging it to its new position.

J A Pad: Click with the left button and freeze again with the left button. The editor draws a rubber band box to
suggest the outline of the pad.

| A Pavel abel: Proceed like for a pad. Type the text of label and finish with a carriage return. The text will
appear in the box.

A Pave Text: Proceed like for a pad. You can then click on the TPaveText object with the right mouse
button and select the option InsertText.

Paves Text: Proceed like for a TPaveText.

ﬂ A Poly Line: Click with the left button for the first point, move the moose, click again with the left button for
a new point. Close the poly-line with a double click. To edit one vertex point, pick it with the left button and drag
to the new point position.

rGE| A Curly Line: Proceed as for the arrow or line. Once done, click with the third button to change the
characteristics of the curly line, like transform it to wave, change the wavelength, etc.

ﬂ A Curly Arc: Proceed like for an ellipse. The first click is located at the position of the center, the second
click at the position of the arc beginning. Once done, one obtains a curly ellipse, for which one can click with the
third button to change the characteristics, like transform it to wavy, change the wavelength, set the minimum
and maximum angle to make an arc that is not closed, etc.

L | A Text/Latex string: Click with the left button where you want to draw the text and then type in the text
terminated by carriage return. All TLatex expressions are valid. To move the text or formula, point on it keeping
the left mouse button pressed and drag the text to its new position. You can grow/shrink the text if you position
the mouse to the first top-third part of the string, then move the mouse up or down to grow or shrink the text
respectively. If you position the mouse near the bottom-end of the text, you can rotate it.

|ﬂ A Marker: Click with the left button where to place the marker. The marker can be modified by using the
method SetMarkerStyle () of TSystem.

|§'-:- A Graphical Cut: Click with the left button on each point of a polygon delimiting the selected area. Close
the cut by double clicking on the last point. A TCutG object is created. It can be used as a selection for a
TTree: : Draw. You can get a pointer to this object with:

TCutG cut = (TCutG*)gPad->GetPrimitive ("CUTG")

Once you are happy with your picture, you can select the Save as canvas.C item in the canvas File menu.
This will automatically generate a script with the C++ statements corresponding to the picture. This facility also
works if you have other objects not drawn with the graphics editor (histograms for example).

The Editor Frame

The ROOT graphics editor loads the corresponding object editor objEditor according to the selected object
obj in the canvas respecting the class inheritance. An object in the canvas is selected after the left mouse click

July 2007 v5.16 Getting Started 13

on it. For example, if the selected object is TAxis, the TAxisEditor will shows up in the editor frame giving
the possibility for changing different axis attributes. The graphics editor can be:

Embedded — connected only with the canvas in the application window that appears on the left of the canvas
window after been activated via View menu / Editor. It appears on the left side if the canvas window allowing
users to edit the attributes of the selected object via provided user interface. The name of the selected object is
displayed on the top of the editor frame in red color. If the user interface needs more space then the height of
the canvas window, a vertical scroll bar appears for easer navigation.

£85I Momentum distribution

|[=][m (x|

Style I Binmng'

Name
momentum:TH1F

Line

o - |
————=

Fill —————
O I -
Title

Using TH1Editor

Histogram

Plot
* &b { 3D

Etror: |Edges -
Style: [MoLine =

¥ Bar option
™ Add outer line

Bar ——————
w:[T00 4] o.[0.042]
Percentage: |20 %=

of Particles

File Edit View Options Inspect Classes

Using TH1Editor

™ Horizontal Bar
kdarker

W |- o7 =]

_t [MeV]

Entries
Mean
RMS

Help

6188
54.85
32.37

Global — has own application window and can be connected to any created canvas in a ROOT session. It can
be activated via the context menu entries for setting line, fill, text and marker attributes for backward
compatibility, but there will be a unique entry in the near future.

Help

hdzdemo_Editor ES[=1t. IMMET Monte Carlo Study of Z scaling -|8%
Style I File Edit ¥iew Options Inspect Classes
Mame
Graph:TGraph | Z-scaling of Direct Photon Productions in pp Collisions at RHIC Energies I
N
E lﬁ M. Tokarev, E.Potrebenikova JINR preprint E2-98-64, Dubna, 1998
[—
L o8 i
- . wh ey o B
Direct 108 Direct v
L e ——— w0k 0 =90° " 0 = 90°
Graph 107k 1077
Shape ———— - 10
Mo Line R 10 H(z)
; Smaooth Line 10k 1075k (barn)
'+ Simple Line Edam‘dq] 18|
o 0o
€ Bar Chart o (bamiGev?) oL
£ Fill area =
10k P L
5, Ge
¥ Show Marker 107 WS = 63(GeV) B e
& 200
e —— il ¥q~t§-zweew 'ﬁr i
b o I = # Vs = 500(GeV) 10
B[]]2 pyons n A M. S| gomb— il il il
1 10 q (Gevic) 10 1 10 10° or..a

The user interface for the following classes is available since ROOT v.4.04: TAttLine, TAttFill,
TAttMarker, TAttText, TArrow, TAxis, TCurlyArc, TCurlyLine, TFrame, TH1, TH2, TGraph, TPad,
TCanvas, TPaveStats. For more details, see “The Graphics Editor”, “The User Interface for Histograms”, “The

User Interface for Graphs”.

Classes, Methods and Constructors

Object oriented programming introduces objects, which have data members and methods. The next line
creates an object named £1 of the class TF1 that is a one-dimensional function. The type of an object is called
a class. The object itself is called an instance of a class. When a method builds an object, it is called a

constructor.

TF1 f1("funcl","sin(x)/x",0,10)

In our constructor the function sin(x)/x is defined for use, and 0 and 10 are the limits. The first parameter, func1l
is the name of the object £1. Most objects in ROOT have a name. ROOT maintains a list of objects that can be
searched to find any object by its given name (in our example funcl).

The syntax to call an object's method, or if one prefers, to make an object to do something is:

14

Getting Started

July 2007 v5.16

|object.methodiname(parameters) |

The dot can be replaced by “->" if object is a pointer. In compiled code, the dot MUST be replaced by a "->"
if object is a pointer.

object ptr->method name (parameters) |

So now, we understand the two lines of code that allowed us to draw our function. £1.Draw () stands for “call
the method Draw () associated with the object £1 of the class TF1”. Other methods can be applied to the object
f£1 of the class TF1. For example, the evaluating and calculating the derivative and the integral are what one
would expect from a function.

root[] £1.Eval(3)

(Double t)4.70400026866224020e-02
root[] fl.Derivative (3)

(Double t) (-3.45675056671992330e-01)
root[] £1.Integral(O0,3)

(Double t)1.84865252799946810e+00
root[] f£1l.Draw()

By default the method TF1: : Paint (), that draws the function, computes 100 equidistant points to draw it. The
number of points can be set to a higher value with:

root[] £1.SetNpx(2000) ;

Note that while the ROOT framework is an object-oriented framework, this does not prevent the user from
calling plain functions.

User Interaction

Now we will look at some interactive capabilities. Try to draw the function sin (x) /x again. Every object in a
window (which is called a canvas) is, in fact, a graphical object in the sense that you can grab it, resize it, and
change its characteristics with a mouse click. For example, bring the cursor over the x-axis. The cursor changes
to a hand with a pointing finger when it is over the axis. Now, left click and drag the mouse along the axis to the
right. You have a very simple zoom.

When you move the mouse over any object, you can get access to selected methods by pressing the right
mouse button and obtaining a context menu. If you try this on the function TF1, you will get a menu showing
available methods. The other objects on this canvas are the title, a TPaveText object; the x and y-axis, TAxis
objects, the frame, a TFrame object, and the canvas a TCanvas object. Try clicking on these and observe the
context menu with their methods.

Figure 2-2 A context menu

File Edit ¥iew Oplions Inspect Classes Help
sin{x)x |

1

TF1 ::funcl

DrawiPanel
Sethdaximum
Sethinimurm
Sethlpx

SefRange

0.8

0.6

SetPartlames

Sethlame

04 SefTitle

Delete
DrawClass
DrawtClane
Dump

Inspect
SetDrawQption
SelLineAttributes
SefFillatributes
Setharkerattributes

o A A A A L AR

1 2 3 4 5 6 7 8 [} 10

=

For example try selecting the SsetRange () method and putting -10, 10 in the dialog box fields. This is
equivalent to executing £1.SetRange (-10,10) from the command line, followed by f1.Draw (). Here are
some other options you can try.

Once the picture suits your wishes, you may want to see the code you should put in a script to obtain the same
result. To do that, choose Save / canvas.C entry of the File menu. This will generate a script showing the
options set in the current canvas. Notice that you can also save the picture into various file formats such as
PostScript, GIF, etc. Another interesting possibility is to save your canvas into the native ROOT format (. root
file). This will enable you to open it again and to change whatever you like. All objects associated to the canvas
(histograms, graphs) are saved at the same time.

July 2007 v5.16 Getting Started 15

Building a Multi-pad Canvas

Let us now try to build a canvas with several pads.

root[] TCanvas *MyC = new TCanvas ("MyC",6 "Test canvas",1)
root[] MyC->Divide(2,2)

Once again, we call the constructor of a class, this time the class TCanvas. The difference between this and
the previous constructor call (TF1) is that here we are creating a pointer to an object. Next, we call the method
Divide () of the TCanvas class (that is TCanvas: :Divide ()), which divides the canvas into four zones and
sets up a pad in each of them. We set the first pad as the active one and than draw the function £1 there.

root[] MyC->cd(1)
root[] £1l->Draw()

All objects will be drawn in that pad because it is the active one. The ways for changing the active pad are:

e Click the middle mouse button on a pad will set this pad as the active one.
e Use the method TCanvas: : cd () with the pad number, as was done in the example above:

root[] MyC->cd(3)

Pads are numbered from left to right and from top to bottom. Each new pad created by TCanvas: :Divide ()
has a name, which is the name of the canvas followed by _1, _2, etc. To apply the method cd () to the third
pad, you would write:

root[] MyC_3->cd()

e Third pad will be selected since you called TPad: : cd () for the object MyC 3. ROOT will find the
pad that was named MyC 3 when you typed it on the command line (see ROOT/CINT
Extensions to C++).

Saving the Canvas
MNew Canvas

Using the File menu / Save cascade menu users can save the canvas as one of the o

y . . \ . N N pen...

files from the list. Please note that saving the canvas this way will overwrite the file Close Canvas
with the same name without a warning.

Zdemops

All supported file types can be saved via File menu / SaveAs... This dialog gives a Save As.. zdemo.gps

choice to show or suppress the confirmation message for overwriting an existing file. Erint... ::::E:j:’
Quit ROOT "

Figure 2-3 The SaveAs... dialog _— z:emu.jgpg
-~ -~ Zaemo,

[l Save As... AT G

Save in: |23 tutorials - o[I [Ovaniet
| =] & el Qverwite]

Jcvs G+ DOMParsePerson G mtc

GFbinoml CiOUbAR ki CiE

GFfoam k:
G maitest & File name mymacro.C already exists, OK to overwrite it?
GF nucles
Yes | No |
& Fitting Dema Sufaces C

2
File name: |mymacr0.C Save |
Files oftype: [ROOT macros (* C) =] Cancel |

If the Ovewrite check box is not selected, a message dialog appears asking the user to overwrite the file
(Yes/No). The user choice is saved for the next time the Save As... dialog shows up.

Printing the Canvas

The Print command in the canvas File menu pops-up a print dialog where the user can specify a preferred print
command and the printer name.

V. x

Printcnmmand:lxprint-P PBrint |
Printer: |32—rb20—hp cancel |

Both print parameters can be set via the new Print. Command and Print.Printer rootrc resources as follows:

Printer settings.

WinNT.*.Print.Command: AcroRd32.exe
Unix.*.Print.Command: xprint -P%p %f
Print.Printer: 32-rb205-hp

Print.Directory:

16

Getting Started July 2007 v5.16

If the $p and %f are specified as a part of the print command, they will be replaced by the specified printer
name and the file name. All other parameters will be kept as they are written. A print button is available in the
canvas toolbar (activated via View menu/Toolbar).

The ROOT Command Line

We have briefly touched on how to use the command line. There are different types of commands.
1. CINT commands start with “.”

root[] .? //this command will 1list all the CINT commands
root[] .L <filename> //load [filename]
root[] .x <filename> //load and execute [filename]
2. SHELL commands start with “. !” for example:
|root[] .1 1s

3. C++ commands follow C++ syntax (almost)

root[] TBrowser *b = new TBrowser ()

Multi-line Commands

You can use the command line to execute multi-line commands. To begin a multi-line command you must type
a single left curly bracket {, and to end it you must type a single right curly bracket }. For example:

root[] {
end with
end with
end with

'"}'>Int t j =0;
|}>
l}>
end with "}'>
l}>
|}>
l}>

for (Int_t i = 0; i < 3; i++)

{
j=3j + i;

cout << "i =" <K i <K ", j=" << j < endl;
}

}

]
]
]
' =
end with !
end with !
end with !
i=0, J=20
i=1, 3 =1
i=2,3=3

It is more convenient to edit a script than the command line, and if your multi line commands are getting
unmanageable, you may want to start with a script instead.

CINT Extensions

We should say that some things are not standard C++. The CINT interpreter has several extensions. See
“‘ROOT/CINT Extensions to C++”.

Helpful Hints for Command Line Typing

The interpreter knows all the classes, functions, variables, and user defined types. This enables ROOT to help
users to complete the command line. For example, if we do not know anything about the TLine class, the Tab
feature helps us to get a list of all classes starting with TL(where <TAB> means type the Tab key).

root[] 1 = new TLi<TAB>
TList

TListIter

TLink

TLine

TLimitDataSource

TLimit

To list the different constructors and parameters for TLine use the <TAB> key as follows:

root[] 1 = new TLine (<TAB>

TLine TLine ()

TLine TLine (Double t x1,Double t yl,Double t x2,Double t y2)
TLine TLine (const TLine& line)

Regular Expression

The meta-characters below can be used in a regular expression:
e '~' start-of-line anchor
e 's' end-of-line anchor

July 2007 v5.16 Getting Started 17

. ." matches any character
e '[' start a character class
e ']’ end a character class
e '~’ negates character class if first character
e '*’ Kleene closure (matches 0 or more)
Positive closure (1 or more)

Optional closure (0 or 1)

° +

° '’
When using wildcards the regular expression is assumed to be preceded by a '~' (BOL) and terminated by 's'
(EOL). All '+* (closures) are assumed to be preceded by a '.', i.e. any character, except slash _/ . Its special
treatment allows the easy matching of pathnames. For example, *.root will match aap.root , but not
_pipo/aap.root .

The escape characters are:

. AN\ backslash

. \b backspace

. \f form feed

. \n new line

. \r carriage return

. \s space

. \t tab

e \e ASCII ESC character (\033')

. \DDD number formed of 1-3 octal digits
. \xDD number formed of 1-2 hex digits
. \"C C = any letter. Control code

The class TRegexp can be used to create a regular expression from an input string. If wildcard is true then
the input string contains a wildcard expression.

TRegexp (const char *re, Bool t wildcard)

Regular expression and wildcards can be easily used in methods like:

Ssiz_t Index(const TString& string,Ssiz_t* len,Ssiz t i) const

The method finds the first occurrence of the regular expression in the string and returns its position.

Conventions

In this paragraph, we will explain some of the conventions used in ROOT source and examples.

Coding Conventions

From the first days of ROOT development, it was decided to use a set of coding conventions. This allows a
consistency throughout the source code. Learning these will help you identify what type of information you are
dealing with and enable you to understand the code better and quicker. Of course, you can use whatever
convention you want but if you are going to submit some code for inclusion into the ROOT sources, you will
need to use these.

These are the coding conventions:

o Classes begin with T: TLine, TTree

¢ Non-class types end with _t: Int t

e Data members begin with £: fTree

e Member functions begin with a capital: Loop ()

e Constants begin with k: kInitialSize, kRed
e Global variables begin with g: gEnv

e Static data members begin with £g: fgTokenClient

e Enumeration types begin with E: EColorLevel

e Locals and parameters begin with a lower case: nbytes
o Getters and setters begin with Get and Set: SetLast(), GetFirst()

Machine Independent Types

Different machines may have different lengths for the same type. The most famous example is the int type. It
may be 16 bits on some old machines and 32 bits on some newer ones. To ensure the size of your variables,
use these pre defined types in ROOT:

18 Getting Started July 2007 v5.16

e Char_t Signed Character 1 byte

e TUChar_t Unsigned Character 1 byte

e Short t Signed Short integer 2 bytes

e UShort_t Unsigned Short integer 2 bytes

e Int t Signed integer 4 bytes

e UlInt t Unsigned integer 4 bytes

e Long64_t Portable signed long integer 8 bytes

e ULong64_t Portable unsigned long integer 8 bytes
e Float t Float 4 bytes

e Double_t Float 8 bytes

e Double32 t Double 8 bytes in memory, written as a Float 4 bytes
e Bool_ t Boolean (O=false, 1=true)

If you do not want to save a variable on disk, you can use int or Int_t, the result will be the same and the
interpreter or the compiler will treat them in exactly the same way.

TObject

In ROOT, almost all classes inherit from a common base class called Tobject. This kind of architecture is also
used in the Java language. The TObject class provides default behavior and protocol for all objects in the
ROOT system. The main advantage of this approach is that it enforces the common behavior of the derived
classes and consequently it ensures the consistency of the whole system. See "The Role of TObject".

TObject provides protocol, i.e. (abstract) member functions, for:

e Object /O (Read (), Write())

e Error handling (Warning (), Error (), SysError (), Fatal())
e Sorting (IsSortable (), Compare (), IsEqual (), Hash())

e Inspection (Dump (), Inspect ())

e Printing (Print ())

e Drawing (Draw (), Paint (), ExecuteEvent ())

e Bithandling (SetBit (), TestBit ())

e Memory allocation (operator new and delete, IsOnHeap ())
e Access to meta information (IsA (), InheritsFrom())

e Object browsing (Browse (), IsFolder ())

Global Variables

ROOT has a set of global variables that apply to the session. For example, ghirectory always holds the

current directory, and gStyle holds the current style. All global variables begin with “g” followed by a capital
letter.

gROOT

The single instance of TROOT is accessible via the global grOOT and holds information relative to the current
session. By using the gROOT pointer, you get the access to every object created in a ROOT program. The
TROOT object has several lists pointing to the main ROOT objects. During a ROOT session, the grROOT keeps a
series of collections to manage objects. They can be accessed via grROOT: : GetListOf.. methods.

gROOT->GetListOfClasses ()
gROOT->GetListOfColors ()
gROOT->GetListOfTypes ()
gROOT->GetListOfGlobals ()
gROOT->GetListOfGlobalFunctions ()
gROOT->GetListOfFiles ()
gROOT->GetListOfMappedFiles ()
gROOT->GetListOfSockets ()
gROOT->GetListOfCanvases ()
gROOT->GetListOfStyles ()
gROOT->GetListOfFunctions ()
gROOT->GetListOfSpecials ()
gROOT->GetListOfGeometries ()
gROOT->GetListOfBrowsers ()
gROOT->GetListOfMessageHandlers ()

July 2007 v5.16 Getting Started 19

These methods return a TSeqCollection, meaning a collection of objects, and they can be used to do list
operations such as finding an object, or traversing the list and calling a method for each of the members. See
the TCollection class description for the full set of methods supported for a collection. For example, to find a
canvas called c1 you cando:

root[] gROOT->GetListOfCanvases ()->FindObject("cl")

This returns a pointer to a TObject, and before you can use it as a canvas you need to cast it to a TCanvas*.

gFile

gFileis the pointer to the current opened file in the ROOT session.

gDirectory

gDirectory is a pointer to the current directory. The concept and role of a directory is explained in the chapter
“Input/Output”.

gPad

A graphic object is always drawn on the active pad. It is convenient to access the active pad, no matter what it
is. For that, we have gPad that is always pointing to the active pad. For example, if you want to change the fill
color of the active pad to blue, but you do not know its name, you can use gPad.

root[] gPad->SetFillColor (38)

To get the list of colors, if you have an open canvas, click in the "View" menu, selecting the "Colors" entry.

gRandom

gRandom is a pointer to the current random number generator. By default, it points to a TRandom3 object,
based on the "Mersenne-Twister" generator. This generator is very fast and has very good random proprieties
(a very long period of 10600). Setting the seed to 0 implies that the seed will be uniquely generated using the
TUUID. Any other value will be used as a constant. The following basic random distributions are provided:
Rndm() or Uniform(min,max), Gaus(mean,sigma), Exp(tau), BreitWigner (mean, sigma),
Landau (mean, sigma), Poisson (mean), Binomial (ntot, prob). You can customize your ROOT session
by replacing the random number generator. You can delete gRandom and recreate it with your own. For
example:

root[] delete gRandom;
root[] gRandom = new TRandom2 (0) ; //seed=0

TRandom? is another generator, which is also very fast and uses only three words for its state.

gEnv

gEnv is the global variable (of type TEnv) with all the environment settings for the current session. This variable
is set by reading the contents of a . rootrc file (or SROOTSYS/etc/system.rootrc) at the beginning of the
root session. See Environment Setup below for more information.

Environment Setup

The behavior of a ROOT session can be tailored with the options in the .rootrc file. At start-up, ROOT looks
for a .rootrc file in the following order:

. ./ .rootrc //local directory

e SHOME/.rootrc //user directory

e SROOTSYS/etc/system.rootrc //global ROOT directory

If more than one . rootrc files are found in the search paths above, the options are merged, with precedence
local, user, global. While in a session, to see current settings, you can do:

root[] gEnv->Print()

The rootrc file typically looks like:

Path used by dynamic loader to find shared libraries
Unix.*.Root.DynamicPath: .:~/rootlibs:$ (ROOTSYS) /1lib
Unix.*.Root.MacroPath: .:~/rootmacros:$ (ROOTSYS) /macros

Path where to look for TrueType fonts
Unix.*.Root.UseTTFonts: true

20 Getting Started July 2007 v5.16

Unix.*.Root.TTFontPath:

Activate memory statistics

Rint.Root.MemStat: 1

Rint.Load: rootalias.C
Rint.Logon: rootlogon.C
Rint.Logoff: rootlogoff.C
Rint.Canvas.MoveOpaque: false

Rint.Canvas.HighLightColor: 5

The various options are explained in SROOTSYS/etc/system.rootrc. The .rootrc file contents are
combined. For example, if the flag to use true type fonts is set to true in the system. rootrc file, you have to
set explicitly it false in your local .rootrc file if you do not want to use true type fonts. Removing the
UseTTFonts statement in the local .rootrc file will not disable true fonts. The value of the environment
variable ROOTDEBUG overrides the value in the . rootrc file at startup. Its value is used to set gbebug and
helps for quick turn on debug mode in TROOT startup.

ROOT looks for scripts in the path specified in the . rootrc file in the Root .Macro.Path variable. You can
expand this path to hold your own directories.

Logon and Logoff Scripts

The rootlogon.C and rootlogoff.C files are scripts loaded and executed at start-up and shutdown. The
rootalias.C file is loaded but not executed. It typically contains small utility functions. For example, the
rootalias.C script that comes with the ROOT distributions (located in SROOTSYS/tutorials) defines the
function edit (char *file). This allows the user to call the editor from the command line. This particular
function will start the VI editor if the environment variable EDITOR is not set.

root[0] edit("cl.C")

For more details, see SROOTSYS/tutorials/rootalias.C.

History File

You can use the up and down arrow at the command line, to access the previous and next command. The
commands are recorded in the history file SHOME/.root hist. Itis a text file, and you can edit, cut, and paste
from it. You can specify the history file in the system. rootrc file, by setting the Rint .History option. You
can also turn off the command logging in the system. rootrc file with the option: Rint .History: -

The number of history lines to be kept can be set also in .rootrc by:

Rint.HistSize: 500
Rint.HistSave: 400

The first value defines the maximum of lines kept; once it is reached all, the last HistSave lines will be
removed. One can set HistSize to 0 to disable history line management. There is also implemented an
environment variable called ROOT HIST. By setting ROOT HIST=300:200 the above values can be overriden -
the first value corresponds to HistSize, the (optional) second one to HistSave. You can set ROOT HIST=0
to disable the history.

Tracking Memory Leaks

You can track memory usage and detect leaks by monitoring the number of objects that are created and deleted
(see TObjectTable). To use this facility, edit the file SROOTSYS/etc/system.rootrc or .rootrc if you
have this file and add the two following lines:

Root.MemStat: 1
Root.ObjectStat: 1

In your code or on the command line you can type the line:

gObjectTable->Print () ;

This line will print the list of all active classes and the number of instances for each class. By comparing
consecutive print outs, you can see objects that you forgot to delete. Note that this method cannot show leaks
coming from the allocation of non-objects or classes unknown to ROOT.

Memory Checker

A memory checking system was developed by D.Bertini and M.lvanov and added in ROOT version 3.02.07. To
activate the memory checker you can set the resource Root .MemCheck to 1 (e.g.: Root.MemCheck: 1 inthe
.rootrc file). You also have to link with 1ibNew.so (e.g. use root-config --new --1libs) or to use

July 2007 v5.16 Getting Started 21

rootn.exe. When these settings are in place, you will find a file "memcheck.out" in the directory where you
started your ROOT program after the completion of the program execution. You can also set the resource
Root.MemCheckFile to the name of a file. The memory information will be written to that file. The contents of
this memcheck.out can be analyzed and transformed into printable text via the memprobe program (in
SROOTSYS/bin).

Converting from PAW to ROOT

The web page at: http://root.cern.ch/root/HowtoConvertFromPAW.htmI#TABLE gives the "translation" table of
some commonly used PAW commands into ROOT. If you move the mouse cursor over the picture at:
http://root.cern.ch/root/HowtoConvertFromPAW.htmI#SET, you will get the corresponding ROOT commands as
tooltips.

Converting HBOOK/PAW Files

ROOT has a utility called h2root that you can use to convert your HBOOK/PAW histograms or ntuple files into
ROOT files. To use this program, you type the shell script command:

| h2root <hbookfile> <rootfile>

If you do not specify the second parameter, a file name is automatically generated for you. If hbookfile is of
the form f£ile.hbook, then the ROOT file will be called file.root. This utility converts HBOOK histograms
into ROOT histograms of the class TH1F. HBOOK profile histograms are converted into ROOT profile
histograms (see class TProfile). HBOOK row-wise and column-wise ntuples are automatically converted to
ROOT Trees. See “Trees”. Some HBOOK column-wise ntuples may not be fully converted if the columns are an
array of fixed dimension (e.g. var [6]) or if they are a multi-dimensional array.

HBOOK integer identifiers are converted into ROOT named objects by prefixing the integer identifier with the
letter "n" if the identifier is a positive integer and by "h_" if it is a negative integer identifier. In case of row-wise
or column-wise ntuples, each column is converted to a branch of a tree. Note that h2root is able to convert
HBOOK files containing several levels of sub-directories. Once you have converted your file, you can look at it
and draw histograms or process ntuples using the ROOT command line. An example of session is shown
below:

// this connects the file hbookconverted.root
root[] TFile f ("hbookconverted.root");

//display histogram named h10 (was HBOOK id 10)
root[] hl0.Draw() ;

//display column "var" from ntuple h30
root[] h30.Draw("var");

You can also use the ROOT browser (see TBrowser) to inspect this file.

The chapter on trees explains how to read a tree. ROOT includes a function TTree: :MakeClass to generate
automatically the code for a skeleton analysis function. See “Example Analysis”.

In case one of the ntuple columns has a variable length (e.g. px (ntrack)), h.Draw ("px") will histogram the

px column for all tracks in the same histogram. Use the script quoted above to generate the skeleton function
and createf/fill the relevant histogram yourself.

22 Getting Started July 2007 v5.16

http://root.cern.ch/root/HowtoConvertFromPAW.html#TABLE
http://root.cern.ch/root/HowtoConvertFromPAW.html#SET

3 Histograms

This chapter covers the functionality of the histogram classes. We begin with an overview of the histogram
classes and their inheritance relationship. Then we give instructions on the histogram features.

We have put this chapter ahead of the graphics chapter so that you can begin working with histograms as soon
as possible. Some of the examples have graphics commands that may look unfamiliar to you. These are
covered in the chapter “Input/Output”.

The Histogram Classes

ROOT supports the following histogram types:
1-D histograms:
e THIC: are histograms with one byte per channel. Maximum bin content = 255
e THI1S: are histograms with one short per channel. Maximum bin content = 65 535
e THI1I: are histograms with one integer per channel. Maximum bin content = 2147483647
e THIF: are histograms with one float per channel. Maximum precision 7 digits
e THID: are histograms with one double per channel. Maximum precision 14 digits
2-D histograms:
e TH2C: are histograms with one byte per channel. Maximum bin content = 255
e TH2S: are histograms with one short per channel. Maximum bin content = 65 535
e TH2I: are histograms with one integer per channel. Maximum bin content = 2147483647
e TH2F: are histograms with one float per channel. Maximum precision 7 dig
e TH2D: are histograms with one double per channel. Maximum precision 14 digits
3-D histograms:
e TH3C: are histograms with one byte per channel. Maximum bin content = 255
e TH3S: are histograms with one short per channel. Maximum bin content = 65 535
e TH3I: are histograms with one integer per channel. Maximum bin content = 2147483647
e TH3F: are histograms with one float per channel. Maximum precision 7 digits
e TH3D: are histograms with one double per channel. Maximum precision 14 digits
Profile histograms:
e TProfile: one dimensional profiles
e TProfile2D: two dimensional profiles

Profile histograms are used to display the mean value of Y and its RMS for each bin in X. Profile histograms are
in many cases an elegant replacement of two-dimensional histograms. The inter-relation of two measured
quantities X and Y can always be visualized with a two-dimensional histogram or scatter-plot. If Y is an
unknown but single-valued approximate function of X, it will have greater precisions in a profile histogram than
in a scatter plot.

Figure 3-1 The class hierarchy of histogram classes

TH1

| TH1C | | TH1S | | TH1I | | TH1F | | TH1D |

TH2
TProfile
| TH2C | | TH2S | | TH2I | | TH2F | | TH2D |
[]

TProfile2D

July 2007 v5.16 Histograms 23

All histogram classes are derived from the base class TH1. The figure above shows the class hierarchy.
The TH*C classes also inherit from the array class TArrayC.
The TH*S classes also inherit from the array class TArrays.
The TH*F classes also inherit from the array class TArrayF.
The TH*D classes also inherit from the array class TArrayD.

Creating Histograms

Histograms are created with constructors:

TH1F *hl = new THI1F("hl1","hl title",100,0,4.4);
TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

The parameters of the TH1 constructor are the name of the histogram, the title, the number of bins, the x
minimum, and x maximum. Histograms may also be created by:

e Calling the Clone method of an existing histogram (see below)

e Making a projection from a 2-D or 3-D histogram (see below)

e Reading a histogram from a file
When a histogram is created, a reference to it is automatically added to the list of in-memory objects for the

current file or directory. This default behavior can be disabled for an individual histogram or for all histograms by
setting a global switch. Here is the syntax to set the directory of the histogram h:

// to set the in-memory directory for the current histogram h
h->SetDirectory(0);

// global switch to disable

TH1::AddDirectory (kFALSE) ;

When the histogram is deleted, the reference to it is removed from the list of objects in memory. In addition,
when a file is closed, all histograms in memory associated with this file are automatically deleted. See the
chapter “Input/Output”.

Fixed or Variable Bin Size

All histogram types support fixed or variable bin sizes. 2-D histograms may have fixed size bins along X and
variable size bins along Y or vice-versa. The functions to fill, manipulate, draw, or access histograms are
identical in both cases.

To create a histogram with variable bin size one can use this constructor:

TH1 (const char name,const *title,Int t nbins, *xbins)

The parameters to this constructor are:
e title: histogram title
e nbins: number of bins
e xbins: array of low-edges for each bin. It is an array of size nbins+1

Each histogram always contains three TAxis objects: fXaxis, fYaxis, and fzaxis. To access the axis
parameters first get the axis from the histogram h, and then call the TAxis access methods.

TAxis *xaxis = h->GetXaxis();
Double t binCenter = xaxis->GetBinCenter (bin);

See the class TAxis for a description of all the access methods. The axis range is always stored internally in
double precision.

Bin Numbering Convention

For all histogram types: nbins, x1ow, xup

Bin# 0 contains the underflow.

Bin# 1 contains the first bin with low-edge (x1ow INCLUDED).

The second to last bin (bin# nbins) contains the upper-edge (xup EXCLUDED).
The Last bin (bin# nbins+1) contains the overflow.

In case of 2-D or 3-D histograms, a "global bin" number is defined. For example, assuming a 3-D histogram h
with binx, biny, binz, the function returns a global/linear bin number.

Int t bin = h->GetBin (binx,biny,binz);

This global bin is useful to access the bin information independently of the dimension.

24

Histograms July 2007 v5.16

Re-binning

At any time, a histogram can be re-binned via the TH1: :Rebin () method. It returns a new histogram with the
re-binned contents. If bin errors were stored, they are recomputed during the re-binning.

Filling Histograms

A histogram is typically filled with statements like:

hl1->Fill
hl->Fill
h2->Fill
h2->Fill
h3->Fill
h3->Fill

X) ;

X, W) ; //with weight
X, Y) i

X, Y, W);

X, Y,2) 3

X, Y, Z,W) 5

The Fi11 method computes the bin number corresponding to the given x, y or z argument and increments this
bin by the given weight. The Fi11 () method returns the bin number for 1-D histograms or global bin number
for 2-D and 3-D histograms. If TH1: : Sumw2 () has been called before filling, the sum of squares is also stored.
One can increment a bin number directly by calling TH1: : AddBinContent (), replace the existing content via
TH1::SetBinContent (), and access the bin content of a given bin via TH1: : GetBinContent ().

Double t binContent = h->GetBinContent (bin);

Automatic Re-binning Option

By default, the number of bins is computed using the range of the axis. You can change this to re-bin
automatically by setting the automatic re-binning option:

h->SetBit (TH1::kCanRebin) ;

Once this is set, the Fi11 () method will automatically extend the axis range to accommodate the new value
specified in the Fi11 () argument. The used method is to double the bin size until the new value fits in the
range, merging bins two by two. The TTree: :Draw () method extensively uses this automatic binning option
when drawing histograms of variables in TTree with an unknown range. The automatic binning option is
supported for 1-D, 2-D and 3-D histograms. During filling, some statistics parameters are incremented to
compute the mean value and root mean square with the maximum precision. In case of histograms of type
TH1C, TH1S, TH2C, TH2S, TH3C, TH3S a check is made that the bin contents do not exceed the maximum
positive capacity (127 or 65 535). Histograms of all types may have positive or/and negative bin contents.

Random Numbers and Histograms

TH1::FillRandom() can be used to randomly fill a histogram using the contents of an existing TF1 function
or another TH1 histogram (for all dimensions). For example, the following two statements create and fill a
histogram 10 000 times with a default Gaussian distribution of mean 0 and sigma 1:

root[] TH1F hl("hl","Histo from a Gaussian",100,-3,3);
root[] hl.FillRandom("gaus",10000) ;

TH1::GetRandom () can be used to get a random number distributed according the contents of a histogram.
To fill a histogram following the distribution in an existing histogram you can use the second signature of
TH1::FillRandom (). Next code snipped assumes that h is an existing histogram (TH1).

root[] TH1F h2("h2","Histo from existing histo",100,-3,3);
root[] h2.FillRandom(&hl,1000) ;

The distribution contained in the histogram h1 (TH1) is integrated over the channel contents. It is normalized to
one. The second parameter (1000) indicates how many random numbers are generated.

Getting 1 random number implies:
e Generating a random number between 0 and 1 (say r1)
e Find the bin in the normalized integral for r1
e Fill histogram channel

You can see below an example of the TH1::GetRandom () method which can be used to get a random
number distributed according the contents of a histogram.

void getrandomh () {
TH1F *source = new THL1F ("source","source hist",100,-3,3);
source->FillRandom ("gaus",1000) ;
TH1F *final = new TH1F("final","final hist",100,-3,3);
// continued..

July 2007 v5.16 Histograms 25

for (Int t i1=0;i<10000;i++) |

final->Fill (source->GetRandom()) ;
}
TCanvas *cl = new TCanvas ("cl","cl1",800,1000);
cl->Divide(1,2);
cl->cd(1l);
source->Draw () ;
cl->cd (2);

final->Draw() ;
cl=->cd();

Adding, Dividing, and Multiplying
Many types of operations are supported on histograms or between histograms:
e Addition of a histogram to the current histogram
e Additions of two histograms with coefficients and storage into the current histogram
e Multiplications and divisions are supported in the same way as additions.
e The Add, Divide and Multiply functions also exist to add, divide or multiply a histogram by a
function.

If a histogram has associated error bars (TH1: : Sumw2 () has been called), the resulting error bars are also
computed assuming independent histograms. In case of divisions, binomial errors are also supported.

Projections

One can make:

e a 1-D projection of a 2-D histogram or profile. See TH2::ProfileX, TH2::ProfileY,
TProfile: :ProjectionX, TProfile2D: :ProjectionXy, TH2: :ProjectionX,
TH2: :ProjectionY.

e a1-D, 2-D or profile out of a 3-D histogram see TH3: : ProjectionZ, TH3: :Project3D.
These projections can be fit via: TH2: : FitSlicesX, TH2: :FitSlicesY, TH3::FitSlicesZ.

Drawing Histograms

When you call the braw method of a histogram (TH1: : Draw) for the first time, it creates a THistPainter
object and saves a pointer to painter as a data member of the histogram. The THistPainter class specializes
in the drawing of histograms. It allows logarithmic axes (x, y, z) when the CONT drawing option is using. The
THistPainter class is separated from the histogram so that one can have histograms without the graphics
overhead, for example in a batch program. The choice to give each histogram has its own painter rather than a
central singleton painter, allows two histograms to be drawn in two threads without overwriting the painter's
values. When a displayed histogram is filled again, you do not have to call the Draw method again. The image
is refreshed the next time the pad is updated. A pad is updated after one of these three actions:

e A carriage control on the ROOT command line
e Aclick inside the pad
e Acallto TPad: : Update ()

By default, the TH1: : Draw clears the pad before drawing the new image of the histogram. You can use the
"SAME" option to leave the previous display in tact and superimpose the new histogram. The same histogram
can be drawn with different graphics options in different pads. When a displayed histogram is deleted, its image
is automatically removed from the pad.

To create a copy of the histogram when drawing it, you can use TH1: :DrawClone (). This will clone the
histogram and allow you to change and delete the original one without affecting the clone. You can use
TH1::DrawNormalized () to draw a normalized copy of a histogram.

TH1 *TH1::DrawNormalized(Option t *option,Double t norm) const

A clone of this histogram is normalized to norm and drawn with option. A pointer to the normalized histogram is
returned. The contents of the histogram copy are scaled such that the new sum of weights (excluding under and
overflow) is equal to norm.

Note that the returned normalized histogram is not added to the list of histograms in the current directory in
memory. It is the user's responsibility to delete this histogram. The kCanDelete bit is set for the returned
object. If a pad containing this copy is cleared, the histogram will be automatically deleted. See “Draw Options”
for the list of options.

26 Histograms July 2007 v5.16

Setting the Style

Histograms use the current style gStyle, which is the global object of class TStyle. To change the current
style for histograms, the TStyle class provides a multitude of methods ranging from setting the fill color to the
axis tick marks. Here are a few examples:

voild SetHistFillColor (Color t color = 1)
void SetHistFillStyle(Style t styl = 0)
void SetHistLineColor (Color t color = 1)
void SetHistLineStyle(Style t styl = 0)
void SetHistLineWidth (Width t width = 1)

When you change the current style and would like to propagate the change to a previously created histogram
you can call TH1: :UseCurrentStyle (). You will need to call UseCurrentStyle () on each histogram.
When reading many histograms from a file and you wish to update them to the current style, you can use
gROOT: :ForceStyle and all histograms read after this call will be updated to use the current style. See
“Graphics and the Graphical User Interface”. When a histogram is automatically created as a result of a
TTree: : Draw, the style of the histogram is inherited from the tree attributes and the current style is ignored.
The tree attributes are the ones set in the current TStyle at the time the tree was created. You can change the

existing tree to use the current style, by calling TTree: : UseCurrentStyle ().

Draw Options

The following draw options are supported on all histogram classes:

e "AXIS™ Draw only the axis.

e "HIST" When a histogram has errors, it is visualized by default with error bars. To visualize it
without errors use HIST together with the required option (e.g. "HIST SAME C").

e "SAME" Superimpose on previous picture in the same pad.

o "CYL"™ Use cylindrical coordinates.

e "pPOL" Use polar coordinates.

e "spp" Use spherical coordinates.

e "PSR" Use pseudo-rapidity/phi coordinates.

e "LEGO" Draw a lego plot with hidden line removal.

e "LEGO1™ Draw a lego plot with hidden surface removal.

e "LEGO2"™ Draw alego plot using colors to show the cell contents.

e "SURE™ Draw a surface plot with hidden line removal.

e "SURF1": Draw a surface plot with hidden surface removal.

e "SURF2"™ Draw a surface plot using colors to show the cell contents.

e "SURF3": Same as SURF with a contour view on the top.

e "SURF4": Draw a surface plot using Gouraud shading.

e “SURF5”™: Same as SURF3 but only the colored contour is drawn. Used with option CYL, SPH or

PSR it allows to draw colored contours on a sphere, a cylinder or in a pseudo rapidly
space. In Cartesian or polar coordinates, option SURF3 is used.

The following options are supported for 1-D histogram classes:

e "AH" Draw the histogram, but not the axis labels and tick marks

e "B"™ Draw a bar chart

e "C" Draw a smooth curve through the histogram bins

o "E Draw the error bars

o "EO" Draw the error bars including bins with 0 contents

o "EI" Draw the error bars with perpendicular lines at the edges

o "E2" Draw the error bars with rectangles

e "E3" Draw a fill area through the end points of the vertical error bars

o "E4™ Draw a smoothed filled area through the end points of the error bars

o "L™ Draw a line through the bin contents

o "P" Draw a (poly)marker at each bin using the histogram's current marker style
e "PO"™ Draw current marker at each bin including empty bins

o "PIE" Draw a Pie Chart

o "xp" Draw histogram with a * at each bin

o "LF2" Draw histogram as with option "L" but with a fill area. Note that "1.” also draws a fill

area if the histogram fill color is set but the fill area corresponds to the histogram
contour.

July 2007 v5.16

Histograms 27

o "O™ Force histogram to be drawn in high resolution mode. By default, the histogram is
drawn in low resolution in case the number of bins is greater than the number of
pixels in the current pad

e “1[% Draw histogram without the vertical lines for the first and the last bin. Use it when
superposing many histograms on the same picture.

The following options are supported for 2-D histogram classes:

e "ARR" Arrow mode. Shows gradient between adjacent cells

e "BOX™ Draw a box for each cell with surface proportional to contents

e "COL"™ Draw a box for each cell with a color scale varying with contents

e "CoOLz™ Same as "COL" with a drawn color palette

e "CONT™ Draw a contour plot (same as CONTO0)

e "CONTZ"™ Same as "CONT" with a drawn color palette

e "coNTO0"™ Draw a contour plot using surface colors to distinguish contours

e "conT1": Draw a contour plot using line styles to distinguish contours

e "conT2": Draw a contour plot using the same line style for all contours

e "conNT3": Draw a contour plot using fill area colors

e "CcONT4": Draw a contour plot using surface colors (SURF option at theta = 0)
e "LIST™ Generate a list of TGraph objects for each contour

e "FB" To be used with LEGO or SURFACE, suppress the Front-Box

e "BB" To be used with LEGO or SURFACE, suppress the Back-Box

o "A" To be used with LEGO or SURFACE, suppress the axis

o "scaT™ Draw a scatter-plot (default)

e “SPEC” Use TSpectrum2Painter tool for drawing

o "TEXT" Draw bin contents as text (format set via gStyle->SetPaintTextFormat).

e "TEXTnn": Draw bin contents as text at angle nn (0<nn<90).

e "[cutg]" Draw only the sub-range selected by the TCutG name "cutg".

o "7 The "z" option can be specified with the options: BOX, COL, CONT, SURF, and LEGO
to display the color palette with an axis indicating the value of the corresponding

color on the right side of the picture.
The following options are supported for 3-D histogram classes:

« "™ Draw a 3D scatter plot.

e "BOX" Draw a box for each cell with volume proportional to contents
e "LEGO™ Same as "BOX"

e "ISO" Draw an iso surface

o "FB" Suppress the Front-Box

e "BB" Suppress the Back-Box

e "A" Suppress the axis

Most options can be concatenated without spaces or commas, for example, if h is a histogram pointer:

h->Draw ("E1SAME") ;
h->Draw ("elsame") ;

The options are not case sensitive. The options BOX, COL and COLZ use the color palette defined in the current
style (see TStyle: :SetPalette). The options CONT, SURF, and LEGO have by default 20 equidistant contour
levels, you can change the number of levels with TH1: : SetContour. You can also set the default drawing
option with TH1: : SetOption. To see the current option use TH1: : GetOption. For example:

h->SetOption("lego") ;
h->Draw () ; // will use the lego option
h->Draw ("scat") // will use the scatter plot option

The SCATter Plot Option

By default, 2D histograms are drawn as scatter plots. For each cell (i, j) a number of points proportional to the
cell content are drawn. A maximum of 500 points per cell are drawn. If the maximum is above 500 contents are
normalized to 500.

The ARRow Option

The ARR option shows the gradient between adjacent cells. For each cell (i, j) an arrow is drawn. The
orientation of the arrow follows the cell gradient

28

Histograms July 2007 v5.16

The BOX Option

For each cell (i,) a box is drawn with surface proportional to contents. The size of the box is proportional to
the absolute value of the cell contents. The cells with negative contents are drawn with an X on top of the
boxes. With option BOx1 a button is drawn for each cell with surface proportional to contents’ absolute value. A
sunken button is drawn for negative values, a raised one for positive values.

The ERRor Bars Options

o "E” Default. Draw only error bars, without markers

e "E0” Draw also bins with 0 contents (turn off the symbols clipping).

e "E1” Draw small lines at the end of error bars

e E2” Draw error rectangles

e "E3” Draw a fill area through the end points of vertical error bars

o "E4” Draw a smoothed filled area through the end points of error bars

Figure 3-2 The "E1" bars' option

[__This i the total distribution | Total
Nent - 30000
H : : Mean - - 0643769
)| . S S 4 S| AMS - 14162
as0 , ------------- £ e ------
200 ______

150

100

1”IPI”]IHIF1HIHTW1HIPIH LLIL
I
ke b
" "
" [
" [
%
.

—i= =l S L by e
i
'
'
'
'
'
r
'
'
'
'
'

4

Note that for all options, the line and fill attributes of the histogram are used for the errors or errors contours.
Use gStyle->SetErrorX (dx) to control the size of the error along x. The parameter dx is a percentage of
bin width for errors along X. Set dx=0 to suppress the error along x. Use gStyle->SetEndErrorSize (np)
to control the size of the lines at the end of the error bars (when option 1 is used). By default np=1 (np
represents the number of pixels).

The Color Option

For each cell (i, j) a box is drawn with a color proportional to the cell content. The color table used is defined in
the current style (gStyle). The color palette in TStyle can be modified with TStyle: : SetPalette.

Figure 3-3 Different draw options

Tygnrs i8] = odandauf16) [_mpgon

. | sCAT |_

R A ol e m w w &

July 2007 v5.16 Histograms 29

The TEXT Option

For each cell (i, j) the cell content is printed. The text attributes are:

Text font
Text size

Text color
Figure 3-4 The TEXT option

= current font set by TStyle
= 0.02* pad-height * marker-size
= marker color

l xygaus + xygaus(5) + xylandau(10) | |
4 - B % N B N N ¥ N ®» H N 17 U TEXT
:ﬂ OB @ O« 8 # M oE 8 O N w13 1 1 2
arﬂ LR B ro B R LR LU RERL A L RN R R R RE A - R » & 1
:II P 1 WE WS M2 M M M3 W 16 R] ™ ° - " " 1] 3
:!l A FHI FME Me MM IH M ME MI M 18 133 dW W 3 18 1] L]
1_“ WE OIF O X3 Y DS 30 XM M7 I O1E 1 e I W % B 17 5
;R ME TR OZIW N MZF I XM MG XM I ONT W o1 o e 11 11w)
1 :!- MECIM S 26 T 250 KR MCCIB TIOR8 e 1)]
:Ill 119 181 X1 M1 MM 268 MR M TN ITE 1@ W T & 0w o 0 T 5
:I. H 14 W3 184 141 AT & W 1% T = m “» “ n u 1m - 1
n ; M TE e b i W il & T @8 &7 & X3 X i3 W L]) 5
:|il B % & 8N o7 B O &4 & & M M N 17 # W OB L] 1
.1 :I 19 & T 8 -"# # 4 4 W M M NGO WO M N T "
:l W 6 & & M e W W W N B M O MM 12 W L] L]
:l OB T 1Mo WM WM 4 8 & M OB N IO XN OB O W
L e e e e o e
:11 BO1M Mr ME MY 2 I 1M 12 M TS N T M XD T 81 W X
nazﬂ AR CPITOAP XIT 006 TET G IR M2 18 M MR B M W WM
Ell SOOI M3 1S M4 NI M 116 W B TR O™ T M M T B 3w
qbeet U ®.409.3.3,8.9§3,6, 4,3 .3i¢.9,0,,.,
-4 -3 -2 -1 0 1 2 3 4

The CONTour Options

The following contour options are supported:

"CONT" :

"CONTO" :
"CONT1":
"CONT2":
"CONT3":
"CONT4":

"CONTS5":

Draw a contour plot (same as CONTO)

Draw a contour plot using surface colors to distinguish contours
Draw a contour plot using line styles to distinguish contours
Draw a contour plot using the same line style for all contours
Draw a contour plot using fill area colors

Draw a contour plot using surface colors (SURF option at theta = 0); see also
options "AITOFF", "MERCATOR", etc. below

Use Delaunay triangles to compute the contours

Figure 3-5 Different contour options

i A 4 @ a m ow s

I

G M L B e N e s

o

L

5

The default number of contour levels is 20 equidistant levels. It can be changed with TH1::SetContour.
When option "LIST" is specified together with option "CONT", all points used for contour drawing, are saved in
the TGraph object and are accessible in the following way:

TObjArray *contours
Int t ncontours =

= gROOT->GetListOfSpecials () ->FindObject ("contours") ;

contours->GetSize () ;
TList *list = (TList*)contours->At (i);

30

Histograms July 2007 v5.16

Where "1i"

is a contour number and list contains a list of TGraph objects. For one given contour, more than one

disjoint poly-line may be generated. The TGraph numbers per contour are given by 1ist->GetSize () . Here
we show how to access the first graph in the list.
TGraph *grl = (TGraph*)list->First();

e "ATITOFEF™: Draw a contour via an AITOFF projection

e "MERCATOR" Draw a contour via a Mercator projection

e “SINUSOIDAL" Draw a contour via a Sinusoidal projection

e "PARABOLIC" Draw a contour via a Parabolic projection

The tutorial macro earth. C uses these four options and produces the following picture:

Figure 3-6 The earth.C macro output

The LEGO Options

In a lego plot, the cell contents are drawn as 3D boxes, with the height of the box proportional to the cell

content.

