Thapar Institute of Engineering \& Technology
 Computer Science \& Engineering Department END SEMESTER EXAMINATION

Instructions:

1. Attempt any 5 questions;
2. Attempt all the subparts of a question at one place.
3. a) Given the control polygon $\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ of a Cubic Bezier curve; determine the vertex coordinates for parameter values $\forall t \in T$.

$$
\begin{aligned}
T & \equiv\{0,0.15,0.35,0.5,0.65,0.85,1\} \\
{\left[\begin{array}{llll}
\mathbf{b}_{0} & \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right] } & \equiv\left[\begin{array}{llll}
1 & 2 & 4 & 3 \\
1 & 3 & 3 & 1
\end{array}\right]
\end{aligned}
$$

b) Explain the role of convex hull in curves.
2. a) Describe the continuity conditions for curvilinear geometry.
b) Define formally, a B-Spline curve.
c) How is a Bezier curve different from a B-Spline curve?
3. a) Given a triangle, with vertices defined by column vectors of P; find its vertices after reflection across XZ plane.

$$
P \equiv\left[\begin{array}{lll}
3 & 6 & 5 \\
4 & 4 & 6 \\
1 & 2 & 3
\end{array}\right]
$$

b) Given a pyramid with vertices defined by the column vectors of P, and an axis of rotation A with direction \mathbf{v} and passing through \mathbf{p}. Find the coordinates of the vertices after rotation about A by an angle of $\theta=\pi / 4$.

$$
\begin{aligned}
P & \equiv\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
\mathbf{v} & \mathbf{p}
\end{array}\right] } & \equiv\left[\begin{array}{ll}
0 & 0 \\
1 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

4. a) Explain the two winding number rules for inside outside tests.
b) Explain the working principle of a CRT.
5. a) Given a projection plane P defined by normal \mathbf{n} and a reference point \mathbf{a}; and the centre of projection as \mathbf{p}_{0}; find the perspective projection of the point \mathbf{x} on P.

$$
\left[\begin{array}{llll}
\mathbf{a} & \mathbf{n} & \mathbf{p}_{0} & \mathbf{x}
\end{array}\right] \equiv\left[\begin{array}{cccc}
3 & -1 & 1 & 8 \\
4 & 2 & 1 & 10 \\
5 & -1 & 3 & 6
\end{array}\right]
$$

b) Given a geometry G, which is a standard unit cube scaled uniformly by half and viewed through a Cavelier projection bearing $\theta=\pi / 4 \mathrm{wrt}$. X axis.
c) Given a view coordinate system (VCS) with origin at \mathbf{p}_{v} and euler angles ZYX as $\boldsymbol{\theta}$ wrt. the world coordinate system (WCS); find the location \mathbf{x}_{v} in VCS, corresponding to \mathbf{x}_{w} in WCS. [2 marks]

$$
\left[\begin{array}{lll}
\mathbf{p}_{v} & \theta & \mathbf{x}_{w}
\end{array}\right] \equiv\left[\begin{array}{ccc}
5 & \pi / 3 & 10 \\
5 & 0 & 10 \\
0 & 0 & 0
\end{array}\right]
$$

6. a) Describe the visible surface detection problem in about 25 words.
b) To render a scene with N polygons into a display with height H; what are the space and time complexities respectively of a typical image-space method.
c) Given a 3D space bounded within $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{lll}7 & 7 & -7\end{array}\right]$, containing two infinite planes each defined by 3 incident points $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}$ and $\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}$ respectively bearing colours (RGB) as \mathbf{c}_{a} and \mathbf{c}_{b} respectively.

$$
\left[\begin{array}{llllllll}
\mathbf{a}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}_{0} & \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{c}_{a} & \mathbf{c}_{b}
\end{array}\right] \equiv\left[\begin{array}{cccccccc}
1 & 6 & 1 & 6 & 1 & 6 & 1 & 0 \\
1 & 3 & 6 & 6 & 3 & 1 & 0 & 0 \\
-1 & -6 & -1 & -1 & -6 & -1 & 0 & 1
\end{array}\right]
$$

Compute and/ or determine using the depth-buffer method, the colour at pixel $\mathbf{x}=(2,4)$ on a display resolved into 7×7 pixels. The projection plane is at $Z=0$, looking at $-Z$.
[6 marks]