Figure 3-7 "LEGO" and "SURF" options

XYGIUE + Xygaus(s) + xylandau(10)

Xygeus + xygaus(s) + miandaui0)

"LEGO":
"LEGO1"
"LEGO2":

A lego plot can be represented in several coordinate systems; the default system is Cartesian coordinates.
Other possible coordinate systems are CYIL, POL, SPH, and PSR.

"cyL"

"POL":
"SPH":

"PSR™

Draw a lego plot with hidden line removal
Draw a lego plot with hidden surface removal
Draw a lego plot using colors to show the cell contents

Cylindrical coordinates: x-coordinate is mapped on the angle; y-coordinate - on the
cylinder length.

Polar coordinates: x-coordinate is mapped on the angle; y-coordinate - on the radius.
Spherical coordinates: x-coordinate is mapped on the latitude; y-coordinate - on the
longitude.

PseudoRapidity/Phi coordinates: x-coordinate is mapped on Phi.

July 2007 v5.16

Histograms 31

With TStyle: : SetPalette the color palette can be changed. We suggest you use palette 1 with the call:

gStyle->SetPalette (1) ;

The SURFace Options

In a surface plot, cell contents are represented as a mesh. The height of the mesh is proportional to the cell
content. A surface plot can be represented in several coordinate systems. The default is Cartesian coordinates,
and the other possible systems are CYl, POL, SPH, and PSR. The following picture uses SURF1. With
TStyle::SetPalette the color palette can be changed. We suggest you use palette 1 with the call:

gStyle->SetPalette(1l);

Figure 3-8 Different surface options

4)
ol
l

2 Ao
: ,\1
»’&

e "SURF™

e "SURF1™
e "SURF2"
e "SURF3"
e "SURF4"™
e "SURF5"

The options for vertical bar chart are "bar", "bar0", "barl", "var2", "bar3", "var4".

Draw a surface plot with hidden line removal
Draw a surface plot with hidden surface removal

Draw a surface plot using colors to show the cell contents

Same as SURF with a contour view on the top
Draw a surface plot using Gouraud shading

Same as SURF'3 but only the colored contour is drawn. Used with options CYL, SPH
or PSR it allows to draw colored contours on a sphere, a cylinder or in a pseudo
rapidly space. In Cartesian or polar coordinates, option SURF3 is used.

The BAR Options

When the option "bar" or "nbar" is specified, a bar chart is drawn.

Figure 3-9 Vertical bar charts

500

300 - 14 i1
200 § ENR 3 B

100

{ U T [ANnations |1
g IEETEEAL

e The bar is filled with the histogram fill color.
e The left side of the bar is drawn with a light fill color.
e The right side of the bar is drawn with a dark fill color.

o The percentage of the bar drawn with either the light or dark color is:

0 per cent for option "bar" or "bar0"
10 per cent for option "bar1"
20 per cent for option "bar2"
30 per cent for option "bar3"
40 per cent for option "bar4"

32

Histograms

July 2007 v5.16

Use TH1::SetBarWidth () to control the bar width (default is the bin width). Use TH1: :SetBarOffset to
control the bar offset (default is 0). See the example SROOTSYS/tutorials/hist/hbars.C

The options for the horizontal bar chart are "hbar", "hbar0", "hbarl", "hbar2", "hbar3", and " hbar4".
e A horizontal bar is drawn for each bin.
e The bar is filled with the histogram fill color.
e The bottom side of the bar is drawn with a light fill color.
e The top side of the bar is drawn with a dark fill color.
o The percentage of the bar drawn with either the light or dark color is:
e 0 per cent for option "nbar" or "hbar0"
e 10 per cent for option "nbar1"
e 20 per cent for option "hbar2"
e 30 per cent for option "hbar3"
e 40 per cent for option "hbar4"

Use TH1::SetBarWidth to control the bar width (default is the bin width). Use TH1::SetBarOffset to
control the bar offset (default is 0). See the example $ROOTSYS/tutorials/hist/hbars.C

Figure 3-10 Horizontal bar charts

hiemp

Nent=3354

TTT| Mean = 3.247
11 RMS = 2.337

10 10° 10°

The Z Option: Display the Color Palette on the Pad

The "z" option can be specified with the options: COL, CONT, SURF, and LEGO to display the color palette with
an axis indicating the value of the corresponding color on the right side of the picture. If there is not enough
space on the right side, you can increase the size of the right margin by calling TPad: : SetRightMargin ().
The attributes used to display the palette axis values are taken from the Z axis of the object. For example, you
can set the labels size on the palette axis with:

hist->GetZaxis () ->SetLabelSize () ;

Setting the Color Palette

You can set the color palette with TStyle: :SetPalette, €.g.

gStyle->SetPalette (ncolors,colors);

For example, the option cOL draws a 2-D histogram with cells represented by a box filled with a color index,
which is a function of the cell content. If the cell content is N, the color index used will be the color number in
colors[N]. If the maximum cell content is greater than ncolors, all cell contents are scaled to ncolors.
If ncolors<=0, a default palette of 50 colors is defined. This palette is recommended for pads, labels. It
defines:

. Index 0 to 9:

. Index 10 to 19:
. Index 20 to 29:
. Index 30 to 39:
. Index 40 to 49:

shades of gray
shades of brown
shades of blue
shades of red
basic colors

The color numbers specified in this palette can be viewed by selecting the menu entry Colors in the View menu
of the canvas menu bar. The color's red, green, and blue values can be changed via TColor: :SetRGB. If
ncolors == 1 && colors == 0, a pretty palette with a violet to red spectrum is created. We recommend
you use this palette when drawing lego plots, surfaces, or contours. If ncolors > 0 and colors == 0, the
default palette is used with a maximum of ncolors.

TPaletteAxis

A TPaletteAxis object is used to display the color palette when drawing 2D histograms. The object is

automatically created when drawing a 2D histogram when the option "z" is specified. It is added to the
histogram list of functions. It can be retrieved and its attributes can be changed with:

July 2007 v5.16 Histograms 33

TPaletteAxis *palette=(TPaletteAxis*)h->FindObject ("palette");

The palette can be interactively moved and resized. The context menu can be used to set the axis attributes. It
is possible to select a range on the axis, to set the min/max in z.

The SPEC Option

The “SPEC” option offers a large set of options/attributes to visualize 2D histograms thanks to "operators"
following the "SPEC" keyword. For example, to draw the 2-D histogram h2 using all default attributes except the
viewing angles, one can do:

h2->Draw ("SPEC a(30,30,0)");

The operators' names are case unsensitive (i.e. one can use

a’ or

"A") and their parameters are seperated by

coma ",". Operators can be put in any order in the option and must be separated by a space " ". No space
characters should be put in an operator. All the available operators are described below.
The way how a 2D histogram will be painted is controled by 2 parameters: the "Display modes groups" and the
"Display Modes". "Display modes groups" can take the following values:

"Display modes" can take the following values:
3 = Contours
9 = Needles

1 = Points
7 = BarsX

0 = Simple
1 = Light
2 = Height

- simple display modes using one color only
- the shading is carried out according to the position of the fictive light source
- the shading is carried out according to the channel contents

3 = LightHeight - combination of two previous shading algorithms (one can control the weight
between both algorithms).

2 = Grid
8 = BarsY

4 = Bars
10 = Surface

5 = LinesX
11 = Triangles

These parameters can be set by using the "dm" operator in the option.

6 = LinesY

h2->Draw ("SPEC dm(1,2)");

The above example draws the histogram using the "Light Display mode group" and the "Grid Display mode".
The following table summarizes all the possible combinations of both groups:

Points | Grid c?l?rr:- Bars | LinesX | LinesY | BarsX | BarsY | Needles | Surface ;Irézn'
Simple X X X X X X X X X - X
Light X X - - X X - - - X X
Height X X X X X X X X - X X
LightHeight | x X - - X X - - - X X

The "Pen Attributes" can be changed using pa (color, style,width). Next example sets line color to 2, line
type to 1 and line width to 2. Note that if pa () is not specified, the histogram line attributes are used:

| h2->Draw ("SPEC dm(1,2) pa(2,1,2)");

The number of "Nodes" can be changed with n (nodesx, nodesy) . Example:

| h2->Draw ("SPEC n(40,40)");

Sometimes the displayed region is rather large. When displaying all channels the pictures become very dense
and complicated. It is very difficult to understand the overall shape of data. "n (nx, ny) " allows to change the
density of displayed channels. Only the channels coinciding with given nodes are displayed.

The visualization "Angles" can be changed with "a (alpha,beta, view)
bottom horizontal screen line and the displayed space on the right side of the picture and "beta" on the left

: "alpha" is the angle between the

side, respectively. One can rotate the 3-d space around the vertical axis using the "view" parameter. Allowed

values are 0, 90, 180 and 270 degrees.

h2->Draw ("SPEC n (40,40)

dm(0,1)

a(30,30,0)");

The operator "zs (scale)" changes the scale of the Z-axis. The possible values are: 0 = Linear (default), 1=
Log, 2 = Sqrt. If gpad->SetLogz () has been set, the log scale on Z-axis is set automatically, i.e. there is no
need for using the zs () operator. Note that the X and Y axis are always linear.
The operator "ci (r, g, b)" defines the colors increments (r, g and b are floats). For sophisticated shading

(Light, Height and LightHeight Display Modes Groups) the color palette starts from the basic pen color (see
pa () function). There is a predefined number of color levels (256). Color in every level is calculated by adding

the increments of the r, g, b components to the previous level. Using this function one can change the color

increments between two neighboring color levels. The function does not apply on the Simple Display Modes
Group. The default values are: (1,1,1).

34

Histograms

July 2007 v5.16

The operator “ca (color algorithm)" allows to choose the Color Algorithm. To define the colors one can
use one of the following color algorithms (RGB, CMY, CIE, YIQ, HVS models). When the level of a component
reaches the limit value one can choose either smooth transition (by decreasing the limit value) or a sharp
modulo transition (continuing with 0 value). This allows various visual effects. One can choose from the
following set of the algorithms:

0 = RGB Smooth, 1 =RGB Modulo, 2 =CMY Smooth, 3 =CMY Modulo, 4 = CIE Smooth

5 =CIE Modulo, 6 =YIQ Smooth, 7 =YIQ Modulo, 8 =HVS Smooth, 9 = HVS Modulo

This function does not apply on Simple display modes group. Default value is 0. Example choosing CMY
Modulo to paint the 2D histogram:

h2->Draw ("SPEC c1(4) dm(0,1) a(30,30,0)™);

The operator "1p (x, vy, z)" sets the light position. In Light and LightHeight display modes groups the color
palette is calculated according to the fictive light source position in 3-d space. Using this function one can
change the source's position and thus achieve various graphical effects. This function does not apply for
Simple and Height display modes groups. Default is: 1p (1000, 1000, 100).

The operator "s (shading, shadow) " allows to set the shading. The surface picture is composed of triangles.
The edges of the neighboring triangles can be smoothed (shaded). The shadow can be painted as well. The
function does not apply on Simple display modes group. The possible values for shading are: 0 = Not Shaded,
1 = Shaded. The possible values for shadow are: 0 = Shadows are not painted, 1 = Shadows are painted.
Default values: s (1, 0).

The operator "b (bezier)" sets the Bezier smoothing. For Simple display modes group and for Grid, LinesX
and LinesY display modes one can smooth data using Bezier smoothing algorithm. The function does not apply
on other display modes groups and display modes. Possible values are: 0 = No bezier smoothing, 1 = Bezier
smoothing. Default value is: b (0) .

The operator "cw (width)" sets the contour width. This function applies only on for the Contours display mode.
One can change the width between horizontal slices and thus their density. Default value: cw (50) .

The operator "1hw (weight)" sets the light height weight. For LightHeight display modes group one can
change the weight between both shading algorithms. The function does not apply on other display modes
groups. Default value is 1hw (0.5) .

The operator "cm (enable, color,width,height,style)" allows to draw a marker on each node. In
addition to the surface drawn using any above given algorithm one can display channel marks. One can control
the color as well as the width, height (in pixels) and the style of the marks. The parameter enable can be set to
0 = Channel marks are not drawn or 1 = Channel marks drawn. The possible styles are:

1=Dot, 2=Cross, 3=Star, 4=Rectangle, 5=X, 6=Diamond, 7 = Triangle.
The operator "cg (enable, color)" channel grid. In addition to the surface drawn using any above given

algorithm one can display grid using the color parameter. The parameter enable can be set to: 0 = Grid not
drawn, 1 = Grid drawn.

See the example in SROOTSYS/tutorials/spectrum/spectrumpainter.C.

Figure 3-11 The picture produced by spectrumpainter.C macro

July 2007 v5.16 Histograms 35

3-D Histograms

By default a 3D scatter plot is drawn. If the "BOX" option is specified, a 3D box with a volume proportional to the

cell content is drawn.

Drawing a Sub-range of a 2-D Histogram

Figure 3-12 The picture produced by fit2a.C macro
w2

Nent = 100000

Mean x = -2.462
Meany = -2.465
RMS x = 3.006
RMSy = 3.006

4o
30840

10 -10

Using a TCutG object, it is possible to draw a 2D histogram sub-range. One must create a graphical cut (mouse

or C++) and specify the name of the cut between ‘[‘ and ‘1’ in the Draw option.
For example, with a TCutG named "cutg", one can call:

myhist->Draw ("surfl [cutg]");

Or, assuming two graphical cuts with name "cut1" and "cut2", one can do:

hl.Draw("lego");
h2.Draw (" [cutl, -cut2], surf, same") ;

The second Draw will superimpose on top of the first lego plot a subset of h2 using the "sur£" option with:

° all the bins inside cut1l
. all the bins outside cut?2

Up to 16 cuts may be specified in the cut string delimited by "[..]". Currently only the following drawing
options are sensitive to the cuts option: col, box, scat, hist, lego, surf and cartesian coordinates only.

See a complete example in the tutorial SROOTSYS/tutorials/fit/fit2a.cC.

Superimposing Histograms with Different Scales

The following script creates two histograms; the second histogram is the bins integral of the first one. It shows a
procedure to draw the two histograms in the same pad and it draws the scale of the second histogram using a

new vertical axis on the right side.

Figure 3-13 Superimposed histograms with different scales

my histogram
25057 i1oooo
ZOOf— —fﬂDOD
150; —26000
10057 -§4ooo
m; émm
void twoscales () {
TCanvas *cl = new TCanvas ("cl","different scales hists",600,400);

//create, fill and draw hl
gStyle->SetOptStat (kFALSE) ;

36

Histograms

July 2007 v5.16

TH1F *hl = new THI1F("hl","my histogram",100,-3,3);
for (Int t i=0;1i<10000;i++) hl->Fill (gRandom->Gaus(0,1));
hl->Draw () ;
cl->Update () ;
//create hintl filled with the bins integral of hl
TH1F *hintl = new TH1F ("hintl","hl bins integral",100,-3,3);
Float t sum 0;
for (Int t i=1;i<=100;i++) {
sum += hl->GetBinContent (i) ;
hintl->SetBinContent (i, sum) ;

}

//scale hintl to the pad coordinates

Float t rightmax = 1.1*hintl->GetMaximum() ;

Float t scale = gPad->GetUymax () /rightmax;

hintl->SetLineColor (kRed) ;

hintl->Scale(scale);

hintl->Draw ("same") ;

//draw an axis on the right side

TGaxis *axis = new TGaxis (gPad->GetUxmax (),gPad->GetUymin (), gPad->GetUxmax (),
gPad->GetUymax (), 0, rightmax, 510, "+L") ;

axis->SetLineColor (kRed) ;

axis->SetLabelColor (kRed) ;

axis->Draw () ;

Statistics Display

By default, a histogram drawing includes the statistics box. Use TH1::SetStats (kFALSE) to eliminate the
statistics box. If the statistics box is drawn, gStyle->SetOptStat (mode) allow you to select the type of
displayed information. The parameter mode has up to nine digits that can be set OFF (0) or ON as follows:
mode = ksiourmen (default = 000001111)

e n =1 the name of histogram is printed

e e =1 the number of entries

e m =1 the mean value

e m =2 the mean and mean error values

e r =1 the root mean square (RMS)

e r =2 the RMS and RMS error

e u =1 the number of underflows

e o =1 the number of overflows

e i =1 the integral of bins

e s =1 the skewness

e s =2 the skewness and the skewness error

e k =1 the kurtosis

e k =2 the kurtosis and the kurtosis error
Never call SetOptStat (0001111), but SetOptStat(1111), because 0001111 will be taken as an octal

number.
The method TStyle: :SetOptStat (Option t *option) can also be called with a character string as a
parameter. The parameter option can contain:
. for printing the name of histogram
the number of entries
the mean value
the mean and mean error values
the root mean square (RMS)
the RMS and RMS error
the number of underflows
the number of overflows
the integral of bins
the skewness
the skewness and the skewness error
the kurtosis
the kurtosis and the kurtosis error

.
=N o~ 0 0 K 0 c WKR 23 03

July 2007 v5.16 Histograms 37

gStyle->SetOptStat ("ne") ; // prints the histogram name and number of entries
gStyle->SetOptStat ("n") ; // prints the histogram name
gStyle->SetOptStat ("nemxr"); // the default value

With the option "same", the statistic box is not redrawn. With the option "sames", it is re-drawn. If it hides the
previous statistics box, you can change its position with the next lines (where h is the histogram pointer):

root[] TPaveStats *s = (TPaveStats*)h->GetListOfFunctions()->FindObject("stats")
root[] s->SetX1INDC (newxl); //new x start position
root[] s->SetX2NDC (newx2); //new x end position

Setting Line, Fill, Marker, and Text Attributes

The histogram classes inherit from the attribute classes: TAttLine, TAttFill, TAttMarker and TAttText.
See the description of these classes for the list of options.

Setting Tick Marks on the Axis

The TPad: :SetTicks () method specifies the type of tick marks on the axis. Let tx=gPad->GetTickx ()
and ty=gPad->GetTicky ().

o tx=1; tick marks on top side are drawn (inside)

e tx=2; tick marks and labels on top side are drawn
o ty=1; tick marks on right side are drawn (inside)

o ty=2; tick marks and labels on right side are drawn

e tx=ty=0 by default only the left Y axis and X bottom axis are drawn

Use TPad: :SetTicks (tx, ty) to set these options. See also the methods of TAxis that set specific axis
attributes. If multiple color-filled histograms are drawn on the same pad, the fill area may hide the axis tick
marks. One can force the axis redrawing over all the histograms by calling:

| gPad->RedrawAxis () ;

Giving Titles to the X, Y and Z Axis

Because the axis title is an attribute of the axis, you have to get the axis first and then call TAxis: :SetTitle.

h->GetXaxis () ->SetTitle ("X axis title");
h->GetYaxis () ->SetTitle("Y axis title");

The histogram title and the axis titles can be any TLatex string. The titles are part of the persistent histogram.
For example if you wanted to write E with a subscript (T) you could use this:

h->GetXaxis () ->SetTitle ("E {T}");

For a complete explanation of the Latex mathematical expressions, see "Graphics and the Graphical User
Interface". It is also possible to specify the histogram title and the axis titles at creation time. These titles can be
given in the "title" parameter. They must be separated by ";":

TH1F* h=new THI1F("h","Histogram title;X Axis;Y Axis;Z Axis",100,0,1);

Any title can be omitted:

TH1F* h=new TH1F("h","Histogram title;;Y Axis",100,0,1);
TH1F* h=new TH1F("h",";;Y Axis",100,0,1);

The method SetTitle has the same syntax:

| h->SetTitle ("Histogram title;An other X title Axis");

Making a Copy of an Histogram

Like for any other ROOT object derived from TObject, the Clone method can be used. This makes an
identical copy of the original histogram including all associated errors and functions:

TH1F *hnew = (TH1F*)h->Clone(); // renaming is recommended, because otherwise you
hnew->SetName ("hnew") ; // will have two histograms with the same name

38 Histograms July 2007 v5.16

Normalizing Histograms

You can scale a histogram (TH1 *h) such that the bins integral is equal to the normalization parameter norm:

Double t scale = norm/h->Integral () ;
h->Scale (scale);

Saving/Reading Histograms to/from a File

The following statements create a ROOT file and store a histogram on the file. Because TH1 derives from
TNamed, the key identifier on the file is the histogram name:

TFile f("histos.root", "new");

TH1F hl ("hgaus","histo from a gaussian",100,-3,3);
hl.FillRandom("gaus",10000) ;

hl->Write () ;

To read this histogram in another ROOT session, do:

TFile f("histos.root");
TH1F *h = (TH1F*)f.Get ("hgaus");

One can save all histograms in memory to the file by:

file->Write();

For a more detailed explanation, see “Input/Output”.

Miscellaneous Operations

e TH1::KolmogorovTest (TH1* h2,0Option_t *option) is statistical test of compatibility in

shape between two histograms. The parameter option is a character string that specifies:
o "U"include Underflows in test (also for 2-dim)

"0" include Overflows (also valid for 2-dim)

"N" include comparison of normalizations

"D" put out a line of "Debug" printout

"M" return the maximum Kolmogorov distance instead of prob

"X" run the pseudo experiments post-processor with the following procedure: it

makes pseudo experiments based on random values from the parent distribution

and compare the KS distance of the pseudo experiment to the parent distribution.

Bin the KS distances in a histogram, and then take the integral of all the KS values

above the value obtained from the original data to Monte Carlo distribution. The

number of pseudo-experiments NEXPT is currently fixed at 1000. The function
returns the integral. Note that this option "x" is much slower.

e THI1::Smooth - smoothes the bin contents of a 1D histogram.

e TH1::Integral (Option t *opt) - returns the integral of bin contents in a given bin range. If
the option "width" is specified, the integral is the sum of the bin contents multiplied by the bin
width in x.

e TH1l::GetMean (int axis) -returns the mean value along axis.

e TH1l::GetRMS (int axis) - returns the Root Mean Square along axis.

e TH1l::GetEntries () - returns the number of entries.

e TH1::GetAsymmetry(TH1* h2,Double t c¢2,Double t dc2) - returns an histogram
containing the asymmetry of this histogram with h2, where the asymmetry is defined as:

O O O O O

Asymmetry = (hl - h2)/(hl + h2) //where hl = this

o It works for 1D, 2D, etc. histograms. The parameter c2 is an optional argument that
gives a relative weight between the two histograms, and c2 is the error on this
weight. This is useful, for example, when forming an asymmetry between two
histograms from two different data sets that need to be normalized to each other in
some way. The function calculates the errors assuming Poisson statistics on h1 and
h2 (that is, dh=sqgrt (h)). In the next example we assume that hl1 and h2 are
already filled:

h3 = hl->GetAsymmetry (h2)

o Then h3 is created and filled with the asymmetry between h1 and h2; h1 and h2 are
left Intact.

o Note that the user’s responsibility is to ménage the created histograms.

o TH1l::Reset () - resets the bin contents and errors of a histogram

July 2007 v5.16 Histograms 39

Alphanumeric Bin Labels

By default, a histogram axis is drawn with its numeric bin labels. One can specify alphanumeric labels instead.

Option 1: SetBinLabel

To set an alphanumeric bin label call:

TAxis::SetBinLabel (bin, label) ;

This can always be done before or after filling. Bin labels will be automatically drawn with the histogram.

Figure 3-14 Histograms with alphanumeric bin labels

November

_=l0] x|
Eile Edit View Options Inspect Classes Help
test Use the axis Context Menu LabelsOption
“a" 1o sort by alphabetic order
¥ 9
January | @ nlwinisicioiele “
I deno bl August | winiainisiniein sininisininisisia
Ele ESt View Qpions nspect Classes iy | @ “in sieiniaia sisiniaiaisiaiais
Ihl: October | & win Risiuinin LEURE R R o
e
5k May | % wisisioia 2iniainisie a
X
March | 22 " LR LR BUNE B RS n
September 7 sinisisie wieininies “
2
“

December

June

sigsixieisininiais
s
a

April

Marel 2 i2 igiaisisisiaieieinis
Fons[& iw imigix
Eddyls igitizxisizininis

deff
odile| «

Greg| u |
®
Philippel # 2 isizisisimieivieivis

Nicolal & (3 (%% 8
Suzanne[i iy iwieis
Xavier| 8 i3 isipipig

Sebastier| =

See example in $SROOTSYS/tutorials/hist/hlabelsl.C, hlabels2.C

Option 2: Fill

You can also calla Fi11 () function with one of the arguments being a string:

histl->Fill
hist2->Fill
hist2->Fill
hist2->Fill

somename,weigth) ;

x, somename, weight) ;
somename, y,weight) ;
somenamex, somenamey, weight) ;

Option 3: TTree::Draw

You can use a char* variable type to histogram strings with TTree: : Draw ().

// here "Nation" and "Division'" are two char* branches of a Tree
tree.Draw ("Nation::Division") ;

Figure 3-15 Using a *char variable type in TTree::Draw

L :
LEER

|34 |27 |43 | 2 |5 |1 |20 |7 |6 |2
Ps EP 8T sP§ LEP EF Fl PE oG oo T aG TH

u
g

LH
=
2
o}

There is an example in SROOTSYS/tutorials/tree/cernstaff.C.

If a variable is defined as char* it is drawn as a string by default. You change that and draw the value of
char[0] as an integer by adding an arithmetic operation to the expression as shown below.

tree.Draw ("MyChar + 0");
//this will draw the integer value of MyChar[0] where "MyChar" is char[5]

40

Histograms July 2007 v5.16

Sort Options

When using the options 2 or 3 above, the labels are automatically added to the list (THashList) of labels for a
given axis. By default, an axis is drawn with the order of bins corresponding to the filling sequence. It is possible
to reorder the axis alphabetically or by increasing or decreasing values. The reordering can be triggered via the
TAxis context menu by selecting the menu item "LabelsOption" or by calling directly.

TH1::LabelsOption (option,axis)

Here axis may be X, Y, or Z. The parameter option may be:

. a" sort by alphabetic order

e ">"sort by decreasing values
e "<"sort by increasing values
e "h"draw labels horizontal

. v" draw labels vertical

e "u"draw labels up (end of label right adjusted)

e "d"draw labels down (start of label left adjusted)
When using the option second above, new labels are added by doubling the current number of bins in case one
label does not exist yet. When the filling is terminated, it is possible to trim the number of bins to match the
number of active labels by calling:

TH1::LabelsDeflate (axis)

Here axis may be X, Y, or Z. This operation is automatic when using TTree: : Draw. Once bin labels have
been created, they become persistent if the histogram is written to a file or when generating the C++ code via
SavePrimitive.

Histogram Stacks

A THStack is a collection of TH1 (or derived) objects. Use THStack: : Add (TH1 *h) to add a histogram to the
stack. The THStack does not own the objects in the list.

Figure 3-16 Stacked histograms
1% stacked hists =IOl x|

File Edit View Options |nspect Classes Help

test stacked histograms Eslshcked hish:gramsl

T00
1400
600
1200
500
1000

400 -~
800

00 300[--

00 200[--

200 100

By default, THStack: : Draw draws the histograms stacked as shown in the left pad in the picture above. If the
option "nostack” is used, the histograms are superimposed as if they were drawn one at a time using the
"same" draw option. The right pad in this picture illustrates the THStack drawn with the "nostack" option.

hs->Draw ("nostack") ;

Next is a simple example, for a more complex one see $ROOTSYS/tutorials/hist/hstack.C.

{ THStack hs("hs","test stacked histograms");
TH1F *hl = new THIF("hl","test hstack",100,-4,4);
hl->FillRandom ("gaus",20000) ;
hl->SetFillColor (kRed) ;
hs.Add (hl) ;
TH1F *h2 = new THI1F("h2","test hstack",100,-4,4);
h2->FillRandom ("gaus", 15000) ;
h2->SetFillColor (kBlue) ;
hs.Add (h2) ;
TH1F *h3 = new THI1F("h3","test hstack",100,-4,4);
h3->FillRandom ("gaus",10000) ;
h3->SetFillColor (kGreen) ;
hs.Add (h3);
TCanvas cl("cl","stacked hists",10,10,700,900);
cl.Divide (1,2);
cl.cd(1l);

July 2007 v5.16 Histograms 41

hs.Draw () ;
cl.cd(2);
hs->Draw ("nostack") ;

}

Profile Histograms

Profile histograms are in many cases an elegant replacement of two-dimensional histograms. The relationship
of two quantities X and Y can be visualized by a two-dimensional histogram or a scatter-plot; its representation
is not particularly satisfactory, except for sparse data. If Y is an unknown [but single-valued] function of X, it can
be displayed by a profile histogram with much better precision than by a scatter-plot. Profile histograms display
the mean value of Y and its RMS for each bin in X. The following shows the contents [capital letters] and the
values shown in the graphics [small letters] of the elements for bin j. When you fill a profile histogram with
TProfile.Fill[x,vy]:

e H[j] will contain for each bin § the sum of the y values for this bin
e L[j] contains the number of entries in the bin 5
e e[j] ors[j] will be the resulting error depending on the selected option. See “Build Options*.

E[j] = sum Y**2

L[j] = number of entries in bin J
H[J] = sum Y

h{3j] = HI[3] / LI3]

s[jl = sqrtlE[J] / L[J] - h[jl**2]
elj] = s[j] / sqgrt[L[Jj]]

In the special case where s[j] is zero, when there is only one entry per bin, e[j] is computed from the
average of the s[j] for all bins. This approximation is used to keep the bin during a fit operation. The
TProfile constructor takes up to six arguments. The first five parameters are similar to TH1D constructor.

TProfile (const char *name,const char *title,Int t nbins,Axis t xlow,Axis t xup,
Option t *option)

All values of y are accepted at filling time. To fill a profile histogram, you must use TProfile: : Fill function.
Note that when filling the profile histogram the method TProfile: :Fill checks if the variable y is between
fYmin and fYmax. If a minimum or maximum value is set for the Y scale before filling, then all values below
ymin or above ymax will be discarded. Setting the minimum or maximum value for the Y scale before filling has
the same effect as calling the special TProfile constructor above where ymin and ymax are specified.

Build Options

The last parameter is the build option. If a bin has N data points all with the same value Y, which is the case
when dealing with integers, the spread in Y for that bin is zero, and the uncertainty assigned is also zero, and
the bin is ignored in making subsequent fits. If SQRT (Y) was the correct error in the case above, then
SORT (Y) /SQRT (N) would be the correct error here. In fact, any bin with non-zero number of entries N but with
zero spread (spread = s[j]) should have an uncertainty SQRT (Y) /SQRT (N). Now, is SQRT (Y) /SQRT (N)
really the correct uncertainty? That it is only in the case where the Y variable is some sort of counting statistics,
following a Poisson distribution. This is the default case. However, Y can be any variable from an original
NTUPLE, and does not necessarily follow a Poisson distribution. The computation of errors is based on Y =
values of data points; N = number of data points.

. ' ' - the default is blank, the errors are:
o spread/SQRT (N) for a non-zero spread
o SORT(Y) /SQRT (N) for a spread of zero and some data points
o 0 for no data points

e ‘s’-errors are:
o spread for a non-zero spread
o SORT(Y) for a Spread of zero and some data points
o 0 for no data points

e ‘i’-errors are:
o spread/SQRT (N) for a non-zero spread
o 1/SQRT(12*N) for a Spread of zero and some data points
o 0 for no data points

e ‘G -errors are:
o spread/SQRT (N) for a non-zero spread
o sigma/SQRT (N) for a spread of zero and some data points
o 0 for no data points

42

Histograms July 2007 v5.16

The option 'i' is used for integer Y values with the uncertainty of £0.5, assuming the probability that Y takes any
value between Y-0.5 and Y+0.5 is uniform (the same argument for Y uniformly distributed between Y and Y+1).
An example is an ADC measurement. The 'G ' option is useful, if all Y variables are distributed according to
some known Gaussian of standard deviation Sigma. For example when all Y's are experimental quantities
measured with the same instrument with precision Sigma. The next figure shows the graphic output of this
simple example of a profile histogram.

{

// Create a canvas giving the coordinates and the size
TCanvas *cl = new TCanvas ("cl","Profile example",200,10,700,500);
// Create a profile with the name, title, the number of bins, the
// low and high limit of the x-axis and the low and high limit
// of the y-axis. No option is given so the default is used.
hprof = new TProfile ("hprof","Profile of pz versus px",100,-4,4,0,20);
// Fill the profile 25000 times with random numbers
Float t px, py, pz;
for (Int_t i=0; i<25000; i++) {
// Use the random number generator to get two numbers following a
//gaussian distribution with mean=0 and sigma=1
gRandom->Rannor (px, py) ;
Pz = px*px + py*py;
hprof->Fill (px,pz,1);
}
hprof->Draw () ;

}

Figure 3-17 A profile histogram example

Profile of pz versus px | hprof
Nent = 25000
20 _;','f:ff:::f:f:ff::f:ff:ff,':r':ff:ff:::,':ffff:fj‘lfff:ff:f{ff:ff: Mean = —0.007956
= : ' : RMS - 0.996142

Y S TS DU Dt et DURIE DU PO
-4 -3 -2 -1 0 1 2 3 4

Drawing a Profile without Error Bars

To draw a profile histogram and not show the error bars use the "HIST" option in the TProfile: :Draw
method. This will draw the outline of the TProfile.

Create a Profile from a 2D Histogram

You can make a profile from a histogram using the methods TH2: : ProfileX and TH2: : ProfileY.

Create a Histogram from a Profile

To create a regular histogram from a profile histogram, use the method TProfile: :ProjectionX.This
example instantiates a TH1D object by copying the TH1D piece of TProfile.

|TH1D *sum = myProfile.ProjectionX()

You can do the same with a 2D profile using the method TProfile2D: : ProjectionXY.

Generating a Profile from a TTree

The 'prof' and 'profs' options in the TTree: :Draw method generate a profile histogram (TProfile),
given a two dimensional expression in the tree, or a TProfile2D given a three dimensional expression. See
“Trees”. Note that you can specify 'prof'or 'profs': 'prof 'generates a TProfile with error on the mean,
'profs' generates a TProfile with error on the spread.

July 2007 v5.16 Histograms 43

2D Profiles

The class for a 2D Profile is called TProfile2D. It is in many cases an elegant replacement of a three-
dimensional histogram. The relationship of three measured quantities X, Y and Z can be visualized by a three-
dimensional histogram or scatter-plot; its representation is not particularly satisfactory, except for sparse data. If
Z is an unknown (but single-valued) function of (X.Y), it can be displayed with a TProfile2D with better
precision than by a scatter-plot. A TProfile2D displays the mean value of Z and its RMS for each cell in X, Y.
The following shows the cumulated contents (capital letters) and the values displayed (small letters) of the
elements for cell i, 5.

When you fill a profile histogram with TProfile2D.Fill[x,y, z]:

e E[i,j] contains for each bin i, j the sum of the z values for this bin

e L[i,]] contains the number of entries in the bin j

e e[j] ors[7j] will be the resulting error depending on the selected option. See “Build Options®.

E[i,j] = sum z

L{i,j] = sum 1

hii,j] = H[i,3 1 / LIli,3]

s{i,31 = sgrt[E[i,J] / Lli,3]- hli,31**2]
eli,jl = sli,3]1 / sqgrt[L[i,3j]]

In the special case where s[i, 7]

is zero, when there is only one entry per cell, e [1,] is computed from the

average of the s [i, j] for all cells. This approximation is used to keep the cell during a fit operation.

{

}

// Creating a Canvas and a TProfile2D

TCanvas *cl = new TCanvas("cl","Profile histogram example",200,10,700,500);
hprof2d = new TProfile2D("hprof2d","Profile of pz versus px and py",

40,-4,4,40,-4,4,0,20);
// Filling the TProfile2D with 25000 points

Float t px, py, pz;

for (Int_t i=0; i<25000; i++) |
gRandom->Rannor (px, py) ;
pz = px*px + py*py;
hprof2d->Fill (px,py,pPz,1):

}

hprof2d->Draw () ;

Figure 3-18 A TProfile2D histogram example

% Profile histogram example =] E3

Eile Edit Miew Options Inspect Classes Help

Profile of pz versus prand py |

hprof2d

e ~ « | Nent= 25000
Mean x= 0009713

Mean y=-0.0023

RMS x = 0.9884

| RMS v = 1.004

Y
L

o

[

2t

=y

=]

=y

ra

da

e LR NN RN LN LR LN LR
I I [T I I I

B

Iso Surfaces

Paint one Gouraud shaded 3d iso surface though a 3d histogram at the value computed as follow:
SumOfWeights/ (NbinsX*NbinsY*Nbinsz).

44

Histograms

July 2007 v5.16

Figure 3-19 Iso surfaces

}

void hist3d() {
TH3D *h3=new TH3D(« h3 », »h3 »,20,-2,2,20,-2,2,20,0,4);
Double t x,y,z;
for (Int t i=0; i<10000; i++) |
gRandom->Rannor (x,y) ;
Z=X*xX+y*y;
h3->Fill(x,vy,2);

h3->Draw (“iso”) ;

3D Implicit Functions

TF3 *fun3
Fun3->Draw () ;

new TF3 (“fun3”, “sin(x*x+y*y+z*z-36",-2,2,-2,2,-2,2);

Figure 3-20 3D implicit function

o

A &
Mo L o s N

L

TPie

The TPie class allows to create a Pie Chart representation of a one dimensional data set. The data can come
from an array of Double t (or Float t)orfrom a 1D-histogram. The possible options to draw a TPie are:

"R" Paint the labels along the central "R"adius of slices.

" Paint the labels in a direction "T"angent to circle that describes the TPie.

"3D" Draw the pie-chart with a pseudo 3D effect.

"NOL" No OutLine: do not draw the slices' outlines; any property over the slices' line is
ignored.

The method SetLabelFormat () is used to customize the label format. The format string must contain one of

these modifiers:

$txt: to print the text label associated with the slice
sval : to print the numeric value of the slice
$frac: to print the relative fraction of this slice
$perc: to print the % of this slice

mypie->SetLabelFormat ("$txt (%$frac)");

See the macro SROOTSYS/tutorials/graphics/piechart.C.

July 2007 v5.16

Histograms 45

Figure 3-21 The picture generated by tutorial macro piechart.C

Pie with offset and no colors

Slice1

Slice2 Slice0
Slice

[Pie with tangential labels |

@
{2

Pie with radial labels

Pie with verbose labels

0.60 (11.8 %)
Slice2

0.90 (17.6 %)
Slice3

1.10 (21.6 %)

lice1

0.20 (3.9 %)
Slice0

2.30 (45.1 %)
Sliced

The User Interface for Histograms

The classes TH1Editor and TH2Editor provides the user interface for setting histogram’s attributes and

rebinning interactively.

ok (SR BE

Help

[
wimms T 4| 2500
Percentage: [20 %]

™ Horizantal Bar

TH1Editor
5 cl
File Edit View Options Inspect Classes Help Eile Edit View Options Inspect Classes
styie | ginning | Arbitrary Distribution = t'Elo%ouoo NSME einning | Arbitrary Distribution
Name —— ntries. jame
platt = THIF M 2775 plotl = THIF
5000 ean]
Lineg ——————————— L RMS 1623 Ling ————
|_INE | L N |
o L — 5
Fil——— | 4500— Fill
CI- .- o O m -
Tle —————————— r Te ———
Futitrary Disirouion B ity Distibution
Histogram 4000? Histogram
Plot | Plot
@20 C a0 L C20 €30
Enor o ewors =] | 3500/ pdd: [Cegor 5]
style: [No Line |+ L Coords: [Polar -
™ Simple Drawing I Enor. [No Errors v
™ Show markers L Bar
I Draw bz cfiart 30005 = =
¥ Bar option R w:[1-o0 3] o:[000 3]
L Marker ——————
P | | | | |]
a0 I I A A 0 I S I A A
300 400

100 200

500

lot1
Entries 100000
Mean 2775
RMS 162.3

Title sets the title of the histogram.
Plot draw a 2D or 3D plot; according to the dimension, different drawing possibilities can be set.

Error add different error bars to the histogram (no errors, simple, etc.).

Add further things which can be added to the histogram (None, simple/smooth line, fill area, etc.)

2-D Plot:

Simple Drawing draw a simple histogram without errors (= "HIST" draw option). In combination with some

other draw options an outer line is drawn on top of the histogram

Show markers draw a marker on to of each bin (="P" draw option).
Draw bar chart draw a bar chart (="B" draw option).

Bar option draw a bar chart (="BAR" draw option); if selected, it will show an additional interface
elements for bars: width, offset, percentage and the possibility to draw horizontal bars.

46

Histograms

July 2007 v5.16

3-D Plot:

Add set histogram type Lego-Plot or Surface draw (Lego, Lego1.2, Surf, Surf1...5).
Coords set the coordinate system (Cartesian, Spheric, etc.).

Error same as for 2D plot.

Bar set the bar attributes: width and offset.

Horizontal Bar draw a horizontal bar chart.

The Binning tab has two different layouts. One is for a histogram, which is not drawn from an ntuple. The other
one is available for a histogram, which is drawn from an ntuple. In this case, the rebin algorithm can create a
rebinned histogram from the original data i.e. the ntuple.

g} cl IBI-ES) —
Eile Edit ¥iew Options Inspect Classes Help Style Binning I
siyle Binning | [Arbitrary Distribution | = pIOt:onnnu :ﬂ?;;..mw F
Mame ———————— ntries &
pmeTHWF = Mean 334.2 Rehin ———
Rebin 5000 — o RMS 200.6
r —
R C R R
- -5 -2 2 5
erEre * 1 45000 +H # of Bins: 48
Apply | lgnore C _ :
P— E BinOffset: 1.6000
Co | 4000 Sxxaa
300)[71729 r B | #ds Range
™ Delayed drawing E 1 Ao l0oGgonn
— L
3500 s =
w Es 545 18045
3000 — I Delayed drawing
E b 4
E bty
2500 —
F ++"§"—§-H§ﬂ—§~+
I I A M) I S IS O P O I A A I Y I A A
100 200 300 400 500 600 700

To see the differences do:

TFile f("hsimple.root");
hpx->Draw ("BAR1) ;
ntuple->Draw ("px") ;

// non ntuple histogram
// ntuple histogram

Non ntuple histogram:

Rebin with a slider and the number of bins (shown in the field below the slider). The number of bins can be
changed to any number, which divides the number of bins of the original histogram. A click on the Apply button
will delete the origin histogram and will replace it by the rebinned one on the screen. A click on the Ignore button
will restore the origin histogram.

Histogram drawn from an ntuple:

Rebin - With the slider, the number of bins can be enlarged by a factor of 2,3,4,5 (moving to the right) or
reduced by a factor of 1/2, 1/3, 1/4, 1/5.

BinOffset with a BinOffset slider - the origin of the histogram can be changed within one binwidth. Using this
slider the effect of binning the data into bins can be made visible (statistical fluctuations).

Axis Range - with a double slider it is possible to zoom into the specified axis range. It is also possible to set the
upper and lower limit in fields below the slider.

Delayed drawing - all the Binning sliders can set to delay draw mode. Then the changes on the histogram are

only updated, when the Slider is released. This should be activated if the redrawing of the histogram is time
consuming.

TH2Editor
g ci ox| [EEE BICIE]
Eile Edfit View Options Inspect Classes Help | | Ele Edit View Options Inspect Classes Help
style | inning |
syle | g
o feinog| Using TH2Editor i
htermp: TH2F [[T
lre— [1200 350 | |[MIET I
- " 7 o : 1 2
1 hd 10007 Title
| r 300 | [using THzEdter
e E
= Plot
Using THZEditor 300: as0| || c 20 &0
Plot 500 Type [sum =
& 2D € 3D r 200 | coords: [Cartesian =]
| I [F—-—=
Cont # 35 2 L 501\ 5 raene P oack
I amow [Box 200y oa| |E°°
Cico [sea C w:[100/8] o:f uoo g
[Text M Palette 0 Frame Fill
Fill ————————— ZUD: 50 |\ (] -
200 A
L_JI- - [Eadlnn s [I L ol 1 o m
Marker 06 04 02 0 02 04 06 i
| | L1 s
July 2007 v5.16 Histograms 47

Style Tab:

Title set the title of the histogram
Histogram change the draw options of the histogram.
Plot draw a 2D or 3D plot of the histogram; according to the dimension, the drawing possibilities

are different.

2-D Plot:

Contour draw a contour plot (None, Cont0...4)

Cont # set the number of Contours;

Arrow set the arrow mode and shows the gradient between adjacent cells;
Col a box is drawn for each cell with a color scale varying with contents;
Text draw bin contents as text;

Box a box is drawn for each cell with surface proportional to contents;
Scat draw a scatter-plot (default);

Palette the color palette is drawn.

3-D Plot:

Type set histogram type to Lego or surface plot; draw (Lego, Lego1.2, Surf, Surf1...5)
Coords set the coordinate system (Cartesian, Spheric, etc.);

Cont # set the number of Contours (for e.g. Lego2 draw option);

Errors draw errors in a Cartesian lego plot;

Palette draw the color palette;

Front draw the front box of a Cartesian lego plot;

Back draw the back box of a Cartesian lego plot;

Bar change the bar attributes: the width and offset.

Rebinning Tab:

The Rebinning tab has two different layouts. One is for a histogram that is not drawn from an ntuple; the other
one is available for a histogram, which is drawn from an ntuple. In this case, the rebin algorithm can create a
rebinned histogram from the original data i.e. the ntuple. To see the differences do for example:

TFile f("hsimple.root");
hpxpy->Draw ("Lego2") ; // non ntuple histogram
ntuple->Draw ("px:py","", "Lego2"); // ntuple histogram

Non-ntuple histogram:

Rebin with sliders (one for the x, one for the y-axis) and the number of bins (shown in the field below them can
be changed to any number, which divides the number of bins of the original histogram. Selecting the Apply
button will delete the origin histogram and will replace it by the rebinned one on the screen. Selecting the Ignore
the origin histogram will be restored.

EECE e Oy

File Edit Wiew Optians Inspect Classes Help

Style Einningl Style Einning
wme | |Two Peaks —

htemp:THZF

e .180 hppy: TH2F
— Rekhin ——————————
522 s — P — 160 ® ——
of Bins: I—SS et "‘v e [M R S S T T
BinOfset: | 0.0205 —— "N%{.L o 1 —{140 # of Bins: |—1D
Bl o e
)_ : " ‘,’0\’“&'\‘ ' — # of Bins: 40
st s)('l"\vl‘@%\\\‘\) —100
#oiBins: | 4D I‘—"‘{IA”A""“‘%‘@ _lso Apply | Ignore |
e s A
BinCOffset: IW s Range
Vs eoroo 60 e
A:ISL 40 [400 0.60
[oz 051 20 R S
V.II‘I‘II'_IH‘ IIIIIIIIIII
0 [400 [200
© casmi s %200 P Delayea aving

Histograms July 2007 v5.16

Histogram drawn from an ntuple:

Rebin with the sliders the number of bins can be enlarged by a factor of 2,3,4,5 (moving to the right) or reduced
by a factor of 1/2, 1/3, 1/4, 1/5. BinOffset with the BinOffset slider the origin of the histogram can be changed
within one binwidth. Using this slider the effect of binning the data into bins can be made visible (=> statistical
fluctuations).

Axis Range - with a double slider that gives the possibility for zooming. It is also possible to set the upper and
lower limit in fields below the slider.

Delayed drawing - all the binning sliders can be set to delay draw mode. Then the changes on the histogram
are only updated, when the Slider is released. This should be activated if the redrawing of the histogram is too
time consuming.

July 2007 v5.16 Histograms 49

4 Graphs

A graph is a graphics object made of two arrays X and Y, holding the x, y coordinates of n points. There are
several graph classes; they are TGraph, TGraphErrors, TGraphAsymmErrors, and TMultiGraph

TGraph

The TGraph class supports the general case with non-equidistant points, and the special case with equidistant
points. Graphs are created with the TGraph constructor. First, we define the arrays of coordinates and then
create the graph. The coordinates can be arrays of doubles or floats.

Int t n = 20;
Double t x[n], y[n];
for (Int t i=0; i<n; i++) {
x[1] = i*0.1;
y[i] = 10*sin(x[1]+0.2);
}
TGraph *grl = new TGraph (n, x, V)’

An alternative constructor takes only the number of points n. It is expected that the coordinates will be set later.

TGraph *gr2 = new TGraph(n);

Graph Draw Options

The various draw options for a graph are explained in TGraph: : PaintGraph. They are:

o "L" A simple poly-line between every points is drawn

o« "F" A fill area is drawn

o “F1” Idem as "r" but fill area is no more repartee around X=0 or Y=0

o "F2" draw a fill area poly line connecting the center of bins

o "A" Axis are drawn around the graph

o "C" A smooth curve is drawn

o XM A star is plotted at each point

o "P" The current marker of the graph is plotted at each point

o "B" A bar chart is drawn at each point

e "[1" Only the end vertical/horizontal lines of the error bars are drawn. This option only
applies to the TGraphAsymmErrors.

e "1" ylow = rwymin

The options are not case sensitive and they can be concatenated in most cases. Let us look at some examples.

Continuous Line, Axis and Stars (AC?)

Figure 4-1 A graph drawn with axis, * markers and continuous line (option AC*)

@Elaph Draw Options I =] 3
Eile Edit “iew Options Inspect Classes Help
Graph |

10

[}
[TTT III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

0.2 0.4 0.6 0.4 1 1.2 1.4 1.6 1.4 Z

=

July 2007 v5.16 Graphs 51

Int t n = 20;
[n]

Double t x , ylnl;
for (Int t i=0;i<n;i++) {
x[i] = i*0.1;

y[i] = 10*sin(x[1]+0.2);
}
// create graph
TGraph *gr = new TGraph(n,x,Vy);

TCanvas *cl = new TCanvas ("cl","Graph Draw Options",200,10,600,400);

// draw the graph with axis, contineous line,
gr->Draw ("AC*") ;

and put a * at each point

Bar Graphs (AB)
Figure 4-2 A graph drawn with axis and bar (option AB)

@ Graph Draw Options H[=]

File Edit Miew Qptions |nspect Classes

Help

Graph |

10

|

Z

s

=
III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

0.2 0.1 0.G 0.d 1 1.2 1.4 1.6 1.4 Fa

root[] TGraph *grl = new TGraph(n,x,y);
root[] grl->SetFillColor (40) ;
root[] grl->Draw("AB") ;

This code will only work if n, x, and y is defined. The previous example defines these. You need to set the fill
color, because by default the fill color is white and will not be visible on a white canvas. You also need to give it

an axis, or the bar chart will not be displayed properly.

Filled Graphs (AF)
Figure 4-3 A graph drawn with axis and fill (option AF)

@ Graph Draw Options =1

File Edit Wiew Options Inspect Classes

Help

Graph |

10

52

Graphs

July 2007 v5.16

root[] TGraph *gr3 = new TGraph(n,x,y):’
root[] gr3->SetFillColor (45) ;
root[] gr3->Draw("AF")

This code will only work if n, x, v are defined. The first example defines them. You need to set the fill color,
because by default the fill color is white and will not be visible on a white canvas. You also need to give it an
axis, or the bar chart will not be displayed properly. Currently one cannot specify the "CF" option.

Marker Options
Figure 4-4 Graph markers created in different ways
@Elaph Draw Options M= E3
Eile Edit Miew Options |nspect Classes Help
Graph |

10

9

A

A
A
‘A

Int £t n = 20;
Double t x[n], y[n];
// build the arrays with the coordinate of points
for (Int t i=0; i<n; i++) {
x[1] = 1i*0.1;
y[i] = 10*sin(x[1]+0.2);
}
// create graphs
TGraph *gr3 = new TGraph(n,x,Vv);
TCanvas *cl = new TCanvas ("cl","Graph Draw Options",200,10,600,400);

// draw the graph with the axis,contineous line, and put
// a marker using the graph's marker style at each point
gr3->SetMarkerStyle (21) ;

cl->cd (4);

gr3->Draw ("APL") ;

// get the points in the graph and put them into an array
Double t *nx = gr3->GetX();
Double t *ny = gr3->GetY();

// create markers of different colors
for (Int t j=2; j<n-1; j++) |
TMarker *m = new TMarker (nx[j], 0.5*ny[]], 22);
m->SetMarkerSize (2) ;
m->SetMarkerColor (31+3) ;
m->Draw () ;

Superimposing Two Graphs

To super impose two graphs you need to draw the axis only once, and leave out the "A" in the draw options for
the second graph. Next is an example:

July 2007 v5.16 Graphs 53

Figure 4-5 Superimposing two graphs

@TWD Graphs M[=] E3
Eile Edit View Options Inspect Classes Help
Graph |

=
My
L
=
-]
-
=

Int t n = 20;
Double t x[n], y[n], x1[n], yl[n];

// create the blue graph with a cos function
for (Int t i=0; i<n; i++) {

x[i] = 1*0.5;
y[i] = 5*cos(x[1]+0.2);
x1[i] = 1*0.5;
y1[i] = 5*sin(x[1]+0.2);

}

TGraph *grl = new TGraph(n,x,Vy);

TGraph *gr2 = new TGraph(n,xl,vyl);

TCanvas *cl = new TCanvas("cl","Two Graphs",200,10,600,400);

// draw the graph with axis, contineous line, and put a * at each point
grl->SetLineColor (4);

grl->Draw ("AC*") ;

// superimpose the second graph by leaving out the axis option "A"
gr2->SetLineWidth (3);

gr2->SetMarkerStyle (21) ;

gr2->SetLineColor (2);

gr2->Draw ("CP") ;

Graphs with Error Bars

A TGraphErrors is a TGraph with error bars. The various draw format options of TGraphErrors: : Paint ()
are derived from TGraph.

| void TGraphErrors::Paint (Option t *option)

Figure 4-6 Graphs with different draw options of error bars

@A Simple Graph with error bars - [O] x| @A Simple Graph with error bars =] B3
File Edit View Options |nspect Classes Help File Edit Miew Options Inspect Classes Help

TCraphErrors Example | TGraphErvors Exanple |

10

54 Graphs July 2007 v5.16

In addition, it can be drawn with the "z" option to leave off the small lines at the end of the error bars. If option
contains ">" an arrow is drawn at the end of the error bars if option contains " | >" a full arrow is drawn at the end
of the error bars the size of the arrow is set to 2/3 of the marker size.

The option “[]” is interesting to superimpose systematic errors on top of the graph with the statistical errors.
When it is specified, only the end vertical/horizontal lines of the error bars are drawn.

To control the size of the lines at the end of the error bars (when option 1 is chosen) use
SetEndErrorSize (np). By default np=1; np represents the number of pixels.

gStyle->SetEndErrorSize (np) ; |

The four parameters of TGraphErrors are: X, Y (as in TGraph) , X-errors, and Y-errors - the size of the
errors in the x and y direction. Next example is SROOTSYS/tutorials/graphs/gerrors.C.

{
cl = new TCanvas("cl","A Simple Graph with error bars",200,10,700,500);
cl->SetFillColor (42);
cl->SetGrid() ;
cl->GetFrame () ->SetFillColor (21);
cl->GetFrame () ->SetBorderSize (12) ;
// create the coordinate arrays
Int t n = 10;
Float t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Float t yl[n] {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
// create the error arrays
Float t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Float t ey([n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
// create the TGraphErrors and draw it
gr = new TGraphErrors(n,x,y,ex,ey);
gr->SetTitle ("TGraphErrors Example");
gr->SetMarkerColor (4);
gr->SetMarkerStyle (21);
gr->Draw ("ALP") ;
cl->Update () ;

Graphs with Asymmetric Error Bars

A TGraphAsymmErrors is a TGraph with asymmetric error bars. It inherits the various draw format options
from TGraph. Its method Paint (Option t *option) paints the TGraphAsymmErrors with the current
attributes. You can set the following additional options for drawing:

. z"or“z the horizontal and vertical small lines are not drawn at the end of error bars

o an arrow is drawn at the end of the error bars
o > a full arrow is drawn at the end of the error bar; its size is 2/3 of the marker size
o 17 only the end vertical/horizontal lines of the error bars are drawn; this option is

interesting to superimpose systematic errors on top of a graph with statistical errors.

The constructor has six arrays as parameters: X and Y as TGraph and low X-errors and high X-errors, low Y-
errors and high Y-errors. The low value is the length of the error bar to the left and down, the high value is the
length of the error bar to the right and up.

Figure 4-7 A graph with asymmetric error bars

[Z]A Simple Graph with error bars [_ (O] x]
File Edit Yiew Options Inspect Classes Help

| TGraphAsymmErrors Example |

July 2007 v5.16 Graphs 55

cl = new TCanvas ("cl","A Simple Graph with error bars",200,10,700,500);

cl->SetFillColor (42);
cl->SetGrid() ;
cl->GetFrame () ->SetFillColor (21);
cl->GetFrame () ->SetBorderSize (12) ;
// create the arrays for the points
Int £t n = 10;
Double t x[n]
Double t y[n] {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
// create the arrays with high and low errors

Double t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
Double t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
Double t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

// create TGraphAsymmErrors with the arrays

gr = new TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh);
gr->SetTitle ("TGraphAsymmErrors Example");
gr->SetMarkerColor (4);

gr->SetMarkerStyle (21);

gr->Draw ("ALP") ;

{-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};

Graphs with Asymmetric Bent Errors

A TGraphBentErrors is a TGraph with bent, asymmetric error bars. The various format options to draw a
TGraphBentErrors are explained in TGraphBentErrors::Paint method. The TGraphBentErrors is

drawn by default with error bars and small horizontal and vertical lines at the end of the error bars. If option "z

or "z" is specified, these small lines are not drawn. If the option "x" is specified, the errors are not drawn (the
TGraph: : Paint method equivalent).

e if option contains ">", an arrow is drawn at the end of the error bars
e if option contains "|>", a full arrow is drawn at the end of the error bars

e the size of the arrow is set to 2/3 of the marker size

e if option "[]1" is specified, only the end vertical/horizontal lines of the error bars are drawn. This
option is interesting to superimpose systematic errors on top of a graph with statistical errors.

Figure 4-8 A graph with asymmetric bent error bars

TGraphBentErrors Example |

10

(=]

This figure has been generated by the following macro:

{

Int £t n = 10;
Double t x[n]
Double t y[n]
Double t exl][
[
[

={1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

Double t eyl ={.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

Double t exh

n

n

n
Double t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

[

[

[

[

Double t exld[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};
Double t eyld[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};
Double t exhd[n] = {.0,.0,.0,.0,.0,.0,.0,.0,.0,.0};
Double t eyhd[n] {.0,.0,.0,.0,.0,.0,.0,.0,.05,.0};

= {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};

= {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};

{-0.22,0.05,0.25,0.35,0.5,0.61,0.7,0.85,0.89,0.95};

56

Graphs

July 2007 v5.16

gr = new TGraphBentErrors(n,x,y,exl,exh,eyl,evh,exld,exhd,eyld,eyhd);
gr->SetTitle ("TGraphBentErrors Example");

gr->SetMarkerColor (4) ;

gr->SetMarkerStyle (21) ;

gr->Draw ("ALP") ;

TGraphPolar

The TGraphPolar class creates a polar graph (including error bars). A TGraphPolar is a TGraphErrors
represented in polar coordinates. It uses the class TGraphPolargram to draw the polar axis.

Figure 4-9 A polar graph

TCanvas *CPol = new TCanvas ("CPol","TGraphPolar Examples", 600,600);
Double t rmin=0;
Double t rmax=TMath::Pi()*2;
Double t r[1000];
Double t theta[1000];
TF1 * fpl = new TF1 ("fplot","cos (x)",rmin, rmax) ;
for (Int t ipt = 0; ipt < 1000; ipt++) |
rlipt] = ipt* (rmax-rmin)/1000+rmin;
thetal[ipt] = fpl->Eval(r[ipt]):;
}
TGraphPolar * grPl = new TGraphPolar (1000, r, theta);
grPl->SetLineColor (2) ;
grPl1->Draw ("AOL") ;

}

The TGraphPolar drawing options are:

"O" Polar labels are paint orthogonally to the polargram radius.
npr Polymarker are paint at each point position.

"E" Paint error bars.

"E Paint fill area (closed polygon).

"A" Force axis redrawing even if a polagram already exists.

TGraph Exclusion Zone

When a graph is painted with the option "Cc" or "L", it is possible to draw a filled area on one side of the line. This
is useful to show exclusion zones. This drawing mode is activated when the absolute value of the graph line
width (set thanks to SetLineWidth) is greater than 99. In that case the line width number is interpreted as
100*ff+11 = f£f£f11. The two-digit numbers "11" represent the normal line width whereas "f£" is the filled
area width. The sign of "££11" allows flipping the filled area from one side of the line to the other. The current fill
area attributes are used to draw the hatched zone.

July 2007 v5.16 Graphs 57

Figure 4-10 Graphs with exclusion zones

7] Exclusion graphs examples - [Ofx]
Lile Edit View Options Inspect Classes Help
s | | Exclusion graphs |
Name
Graph:TGraph
Ling ——— 10 L
m—
—— [
Fill ——— 7
-z MR
Marker
W T N
Tite ———————— 0
Graph L
Shape I
1 No Line r
@ 8mooth Line r
" Simple Line 5
" BarChart I
" Fill area r
™ Show Marker r
ExtusonZone R A I W I /1 1 0 Y O
Vo~ S ~ 0 0.5 1 1.5 2 25 3 3.5 4

cl = new TCanvas ("cl","Exclusion graphs examples",200,10,700,500);

cl->SetGrid() ;

TMultiGraph *mg = new TMultiGraph() ;

mg->SetTitle ("Exclusion graphs");

const Int t n = 35;

Double t x1[n], x2[n], x3[n], yl[n], y2[n], y3[n];

for (Int t i=0;i<n;i++) {
x1[1] = 1*0.1; y1[i] = 10*sin(x1[1i]);
x2[1] = x1[1]; y2([1i] 10*cos (x1[1]);
x3[1] = x1[i]+.5; y3[1i] 10*sin(x1[1i])-2;

}

grl = new TGraph(n,xl,yl);

grl->SetLineColor (2);

grl->SetLineWidth (1504) ;

grl->SetFillStyle (3005);

gr2 = new TGraph(n,x2,y2);

gr2->SetLineColor (4) ;

gr2->SetLineWidth (-2002) ;

gr2->SetFillStyle (3004);

gr2->SetFillColor (9);

gr3 = new TGraph(n,x3,y3);

gr3->SetLineColor (5);

gr3->SetLineWidth (-802) ;

gr3->SetFillStyle (3002);

gr3->SetFillColor (2);

mg->Add (grl) ;

mg->Add (gr2) ;

mg->Add (gr3) ;

mg->Draw ("AC") ;

TGraphQQ

A TGraphQQ allows drawing quantile-quantile plots. Such plots can be drawn for two datasets, or for one
dataset and a theoretical distribution function.

Two Datasets

Quantile-quantile plots are used to determine whether two samples come from the same distribution. A qg-plot
draws the quantiles of one dataset against the quantile of the other. The quantiles of the dataset with fewer
entries are on Y-axis, with more entries - on X-axis. A straight line, going through 0.25 and 0.75 quantiles is also
plotted for reference. It represents a robust linear fit, not sensitive to the extremes of the datasets. If the
datasets come from the same distribution, points of the plot should fall approximately on the 45 degrees line. If
they have the same distribution function, but different parameters of location or scale, they should still fall on the
straight line, but not the 45 degrees one.

58 Graphs July 2007 v5.16

Figure 4-11 Examples of qq-plots of 2 datasets

[[an-plal of z samales fram the same nonmal disiributien | [(aa-plat of 2 samgles fram difierent normal dsbibations |

2; J‘*;&,’** z%_ #,f;ag

SWE

[aa-piot of 1 narmal and 1 cauchy sample |

*

*

o oo b o oo o oo
=50 o £ 100 150 Eo 50 100 150

The greater their departure from the straight line, the more evidence there is that the datasets come from
different distributions. The advantage of qg-plot is that it not only shows that the underlying distributions are
different, but, unlike the analytical methods, it also gives information on the nature of this difference: heavier
tails, different location/scale, different shape, etc.

One Dataset

Quantile-quantile plots are used to determine if the dataset comes from the specified theoretical distribution,
such as normal. A qg-plot draws quantiles of the dataset against quantiles of the specified theoretical
distribution. Note, that density, not CDF should be specified a straight line, going through 0.25 and 0.75
quantiles could also be plotted for reference. It represents a robust linear fit, not sensitive to the extremes of the
dataset. As in the two datasets case, departures from straight line indicate departures from the specified
distribution. Next picture shows an example of a qg-plot of a dataset from N(3, 2) distribution and
TMath::Gaus(0, 1) theoretical function. Fitting parameters are estimates of the distribution mean and sigma.

Figure 4-12 Examples of qq-plots of 1 dataset
po 3.187 + 0.2236

E 7 pi 1.784 + 0.2381

= *
E_ 6 * .
s

3 5 o s

5 ¥k

-
|IIII|IIII|IIII|IIII|IIII|IIII|
¥

T R I R I R AP B B

theoretical quantiles

TMultiGraph

A TMultiGraph is a collection of TGraph (or derived) objects. Use TMultiGraph: :Add to add a new
graph to the list. The TMultiGraph owns the objects in the list. The drawing and fitting options are the same
as for TGraph.

{
// create the points
Int t n = 10;

Double t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
Double t x2[n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05};
Double t y2[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

July 2007 v5.16 Graphs 59

// create the width of errors in x and y direction
Double t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
Double t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

// create two graphs

TGraph *grl = new TGraph(n,x2,v2);

TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);
// create a multigraph and draw it
TMultiGraph *mg = new TMultiGraph();

mg->Add (grl) ;

mg->Add (gr2) ;

mg->Draw ("ALP") ;
}

Figure 4-13 A multigraph example

G [-[oIx]
Eile Edit ¥iew Options Inspect Classes Help

I
CF
2
T
2
&n
=
(=]
=)
A
a_
5
)
=
2
=)
-
L]
~a

TGraph2D

This class is a set of N points x[i], y[i], z[i] in a non-uniform grid. Several visualization techniques are
implemented, including Delaunay triangulation. Delaunay triangulation is defined as follow: ‘for a set s of points
in the Euclidean plane, the unique triangulation DT (S) of S such that no point in S is inside the circum-circle of
any triangle in DT (S). DT (S) is the dual of the Voronoi diagram of s. If n is the number of points in s, the
Voronoi diagram of S is the partitioning of the plane containing S points into n convex polygons such that each
polygon contains exactly one point and every point in a given polygon is closer to its central point than to any
other. A Voronoi diagram is sometimes also known as a Dirichlet tessellation.

Figure 4-14 Delaunay triangles and Voronoi diagram

Delaunay Triangles

“oronol Diagrarm

The TGraph2D class has the following constructors:

e With an arrays’ dimension n and three arrays x, y, and z (can be arrays of doubles, floats, or
integers):

| TGraph2D *g = new TGraph2D(n,x,Vv,z);

e With an array dimension only:

| TGraph2D *g = new TGraph2D(n);

e Internal arrays are filled with the method setpPoint at the position "i" with the values x, vy, z:

| g->SetPoint (i,x,y,2);

e Without parameters; the method SetPoint must be used to fill the internal arrays.

60 Graphs July 2007 v5.16

| TGraph2D *g = new TGraph2D();

e From afile:
| TGraph2D *g = new TGraph2D("graph.dat");

The arrays are read from the ASCII file "graph.dat" according to a specified format. The format's default value
is "$1g %1g %1g". Note that in any of last three cases, the SetPoint method can be used to change a data
point or to add a new one. If the data point index (i) is greater than the size of the internal arrays, they are
automatically extended.

Specific drawing options can be used to paint a TGraph2D:

e "TRI" the Delaunay triangles are drawn using filled area. A hidden surface drawing
technique is used. The surface is painted with the current fill area color. The edges
of the triangles are painted with the current line color;

e "TRIW" the Delaunay triangles are drawn as wire frame;

e "TRI1" the Delaunay triangles are painted with color levels. The edges of the triangles are
painted with the current line color;

e "TRI2" the Delaunay triangles are painted with color levels;

o« "P" draws a marker at each vertex;

e "PO" draws a circle at each vertex. Each circle background is white.

A TGraph2D can be also drawn with ANY options valid for 2D histogram drawing. In this case, an intermediate
2D histogram is filled using the Delaunay triangles technique to interpolate the data set. TGraph2D linearly
interpolate a z value for any (x,Y) point given some existing (x,Y, z) points. The existing (x,Y, z) points
can be randomly scattered. The algorithm works by joining the existing points to make Delaunay triangles in
(X,Y). These are then used to define flat planes in (X, Y, Z) over which to interpolate. The interpolated
surface thus takes the form of tessellating triangles at various angles. Output can take the form of a 2D
histogram or a vector. The triangles found can be drawn in 3D. This software cannot be guaranteed to work
under all circumstances. It was originally written to work with a few hundred points in an XY space with similar x
and Y ranges.

Figure 4-15 Graph2D drawn with option "surfl" and "tril p0"

£
55?;‘

o
A\

y iy ""\‘\\\

Vi

i

)
g/ ¥ RN
Ny

TCanvas *c = new TCanvas ("c","Graph2D example",0,0,700,600);
Double t x, y, z, P = 6.;

Int t np = 200;

TGraph2D *dt = new TGraph2D();

TRandom *r = new TRandom() ;

for (Int_t N=0; N<np; N++) {
X = 2*P* (r->Rndm(N))-P;
y 2*P* (r->Rndm (N)) -P;
z = (sin(x)/x)*(sin(y)/y)+0.2;
dt->SetPoint (N, x,vy,z);

}

gStyle->SetPalette(l);

dt->Draw ("surfl"); // use “surfl” to generate the left picture
} // use “tril p0” to generate the right one

A more complete example is SROOTSYS/tutorials/fit/graph2dfit.C that produces the next figure.

July 2007 v5.16 Graphs 61

Figure 4-16 Output of macro graph2dfit.C

I ndf
Constant

Mean
Bigma

[Original function with Graph2D points antop]

Difference between Orbginal function
and Function with nolse

336.9: 91
0. 7284 1 0.7494
B7.75 1 167

|

EEEEEGE

g 5 B

@

Difference between Orlginal function Lo
Caonstant 40551 7.3
and Interpolation with Delau Iriangles |5 o o 41414 0.ETE

E Sigma 60,33 1 0.88

T T rdf

E
A R R AL LA R

¢ Tndf
Constant
Mean
Bigma

Difference between Orbginal function
and Minuit fit

|

JEOT 1 9147
8904 1 4446
G602 1 1976

TGraph2DErrors

A TGraph2DErrors is a TGraph2D with errors. It is useful to perform fits with errors on a 2D graph. An
example is the macro SROOTSYS/tutorials/graphs/graph2derrorsfit.C

Fitting a Graph

The graph Fit method in general works the same way as the TH1: : Fit. See “Fitting Histograms”.

Setting the Graph's Axis Title

To give the axis of a graph a title you need to draw the graph first, only then does it actually have an axis object.
Once drawn, you set the title by getting the axis and calling the TAxis: : SetTitle method, and if you want to
center it, you can call the TAxis: :CenterTitle method.

Assuming that n, x, and y are defined. Next code sets the titles of the x and y axes.

root[]
root[]

<TCanvas: :MakeDefCanvas>:

gr5 new TGraph(n,x,y)
gr5->Draw ()

created default TCanvas with name cl

root[] gr5->Draw("ALP")

root[] gr5->GetXaxis ()->SetTitle ("X-Axis")
root[] gr5->GetYaxis()->SetTitle("Y-Axis")
root[] gr5->GetXaxis ()->CenterTitle()
root[] gr5->GetYaxis ()->CenterTitle()
root[] gr5->Draw (“ALP”)

For more graph examples see the scripts: SROOTSYS/tutorials directory graph.C, gerrors.C, zdemo.C,

and gerrors2.C

62

Graphs

July 2007 v5.16

Figure 4-17 A graph with axis titles
it [_[O]]

File Edit ¥iew Options Inspect Classes Help
Graph

10

Y- Pucis
-

MW L 2N

N RN TN M RN RS W
¢ ©Z2 04 06 08 1 12 14 16 18 2
- A

Zooming a Graph

To zoom a graph you can create a histogram with the desired axis range first. Draw the empty histogram and
then draw the graph using the existing axis from the histogram.

{ gROOT->Reset () ;
cl = new TCanvas("cl","A Zoomed Graph",200,10,700,500);
// create a histogram for the axis range
hpx = new TH2F ("hpx","Zoomed Graph Example",10,0,0.5,10,1.0,8.0);
hpx->SetStats (kKFALSE) ; // no statistics
hpx->Draw () ;
Int t n = 10;
Double t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
Double t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
gr = new TGraph(n,x,vy);
gr->SetMarkerColor (4) ;
gr->SetMarkerStyle (20) ;
// and draw it without an axis
gr->Draw ("LP") ;
}

The next example is the same graph as above with a zoom in the x and y directions.

Figure 4-18 A zoomed graph

@A Zoomed Graph I [=1 B3
File Edit ¥iew Options |nspect Classes Help

| Zoomed Graph Cxample |
]

7

G

]]]]]]]] I
005 01 015 02 025 03 035 04 045 05

-

July 2007 v5.16 Graphs 63

The User Interface for Graphs

A Simple Graph Example i

style |

Mame
Graph:TGraph

L e
- |v] e— vl
— vl
Fill

Title

& Simple Graph

-

& Smooth Line
 Simple Line
" Bar Chart
€ Fill area

¥ Show Marker

Exclusion Zone

P o [rom]

Marker

(] (w102

=

The class TGraphEditor provides the user interface for setting the following graph attributes interactively:

Eile Edit ¥iew Options Inspect Classes

| A Simple Graph |

Y title

10

9
8
7
6
5
4
3
2

0 0.2 04

0.6

0.8

1.2

1.4

1.6

1.8

2
X title

e Title text entry field — sets the title of the graph.

e Shape radio button group — sets the graph shapes:

No Line:

Smooth Line:

Simple Line:
Bat Chart:
Fill Area:

® Show Marker - sets markers as visible or invisible.

draw unconnected points;

a smooth curve;

a simple poly-line;
a bar chart at each point.
a fill area is drawn.

® Exclusion Zone — specifies the exclusion zone parameters :

+-‘ check button:
Width combo box:

sets on which side of the line the exclusion zone will be drawn;
defines the width of the zone.

64

Graphs

July 2007 v5.16

5 Fitting Histograms

To fit a histogram you can use the Fit Panel on a visible histogram via the context menu, or you can use the
TH1::Fit method. The Fit Panel, which is limited, is best for prototyping. The histogram needs to be drawn in
a pad before the Fit Panel is invoked. The method TH1::Fit is more powerful and is used in scripts and
programs.

The Fit Method

To fit a histogram programmatically, you can use the TH1: :Fit method. Here is the signature of TH1: :Fit
and an explanation of the parameters:

void Fit (const char *fname, Option t *option, Option t *goption,
Axis t xxmin, Axis t xxmax)

e *fname - the name of the fitted function (the model) is passed as the first parameter. This
name may be one of ROOT pre-defined function names or a user-defined function.
The functions below are predefined, and can be used with the TH1: : Fit method:
o gaus: Gaussian function with 3 parameters:
f(x) = pO0*exp(-0.5* ((x-pl)/p2)"2))
o expo: an Exponential with 2 parameters: f (x) = exp (pO+pl*x)
polN: apolynomial of degree N: f(x) = p0 + pl*x + p2*x® +...
landau: Landau function with mean and sigma. This function has been adapted
from the CERNLIB routine G110 denlan.
the second parameter is the fitting option. Here is the list of fitting options:

e “*option

o "W" Set all weights to 1 for non empty bins; ignore error bars

o "WW" Set all weights to 1 including empty bins; ignore error bars

o "I1" Use integral of function in bin instead of value at bin center

o "L" Use log likelihood method (default is chi-square method)

o "U" Use a user specified fitting algorithm

o "Q" Quiet mode (minimum printing)

o "V" Verbose mode (default is between Q and V)

o "E" Perform better errors estimation using the Minos technique

o "M" Improve fit results

o "R" Use the range specified in the function range

o "N" Do not store the graphics function, do not draw

o "Oo" Do not plot the result of the fit. By default the fitted function is drawn unless
the option "N" above is specified.

o "+" Add this new fitted function to the list of fitted functions (by default, the
previous function is deleted and only the last one is kept)

o "B" Use this option when you want to fix one or more parameters and the fitting
function is like polN, expo, landau, gaus.

o “Lv” An improved Log Likelihood fit in case of very low statistics and when bin

contents are not integers. Do not use this option if bin contents are large
(greater than 100).
“c” In case of linear fitting, don't calculate the chisquare (saves time).
“F” If fitting a polN, switch to Minuit fitter (by default, polN functions are
fitted by the linear fitter).
e *goption - the third parameter is the graphics option tha is the same as in the TH1: : Draw
(see the chapter Draw Options).
e xxmin, xxmax - the fourth and fifth parameters specify the range over which to apply the fit.
By default, the fitting function object is added to the histogram and is drawn in the
current pad.

Fit with a Predefined Function

To fit a histogram with a predefined function, simply pass the name of the function in the first parameter of
TH1::Fit. For example, this line fits histogram object hist with a Gaussian.

July 2007 v5.16 Fitting Histograms 65

root[] hist.Fit("gaus") ;

The initial parameter values for pre-defined functions are set automatically.

Fit with a User-Defined Function

You can create a TF1 object and use it in the call the TH1: : Fit. The parameter in to the Fit method is the
NAME of the TF1 object. There are three ways to create a TF1.

e Using C++ expression using x with a fixed set of operators and functions defined in TFormula.
e Same as first one, with parameters
e Using a function that you have defined

Creating a TF1 with a Formula

Let's look at the first case. Here we call the TF1 constructor by giving it the formula: sin (x) /x.
| root[] TF1 *fl = new TF1("fl","sin(x)/x",0,10) |

You can also use a TF1 object in the constructor of another TF1.
| root[] TF1 *f2 = new TF1("f2","f1%*2",0,10) |

Creating a TF1 with Parameters

The second way to construct a TF1 is to add parameters to the expression. Here we use two parameters:
| root[] TFl *fl = new TF1("£f1","[0]*x*sin([1]*x)",-3,3);

Figure 5-1 The function x*sin (x)

151 =
File Edit ¥iew OCptions Inspect Classes Help

0T sin([11"%] |

S0

20

[=]
LB L I B L B I

I
[#]
|
L)
I
-}
L)
]

The parameter index is enclosed in square brackets. To set the initial parameters explicitly you can use:
|root[] fl->SetParameter (0,10) ; |

This sets parameter 0 to 10. You can also use SetParameters to set multiple parameters at once.
|root[] fl->SetParameters (10,5) ; |

This sets parameter 0 to 10 and parameter 1 to 5. We can now draw the TF1:
| root[] £1->Draw() |

Creating a TF1 with a User Function

The third way to build a TF1 is to define a function yourself and then give its name to the constructor. A function
for a TF1 constructor needs to have this exact signature:

| Double t fitf(Double t *x,Double t *par)

The two parameters are:

e X a pointer to the dimension array. Each element contains a dimension. For a 1D
histogram only x [0] is used, for a 2D histogram x[0] and x[1] is used, and for a
3D histogram x[0], x[1], and x[2] are used. For histograms, only 3 dimensions
apply, but this method is also used to fit other objects, for example an ntuple could
have 10 dimensions.

e par a pointer to the parameters array. This array contains the current values of
parameters when it is called by the fitting function.

66

Fitting Histograms July 2007 v5.16

The following script SROOTSYS/tutorials/fit/myfit.C illustrates how to fit a 1D histogram with a user-
defined function. First we declare the function.

// define a function with 3 parameters
Double t fitf(Double t *x,Double t *par)
{
Double t arg = 0;
if (par[2] != 0) arg = (x[0] - par[l])/par[2];
Double t fitval = par[0]*TMath::Exp(-0.5*arg*arg);
return fitval;

}
Now we use the function:

// this function used fitf to fit a histogram
void fitexample () {

// open a file and get a histogram
TFile *f = new TFile("hsimple.root");
THIF *hpx = (THLF*)f->Get (*hpx);

// Create a TF1 object using the function defined above. The last three
// parameters specify the number of parameters for the function.

TF1 *func = new TF1("fit",fitf,-3,3,3);

// set the parameters to the mean and RMS of the histogram
func->SetParameters (500, hpx->GetMean () , hpx->GetRMS ()) ;

// give the parameters meaningful names
func->SetParNames ("Constant","Mean_value","Sigma");

// call THI1::Fit with the name of the TF1 object
hpx->Fit ("fit");

Fixing and Setting Parameters’ Bounds

Parameters must be initialized before invoking the Fit method. The setting of the parameter initial values is
automatic for the predefined functions: poln, exp, gaus, and 1landau. You can fix one or more parameters by
specifying the "B" option when calling the Fit method. When a function is not predefined, the fit parameters
must be initialized to some value as close as possible to the expected values before calling the fit function.

To set bounds for one parameter, use TF1: : SetParLimits:

func->SetParLimits (0,-1,1);

When the lower and upper limits are equal, the parameter is fixed. Next two statements fix parameter 4 at 10.

func->SetParameter (4,10);
func->SetParLimits (4,10,10);

However, to fix a parameter to 0, one must call the FixParameter function:

func->SetParameter (4,0);
func->FixParameter (4,0);

Note that you are not forced to set the limits for all parameters. For example, if you fit a function with 6
parameters, you can:

func->SetParameters (0,3.1,1.e-6,-1.5,0,100);
func->SetParLimits (3,-10,4);
func->FixParameter (4,0);

With this setup, parameters 0->2 can vary freely, parameter 3 has boundaries [-10, 4] with initial value —1.5,
and parameter 4 is fixed to 0.

Fitting Sub Ranges

By default, TH1: : Fit will fit the function on the defined histogram range. You can specify the option "R" in the
second parameter of TH1: : Fit to restrict the fit to the range specified in the TF1 constructor. In this example,
the fit will be limited to —3 to 3, the range specified in the TF1 constructor.

root[] TFl *fl1 = new TF1("£f1","[0]*x*sin([1]*x)",-3,3);

root[] hist->Fit("£1","R");

You can also specify a range in the call to TH1: : Fit:

July 2007 v5.16 Fitting Histograms 67

root[] hist->Fit("£1","","" -2,2)

See macros SROOTSYS/tutorials/fit/myfit.Candmultifit.C as more completed examples.

The Fit Panel

To display the Fit Panel right click on a histogram to pop

up the context menu, and then select the menu entry Fit
Current selection: hp=<:TH1F Panel.

Il New Fit Panel

General |Minimizatinn| The new Fit Panel GUI is available in ROOT v5.14. Its

L goal is to replace the old Fit Panel and to provide more
unction . . .
Erernned Cetion user friendly way for performing, exploring and

| Irc-* s e comparing fits.

By design, this user interfase is planned to contain two

tabs: “General” and “Minimization”. Currently, the

Selected: “General” tab provides user interface elements for setting
gaus Set Parameters.. | the fit function, fit method and different fit, draw, print
options. The “Minimization” tab is not available yet and

—Fit Settings will be implemented in the near future.
Rijsinad The new fit panel is a modeless dialog, i.e. when opened,
| Chi-square | Ueereed | it does not prevent users from interacting with other
W e windows. Its first prototype is a singleton application.
.I_A When the Fit Panel is activated, users can select an

Rt 100 EI " Mo Chi-sguare

object for fitting in the usual way, i.e. by left-mouse click

RIECptone on it. If the selected object is suitable for fitting, the fit
I Integral IV Use range panel is connected with this object and users can
™ Best errors I Improve fit results perform fits by setting different parameters and options.
™ allweights = 1 [T add to list
™ Empty bins, weights=1 Function Choice and Settings

Drawe Options
I zAME ‘Predefined’ combo box - contains a list of predefined
r ; functions in ROOT. You have a choice of several

Mo drawing

- 4 ; polynomials, a Gaussian, a Landau, and an Exponential
DB S SRAEITEYS AT function. The default one is Gaussian.

‘Operation’ radio button group defines the selected
operational mode between functions:

e e 4 Nop - no operation (default);
""""""""""""""""""""""""""""""""""""" Add — addition;

Print Cptions
% Default verhose < Quiet

et | Beset [oese | cony- convolution (will be implemented in the future).

Users can enter the function expression into the text
entry field below the ‘Predefined’ combo box. The entered string is checked after the Enter key was pressed
and an error message shows up, if the function string is not accepted.

‘Set Parameters’ button opens a dialog for parameters settings, which will be explaned later.

Fitter Settings
‘Method” combo box currently provides only two fit model choices: Chi-square and Binned Likelihood. The
default one is Chi-square. The Binned Likelihood is recomended for bins with low statistics.

‘Linear Fit’ check button sets the use of Linear fitter when is selected. Otherwise the minimization is done by
Minuit, i.e. fit option "F" is applied. The Linear fitter can be selected only for functions linears in parameters (for
example - polN).

‘Robust’ number entry sets the robust value when fitting graphs.

‘No Chi-square’ check button switch On/Off the fit option “C” - do not calculate Chi-square (for Linear fitter).
‘Integral’ check button switch On/Off the option “I” - use integral of function instead of value in bin center.
‘Best Errors’ sets On/Off the option “E” - better errors estimation by using Minos technique.

‘All weights = 1’ sets On/Off the option “W”- all weights set to 1 excluding empty bins; error bars ignored.

‘Empty bins, weights=1" sets On/Off the option "ww" - all weights equal to 1 including empty bins; error bars
ignored.

‘Use range’ sets On/Off the option “R” - fit only data within the specified function range. Sliders settings are used
if this option is set to On. Users can change the function range values by pressing the left mouse button near to
the left/right slider edges. It is possible to change both values simultaneously by pressing the left mouse button
near to the slider center and moving it to a new position.

‘Improve fit results’ sets On/Off the option “M’- after minimum is found, search for a new one.

68

Fitting Histograms July 2007 v5.16

‘Add to list’ sets On/Off the option “+”- add function to the list without deleting the previous one. When fitting a
histogram, the function is attached to the histogram's list of functions. By default, the previously fitted function is
deleted and replaced with the most recent one, so the list only contains one function. Setting this option to On
will add the newly fitted function to the existing list of functions for the histogram. Note that the fitted functions
are saved with the histogram when it is written to a ROOT file. By default, the function is drawn on the pad
displaying the histogram.

Draw Options

‘SAME’ sets On/Off function drawing on the same pad. When a fit is executed, the image of the function is
drawn on the current pad.

‘No drawing’ sets On/Off the option “0”- do not draw the fit results.

‘Do not store/draw’ sets On/Off option “N”- do not store the function and do not draw it.

Print Options

This set of options specifies the amount of feedback printed on the root command line after performed fits.
‘Verbose’ - prints fit results after each iteration.

‘Quiet’ - no fit information is printed.

‘Default’ - between Verbose and Quiet.

Command Buttons

Fit button - performs a fit taking different option settings via the Fit Panel interface.
Reset - sets the GUI elements and related fit settings to the default ones.
Close - closes the Fit panel window.

Fitting Multiple Sub Ranges

The script for this example is SROOTSYS/tutorials/fit/multifit.C. It shows how to use several
Gaussian functions with different parameters on separate sub ranges of the same histogram. To use a
Gaussian, or any other ROOT built in function, on a sub range you need to define a new TF1. Each is 'derived’
from the canned function gaus.

Figure 5-2 Fitting a histogram with several Gaussian functions

i cl M= E3

Eile Edit Miew OQptions Inspect Classes Help

2am pla oT 86verd! aIn subrangs s

LLl
106 110 116 120 1286 130

uﬂ;IIIIBIuIIIIBIEIIII“DIDIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

First, four TF1 objects are created — one for each sub-range:

gl = new TF1l("ml","gaus",85,95);

g2 = new TF1l("m2","gaus",98,108);

g3 = new TF1("m3","gaus",110,121);

// The total is the sum of the three, each has 3 parameters
total = new TF1("mstotal","gaus (0)+gaus(3)+gaus(6)",85,125);

Next, we fill a histogram with bins defined in the array x.

// Create a histogram and set it's contents
h = new TH1F("gl","Example of several fits in subranges",np,85,134);
h->SetMaximum(7) ;
for (int i=0; i<np; i++) {
h->SetBinContent (i+1,x[1]);
}
// Define the parameter array for the total function
Double t par[9];

July 2007 v5.16 Fitting Histograms 69

When fitting simple functions, such as a Gaussian, the initial values of the parameters are automatically
computed by ROOT. In the more complicated case of the sum of 3 Gaussian functions, the initial values of
parameters must be set. In this particular case, the initial values are taken from the result of the individual fits.
The use of the "+" sign is explained below:

// Fit each function and add it to the list of functions
h->Fit (gl,"R");

h->Fit (g2, "R+") ;

h->Fit (g3, "R+") ;

// Get the parameters from the fit
gl->GetParameters (&par[0]) ;
g2->GetParameters (&par([3]);
g3->GetParameters (&par[6]) ;

// Use the parameters on the sum
total->SetParameters (par) ;
h->Fit (total, "R+");

Adding Functions to the List

The example SROOTSYS/tutorials/fit/multifit.C also illustrates how to fit several functions on the
same histogram. By default a Fit command deletes the previously fitted function in the histogram object. You
can specify the option "+" in the second parameter to add the newly fitted function to the existing list of functions
for the histogram.

root[] hist->Fit("£1","+","",-2,2)

Note that the fitted function(s) are saved with the histogram when it is written to a ROOT file.

Combining Functions

You can combine functions to fit a histogram with their sum as it is illustrated in the macro FitDemo.C
(SROOTSYS/tutorials/fit/FittingDemo.C). We have a function that is the combination of a background
and Lorenzian peak. Each function contributes 3 parameters:

)
(7]

y(E):a1 +a,E+aE* +

Background Lorenzian Peak
par([0] = a, par([0] = AP
par[1l] = a, par(1] =G
par[2] = a, par[2] =M

The combination function (fitFunction) has six parameters:

fitFunction = background(x,par) + lorenzianPeak(x,&par([3])
par[0]=a, parl[ll=a, par[2]=é@ par[3]=‘4P par[4]:(; par[5]=mM

This script creates a histogram and fits it with the combination of two functions. First we define the two functions
and the combination function:

// Quadratic background function
Double t background(Double t *x, Double t *par) {
return par[0] + par[l]*x[0] + par[2]*x[0]1*x[0];
}
// Lorenzian Peak function
Double t lorentzianPeak (Double t *x, Double t *par) ({
return (0.5*par[0]*par[1l]/TMath::Pi()) / TMath::Max(l.e-10,
(x[0]-par[2])*(x[0]-par[2])+ .25*par[l]*par[l]);
}

// Sum of background and peak function
Double t fitFunction (Double t *x, Double t *par) {
return background(x,par) + lorentzianPeak(x,&par([3]);

}

70

Fitting Histograms July 2007 v5.16

}

void FittingDemo () {

// bevington exercise by P. Malzacher, modified by R. Brun

const int nBins = 60;

Stat t data[nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
23,26,36,25,27,35,40,44,66,81,
75,57,48,45,46,41,35,36,53,32,
40,37,38,31,36,44,42,37,32,32,
43,44,35,33,33,39,29,41,32,44,
26,39,29,35,32,21,21,15,25,15};

TH1F *histo = new THIF ("example 9 1",
"Lorentzian Peak on Quadratic Background",60,0,3);

for (int 1i=0; 1 < nBins; 1i++) {
// we use these methods to explicitly set the content
// and error instead of using the fill method.
histo->SetBinContent (i+1,data[i]) ;
histo->SetBinError (i+1,TMath::Sqgrt (datali]));
}
// create a TF1 with the range from 0 to 3 and 6 parameters
TF1l *fitFcn = new TF1("fitFcn", fitFunction,0,3,6);

// first try without starting values for the parameters

// this defaults to 1 for each param.

histo->Fit ("fitFcn");

// this results in an ok fit for the polynomial function however
// the non-linear part (lorenzian) does not respond well

// second try: set start values for some parameters
fitFcn->SetParameter (4,0.2); // width

fitFcn->SetParameter (5,1) ; // peak

histo->Fit ("fitFcn","V+");

// improve the picture:

TF1l *backFcn = new TF1l ("backFcn",background, 0,3, 3);
backFcn->SetLineColor (3);

TF1l *signalFcn = new TFl("signalFcn",lorentzianPeak,0,3,3);
signalFcn->SetLineColor (4) ;

Double t par[6];

// writes the fit results into the par array
fitFcn->GetParameters (par) ;
backFcn->SetParameters (par) ;

backFcn->Draw ("same") ;
signalFcn->SetParameters (&par([3]);
signalFcn->Draw ("same") ;

For another example see: http://root.cern.ch/root/html/examples/backsig.C.html

Figure 5-3 The output of the FittingDemo() example

et = 3

Eile Edit ¥iew Options Inspect Classes Help

|Lorentzian Peak on Quadratic Backgroud examplie_3 1
Hent=0

Mean = 1.56
RMS = 0.7277

90

80

70

60

50

40

30

20

10

+H|IIII|IIII|IIIIIIIII|IIII|IIII|IIII|IIII|II

July 2007 v5.16 Fitting Histograms

71

http://root.cern.ch/root/html/examples/backsig.C.html

Associated Function

One or more objects (typically a TF1*) can be added to the list of functions (fFunctions) associated to each
histogram. A call to TH1: :Fit adds the fitted function to this list. Given a histogram h, one can retrieve the
associated function with:

| TF1l *myfunc = h->GetFunction ("myfunc");

Access to the Fit Parameters and Results

If the histogram (or graph) is made persistent, the list of associated functions is also persistent. Retrieve a
pointer to the function with the TH1: : GetFunction () method. Then you can retrieve the fit parameters from
the function (TF1) with calls such as:

root[] TFl1l *fit = hist->GetFunction(function_name) ;
root[] Double_t chi2 = fit->GetChisquare()

// value of the first parameter

root[] Double_t pl = fit->GetParameter (0);

// error of the first parameter

root[] Double t el = fit->GetParError (0);

Associated Errors

By default, for each bin, the sum of weights is computed at fill time. One can also call TH1: : Sumw2 to force the
storage and computation of the sum of the square of weights per bin. If Sumw2 has been called, the error per bin
is computed as the sqrt (sum of squares of weights) ; otherwise, the error is set equal to the sqrt (bin
content). To return the error for a given bin number, do:

Double t error = h->GetBinError (bin);

Empty bins are excluded in the fit when using the Chi-square fit method. When fitting the histogram with the low
statistics, it is recommended to use the Log-Likelihood method (option ‘L’ or “L.L”).

Fit Statistics

You can change the statistics box to display the fit parameters with the TStyle: : SetOptFit (mode) method.
This parameter has four digits: mode = pcev (default = 0111)

e p =1 print probability

e ¢ =1 print Chi-square/number of degrees of freedom
e e =1 print errors (if e=1, v must be 1)
e v =1 print name/values of parameters

For example, to print the fit probability, parameter names/values, and errors, use:

| gStyle->SetOptFit (1011);

The Minimization Package

This package was originally written in FORTRAN by Fred James and part of PACKLIB (patch D506). It has
been converted to a C++ class by Rene Brun. The current implementation in C++ is a straightforward
conversion of the original FORTRAN version. The main changes are:

e The variables in the various Minuit labeled common blocks have been changed to the
TMinuit class data members

e The internal arrays with a maximum dimension depending on the maximum number of
parameters are now data members’ arrays with a dynamic dimension such that one can fit very
large problems by simply initializing the TMinuit constructor with the maximum number of
parameters

e The include file Minuit.h has been commented as much as possible using existing comments
in the code or the printed documentation

e The original Minuit subroutines are now member functions

e Constructors and destructor have been added

e Instead of passing the FCN function in the argument list, the addresses of this function is stored
as pointer in the data members of the class. This is by far more elegant and flexible in an
interactive environment. The member function SetFCN can be used to define this pointer

72 Fitting Histograms July 2007 v5.16

e The ROOT static function Printf is provided to replace all format statements and to print on
currently defined output file

e The derived class TMinuit01d contains obsolete routines from the FORTRAN based version

e The functions SetObjectFit/GetObjectFit can be used inside the FCN function to set/get a
referenced object instead of using global variables

e By default fGraphicsMode is true. When calling the Minuit functions such as mncont,
mnscan, Or any Minuit command invoking mnplot, TMinuit::mnplot () produces a
TGraph object pointed by fP1ot. One can retrieve this object with TMinuit: :GetPlot () . For
example:

h->Fit ("gaus");

gMinuit->Command ("SCAn 1");

TGraph *gr = (TGraph*)gMinuit->GetPlot () ;
gr->SetMarkerStyle (21);

gr->Draw ("alp");

e TosetMinuit in no graphics mode, call

| gMinuit->SetGraphicsMode (kFALSE) ;

Basic Concepts of Minuit

The Minuit package acts on a multi parameter FORTRAN function to which one must give the generic name
FCN. In the ROOT implementation, the function FCN is defined via the Minuit SetFCN member function when
a HistogramFit command is invoked. The value of FCN will in general depend on one or more variable
parameters.

To take a simple example, in case of ROOT histograms (classes TH1C, TH1S, TH1F, TH1D) the Fit function
defines the Minuit fitting function as being H1FitChisquare or HlFitLikelihood depending on the
options selected. H1FitChisquare calculates the chi-square between the user fitting function (Gaussian,
polynomial, user defined, etc) and the data for given values of the parameters. It is the task of Minuit to find
those values of the parameters which give the lowest value of chi-square.

The Transformation of Limited Parameters

For variable parameters with limits, Minuit uses the following transformation:
Pint = arcsin (2 ((Pext-a)/(b-a))-1)
Pext = a+((b-a)/(2)) (sinPint+1)

so that the internal value Pint can take on any value, while the external value Pext can take on values only
between the lower limit a and the ext upper limit b. Since the transformation is necessarily non-linear, it would
transform a nice linear problem into a nasty non-linear one, which is the reason why limits should be avoided if
not necessary. In addition, the transformation does require some computer time, so it slows down the
computation a little bit, and more importantly, it introduces additional numerical inaccuracy into the problem in
addition to what is introduced in the numerical calculation of the FCN value. The effects of non-linearity and
numerical round off both become more important as the external value gets closer to one of the limits
(expressed as the distance to nearest limit divided by distance between limits). The user must therefore be
aware of the fact that, for example, if he puts limits of (0, 1010) on a parameter, then the values 0.0 and 1. 0 will
be indistinguishable to the accuracy of most machines.

The transformation also affects the parameter error matrix, of course, so Minuit does a transformation of the
error matrix (and the "parabolic" parameter errors) when there are parameter limits. Users should however
realize that the transformation is only a linear approximation, and that it cannot give a meaningful result if one or
more parameters is very close to a limit, where partial Pext/partial Pint#0. Therefore, it is recommended
that:

e Limits on variable parameters should be used only when needed in order to prevent the
parameter from taking on unphysical values

e When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysis without limits

How to Get the Right Answer from Minuit

Minuit offers the user a choice of several minimization algorithms. The MIGRAD algorithm is in general the
best minimized for nearly all functions. It is a variable-metric method with inexact line search, a stable metric
updating scheme, and checks for positive-definiteness. Its main weakness is that it depends heavily on
knowledge of the first derivatives, and fails miserably if they are very inaccurate.

If parameter limits are needed, in spite of the side effects, then the user should be aware of the following
techniques to alleviate problems caused by limits:

July 2007 v5.16 Fitting Histograms 73

Getting the Right Minimum with Limits

If MIGRAD converges normally to a point where no parameter is near one of its limits, then the existence of
limits has probably not prevented Minuit from finding the right minimum. On the other hand, if one or more
parameters is near its limit at the minimum, this may be because the true minimum is indeed at a limit, or it may
be because the minimized has become "blocked" at a limit. This may normally happen only if the parameter is
so close to a limit (internal value at an odd multiple of # ((pi) / (2)) thatMinuit prints a warning to this effect
when it prints the parameter values. The minimized can become blocked at a limit, because at a limit the
derivative seen by the minimized partial F/partial Pint is zero no matter what the real derivative
partial F/partial Pextis.

((partial F)/(partial Pint)) =
((partial F)/(partial Pext)) ((partial Pext)/(partial Pint)) =
((partial F)/(partial Pext))

Il
o

Getting the Right Parameter Errors with Limits

In the best case, where the minimum is far from any limits, Minuit will correctly transform the error matrix, and
the parameter errors it reports should be accurate and very close to those you would have got without limits. In
other cases (which should be more common, since otherwise you would not need limits), the very meaning of
parameter errors becomes problematic. Mathematically, since the limit is an absolute constraint on the
parameter, a parameter at its limit has no error, at least in one direction. The error matrix, which can assign only
symmetric errors, then becomes essentially meaningless.

Interpretation of Parameter Errors

There are two kinds of problems that can arise: the reliability of Minuit’s error estimates, and their statistical
interpretation, assuming they are accurate.

Statistical Interpretation

For discussion of basic concepts, such as the meaning of the elements of the error matrix, or setting of exact
confidence levels see the articles:

o F.James. Determining the statistical Significance of experimental Results. Technical Report
DD/81/02 and CERN Report 81-03, CERN, 1981

e W.T.Eadie, D.Drijard, F.James, M.Roos, and B.Sadoulet. Statistical Methods in Experimental
Physics. North-Holland, 1971

Reliability of Minuit Error Estimates

Minuit always carries around its own current estimates of the parameter errors, which it will print out on
request, no matter how accurate they are at any given point in the execution. For example, at initialization,
these estimates are just the starting step sizes as specified by the user. After a HESSE step, the errors are
usually quite accurate, unless there has been a problem. Minuit, when it prints out error values, also gives
some indication of how reliable it thinks they are. For example, those marked CURRENT GUESS ERROR are only
working values not to be believed, and APPROXIMATE ERROR means that they have been calculated but there
is reason to believe that they may not be accurate.

If no mitigating adjective is given, then at least Minuit believes the errors are accurate, although there is
always a small chance that Minuit has been fooled. Some visible signs that Minuit may have been fooled:

o Warning messages produced during the minimization or error analysis

e Failure to find new minimum

e Value of EDM too big (estimated Distance to Minimum)

e Correlation coefficients exactly equal to zero, unless some parameters are known to be
uncorrelated with the others

e Correlation coefficients very close to one (greater than 0.99). This indicates both an exceptionally
difficult problem, and one which has been badly parameterized so that individual errors are not
very meaningful because they are so highly correlated

e Parameter at limit. This condition, signaled by a Minuit warning message, may make both the
function minimum and parameter errors unreliable. See the discussion above ‘Getting the right
parameter errors with limits'

The best way to be absolutely sure of the errors is to use "independent" calculations and compare them, or
compare the calculated errors with a picture of the function. Theoretically, the covariance matrix for a "physical"
function must be positive-definite at the minimum, although it may not be so for all points far away from the
minimum, even for a well-determined physical problem. Therefore, if MIGRAD reports that it has found a non-
positive-definite covariance matrix, this may be a sign of one or more of the following:

74

Fitting Histograms July 2007 v5.16

A Non-physical Region

On its way to the minimum, MIGRAD may have traversed a region that has unphysical behavior, which is of
course not a serious problem as long as it recovers and leaves such a region.

An Underdetermined Problem

If the matrix is not positive-definite even at the minimum, this may mean that the solution is not well defined, for
example that there are more unknowns than there are data points, or that the parameterization of the fit
contains a linear dependence. If this is the case, then Minuit (or any other program) cannot solve your
problem uniquely. The error matrix will necessarily be largely meaningless, so the user must remove the under
determinedness by reformulating the parameterization. Minuit cannot do this itself.

Numerical Inaccuracies

It is possible that the apparent lack of positive-definiteness is due to excessive round off errors in numerical
calculations (in the user function), or not enough precision. This is unlikely in general, but becomes more likely if
the number of free parameters is very large, or if the parameters are badly scaled (not all of the same order of
magnitude), and correlations are large. In any case, whether the non-positive-definiteness is real or only
numerical is largely irrelevant, since in both cases the error matrix will be unreliable and the minimum
suspicious.

An lll-posed Problem

For questions of parameter dependence, see the discussion above on positive-definiteness. Possible other
mathematical problems are the following:

e Excessive numerical round off - be especially careful of exponential and factorial functions which
get big very quickly and lose accuracy.

e Starting too far from the solution - the function may have unphysical local minima, especially at
infinity in some variables.

FUMILI Minimization Package

FUMILI is used to minimize Chi-square function or to search maximum of likelihood function. Experimentally
measured values F, are fitted with theoretical functions fi(x,, 67) , Where X, are coordinates, and @ - vector
of parameters. For better convergence Chi-square function has to be the following form

— 2
2 _13(£G.0-F,

2 25 o.

1

where o, are errors of the measured function. The minimum condition is:

oy’ &1 o[, . = .
L=Z—2-—"[fi(xi,6’)—Fi]=0, i=1l.m
00, “Fol 06,% " -

where m is the quantity of parameters. Expanding left part of this equation over parameter increments and
retaining only linear terms one gets

6 2 62 2
L) L322 o)
0,), » \0006,), .
here éo is some initial value of parameters. In general case:

'y’ Z": 1 a9, +Zn:(fi_Fi)' 2’ f,

0000, o’ 00, o’ 06,00,

In FUMILI algorithm for second derivatives of Chi-square approximate expression is used when last term in
previous equation is discarded. It is often done, not always wittingly, and sometimes causes troubles, for

example, if user wants to limit parameters with positive values by writing down ¢9i2 instead of §,. FUMILI will

J=1

fail if one tries minimize Zz = g2 (5) where g an arbitrary function is. Approximate value is:
2.2 n

Ko AR I S V)

06,00, "

2
So; 0,06,

1

July 2007 v5.16 Fitting Histograms 75

Then the equations for parameter increments are:

ox’ |
2| +¥e 60 ictm

0=6°

Remarkable feature of algorithm is the technique for step restriction. For an initial value of parameter 0° a
parallelepiped P, is built with the center at 0" and axes parallel to coordinate axes @,. The lengths of

parallelepiped sides along i -axis is 25, , where p, is such a value that the functions f/_(é) are quasi-linear
all over the parallelepiped. FUMILI takes into account simple linear inequalities in the form: Hi‘“i“ <6 <6™

They form parallelepiped P (P, may be deformed by P). Very similar step formulae are used in FUMILI for
negative logarithm of the likelihood function with the same idea - linearization of functional argument.

Neural Networks

Introduction

Neural Networks are used in various fields for data analysis and classification, both for research and
commercial institutions. Some randomly chosen examples are image analysis, financial movements’ predictions
and analysis, or sales forecast and product shipping optimization. In particles physics neural networks are
mainly used for classification tasks (signal over background discrimination). A vast majority of commonly used
neural networks are multilayer perceptrons. This implementation of multilayer perceptrons is inspired from the
MLPfit package, which remains one of the fastest tools for neural networks studies.

The MLP

Input vaues The multilayer perceptron is a simple feed-forward network with the following
structure showed on the left.

input layer

It is made of neurons characterized by a bias and weighted links in between - let's
weigimarix 1 call those links synapses. The input neurons receive the inputs, normalize them
and forward them to the first hidden layer. Each neuron in any subsequent layer
first computes a linear combination of the outputs of the previous layer. The output
weigtmatrix 2 of the neuron is then function of that combination with f being linear for output
neurons or a sigmoid for hidden layers.

hidden layer

output layer

Such a structure is very useful because of two theorems:

sUtpUtvalLeE 1. A linear combination of sigmoids can approximate any continuous function.

2. Trained with output=1 for the signal and 0 for the background, the approximated function of inputs x is the
probability of signal, knowing X.

Learning Methods

The aim of all learning methods is to minimize the total error on a set of weighted examples. The error is defined
as the sum in quadrate, divided by two, of the error on each individual output neuron. In all methods
implemented in this library, one needs to compute the first derivative of that error with respect to the weights.
Exploiting the well-known properties of the derivative, one can express this derivative as the product of the local
partial derivative by the weighted sum of the outputs derivatives (for a neuron) or as the product of the input
value with the local partial derivative of the output neuron (for a synapse). This computation is called "back-
propagation of the errors". Six learning methods are implemented.

Stochastic Minimization

This is the most trivial learning method. The Robbins-Monro stochastic approximation is applied to multilayer
perceptrons. The weights are updated after each example according to the formula:

w(t+1)= w,(1)+A w, (1) Aw, (t)=—n(0e, low, +6)+eAw, (1—1)
The parameters for this method are Eta, EtaDecay, Delta and Epsilon.

Steepest Descent With Fixed Step Size (Batch Learning)

It is the same as the stochastic minimization, but the weights are updated after considering all the examples,
with the total derivative dEdw. The parameters for this method are Eta, EtaDecay, Delta and Epsilon.

76

Fitting Histograms July 2007 v5.16

Steepest Descent Algorithm

Weights are set to the minimum along the line defined by the gradient. The only parameter for this method is
Tau. Lower Tau = higher precision = slower search. A value Tau=3 seems reasonable.

Conjugate Gradients With the Polak-Ribiere Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau and
Reset, which defines the epochs where the direction is reset to the steepest descent (estimated by using the
Polak-Ribiere formula).

Conjugate Gradients With the Fletcher-Reeves Updating Formula

Weights are set to the minimum along the line defined by the conjugate gradient. Parameters are Tau and
Reset, which defines the epochs where the direction is reset to the steepest descent (estimated by using the
Fletcher-Reeves formula).

The Broyden, Fletcher, Goldfarb, Shanno (BFGS) Method

It implies the computation of a NxN matrix, but seems more powerful at least for less than 300 weights.
Parameters are Tau and Reset, which defines the epochs where the direction is reset to the steepest descent.

Using the Network

Neural network are build from a set of "samples". A sample is a set of values defining the inputs and the
corresponding output that the network should ideally provide. In ROOT this is a TTree entry. The first thing to
be decided is the network layout. This layout is described in a string where the layers are separated by
semicolons. The input/output layers are defined by giving the expression for each neuron, separated by comas.
Hidden layers are just described by the number of neurons.

In addition, input and output layer formulas can be preceded by '@' (e.g. "@out") if one wants to normalize the
corresponding value. Also, if the string ends with '!', output neurons are set up for classification, i.e. with a
sigmoid (1 neuron) or softmax (more neurons) activation function.

Many questions on the good usage of neural network, including rules of dumb to determine the best network
topology are addressed at ftp:/ftp.sas.com/pub/neural/FAQ.html

// a simple network: 2 inputs, 8 hidden and 1 normalized output neuron
TMultiLayerPerceptron network("r,z:10:@Br", tree);

Expressions are evaluated as for TTree: : Draw (). Input and outputs are taken from the TTree associated
with the network. This TTree can be given as argument of the constructor or defined later with
TMultilayerPerceptron: :SetData (). Events can also be weighted. The weight expression can be given
in the constructor or set later with the method SetWeight () of the class TMultilLayerPerceptron. Two
datasets must be defined before learning the network: a training dataset that is used when minimizing the error,
and a test dataset that will avoid bias. Those two datasets can be build aside and then given to the network, or
can be build from a standard expression. By default, half of the events are put in both datasets.

// a more complex 4:2:1 network

// the ptsumf branch is used as weigh; default event lists are explicit

TMultilLayerPerceptron network("m,pt,acol,acopl:8:type","pt", tree,
"Entry$%2", "Entry$/2") ;

The method TMultiLayerPerceptron::SetlLearningMethod () defines the learning method. Learning
methods are:

TMultilLayerPerceptron: :kStochastic,
TMultiLayerPerceptron: :kBatch,
TMultilLayerPerceptron: :kSteepestDescent,
TMultiLayerPerceptron: :kRibierePolak,
TMultiLayerPerceptron: :kFletcherReeves,
TMultiLayerPerceptron: : kBFGS // default

The training can start with TMultiLayerPerceptron: :Train (Int_t nepoch,Option t* options).
The first argument is the number of epochs while option is a string that can contain "text" (simple text output),

"graph" (evaluating graphical training curves), "update = X" (step for the text/graph output update) or "+" (will
skip the randomization and start from the previous values). All combinations are available.

network.Train (1000, "text,graph,update=10"); //full output every 10 epochs
network.Train (100, "text,+"); //100 more epochs
//starts with existing weights

The weights can be saved to a file (DumpWeights) and then reloaded (LoadWeights) to a new compatible
network. The output can also be evaluated (Evaluate) for a given output neuron and an array of double input

July 2007 v5.16 Fitting Histograms 77

ftp://ftp.sas.com/pub/neural/FAQ.html

parameters or the network can be exported (Export) as a standalone code. Up to now, this is only as a C++ or
PYTHON class, but other languages could be implemented.

Examples

An example of how to use TMultilayerPerceptron is the macro mlpHiggs.C in SROOTSYS/tutorials.
Using some standard simulated information that could have been obtained at LEP, a neural network is build,
which can make the difference between Ww events and events containing a Higgs boson. Starting with a TFile
containing two TTrees: one for the signal, the other for the background, a simple script is used:

void mlpHiggs (Int t ntrain=100)
{ if (!gROOT->GetClass ("TMultilayerPerceptron"))
gSystem->Load ("1ibMLP") ;
// prepare inputs - the 2 trees are merged into one, and a "type"
// branch, equal to 1 for the signal and 0 for the background is added
TFile input ("mlpHiggs.root");
TTree *signal = (TTree *)input.Get("sig filtered");
TTree *background = (TTree *)input.Get("bg filtered");
TTree *simu = new TTree ("MonteCarlo","Filtered Monte Carlo Events");

Since the input is a TTree and we are starting from two different TTrees (with different names), they are first
merged into one, and a "type" branch is added, that says whether there is a signal or a background event.
Those irrelevant details are skipped here.

TMultiLayerPerceptron *mlp = new TMultilLayerPerceptron ("msumf,ptsumf, acolin,
acopl:8:type", "ptsumf", simu, "Entry$%2", "Entry$/2") ;
mlp->Train(ntrain, "text,graph,update=10");

The neural network is instantiated and trained. "ptsumf" is used as a weight, and the standard event lists are
explicit. The network that is then build has four input neurons, eight additional ones in the only hidden layer and
one single output neuron.

// Use the NN to plot the results for each sample

TH1F *bg = new TH1F ("bgh","NN output",50,-.5,1.5);

TH1F *sig = new TH1F("sigh","NN output",50,-.5,1.5);

bg->SetDirectory (0) ;

sig->SetDirectory (0);

Double t params([4];

for (i = 0; i < background->GetEntries(); i++) {
background->GetEntry (i) ;
params[0] = msumf; params[l] = ptsumf;
params[2] = acolin; params[3] = acopl;
bg->Fill (mlp->Evaluate (0, params)) ;

}

for (i = 0; i < signal->GetEntries(); i++) {
signal->GetEntry (i) ;

params[0] = msumf;
params[l] = ptsumf;
params[2] = acolin;
params[3] = acopl;

sig->Fill (mlp->Evaluate (0, params)) ;
}
TCanvas *cv = new TCanvas("NNout_cv","Neural net output");
bg->SetFillStyle (3008) ;
bg->SetFillColor (kBlue) ;
sig->SetFillStyle (3003);
sig->SetFillColor (kRed)
bg->SetStats (0) ;
sig->SetStats (0) ;
bg->Draw () ;
sig->Draw ("same") ;
TLegend *legend = new TLegend(.75,.80,.95,.95);
legend->AddEntry (bg, "Background (WW) ") ;
legend->AddEntry (sig, "Signal (Higgs)") ;
legend->Draw () ;

’

The neural net output is then used to display the final difference between background and signal events. The
next figure shows this plot.

Fitting Histograms July 2007 v5.16

Figure 5-4 The neural net output
NN output

300 Background (WW)

Signal (Higas)

250

150

100

-04 0.2 0 02 04 06 038 1 1.2 14

As it can be seen, this is a quite efficient technique. As mentioned earlier, neural networks are also used for
fitting function. For some application with a cylindrical symmetry, a magnetic field simulation gives as output the
angular component of the potential vector 2, as well as the radial and z components of the B field.

One wants to fit those distributions with a function in order to plug them into the Geant simulation code.
Polynomial fits could be tried, but it seems difficult to reach the desired precision over the full range. One could
also use a spline interpolation between known points. In all cases, the resulting field would not be c-infinite.

An example of output (for Br) is shown. First the initial function can be seen as the target. Then, the resulting
(normalized) neural net output. In order to ease the learning, the "normalize output" was used here. The initial
amplitude can be recovered by multiplying by the original RMS and then shifting by the original mean.

Figure 5-5 The original and the neural net for Br

Original Neural Net

e
G

il L]
It !gi 5
i ey
7 1 i

£

£
S
n"d’i'.;ﬂ

i
7
bt

i

=
ot
1

S5

i
=
S

July 2007 v5.16 Fitting Histograms 79

6 A Little C++

This chapter introduces you to some useful insights into C++, to allow you to use of the most advanced features
in ROOT. It is in no case a full course in C++.

Classes, Methods and Constructors

C++ extends C with the notion of class. If you're used to structures in C, a class is a struct that is a group of
related variables, which is extended with functions and routines specific to this structure (class). What is the
interest? Consider a struct that is defined this way:

struct Line {
float x1;
float yl;
float x2;
float y2; 1}

This structure represents a line to be drawn in a graphical window. (x1,y1) are the coordinates of the first
point, (x2,y2) the coordinates of the second point. In the standard C, if you want to draw effectively such a
line, you first have to define a structure and initialize the points (you can try this):

Line firstline;
firstline.x1l =
firstline.yl =
firstline.x?2
firstline.y2 = 0.9

O O O
@0 NN

’
’
’
’

This defines a line going from the point (0.2, 0.2) to the point (0.8, 0.9). To draw this line, you will have to
write a function, say LineDraw (Line 1) and call it with your object as argument:

LineDraw (firstline);

In C++, we would not do that. We would instead define a class like this:

class TLine {
Double t x1;
Double t yl;
Double t x2;
Double t y2;
TLine (int x1, int yl, int x2, int y2);
void Draw () ;

}

Here we added two functions, that we will call methods or member functions, to the TLine class. The first
method is used for initializing the line objects we would build. It is called a constructor. The second one is the
Draw method itself. Therefore, to build and draw a line, we have to do:

TLine 1(0.2,0.2,0.8,0.9);
1.Draw () ;

The first line builds the object 1 by calling its constructor. The second line calls the TLine: : Draw () method of
this object. You don’t need to pass any parameters to this method since it applies to the object 1, which knows
the coordinates of the line. These are internal variables x1, y1, x2, y2 that were initialized by the constructor.

Inheritance and Data Encapsulation

We have defined a TLine class that contains everything necessary to draw a line. If we want to draw an arrow,
is it so different from drawing a line? We just have to draw a triangle at one end. It would be very inefficient to
define the class TArrow from scratch. Fortunately, inheritance allows a class to be defined from an existing
class. We would write something like:

class TArrow : public TLine {
int ArrowHeadSize;
void Draw () ;
void SetArrowSize (int arrowsize); }

The keyword "public" will be explained later. The class TArrow now contains everything that the class TLine
does, and a couple of things more, the size of the arrowhead and a function that can change it. The Draw

July 2007 v5.16 A Little C++ 81

method of TArrow will draw the head and call the draw method of TLine. We just have to write the code for
drawing the head!

Method Overriding

Giving the same name to a method (remember: method = member function of a class) in the child class
(TArrow) as in the parent (TLine) does not give any problem. This is called overriding a method. Draw in
TArrow overrides Draw in TLine. There is no possible ambiguity since, when one calls the Draw () method;
this applies to an object which type is known. Suppose we have an object 1 of type TLine and an object a of
type TArrow. When you want to draw the line, you do:

1.Draw ()

Draw () from TLine is called. If you do:

a.Draw ()

Draw () from TArrow is called and the arrow a is drawn.

Data Encapsulation

We have seen previously the keyword "public". This keyword means that every name declared public is seen
by the outside world. This is opposed to "private" that means only the class where the name was declared
private could see this name. For example, suppose we declare in TArrow the variable ArrowHeadSize
private.

private:
int ArrowHeadSize;

Then, only the methods (i.e. member functions) of TArrow will be able to access this variable. Nobody else will
see it. Even the classes that we could derive from TArrow will not see it. On the other hand, if we declare the
method Draw () as public, everybody will be able to see it and use it. You see that the character public or
private does not depend of the type of argument. It can be a data member, a member function, or even a class.
For example, in the case of TArrow, the base class TLine is declared as public:

class TArrow : public TLine {

This means that all methods of TArrow will be able to access all methods of TLine, but this will be also true for
anybody in the outside world. Of course, this is true if TLine accepts the outside world to see its methods/data
members. If something is declared private in TLine, nobody will see it, not even TArrow members, even if
TLine is declared as a public base class.

What if TLine is declared "private" instead of "public"? Well, it will behave as any other name declared
private in TArrow: only the data members and methods of TArrow will be able to access TLine, its methods
and data members, nobody else. This may seem a little bit confusing and readers should read a good C++ book
if they want more details. Especially since, besides public and private, a member can be protected. Usually, one
puts private the methods that the class uses internally, like some utilities classes, and that the programmer does
not want to be seen in the outside world.

With "good" C++ practice (which we have tried to use in ROOT), all data members of a class are private. This is
called data encapsulation and is one of the strongest advantages of Object Oriented Programming (OOP).
Private data members of a class are not visible, except to the class itself. So, from the outside world, if one
wants to access those data members, one should use so called "getters" and "setters" methods, which are
special methods used only to get or set the data members. The advantage is that if the programmers want to
modify the inner workings of their classes, they can do so without changing what the user sees. The user does
not even have to know that something has changed (for the better, hopefully). For example, in our TArrow
class, we would have set the data member ArrowHeadSize private. The setter method is SetArrowSize (),
we do not need a getter method:

class TArrow : public TLine {
private:
int ArrowHeadSize;
public:
void Draw () ;
volid SetArrowSize (int arrowsize);

}

To define an arrow object you call the constructor. This will also call the constructor of TLine, which is the
parent class of TArrow, automatically. Then we can call any of the line or arrow public methods:

root[] TArrow *myarrow = new TArrow(1l,5,89,124);
root[] myarrow->SetArrowSize (10) ;
root[] myarrow->Draw() ;

82

A Little C++ July 2007 v5.16

Creating Objects on the Stack and Heap

To explain how objects are created on the stack and on the heap we will use the Quad class. You can find the
definition in $SROOTSYS/tutorials/quadp/Quad.h and Quad.cxx. The Quad class has four methods. The
constructor and destructor, Evaluate that evaluates ax**2 + bx +c, and Solve which solves the quadratic
equation ax**2 + bx +c = 0.

Quad.h

class Quad {
public:
Quad (Float t a, Float t b, Float t c);
~Quad () ;
Float t Evaluate(Float t x) const;
void Solve () const;
private:
Float t fA;
Float t fB;
Float t fC;
i

Quad.cxx

#include
#include
#include

<iostream.h>
<math.h>
"Quad.h"

Quad: :Quad(Float t a, Float t b, Float t c) {

fA = a;
fB = b;
fC = c;

}
Quad: :~Quad () {
Cout <<"deleting object with coeffts: "<< fA << "," << fB << ", " << fC << endl;
}
Float t Quad::Evaluate(Float t x) const ({
return fA*x*x + fB*x + fC;
}
void Quad::Solve () const {
Float t temp = fB*fB - 4.*fA*fC;
if (temp > 0.) {
temp = sqgrt(temp);
cout << "There are two roots: " << (-fB - temp) / (2.*fR)
<< " and " << (-fB + temp) / (2.*fA) << endl;
} else {
if (temp == 0.) {
cout << "There are two equal roots: " << -fB / (2.*fA) << endl;
} else {
cout << "There are no roots" << endl;

}

}
Let us first look how we create an object. When we create an object by:

root[] Quad my object(l.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be familiar with the idea; it is not unlike a
local variable in a function or subroutine. Although there are still a few old timers who do not know it, FORTRAN
is under no obligation to save local variables once the function or subroutine returns unless the SAVE statement
is used. If not then it is likely that FORTRAN will place them on the stack and they will "pop off" when the
RETURN statement is reached. To give an object more permanence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad *my objptr = new Quad(l.,2.,-3.);

The second line declares a pointer to Quad called my objptr. From the syntax point of view, this is just like all
the other declarations we have seen so far, i.e. this is a stack variable. The value of the pointer is set equal to

new Quad(l.,2.,-3.);

new, despite its looks, is an operator and creates an object or variable of the type that comes next, Quad in this
case, on the heap. Just as with stack objects it has to be initialized by calling its constructor. The syntax
requires that the argument list follow the type. This one statement has brought two items into existence, one on
the heap and one on the stack. The heap object will live until the delete operator is applied to it.

July 2007 v5.16 A Little C++ 83

There is no FORTRAN parallel to a heap object; variables either come or go as control passes in and out of a
function or subroutine, or, like a COMMON block variables, live for the lifetime of the program. However, most
people in HEP who use FORTRAN will have experience of a memory manager and the act of creating a bank is
a good equivalent of a heap object. For those who know systems like ZEBRA, it will come as a relief to learn
that objects do not move, C++ does not garbage collect, so there is never a danger that a pointer to an object
becomes invalid for that reason. However, having created an object, it is the user's responsibility to ensure that
it is deleted when no longer needed, or to pass that responsibility onto to some other object. Failing to do that
will result in a memory leak, one of the most common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the "->" operator e.g.:

root[] my_objptr->Solve();

Although we chose to call our pointer my objptr, to emphasize that it is a pointer, heap objects are so
common in an object-oriented program that pointer names rarely reflect the fact - you have to be careful that
you know if you are dealing with an object or its pointer! Fortunately, the compiler won't tolerate an attempt to
do something like:

root[] my objptr.Solve();

Although this is a permitted by the CINT shortcuts, it is one that you are strongly advised not to follow! As we
have seen, heap objects have to be accessed via pointers, whereas stack objects can be accessed directly.
They can also be accessed via pointers:

root[] Quad stack_quad(l.,2.,-3.);
root[] Quad *stack_ptr = &stack_quad;
root[] stack_ptr->Solve();

Here we have a Quad pointer that has been initialized with the address of a stack object. Be very careful if you
take the address of stack objects. As we shall see soon, they are deleted automatically, which could leave you
with an illegal pointer. Using it will corrupt and may well crash the program!

It is time to look at the destruction of objects. A destructor is a special C++ function that releases resources for
(or destroy) an object of a class. It is opposite of a constructor that create the object of a class when is called.
The compiler will provide a destructor that does nothing if none is provided. We will add one to our Quad class
so that we can see when it is called. The class names the destructor but with a prefix ~ which is the C++ one's
complement i.e. bit wise complement, and hence has destruction overtones! We declare it in the .h file and
define it in the .cxx file. It does not do much except print out that it has been called (still a useful debug
technique despite today's powerful debuggers!).

Now run root, load the Quad class and create a heap object:

root[] .L Quad.cxx
root[] Quad *my objptr = new Quad(l.,2.,-3.);

To delete the object:

root[] delete my objptr;
root[] my_objptr = 0;

You should see the print out from its destructor. Setting the pointer to zero afterwards is not strictly necessary
(and CINT does it automatically), but the object is no more accessible, and any attempt to use the pointer again
will, as has already been stated, cause grief. So much for heap objects, but how are stack objects deleted? In
C++, a stack object is deleted as soon as control leaves the innermost compound statement that encloses it.
Therefore, it is singularly futile to do something like:

root[] { Quad my object(l.,2.,-3.); }

CINT does not follow this rule; if you type in the above line, you will not see the destructor message. As
explained in the Script lesson, you can load in compound statements, which would be a bit pointless if
everything disappeared as soon as it was loaded! Instead, to reset the stack you have to type:

root[] gROOT->Reset() ;

This sends the Reset message via the global pointer to the ROOT object, which, amongst its many roles, acts
as a resource manager. Start ROOT again and type in the following:

root[] .L Quad.cxx

root[] Quad my_ object(l.,2.,-3.);

root[] Quad *my objptr = new Quad(4.,5.,-6.);
root[] gROOT->Reset() ;

You will see that this deletes the first object but not the second. We have also painted ourselves into a corner,
asmy_objptr was also on the stack. This command will fail.

root[] my objptr->Solve() ;

CINT no longer knows what my objptr is. This is a great example of a memory leak; the heap object exists
but we have lost our way to access it. In general, this is not a problem. If any object will outlive the compound
statement in which it was created then a more permanent pointer will point to it, which frequently is part of
another heap object. See Resetting the Interpreter Environment in the chapter “CINT the C++ Interpreter”.

84

A Little C++ July 2007 v5.16

7 CINT the C++ Interpreter

The subject of this chapter is CINT, ROOT command line interpreter and script processor. First, we explain
what CINT is and why ROOT uses it. Then we discuss CINT as the command line interpreter, the CINT
commands, and CINT extensions to C++ are discussed. CINT as the script interpreter is explained and
illustrated with several examples.

What is CINT?

CINT, which is pronounced ['sint], is a C++ interpreter. An interpreter takes a program, in this case a C++
program, and carries it out by examining each instruction and in turn executing the equivalent sequence of
machine language. For example, an interpreter translates and executes each statement in the body of a loop
"n" times. It does not generate a machine language program. This may not be a good example, because most
interpreters have become 'smart' about loop processing.

A compiler on the other hand, takes a program and makes a machine language executable. Once compiled the
execution is very fast, which makes a compiler best suited for the case of "built once, run many times". For
example, the ROOT executable is compiled occasionally and executed many times. It takes anywhere from 1 to
45 minutes to compile ROOT for the first time (depending on the CPU). Once compiled it runs very fast. On the
average, a compiled program runs roughly ten times faster than an interpreted one. Because compiling is slow,
using a compiler is cumbersome for rapid prototyping when one changes and rebuilds as often as once per
minute. An interpreter, on the other hand, is the perfect tool for code that changes often and runs a few times.
Most of the time, interpreters are built for scripting languages, such as JavaScript, IDL, or Python. These
languages are specifically designed to be interpreted rather than compiled. The advantage of using a normally
compiled language is that code can be compiled once the prototype is debugged and refined. CINT is a C++
interpreter, making it a tool for rapid prototyping and scripting in C++. It is a stand-alone product developed by
Masaharu Goto. Its executable comes with the standard distribution of ROOT ($ROOTSYS/bin/cint), and it
can be installed separately from http://root.cern.ch/twiki/bin/view/ROOT/CINT. This page also has links to all the
CINT documentation. The downloadable tar file contains documentation, the CINT executable, and many demo
scripts that are not included in the regular ROOT distribution. Here is the list of CINT main features:
e Supports K&R-C, ANSI-C, and ANSI-C++
e CINT covers 85-95% of the C++, ANSI-C and K&R-C language constructs. It supports multiple
inheritance, virtual function, function overloading, operator overloading, default parameters,
templates, and much more. CINT is robust enough to interpret its own source code. CINT is not
designed to be a 100% ANSI/ISO compliant C++ language processor. It is a portable scripting
language environment, which is close enough to the standard C++.
e Interprets Large C/C++ source code
e CINT can handle huge C/C++ source code, and loads source files quickly. It can interpret its own,
over 70,000 lines source code — more than 150,000 lines.
e Enables mixing Interpretation & Native Code
o Depending on the need for execution speed or the need for interaction, one can mix native code
execution and interpretation. "makecint" encapsulates arbitrary C/C++ objects as precompiled
libraries. A precompiled library can be configured as a dynamically linked library. Accessing
interpreted code and precompiled code can be done seamlessly in both directions.
e Provides a Single-Language solution
e CINT/makecint is a single-language environment. It works with any ANSI-C/C++ compiler to
provide the interpreter environment on top of it.
o Simplifies C++
e CINT is meant to bring C++ to the non-software professional. C++ is simpler to use in the
interpreter environment. It helps the non-software professional (the domain expert) to talk the
same language as the software counterpart.

e Provides RTTl and a Command Line

e CINT can process C++ statements from command line, dynamically define/erase class definition
and functions; load/unload source files and libraries. Extended Run Time Type ldentification is
provided, allowing you to explore imaginative new ways of using C++.

e Has a Built-in Debugger and Class Browser

e CINT has a built-in debugger for complex C++ code and a text based class browser is part of it.

e |tis portable.

e CINT works on number of operating systems: HP-UX, Linux, SunOS, Solaris, AIX, Alpha-
OSF, IRIX, FreeBSD, NetBSD, NEC EWS4800, NewsOS, BeBox, WindowsNT, Windows9x, MS—
DOS, MacOS, VMS, NextStep, Convex.

July 2007 v5.16 CINT the C++ Interpreter 85

http://root.cern.ch/twiki/bin/view/ROOT/CINT

The ROOT Command Line Interface

Start up a ROOT session by typing root at the system prompt.

> root
R i i b I I i I b b I I b b b I b b b b b b i I b b b 2 b b b b b b S 2 b (i g

*

WELCOME to ROOT

Version 5.16/00 27 June 2007

http://root.cern.ch

ok X X X ok % % X

*
*
*
* You are welcome to visit our Web site
*
*
*

KA KAKRAKRKA AR A AR A AR AR A AR AR A AR AR A AR A AR AR Ak Kk kK

FreeType Engine v2.1.9 used to render TrueType fonts.
Compiled on 28 June 2007 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.21, June 22, 2007
Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root[0]

Now we create a TLine object:

root[] TLine 1

root[] 1l.Print()

TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root[] 1.SetX1l(10)

root[] 1l.Set¥1l(1ll)

root[] 1l.Print()

TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root[] .g

0x4038f080 class TLine 1 , size=40

0x0 protected: Double t £fX1 //X of 1st point
0x0 protected: Double t fY1 //Y of 1st point
0x0 protected: Double t £fX2 //X of 2nd point
0x0 protected: Double t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA

Here we note:
e Terminating with *; ‘ is not required, see “ROOT/CINT Extensions to C++”.
e Emacs style command line editing.
e Raw interpreter commands start with a dot (.).

root[] .class TLine

class TLine //A line segment
size=0x38
(tagnum=289,voffset=-1,isabstract=0,parent=-1,gcomp=0:-1,d21=~cd=£7)
List of base class-—--—-—""""""=""-"-""""—"—"—"—-—"—-"—-—————
0x0 public: TObject //Basic ROOT object
0xc public: TAttLine //Line attributes
List of member variable---——————-----"--"-""------——
Defined in TLine

(compiled) 0x0 protected: Double t fX1 //X of 1lst point
(compiled) 0x0 protected: Double t fY1 //Y of 1st point
(compiled) 0x0 protected: Double t fX2 //X of 2nd point
(compiled) 0x0 protected: Double t fY2 //Y of 2nd point
(compiled) 0x8a3a718 static const enum TLine:: kLineNDC
(compiled) 0x0 private: static TClass* fgIsA

List of member function----------————————————————

filename line:size busy function type and name (in TLine)
(compiled) 0:0 0 public: virtual void ~TLine (void);
(compiled) 0:0 0 public: TLine TLine (void);

(compiled) 0:0 0 public: TLine TLine(Double t x1,Double t yl,Double t x2,

Double t y2);

86 CINT the C++ Interpreter July 2007 v5.16

(compiled) 0:0 0 public: TLine TLine(const TLine& line);
(compiled) 0:0 0 public: virtual void Copy(TObjecté& line) const;
(compiled) 0:0 0 public: virtual Int t DistancetoPrimitive(Int t px,Int t py);
(compiled) 0:0 0 public: static int ImplFileline (void);
(compiled) 0:0 0 public: static const char* ImplFileName (void) ;
(compiled) 0:0 0 public: static int DeclFilelLine (void);
(compiled) 0:0 0 public:TLine& operator=(const TLineg§) ;

root[] 1.Print(); > test.log

root[] 1.Dump(); >> test.log

root[] ?

Here we see:

e Use .class as quick help and reference

Unix like I/O redirection (; is required before >)

Use 2 to get help on all “raw" interpreter commands
Use @ to abort a multi-line command

Now let us execute a multi-line command:

root[] {

end with '}', 'Q@':abort > TLine 1;

end with '}', 'Q@':abort > for (int i = 0; 1 < 5; i++) {
end with '}', 'Q@':abort > 1.SetX1(i);

end with '}', '@Q':abort > 1l.SetY1l(i+l);

end with '}', 'Q@':abort > 1.Print();

end with '}', 'Q@':abort > }

end with '}', 'Q@':abort > }

TLine X1=0.000000 Y1=1.000000 X2=0.000000 Y2=0.000000
TLine X1=1.000000 Y1=2.000000 X2=0.000000 Y2=0.000000
TLine X1=2.000000 Y1=3.000000 X2=0.000000 Y2=0.000000
TLine X1=3.000000 Y1=4.000000 X2=0.000000 Y2=0.000000
TLine X1=4.000000 Y1=5.000000 X2=0.000000 Y2=0.000000
root[] .q

Here we note:

A multi-line command starts with a { and ends with a }.

Every line has to be correctly terminated with a ; (like in "real" C++).
All objects are created in global scope.

There is no way to back up; you are better off writing a script.

Use . g to exit root.

The ROOT Script Processor

ROOT script files contain pure C++ code. They can contain a simple sequence of statements like in the multi
command line example given above, but also arbitrarily complex class and function definitions.

Un-named Scripts

Let us start with a script containing a simple list of statements (like the multi-command line example given in the
previous section). This type of script must start with a { and end with a } and is called an un-named script.
Assume the file is called scriptl.C

{

#include <iostream.h>

cout << " Hello" << endl;

float x = 3.;

float y = 5.;

int i = 101;

cout <<M" x = "<K<x<KL" y = "<K<y<<" 1= "<<i<< endl;

}
To execute the stream of statements in scriptl.C do:

root[] .x scriptl.C |

This loads the contents of file scriptl.C and executes all statements in the interpreter's global scope. One
can re-execute the statements by re-issuing ".x scriptl.cC" (since there is no function entry point). Scripts
are searched for in the Root .MacroPath as defined in your .rootrc file. To check which script is being
executed use:

root[] .which scriptl.C

July 2007 v5.16 CINT the C++ Interpreter 87

| /home/rdm/root/./scriptl.C

Named Scripts

Let us change the un-named script to a named script. Copy the file scriptl.C to script2.C and add a
function statement:

#include <iostream.h>

int run/()

{
cout << " Hello" << endl;
float x = 3.;

float y = 5.;
int i= 101;
cout <<" x = "<< x <"y = "< y <" 1= "<< i << endl;

return 0;

}

Notice that no surrounding { } are required in this case. To execute function run () in script2.cC do:

root[] .L script2.C // load script in memory
root[] run() // execute entry point run
Hello

x=3y=251i=101

(int) 0

root[] run() // execute run() again
Hello

x=3y=251i=101

(int) 0

root[] .func // 1list all functions known by CINT
filename line:size busy function type and name
script2.C 4:9 0 public: int run();

The last command shows that run () has been loaded from file script2.cC, that the function run () starts on
line 4 and is 9 lines long. Notice that once a function has been loaded it becomes part of the system just like a
compiled function. Now we copy the file script2.C to the script3.C and change the function name from
run () to script3(int 7 = 10):

#include <iostream.h>

int script3(int j = 10) {
cout << " Hello" << endl;
float x = 3.;
float y = 5.;
int i=7;
cout <<" x =
return 0;

"< x <", vy ="Ky <", 1 ="<<1 << endl;

}

To execute script3 () in script3.cC type:

root[] .x script3.C(8)

This loads the contents of file script3.C and executes entry point script3 (8). Note that the above only
works when the filename (minus extension) and function entry point are both the same.

The function script3 () can still be executed multiple times:

root[] script3()
Hello

x =3, yv=5,1=10
(int) 0

root[] script3(33)
Hello

x =3, y=5, 1= 33
(int) 0

In a named script, the objects created on the stack are deleted when the function exits. For example, this
scenario is very common. You create a histogram in a named script on the stack. You draw the histogram, but
when the function exits the canvas is empty and the histogram disappeared. To avoid histogram from
disappearing you can create it on the heap (by using new). This will leave the histogram object intact, but the
pointer in the named script scope will be deleted. Since histograms (and trees) are added to the list of objects in
the current directory, you can always retrieve them to delete them if needed.

root[] TH1F *h = (TH1F*)gDirectory->Get ("myHist") ; // or

88

CINT the C++ Interpreter July 2007 v5.16

root[] TH1F *h = (TH1F*)gDirectory->GetList()->FindObject ("myHist") ;

In addition, histograms and trees are automatically deleted when the current directory is closed. This will
automatically take care of the clean up. See “Input/Output”.

Executing a Script from a Script

You may want to execute a script conditionally inside another script. To do it you need to call the interpreter and
you can do that with TROOT: : ProcessLine (). The example SROOTSYS/tutorials/tree/cernstaff.C
calls a script to build the root file if it does not exist:

void cernstaff () {
if (gSystem->AccessPathName ("cernstaff.root")) {
gROOT->ProcessLine (".x cernbuild.C");
}

ProcessLine takes a parameter, which is a pointer to an int or to a TInterpreter: :EErrorCode to let
you access the CINT error code after an attempt to interpret. This will contain the CINT error as defined in enum
TInterpreter: :EErrorCode

Resetting the Interpreter Environment

Variables created on the command line and in un-named scripts are in the interpreter's global scope, which
makes the variables created in un-named scripts available on the command line event after the script is done
executing. This is the opposite of a named script where the stack variables are deleted when the function in
which they are defined has finished execution.

When running an un-named script over again and this is frequently the case since un-named scripts are used to
prototype, one should reset the global environment to clear the variables. This is done by calling
gROOT->Reset (). It is good practice, and you will see this in the examples, to begin an un-named script with
gROOT->Reset (). It clears the global scope to the state just before executing the previous script (not including
any logon scripts). The gROOT->Reset () calls the destructor of the objects if the object was created on the
stack. If the object was created on the heap (via new) it is not deleted, but the variable is no longer associated
with it. Creating variables on the heap in un-named scripts and calling grROOT->Reset () without you calling
the destructor explicitly will cause a memory leak. This may be surprising, but it follows the scope rules. For
example, creating an object on the heap in a function (in a named script) without explicitly deleting it will also
cause a memory leak. Since when exiting the function only the stack variables are deleted. The code below
shows gROOT->Reset () calling the destructor for the stack variable, but not for the heap variable. In the end,
neither variable is available, but the memory for the heap variable is not released. Here is an example:

root[] gDebug =1

(const int)1

root[] TFile stackVar ("stack.root","RECREATE")

TKey Writing 86 bytes at address 64 for ID= stack.root Title=
root[] TFile *heapVar = new TFile ("heap.root","RECREATE")
TKey Writing 84 bytes at address 64 for ID= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two variables, one on the stack
and one on the heap.

root[] gROOT->Reset ()

TKey Writing 48 bytes at address 150 for ID= stack.root Title=
TKey Writing 54 bytes at address 198 for ID= stack.root Title=
TFile dtor called for stack.root

TDirectory dtor called for stack.root

When we call grOOT->Reset (), CINT tells us that the destructor is called for the stack variable, but it does not
mention the heap variable.

root[] stackVar

Error: No symbol stackVar in current scope FILE:/var/tmp/faaa0ljWe cint LINE:1
*** Interpreter error recovered ***

root[] heapVar

Error: No symbol heapVar in current scope FILE:/var/tmp/gaaa0ljWe cint LINE:1
*** Interpreter error recovered ***

Neither variable is available in after the call to reset.

root[] gROOT->FindObject("stack.root")
(class TObject*)0x0

root[] gROOT->FindObject ("heap.root")
(class TObject*)0x106bfb30

The object on the stack is deleted and shows a null pointer when we do a FindObject. However, the heap
object is still around and taking up memory.

July 2007 v5.16 CINT the C++ Interpreter 89

Note gROOT->Reset () should be never called in a named script or a compiled program.

A Script Containing a Class Definition

Lets create a small class TMyClass and a derived class TChild. The virtual method TMyClass: :Print () is
overridden in TChild. Save this in file called script4.cC.

#include <iostream.h>

class TMyClass {
private:
float £X; //x position in centimeters
float fy; //y position in centimeters
public:
TMyClass () { fX = fYy = -1; }
virtual void Print () const;
void SetX(float x) { fX = x; }
void SetY(float y) { fY v o}

}i
void TMyClass::Print () const // parent print method
{
cout << "fX = " << fX << ", fY = " << fY << endl;
}
class TChild : public TMyClass {
public:
void Print () const;
}i
void TChild::Print () const // child print metod
{
cout << "This is TChild::Print ()" << endl;
TMyClass: :Print () ;
}

To execute script4.cC do:

root[] .L script4.C
root[] TMyClass *a = new TChild
root[] a->Print()

This is TChild::Print ()
fX = -1, fy = -1

root[] a->SetX(10)
root[] a->SetY¥Y(12)
root[] a->Print()

This is TChild::Print ()
fX = 10, fYy = 12

root[] .class TMyClass

class TMyClass

size=0x8 FILE:script4.C LINE:3
List of base class-—-—-————""""""-"""—"—""—"—"—"—"—"—"—"—"—"—"—"—"—"—"———
List of member variable------—-——-----"-——————-—-—————————
Defined in TMyClass

0x0 private: float £X

0x4 private: float fY
List of member function-------------""""-"-"-"--"--"-"——————
Defined in TMyClass

filename line:size busy function type and name
scriptéd.C 16:5 0 public: class TMyClass TMyClass (void) ;
scriptéd.C 22:4 0 public: void Print (void);
scriptéd.C 12:1 0 public: void SetX(float x);
scriptd.C 13:1 0 public: void SetY(float vy);
root[] q

As you can see, an interpreted class behaves just like a compiled class.
There are some limitations for a class created in a script:

e They cannot inherit from TObject. Currently the interpreter cannot patch the virtual table of
compiled objects to reference interpreted objects.

e Because the I/O is encapsulated in TObject and a class defined in a script cannot inherit from
TObject, it cannot be written to a ROOT file.

See “Adding a Class” for ways how to add a class with a shared library and with ACLiC.

90

CINT the C++ Interpreter July 2007 v5.16

Debugging Scripts
A powerful feature of CINT is the ability to debug interpreted functions by means of setting breakpoints and

being able to single step through the code and print variable values on the way. Assume we have script4.C
still loaded, we can then do:

root[] .b TChild::Print
Break point set to line 26 script4.C
root[] a.Print()

26 TChild::Print () const

27 {

28 cout << "This is TChild::Print ()" << endl;
FILE:script4.C LINE:28 cint> .s

311 operator<<(ostreamé& ostr,G_CINT ENDL& i) {return(endl (ostr));
FILE:iostream.h LINE:311 cint> .s

}

This is TChild::Print ()

29 MyClass::Print () ;
FILE:script4.C LINE:29 cint> .s

16 MyClass::Print () const

17 {

18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:script4.C LINE:18 cint> .p £X
(float)1.000000000000e+01

FILE:script4.C LINE:18 cint> .s

311 operator<<(ostreamé& ostr,G_ CINT ENDL& i) {return (endl (ostr));
FILE:iostream.h LINE:311 cint> .s

}

fX = 10, fy = 12

19 }
30 }
2 }
root[] .q

Inspecting Objects

An object of a class inheriting from TObject can be inspected, with the Inspect () method. The
TObject: : Inspect method creates a window listing the current values of the objects members. For example,
the next picture is of TFile.

root[] TFile f("staff.root")
root[] f£.Inspect()

You can see the pointers are in red and can be clicked on to follow the pointer to the object. If you clicked on
fList, the list of objects in memory and there were none, no new canvas would be shown. On top of the page
are the navigation buttons to see the previous and next screen.

July 2007 v5.16 CINT the C++ Interpreter 91

Figure 7-1 ROOT object inspector of TFile

@ ROODT Object Inspector 9=l
Eile Edit ¥iew Options [nspect Classes Help
backward | forward |
TFile staff.root:0
Member Name Yalue Title

2] File descriptor
fBEGIN 64 First used byte in file
fEND 38474 Last used byte in file
fVersion 22500 File format version
1Compress 1 (=1 file is compressed, 0 otherwise)
fOption.*tData READ
fUnits 4 Neember of bytes for file pointers
iSeekFree 38420 Location on'disk of free segments structure
fNbytesFree 54 Number of bytes for free segments structure
f¥Written 0 Number of objects written so far
fSumBuffer 0 Sum of butffer sizes of objects written so far
{Sum2Bufter o Suin of squares of buffer sizes of objects written so far

fFree -0 Free segments linked list table

fBytesWrite 0 Number of bytes written to this file
fBytesRead 352 Number of bytes read from this file
iModitied 1 truee if directory has been modified
f¥ritable . g rrae if directory & writable
{DatimeC.ADatime 20001012/173203
fDatimeM.fDatime 20001012/173204
fNbytesKeys 116 Number of bytes for the keys

fNbytesName 56 Number of bytes in TNamed at creation time
fSeekDir 64 Location of directory on file

{SeekParent 0 Location of parent diveciory on file
iSeekKeys 38304 Location of Keys record on file
" fFile =>10711b80 | noinrer to curvent file in memory

iMother - pointer to mother 3}“ the directory
[List ->10613918 | “Fosnrer to objects list in memary

1Keys =>10711e08 | Posnter to keys list in memory
fName."fData stafl.root

fTitle."{Data
fUniquelD 0 object unique identifier
fBits 50331649 bit field status wor

Figure 7-2 The object inspector of fKeys, the list of keys in the memory

Help

a

File Edit View Options Inspect Classes
backward | forward |
THashList A Doubly linked list with hashtable for lookup
Meimber Name Valnc Titlc

*Table -+10711e30 Hashtable used for guick lookup of vbjects

*fFirst -:106a7dd0 pointer to first entry in linked lise

*fLast -:106a7dd0 pointer to last entry in linked list

*fCache —+0 cache to speedup sequentiad calling of Before() and After() functions

fAscending 0 sering order (when calling Soref) or For TSertedLise)

TSorted 0 trae if collection has been sorted

Name *Data

3ize 1 nmber of elements in collection

UniquelD 0 ebject unigue identifier

Bits 50331698 Bit fleld stazas word | _|;|
<] 4

ROOT/CINT Extensions to C++

In the next example, we demonstrate three of the most important extensions ROOT/CINT makes to C++. Start

ROOT in the directory $SROOTSYS/tutorials (make sure to have firstrun ".x hsimple.C")

root[] £.1s()
TFile**
TFile*
KEY: THI1F
KEY: TH2F

KEY: TNtuple

NULL

root[] .q

root[] £ = new TFile("hsimple.root")
(class TFile*)0x4045e690

hsimple.root
hsimple.root

hpx;1

This is the px distribution

hpxpy;1l py ps px
hprof;1 Profile of pz versus px

KEY: THProfile

ntuple;1

root[] hpx.Draw()

Warning in <MakeDefCanvas>:

Demo ntuple

creating a default canvas with name cl

92

CINT the C++ Interpreter

July 2007 v5.16

The first command shows the first extension; the declaration of f may be omitted when "new" is used. CINT will
correctly create f as pointer to object of class TFile.
The second extension is shown in the second command. Although f is a pointer to TFile we don't have to use

the pointer de-referencing syntax "->" but can use the simple "." notation.

The third extension is more important. In case CINT cannot find an object being referenced, it will ask ROOT to
search for an object with an identical name in the search path defined by TROOT: : FindObject (). If ROOT
finds the object, it returns CINT a pointer to this object and a pointer to its class definition and CINT will execute
the requested member function. This shortcut is quite natural for an interactive system and saves much typing.
In this example, ROOT searches for hpx and finds it in simple.root.

The fourth is shown below. There is no need to put a semicolon at the end of a line. The difference between
having it and leaving it off is that when you leave it off the return value of the command will be printed on the
next line. For example:

root[] 2345 // no semicolon prints the return value
(int) 28

root[] 23+5; // semicolon no return value is printed
root[]

Be aware that these extensions do not work when a compiler replaces the interpreter. Your code will not
compile, hence when writing large scripts, it is best to stay away from these shortcuts. It will save you from
having problems compiling your scripts using a real C++ compiler.

ACLIC - The Automatic Compiler of Libraries for CINT

Instead of having CINT interpret your script there is a way to have your scripts compiled, linked and dynamically
loaded using the C++ compiler and linker. The advantage of this is that your scripts will run with the speed of
compiled C++ and that you can use language constructs that are not fully supported by CINT. On the other
hand, you cannot use any CINT shortcuts (see ROOT/CINT Extensions to C++) and for small scripts, the
overhead of the compile/link cycle might be larger than just executing the script in the interpreter.

ACLIC will build a CINT dictionary and a shared library from your C++ script, using the compiler and the
compiler options that were used to compile the ROOT executable. You do not have to write a makefile
remembering the correct compiler options, and you do not have to exit ROOT.

Usage

Before you can compile your interpreted script you need to add include statements for the classes used in the
script. Once you did that, you can build and load a shared library containing your script. To load it use the
command .L and append the file name with a "+".

root[] .L MyScript.C+
root[] .files

*file="/home/./MyScript C.so"

The + option generates the shared library and names it by taking the name of the file "filename" but replacing
the dot before the extension by an underscore and by adding the shared library extension for the current
platform. For example on most platforms, hsimple.cxx will generate hsimple cxx.so. If we execute a
.files command we can see the newly created shared library is in the list of loaded files.

The + command rebuild the library only if the script or any of the files it includes are newer than the library.
When checking the timestamp, ACLIC generates a dependency file which name is the same as the library
name, just replacing the 'so' extension by the extension 'd’. For example on most platforms, hsimple.cxx will
generate hsimple cxx.d.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++

To build, load, and execute the function with the same name as the file you can use the .x command. This is
the same as executing a named script. You can have parameters and use .x or .X. The only difference is you
need to append a + or a ++.

root[] .x MyScript.C+ (4000)
Creating shared library /home/./MyScript C.so

You can select whether the script in compiled with debug symbol or with optimization by appending the letter 'g'
or 'O' after the '+' or "++'. Without the specification, the script is compiled with the same level of debugging
symbol and optimization as the currently running ROOT executable. For example:

root[] .L MyScript.C++g

will compile MyScript.C with debug symbols; usually this means giving the -g option to compiler.

July 2007 v5.16 CINT the C++ Interpreter 93

[root[] .L MyScript.C++0 |

will compile MyScript.C with optimizations; usually this means giving the -O option to compiler. The syntax:
| root[] .L MyScript.C++ |

is using the default optimization level. The initial default is to compile with the same level of optimization as the
root executable itself. The default can be changed by:

root[] gSystem->SetAclicMode (TSystem: :kDebug) ;
root[] gSystem->SetAclicMode (TSystem: :kOpt) ;

Note that the commands:

root[] .L MyScript.C+g
root[] .L MyScript.C+0

respectively compile MyScript.C with debug and optimization if the library does not exist yet; they will not
change the debug and the optimization level if the library already exist and it is up to date. To use ACLIC from
compiled code or from inside another macro, we recommend using the ProcessLine () method of TROOT.
For example, in one script you can use ACLIC to compile and load another script.

gROOT->ProcessLine (".L MyScript.C+")
gROOT->ProcessLine (".L MyScript.C++")

Setting the Include Path

You can get the include path by typing:

| root[] .include

You can append to the include path by typing:

|root[] .include $HOME/mypackage/include |

In a script you can append to the include path:

| gSystem->AddIncludePath (" -IS$SHOME/mypackage/include ") |

You can also overwrite the existing include path:

| gSystem->SetIncludePath (" -ISHOME/mypackage/include ") |

The $ROOTSYS/include directory is automatically appended to the include path, so you do not have to worry
about including it. To add library that should be used during linking of the shared library use something like:

| gSystem->AddtLinkedLibs ("-L/my/path -lanylib"); |

This is especially useful for static libraries. For shared ones you can also simply load them before trying to
compile the script:

|gSystem—>Load("mydir/mylib"); |

ACLIC uses the directive fMakeSharedLibs to create the shared library. If loading the shared library fails, it
tries to output a list of missing symbols by creating an executable (on some platforms like OSF, this does not
HAVE to be an executable) containing the script. It uses the directive fMakeExe to do so. For both directives,
before passing them to TSystem::Exec (), it expands the variables $SourceFiles, $SharedLib,
SLibName, $IncludePath, $LinkedLibs, SExeName and $ObjectFiles. See SetMakeSharedLib ()
for more information on those variables. When the file being passed to ACLIC is on a read only file system,
ACLIC warns the user and creates the library in a temporary directory:

root[] .L readonly/t.C++

Warning in <ACLiC>: /scratch/aclic/subs/./readonly is not writeable!
Warning in <ACLiC>: Output will be written to /tmp

Info in <TUnixSystem::ACLiC>: creating shared library
/tmp//scratch/aclic/subs/./readonly/t C.so

To select the temporary directory ACLIC looks at $TEMP, $STEMP_DIR, $STEMPDIR, $TMP, $STMPDIR, $TMP_DIR
or uses /tmp (or C:/). Also, a new interface TSystem: :Get/SetBuildDir is introduced to let users
select an alternative 'root' for building of the ACLIC libraries. For filename/full/path/name/macro.C, the
library is created as fBuildDir/full/path/name/macro C.so.

Dictionary Generation

You can direct what is added to the dictionary generated by ACLIC in two ways. The simplest way is to add at
the end of script (i.e. after the symbols have been defined) something like:

#if defined(MAKECINT)
#pragma link C++ class MyOtherClass;
#endif

94

CINT the C++ Interpreter July 2007 v5.16

You can also write this portion of code in a file name MyScript linkdef.h where the suffix ' linkdef' is
the prefix defined by the key ‘ACLiC.Linkdef’ in the currently used resource file (usually .rootrc or
SROOTSYS/etc/system.rootrc) and the prefix is the name of your script.

In ROOT 3.05/03 and above, the default behavior of rootcint is to not link in (i.e. generate the dictionary for)
any of the symbols. In particular, this means that the following lines are now, in the general case, unnecessary.

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

This also means that linking the instantiation of a class template:

#fpragma link C++ class mytemplate<int>;

ONLY links this specific class. In previous versions of ROOT, depending on many factors, this might also have
included the linking of many other instantiation of class template used directly or indirectly by 'mytemplate’.

A typical case would have been to rely on:

#fpragma link C++ class vector<MyClass>;

to also induce the generation of the iterators. You now need to request them explicitly. Another advantage of
the change is that now, if you omit the 'pragma link off' line from your 1inkdef file, you can actually sprinkle the
'‘pragma link C++ class' across as many of you header as file as you need.

See the documentation of rootcint for details how pragma can be used.

NOTE: You should not call ACLIC with a script that has a function called main () . When ACLIC calls rootcint
with a function called main it tries to add every symbol it finds while parsing the script and the header files to
the dictionary. This includes the system header files and the ROOT header files. It will result in duplicate entries
at best and crashes at worst, because some classes in ROOT need special attention before they can be added
to the dictionary.

Intermediate Steps and Files

ACLIC executes two steps and a third one if needed. These are:

e Calling rootcint to create a CINT dictionary. rootcint is a ROOT specific version of
makecint, CINT generic dictionary generator.
e Calling the compiler to build the shared library from the script
o If there are errors, it calls the compiler to build a dummy executable to report clearly unresolved
symbols.
ACLIC makes a shared library with a CINT dictionary containing the classes and functions declared in the script.
It also adds the classes and functions declared in included files with the same name as the script file and any of
the following extensions: .h, .hh, .hpp, .hxx, .hPP, .hXX. This means that, by default, you cannot combine
scripts from different files into one library by using #include statements; you will need to compile each script
separately. In a future release, we plan to add the global variables declared in the script to the dictionary also. If
you are curious about the specific calls, you can raise the ROOT debug level: gbebug=3 ACLIC will print three
steps.

Moving between Interpreter and Compiler

The best way to develop portable scripts is to make sure you can always run them with both, the interpreter and
with ACLIC. To do so, do not use the CINT extensions and program around the CINT limitations. When it is not
possible or desirable to program around the CINT limitations, you can use the C preprocessor symbols defined
for CINT and rootcint.

The preprocessor symbol CINT is defined for both CINT and rootcint. The symbol MAKECINT s
only defined in rootcint.

Use !defined(CINT) || defined(_ MAKECINT) to bracket code that needs to be seen by the
compiler and rootcint, but will be invisible to the interpreter.

Use !defined(CINT) to bracket code that should be seen only by the compiler and not by CINT or
rootcint. For example, the following will hide the declaration and initialization of the array garray from both
CINT and rootcint.

#if !defined(_ CINT)
int gArrayl[] = { 2, 3, 4};
fendif

Because ACLIC calls rootcint to build a dictionary, the declaration of gaArray will not be included in the
dictionary, and consequently, gArray will not be available at the command line even if ACLIC is used. CINT
and rootcint will ignore all statements between the "#if !defined (_ CINT)" and "#endif". If you
want to use gArray in the same script as its declaration, you can do so. However, if you want use the script in

July 2007 v5.16 CINT the C++ Interpreter 95

the interpreter you have to bracket the usage of gArray between #if's, since the definition is not visible. If
you add the following preprocessor statements:

#if !defined(_CINT)

int gArrayl[] = { 2, 3, 4};
#elif defined(_ MAKECINT)
int gArrayl[];

#endif

gArray Will be visible to rootcint but still not visible to CINT. If you use ACLIC, gArray will be available at
the command line and be initialized properly by the compiled code.

We recommend you always write scripts with the needed include statements. In most cases, the script will still
run with the interpreter. However, a few header files are not handled very well by CINT.

These types of headers can be included in interpreted and compiled mode:

e The subset of standard C/C++ headers defined in SROOTSYS/cint/include.

e Headers of classes defined in a previously loaded library (including ROOT own). The defined
class must have a name known to ROOT (i.e. a class with a ClassDef).

A few headers will cause problems when they are included in interpreter mode, because the interpreter itself
already includes them. In general, the interpreter needs to know whether to use the interpreted or compiled
version. The mode of the definition needs to match the mode of the reference.

Here are the cases that need to be excluded in interpreted mode, but included for rootcint. Bracket these
with: !'defined(CINT) || defined(MAKECINT)

e All CINT headers, see SROOTSYS/cint/inc

e Headers with classes named other than the file name. For example Rtypes.h and
GuiTypes.h

e Headers with a class defined in libraries before the library is loaded. For example: having
#include "TLorentzVector.h before gSystem->Load ("1ibPhysics"). This will also
cause problems when compiling the script, but a clear error message will be given. With the
interpreter, it may core dump. Bracket these type of include statements with #if !defined
(__CINT_), thiswill printan errorin both modes.

Hiding header files from rootcint that are necessary for the compiler but optional for the interpreter can lead
to a subtle but fatal error. For example:

#ifndef CINT
#include "TTree.h"
felse

class TTree;
fendif

class subTree : public TTree {

)z

In this case, rootcint does not have enough information about the TTree class to produce the correct
dictionary file. If you try this, rootcint and compiling will be error free, however, instantiating a subTree
object from the CINT command line will cause a fatal error. In general, it is recommended to let rootcint see
as many header files as possible.

Reflex

Reflection is the ability of a programming language to introspect its data structures and interact with them at
runtime without prior knowledge. Reflex provides reflection capabilities for C++. With the ROOT v5.08, Reflex is
an optional package. It will become a mandatory package (loaded by default) with the next ROOT versions. In
order to build it you have to . /configure --enable-reflex

Overview

Inside ROOT Reflex is thought to replace the current reflection system, which is inherent to CINT. This is an
ongoing work and not part of this release. Nevertheless, Reflex dictionaries can be used inside ROOT while
populating the current CINT data structures via a special gateway called Cintex (see “Cintex”).

In order to use reflection a dictionary of the data structures involved has to be generated. Before generating the
dictionaries, the source code has to be parsed and the information extracted. In the ROOT environment, there
are two ways to generate dictionaries for the Reflex library.

e Using CINT as a source code parser - the command to issue when using CINT for parsing C++
constructs is:

rootcint -reflex -f module/src/G_Module.cxx -c module/inc/TModl.h
module/inc/TMod2.h module/inc/Linkdef.h

96

CINT the C++ Interpreter July 2007 v5.16

e Using the gcc compiler as a source code parser: With this option a special program called
"gccxml" has to be installed. This program is an extension to gcc and produces xml code out of
parsed C++ definitions which will be further used to generate the proper dictionary source code
via a python script. For parsing C++ constructs using the gcc compiler the command will be:

rootcint -gccxml -f module/src/G__Module.cxx -c module/inc/TModl.h
module/inc/TMod2.h module/inc/Linkdef.h

Note: an installation of Python and gccxml is required for using this option.

GCCXML Instalation

Gceexml is a front-end to the gcc compiler suite, which generates xml code out of parsed C++ definitions.
Gceexml needs to be installed in order to use this option. Now we are using a patched version of gccxml release
0.6.0 called (0.6.0_patch3). This installation can be downloaded from_http://spi.cern.ch/lcgsoft/.

Once the dictionary sources have been generated, they can be compiled into a library and loaded via the Reflex
builder system. The dictionary information can be used via the Reflex API. For this purpose, Reflex provides
eight classes, which exploit the whole functionality of the system.

Reflex API

Reflex offers a simple yet powerful API to access Reflex reflection database. The following classes are defined
in the namespace ROOT : : Reflex and documented at http://root.cern.ch/root/html/REFLEX Index.html.

An object is an abstraction of a user object. It contains the information about its type and it is location in
memory.

Type is an abstraction of a C++ type. Types in Reflex are:

. Array

. Class/struct

. Templated class/struct

. Enum

. Function

. Fundamental

. Pointer

. Pointer to member

. Typedef

. Union
A scope is an abstraction of a C++ type. It holds information such as its declaring scope, it is underlying scope
and it is data/function members. Scopes are:

e Namespace

e Class/Struct

o Templated class/struct

e Union

e Enum
A member lives inside a scope and is of a given Type. Members can be distinguished as:

e DataMember

e FunctionMember

e Templated member
Base holds the information about the inheritance structure of classes. It contains information such as the offset
to the base class and the type of the base class.
Properties are key/value pairs where the key is a string and the value an Any object (Boost::Any). Any objects
can hold any type of information be it a string, int or any arbitrary object. Properties can be attached to Types,

Scopes and Members and hold any kind of information that is not specific to C++. Examples for Properties
would be the class author, a description of a member or the class id.

A MemberTemplate is an abstraction of a templated member. It holds the information about its template
parameters and a list of its instantiations.

A TypeTemplate is an abstraction of a templated type (e.g. class). It holds the same information as the
MemberTemplate (e.g. template parameters, list of instantiations)

The Reflex package lives in the namespace ROOT: :Reflex. Below some examples of usage of the package
are given. For further information please see the documentation of the different API classes.

July 2007 v5.16 CINT the C++ Interpreter 97

http://spi.cern.ch/lcgsoft/
http://root.cern.ch/root/html/REFLEX_Index.html

The next examples will refer to the example class MyClass:

class MyClass {

public:
MyClass () : fMeml (47), fMem2 ("foo") { }
int GetMeml () { return fMeml; }
int GetMeml (int i) { return fMeml*i; }
void SetMeml (int i) { fMeml = 1i; }
std::string GetMem2 () { return fMem2; }
void SetMem?2 (const std::string & str) { fMem2 = str; }

private:
int fMeml;
std::string fMem2;
)i

The first thing after loading a dictionary (which is done at the moment at the same time as the implemenation
library), will be to look up a certain Type or Scope.

Type tl = Type::ByName ("MyClass");

Every API class provides the operator bool, which will return true if the information retrieved for this
instance is valid and further actions on this instance can be taken.

if (tl) |
if (tl.IsClass()) std::cout << "Class ";
std::cout << tl.Name () ;

}

As a class is also a scope (as enum and union) we can now also iterator over its members. This can be done
either with stl like iterators or with an iteration by number:

For (Member Iterator mi = tl.DataMember Begin(); mi != DataMember End(); ++mi) {
std::cout << (*mi) .Name (SCOPED) << " " << (*mi) .TypeOf () .Name (QUALIFIED) ;
}

Member m;

for (size t i = 0; i < tl.FunctionMemberSize(); ++1i) {
m = tl.FunctionMemberAt (i) ;
std::cout << m.Name () << " " << m.TypeOf () .Name () ;

for (Type Iterator ti = m.FunctionParaeter Begin(); ti !=
m.FunctionParameter End(); ++ti) {
std::cout << (*ti) .Name () << std::endl;
}
}

It is not only possible to introspect information through Reflex but also take actions. E.g. instantiate
classes/structs, invoke functions, set data members, etc. The instantiation of a type which represents a class
struct can be done with:

Object ol = tl.Construct();

which will call the default constructor for this type and allocate the memory for this type inside the Object. The
Object will also contain the type information constructed.

Now the object of a certain type has been constructed one may interact with it. E.g. getting the value of a data
member can be done via which will return an Object of the data member in question.

Object mem obj = ol.Get ("fMeml");
int real value 0;
if (mem obj.TypeOf () .Name () == "int)
int real value = Object Cast<int>(mem obj);

It is also possible to invoke function members via the Object class. A function member can be looked up by
name, if the member is overloaded an additional parameter which is the string representation of the type can be
passed. Currently parameters for the function to invoke shall be passed as a vector of memory addresses of the
parameters. This may change in the future to pass a vector of Objects.

int parl = 2;

std::vector<void*> parVec;

parVec.push back (&parl) ;

int ret val = Object Cast<int>(ol.Invoke ("GetMeml","int (int)",parVec)):

Calling the destructor of an Object can be done via, this will call both the destructor and of the object type and
deallocate the memory.

ol.Destruct () ;

98

CINT the C++ Interpreter July 2007 v5.16

Cintex

Cintex is an optional package inside ROOT. In order to build it you have to
|./configure --enable-cintex at the ROOT configuration step.

The purpose of the Cintex package is to bridge uni-directional information from the Reflex to the CINT dictionary
system. This package will be needed as long as the unification of the Reflex and CINT dictionaries has not been
completed. This unification is work ongoing. In order to use Cintex functionality it will be needed to load the
Cintex library (e.g. libCintex.so on linux systems) and enable the Cintex gateway with

Cintex::Enable () ;

After these two steps have been taken, any Reflex dictionary information should be propagated to the CINT
dictionaries and subsequently usable inside the CINT environment (e.g. from the root prompt). If wanted
debugging information while loading Reflex dictionaries can be turned on with (any number greater than O can
be used as argument but will not make any difference in the amount of debugging output for the time being).

Cintex::SetDebug(l) ;

July 2007 v5.16 CINT the C++ Interpreter 99

8 Object Ownership

An object has ownership of another object if it has permission to delete it. Usually a collection or a parent object
such as a pad holds ownership. To prevent memory leaks and multiple attempts to delete an object, you need
to know which objects ROOT owns and which are owned by you.

The following rules apply to the ROOT classes.

e Histograms, trees, and event lists created by the user are owned by current directory
(gbirectory). When the current directory is closed or deleted the objects it owns are deleted.

o The TROOT master object (gROOT) has several collections of objects. Objects that are members
of these collections are owned by gROOT see "Ownership by the Master TROOT Object
(gROOT)".

e Objects created by another object, for example the function object (e.g.TF1) created by the
TH1::Fit method is owned by the histogram.

e An object created by brawCopy methods, is owned by the pad it is drawn in.

If an object fits none of these cases, the user has ownership. The next paragraphs describe each rule and user
ownership in more detail.

Ownership by Current Directory (gDirectory)

When a histogram, tree, or event list (TEventList) is created, it is added to the list of objects in the current
directory by default. You can get the list of objects in a directory and retrieve a pointer to a specific object with
the GetList method. This example retrieves a histogram.

TH1F *h = (TH1F*)gDirectory->GetList ()->FindObject ("myHist");

The method TDhirectory: :GetList () returns a TList of objects in the directory. It looks in memory, and is
implemented in all ROOT collections. You can change the directory of a histogram, tree, or event list with the
SetDirectory method. Here we use a histogram for an example, but the same applies to trees and event
lists.

h->SetDirectory(newDir)

You can also remove a histogram from a directory by using SetDirectory (0). Once a histogram is removed
from the directory, it will not be deleted when the directory is closed. It is now your responsibility to delete this
histogram once you have finished with it. To change the default that automatically adds the histogram to the
current directory, you can call the static function:

TH1::AddDirectory (kFALSE) ;

Not all histograms created here after will be added to the current directory. In this case, you own all histogram
objects and you will need to delete them and clean up the references. You can still set the directory of a
histogram by calling setDirectory once it has been created as described above.

Note that, when a file goes out of scope or is closed all objects on its object list are deleted.

Ownership by the Master TROOT Object (gROOT)

The master object grROOT, maintains several collections of objects. For example, a canvas is added to the
collection of canvases and it is owned by the canvas collection.

TSeqgCollection* fFiles List of files (TFile)

TSeqgCollection* fMappedFiles List of memory mapped files (TMappedFile)
TSeqgCollection* fSockets List of network sockets (TSocket and TServerSocket)
TSegCollection* fCanvases List of canvases (TCanvas)
TSeqgCollection* fStyles List of styles (TStyle)

TSegCollection* fFunctions List of analytic functions (TFl, TF2, TF3)
TSeqgCollection* fTasks List of tasks (TTask)

TSeqgCollection* fColors List of colors (TColor)

TSegCollection* fGeometries List of geometries (?)

TSeqgCollection* fBrowsers List of browsers (TBrowser)
TSeqgCollection* fSpecials List of special objects

TSegCollection* fCleanups List of recursiveRemove collections

These collections are also displayed in the root folder of the Object Browser. Most of these collections are
self explanatory. The special cases are the collections of specials and cleanups.

July 2007 v5.16 Object Ownership 101

The Collection of Specials

This collection contains objects of the following classes: TCutG, TMultiDimFit, TPrincipal, TChains. In
addition it contains the gHtml1 object, gMinuit objects, and the array of contours graphs (TGraph) created
when calling the Draw method of a histogram with the "CONT, LIST" option.

Access to the Collection Contents

The current content for a collection listed above can be accessed with the corresponding gROOT->GetListOf
method (for example gROOT->GetListOfCanvases). In addition, gROOT->GetListOfBrowsables returns
a collection of all objects visible on the left side panel in the browser. See the image of the Object Browser in
the next figure.

Figure 8-1 The ROOT Object Browser

% ROOT Object Browser M=l E3

Eile Miew Optlions

|a roaot j]
| &ll Folders [Contents of “froot"
= oot [Browsers [canvases
[momeispanacek |23 Classes [Clearups
[CAROOT Files [colors (L Functions

[Geometries [Handlers
[MapFiles [[IROOT Files

[Sockets ([specials
L streamerinto [C7) Styles
[Tasks
| 15 Ohiects. | Doully linked list w

Ownership by Other Objects

When an object creates another, the creating object is the owner of the created one. For example:

| myHisto->Fit ("gaus")

The call to Fit copies the global TF1 Gaussian function and attaches the copy to the histogram. When the
histogram is deleted, the copy is deleted also.

When a pad is deleted or cleared, all objects in the pad with the kCanDelete bit set are deleted automatically.
Currently the objects created by the DrawCopy methods, have the kCanDelete bit set and are therefore
owned by the pad.

Ownership by the User

The user owns all objects not described in one of the above cases. TObject has two bits, kCanDelete and
kMustCleanup, that influence how an object is managed (in TObject::fBits). These are in an
enumeration in TObject.h. To set these bits do:

MyObject->SetBit (kCanDelete)
MyObject->SetBit (kMustCleanup)

The bits can be reset and tested with the TObject: :ResetBit and TObject: :TestBit methods.

The kCanDelete Bit

The gROOT collections (see above) own their members and will delete them regardless of the kCanDelete bit.
In all other collections, when the collection Clear method is called (i.e. TList: :Clear ()), members with the
kCanDelete bit set, are deleted and removed from the collection. If the kCanDelete bit is not set, the object
is only removed from the collection but not deleted.

If a collection Delete (TList::Delete ()) method is called, all objects in the collection are deleted without
considering the kCanDelete bit. It is important to realize that deleting the collection (i.e. delete
MyCollection), DOES NOT delete the members of the collection.

102

Object Ownership July 2007 v5.16

If the user specified MyCollection->SetOwner () the collection owns the objects and delete
MyCollection will delete all its members. Otherwise, you need to:

// delete all member objects in the collection
MyCollection->Delete () ;

// and delete the collection object
delete MyCollection;

Note that kCanDelete is automatically set by the DrawCopy method and the user can set it for any object. For
example, the user must manage all graphics primitives. If you want TCanvas to delete the primitive you
created you have to set the kCanDelete bit.

The kCanDelete bit setting is displayed with TObject: :1s (). The last number is either 1 or 0 and is the
kCanDelete bit.

root[] TCanvas MyCanvas ("MyCanvas")

root[] MyCanvas.Divide(2,1)

root[] MyCanvas->cd(MyCanvas_1)

root[] hstat.Draw() // hstat 1s an existing THIF

root[] MyCanvas->cd(MyCanvas_2)

root[] hstat.DrawCopy () // DrawCopy sets the kCanDelete bit

(class TH1*)0x88e73f8
root[] MyCanvas.ls()
Canvas Name=MyCanvas ..

TCanvas .. Name= MyCanvas ..

TPad .. Name= MyCanvas 1 ..

TFrame

OBJ: THLF hstat Event Histogram : O
TPaveText .. title

TPaveStats .. stats

TPad .. Name= MyCanvas 2 ..

TFrame

OBJ: THLF hstat Event Histogram : 1
TPaveText .. title

TPaveStats .. stats

The kMustCleanup Bit

When the kMustCleanup bit is set, the object destructor will remove the object and its references from all
collections in the clean up collection (gROOT: : fCleanups). An object can be in several collections, for
example if an object is in a browser and on two canvases. If the kMustCleanup bit is set, it will be removed
automatically from the browser and both canvases when the destructor of the object is called.

The kMustCleanup bit is set:
e When an object is added to a pad (or canvas) in TObject: : AppendPad.
e When an object is added to a TBrowser with TBrowser: : Add.
e When an object is added to a TFolder with TFolder: :Add.
e When creating an inspector canvas with TInspectCanvas: : Inspector.
e When creating a TCanvas.
e When painting a frame for a pad, the frame's kMustCleanup is setin TPad: : PaintPadFrame

The user can add his own collection to the collection of clean ups, to take advantage of the automatic garbage
collection. For example:

// create two list
TList *myListl, *myList2;

// add both to of clean ups
gROOT->GetListOfCleanUps () ->Add (myListl) ;
gROOT->GetListOfCleanUps () ->Add (myList2) ;

// assuming myObject is in myListl and myList2, when calling:
delete myObject;

// the object is deleted from both lists

July 2007 v5.16 Object Ownership 103

9 Graphics and the Graphical
User Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons, arrows) to various plots, histograms,
and 3D graphical objects. In this chapter, we are going to focus on principals of graphics and 2D objects. Plots
and histograms are discussed in a chapter of their own.

Drawing Objects

In ROOT, most objects derive from a base class TObject. This class has a virtual method Draw () so all
objects are supposed to be able to be "drawn". The basic whiteboard on which an object is drawn is called a
canvas (defined by the class TCanvas). If several canvases are defined, there is only one active at a time. One
draws an object in the active canvas by using the statement:

object.Draw() |

This instructs the object "object" to draw itself. If no canvas is opened, a default one (named "c1") is
instantiated and is drawn.

root[] TLine a(0.1,0.1,0.6,0.6)
root[] a.Draw()
<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

The first statement defines a line and the second one draws it. A default canvas is drawn since there was no
opened one.

Interacting with Graphical Objects

When an object is drawn, one can interact with it. For example, the line drawn in the previous paragraph may be
moved or transformed. One very important characteristic of ROOT is that transforming an object on the screen
will also transform it in memory. One actually interacts with the real object, not with a copy of it on the screen.
You can try for instance to look at the starting X coordinate of the line:

root[] a.GetX1l ()
(double)1.000000000e-1

X1 is the x value of the starting coordinate given in the definition above. Now move it interactively by clicking
with the left mouse button in the line's middle and try to do again:

root[] a.GetX1l ()
(Double t)1.31175468483816005e-01

You do not obtain the same result as before, the coordinates of 'a' have changed. As said, interacting with an
object on the screen changes the object in memory.

Moving, Resizing and Modifying Objects

Changing the graphic objects attributes can be done with the GUI or programmatically. First, let's see how it is
done in the GUI.

The Left Mouse Button

As was just seen moving or resizing an object is done with the left mouse button. The cursor changes its shape
to indicate what may be done:

Point the object or one part of it: k=
Rotate: E
Resize (exists also for the other directions): & |
Enlarge (used for text): i
Move: @

July 2007 v5.16 Graphics and the Graphical User Interface 105

Here are some examples of:
Resizing:

Moving:

File Edit ¥iew Options |nspect

Rotating:

1

abs{sin{x)/x) ||

K Ewr
S

With C++ Statements (Programmatically)

geamP® °

How would one move an object in a script? Since there is a tight correspondence between what is seen on the
screen and the object in memory, changing the object changes it on the screen. For example, try to do:

| root[] a.SetX1(0.9)

This should change one of the coordinates of our line, but nothing happens on the screen. Why is that? In short,

the canvas is not updated with each change for performance reasons. See "Updating the Pad".

Selecting Objects

The Middle Mouse Button

Objects in a canvas, as well as in a pad, are stacked on top of each other in the order they were drawn. Some
objects may become “active” objects, which mean they are reordered to be on top of the others. To interactively
make an object "active”, you can use the middle mouse button. In case of canvases or pads, the border
becomes highlighted when it is active.

With C++ Statements (Programmatically)

Frequently we want to draw in different canvases or pads. By default, the objects are drawn in the active
canvas. To activate a canvas you can use the TPad: : cd () method.

| root[] el->cd()

Context Menus: the Right Mouse Button

The context menus are a way to interactively call certain methods of an object. When designing a class, the
programmer can add methods to the context menu of the object by making minor changes to the header file.

Using Context Menus

On a ROOT canvas, you can right-click on any object and see the context menu for it. The script hsimple.C
draws a histogram. The image below shows the context menus for some of the objects on the canvas. Next
picture shows that drawing a simple histogram involves as many as seven objects. When selecting a method
from the context menu and that method has options, the user will be asked for numerical values or strings to fill
in the option. For example, TAxis: :SetTitle will prompt you for a string to use for the axis title.

Figure 9-1 Context menus of different objects in a canvas

O =———————— Dynamic Filling Example

File Edit Miew Options Inspect Classes

[® travetestzuue [ibution

Clear
DeleteTesxt
EditText
Inserline
InseriText
ReadFils
Satallwith
SetLabel
Sethargin
SetBordersize

TH1Fzhpx

Mean

L]
Ed TFrame

e | |
Hent = ggnmi

< TPaveStais:stats
RMS -=— — ——

Savestyls
SetFormatFit
SetFo

SetBordertode
SetBorderSize

SetOptFit
SetOptStat

Delete
DrawClass
DrawClane
Durmp

SetCarr
Sethame

Delete
DrawClass
DrawClone
Dump
Inspect

SetDrawoption
I3 Thxi

SetMinimum
Smooth

Sethame

DrawPanel
Fit

FitPane|
Sethaximum

Inspect
SetDrawaption

Sellineattributes

SetFillatributes

SetlineAttributes
SetFillattributes

CenterTitle

SetTextAtributes

UnZoom
Sethlame
SetTitle

]
SetTimeDisplay
SetTimeFormat

tion

Clear
Insertline
SetLabel
SetBorderSize
SetCornerRadius
Setiame

Delete
DrawcClass
Drawclone
Dump

ibutes

Delete

DrawClass
DrawClone

Dump
Inspect

SetDrawOption
Sethidivisions

utes

tributes

2 3 Inspect
SetDrawOption
Tcanvas:cl
SetLineAttributes
Selcanvassize SetFillatributes
Divide SetTextattributes
UseCurrentstyle
Range
SaveAs
SetBorderiode
SetBordersize
b SelEditable
SelGritx
SelGridy
Sellogs

Setlogy
setlagz

106

Graphics and the Graphical User Interface

July 2007 v5.16

Structure of the Context Menus

The curious reader will have noticed that each entry in the context menu corresponds to a method of the class.
Look for example to the menu named TAxis: :xaxis. xaxis is the name of the object and TAxis the name
of its class. If we look at the list of TAxis methods, for example in http://root.cern.ch/root/htmidoc/TAxis.html,
we see the methods SetTimeDisplay () and UnZoom (), which appear also in the context menu.

There are several divisions in the context menu, separated by lines. The top division is a list of the class
methods; the second division is a list of the parent class methods. The subsequent divisions are the methods
other parent classes in case of multiple inheritance. For example, see the TPaveText::title context
menu. A TPaveText inherits from TAttLine, which has the method SetLineAttributes ().

Adding Context Menus for a Class

For a method to appear in the context menu of the object it has to be marked by // *MENU* in the header file.
Below is the line from TAttLine.h that adds the SetLineAttribute method to the context menu.

virtual void SetlLineAttributes(); // *MENU*

Nothing else is needed, since CINT knows the classes and their methods. It takes advantage of that to create
the context menu on the fly when the object is clicking on. If you click on an axis, ROOT will ask the interpreter
what are the methods of the TAxis and which ones are set for being displayed in a context menu.

Now, how does the interpreter know this? Remember, when you build a class that you want to use in the ROOT
environment, you use rootcint that builds the so-called stub functions and the dictionary. These functions
and the dictionary contain the knowledge of the used classes. To do this, rootcint parses all the header files.
ROOT has defined some special syntax to inform CINT of certain things, this is done in the comments so that
the code still compiles with a C++ compiler.

For example, you have a class with a Draw () method, which will display itself. You would like a context menu
to appear when on clicks on the image of an object of this class. The recipe is the following:

e The class has to contain the ClassDef/ClassImp macros

e For each method you want to appear in the context menu, put a comment after the declaration
containing *MENU* or *TOGGLE* depending on the behavior you expect. One usually uses Set
methods (setters). The *TOGGLE* comment is used to toggle a boolean data field. In that case,
it is safe to call the data field fMyBool where MyBool is the name of the setter SetMyBool.
Replace MyBoo1l with your own boolean variable.

e You can specify arguments and the data members in which to store the arguments.

For example:
class MyClass : public TObject {
private:
int fvl; // first variable
double fv2; // second variable
public:
int GetV1l () {return fvl;}

(
double GetV2() {return fV2;}
void SetVl (int x1) { fVl = x1;} // *MENU*
void SetV2 (double d2) { fv2 = d2;} // *MENU*
void SetBoth (int x1, double d2) {fvl = x1; fv2 = d2;}

ClassDef (MyClass,1)
}

To specify arguments:
void SetXXX(Int t x1, Float t y2); //*MENU* *ARGS={x1=>fVl}

This statement is in the comment field, after the *MENU®. If there is more than one argument, these arguments
are separated by commas, where fX1 and fY2 are data fields in the same class.

void SetXXX(Int t x1, Float t y2); //*MENU* *ARGS={x1=>fX1l,y2=>fY2}

If the arguments statement is present, the option dialog displayed when selecting Setxxx field will show the
values of variables. We indicate to the system which argument corresponds to which data member of the class.

Executing Events when a Cursor Passes on Top of an Object

This paragraph is for class designers. When a class is designed, it is often desirable to include drawing
methods for it. We will have a more extensive discussion about this, but drawing an object in a canvas or a pad
consists in "attaching" the object to that pad. When one uses object.Draw (), the object is NOT painted at
this moment. It is only attached to the active pad or canvas.

Another method should be provided for the object to be painted, the Paint () method. This is all explained in
the next paragraph. As well as Draw () and Paint (), other methods may be provided by the designer of the

July 2007 v5.16 Graphics and the Graphical User Interface 107

http://root.cern.ch/root/htmldoc/TAxis.html

class. When the mouse

is moved or a button pressed/released,

the TcCanvas function named

HandleInput () scans the list of objects in all it's pads and for each object calls some standard methods to
make the object react to the event (mouse movement, click or whatever).

The second one is DistanceToPrimitive (px,py). This function computes a "distance" to an object from
the mouse position at the pixel position (px, py, see definition at the end of this paragraph) and returns this
distance in pixel units. The selected object will be the one with the shortest computed distance. To see how this
works, select the "Event Status" item in the canvas "Options" menu. ROOT will display one status line
showing the picked object. If the picked object is, for example, a histogram, the status line indicates the name of
the histogram, the position x, y in histogram coordinates, the channel number and the channel content.

It is nice for the canvas to know what the closest object from the mouse is, but it's even nicer to be able to make
this object react. The third standard method to be provided is ExecuteEvent (). This method actually does the
event reaction. Its prototype is where px and py are the coordinates at which the event occurred, except if the
event is a key press, in which case px contains the key code.

voild ExecuteEvent (Int t event,

Int t px, Int t py);

Where event is the event that occurs and is one of the following (defined in Buttons.h):

kNoEvent, kButtonlDown, kButton2Down, kButton3Down,
kKeyDown, kButtonlUp, kButton2Up, kButton3Up,
kButtonlMotion, kButton2Motion, kButton3Motion, kKeyPress,
kButtonlLocate, kButton2Locate, kButton3Locate, kKeyUp,
kButtonlDouble, kButton2Double, kButton3Double, kMouseMotion,
kMouseEnter, kMouseLeave

We hope the names are self-explanatory.

Designing an ExecuteEvent method is not very easy, except if one wants very basic treatment. We will not go
into that and let the reader refer to the sources of classes like TLine or TBox. Go and look at their
ExecuteEvent method! We can nevertheless give some reference to the various actions that may be
performed. For example, one often wants to change the shape of the cursor when passing on top of an object.
This is done with the SetCursor method:

gPad->SetCursor (cursor)

The argument cursor is the type of cursor. It may be:

kBottomLeft, kBottomRight, kTopLeft, kTopRight, kBottomSide, kLeftSide,
kTopSide, kRightSide, kMove, kCross, kArrowHor, kArrowVer,
kHand, kRotate, kPointer, kArrowRight, kCaret, kWatch

They are defined in TvirtualxX.h and again we hope the names are self-explanatory. If not, try them by
designing a small class. It may derive from something already known like TLine.

Note that the ExecuteEvent () functions may in turn; invoke such functions for other objects, in case an object
is drawn using other objects. You can also exploit at best the virtues of inheritance. See for example how the
class TArrow (derived from TLine) use or redefine the picking functions in its base class.

The last comment is that mouse position is always given in pixel units in all these standard functions. px=0 and
py=0 corresponds to the top-left corner of the canvas. Here, we have followed the standard convention in
windowing systems. Note that user coordinates in a canvas (pad) have the origin at the bottom-left corner of the
canvas (pad). This is all explained in the paragraph "The Coordinate Systems of a Pad".

Graphical Containers: Canvas and Pad

We have talked a lot about canvases, which may be seen as windows. More generally, a graphical entity that
contains graphical objects is called a Pad. A Canvas is a special kind of Pad. From now on, when we say
something about pads, this also applies to canvases. A pad (class TPad) is a graphical container in the sense it
contains other graphical objects like histograms and arrows. It may contain other pads (sub-pads) as well. More
technically, each pad has a linked list of pointers to the objects it holds.

Drawing an object is nothing more than adding its pointer to this list. Look for example at the code of
TH1::Draw (). It is merely ten lines of code. The last statement is AppendPad () . This statement calls method
of Tobject that just adds the pointer of the object, here a histogram, to the list of objects attached to the
current pad. Since this is a TObject’s method, every object may be "drawn", which means attached to a pad.
We can illustrate this by the Figure 9-2. This image corresponds to the following structure:

108 Graphics and the Graphical User Interface July 2007 v5.16

Figure 9-2 A histogram drawn in a pad

O=———————"—radl =———=—0H
Eile Edit ¥iew Options Inspect Classes Help
This is a Pad
JHistogram =

=

*

3

-

A lahel

e

When is the painting done then? The answer is: when needed. Every object that derives from TObject has a
Paint () method. It may be empty, but for graphical objects, this routine contains all the instructions to paint
effectively it in the active pad. Since a Pad has the list of objects it owns, it will call successively the Paint ()
method of each object, thus re-painting the whole pad on the screen. If the object is a sub-pad, its Paint ()
method will call the Paint () method of the objects attached, recursively calling Paint () for all the objects.

The Global Pad: gPad

When an object is drawn, it is always in the so-called active pad. For every day use, it is comfortable to be able
to access the active pad, whatever it is. For that purpose, there is a global pointer, called gPad. It is always
pointing to the active pad. If you want to change the fill color of the active pad to blue but you do not know its
name, do this.

| root[] gPad->SetFillColor (38)

To get the list of colors, go to the paragraph "Color and color palettes"” or if you have an opened canvas, click on
the view menu, selecting the Colors item.

Finding an Object in a Pad

Now that we have a pointer to the active pad, gPad and that we know this pad contains some objects, it is
sometimes interesting to access one of those objects. The method GetPrimitive() of TPad, i.e.
TPad: :GetPrimitive (const char* name) does exactly this. Since most of the objects that a pad
contains derive from TObject, they have a name. The following statement will return a pointer to the object
myobjectname and put that pointer into the variable ob3j. As you can see, the type of returned pointer is
TObject*.

root[] obj = gPad->GetPrimitive ("myobjectname")
(class TObject*)0x1063cba8

Even if your object is something more complicated, like a histogram TH1F, this is normal. A function cannot
return more than one type. So the one chosen was the lowest common denominator to all possible classes, the
class from which everything derives, Tobject. How do we get the right pointer then? Simply do a cast of the
function output that will transform the output (pointer) into the right type. For example if the object is a
TPavelabel:

root[] obj = (TPavelabel*) (gPad->GetPrimitive ("myobjectname"))
(class TPavelabel*)0x1063cbal8

This works for all objects deriving from TObject. However, a question remains. An object has a name if it
derives from TNamed, not from TObject. For example, an arrow (TArrow) doesn't have a name. In that case,
the "name" is the name of the class. To know the name of an object, just click with the right button on it. The
name appears at the top of the context menu. In case of multiple unnamed objects, a call to
GetPrimitve ("className") returns the instance of the class that was first created. To retrieve a later
instance you can use GetListOfPrimitives (), which returns a list of all the objects on the pad. From the
list you can select the object you need.

Hiding an Object

Hiding an object in a pad can be made by removing it from the list of objects owned by that pad. This list is
accessible by the GetListOfPrimitives () method of TPad. This method returns a pointer to a TList.
Suppose we get the pointer to the object, we want to hide, call it ob (see paragraph above). We get the pointer
to the list:

July 2007 v5.16 Graphics and the Graphical User Interface 109

| root[] 1li = gPad->GetListOfPrimitives () |

Then remove the object from this list:

root[] li->Remove (obj)

The object will disappear from the pad as soon as the pad is updated (try to resize it for example). If one wants
to make the object reappear:

root[] obj->Draw/() |

Caution, this will not work with composed objects, for example many histograms drawn on the same plot (with
the option "same"). There are other ways! Try to use the method described here for simple objects.

The Coordinate Systems of a Pad

There are coordinate systems in a TPad: user coordinates, normalized coordinates (NDC), and pixel
coordinates.

Figure 9-3 Pad coordinate systems

0,1) (0,0)

(0,0)

(0,0) (1,0)

User coordinates NDC coordinates Pixel coordinates

The User Coordinate System

The most common is the user coordinate system. Most methods of TPad use the user coordinates, and all
graphic primitives have their parameters defined in terms of user coordinates. By default, when an empty pad is
drawn, the user coordinates are set to a range from 0 to 1 starting at the lower left corner. At this point they are
equivalent of the NDC coordinates (see below). If you draw a high level graphical object, such as a histogram
or a function, the user coordinates are set to the coordinates of the histogram. Therefore, when you set a point it
will be in the histogram coordinates.

For a newly created blank pad, one may use TPad: :Range to set the user coordinate system. This function is
defined as:

void Range (float x1,float yl,float x2,float y2)

The arguments x1, x2 defines the new range in the x direction, and the y1, y2 define the new range in the y-
direction.

root[] TCanvas MyCanvas ("MyCanvas'")
root[] gPad->Range(-100,-100,100,100)

This will set the active pad to have both coordinates to go from -100 to 100, with the center of the pad at (0,0).
You can visually check the coordinates by viewing the status bar in the canvas. To display the status bar select
Event Status entry in the View canvas menu.

Figure 9-4 The status bar

[MyCarwas [321,122 [n=1 28, y=-595

The Normalized Coordinate System (NDC)

Normalized coordinates are independent of the window size and of the user system. The coordinates range
from 0 to 1 and (0, 0) corresponds to the bottom-left corner of the pad. Several internal ROOT functions use the
NDC system (3D primitives, PostScript, log scale mapping to linear scale). You may want to use this system if
the user coordinates are not known ahead of time.

The Pixel Coordinate System

The least common is the pixel coordinate system, used by functions such as DistanceToPrimitive () and
ExecuteEvent (). Its primary use is for cursor position, which is always given in pixel coordinates. If (px, py)
is the cursor position, px=0 and py=0 corresponds to the top-left corner of the pad, which is the standard
convention in windowing systems.

Using NDC for a particular Object

Most of the time, you will be using the user coordinate system. But sometimes, you will want to use NDC. For
example, if you want to draw text always at the same place over a histogram, no matter what the histogram

110 Graphics and the Graphical User Interface July 2007 v5.16

coordinates are. There are two ways to do this. You can set the NDC for one object or may convert NDC to user
coordinates. Most graphical objects offer an option to be drawn in NDC. For instance, a line (TLine) may be
drawn in NDC by using DrawLineNDC () . A latex formula or a text may use TText: : SetNDC () to be drawn in

NDC coordinates.

Converting between Coordinates Systems

There are a few utility functions in TPad to convert from one system of coordinates to another. In the following
table, a point is defined by (px,py) in pixel coordinates, (ux,uy) in user coordinates, (ndcx,ndcy) in

normalized coordinates, (apx, apy) are in absolute pixel coordinates.

PixeltoXY (px,py, &ux, &uy)

Conversion TPad’s Methods Returns

NDC to PiXe| UtoPixel (ndcx) Int_t
VtoPixel (ndcy) Int t

Pixel to User PixeltoX (px) Double t
PixeltoY (py) Double t

Double t ux,uy

User to Pixel

XtoPixel (ux)
YtoPixel (uy)
XYtoPixel (ux,uy, &px, &py)

Int t
Int t
Int t px,py

User to absolute pixel

XtoAbsPixel (ux)

Int t

AbsPixeltoXY (apx, apy, &ux, &uy)

YtoAbsPixel (uy) Int t

XYtoAbsPixel (ux,uy, &apx, &apy) | Int t apx,apy
Absolute pixel to user AbsPixeltoX (apx) Double t

AbsPixeltoY (apy) Double t

Double t ux,uy

Note: all the pixel conversion functions along the Y axis consider that py=0 is at the top of the pad except
PixeltoY () which assume that the position py=0 is at the bottom of the pad. To make PixeltoY ()
converting the same way as the other conversion functions, it should be used the following way (p is a pointer

to a TPad):

p->PixeltoY (py — p->GetWh())

’

Dividing a Pad into Sub-pads

Dividing a pad into sub pads in order for instance to draw a few histograms, may be done in two ways. The first
is to build pad objects and to draw them into a parent pad, which may be a canvas. The second is to

automatically divide a pad into horizontal and vertical sub pads.

Creating a Single Sub-pad

The simplest way to divide a pad is to build sub-pads in it. However, this forces the user to explicitly indicate the
size and position of those sub-pads. Suppose we want to build a sub-pad in the active pad (pointed by gPad).

First, we build it, using a TPad constructor:

root[]

spadl = new TPad("spadl","The first subpad",.l1l,.1,.5,.5)

One gives the coordinates of the lower left point (0.1, 0.1) and of the upper right one (0.5, 0.5). These
coordinates are in NDC. This means that they are independent of the user coordinates system, in particular if
you have already drawn for example a histogram in the mother pad. The only thing left is to draw the pad:

root[] spadl->Draw ()

If you want more sub-pads, you have to repeat this procedure as many times as necessary.

Dividing a Canvas into Sub-Pads

The manual way of dividing a pad into sub-pads is sometimes very tedious. There is a way to automatically

generate horizontal and vertical sub-pads inside a given pad.

root[] padl->Divide (3,2)

July 2007 v5.16

Graphics and the Graphical User Interface

111

Figure 9-5 Dividing a pad into 6 sub-pads

[I7 o [{olx]
File Edit Wiew Optisns Inspect Classes Help
Fis b Yew Oysoes popecl Chuslisie i w i el e o
padi_1 padi 2 padi_3
padi_4 padi_5 padl_6

If padl is a pad then, it will divide the pad into 3 columns of 2 sub-pads. The generated sub-pads get names
padl i where the index i=1 to nxm (in our case padl 1, padl 2..padl 6). The names padl 1 efc...
correspond to new variables in CINT, so you may use them as soon as the executed method was pad-
>Divide (). However, in a compiled program, one has to access these objects. Remember that a pad contains
other objects and that these objects may themselves be pads. So we can use the GetPrimitive () method:

TPad* padl 1 = (TPad*) (padl->GetPrimitive ("padl 1")) |

One question remains. In case one does an automatic divide, how one can set the default margins between
pads? This is done by adding two parameters to Divide (), which are the margins in x and y:

root[] padl->Divide(3,2,0.1,0.1) |

The margins are here set to 10% of the parent pad width.

Updating the Pad

For performance reasons, a pad is not updated with every change. For example, changing the coordinates of
the pad does not automatically redraw it. Instead, the pad has a "bit-modified" that triggers a redraw. This bit is
automatically set by:

Touching the pad with the mouse - for example resizing it with the mouse.

Finishing the execution of a script.

Adding a new primitive or modifying some primitives for example the name and title of an object.
e You can also set the "bit-modified" explicitly with the Modi fied method:

// the pad has changed

root[] padl->Modified()

// recursively update all modified pads:
root[] cl->Update()

A subsequent call to TCanvas: : Update () scans the list of sub-pads and repaints the pads declared modified.

In compiled code or in a long macro, you may want to access an object created during the paint process. To do
s0, you can force the painting with a TCanvas: : Update (). For example, a TGraph creates a histogram (TH1)
to paint itself. In this case the internal histogram obtained with TGraph: :GetHistogram() is created only
after the pad is painted. The pad is painted automatically after the script is finished executing or if you force the
painting with TPad: :Modified () followed by a TCanvas: :Update (). Note that it is not necessary to call
TPad: :Modified () after a call to Draw (). The "bit-modified" is set automatically by Draw (). A note about
the "bit-modified" in sub pads: when you want to update a sub pad in your canvas, you need to call pad-
>Modified () rather than canvas->Modified(), and follow it with a canvas->Update (). If you use
canvas->Modified (), followed by a call to canvas->Update (), the sub pad has not been declared
modified and it will not be updated. Also note that a call to pad->Update () where pad is a sub pad of canvas,
calls canvas->Update () and recursively updates all the pads on the canvas.

Making a Pad Transparent

As we will see in the paragraph "Fill Attributes”, a fill style (type of hatching) may be set for a pad.
root[] padl->SetFillStyle (istyle)

This is done with the setFillstyle method where istyle is a style number, defined in "Fill Attributes". A
special set of styles allows handling of various levels of transparency. These are styles number 4000 to 4100,
4000 being fully transparent and 4100 fully opaque. So, suppose you have an existing canvas with several
pads. You create a new pad (transparent) covering for example the entire canvas. Then you draw your
primitives in this pad. The same can be achieved with the graphics editor. For example:

root[] .x tutorials/hist/hldraw.C

root[] TPad *newpad=new TPad("newpad", "Transparent pad,0,0,1,1);
root[] newpad->SetFillStyle (4000) ;

root[] newpad->Draw() ;

root[] newpad->cd() ;

root[] // create some primitives, etc

112 Graphics and the Graphical User Interface July 2007 v5.16

Setting the Log Scale

Setting the scale to logarithmic or linear is an attribute of the pad, not the axis or the histogram. The scale is an
attribute of the pad because you may want to draw the same histogram in linear scale in one pad and in log
scale in another pad. Frequently, we see several histograms on top of each other in the same pad. It would be
very inconvenient to set the scale attribute for each histogram in a pad.

Furthermore, if the logic was set in the histogram class (or each object) the scale setting in each Paint method
of all objects should be tested.

If you have a pad with a histogram, a right-click on the pad, outside of the histograms frame will convince you.
The SetLogx (), SetLogy () and SetLogz () methods are there. As you see, TPad defines log scale for the
two directions x and y plus z if you want to draw a 3D representation of some function or histogram.

The way to set log scale in the x direction for the active pad is:
root[] gPad->SetLogx (1) |

To reset log in the z direction:
root[] gPad->SetLogz (0) |

If you have a divided pad, you need to set the scale on each of the sub-pads. Setting it on the containing pad
does not automatically propagate to the sub-pads. Here is an example of how to set the log scale for the x-axis
on a canvas with four sub-pads:

root[] TCanvas MyCanvas ("MyCanvas",6 "My Canvas")
root[] MyCanvas->Divide(2,2)

root[] MyCanvas->cd(1)

root[] gPad->SetLogx()

root[] MyCanvas->cd(2)

root[] gPad->SetLogx()

root[] MyCanvas->cd(3)

root[] gPad->SetLogx ()

WaitPrimitive method

When the TPad: :WaitPrimitive () is called with no arguments, it will wait until a double click or any key
pressed is executed in the canvas. A call to gSystem->Sleep (10) has been added in the loop to avoid
consuming at all the CPU. This new option is convenient when executing a macro. By adding statements like:

canvas->WaitPrimitive () ;

You can monitor the progress of a running macro, stop it at convenient places with the possibility to interact with
the canvas and resume the execution with a double click or a key press.

Locking the Pad

You can make the TPad non-editable. Then no new objects can be added, and the existing objects and the pad
can not be changed with the mouse or programmatically. By default the TPad is editable.

| TPad: :SetEditable (kFALSE)

Graphical Objects

In this paragraph, we describe the various simple 2D graphical objects defined in ROOT. Usually, one defines
these objects with their constructor and draws them with their Draw () method. Therefore, the examples will be
very brief. Most graphical objects have line and fill attributes (color, width) that will be described in “Graphical
objects attributes”. If the user wants more information, the class names are given and he may refer to the online
developer documentation. This is especially true for functions and methods that set and get internal values of
the objects described here. By default 2D graphical objects are created in User Coordinates with (0, 0) in the
lower left corner.

Lines, Arrows and Polylines

The simplest graphical object is a line. It is implemented in the TLine class. The line constructor is:

| TLine (Double_t x1,Double t yl,Double t x2,Double_t y2)

The arguments x1, y1, x2, y2 are the coordinates of the first and second point. It can be used:

root[] 1 = new TLine(0.2,0.2,0.8,0.3)
root[] 1->Draw()

The arrow constructor is:

July 2007 v5.16 Graphics and the Graphical User Interface 113

TArrow (Double t x1,Double t yl,Double t x2,Double t y2,Float t arrowsize,
Option_t *option)

It defines an arrow between points x1, y1 and x2, y2. The arrow size is in percentage of the pad height. The
option parameter has the following meanings:

s n<|||

e
nen n|>|l
oSt
||<|>||

Once an arrow is drawn on the screen, one can:

e click on one of the edges and move this edge.
e click on any other arrow part to move the entire arrow.

Figure 9-6 Different arrow formats

Examples of various arrow formats

If FillColor is 0, an open triangle is drawn; else a full triangle is filled with the set fill color. If ar is an arrow
object, fill color is set with:

ar.SetFillColor (icolor);

Where icolor is the color defined in “Color and Color Palettes”.

The default-opening angle between the two sides of the arrow is 60 degrees. It can be changed with the method
ar—->SetAngle (angle), where angle is expressed in degrees.

A poly-line is a set of joint segments. It is defined by a set of N points in a 2D space. Its constructor is:

TPolyLine (Int t n,Double t* x,Double t* y,Option t* option)

Where n is the number of points, and x and y are arrays of n elements with the coordinates of the points.
TPolyLine can be used by it self, but is also a base class for other objects, such as curly arcs.

Circles and Ellipses

An ellipse can be truncated and rotated. It is defined by its center (x1,y1) and two radii r1 and r2. A
minimum and maximum angle may be specified (phimin, phimax). The ellipse may be rotated with an angle
theta. All these angles are in degrees. The attributes of the outline line are set via TAttLine, of the fill area —
via TAttFill class. They are described in “Graphical Objects Attributes”.

Figure 9-7 Different types of ellipses

Examples of Ellipses l

R S
R
AR

When an ellipse sector is drawn only, the lines between the center and the end points of the sector are drawn
by default. By specifying the drawn option “only”, these lines can be avoided. Alternatively, the method
SetNoEdges () can be called. To remove completely the ellipse outline, specify zero (0) as a line style.

The TEllipse constructor is:

TEllipse (Double t x1,Double t yl,Double t rl,Double t r2,Double t phimin,
Double t phimax,Double t theta)

114 Graphics and the Graphical User Interface July 2007 v5.16

An ellipse may be created with:

root[] e = new TEllipse(0.2,0.2,0.8,0.3)
root[] e->Draw()

Rectangles

The class TBox defines a rectangle. It is a base class for many different higher-level graphical primitives. Its
bottom left coordinates x1, y1 and its top right coordinates x2, y2, defines a box. The constructor is:

TBox (Double t x1,Double t yl,Double t x2,Double t y2)

It may be used as in:

root[] b = new TBox(0.2,0.2,0.8,0.3)
root[] b->SetFillColor (5)
root[] b->Draw()

Figure 9-8 A rectangle with a border

A TWbox is a rectangle (TBox) with a border size and a border mode. The attributes of the outline line and of
the fill area are described in “Graphical Objects Attributes”

Markers

A marker is a point with a fancy shape! The possible markers are shown in the next figure.
Figure 9-9 Markers

@Bl AV O[] A ¢ a0 ¥ X
20 21 22 23 24 25 26 27 28 29 30

+= % O X - - @

3 4 5 6 7 8 9 10 11

The marker constructor is:

TMarker (Double t x,Double t y,Int t marker)

The parameters x and y are the marker coordinates and marker is the marker type, shown in the previous
figure. Suppose the pointer ma is a valid marker. The marker size is set via ma->SetMarkerSize (size),
where size is the desired size. It can be specified a size smaller than 1.

Figure 9-10 Different marker sizes

O @) O O O

o O @] O Q
o} = o o (o]
Marker ————— | The user interface for changing the marker color, style and size looks like shown in

- |. |i |. |D.B vl this picture. It takes place in the editor frame anytime the selected object inherits the
class TAttMarker.

Non-symmetric symbols should be used carefully in plotting. The next two graphs show how the misleading a
careless use of symbols can be. The two plots represent the same data sets but because of a bad symbol
choice, the two on the top appear further apart from the bottom example.

July 2007 v5.16 Graphics and the Graphical User Interface 115

Figure 9-11 The use of non-symmetric markers
4 5 %
i 4 '

N

L | n L L L | L L L L | L
100 200 300

ST

A TPolyMaker is defined by an array on N points in a 2D space. At each point x[i], y[i] a marker is drawn.
The list of marker types is shown in the previous paragraph. The marker attributes are managed by the class
TAttMarker and are described in “Graphical Objects Attributes”. The TPolyMarker constructor is:

TPolyMarker (Int t n,Double t *x,Double t *y,Option t *option)

Where x and y are arrays of coordinates for the n points that form the poly-marker.

Curly and Wavy Lines for Feynman Diagrams

This is a peculiarity of particle physics, but we do need sometimes to draw Feynman diagrams. Our friends
working in banking can skip this part. A set of classes implements curly or wavy poly-lines typically used to draw
Feynman diagrams. Amplitudes and wavelengths may be specified in the constructors, via commands or
interactively from context menus. These classes are TCurlyLine and TCurlyArc. These classes make use
of TPolyLine by inheritance; ExecuteEvent methods are highly inspired from the methods used in
TPolyLine and TArc

Figure 9-12 The picture generated by the tutorial macro feynman.C

e* q

q

The TCurlyLine constructor is:

TCurlyLine (Double t x1,Double t yl,Double t x2,Double t y2,Double t wavelength,
Double t amplitude)

The coordinates (x1, y1) define the starting point, (x2, y2) — the end-point. The wavelength and the
amplitude are given in percent of the pad height.

The TCurlyArc constructor is:

TCurlyArc (Double t x1,Double t yl,Double t rad,Double t phimin,Double t phimax,
Double t wavelength,Double t amplitude)

The curly arc center is (x1, y1) and the radius is rad. The wavelength and the amplitude are given in percent
of the line length. The parameters phimin and phimax are the starting and ending angle of the arc (given in
degrees). Refer to SROOTSYS/tutorials/graphics/feynman.C for the script that built the figure above.

Text and Latex Mathematical Expressions

Text displayed in a pad may be embedded into boxes, called paves (TPaveLabel), or titles of graphs or many
other objects but it can live a life of its own. All text displayed in ROOT graphics is an object of class TText. For
a physicist, it will be most of the time a TLatex expression (which derives from TText). TLatex has been
conceived to draw mathematical formulas or equations. Its syntax is very similar to the Latex in mathematical
mode.

116

Graphics and the Graphical User Interface July 2007 v5.16

Subscripts and Superscripts

Subscripts and superscripts are made with the _ and ~ commands. These commands can be combined to
make complex subscript and superscript expressions. You may choose how to display subscripts and
superscripts using the 2 functions SetIndiceSize (Double t) and SetLimitIndiceSize (Int t).
Examples of what can be obtained using subscripts and superscripts:

The expression | Gives The expression | Gives The expression Gives
x* {2y} 2 x*{y*{2}} 7 = (1M y_(1n X!
x_{2y} X3y x™y_{1}} x” x_{1}"{y} x;
Fractions

Fractions denoted by the / symbol are made in the obvious way. The #frac command is used for large fractions
in displayed formula; it has two arguments: the numerator and the denominator. For example, the
_y+z/2

equation ¥*+1 is obtained by following expression x=#frac{y+z/2}{y~{2}+1}.

Roots

The #sgrt command produces the square ROOT of its argument; it has an optional first argument for other
roots.

Example: #sqrt{10} #sqrt[3]1{10} V1o Q?E
Delimiters

You can produce three kinds of proportional delimiters.

#FL1{....} or "a la" Latex
#leftf..... #right] big square brackets
#{}{....} or #left{..... #right} big curly brackets
#11{....} or #left|..... #right| big absolute value symbol
#(O{....} or #left(..... #right) big parenthesis

Changing Style in Math Mode

You can change the font and the text color at any moment using:

#font [font-number]{...} and #color[color-number]{...}

Line Splitting

A TLatex string may be split in two with the following command: #splitline{top}{bottom}. TAxis and
TGaxis objects can take advantage of this feature. For example, the date and time could be shown in the time
axis over two lines with: #splitline{21 April 2003}{14:23:56}

Greek Letters

The command to produce a lowercase Greek letter is obtained by adding # to the name of the letter. For an
uppercase Greek letter, just capitalize the first letter of the command name.

#alpha #beta #chi #delta #varepsilon #phi
#gamma #eta #iota #varphi #kappa #lambda
#mu #nu #omicron #pi #theta #rho
#sigma #tau #upsilon #varomega #omega #xi
#psi #zeta #Alpha #Beta #Chi #Delta
#Epsilon #Phi #Gamma #Eta #Iota #Kappa
#vartheta #Lambda #Mu #Nu #Omicron #P1i
#Theta #Rho #Sigma #Tau #Upsilon #Omega
#varsigma #X1 #Psi #epsilon #varUpsilon #Zeta

July 2007 v5.16 Graphics and the Graphical User Interface 117

Lower case Upper case Variations

alpha : a Alpha : A
beta : B Beta : B
gamma : ¥ Gamma : r
delta :) Delta : A
epsilon : € Epsilon : E varepsilon: ¢
zeta: g Zeta : z
eta: M Eta : H
theta : 0 Theta : c] vartheta : 9
iota : 1 lota : I
kappa : K Kappa : K
lambda : A Lambda : A
mu : o Mu : M
nu: v Nu : N
Xi: g Xi: =
omicron : a Omicron : 0
pi: n Pi: I
rho : p Rho : P
sigma : o Sigma : z varsigma : S
tau : T Tau : T
upsilon : v Upsilon : Y varUpsilon: T
phi : [Phi : D varphi : P
chi: % Chi : X
psi: L Psi: ¥
omega :] Omega : Q varomega: ©
Mathematical Symbols
4 #club + #diamond v #heart & #spade
(@ #voidn N #aleph 3 #Jgothic % #Rgothic
= #leq = #geq (AT)y #GT
=~ ffapprox + f#ineq = fequiv o fpropto
e #in £ finotin = #subset < #notsubset
o #supset < #subseteq = #supseteq @ #oslash
~ #cap #cup » fwedge v fivee
@ #ocopyright © #copyright ® #oright ® #void1
™ #trademark ™ #void3 A #AA 4 #aa
x ftimes + #divide + #pm /W
* #bullet ¢ #cire - #3dots * #upoint
f #voidb o #infty V #nabla & #partial
" #doublequote . #angle .1 #downleftarrow — #corner
| #lbar | #cbar — #topbar 4 #itbar
| #archottom [#arctop [#arcbar | #bottombar
| #downarrow « #leftarrow T #uparrow — #rightarrow
> #leftrightarrow ® #otimes @ #oplus \ #surd
|, #Downarrow <« #Leftarrow i #Uparrow = #Rightarrow
<> #Leftrightarrow [] #prod Z#sum '[#int

TLatex can make mathematical and other symbols. A few of them, such as + and >, are produced by typing
the corresponding keyboard character. Others are obtained with the commands as shown in the table above.

Accents, Arrows and Bars

Symbols in a formula are sometimes placed one above another. TLatex provides special commands for that.
#hat{a} = hat

#check = inverted hat

#acute = acute

#grave = accentgrave

#dot = derivative

#ddot = double derivative

#tilde = tilde

#slash = special sign. Draw a slash on top of the text between brackets for example

#slash{E} {T} generates "Missing ET"
@ s obtained with #oar (a)}

a is obtained with #vec{a}

118

Graphics and the Graphical User Interface July 2007 v5.16

Example 1

The script SROOTSYS/tutorials/graphics/latex.C:

{

gROOT->Reset () ;

TCanvas cl ("cl","Latex",600,700);
TLatex 1;

1.SetTextAlign (12);

1.SetTextSize (0.04);

1.DrawLatex(0.1,0.8,"1) C(x) = d #sqgrt{#frac{2}{#lambdaD}}

#intA{x}_{O}coS(#frac{#pi}{Z}tA{Z})dt");
1.DrawLatex(0.1,0.6,"2) C(x) = d #sqgrt{#frac{2}{#lambdaD}}

#int"{x}cos (#frac{#pi}{2}t~{2})dt");
1.DrawLatex(0.1,0.4,"3) R = |A|"{2} =

#frac{l} {2} (#[] {#frac{l}{2}+C (V) }{2}+

#[] {#frac{l}{2}+sS(V)}~{2})");
1.DrawLatex(0.1,0.2,"4) F(t) = #sum_ {i=

—#infty} " {#infty}A(i)cos#[]{#frac{i}{t+i}}");

}

Figure 9-13 The picture generated by the tutorial macro latex.C

FE test =i E3
Eile Edit ¥iew Options Inspect Classes Help

1) Ceg=d q% 1[cos(zﬂtzjcn:

2) C)-=-d \I% _Tcos(QEF)dt
3 R- AP - I{Irem]+[Trsm])

a4 F) = g‘_A(i)cos [t—L']

Example 2

The script SROOTSYS/tutorials/graphics/latex2.C:

{
gROOT->Reset () ;
TCanvas cl("cl","Latex",600,700);
TLatex 1;
1.SetTextAlign (23);
1.SetTextSize (0.1);
1.DrawLatex (0.5,0.95,"e"{+}e"{-}#rightarrowZ”{0}
#rightarrowI#bar{I}, gi#bar{qgl"):;
1.DrawLatex (0.5,0.75," |#vec{al#bullet#vec{b}|=
#Sigmaa~{i}_{Jjk}+b~{bj}_{i}");
1.DrawLatex(0.5,0.5,"i (#partial {#mu}#bar{#psi}#gamma”{#mu}
+mitbar{#psi}=0
#lLeftrightarrow (#Box+m~{2}) #psi=0") ;
1l.DrawLatex(0.5,0.3,"L {em}=eJ”" {#mu} {em}A {#mu} ,
J™{#mu} {em}=#bar{I}#gamma {#mu}I
M~ {Jj} {i}=#SigmaA {#alpha}#tau”{#alphaj} {i}");

July 2007 v5.16 Graphics and the Graphical User Interface

119

Figure 9-14 The picture generated by the tutorial macro latex2.C

ere—7°>ll, qq
[@bl-za) +b?
i(9, ¥y +m¥=0(o+m”)y=0
Lom=edinA, dbp=ly |, M=2A 1

em’ | *

Example 3

The script SROOTSYS/tutorials/graphics/latex3.C:

{
gROOT->Reset () ;
TCanvas cl ("cl");
TPaveText pt(.1,.5,.9,.9);
pt.AddText ("#frac{2s} {#pifalpha~{2}}
#frac{d#sigma} {dcos#theta} (e"{+}e”{-}
#rightarrow f#bar{f}) = ");
pt.AddText ("#left| #frac{l}{1l - #Delta#alpha} #right|"{2}
(l1+cos” {2} #theta™);
pt.AddText ("+ 4 Re #left{ #frac{2}{1l - #Delta#alpha} #chi(s)
#[1{#hat{g}_{#nu}~{e}tthat{g}_ {#nu}~{f}
(1 + cos™{2}#theta) + 2 #hat{g} {a}"{e}
#hat{g} {a}"{f} cos#theta) } #right}");
pt.SetLabel ("Born equation");
pt.Draw();
}

Figure 9-15 The picture generated by the tutorial macro latex3.C
——— 1 Born equation B

2s _do
n¢2 deost

(g'e — f?] - | 11_305 |2 {(1+cos’8)
g onf eyt
z e { 1 -2M A(s) [gvg\fﬁ + cos ©) +2,4, cos)] }

« 18l P& + azJ(T +coszel+ ¢ G oL oeoso]

Text in a Pad

Text displayed in a pad may be embedded into boxes, called paves, or may be drawn alone. In any case, it is
recommended to use a Latex expression, which is covered in the previous paragraph. Using TLatex is valid
whether the text is embedded or not. In fact, you will use Latex expressions without knowing it since it is the
standard for all the embedded text. A pave is just a box with a border size and a shadow option. The options
common to all types of paves and used when building those objects are the following:

option =“T" top frame
option =“B" bottom frame
option =“R" right frame
option =“L" left frame

option =“NDC" x1,yl,x2,y2 are givenin NDC
option = “ARC" corners are rounded

We will see the practical use of these options in the description of the more functional objects like
TPaveLabels. There are several categories of paves containing text: TPaveLabel, TPaveText and
TPavesText. TPaveLabels are panels containing one line of text. They are used for labeling.

TPaveLabel (Double t x1,Double t yl,Double t x2,Double t y2, const char *label,
Option_t *option)

120

Graphics and the Graphical User Interface July 2007 v5.16

Where (x1, y1) are the coordinates of the bottom left corner, (x2, y2) - coordinates of the upper right corner.
“label” is the text to be displayed and “option” is the drawing option, described above. By default, the border
size is 5 and the option is “br”. If one wants to set the border size to some other value, one may use the
method SetBorderSize (). For example, suppose we have a histogram, which limits are (-100,100) in the x
direction and (0, 1000) in the y direction. The following lines will draw a label in the center of the histogram, with
no border. If one wants the label position to be independent of the histogram coordinates, or user coordinates,
one can use the option “NDC”. See “The Coordinate Systems of a Pad”.

root[] pl = new TPaveLabel (-50,0,50,200,”Some text”)
root[] pl->SetBorderSize(0)
root[] pl->Draw()

Figure 9-16 PaveLabels drawn with different options

This is a Pavelabel with option TL This is a PavelLabel with option TR

This is a PavelLabel with option BL This is a PavelLabel with option BR

A TPaveLabel can contain only one line of text. A TPaveText may contain several lines. This is the only
difference. This picture illustrates and explains some of the points of TPaveText. Once a TPaveText is drawn,
a line can be added or removed by brining up the context menu with the mouse.

Figure 9-17 PaveText examples

File Edit Miew Options Inspector Classes Help

A PaveText is a Pave with text lines andfor hozes
The Position of the text may be automatic
TextfLine/Box attributes may be set for individual elements

The PaveText below has been created automatically

by reading the macro file with the statements 0

used to generate this PaveText ; th RO
n Wi

pave TV

TPaveText pt1(0.015,0,66,0.98,0.98)

TPaveText pt2(0.09,0.015,0.91,0.63)

ph2 SetFillColor(28)

TTexk “t1=pt1 AddText{"A PaveText is a Pave with text lines and/or boxes")
TText “t2=pt1.AddText{"The Position of the text may be automaltic"y

TText “t3=pt1 AddText{"TextLine/Box attributes may ke set for individual elements"
t3. SetTextColor{2)

TText “t30=pt1.AddText{" "}

TLine *H=pt1.AddLine(0,0,0,0)

1 SetLineColor{4)

1 .SetLineWidth{6}

TText “t4=pt1.AddText{"The PaveTexzt below has been created automatically")
TTexk “t5=pt1.AddText{"by reading the macro file with the statements")
TText “tb=pt1 AddText{"used to generate thisz PaveText")

TText “t7=pt1.AddText{"Have Fun with ROOT")

7. SetTextColon(B)

t7.SetTextAngle(12)

17 SetTextalign(22)

t7 . SetTextSize(0.05)

pt1 Draw

pt2 ReadFile{pavet.mac)

pt2 Drav

A TPavesText is a stack of text panels (see TPaveText). One can set the number of stacked panels at
building time. It has the following constructor: By default, the number of stacked panels is 5, option="br".

TPavesText (Double t x1,Double t yl,Double t x2,Double t y2,Int t npaves,
Option_ t* option)

Figure 9-18 A PaveText example

C++ header files

*User.h

Axis
The axis objects are automatically built by various high level objects such as histograms or graphs. Once build,
one may access them and change their characteristics. It is also possible, for some particular purposes to build

axis on their own. This may be useful for example in the case one wants to draw two axis for the same plot, one
on the left and one on the right.

July 2007 v5.16 Graphics and the Graphical User Interface 121

For historical reasons, there are two classes representing axis. TAxis * axis is the axis object, which will be
returned when calling the TH1: : GetAxis () method.

TAxis *axis = histo->GetXaxis ()

Of course, you may do the same for Y and z-axis. The graphical representation of an axis is done with the
TGaxis class. The histogram classes and TGraph generate instances of this class. This is internal and the
user should not have to see it.

Axis Title

The axis title is set, as with all named objects, by

axis->SetTitle ("Whatever title you want");

When the axis is embedded into a histogram or a graph, one has to first extract the axis object:

h->GetXaxis () ->SetTitle ("Whatever title you want")

Axis Options and Characteristics

The axis options are most simply set with the styles. The available style options controlling specific axis options
are the following:

TAxis *axis = histo->GetXaxis();
axis->SetAxisColor (Color t color = 1)
axis->SetLabelColor (Color t color =1
axis->SetLabelFont (Style t font = 62)
axis->SetLabelOffset (Float t offset = 0.005);
axis->SetLabelSize (Float t size = 0.04);
axis->SetNdivisions(Int t n = 510, Bool t optim = kTRUE);
axis->SetNoExponent (Bool t noExponent = kTRUE);
axis->SetTickLength(Float t length = 0.03);
axis->SetTitleOffset (Float t offset = 1);
axis->SetTitleSize (Float t size = 0.02);

)

’

The getters corresponding to the described setters are also available. The general options, not specific to axis,
as for instance SsetTitleTextColor () are valid and do have an effect on axis characteristics.

Setting the Number of Divisions

Use TAxis::SetNdivisions (ndiv,optim) to set the number of divisions for an axis. The ndiv and
optim are as follows:

. ndiv=N1 + 100*N2 + 10000*N3

e N1 = number of first divisions.

e N2 =number of secondary divisions.

e N3 = number of tertiary divisions.

e optim = kTRUE (default), the divisions’ number will be optimized around the specified value.

e optim = kFALSE, orn <0, the axis will be forced to use exactly n divisions.

For example:
ndiv = 0 : no tick marks.
ndiv = 2 : 2 divisions, one tick mark in the middle of the axis.
ndiv = 510 : 10 primary divisions, 5 secondary divisions
ndiv = -10 : exactly 10 primary divisions

Zooming the Axis

You can use TAxis: : SetRange or TAxis: : SetRangeUser to zoom the axis.

TAxis::SetRange (Int t binfirst,Int t binlast)

The setRange method parameters are bin numbers. They are not axis. For example if a histogram plots the
values from 0 to 500 and has 100 bins, SetRange (0, 10) will cover the values 0 to 50. The parameters for
SetRangeUser are user coordinates. If the start or end is in the middle of a bin the resulting range is
approximation. It finds the low edge bin for the start and the high edge bin for the high.

TAxis::SetRangeUser (Axis t ufirst,Axis t ulast)

Both methods, SetRange and SetRangeUser, are in the context menu of any axis and can be used
interactively. In addition, you can zoom an axis interactively: click on the axis on the start, drag the cursor to the
end, and release the mouse button.

122 Graphics and the Graphical User Interface July 2007 v5.16

Drawing Axis Independently of Graphs or Histograms

An axis may be drawn independently of a histogram or a graph. This may be useful to draw for example a
supplementary axis for a graph. In this case, one has to use the TGaxis class, the graphical representation of
an axis. One may use the standard constructor for this kind of objects:

TGaxis (Double t xmin,Double t ymin,Double t xmax,Double t ymax,Double t wmin,
Double t wmax,Int t ndiv = 510,0ption_ t* chopt,Double t gridlength = 0)

The arguments xmin, ymin are the coordinates of the axis' start in the user coordinates system, and xmax,
ymax are the end coordinates. The arguments wmin and wmax are the minimum (at the start) and maximum (at
the end) values to be represented on the axis; ndiv is the number of divisions. The options, given by the
“chopt” string are the following:

e chopt = 'G':logarithmic scale, default is linear.

e chopt = 'B':Blank axis (it is useful to superpose the axis).
Instead of the wmin, wmax arguments of the normal constructor, i.e. the limits of the axis, the name of a TF1
function can be specified. This function will be used to map the user coordinates to the axis values and ticks.
The constructor is the following:

TGaxis (Double t xmin,Double t ymin,Double t xmax,Double t ymax,
const char* funcname,Int t ndiv=510,0Option t* chopt,Double t gridlength=0)

In such a way, it is possible to obtain exponential evolution of the tick marks position, or even decreasing. In
fact, anything you like.

Orientation of Tick Marks on Axis

Tick marks are normally drawn on the positive side of the axis, however, if xmin = xmax, then negative.

e chopt = '+': tick marks are drawn on Positive side. (Default)
e chopt = '-’: tick marks are drawn on the negative side.
e chopt = '+-": tick marks are drawn on both sides of the axis.
e chopt = ‘U: unlabeled axis, default is labeled.
Labels
Position
Labels are normally drawn on side opposite to tick marks. However, chopt = '=':on Equal side. The function

TAxis::CenterLabels () sets the bit kCenterLabels and it is visible from TAxis context menu. It centers
the bin labels and it makes sense only when the number of bins is equal to the number of tick marks. The class
responsible for drawing the axis TGaxis inherits this property.

Orientation

Labels are normally drawn parallel to the axis. However, if xmin = xmax, then they are drawn orthogonal, and
if ymin=ymax they are drawn parallel.

Labels for Exponents

By default, an exponent of the form 107N is used when the label values are either all very small or very large.
One can disable the exponent by calling:

| TAxis::SetNoExponent (kTRUE)

Note that this option is implicitly selected if the number of digits to draw a label is less than the fgMaxDigits
global member. If the property SetNoExponent was set in TAxis (via TAxis::SetNoExponent), the
TGaxis will inherit this property. TGaxis is the class responsible for drawing the axis. The method
SetNoExponent is also available from the axis context menu.

July 2007 v5.16 Graphics and the Graphical User Interface 123

Figure 9-19 Y-axis with and without exponent labels

%] Drawing from DhDraw

Eile Edit Miew Options

Inzpect Classes

=10l x|

Help

[This is the px distribufon

= [This is the px distribufon

Hent= 26000

H
10

H
10

10

Mean =0.0007 1
FME =0.BBBE

1000 |

100

10

hpx

Hent= 25000
Mean =0.0007 145
FME =0.BBBB

Number of Digits in Labels

TGaxis::fgMaxDigits is the maximum number of digits permitted for the axis labels above which the
notation with 10N is used. It must be greater than 0. By default fgMaxDigits is 5 and to change it use the
TGaxis::SetMaxDigits method. For example to set fgMaxDigits to accept 6 digits and accept numbers
like 900000 on an axis call:

TGaxis::SetMaxDigit

s (6)

Tick Mark Positions

Labels are centered on tick marks. However, if xmin = xmax, then they are right adjusted.

. chopt =
e chopt =
e chopt =
e chopt =
Label Formatting

'R': labels are right adjusted on tick mark (default is centered)

'L' : labels are left adjusted on tick mark.
'C': labels are centered on tick mark.

'M"' : In the Middle of the divisions.

Blank characters are stripped, and then the label is correctly aligned. The dot, if last character of the string, is
also stripped. In the following, we have some parameters, like tick marks length and characters height (in
percentage of the length of the axis, in user coordinates). The default values are as follows:

e Primary tick marks: 3.0 %

e Secondary
e Third order
e Characters

tick marks: 1.5 %
tick marks: .75 %
height for labels: 4%

e Labels offset: 1.0 %

Stripping Decimals

Use the TStyle::SetStripDecimals to strip decimals when drawing axis labels. By default, the option is
set to true, and TGaxis: : PaintAxis removes trailing zeros after the dot in the axis labels, e.g. {0, 0.5, 1, 1.5,

2,2.5, etc.}

TStyle::SetStripDec

imals (Bool t strip=kTRUE)

If this function is called with strip=kFALSE, TGaxis: :PaintAxis () will draw labels with the same number

of digits after the dot, e.g.

Optional Grid

{0.0,0.5, 1.0, 1.5, 2.0, 2.5, etc.}

chopt = 'W':cross-Wire

124

Graphics and the Graphical User Interface

July 2007 v5.16

Axis Binning Optimization

By default, the axis binning is optimized.
e chopt = 'N': No binning optimization
e chopt = 'I': Integer labeling

Axis with Time Units

Histograms' axis can be defined as "time axis". To do that it is enough to activate the SetTimeDisplay
attribute on a given axis. If h is a histogram, it is done the following way:

|h—>GetXaxis()—>SetTimeDisplay(l); // X axis 1s a time axis

Two parameters can be adjusted in order to define time axis: the time format and the time offset.

Time Format

It defines the format of the labels along the time axis. It can be changed using the TAxis method
SetTimeFormat. The time format is the one used by the C function strftime (). It is a string containing the
following formatting characters:

For %a abbreviated weekday name
the %b abbreviated month name
date:

%d day of the month (01-31)
%m month (01-12)

%y year without century

%Y year with century
For %H hour (24-hour clock)
the %l hour (12-hour clock)

time: %p local equivalent of AM or PM

%M minute (00-59)
%S seconds (00-61)
%% %

The other characters are output as is. For example to have a format like dd/mm/yyyy one should do:

| h->GetXaxis () ->SetTimeFormat ("%d\/%m\/%Y") ;

If the time format is not defined, a default one will be computed automatically.

Time Offset

This is a time in seconds in the UNIX standard UTC format (the universal time, not the local one), defining the
starting date of a histogram axis. This date should be greater than 01/01/95 and is given in seconds. There are
three ways to define the time offset:

1. By setting the global default time offset:

TDatime da(2003,02,28,12,00,00);
gStyle->SetTimeOffset (da.Convert());

If no time offset is defined for a particular axis, the default time offset will be used. In the example above, notice
the usage of TDatime to translate an explicit date into the time in seconds required by SetTimeFormat.

2. By setting a time offset to a particular axis:

Thatime dh(2001,09,23,15,00,00);
h->GetXaxis () ->SetTimeOffset (dh.Convert()) ;

3. Together with the time format using SetTimeFormat. The time offset can be specified using the control
character %F after the normal time format. $F is followed by the date in the format: yyyy-mm-dd hh:mm:ss.

h->GetXaxis () ->SetTimeFormat ("$d\/%$m\/%y%$F2000-02-28 13:00:01") ;

Notice that this date format is the same used by the Tbatime function AsSQLString. If needed, this function
can be used to translate a time in seconds into a character string which can be appended after 3F. If the time
format is not specified (before $F) the automatic one will be used. The following example illustrates the various
possibilities.

July 2007 v5.16 Graphics and the Graphical User Interface 125

}

gStyle->SetTitleH (0.08);
TDatime da (2003,02,28,12,00,00);
gStyle->SetTimeOffset (da.Convert());
ct = new TCanvas ("ct","Time on axis",0,0,600,600);
ct->Divide (1, 3);
htl = new TH1F("htl","ht1",30000,0.,200000.);
ht2 = new TH1F("ht2","ht2",30000,0.,200000.);
ht3 = new TH1F ("ht3","ht3",30000,0.,200000.);
for (Int t i=1;i<30000;i++) |
Float t noise = gRandom->Gaus (0,120);
htl->SetBinContent (i, noise) ;
ht2->SetBinContent (i, noise*noise);
ht3->SetBinContent (i, noise*noise*noise) ;
}
ct->cd (1) ;
htl->GetXaxis () ->SetLabelSize (0.06) ;
htl->GetXaxis () ->SetTimeDisplay (1) ;
htl->GetXaxis () ->SetTimeFormat ("$d\/%m\/%y%F2000-02-2813:00:01") ;
htl->Draw () ;
ct->cd(2);
ht2->GetXaxis () ->SetLabelSize (0.006) ;
ht2->GetXaxis () ->SetTimeDisplay (1) ;
ht2->GetXaxis () ->SetTimeFormat ("%d\/%m\/%y") ;
ht2->Draw () ;
ct->cd (3);
ht3->GetXaxis () ->SetLabelSize (0.06) ;
TDatime dh(2001,09,23,15,00,00);
ht3->GetXaxis () ->SetTimeDisplay (1) ;
ht3->GetXaxis () ->SetTimeOffset (dh.Convert ());
ht3->Draw () ;

The output is shown in the figure below. If a time axis has no specified time offset, the global time offset will be
stored in the axis data structure. The histogram limits are in seconds. If wmin and wmax are the histogram limits,
the time axis will spread around the time offset value from TimeOffset+wmin t0 TimeOf fset+wmax. Until
now all examples had a lowest value equal to 0. The following example demonstrates how to define the
histogram limits relatively to the time offset value.

Figure 9-20 Time axis examples

(&)

htZ

2802700 2600200 Z9/0Z/00 280200 Z3/02000 290200 010300 01030 01300 0170300

— - —
o = .

26002003 28/02/03 01/D3M03 01003 01/0I/03 O1/VANI 02M03M03 02033 0200303 020303

23-15h 2321h 2403h 2408h 24-16h 24-21h 2503h 2508h 2516h 2521h

// Define the time offset as 2003, January 1st
TDatime TO (2003,01,01,00,00,00);

int X0 = TO0.Convert();
gStyle->SetTimeOffset (X0) ;

// Define the lowest histogram limit as 2002,September 23rd
TDatime T1(2002,09,23,00,00,00);
int X1 = Tl.Convert ()-X0;

// Define the highest histogram limit as 2003, March 7th

126

Graphics and the Graphical User Interface July 2007 v5.16

TDatime T2 (2003,03,07,00,00,00);
int X2 = T2.Convert (1)-X0;

TH1F * hl = new THIF("hl","test",100,X1,X2);

TRandom r;

for (Int _t i=0;i<30000;i++) {
Double t noise = r.Gaus (0.5* (X1+X2),0.1*(X2-X1));
hl1->Fill (noise);

}

hl->GetXaxis () ->SetTimeDisplay (1) ;
hl->GetXaxis ()->SetLabelSize (0.03);
hl->GetXaxis () ->SetTimeFormat ("$Y\/%m\/%d") ;
hl->Draw () ;

}

The output is shown in the next figure. Usually time axes are created automatically via histograms, but one may
also want to draw a time axis outside a "histogram context". Therefore, it is useful to understand how TGaxis
works for such axis. The time offset can be defined using one of the three methods described before. The time
axis will spread around the time offset value. Actually, it will go from TimeOffset+wmin to TimeOf fset+wmax
where wmin and wmax are the minimum and maximum values (in seconds) of the axis. Let us take again an
example. Having defined "2003, February 28 at 12h”, we would like to see the axis a day before and a day after.

Figure 9-21 A histogram with time axis X

1200

h1

Entries 30000

Mean -1.5038+06
RMS 1.4168+06

1000

800

600

400

200

C 1 . TN T T B R T
2002”0[03 2002/11/02 2002/12/02 2003/01/01 2003/01/31 2003/03/02

A TGaxis can be created the following way (a day has 86400 seconds):

TGaxis *axis = new TGaxis(xl,yl,x2,y2,-100000,150000,2405,"t");

the "t" option (in lower case) means it is a "time axis". The axis goes form 100000 seconds before
TimeOffset and 150000 seconds after. So the complete macro is:

{
cl = new TCanvas("cl","Examples of TGaxis",10,10,700,500);
cl->Range (-10,-1,10,1);
TGaxis *axis = new TGaxis(-8,-0.6,8,-0.6,-100000,150000,2405,"t");
axis->SetLabelSize (0.03);

TDatime da(2003,02,28,12,00,00);
axis->SetTimeOffset (da.Convert (
axis->SetTimeFormat ("$d\/%m\/%Y
axis->Draw () ;

)7
")

= — ~

The time format is specified with:

axis->SetTimeFormat ("$d\/%m\/%Y") ;

The macro gives the following output:

b b v e
27/02/2003 28/02/2003 01/03/2003

Thanks to the TLatex directive #splitline it is possible to write the time labels on two lines. In the previous
example changing the SetTimeFormat line by:

July 2007 v5.16 Graphics and the Graphical User Interface 127

axis->SetLabelOffset (0.02);
axis->SetTimeFormat ("#splitline{%Y}{%d\/sm}") ;

will produce the following axis:

b b b i
2003 2003 2003
27102 28/02 01/03

Axis Examples

To illustrate what was said, we provide two scripts. The first one creates the picture shown in the next figure.

Figure 9-22 The first axis example

8 — E —0 —9000
e E 100200 300 400 500 500 700 800 900 10 —2 8000
C PO 200 3005400 500600 T 0 SR B 00 00 .
a0l ~420 37000
L E —330 —3 6000
2 C L L L L L L 2 3
t i 10° 107 10" 1 10 10° 10° 40 5000
0 10 = : 3
= E —350 —2 4000
2 C L I I L1 I I L ;2 i
- L 6 4 =2 0 2 4 6 8 —460 —13000
o 2 o E —270 —32000
s F 5 5 1 1 5 I | Js0 3 1000
. r 12 1.22 124 1.26 1.28 13 132 E
85 1 g0 Fo

The first script is:

{

gROOT->Reset () ;

cl = new TCanvas("cl","Examples of Gaxis",10,10,700,500);
cl->Range (-10,-1,10,1);

TGaxis *axisl = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");
axisl->SetName ("axisl");

axisl->Draw () ;

TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,0.001,10000,510,"G");
axis2->SetName ("axis2") ;

axis2->Draw () ;

TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
axis3->SetName ("axis3");

axis3->Draw () ;

TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");
axis4->SetName ("axis4d");

axis4->Draw () ;

TGaxis *axis5 = new TGaxis(-4.5,-6,5.5,-6,1.2,1.32,80506,"-+");
axis5->SetName ("axisb") ;

axis5->SetLabelSize (0.03);

axis5->SetTextFont (72);

axis5->SetLabelOffset (0.025);

axis5->Draw () ;

TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.6,100,900,50510,"=-");
axis6->SetName ("axiso6") ;

axis6->Draw () ;

TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L");
axis7->SetName ("axis7");

axis7->SetLabelOffset (0.01);

axis7->Draw () ;

// one can make axis top->bottom. However because of a problem,
// the two x values should not be equal

TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,0,90,50510,"-");
axis8->SetName ("axis8") ;

axis8->Draw () ;

}

128

Graphics and the Graphical User Interface

July 2007 v5.16

Figure 9-23 The second axis example

Axes axis with decreasing values

210 8 6 4 2 0 -2 4 6 8 -10
L T B e e . e e

15
i Il by b b b e 0 |
E 0020406 08 1 12 14 16 18 2
F exponential axis
05—
— a -
U= 5 HiE
F S a0F
o8- 2N
F g
- (=4
1= 2
5
B anllunn s nallnnnnllonwlnnnollnonallnwnnlonnnlon:

0 1 2 3 4 5 6 7 8 9 10

The second example shows the use of the second form of the constructor, with axis ticks position determined by
a function TF1:

void gaxis3al()

{
gStyle->SetOptStat (0) ;
TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);
h2->Draw () ;
TF1l *fl=new TF1("f1","-x",-10,10);
TGaxis *Al = new TGaxis(0,2,10,2,"f1",510,"-");
Al->SetTitle("axis with decreasing values");
Al->Draw () ;
TF1 *f2=new TF1("f2","exp(x)",0,2);
TGaxis *A2 = new TGaxis(1,1,9,1,"f2");
A2->SetTitle ("exponential axis");
A2->SetLabelSize (0.03);
A2->SetTitleSize (0.03);
A2->SetTitleOffset (1.2);
A2->Draw () ;
TF1 *f3=new TF1("£f3","loglO(x)",0,800);
TGaxis *A3 = new TGaxis(2,-2,2,0,"f3",505);
A3->SetTitle("logarithmic axis");
A3->SetLabelSize (0.03);
A3->SetTitleSize (0.03);
A3->SetTitleOffset (1.2);
A3->Draw () ;

}

Figure 9-24 An axis example with time display

[%I Time on axis _1Ol x|
File Edit ¥iew Options Inspect Classes Help
| The ROOT seism |

1000

h20 15h24 15h28 15h33 15h37 15h41 15h45

July 2007 v5.16 Graphics and the Graphical User Interface 129

// strip chart example
void seism() {

TStopwatch sw; sw.Start();

//set time offset

TDatime dtime;

gStyle->SetTimeOffset (dtime.Convert());

TCanvas *cl = new TCanvas ("cl","Time on axis",10,10,1000,500);
cl->SetFillColor (42);

cl->SetFrameFillColor (33);

cl->SetGrid () ;

Float t bintime = 1;

//one bin = 1 second. change it to set the time scale
TH1F *ht = new TH1F("ht","The ROOT seism",10,0,10*bintime) ;
Float t signal = 1000;

ht->SetMaximum (signal) ;

ht->SetMinimum (-signal) ;

ht->SetStats (0) ;

ht->SetLineColor (2);
ht->GetXaxis () ->SetTimeDisplay (1) ;
ht->GetYaxis () ->SetNdivisions (520) ;

ht->Draw () ;

for (Int t i=1;i<2300;i++) {
//======= Build a signal : noisy damped sine ======
Float t noise = gRandom->Gaus (0,120);
if (4 > 700)
noise += signal*sin((1i-700.)*6.28/30) *exp((700.-1)/300.);
ht->SetBinContent (i, noise) ;
cl->Modified() ;
cl->Update () ;
gSystem->ProcessEvents () ;
//canvas can be edited during the loop
}

printf ("Real Time = %8.3fs,Cpu Time = %8.3fs\n",sw.RealTime (),sw.CpuTime()) ;

Graphical Objects Attributes

Text Attributes

When a class contains text or derives from a text class, it needs to be able to set text attributes like font type,
size, and color. To do so, the class inherits from the TAttText class (a secondary inheritance), which defines

text attributes. TLatex and TText inherit from TAttText.

Setting Text Alignment

Text alignment may be set by a method call. What is said here applies to all objects deriving from TAttText,
and there are many. We will take an example that may be transposed to other types. Suppose "1a" is a TLatex

object. The alignment is set with:

root[] la->SetTextAlign(align)

The parameter align is a short describing the alignment:

align = 10*HorizontalAlign + VerticalAlign
For horizontal alignment, the following convention applies:
o 1=left
e 2 =centered
e 3 =right

For vertical alignment, the following convention applies:

e 1 =bottom
e 2 =centered
e 3=top
For example, align: 11 = left adjusted and bottom adjusted; 32 = right adjusted and vertically centered.

130

Graphics and the Graphical User Interface July 2007 v5.16

Setting Text Angle

Use TAttText: :SetTextAngle to set the text angle. The angle is the degrees of the horizontal.

| root[]

la->SetTextAngle (angle)

Setting Text Color

Use TAttText: :SetTextColor to set the text color. The color is the color index. The colors are described
in "Color and Color Palettes".

| root[]

la->SetTextColor (color)

Setting Text Font

Use TAttText: :SetTextFont to set the font. The parameter font is the font code, combining the font and

precision:

font = 10 * fontID + precision

| root[]

la->SetTextFont (font)

The table below lists the available fonts. The font IDs must be between 1 and 14. The precision can be:

e Precision = 0 fast hardware fonts (steps in the size)
e Precision = 1 scalable and rotate-able hardware fonts (see below)
e Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used. The fonts have a minimum (4)
and maximum (37) size in pixels. These fonts are fast and are of good quality. Their size varies with large steps
and they cannot be rotated. Precision 1 and 2 fonts have a different behavior depending if True Type Fonts
(TTF) are used or not. If TTF are used, you always get very good quality scalable and rotate-able fonts.
However, TTF are slow. Precision 1 and 2 fonts have a different behavior for PostScript in case of TLatex

objects:

e With precision 1, the PostScript text uses the old convention (see TPostScript) for some

special characters to draw sub and superscripts or Greek text.

e With precision 2, the "PostScript" special characters are drawn as such. To draw sub and

superscripts it is highly recommended to use TLatex objects instead.

For example: font = 62 is the font with ID 6 and precision 2.

Figure 9-25 Font’s examples

ID1:
ID2:
D3
1D 4 ;
ID5:
D6 :
ID7:
D8 :
ID9:

ID10:
ID11:

ID12

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The guick brown fox is not here anymore

The quick brown fox is not here anymore

The quick brown fox is not here anymore

The guick brown fox 1s not here anymore
The guick brown fox is not here anymore
The quick brown fox is not here anymore

The gquick brown fox is not here anymore

: Tne 8oy k Bpowv o€ 10 vOT MEPE avyLope
1D 13 :
1D 14 :

The quick brown fox is not here anymore
The quick brown fox is not here anymore

July 2007 v5.16

Graphics and the Graphical User Interface 131

The available fonts are:

Font ID X11 True Type name itellTic "boldness"
1 times-medium-i-normal "Times New Roman" Yes 4
2 times-bold-r-normal "Times New Roman" No 7
3 times-bold-i-normal "Times New Roman" Yes 7
4 helvetica-medium-r-normal "Arial" No 4
5 helvetica-medium-o-normal "Arial" Yes 4
6 helvetica-bold-r-normal "Arial" No 7
7 helvetica-bold-o-normal "Arial" Yes 7
8 courier-medium-r-normal "Courier New" No 4
9 courier-medium-o-normal "Courier New" Yes 4
10 courier-bold-r-normal "Courier New" No 7
11 courier-bold-o-normal "Courier New" Yes 7
12 symbol-medium-r-normal "Symbol” No 6
13 times-medium-r-normal "Times New Roman" No 4
14 "Wingdings" No 4

This script makes the image of the different fonts:

{

textc

= new TCanvas ("textc", "Example of text",1l);

for (int i=1;i<15;i++) {

cid

= new char([8];

sprintf (cid,"ID %d :",1);
cid[7] = 0;

lid

= new TLatex(0.1,1-(double)i/15,cid);

lid->SetTextFont (62) ;
lid->Draw () ;

1 =

new TLatex(.2,1-(double)i/15,"The quick brown fox is not here anymore")

1->SetTextFont (i*10+2) ;
1->Draw () ;

How to use True Type Fonts

You can activate the True Type Fonts by adding the following line in your . rootrc file.

Unix.*.Root.UseTTFonts: true

You can check that you indeed use the TTF in your Root session. When the TTF is active, you get the following
message at the start of a session: "Free Type Engine v1.x used to render TrueType fonts." You can also check
with the command:

gEnv->Print ()

Setting Text Size

Use TAttText: :SetTextSize to set the text size.

root[] la->SetTextSize(size)

The size is the text size expressed in percentage of the current pad size.
The text size in pixels will be:

Text

|__INE 7]
6. helvetica hald VI

If current pad is horizontal, the size in pixels = textsize * canvas height

If current pad is vertical, the size in pixels =textsize * canvas width

Zzwade, micae 3] TAttText.

The user interface for changing the text color, size, font and allignment looks like shown in
this picture. It takes place in the editor frame anytime the selected object inherits the class

132

Graphics and the Graphical User Interface

July 2007 v5.16

Line Attributes

All classes manipulating lines have to deal with line attributes: color, style and width. This is done by using
secondary inheritance of the class TAttLine. The line color may be set by a method call. What is said here
applies to all objects deriving from TAttLine, and there are many (histograms, plots). We will take an example
that may be transposed to other types. Suppose "11" is a TLine object. The line color is set with:

root[] li->SetLineColor (color)

The argument color is a color number. The colors are described in "Color and Color Palettes"

The line style may be set by a method call. What is said here applies to all objects deriving from TAttLine, and
there are many (histograms, plots). We will take an example that may be transposed to other types. Suppose
"1i" is a TLine object. The line style is set with:

root[] li->SetLineStyle(style)

The argument style is one of: 1=so011id, 2=dash, 3=dash-dot, 4=dot-dot.

The line width may be set by a method call. What is said here applies to all objects deriving from TAttLine,
and there are many (histograms, plots). We will take an example that may be transposed to other types.
Suppose "1i" is a TLine object. The line width is set with:

root[] li->SetLineWidth (width)

The width is the width expressed in pixel units.

Line ——— The user interface for changing the line color, line width and style looks like shown in this
B |- [i— =] picture. It takes place in the editor frame anytime the selected object inherits the class

|—_[TAttLine.
Fill Attributes

Almost all graphics classes have a fill area somewhere. These classes have to deal with fill attributes. This is
done by using secondary inheritance of the class TAttFill. Fill color may be set by a method call. What is
said here applies to all objects deriving from TAttFill, and there are many (histograms, plots). We will take an
example that may be transposed to other types. Suppose "h" is a TH1F (1 dim histogram) object. The histogram
fill color is set with:

root[] h->SetFillColor (color)

The color is a color number. The colors are described in "Color and color palettes”

Fill style may be set by a method call. What is said here applies to all objects deriving from TAttFill, and
there are many (histograms, plots). We will take an example that may be transposed to other types. Suppose
"h" is a TH1F (1 dim histogram) object. The histogram fill style is set with:

root[] h->SetFillStyle(style)

The convention for style is: 0:hollow, 1001 :solid, 2001 : hatch style, 3000+pattern number:patterns, 4000
to 4100 :transparency, 4000:fully transparent, 4100: fully opaque.

Fill styles >3100 and <3999 are hatches. They are defined according to the Fi11Style=3ijk value as follows:

e 1(1-9) specifies the space between each hatch (1=minimum space, 9=maximum). The
final spacing is set by SetHatchesSpacing () method and it is
*GetHatchesSpacing ().

e j(0-9) specifies the angle between 0 and 90 degres as follows: 0=0, 1=10, 2=20, 3=30,
4=45, 5=not drawn, 6=60, 7=70, 8=80 and 9=90.

e k(0-9) specifies the angle between 0 and 90 degres as follows: 0=180, 1=170, 2=160,

3=150, 4=135, 5=not drawn, 6=120, 7=110, 8=100 and 9=90.

Figure 9-26 The various patterns

Fill styles

3005

SRRy
BN
RERNNRRRNNY

3007 3008

NN NN NN
AR e
o
o

3010

AU

solcklekickoRiokiolok 0000000000000
Flokkiokiokioioll 0000000000000
okl 0000000000000

3011 3012 3013 3014 3015

sl

3016 3017 3018 3019 3020

July 2007 v5.16 Graphics and the Graphical User Interface 133

Color and Color Palettes

At initialization time, a table of basic colors is generated when the first Canvas constructor is called. This table is
a linked list, which can be accessed from the grROOT object (see TROOT: : GetListOfColors ()). Each color
has an index and when a basic color is defined, two "companion" colors are defined:

e the dark version (color index + 100)

e the bright version (color index + 150)
The dark and bright colors are used to give 3-D effects when drawing various boxes (see TWbox, TPave,
TPaveText, TPaveLabel, etc). If you have a black and white copy of the manual, here are the basic colors
and their indices.

Figure 9-27 The basic ROOT colors

2 =red

3 = bright green
33 A0 4= brlght blue

5 = yellow

6 = hot pink
7 = aqua

21 &2 23 24 23 26 29 30 8 = green
9 = blue

0->9: basic colors
. . . . 10 i 19 b a0 10->19: gray shades

20->29: brown shades

10 30->39: blue shades
40->49: red shade

The list of currently supported basic colors (here dark and bright colors are not shown) are shown. The color
numbers specified in the basic palette, and the picture above, can be viewed by selecting the menu entry Colors
in the View canvas menu. The user may define other colors. To do this, one has to build a new TColor:

TColor (Int t color,Float t r,Float t g,Float t b,const char* name)

One has to give the color number and the three Red, Green, Blue values, each being defined from 0 (min) to
1(max). An optional name may be given. When built, this color is automatically added to the existing list of
colors. If the color number already exists, one has to extract it from the list and redefine the RGB values. This
may be done for example with:

root[] color=(TColor*) (QROOT->GetListOfColors () ->At (index_color))
root[] color->SetRGB(r,g,b)

Where r, gand b go from 0 to 1 and index color is the color number you wish to change.

Fil——— The user interface for changing the fill color and style looks like shown in this picture. It takes
C - . |- place in the editor frame anytime the selected object inherits the class TAttFill.

Color Palette (for Histograms)

Defining one color at a time may be tedious. The histogram classes (see Draw Options) use the color palette.
For example, TH1::Draw("col") draws a 2-D histogram with cells represented by a box filled with a color CT
function of the cell content. If the cell content is N, the color cI used will be the color number in colors[N]. If
the maximum cell content is >ncolors, all cell contents are scaled to ncolors. The current color palette does
not have a class or global object of its own. It is defined in the current style as an array of color numbers. The
current palette can be changed with:

TStyle::SetPalette(Int t ncolors,Int t*color indexes).

By default, or if ncolors <= 0, a default palette (see above) of 50 colors is defined. The colors defined in this
palette are good for coloring pads, labels, and other graphic objects. If ncolors > 0 and colors = 0, the
default palette is used with a maximum of ncolors. If ncolors == 1 && colors == 0, then a pretty
palette with a spectrum Violet->Red is created. It is recommended to use this pretty palette when drawing
lego(s), surfaces or contours. For example, to set the current palette to the “pretty” one, do:

root[] gStyle->SetPalette(1l)

A more complete example is shown below. It illustrates the definition of a custom palette. You can adapt it to
suit your needs. In case you use it for contour coloring, with the current color/contour algorithm, always define
two more colors than the number of contours.

134 Graphics and the Graphical User Interface July 2007 v5.16

void palette() { // Example of creating new colors (purples)
const Int t colNum = 10; // and defining of a new palette
Int t palette[colNum];
for (Int t i=0; i<colNum; i++) {
// get the color and if it does not exist create it

if (! gROOT->GetColor (230+1)) {
TColor *color = new TColor (230+1i,1-(i/((colNum)*1.0)),0.3,0.5,"");
} else {

TColor *color

= gROOT->GetColor (230+1i) ;
color->SetRGB (1-(

i/ ((colNum)*1.0)),0.3,0.5);
}
palette[i] = 230+i;
}
gStyle->SetPalette (colNum,palette);
TF2 *f2 = new TF2("f2","exp (- (x"2)-(y*2))",-3,3,-3,3);
// two contours less than the number of colors in palette
f2->SetContour (colNum-2) ;
f2->Draw ("cont") ;

The Graphics Editor

A new graphics editor took place in ROOT v4.0. The editor can be activated by selecting the Editor menu entry
in the canvas View menu or one of the context menu entries for setting line, fill, marker or text attributes. The
following object editors are available for the current ROOT version.

TAxisEditor

Ads This user interface gives the possibility for changing the following axis attributes:

B |- o] 005 S|, 01or of the selected axis, the axis’ title and labels;
[4 V' Optimize

Il Log I WoreLog ¢ the length of thick parameters and the possibility to set them on both axis sides

[0 s (if +- is selected);

T‘;"i_ﬂ * to set logarithmic or linear scale along the selected axis with a choice for optimized
I Itle . . .
M- s 00 2 or more logarithmic labels;

[6. helvetica boia 3] e primary, secondary and tertiary axis divisions can be set via the three number fields.
I Centersd Offset: ¢ the axis title can be added or edited and the title’s color, position, offset, size and

" Rotated | 1.00 ﬁl font can be set interactively;

Laaa'ls' Size-mﬂ e the color, size, and offset of axis labels can be set similarly. In addition, there is a
- — check box for no exponent choice, and another one for setting the same decimal

NoExp | 0.005 2

[6. helvetica boid =] part for all labels.
TPadEditor

Pad/Canvas ——— It provides the following user interface:

" Fixed aspect ratio °

Fixed aspect ratio — can be set for pad resizing.
" Crosshair ¥ Edit . .
o @i @ i e FEdit — sets pad or canvas as editable.
IV Tickx ¥ Ticky e Crosshair — sets a cross hair on the pad.

Log Scale ° . _ . .

Fx Fov 2 T!ckX set t!cks along the X ax!s.
Border Made e TickY — set ticks along the Y axis.
€ Sinken horder e GridX - set a grid along the X axis.
Mo border . . .
‘O Eaiend FEE e GridY — set a grid along the Y axis.

e The pad or canvas border size can be set if a sinken or a raised border mode is
selected; no border mode can be set too.

Copy and Paste

You can make a copy of a canvas using TCanvas: :DrawClonePad. This method is unique to TCanvas. It
clones the entire canvas to the active pad. There is a more general method TObject: : DrawClone, which all
objects descendents of TObject, specifically all graphic objects inherit. Below are two examples, one to show
the use of DrawClonePad and the other to show the use of DrawClone.

July 2007 v5.16 Graphics and the Graphical User Interface 135

Using the GUI

In this example we will copy an entire canvas to a new one with DrawClonePad. Run the script draw2dopt.C.

root[] .x tutorials/hist/draw2dopt.C

This creates a canvas with 2D histograms. To make a copy of the canvas follow the steps:
e Right-click on it to bring up the context menu
e Select DrawClonePad

This copies the entire canvas and all its sub-pads to a new canvas. The copied canvas is a deep clone, and all
the objects on it are copies and independent of the original objects. For instance, change the fill on one of the
original histograms, and the cloned histogram retains its attributes. brawClonePad will copy the canvas to the
active pad; the target does not have to be a canvas. It can also be a pad on a canvas.

Figure 9-28 Diferent draw options
el =l

Eile Edit ¥iew Options Inspect Classes Help

T rOETmE
LEGO1

2
2
1
o
=i
i
2L
44

If you want to copy and paste a graphic object from one canvas or pad to another canvas or pad, you can do so
with DrawClone method inherited from TObject. All graphics objects inherit the TObject: :DrawClone
method. In this example, we create a new canvas with one histogram from each of the canvases from the script
draw2dopt.C.

e Start a new ROOT session and execute the script draw2dopt.C

e Select a canvas displayed by the script, and create a new canvas c1 from the File menu.

o Make sure that the target canvas (c1) is the active one by middle clicking on it. If you do this step
right after step 2, c1 will be active.

e Select the pad with the first histogram you want to copy and paste.

¢ Right click on it to show the context menu, and select DrawClone.

e Leave the option blank and hit OK.
Repeat these steps for one histogram on each of the canvases created by the script, until you have one pad
from each type. If you wanted to put the same annotation on each of the sub pads in the new canvas, you could
use DrawClone to do so. Here we added the date to each pad. The steps to this are:

e Create the label in on of the pads with the graphics editor.

e Middle-click on the target pad to make it the active pad

e Use DrawClone method of the label to draw it in each of the other panels.

The option in the DrawClone method argument is the Draw option for a histogram or graph. A call to
TH1::DrawClone can clone the histogram with a different draw option.

Programmatically

To copy and paste the four pads from the command line or in a script you would execute the following
statements:

root[] .x tutorials/hist/draw2dopt.C

root[] TCanvas cl("cl","Copy Paste",200,200,800,600) ;
root[] surfaces->cd(l); // get the first pad
root[] TPad *pl = gPad;

root[] lego->cd(2); // get the next pad

root[] TPad *p2 = gPad;

root[] cont->cd(3); // get the next pad

root[] TPad *p3 = gPad;

136

Graphics and the Graphical User Interface July 2007 v5.16

root[] ec2h->cd(4) ; // get the next pad
root[] TPad *p4 = gPad;

root[] // to draw the four clones

root[] el->cd();

root[] pl->DrawClone () ;

root[] p2->DrawClone() ;

root[] p3->DrawClone () ;

root[] pd4->DrawClone () ;

Note that the pad is copied to the new canvas in the same location as in the old canvas. For example if you
were to copy the third pad of surf to the top left corner of the target canvas you would have to reset the
coordinates of the cloned pad.

Legends

Legends for a graph are obtained with a TLegend object. This object points to markers, lines, boxes,
histograms, graphs and represent their marker, line, fill attributes. Any object that has a marker or line or fill
attribute may have an associated legend. A TLegend is a panel with several entries (class TLegendEntry)
and is created by the constructor

TLegend (Double t x1,Double t yl,Double t x2,Double t y2,const char *header,
Option_t *option)

The legend is defined with default coordinates, border size and option. The legend coordinates (NDC) in the
current pad are x1, y1, x2, y2. The default text attributes for the legend are:

e Alignment =12 left adjusted and vertically centered

e Angle =0 (degrees)

e Color =1 (black)

e Size = calculate when number of entries is known

e Font = helvetica-medium-r-normal scalable font = 42, and bold = 62 for title

The title is a regular entry and supports TLatex. The default is no title (header = 0). The options are the
same as for TPave; by default, they are "brNDC". Once the legend box is created, one has to add the text with
the AddEntry () method:

TLegendEntry* TLegend::AddEntry(TObject *obj, const char *label,Option t *option)

The parameters are:

*obj is a pointer to an object having marker, line, or fill attributes (a histogram, or a graph)
label is the label to be associated to the object

option:

. "L” draw line associated with line attributes of ob, if obj inherits from TAttLine.

. "P” draw poly-marker associated with marker attributes of ob, if ob7 inherits TAttMarker.
° "F” draw a box with fill associated with fill attributes of ob, if ob7 inherits TAttFill.

One may also use the other form of the method AddEntry:

TLegendEntry* TLegend::AddEntry (const char *name,const char *label,
Option_t *option)

Here name is the name of the object in the pad. Other parameters are as in the previous case. Next example
shows how to create a legend:

leg = new TLegend(0.4,0.6,0.89,0.89);

leg->AddEntry (funl, "One Theory","1");

leg->AddEntry (fun3, "Another Theory","f");

leg->AddEntry (gr, "The Data","p"):

leg->Draw () ;

// oops we forgot the blue line... add it after
leg->AddEntry (fun2, "#sqrt{2#pi} P {T} (#gamma) latex formula","f");
// and add a header (or "title'") for the legend

leg->SetHeader ("The Legend Title");

leg->Draw () ;

Here funl, fun2, fun3 and gr are pre-existing functions and graphs. You can edit the TLegend by right
clicking on it.

July 2007 v5.16 Graphics and the Graphical User Interface 137

Figure 9-29 A legend example

abs(sin(x)/(x)) |
< The Legend Title
i One Theory
0 8_ B Another Theory
i * The Data
i ::: EF’T) latex fonmula
0.6
3 *
A PN Fay
04— i; L _;' ‘_‘_ g “_‘
ror * H *) 3
rd L FO v
) \ £ -] "
0.2(-{ : [v
" ./ [3 S
i k s d vy
i L 4
0 S TR L. i R T A Tt
0o 1 2 3 4 5 & 7 8 9 10

The PostScript Interface

To generate a PostScript (or encapsulated PostScript) file for a single image in a canvas, you can:

e Select to print the canvas in the PostScript file format from the File menu / Save or Save As menu
entries. By default, a PostScript file is generated, if you do not specify the file format.

e Click in the canvas area, near the edges, with the right mouse button and select the Print context
menu entry. This will generate a file of canvas pointed to by c1. You can select the name of the
PostScript file. If the file name is xxx.ps, you will generate a PostScript file named xxx.ps. If
the file name is xxx.eps, you generate an encapsulated Postscript file instead. In your program
(or script), you can type:

// or

cl->Print ("xxx.ps")
cl->Print ("xxx.eps")

Next example prints the picture in the pad pointed by padl.

padl->Print ("xxx.ps")

The TPad: : Print method has a second parameter called option. Its value can be:

. 0 which is the default and is the same as "ps"

e "ps" a Postscript file is produced

e '"Portrait" a Postscript file is produced with Portrait orientation

e "Landscape" a Postscript file is produced with Landscape orientation
e '"eps" an Encapsulated Postscript file

e '"Preview" an Encapsulated Postscript file with preview is produced
o "gif" a Graphics Interchange Format file

o cxx" a C++ macro file is generated

e "pdf" a Portable Document Format file

e "xml" a eXtensible Mark-up Language file

e "jpg" a Joint Photographic Experts Group file

e "png" a Portable Network Graphics Format (PNG file)

e "xpm" a X11 Pixel Map Format

o "svg" a Scalable Vector Graphics file

o "tiff" a Tagged-Image File Format

e “root” a ROOT binary file is produced

You do not need to specify this second parameter; you can indicate by the filename extension what format you
want to save a canvas in (i.e. canvas.ps, canvas.gif, canvas.C, etc).

The size of the PostScript picture, by default, is computed to keep the aspect ratio of the picture on the screen,

where the size along x is always 20 cm. You can set the size of the PostScript picture before generating the
picture with a command such as:

TPostScript myps ("myfile.ps",111)
myps.Range (xsize, ysize);

138

Graphics and the Graphical User Interface July 2007 v5.16

object->Draw () ;
myps.Close () ;

The first parameter in the TPostScript constructor is the name of the file; the second one is the format option:
e 111-ps portrait
e 112-ps landscape
e 113 -eps

You can set the default paper size with:

gStyle->SetPaperSize (xsize,ysize);

You can resume writing again in this file with myps.Open (). Note that you may have several Post Script files
opened simultaneously. Use TPostScript::Text (x,y,"string") to add text to a postscript file. This
method writes the string in quotes into a PostScript file at position x, y in world coordinates.

Special Characters

The following characters have a special action on the PostScript file:

e -goto Greek
. ' - go to special
e ~ -goto Zapf Dingbats

e 2 -go to subscript

e ~ -go to superscript

e | -gotonormallevel of script

e & - backspace one character

e # -end of Greek or of ZapfDingbats

These special characters are printed as such on the screen. To generate one of these characters on the
PostScript file, you must escape it with the escape character "@". The use of these special characters is
illustrated in several scripts referenced by the TPostScript constructor.

Writing Several Canvases to the Same PostScript File

The following sequence writes the canvas to "c1.ps" and closes the postscript file:

TCanvas cl("cl");
hl.Draw();
cl.Print("cl.ps");

If the Postscript file name finishes with " (", the file remains opened (it is not closed). If the Postscript file name
finishes with ") " and the file has been opened with " (", the file is closed.

{
TCanvas cl ("cl");
hl.Draw();
cl.Print("cl.ps("); // write canvas and keep the ps file open
h2.Draw () ;
cl.Print("cl.ps™); // canvas is added to "cl.ps"
h3.Draw() ;
cl.Print("cl.ps)"); //canvas is added to "cl.ps"; ps file is closed

}

The TCanvas::Print ("file.ps (") mechanism is very useful, but it can be a little inconvenient to have the
action of opening/closing a file being atomic with printing a page. Particularly if pages are being generated in
some loop, one needs to detect the special cases of first and last page. The "[" and "]" can be used instead of
"("and")" as shown in the next example.

cl.Print("file.ps["); // no actual ptint; just open file.ps
for (i=0; 1i<10; ++i) {
// fill canvas for context i

cl.Print ("file.ps"); // actualy print canvas to file.ps
} // end loop
cl.Print ("file.ps]"); // no actual ptint; just close file.ps

The following script illustrates how to open a postscript file and draw several pictures. The generation of a new
postscript page is automatic when TCanvas: :Clear is called by object->Draw ().

July 2007 v5.16 Graphics and the Graphical User Interface 139

TFile f("hsimple.root");
TCanvas cl("cl","canvas",800,600);
//select PostScript output type

Int t type = 111; //portrait ps
// Int_t type = 112; //landscape ps
// Int_ t type = 113; //eps

//create a PostScript file and set the paper size
TPostScript ps("test.ps", type);
ps.Range (16, 24); //set x,y of printed page
//draw 3 histograms from file hsimple.root on separate pages
hpx->Draw () ;
cl.Update () ; //force drawing in a script
hprof->Draw () ;
cl.Update() ;
hpx->Draw ("legol") ;
cl.Update() ;
ps.Close();

}

The next example does the same:

{
TFile f("hsimple.root");
TCanvas cl("cl","canvas",800,600);
//set x,y of printed page
gStyle->SetPaperSize (16,24);

//draw 3 histograms from file hsimple.root on separate pages
hpx->Draw () ;
cl->Print (“testl.ps(“, “Portrait”);
hprof->Draw () ;
cl->Print (“testl.ps”);
hpx->Draw (“legol”) ;
cl->Print (“testl.ps)");
}

This following example shows two pages. The canvas is divided. TPostScript: :NewPage must be called
before starting a new picture. object->Draw does not clear the canvas in this case because we clear only the
pads and not the main canvas. Note that c1->Update must be called at the end of the first picture.

{
TFile *fl = new TFile("hsimple.root");
TCanvas *cl = new TCanvas ("cl");
TPostScript *ps = new TPostScript ("file.ps",112);
// picture 1
cl->Divide(2,1);
ps—->NewPage () ;
cl=->cd (1) ;
hpx->Draw () ;
cl->cd(2);
hprof->Draw () ;
// picture 2
cl->Update ()

ps—->NewPage () ;
cl->cd (1) ;
hpxpy->Draw () ;
cl->cd(2);

ntuple->Draw ("px") ;

cl->Update () ;

ps->Close () ;

// invoke PostScript viewer

gSystem->Exec ("gs file.ps");
}

The next one does the same:

{
TFile *fl = new TFile("hsimple.root");
TCanvas *cl = new TCanvas ("cl");
cl->Divide(2,1);
// picture 1
cl->cd(1l);
hpx->Draw () ;
cl->cd(2);

140 Graphics and the Graphical User Interface July 2007 v5.16

hprof->Draw () ;

cl->Print (“test2.ps (”, “Landscape”);

// picture 2

cl->cd(1l);

hpxpy->Draw () ;

cl->cd(2);

ntuple->Draw (“px") ;

cl->Print (“test2.ps)”);

gSystem->Exec ("gs file.ps"); // invoke PostScript viewer

Create or Modify a Style

All objects that can be drawn in a pad inherit from one or more attribute classes like TAttLine, TAttFill,
TAttText, TAttMarker. When objects are created, their default attributes are taken from the current style.
The current style is an object of the class TStyle and can be referenced via the global variable gStyle (in
TStyle.h). See the class TStyle for a complete list of the attributes that can be set in one style.

ROOQOT provides several styles called:
e "Default" -the default style

e "Plain" - the simple style (black and white)
e "Bold" - bolder lines
e "Video" - suitable for html output or screen viewing

The "Default" style is created by:

TStyle *default = new TStyle("Default","Default Style");

The "Plain" style can be used if you want to get a "conventional" PostScript output or if you are working on a
monochrome display. The following example shows how to create it.

TStyle *plain = new TStyle("Plain","Plain Style(no colors/fill areas)");
plain->SetCanvasBorderMode (0) ;

plain->SetPadBorderMode (0) ;

plain->SetPadColor (0) ;

plain->SetCanvasColor (0) ;

plain->SetTitleColor (0) ;

plain->SetStatColor (0);

You can set the current style by:

gROOT->SetStyle (style name) ;

You can get a pointer to an existing style by:

TStyle *style = gROOT->GetStyle(style name);

You can create additional styles by:

TStyle *stl = new TStyle("stl","my style");
stl->Set...
stl->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default parameters via statements like:

gStyle->SetStatX (0.7);
gStyle->SetStatW(0.2);
gStyle->SetLabelOffset (1.2);
gStyle->SetLabelFont (72);

Note that when an object is created, its attributes are taken from the current style. For example, you may have
created a histogram in a previous session and saved it in a file. Meanwhile, if you have changed the style, the
histogram will be drawn with the old attributes. You can force the current style attributes to be set when you
read an object from a file by calling ForceStyle before reading the objects from the file.

gROOT->ForceStyle () ;

When you call grROOT->ForceStyle() and read an object from a ROOT file, the object's method
UseCurrentStyle is called. The attributes saved with the object are replaced by the current style attributes.
You call also call myObject->UseCurrentStyle () directly. For example if you have a canvas or pad with
your histogram or any other object, you can force these objects to get the attributes of the current style by:

canvas->UseCurrentStyle () ;

The description of the style functions should be clear from the name of the TStyle setters or getters. Some
functions have an extended description, in particular:

e TStyle::SetlLabelFont

July 2007 v5.16 Graphics and the Graphical User Interface 141

TStyle:
TStyle:
TStyle:
TStyle:
TSTyle:

mode =
mode =
mode =
format
format
format

:SetLineStyleString: set the format of dashed lines.
:SetOptStat

:SetPalette tochange the colors palette
:SetTitleOffset

:SetOptDate (Int_t optdate) to support several date formats. If optdate is non-
null, the current date/time will be printed in the canvas. The position of the date string can be
controlled by: optdate = 10*format + mode

w N =

the date is printed in the bottom/left corner

date is printed in the bottom/right corner

date is printed in the top/right corner

0 (default) date format is like: "Wed Sep 25 17:10:35 2002"
1 date format is: "2002-09-25"

2 date format is: "2002-09-25 17:10:35"

142

Graphics and the Graphical User Interface July 2007 v5.16

3D Viewers

ROOT provides several viewers capable of displaying 3D content:

e the Pad — simple line drawing using TPad and associated projection class TView;

e GL Viewer — high quality and performance viewer(See “The GL Viewer”);

e X3D viewer — simple legacy viewer (See “The X3D Viewer”);

e GL-in-pad — combination of basic GL viewer in TPad, with no hardware acceleration.
The X3D and GL viewers are created as external windows, associated with a pad, and displaying the same
content as it. Only these external viewers are detailed here — for Pad (TPad, TView classes) you should refer to
“Graphical Containers: Canvas and Pad” and the class definitions.
All viewers use a common architecture to publish 3D objects to the viewer - described in “Common 3D Viewer
Architecture” below. In most cases, you will not need to use this, working instead with a package, such as the

“The Geometry Package”, which provides comprehensive, high level functionality to create and place objects
into complex 3D scenes, and uses the viewer architecture internally to show the result in your chosen viewer.

Invoking a 3D viewer

A 3D viewer can be created in a script by passing the appropriate option to Draw () when attaching the drawn
object(s) to a pad. For a fuller explanation of pads, attaching objects with Draw () etc. refer to “Graphical
Containers: Canvas and Pad”.

| root[] myShapes->Draw(“ogl”) ;

Valid option strings are:

“ »

. ogl : external GL viewer
o “x3d” : external X3D viewer
e ‘“pad’ : pad viewer

If no option is passed to Draw () then the “pad” is used by default. If you already have content in a pad, which
you would like to display in one of the external viewers you can select from the canvas View menu / View With,
and pick the viewer type.

Figure 9-30 Invoking external 3D viewers from canvas menus

ma 1ol x|

File Edit Options lnspect Classes Help
Editar
Taalhar
Event Status

Colars
Ents
Markers

lconify

DpenGlL

Note: A current limitation means that when an external viewer is created the pad is no longer redrawn. When
the external viewer is closed, clicking in the pad will refresh.

The GL Viewer

The GL Viewer uses OpenGL® (or compliant libraries such as Mesa3D) to generate high quality, high-
performance 3D renderings, with sophisticated lighting, materials and rendering styles for 3D scenes. Many
users will be able to take advantage of hardware acceleration of the underlying OpenGL commands by their
computer’s video card, resulting is considerable performance gains — up to interactive manipulation of 1000’s of
complex shapes in real-time.

The GL Viewer is supported on all official ROOT platforms (assuming you have suitable OgenGL® libraries),
and is the main 3D viewer, which development effort is concentrated upon. As OpenGL® is a trademark we refer
to our viewer built on this technology as the ‘GL Viewer'. The code for it can be found under $SROOTSYS/gl.

July 2007 v5.16 Graphics and the Graphical User Interface 143

http://www.opengl.org/
http://www.mesa3d.org/
http://www.opengl.org/

Figure 9-31 The GL 3D Viewer
[Eimeorsavewe 1]

Eile Camera Help

style | Guidss | Clipping |
Mame —————————
GL¥iewer. TGLSAViewst

Light sources
v Top

¥ Right

IV Bottom
IV Left

¥ Frant

Clear color || |~

Update hehaviour
I Ignare sizes
¥ Reset on update
¥ Reset an dbl-click

Updats Scene
Camera Home ke

You can manipulate the viewer via the GUI or via the base TGLViewer object behind the interface. These are
detailed below - see also SROOTSYS/tutorials/gl/glViewerExercise.C.

Projections Modes (Cameras)

The GL Viewer supports two basic types of camera, which affect how the 3D world is projected onto the 2D
render area:

e Perspective: Objects are drawn with characteristic ‘foreshortening’ effect, where distant
objects appear smaller than near ones. This is useful for obtaining a ‘real

world’ views. The degree of foreshortening is affected by the current
camera field of view (focal length of its ‘lens’) — see “Adjusting Cameras”.

e Orthographic: Distance from camera does not affect object size. These projections are
useful for measurement or checking alignments, as the sizes and angles
between objects are preserved.

You can select the active camera from the viewer's Camera menu on the top menu bar. There are three
perspective camera choices:

e Perspective (Floor XOZ) Default

e Perspective (Floor YOZ)

e Perspective (Floor XOY)
In each case the perspective camera is constrained to keep the chosen floor plane, defined by a pair of world
axes, appearing level at all times — i.e. there is no banking of the ‘horizon’ that you experience when a plane
rolls. There are also three orthographic camera choices:

e Orthographic (XOY)

e Orthographic (XOZ)

e Orthographic (ZOY)
Orthographic projections are generally constrained to look down one of the global axes of the world, with the
other two axes lying horizontal/vertical on the viewer window. Therefore, XOY has the X-axis horizontal, the Y-
axis vertical. You can always confirm the orientation and constraints of the camera in the world by enabling axis

drawing in the “Guides” tab — see sections “Guides” and “Clipping” below. For orthographic camera a ruler-
depicting current scene units is also available.

You can also pick the current camera by obtaining a handle to the GL Viewer object behind the interface:

TGLViewer * v = (TGLViewer *)gPad->GetViewer3D();

calling the method TGLViewer: : SetCurrentCamera with one of the TGLViewer: : ECameraType types:

v->SetCurrentCamera (TGLViewer: :kCameraPerspX0Z) ;

See also SROOTSYS/tutorials/gl/glViewerExercise.C.

Adjusting Cameras

The interactions with the camera are summarized above. In each case the interaction is listed, along with
description and user actions required to achieve it. For all cameras you can reset the original default view,
framing the entire scene, by double clicking any mouse button.

144

Graphics and the Graphical User Interface July 2007 v5.16

Figure 9-32 GL Viewer camera interactions

Orbit

“rofate round scene cenfer”
Left Mouse Button + Drag

Rt

.\
Truck
"nan paraliel to film plang”
Middle Mouse Button +
Drag
or Arrow keys

Dolly
“move camera glong aye Ime/'
Right Mouse Button +

Horizontal Drag

For the Zoom interaction you can use the following modifiers combinations to adjust the sensitivity:

e Shift x 10
e Citrl x 0.1
e Shift + Ctrl x 0.01

The modifiers must be applied after the zoom action has started (right mouse button is down).
Note for orthographic cameras:
e There is no field of view of view/focal length — dollying and zooming producing an identical
scaling action.
e There is a fixed eye direction — so the ‘Orbit’ action is disabled.
Note for perspective cameras:
e Dollying (moving the camera backwards/forwards) and zooming are often confused, and may
appear very similar.

e When you dolly the camera the lens focal length does not change, hence the distortions
associated with the projections are unaffected. However the movement can result in objects
coming ‘through the front’ of the camera and disappearing.

e When you zoom, the camera does not move — hence clipping of near objects is unaffected.
However with extremely small zooms (FOV large/focal length short) noticeable distortions,
causing straight lines to become curved, can be seen with objects near the camera — the ‘fisheye’
lens effect.

e Generally dollying is more ‘natural’, but you may need to use both to achieve the desired
perspective and eye position — particularly when you are working inside or very close to 3D

objects.
Configure the camera by calling the methods SetPerspectiveCamera () or SetOrthographicCamera () of
TGLViewer
TGLViewer * v = (TGLViewer *)gPad->GetViewer3D();

v->SetOrthoCamera (TGLViewer: : kCameraOrthoX0Y, left, right, top,bottom) ;

v->SetPerspectiveCamera (camera,fov,dolly,center,hRotate,vRotate);

Note — you can configure any of the six cameras in the viewer at any time, but you will not see the result until
the camera is made current.

Draw Styles

The GL Viewer supports three different rendering modes, which are applied to all the objects in your scene, but
not Clip Shapes and Guides (See “Clipping” and “Manipulators”). These are shown below, along with the key
used to activate the style.

July 2007 v5.16 Graphics and the Graphical User Interface 145

Figure 9-33 GL Viewer draw styles

Filled Polygons Wireframe Outline

Enable with ‘r’ key Enable with ‘W’ key Enable with ‘t' key

Solid polygons, with hidden surface Object edges in color, with Combination of Filled Polygons
removal, color surface materials, no surface filling/hiding. and Outline styles. Solid
opacity, specular reflection etc. shapes with edges.

Black background. Black background. White background.

Call method TGLViewer::SetStyle with one of TGLRnrCtx::EDrawStyle flags kFill, kOutline,
kWireFrame:

| v->SetStyle (TGLRnrCtx::kFill);

Lighting / Style

The GL viewer creates five diffuse lights (left, right, top, bottom, and front) arranged around the 3D scene.
These lights are carried with the camera — that is they are always in same position relative to your eye — the left
light always shines from the left.

Light controls are located: Viewer Controls Pane = ‘Style’.
Each light has a checkbox to enable/disable it. Set lights on/off with TGLLightSet: :SetLight e.g.

| v->GetLightSet () ->SetLight (TGLLightSet: :kLightBottom, kFALSE) ;

Clipping

The GL viewer supports interactive clipping, enabling you to remove sections of your 3D scene and the shapes,
revealing internal details.

Figure 9-34 GL Viewer interactive box clipping

e’

The controls for clipping can be found under: Viewer Controls Pane = ‘Clipping’ tab.
Two clipping ‘shapes’ are currently supported:

e Single plane

e Box

146 Graphics and the Graphical User Interface July 2007 v5.16

Pick the type from the radio buttons — only one (or none) may be active at one time.
The clip object can be adjusted by:

e Adjusting the values in the properties panel GUI

o Directly manipulating the clip object in the viewer

To show and/or directly manipulate the object check the ‘Show / Edit in Viewer’ checkbox. The clip object is
drawn in semi-transparent light brown. The current manipulator is attached to it, allowing you direct control over
its position, scale and rotation. See “Manipulators” section below for details on using viewer manipulators.

The clip plane is described by the standard plane equation: ax+by+cz+d=0, where the factors a, b, ¢, d are
entered into the edit boxes, and applied using the ‘Apply’ button.

The clip box is described by its center position, entered in the ‘Center X’, ‘Center Y’ and ‘Center Z’ edit boxes,
and its lengths (extents) entered in the ‘Length X', ‘Length Y’ and ‘Length Z’ edit boxes.

This clipping is achieved using OpenGL clip plane support; as such, there are certain limitations:

e Solid shapes are not capped — they appear hollow.

e Only shapes, which can be described with combination of planes, can be rendered in this fashion
— e.g. a clipping tube is not possible.

e Each additional clipping plane requires an additional render pass — so the more active planes the
more time the render will take.

Set the current clip object with TGLClipSet: :SetClipType

v->GetClipSet () ->SetClipType (TGLClipSet: :kClipPlane) ;

Configure the clip object with TGLClipSet: :SetClipState

Double t planekEq[4] = {0.5,1.0,-1.0, 2.0};
v->GetClipSet () ->SetClipState (TGLClipSet: :kClipPlane, planekq);

As with cameras, any clip can be configured at any time, but you must set the clip current to see the effect.

Manipulators

Manipulators are GUI ‘widgets’ or controls attached to a 3D object in the viewer, allowing a direct manipulation
of the object’'s geometry. There are three manipulators for the three basic geometries transformations. In each
case, the manipulator consists of three components, one for each local axis of the object, shown in standard
colors: red (X), green (Y) and blue (Z).

Figure 9-35 GL Viewer object manipulators

T

Translation

Move the object along one of a
local axis. Axis lines with arrow
heads.

"o
“F

{enable with 'v' key)

Scale

Scale the object along one of a
local axis. Axis lines with box
heads.

{enable with ¥’ key)

Rotation
AN

o

Rotate the object along one of a
local axis. Axis rings in plane
At with axis normal.

(enable with 'c” key)

Activate the manipulator by moving the mouse over one of these components (which turns yellow to indicate
active state). Click with left mouse and drag this active component to perform the manipulation. Toggle between

the manipulator types using the ‘x’, ‘c’, v’ keys while the mouse cursoris above the manipulator. Note:
Manipulators cannot be controlled via the API at present.

July 2007 v5.16 Graphics and the Graphical User Interface 147

Guides

Guides are visual aids drawn into the viewer world. Controls for these are under the “Guides” tab:
Viewer Controls Pane =Guides Tab
Axes show the world (global) frame coordinate directions: X (red), Y (green) and Z (blue). The negative portion
of the axis line is shown in dark color, the positive in bright. The axis name and minimum / maximum values are
labeled in the same color. There are three options for axes drawing — selected by radio buttons:

e None — not drawn (default).

e Edge — draw axes on the (minimum) edge of the scene extents box.

e Origin — drawn axes through the origin.
For edge axes, the zero value for each axis is marked on the axis line with a colored sphere. For origin axes, a
single white sphere is shown at the origin.
Edge axes are depth clipped — i.e. are obscured by 3D objects in front of them. Origin axes (which generally
pass through the middle of the 3D scene) are not depth clipped — so always visible.

A single orange sphere of fixed view port (window) size can be shown at any arbitrary position. Enable / disable
the drawing with ‘Show’ checkbox. Enter X/Y/Z position in the edit boxes to set position. Initial position is at the
center of the scene.

Set the guides using TGLViewer: : SetGuideState e.g. to enable edge axes, and enable a reference marker
at world position 50, 60, 100:

Double t refPos[3] = {50.0,60.0,100.0};
v->SetGuideState (TGLUtil: :kAxesEdge, kTRUE, refPos);

Selecting Scene Shapes

You can select a single shape from your scene by pressing ‘Shift’ key, pointing and left clicking anywhere on the
shape in the viewer. Selection is currently shown by drawing the shape-bounding box (not depth clipped) in
white (polygon or wire frame render styles) or red (outline render style). Manipulators supported by the shape
are drawn in red, green and blue while the non-supported ones are drawn in grey. To deselect a shape, either
select another, or shift/click anywhere on the background (empty space) in the viewer. You cannot select
Manipulators or Guides (Axes / Reference Marker).

Editing Shapes
When a shape is selected, the viewer’s control pane shows the user interface that allows you to review and
adjust the color and geometry properties of the shape.

Note: At present modifications to the shapes are local to the viewer — they are not propagated back to external
objects/client that published to the viewer. The changes are preserved only until the viewer is closed. In some
cases, this will never be feasible as there is not a one-to-one correspondence between a shape in the viewer
and a single external object in which the modification could be stored.

Colors / Style

Viewer Controls Pane = ‘Style’ tab.

A full description of OpenGL materials, colors and lighting is beyond the scope of this document. You should
refer to the OpenGL programming manual (Red Book) for a full discussion. In most cases adjustment of the
Diffuse color material + Opacity/Shine properties is sufficient to achieve desired results.

A shape has four-color materials (components):
e Diffuse
e Ambient
e Specular
e Emissive

For each of these you can select the component via the radio buttons. Each component can have the red, green
and blue values for the component adjusted via the sliders. You can apply this adjustment to the shape itself, or
to all shapes sharing a common ‘family’. Shapes of the same family have external objects with the same
TObject name string. You can also adjust the ‘Opacity’ and ‘Shine’ for the shapes materials via the sliders.

Geometry

Viewer Controls Pane = ‘Geometry’ tab.

Review and modify the shapes X/Y/Z center and scaling factors via the edit boxes. Selection and editing of
shapes is not available via the API at present.

148

Graphics and the Graphical User Interface July 2007 v5.16

Outputting Viewer Contents

The current viewer rendering can be output to an external EPS or PDF, using the options under the ‘File’ menu
on the top menu bar. The file is named ‘viewer.eps’ or ‘viewer.pdf’ and written to the current ROOT
directory.

The X3D Viewer

The X3D viewer is a fairly simple and limited viewer, capable of showing basic lines and polygons. It lacks the
quality, performance and more advanced features of the GL Viewer, and additionally is not supported on
Windows. It is not actively developed and you are encouraged to use the GL Viewer out of preference. The
below table presents the main interactions — these are repeated in the Help dialog of the viewer.

Action Key Action Key
Wireframe Mode w Rotate about x xa
Hidden Line Mode e Rotate about y yb
Hidden Surface Mode r Rotate about z zc
Move object down u Auto-rotate about x 123
Move object up i Auto-rotate about y 456
Move object left I Auto-rotate about z 789
Move object right h Toggle controls style o]
Move object forward j Toggle stereo display S
Move object backward k Toggle blue stereo view d
Adjust focus (stereo mode) []{} Toggle double buffer f

Rotate object Left mouse button down + move.

Common 3D Viewer Architecture

The 3D Viewer Architecture provides a common mechanism for viewer clients to publish 3D objects to it. It
enables:

e Decoupling of producers (geometry packages etc) who model collection of 3D objects from
consumers (viewers) which display them.

e Producer code free of explicit drawing commands & viewer specific branching.

e Support differing viewers and clients capabilities, e.g.

e Mix of native (in viewer) shapes and generic client side tessellation.

e Local/global frame object description

e Bounding boxes

e Placing copies sharing common geometry (logical/physical shapes).

The architecture consists of:

e TVirtualViewer3D interface: An abstract handle to the viewer, allowing client to add objects,
test preferences etc.

e TBuffer3D class hierarchy: Used to describe 3D objects ("shapes") - filled /added by negotiation
with viewer via TVirtualViewer3D.

A typical interaction between viewer and client using these, taken from TGeoPainter is:

TVirtualViewer3D * viewer = gPad->GetViewer3D();

// Does viewer prefer local frame positions?

Bool t localFrame = viewer->PreferlLocalFrame () ;

//Perform first fetch of buffer from the shape and try adding it to the viewer

const TBuffer3D &buffer = shape.GetBuffer3D(TBuffer3D::kCore |
TBuffer3D: :kBoundingBox |
TBuffer3D: :kShapeSpecific,
localFrame) ;

Int t regSections = viewer->AddObject (buffer, &addDaughters);

// If the viewer requires additional sections fetch from the shape

// (if possible) and add again

if (regSections != TBuffer3D: :kNone)
shape.GetBuffer3D(regSections, localFrame);

Together these allow clients to publish objects to any one of the 3D viewers free of viewer specific drawing
code. They allow our simple x3d viewer, and considerably more sophisticated OpenGL one to both work with
both geometry libraries (g3d and geom) efficiently.

In addition to external viewers, created in separate windows, this architecture is also used by internal TPad
drawing when it requires 3D projections. Publishing to a viewer consists of the following steps:

July 2007 v5.16 Graphics and the Graphical User Interface 149

1. Create / obtain viewer handle.

2. Begin scene on viewer.

3. Fill mandatory parts of TBuffer3D describing object.

4. Add to viewer.

5. Fill optional parts of TBuffer3D as requested by viewer.
[.... repeat 3/4/5 as required for other/child objects]

6. End scene on viewer.

You should attach the top-level node of your external geometry (or the manager) to a TPad object using
TObject: :Draw (), and perform the publishing to the viewer in your object’s TObject: : Paint () overloaded
method. See “Scene Rebuilds”, and example scripts, for more details.

Creating / Obtaining Viewer Handle

External viewers are bound to a TPad object (this may be removed as a requirement in the future). You can
create or obtain the current viewer handle via the method:

TVirtualViewer3D * v = gPad->GetViewer3D("type"):;

Here the “type” string defines the viewer type — currently one of:

e “ogl” : External GL viewer
o “x3d” : External X3D viewer
o ‘“pad’ : Pad viewer

If no type is passed (null string), and there is no current viewer, then the type is defaulted to “pad”. If no type is
passed and there is a current viewer, then this is returned — hence once a viewer is created it can be obtained
elsewhere by:

TVirtualViewer3D * v = gPad->GetViewer3D();

Opening / Closing Scenes

Objects must be added to viewer between BeginScene () and EndScene () calls e.qg.

viewer -> BeginScene();
// Add objects
viewer -> EndScene();

These calls enable the viewer to suspend redraws, and perform internal caching/setup. If the object you attach
to the pad derives from TAtt3D, then the pad will take responsibility for calling BeginScene () and
EndScene () for you. You can always test if the scene is already open for object addition with:

| viewer->BuildingScene () ;

Figure 9-36 Overview of 3D viewer architecture

Producers Intermediaries Consumers
TVirtualViewer3D & TBuffer3D

TVirtualViewer3D
Interface

New Geometry
TGeoXXX

AddObject(..) | TViewerOpenGL

=J=—————x"— Logical/ physical
|
TBuffer3D

TGeoPainter maps of objects.

Can be rebuilt.

0Old Geomatry [- ~(TViewerX3D
TNode/TBRIK etc. ° =k = Scene of points
(g3d Geom)
segments polys.
Single build.
‘Standalone’ shapes = e
TPolyLine3D etc. 0 = =
0 TViewer3DPad
—— - Direct draw each
Other clients < > time. Frame Buffered.
GEANT4 etc. == =

Note: the x3d viewer does not support rebuilding of scenes - objects added after the first Open/Close Scene
pair will be ignored.

150 Graphics and the Graphical User Interface July 2007 v5.16

Describing Objects - Filling TBuffer3D

The viewers behind the TvVirtualVviewer3D interface differ greatly in their capabilities e.g.

e Some support native shape (e.g. spheres/tubes in OpenGL) and can draw these based on an
abstract description. Others always require a tessellation description based on TBuffer3D’s
kRaw / kRawSizes points/lines/segments sections.

e Some need the 3D object positions in the master (world) frame, others can cope with local frames
and a translation matrix to place the object.

e Some require bounding boxes for objects — others do not.

Similarly some viewer clients are only capable of providing positions in master frame, cannot provide bounding
boxes etc. Additionally we do not want to incur the cost of expensive tessellation operations if the viewer does
not require them. To cope with these variations the TBuf fer3D objects are filled by negotiation with the viewer.

Figure 9-37 TBuffer3D class hierarchy
TBuffer3D

Core
Logical Shape ID
Local/Master Translation
Attributes: Color, Transparency efc.

Generic Shapes

Bounding Box
Axis Aligned (Local Frame)
Orientated (Master Frame)

Raw Sizes
Nb Points/Segs/Polys
Raw
Points/Segs/Polys ‘ 4
| ”””””””” }
TBuffer3DSphere TBuffer3DTube :
Shape Spgcific Shape Specific »
Inner Radius R e additional
%"?’ f;‘d/’f: Outer Radius shape specific
Ph?lljfn/;flaxax Half Length classes
Q to be added in
future
TBuffer3DTubeSeg

Shape Specific

Phi Min

Phi Max

TBuffer3aDCutTube

Shape Specific

Low Plane

High Plane

TBuffer3D classes are conceptually divided into enumerated sections: kCore, kBoundingBox, kRaw — see
the class diagram and the file TBuffer3D.h for more details. The TBuffer3D methods SectionsvValid (),
SetSectionsValid (), ClearSectionsValid () are used to test, set, clear these section validity flags e.g.

buffer.SetSectionsValid (TBuffer3D: :kShapeSpecific);
if (buffer.SectionsValid (TBuffer3D:: kShapeSpecific)) {

}

The sections found in the base TBuffer3D (kCore/kBoundingBox/kRawSizes/kRaw) are sufficient to
describe any tessellated shape in a generic fashion. An additional kShapeSpecific section is added in
TBuffer3D derived classes, allowing a more abstract shape description ("a sphere of inner radius x, outer
radius y"). This enables a viewer, which knows how to draw (tessellate) the shape itself to do so, while providing
a generic fallback suitable for all viewers. The rules for client negotiation with the viewer are:

e If suitable specialized TBuffer3D class exists, use it, otherwise use TBuffer3D.

e Complete the mandatory kCore section.

e Complete the ksShapeSpecific section if applicable.

e Complete the kBoundingBox if you can.

e Pass this buffer to the viewer using one of the TBuffer3D: : AddObject () methods.

July 2007 v5.16 Graphics and the Graphical User Interface 151

If the viewer requires more sections to be completed (kRaw/kRawSizes) TBuffer3D: :AddObject () will
return flags indicating which ones, otherwise it returns kNone. If requested, you must fill the buffer, mark these
sections valid, and call TBuffer3D: : AddObject again, to complete adding the object. For example, in out
TGeo geometry package, in TGeoPainter: : PaintShape, we perform the negotiation with viewer:

TVirtualViewer3D * viewer = gPad->GetViewer3D();

if

}

(shape.IsA() != TGeoCompositeShape::Class()) {
// Does viewer prefer local frame positions?
Bool t localFrame = viewer->PreferLocalFrame();
// Perform first fetch of buffer from the shape and adding it to the viewer
const TBuffer3D &buffer = shape.GetBuffer3D(TBuffer3D::kCore |
TBuffer3D: :kBoundingBox |
TBuffer3D: :kShapeSpecific
,localFrame) ;
Int t regSections = viewer->AddObject (buffer, &addDaughters);
// If the viewer requires additional sections fetch from the shape
// (if possible) and add again
if (regSections != TBuffer3D::kNone) {
shape.GetBuffer3D (regSections, localFrame);
viewer->AddObject (buffer, &addDaughters);

The buffer is supplied/filled by the appropriate TShape: :GetBuffer3D() and TShape::FillBuffer3D
overloads e.g. for a sphere in TGeoSphere.

const TBuffer3D &TGeoSphere::GetBuffer3D(Int t regSections,

}

Bool t localFrame) const {
// Fills a static 3D buffer and returns a reference.
static TBuffer3DSphere buffer;
// Filling of kBoundingBox is defered to TGeoBBox, and
// kCore on up to TGeoShape
TGeoBBox: :FillBuffer3D (buffer, regSections, localFrame);
// Complete kShapeSpecific section for sphere
if (regSections & TBuffer3D::kShapeSpecific) {
buffer.fRadiusInner = fRmin;
buffer.fRadiusOuter = fRmax;

buffer.SetSectionsValid (TBuffer3D: :kShapeSpecific);

// Complete kRawSizes section
if (regSections & TBuffer3D::kRawSizes) {

buffer.SetSectionsValid (TBuffer3D: :kRawSizes) ;
}

// Complete kRaw tesselation section
if ((regSections & TBuffer3D::kRaw) &&
buffer.SectionsValid (TBuffer3D::kRawSizes)) {
SetPoints (buffer.fPnts);
// Transform points to master frame if viewer requires it
// The fLocalFrame flag and translation matrix will have already
// been set in TGeoShape::FillBuffer3D() as requried
if (!'buffer.flocalFrame)

TransformPoints (buffer.fPnts, buffer.NbPnts());
SetSegsAndPols (buffer) ;
buffer.SetSectionsValid (TBuffer3D: :kRaw) ;

}

return buffer;

Note:

e we use a static TBuf fer3D derived object for efficiency — once the object is added the buffer can
be reused.

e kRawSize (the calculation of tessellation sizing required in buffer) and kRaw (the actual filling of
tessellation) is split, as the X3D viewer requires two publication passes — one to establish the full
tessellation capacity for all shapes, and another to actually add them. Splitting avoids having to
do the expensive tessellation on the first pass.

152

Graphics and the Graphical User Interface July 2007 v5.16

Shape Specific TBuffer3D Derived Classes

Currently we provide the following shape specific classes, which the GL Viewer can take advantage of (see
TBuffer3D.h and TBuffer3DTypes.h)

e TBuffer3DSphere - solid, hollow and cut spheres (GL Viewer only supports solid spheres at
present — cut / hollow ones will be requested as tessellated objects by client.)

e TBuffer3DTube — basic tube with inner/outer radius and length.

e TBuffer3DTubeSeq - angle tube segment.

e TBuffer3DCutTube - angle tube segment with plane cut ends.

See the above example from TGeoSphere: :GetBuffer3D and also equivalent functions in TGeoTube,
TGeoTubeSeg and TGeoCtub. Anyone is free to add new TBuffer3D classes, but it should be clear that one
or more viewers will require updating to be able to take advantage of them. Hence we only provide classes
which existing viewers can benefit from. The number of native shapes in GL Viewer will be expanded in the
future.

Master / Local Reference Frames

The Core section of TBuf fer3D contains two members relating to reference frames:

e flocalFrame: indicates if any positions in the buffer (bounding box and tessellation vertexes)
are in local or master (world frame).

e flocalMaster:is a standard 4x4 translation matrix (OpenGL column major ordering) for placing
the object into the 3D master frame.

If fLocalFrame is false, fLocalMaster should contain an identity matrix. This is set by default, and can be
reset using the TBuffer3D: : SetLocalMasterIdentity () method

Bounding Boxes

You are not obliged to complete the kBoundingBox section, as any viewer requiring one internally (GL Viewer)
will build it if you do not provide. However to do this the viewer will force you to provide the (expensive) raw
tessellation, and the resulting box will be axis aligned with the overall scene, which is non-ideal for rotated
shapes. As we need to support orientated (rotated) bounding boxes, TBuffer3D requires the 6 vertices of the
box. We also provide a convenience function, TBuffer: : SetAABoundingBox (), for simpler case of setting
an axis aligned bounding box. The bounding box should be filled in same frame (local / master) as the rest of
the TBuffer3D, and inaccordance with fLocalFrame flag.

A typical example from TGeoBBox::FillBuffer3D:

if (regSections & TBuffer3D::kBoundingBox) {
Double t halfLengths[3] = { fDX, fDY, fDZ };
buffer.SetAABoundingBox (fOrigin, halfLengths);
if (!'buffer.flLocalFrame) {
TransformPoints (buffer.fBBVertex[0], 8);
}
buffer.SetSectionsValid (TBuffer3D: :kBoundingBox) ;

Logical and Physical Objects

Some viewers can support two types of object placement:

e Add object as a single independent entity in the world reference frame — e.g. a sphere, radius r,
atx, vy, z.

¢ Repeated placement (copying) in world frame of this locally unique piece of geometry (described
in local reference frame) e.g. define a sphere s (radius r), place copy at x1, y1, z1, another copy
at x2, y2, z2 etc.

The second case is very typical in geometry packages, e.g. ROOT’s TGeo package, GEANT4 etc, where we
have very large number repeated placements of relatively few unique “shapes”.

Some viewers (GL Viewer only at present) are able to take advantage of this by identifying unique logical
shapes from the £ID logical ID member of TBuffer3D. If repeated addition of the same £ID is found, the
shape is cached already - and the costly tessellation does not need to be sent again. The viewer can also
perform internal GL specific caching (display lists) with considerable performance gains in these cases. For this
to work correctly the logical object in must be described in TBuffer3D in the local reference frame, complete
with the local/master translation. In some cases you will not have a real object you can reasonably set
TBuffer3D:: fID to, or the object is recycled or temporary. To suppress internal caching in the GL Viewer in
these cases, set TBuffer3D: : £ID to 0 (null).

July 2007 v5.16 Graphics and the Graphical User Interface 153

The viewer indicates it can support local frame objects through the TvirtualViewer3D interface method:
PreferLocalFrame (). If this returns kTRUE you can make repeated calls to AddObject (), with TBuffer3D
containing the same £1D, and different fLocalMaster placements.
For viewers supporting logical/physical objects, the TBuffer3D content refers to the properties of the logical
object, with the exception of:

e flocalMaster transform

. fColor

. fTransparency
attributes, which can be varied for each physical object.
As a minimum requirement all clients must be capable of filling the raw tessellation of the object buffer, in the

master reference frame. Conversely viewers must always be capable of displaying the object described by this
buffer. If either does not meet this requirement the object may not be displayed.

Scene Rebuilds

TBuffer3D: : AddObject is not an explicit command to the viewer - it may for various reasons decide to
ignore it:

e |t already has the object internally cached.

e The object falls outside some 'interest' limits of the viewer camera.

e The object is too small to be worth drawing.

In all these cases TBuffer3D: :AddObject () returns kNone, as it does for successful addition, indicating it
does not require further information about this object. Hence you should not try to make any assumptions about
what the viewer did with the object. The viewer may decide to force the client to rebuild (republish) the scene,
obtaining a different collection of objects, if the internal viewer state changes .e.g. significant camera move. It
does this presently by forcing a repaint on the attached TPad object — hence you should attach you master
geometry object to the pad (via TObject: : Draw ()), and perform the publishing to the viewer in response to
TObject: :Paint ().

Physical IDs

TVirtualViewer3D provides for two methods of object addition:

virtual Int t AddObject (const TBuffer3D &buffer, Bool t * addChildren = 0)
virtual Int t AddObject (UInt t physicallID, const TBuffer3D & buffer,
Bool t *addChildren = 0)

If you use the first (simple) case a viewer using logical/physical pairs will generate sequential IDs for each
physical object internally. Scene rebuilds will require destruction and recreation of all physical objects. For the
second you can specify an identifier from the client side, which must be unique and stable — i.e. the IDs of a
published object is consistent, regardless of changes in termination of contained child geometry branches. In
this case the viewer can safely cache the physical objects across scene rebuilds, discarding those no longer of
interest.

Child Objects

In many geometries there is a rigid containment hierarchy, and so if the viewer is not interested in a certain
object due to limits/size then it will also not be interest in any of the contained branch of siblings. Both
TBuffer3D: :AddObject () methods have an addChildren return parameter. The viewer will complete this
(if passed) indicating if children of the object just sent are worth sending.

Recycling TBuffer3D

Once add TBuffer3D: :AddObject () has been called, the contents are copied to the viewer’s internal data
structures. You are free to destroy this TBuf fer3D, or recycle it for the next object if suitable.

Examples

For an example of a simple geometry, working in master reference frame examine the code under
SROOTSYS/g3d. For a more complex example, which works in both master and local frames, and uses
logical/physical division of shape geometry and placement, examine the code under $ROOTSYS/geom — in
particular TGeoShape hierarchy, and the painter object TGeoPainter (under geopainter) where the
negotiation with the viewer is performed.

154

Graphics and the Graphical User Interface July 2007 v5.16

10 Folders and Tasks

Folders

% ROOT Object Browser

Eile

Miewe Options

|aTG}{11

| &ll Folders

| Contents of "froot/Clas

1|

I:lrl:u:ut
- [Classes
=

- [Data Members
[Real Data Mem
-~ [Methacs

‘- I:l Baze Classes

55 (koo

-~ [TsigralHandler

- (] TClass

:L -[JTACkss

-~ (LA TFileHandler

-~ [TParticle

-~ [TOkiect

- [THamed

-~ [TGiMenuTitle

-~ [LATGToolBar

-~ (LA TGEutton Group

:L S I:lTG Composite Frame
- ATGFrame

-~ [TGWindow

-~ [(ATGOkect

-~ (I Ta0bject

- A TGHorizontal Frame
-~ [TGListwiew

:L -[CATGCanvas

' [TTimer -
! | :

I:l Base Classes

I:l Data Members

[Methods

I:l Real Data Members

| 4 Ohiects.

| Doubly lirked list

&

A TFolder is a collection of objects visible and
expandable in the ROOT object browser. Folders have
a name and a title and are identified in the folder
hierarchy by an "UNIX-like" naming convention. The
base of all folders is //root. It is visible at the top of
the left panel in the browser. The browser shows
several folders under //root.

New folders can be added and removed to/from a
folder.

Why Use Folders?

One reason to use folders is to reduce class
dependencies and improve modularity. Each set of
data has a producer class and one or many consumer
classes. When using folders, the producer class places
a pointer to the data into a folder, and the consumer
class retrieves a reference to the folder.

The consumer can access the objects in a folder by
specifying the path name of the folder.

Here is an example of a folder's path name:
//root/Event/Hits/TCP

One does not have to specify the full path name. If the
partial path name is unique, it will find it; otherwise it
will return the first occurrence of the path.

The first diagram shows a system without folders. The
objects have pointers to each other to access each
other's data. Pointers are an efficient way to share
data between classes. However, a direct pointer
creates a direct coupling between classes. This design
can become a very tangled web of dependencies in a
system with a large number of classes.

each other to access the data. The naming and search service provided by the ROOT folders hierarchy
provides an alternative. It loosely couples the classes and greatly enhances 1/O operations. In this way, folders
separate the data from the algorithms and greatly improve the modularity of an application by minimizing the
class dependencies.

Producer

oo

Q0O
OO

Folder

ol

Consumers

In addition, the folder hierarchy creates a picture of the data organization.
This is useful when discussing data design issues or when learning the
data organization. The example below illustrates this point.

July 2007 v5.16

Folders and Tasks

155

How to Use Folders

Using folders means to build a hierarchy of folders, posting the reference to the data in the folder by the
producer, and creating a reference to the folder by the user.

Creating a Folder Hierarchy

To create a folder hierarchy you add the top folder of your hierarchy to //root. Then you add a folder to an
existing folder with the TFolder: :AddFolder method. This method takes two parameters: the name and title
of the folder to be added. It returns a pointer of the newly created folder.

The code below creates the folder hierarchy shown in the browser. In this macro, the folder is also added to the
list of browsable. This way, it is visible in the browser on the top level.

{
// Add the top folder of my hierary to //root
TFolder *aliroot=gROOT->GetRootFolder ()->AddFolder ("aliroot",
"aliroot top level folders");
// Add the hierarchy to the list of browsables
gROOT->GetListOfBrowsables () ->Add (aliroot,"aliroot");

// Create and add the constants folder
TFolder *constants=aliroot->AddFolder ("Constants","Detector constants");

// Create and add the pdg folder to pdg
TFolder *pdg = constants->AddFolder ("DatabasePDG","PDG database");

// Create and add the run folder
TFolder *run = aliroot->AddFolder ("Run","Run dependent folders");

// Create and add the configuration folder to run
TFolder *configuration = run->AddFolder ("Configuration","Run configuration");

// Create and add the run mc folder
TFolder *run mc = aliroot->AddFolder ("RunMC", "MonteCarlo run dependent folders");

}

TFolder *configuration mc =

// Create and add the configuration mc folder to run mc
run _mc->AddFolder ("Configuration",

"MonteCarlo run configuration");

i ROOT Object Browser H[=] E3 .
e . Posting Data to a Folder (Producer)
Eile Miew Options Help
= — ...|| A TFolder can contain other folders as shown above or any
I 3 root LI iln—Ll TObject descendents. In general, users will not post a single
| &ll Falders |Contents of "froot" object to a folder; they will store a collection or multiple
collections in a folder. For example, to add an array to a
E m |:| Browsers folder: P y
[momelghifspanacekUse D.:anvaﬁeﬁ TObjArray *array;
& H_DDT Files [Clazszes run_mc->Add (array) ;
r—:—lag":'t |:|I2Ieanup3
N Constants .
i - CDatabasePDG gcﬂ'm Reading Data from a Folder
; Functi
B B3 Fun Jrenen (Consumer)
.) [0 Geometries
- - [Cenfiguration @ Handlers One can search for a folder or an object in a folder using the
EI-I;IHunMC] MapFiles TROOT: : FindObjectAny method. It analyzes the string
- - [Configuration passed as its argument and searches in the hierarchy until it
(AROOT Files finds an object or folder matching the name. With
[sackets FindObjectAny, you can give the full path name, or the
(L specials name of the folder. If only the name of the folder is given, it
&3 Streamerinfo will retu.rn .the first instgnce of that name. A .string-based
& search is time consuming. If the retrieved object is used
S frequently or inside a loop, you should save a pointer to the
([Tasks object as a class data member. Use the naming service only
"I I _"l [Calirant in the initialization of the consumer class. When a folder is
deleted, any reference to it in the parent or other folder is
| 16 Objects. | 4| deleted also.

156

Folders and Tasks

July 2007 v5.16

conf=(TFolder*)gROOT->FindObjectAny ("/aliroot/Run/Configuration"); // or
conf=(TFolder*)gROOT->FindObjectAny ("Configuration");

By default, a folder does not own the object it contains. You can overwrite that with TFolder: : SetOwner.
Once the folder is the owner of its contents, the contents are deleted when the folder is deleted. Some ROOT
objects are automatically added to the folder hierarchy. For example, the following folders exist on start up:

//root/ROOT Files with the list of open Root files
//root/Classes with the list of active classes
//root/Geometries with active geometries
//root/Canvases with the list of active canvases
//root/Styles with the list of graphics styles
//root/Colors with the list of active colors

For example, if a file myFile.root is added to the list of files, one can retrieve a pointer to the corresponding
TFile object with a statement like:

TFile *myFile = (TFile*)gROOT->FindObjectAny ("/ROOTFiles/myFile.root"™); //or
TFile *myFile = (TFile*)gROOT->FindObjectAny ("myFile.root");

Tasks can be organized into a hierarchy and displayed in the browser. The TTask class is the base class from
which the tasks are derived. To give task functionality, you need to subclass the TTask class and override the
Exec method. An example of TTask subclasses is S$ROOTSYS/tutorials/MyTasks.cxx. The script that
creates a task hierarchy and adds it to the browser is $ROOTSYS/tutorials/tasks.C. Here is a part of
MyTasks.cxx that shows how to subclass from TTask.

// A set of classes deriving from TTask see macro tasks.C. The Exec
// function of each class prints one line when it is called.
#include "TTask.h"
class MyRun : public TTask {
public:

MyRun () { ; }

MyRun (const char *name,const char *title);

virtual ~MyRun() { ; }

void Exec (Option t *option="");

ClassDef (MyRun, 1) // Run Reconstruction task
}i

class MyEvent : public TTask {
public:
MyEvent () { ; }
MyEvent (const char *name,const char *title);
virtual ~MyEvent () { ; }
void Exec(Option t *option="");
ClassDef (MyEvent, 1) // Event Reconstruction task
}i

Later in MyTasks.cxx, we can see examples of the constructor and overridden Exec () method:

ClassImp (MyRun)
MyRun: :MyRun (const char *name,const char *title) :TTask(name,title)

{

}
void MyRun::Exec (Option t *option)
{

printf ("MyRun executing\n") ;

}

Each TTask derived class may contain other TTasks that can be executed recursively. In this way, a complex
program can be dynamically built and executed by invoking the services of the top level task or one of its
subtasks. The constructor of TTask has two arguments: the name and the title. This script creates the task
defined above, and creates a hierarchy of tasks.

// Show the tasks in a browser. To execute a Task, select

// “ExecuteTask” in the context menu see also other functions in the
// TTask context menu, such as:

// -setting a breakpoint in one or more tasks

// -enabling/disabling one task, etc

void tasks ()

July 2007 v5.16 Folders and Tasks 157

gROOT->ProcessLine (".L MyTasks.cxx+");

TTask *run = new MyRun ("run","Process one run");

TTask *event = new MyEvent ("event","Process one event");

TTask *geomInit = new MyGeomInit ("geomInit", "Geometry Initialisation");
TTask *matInit = new MyMaterialInit ("matInit","MaterialsInitialisation");
TTask *tracker = new MyTracker ("tracker","Tracker manager");

TTask *tpc = new MyRecTPC ("tpc","TPC Reconstruction");

TTask *its = new MyRecITS("its","ITS Reconstruction");

TTask *muon = new MyRecMUON ("muon", "MUON Reconstruction");

TTask *phos = new MyRecPHOS ("phos", "PHOS Reconstruction");

TTask *rich = new MyRecRICH ("rich","RICH Reconstruction");

TTask *trd = new MyRecTRD("trd","TRD Reconstruction");

TTask *global = new MyRecGlobal ("global","Global Reconstruction");

// Create a hierarchy by adding sub tasks
run->Add (geomInit) ;

run->Add (matInit) ;

run—->Add (event) ;

event->Add (tracker) ;

event->Add (global) ;

tracker->Add (tpc) ;

tracker->Add (its) ;

tracker->Add (muon) ;

tracker->Add (phos) ;

tracker->Add (rich) ;

tracker->Add (trd) ;

// Add the top level task
gROOT->GetListOfTasks () ->Add (run) ;

// Add the task to the browser
gROOT->GetListOfBrowsables () ->Add (run) ;
new TBrowser;

}

Figure 10-1 Tasks in the ROOT browser

. . Note that the first line loads the class definitions in
'| vi 'c — ! MyTasks.cxx with ACLIC. ACLIC builds a shared library and
2 ey 2P | adds the classes to the CINT dictionary. See "Adding a Class
Iatracker ;I EEI",}- with ACLiC".
Al Folders Contents of "un/eventiracll To execute a TTask, you call the ExecuteTask method.
groot [Qits (Cdmuen [phos ExecuteTask will recursively call:
T Sfighis: kiroot2Si i
Dﬁggii,;:pmm crestej@ren @ @t - the TTask: :Exec method of the derived class;
Crun . - the TTask: :ExecuteTasks to execute for each task the
f'ggei:"!:” list of its subtasks;
L= matine
é_[:,mm If the top level task is added to the list of ROOT browseable
B accer| objects, the tree of tasks can be seen in the ROOT browser.
I e To add it to the browser, get the list of browseable objects first
DO and add it to the collection.
: ;Eg;i? gROOT->GetListOfBrowsables () ->Add (run) ;
P Crien The first parameter of the Add method is a pointer to a TTask,
i QO the second parameter is the string to show in the browser. If
+-Ooiobal the string is left out, the name of the task is used.
rr BT . , . .
= 4 After executing, the script above the browser will look like in
| & Ohjects. [A iq fi
this figure.

Execute and

Debug Tasks

The browser can be used to start a task, set break points at the beginning of a task or when the task has
completed. At a breakpoint, data structures generated by the execution up this point may be inspected
asynchronously and then the execution can be resumed by selecting the "Continue" function of a task.

A task may be active or inactive (controlled by TTask: : SetActive). When a task is inactive, its sub tasks are
not executed. A task tree may be made persistent, saving the status of all the tasks.

158

Folders and Tasks

July 2007 v5.16

11 Input/Output

This chapter covers the saving and reading of objects to and from ROOT files. It begins with an explanation of
the physical layout of a ROOT file. It includes a discussion on compression, and file recovery. Then we explain
the logical file, the class TFile and its methods. We show how to navigate in a file, how to save objects and
read them back. We also include a discussion on Streamers. Streamers are the methods responsible to
capture an objects current state to save it to disk or send it over the network. At the end of the chapter is a
discussion on the two specialized ROOT files: TNetFile and TWebFile.

The Physical Layout of ROOT Files

A ROOT file is like a UNIX file directory. It can contain directories and objects organized in unlimited number of
levels. It also is stored in machine independent format (ASCII, IEEE floating point, Big Endian byte ordering). To
look at the physical layout of a ROOT file, we first create one. This example creates a ROOT file and 15
histograms, fills each histogram with 1000 entries from a Gaussian distribution, and writes them to the file.

{

char name[10], title[20];
TObjArray Hlist (0); // create an array of Histograms
TH1FE* h; // create a pointer to a histogram
// make and fill 15 histograms and add them to the object array
for (Int t i = 0; 1 < 15; i++) {
sprintf (name, "h%d", i) ;
sprintf(title, "histo nr:%d",1i);
h = new TH1F (name,title, 100,-4,4);
Hlist.Add (h) ;
h->FillRandom ("gaus", 1000) ;
}
// open a file and write the array to the file
TFile f ("demo.root","recreate");
Hlist->Write () ;
f.Close () ;
}

The example begins with a call to the TFile constructor. This class is describing the ROOT file (that has the
extension ". root”). In the next section, we will cover TFile in details. The last line of the example closes the
file. To view its contents we need to open it again, and to create a TBrowser object by:

root[] TFile f("demo.root")
root[] TBrowser browser;

Figure 11-1 The browser with 15 created histograms

% ROOT Object Browser M=) E3
Eile ¥iew Options Help
Iademu.ruut ;I Egl:g-

| &1l Folders | Contents of "/ROQT Files/dema raat"
(Jront [da ho;1 | 100t [b1 g 1200
[Chomespanacek tutorials |kh13;1 |kh1431 Lkhm |kh231
[“_i'|ﬁDDT Files [rzt [fahet [fanst g het

B o oot hh?;l |kh8,'1 |kh9}1
|15 Dhects. | v

You can check if the file is correctly opened by:

TFile f (“demo.root”);

if (f.IsZombie()) {
cout << “Error opening file” << endl;
exit (-1);

} else {

}

July 2007 v5.16 Input/Output 159

Once we have the TFile object, we can call the TFile: :Map () method to view the physical layout. The
output prints the date/time, the start record address, the number of bytes in the record, the class name of the
record and the compression factor.

root[] f£.Map()

20051208/124502 At:100 N=114 TFile

20051208/124502 At:214 N=413 TH1F CX = 2.35
20051208/124502 At:627 N=410 TH1F CX = 2.36
20051208/124502 At:1037 N=396 TH1F CX = 2.45
20051208/124502 At:1433 N=400 TH1F CX = 2.42
20051208/124502 At:1833 N=402 TH1F CX = 2.41
20051208/124502 At:2235 N=416 TH1F CX = 2.33
20051208/124502 At:2651 N=406 TH1F CX = 2.39
20051208/124502 At:3057 N=403 TH1F CX = 2.40
20051208/124502 At:3460 N=411 TH1F CX = 2.36
20051208/124502 At:3871 N=400 TH1F CX = 2.42
20051208/124502 At:4271 N=409 TH1F CX = 2.38
20051208/124502 At:4680 N=409 TH1F CX = 2.38
20051208/124502 At:5089 N=420 TH1F CX = 2.32
20051208/124502 At:5509 N=406 TH1F CX = 2.40
20051208/124502 At:5915 N=405 TH1F CX = 2.40
20051208/124503 At:6320 N=3052 StreamerInfo CX = 3.16
20051208/124503 At:9372 N=732 KeysList

20051208/124503 At:10104 N=53 FreeSegments
20051208/124503 At:10157 N=1 END

Here we see the fifteen histograms (TH1F's) with the first one starting at byte 148. We also see an entry TFile.
You may notice that the first entry starts at byte 100. The first 100 bytes are taken by the file header.

The File Header

This table shows the file header information. When fVersion is greater than 1000000, the file is a large file
(> 2 GB) and the offsets will be 8 bytes long. The location in brackets are the location in the case of a large file.

Byte Value Name Description

1->4 "root" Root file identifier

5->8 fVersion File format version

0 ->12 fBEGIN Pointer to first data record

13 ->16 [13->20] fEND Pointer to first free word at the EOF

17 ->20 [21->28] fSeekFree Pointer to FREE data record

21 ->24 [29->32] fNbytesFree Number of bytes in FREE data record

25 ->28 [33->36] nfree Number of free data records

29 -> 32 [37->40] fNbytesName Number of bytes in TNamed at creation time
33 ->33 [41->41] fUnits Number of bytes for file pointers

34 -> 37 [42->45] fCompress Zip compression level

34 -> 37 [46->53] fSeekInfo Pointer to TStreamerInfo record

34 -> 37 [54->57] fNBytesInfo Number of bytes in TStreamerInfo record
34 -> 37 [58->75] fCompress Universal Unique 1D

The first four bytes of the file header contain the string "root" which identifies a file as a ROOT file. Because of
this identifier, ROOT is not dependent on the ". root" extension. It is still a good idea to use the extension, just
for us to recognize them easier. The nfree and value is the number of free records. This variable along with
FNBytesFree keeps track of the free space in terms of records and bytes. This count also includes the deleted
records, which are available again.

The Top Directory Description

The 84 bytes after the file header contain the top directory description, including the name, the date and time it
was created, and the date and time of the last modification.

|200lO404/O92347 At:64 N=84 TFile

160 Input/Output July 2007 v5.16

The Histogram Records

What follows are the 15 histograms, in records of variable length.

20010404/092347
20010404/092347

At:148
At:528

TH1F CX = 2.49
TH1F CX = 2.51

The first 4 bytes of each record is an integer holding the number of bytes in this record. A negative number flags
the record as deleted, and makes the space available for recycling in the next writing. The rest of bytes in the
header contain all the information to identify uniquely a data block on the file. It is followed by the object data.

The next table explains the values in each individual record. If the key is located past the 32 bit file limit
(> 2 GB) then some fields will be 8 bytes instead of 4 bytes (values between the brackets):

Byte Value Name Description
1->4 Nbytes Length of compressed object (in bytes)
5->6 Version TKey version identifier
7->10 ObjLen Length of uncompressed object
11->14 Datime Date and time when object was written to file
15 ->16 KeyLen Length of the key structure (in bytes)
17 -> 18 Cycle Cycle of key
19 -> 22 [19->26] SeekKey Pointer to record itself (consistency check)
23 -> 26 [27->34] SeekPdir Pointer to directory header
27 -> 27 [35->35] lname Number of bytes in the class name
28 -> ... [36->..] ClassName Object Class Name
->. lname Number of bytes in the object name
-> . Name 1Name bytes with the name of the object
->. 1Title Number of bytes in the object title
->. Title Title of the object
->. DATA Data bytes associated to the object

You see a reference to TKey. It is explained in detail in the next section.

The Class Description List (Streamerinfo List)

The histogram records are followed by the StreamerInfo list of class descriptions. The list contains the
description of each class that has been written to file.

20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41

The class description is recursive, because to fully describe a class, its ancestors and object data members
have to be described also. In demo . root, the class description list contains the description for:

e THIF

o all classes in the TH1F inheritance tree

e all classes of the object data members

e all classes in the object data members' inheritance tree.
This description is implemented by the TStreamerInfo class, and is often referred to as simply
StreamerInfo. You can print a file's StreamerInfolist with the TFile: :ShowStreamerInfo method.
Below is an example of the output. Only the first line of each class description is shown. The demo.root
example contains only TH1F objects. Here we see the recursive nature of the class description; it contains the
StreamerInfoof all the classes needed to describe TH1F.

root[] f.ShowStreamerInfo ()

StreamerInfo for class: THL1F, version=1
BASE TH1 offset=0 type= 0 1-Dim histogram base class
BASE TArrayF offset=0 type= 0 Array of floats

StreamerInfo for class: TH1, version=3
BASE TNamed offset=0 type=67 The basis for named object (name,title)
BASE TAttLine offset=0 type=0 Line attributes

July 2007 v5.16

Input/Output 161

BASE TAttFill offset=0 type=0 Fill area attributes

BASE TAttMarker offset=0 type=0 Marker attributes
Int t fNcells offset=0 type=3 number bins (1D),cells(2D)+U/Overflows
TAxis fXaxis offset=0 type=61 X axis descriptor
TAxis fYaxis offset=0 type=61 Y axis descriptor
TAxis fZaxis offset=0 type=61 Z axis descriptor

Short t fBarOffset offset=0 type=2 (1000*offset) for barcharts or legos
Short t fBarWidth offset=0 type=2 (1000*width) for bar charts or legos

Stat t fEntries offset=0 type=8 Number of entries //continued..
Stat t fTsumw offset=0 type=8 Total Sum of weights

Stat t fTsumw?2 offset=0 type=8 Total Sum of squares of weights

Stat t fTsumwx offset=0 type=8 Total Sum of weight*X

Stat t fTsumwx?2 offset=0 type=8 Total Sum of weight*X*X

Double t fMaximum offset=0 type=8 Maximum value for plotting

Double t fMinimum offset=0 type=8 Minimum value for plotting

Double t fNormFactor offset=0 type=8 Normalization factor

TArrayD fContour offset=0 type=62 Array to display contour levels
TArrayD fSumw2 offset=0 type=62 Array of sum of squares of weights
TString fOption offset=0 type=65 histogram options

TList* fFunctions offset=0 type=63 ->Pointer to list of functions(fits,user)

StreamerInfo for class: TNamed, version=1
étreamerlnfo for class: TAttLine, version=1
étreamerlnfo for class: TAttFill, version=1
étreamerlnfo for class: TAttMarker, version=1
étreamerlnfo for class: TArrayF, version=1
étreamerlnfo for class: TArray, version=l
gtreamerlnfo for class: TAxis, version=6

StreamerInfo for class: TAttAxis, version=4

ROOT allows a class to have multiple versions, and each version has its own description in form of a
StreamerInfo. Above you see the class name and version number. The StreamerInfolist has only one
description for each class/version combination it encountered. The file can have multiple versions of the same
class, for example objects of old and new versions of a class can be in the same file. The StreamerInfois
described in detail in the section on Streamers.

The List of Keys and the List of Free Blocks

The last three entries on the output of TFile: :Map () are the list of keys, the list of free segments, and the
address where the data ends.. When a file is closed, it writes a linked list of keys at the end of the file. This is
what we see in the third to the last entry. In our example, the list of keys is stored in 732 bytes beginning at
byte# 8244.

20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

The second to last entry is a list of free segments. In our case, this starts 8976 and is not very long, only 53
bytes, since we have not deleted any objects. The last entry is the address of the last byte in the file.

File Recovery

A file may become corrupted or it may be impossible to write it to disk and close it properly. For example if the
file is too large and exceeds the disk quota, or the job crashes or a batch job reaches its time limit before the file
can be closed. In these cases, it is imperative to recover and retain as much information as possible. ROOT
provides an intelligent and elegant file recovery mechanism using the redundant directory information in the
record header.

If a file that has been not properly closed is opened again, it is scanned and rebuilt according to the information
in the record header. The recovery algorithm reads the file and creates the saved objects in memory according
to the header information. It then rebuilds the directory and file structure. If the file is opened in write mode, the
recovery makes the correction on disk when the file is closed; however if the file is opened in read mode, the
correction can not be written to disk. You can also explicitly invoke the recovery procedure by calling the
TFile: :Recover () method. You can recover the directory structure, but you cannot save what you recovered

162

Input/Output July 2007 v5.16

to the file on disk. In the following example, we interrupted and aborted the previous ROOT session, causing the
file not to be closed. When we start a new session and attempt to open the file, it gives us an explanation and
status on the recovery attempt.

root[] TFile f("demo.root")
Warning in <TFile::TFile>: file demo.root probably not closed, trying to recover
successfully recovered 15 keys

The

Logical ROOT File: TFile and TKey

We saw that the TFile: :Map () method reads the file sequentially and prints information about each record
while scanning the file. It is not feasible to support only sequential access and hence ROOT provides random or
direct access, i.e. reading a specified object at a time. To do so, TFile keeps a list of TKeys, which is
essentially an index to the objects in the file. The TKey class describes the record headers of objects in the file.
For example, we can get the list of keys and print them. To find a specific object on the file we can use the
TFile: :Get () method.

root[] TFile f("demo.root")
root[] f.GetListOfKeys ()->Print()

TKey Name = h0, Title = histo nr:0, Cycle =1
TKey Name = hl, Title = histo nr:1, Cycle =1
TKey Name = h2, Title = histo nr:2, Cycle =1
TKey Name = h3, Title = histo nr:3, Cycle =1
TKey Name = h4, Title = histo nr:4, Cycle =1
TKey Name = hb5, Title = histo nr:5, Cycle =1
TKey Name = h6, Title = histo nr:6, Cycle =1
TKey Name = h7, Title = histo nr:7, Cycle =1
TKey Name = h8, Title = histo nr:8, Cycle =1
TKey Name = h9, Title = histo nr:9, Cycle =1

14
TKey Name = hl10, Title = histo nr:10, Cycle
TKey Name = hll, Title = histo nr:11, Cycle =
TKey Name = hl2, Title = histo nr:12, Cycle =
TKey Name = hl3, Title = histo nr:13, Cycle
TKey Name = hl4, Title = histo nr:14, Cycle
root[] TH1F *h9 = (TH1F*)f.Get("h9");

I =

The TFile: :Get () finds the TKey object with name "h9". Using the TKey info it will import in memory the
object in the file at the file address #3352 (see the output from the TFile: :Map above). This is done by the
Streamer method that is covered in detail in a later section. Since the keys are available in a TList of TKeys
we can iterate over the list of keys:

{

TFile f("demo.root");

TIter next (f.GetListOfKeys());

TKey *key;

while ((key=(TKey*)next())) {
printf ("key: %s points to an object of class: %s at %d\n",
key->GetName (),
key->GetClassName () , key—->GetSeekKey ()) ;

}

The output of this script is:

root[] .x iterate.C

key: hO points to an object of class: TH1F at 150
key: hl points to an object of class: THL1F at 503
key: h2 points to an object of class: TH1F at 854
key: h3 points to an object of class: THIF at 1194
key: h4 points to an object of class: THLF at 1539
key: h5 points to an object of class: THIF at 1882
key: h6 points to an object of class: TH1F at 2240
key: h7 points to an object of class: THIF at 2582
key: h8 points to an object of class: TH1F at 2937
key: h9 points to an object of class: THIF at 3293
key: hl0 points to an object of class: TH1F at 3639
key: hll points to an object of class: TH1F at 3986
key: hl2 points to an object of class: TH1F at 4339
key: hl3 points to an object of class: THLF at 4694
key: hl4 points to an object of class: TH1F at 5038

In addition to the list of keys, TFile also keeps two other lists: TFile: : fFree is a TList of free blocks used
to recycle freed up space in the file. ROOT tries to find the best free block. If a free block matches the size of

July 2007 v5.16 Input/Output 163

the new object to be stored, the object is written in the free block and this free block is deleted from the list. If

not, the first free block bigger than the object is used. TFile::fListHead contains a sorted list
(TSortedList) of objects in memory. The diagram below illustrates the logical view of the TFile and TKey.

Figure 11-2 ROOT File/Directory/Key description

ROOT File/Directory/Key description

TFile

Header

1Free = TList of free blocks

4{ First:Last I—| First:Last I—[>

fiKeys = TList of Keys

Key 0

Object.

Key 1

—>

fListHead = TSortable of Objects in memory

SubDir

TMuodified: True if tlirectory is modified
TWnitable: True if direckory is writable
TDatimeC: Crealion DatefTime
TDatimek: Last mod DalefTime
THhytesKeys: Humber of rytes of key
THhytesHame : FHealer lengih up ta litle
T3eekDir: Start of Directory on file
T3eekParent: Siart of Parent Directory

T3eekkKeys: Mointer to Keys record

.
.

. .
-

-

.
o -

Object

——] ~Key 0}

Object I—-|>

THhytes: Size of compressed Object
TOhjLen: Size of uncompressed Ohject
TDatime: DatefMime when wrilten 1o slore
TKeylen: Humber of bytez for the key

TCycle : Cycle number

T3eekkey: Pointer 1o Ohjecl on file
T3eekltlir: MNoinler to directory on file

TClazsName: TKey'
THame: Object name
1Tille: Object Title

Viewing the Logical File Contents

TFile is a descendent of TDirectory, which means it behaves like a TDirectory. We can list the contents,
print the name, and create subdirectories. In a ROOT session, you are always in a directory and the directory
you are in is called the current directory and is stored in the global variable gbirectory. Let us look at a more
detailed example of a ROOT file and its role as the current directory. First, we create a ROOT file by executing

a sample script.

root[] .x $ROOTSYS/tutorials/hsimple.C

Now you should have hsimple. root in your directory. The file was closed by the script so we have to open it

again to work with it. We open the file with the intent to update it, and list its contents.

root[] TFile f ("hsimple.root", "UPDATE")
root[] £.1s()

TFile** hsimple.root
TFile* hsimple.root
KEY: TH1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;l py vs px
KEY: TProfile hprof;1l Profile of pz versus px

KEY: TNtuple ntuple;1 Demo ntuple

It shows the two lines starting with TFile followed by four lines starting with the word "KEY". The four keys tell
us that there are four objects on disk in this file. The syntax of the listing is:

| KEY: <class> <variable>;<cycle number> <title>

For example, the first line in the list means there is an object in the file on disk, called hpx. It is of the class
TH1F (one-dimensional histogram of floating numbers). The object's title is "This is the px distribution". If the
line starts with OBJ, the object is in memory. The <class> is the name of the ROOT class (T-something). The

164

Input/Output

July 2007 v5.16

<variable> is the name of the object. The cycle number along with the variable name uniquely identifies the
object. The <title> is the string given in the constructor of the object as title.

Figure 11-3 The structure of TFile

Cycle numiber

AN Legend

kObiB; T} SubDirl Chjects on Disk

kmOdM} {mOdEF*ﬂmouq —hﬂouﬂ))
Chjects in Memory

Directories

kObiG; T kObiH: 1 H{ kobj: T SubDir I

KOBJ:T
The figure shows a TFile with five objects in the top directory (kObja;1, kObjA;2, kObjB;1l, kObjC;1

and kObjD;1). ObjA is on file twice with two different cycle numbers. It also shows four objects in memory
(mObjE, mObjeF, mObjM, mObjL). It also shows several subdirectories.

SubDir |

The Current Directory

When you create a TFile object, it becomes the current directory. Therefore, the last file to be opened is
always the current directory. To check your current directory you can type:

root[] gDirectory->pwd ()
Rint:/

This means that the current directory is the ROOT session (Rint). When you create a file, and repeat the
command the file becomes the current directory.

root[] TFile f1l("AFilel.root");
root[] gDirectory->pwd()
AFilel.root:/

If you create two files, the last becomes the current directory.

root[] TFile £f2("AFile2.root");
root[] gDirectory->pwd/()
AFile2.root:/

To switch back to the first file, or to switch to any file in general, you can use the TDirectory: :cd method.
The next command changes the current directory back to the first file.

root[] £l.ed();
root[] gDirectory->pwd ()
AFilel.root:/

Note that even if you open the file in "READ" mode, it still becomes the current directory. CINT also offers a
shortcut for gDirectory->pwd () and gDirectory->1s (), you can type:

root[] .pwd

AFilel.root:/

root[] .ls

TFile** AFilel.root
TFile* AFilel.root

To return to the home directory where we were before:

root[] gROOT->cd()
(unsigned char)l
root[] gROOT->pwd ()
Rint:/

Objects in Memory and Objects on Disk

The TFile: :1s () method has an option to list the objects on disk ("-d") or the objects in memory ("-m"). If no
option is given it lists both, first the objects in memory, then the objects on disk. For example:

root[] TFile *f = new TFile("hsimple.root");
root[] gDirectory->1ls("-m")

TFile** hsimple.root

TFile* hsimple.root

July 2007 v5.16 Input/Output 165

Remember that gbirectory is the current directory and at this time is equivalent to "£". This correctly states
that no objects are in memory.

The next command lists the objects on disk in the current directory.

root[] gDirectory->1s("-d")

TFile** hsimple.root

TFile* hsimple.root
KEY: THI1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px

KEY: TProfile hprof;1l Profile of pz versus px
KEY: TNtuple ntuple;1l Demo ntuple

To bring an object from disk into memory, we have to use it or "Get" it explicitly. When we use the object, ROOT
gets it for us. Any reference to hprof will read it from the file. For example drawing hprof will read it from the
file and create an object in memory. Here we draw the profile histogram, and then we list the contents.

root[] hprof->Draw ()

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl
root[] £->1s()

TFile** hsimple.root

TFile* hsimple.root

OBJ: TProfile hprof Profile of pz versus px : O

KEY: THI1F hpx;1 This is the px distribution

KEY: TH2F hpxpy;l py vs px

KEY: TProfile hprof;1l Profile of pz versus px

KEY: TNtuple ntuple;1l Demo ntuple

We now see a new line that starts with OBJ. This means that an object of class TProfile, called hprof has
been added in memory to this directory. This new hprof in memory is independent from the hprof on disk. If
we make changes to the hprof in memory, they are not propagated to the hprof on disk. A new version of
hprof will be saved once we call Wwrite.

You may wonder why hprof is added to the objects in the current directory. hprof is of the class TProfile
that inherits from TH1D, which inherits from TH1. TH1 is the basic histogram. All histograms and trees are
created in the current directory (also see "Histograms and the Current Directory"). The reference to "all
histograms" includes objects of any class descending directly or indirectly from TH1. Hence, our TProfile
hprof is created in the current directory f.There was another side effect when we called the TH1: :Draw
method. CINT printed this statement:

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl

It tells us that a TCanvas was created and it named it c1. This is where ROQT is being nice, and it creates a
canvas for drawing the histogram if no canvas was named in the draw command, and if no active canvas exists.
The newly created canvas, however, is NOT listed in the contents of the current directory. Why is that? The
canvas is not added to the current directory, because by default ONLY histograms and trees are added to the
object list of the current directory. Actually, TEventList objects are also added to the current directory, but at
this time, we don't have to worry about those. If the canvas is not in the current directory then where is it?
Because it is a canvas, it was added to the list of canvases.

This list can be obtained by the command gROOT->GetListOfCanvases () ->1s (). The 1s () will print the
contents of the list. In our list, we have one canvas called cl1. It has a TFrame, a TProfile, and a
TPaveStats

root[] gROOT->GetListOfCanvases()->1s()

Canvas Name=cl Title=cl

Option=TCanvas fXlowNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1

Name= cl Title= cl

Option=TFrame X1l= -4.000000 Y1=0.000000 X2=4.000000 Y2=19.384882
OBJ: TProfile hprof Profile of pz versus px : 0

TPaveText X1=-4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title
TPaveStats X1=2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

Lets proceed with our example and draw one more histogram, and we see one more OBJ entry.

root[] hpx->Draw()
root[] £->1s()

TFile** hsimple.root

TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : O
OBJ: THIF hpx This is the px distribution : 0O
KEY: THI1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px

KEY: TProfile hprof;1l Profile of pz versus px
KEY: TNtuple ntuple;1l Demo ntuple

166

Input/Output July 2007 v5.16

TFile::1s () loops over the list of objects in memory and the list of objects on disk. In both cases, it calls the
1s () method of each object. The implementation of the 1s method is specific to the class of the object, all of
these objects are descendants of TObject and inherit the TObject: :1s () implementation. The histogram
classes are descendants of TNamed that in turn is a descent of TObject. In this case, TNamed: :1s () is
executed, and it prints the name of the class, and the name and title of the object. Each directory keeps a list of
its objects in the memory. You can get this list by TDirectory: :GetList (). To see the lists in memory
contents you can do:

root[] £->GetList()->1s()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: THI1F hpx This is the px distribution : 0

Since the file £ is the current directory (gDirectory), this will yield the same result:

root[] gDirectory->GetList()->1s()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: THI1F hpx This is the px distribution : 0

Saving Histograms to Disk

At this time, the objects in memory (OBJ) are identical to the objects on disk (KEY). Let's change that by adding
a fill to the hpx we have in memory.

root[] hpx->Fill (0)

Now the hpx in memory is different from the histogram (hpx) on disk. Only one version of the object can be in
memory, however, on disk we can store multiple versions of the object. The TFile: :Write method will write
the list of objects in the current directory to disk. It will add a new version of hpx and hprof.

root[] £->Write()
root[] £->1s()

TFile** hsimple.root

TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: THIF hpx This is the px distribution : 0O
KEY: TH1F hpx;2 This is the px distribution
KEY: THI1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px

KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

Figure 11-4 The file before and after the call to Write

hsirmcleroo Legend
Objects on Disk

nex1 | (hewpyi1) - (hprot)—(ntuple:)

— —_— Objects in Memory
! —_—
-hﬂ) \M) | mObJB}
Directores

SuBDir |

hsimple:

L(hp;c])—(hpxpy;w)—{hprof_-w) (ruple:1) [hp;czj (hprot:2)
o))

The TFile: :Write method wrote the entire list of objects in the current directory to the file. You see that it
added two new keys: hpx;2 and hprof;2 to the file. Unlike memory, a file is capable of storing multiple
objects with the same name. Their cycle number, the number after the semicolon, differentiates objects on disk
with the same name. If you wanted to save only hpx to the file, but not the entire list of objects, you could use
the TH1: :Wirite method of hpx:

root[] hpx->Write ()

A call to obj->Write without any parameters will call obj->GetName () to find the name of the object and
use it to create a key with the same name. You can specify a new name by giving it as a parameter to the
Write method.

root[] hpx->Write ("newName")

If you want to re-write the same object, with the same key, use the overwrite option.

July 2007 v5.16 Input/Output 167

root[] hpx->Write("",TObject::kOverwrite) |

If you give a new name and use the kOverwrite, the object on disk with the matching name is overwritten if
such an object exists. If not, a new object with the new name will be created.

root[] hpx->Write ("newName",6 TObject: :kOverwrite) |

The write method did not affect the objects in memory at all. However, if the file is closed, the directory is
emptied and the objects on the list are deleted.

root[] £->Close()

root[] £->1s()

TFile*~* hsimple.root
TFile* hsimple.root

In the code snipped above, you can see that the directory is now empty. If you followed along so far, you can
see that c1 which was displaying hpx is now blank. Furthermore, hpx no longer exists.

root[] hpx->Draw ()
Error: No symbol hpx in current scope

This is important to remember, do not close the file until you are done with the objects or any attempt to
reference the objects will fail.

Histograms and the Current Directory

When a histogram is created, it is added by default to the list of objects in the current directory. You can get the
list of histograms in a directory and retrieve a pointer to a specific histogram.

THIF *h = (THLF*)gDirectory->Get ("myHist"); // or
TH1F *h = (TH1F*)gDirectory->GetList ()->FindObject ("myHist");

The method TDirectory::GetList () returns a TList of objects in the directory. You can change the
directory of a histogram with the SsetDirectory method.

h->SetDirectory(newDir) ; |

If the parameter is 0, the histogram is no longer associated with a directory.

h->SetDirectory (0); |

Once a histogram is removed from the directory, it will no longer be deleted when the directory is closed. It is
now your responsibility to delete this histogram object once you are finished with it. To change the default that
automatically adds the histogram to the current directory, you can call the static function:

TH1::AddDirectory (kFALSE) ;

In this case, you will need to do all the bookkeeping for all the created histograms.

Saving Objects to Disk

In addition to histograms and trees, you can save any object in a ROOT file. For example to save a canvas to
the ROOT file you can use either TObject: :Write () or TDirectory: :WriteTObject (). The example:

root[] ecl->Write()

This is equivalent to:

root[] £->WriteTObject(cl) |

For objects that do not inherit from TObject use:

root[] f£->WriteObject (ptr,"nameofobject") |

Another example:

root[] TFile *f = new TFile("hsimple.root", "UPDATE")

root[] hpx->Draw()

<TCanvas: :MakeDefCanvas>: created default TCanvas with name cl
root[] el->Write()

root[] £->1s()

TFile** hsimple.root

TFile* hsimple.root

OBJ: THI1F hpx This is the px distribution : 0
KEY: THI1F hpx; 2 This is the px distribution
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1l py vs px

KEY: TProfile hprof;2 Profile of pz versus px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

KEY: TCanvas <cl;1 cl

168

Input/Output July 2007 v5.16

Saving Collections to Disk

All collection classes inherit from TCollection and hence inherit the TCollection: :Write () method.
When you call TCollection: :Write () each object in the container is written individually into its own key in
the file. To write all objects into one key you can specify the name of the key and use the option
TObject: : kSingleKey. For example:

root TList * list = new TList;
root TNamed * nl, * n2;
root nl = new TNamed ("namel","titlel");

[]
[]
[]
root[] n2 = new TNamed("name2","title2");
[]
[]
[]

root list->Add (nl) ;
root list->Add (n2) ;
root gFile->WriteObject(list,"list" ,TObject: :kSingleKey) ;

A TFile Object Going Out of Scope

There is another important point to remember about TFile: :Close and TFile: :Write. When a variable is
declared on the stack in a function such as in the code below, it will be deleted when it goes out of scope.

void foo () {
TFile f("AFile.root","RECREATE") ;

}

As soon as the function foo has finished executing, the variable f is deleted. When a TFile object is deleted
an implicit call to TFile::Close is made. This will save only the file descriptor to disk. It contains the file
header, the streamerInfo list, the key list, the free segment list, and the end address. See "The Physical
Layout of ROOT Files". The TFile: : Close does not make a call to Write (), which means that the objects in
memory will not be saved in the file. You need to explicitly call TFile: :Write () to save the object in memory
to file before the exit of the function.

void foo () {
TFile f("AFile.root","RECREATE") ;
. stuff ..
f.Write();

}

To prevent an object in a function from being deleted when it goes out of scope, you can create it on the heap
instead of on the stack. This will create a TFile object £, that is available on a global scope, and it will still be
available when exiting the function.

void foo () {
TFile *f = new TFile ("AFile.root","RECREATE") ;

}

Retrieving Objects from Disk

If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name could be in a ROOT file. In our example, we
saved a modified histogram hpx to the file, which resulted in two h