
Package ‘AzureAuth’
December 20, 2025

Title Authentication Services for Azure Active Directory

Version 1.3.4

Description Provides Azure Active Directory (AAD) authentication functionality for R users of Mi-
crosoft's 'Azure' cloud <https://azure.microsoft.com/en-us>. Use this package to ob-
tain 'OAuth' 2.0 tokens for services including Azure Resource Manager, Azure Storage and oth-
ers. It supports both AAD v1.0 and v2.0, as well as multiple authentication methods, including de-
vice code and resource owner grant. Tokens are cached in a user-specific directory obtained us-
ing the 'rappdirs' package. The interface is based on the 'OAuth' framework in the 'httr' pack-
age, but customised and streamlined for Azure. Part of the 'AzureR' family of packages.

URL https://github.com/Azure/AzureAuth https://github.com/Azure/AzureR

BugReports https://github.com/Azure/AzureAuth/issues

License MIT + file LICENSE

VignetteBuilder knitr

Depends R (>= 3.3)

Imports utils, httr (>= 1.3), openssl, jsonlite, jose, R6, rappdirs

Suggests knitr, rmarkdown, testthat, httpuv, shiny, shinyjs, AzureRMR,
AzureGraph

RoxygenNote 7.3.2

NeedsCompilation no

Author Hong Ooi [aut, cre],
Tyler Littlefield [ctb],
httr development team [ctb] (Original OAuth listener code),
Scott Holden [ctb] (Advice on AAD authentication),
Chris Stone [ctb] (Advice on AAD authentication),
Microsoft [cph]

Maintainer Hong Ooi <hongooi73@gmail.com>

Repository CRAN

Date/Publication 2025-12-20 12:10:02 UTC

1

https://azure.microsoft.com/en-us
https://github.com/Azure/AzureAuth
https://github.com/Azure/AzureR
https://github.com/Azure/AzureAuth/issues

2 AzureManualToken

Contents
AzureManualToken . 2
AzureR_dir . 4
AzureToken . 5
build_authorization_uri . 5
cert_assertion . 7
decode_jwt . 8
format_auth_header . 9
get_managed_token . 10
get_manual_token . 18
normalize_tenant . 20

Index 22

AzureManualToken Manual Azure Token

Description

Initialize a manual token from a raw access token string.

Refresh the token. Manual tokens cannot be refreshed.

Check if this token can be refreshed.

Cache the token. Manual tokens are not cached.

Compute a hash for this token.

Print the token object.

Arguments

token A character string containing the access token.

type The token type, usually "Bearer".

tenant Optional tenant ID. If NULL, extracted from JWT claims.

resource Optional resource/audience. If NULL, extracted from JWT claims.

Format

An R6 object of class AzureManualToken, inheriting from AzureToken.

Details

Create an Azure token object from a pre-existing access token string. This is useful when you have
obtained a token externally (e.g., via Azure CLI, Python, or another authentication mechanism) and
want to use it with the AzureR ecosystem.

The AzureManualToken class provides a way to wrap an externally-obtained access token string so
it can be used with packages like AzureGraph, AzureRMR, and other AzureR family packages that
expect an AzureToken object.

AzureManualToken 3

If the token is a JWT (JSON Web Token), the class will attempt to parse it to extract metadata such
as the tenant ID, audience (resource), and expiration time. If parsing fails (e.g., for opaque tokens),
the class will still function but with limited metadata.

Since manual tokens are managed externally, the refresh() method cannot obtain a new token.
When the token expires, you must create a new AzureManualToken object with a fresh token string.

Value

Returns self invisibly.

Always returns FALSE for manual tokens.

Returns NULL invisibly.

An MD5 hash string based on the token content.

Methods

• new(token, type, tenant, resource): Initialize a new manual token object.
• refresh(): Cannot refresh a manual token; issues a warning and returns self.
• validate(): Checks if the token has expired based on JWT claims.
• can_refresh(): Returns FALSE since manual tokens cannot be refreshed.
• cache(): No-op; manual tokens are not cached.

See Also

get_manual_token, AzureToken, decode_jwt

Examples

Not run:
Get a token externally (e.g., from Azure CLI)
az account get-access-token --resource https://graph.microsoft.com
raw_token <- "eyJ0eXAiOiJKV1QiLC..."

Create a manual token object
token <- get_manual_token(raw_token)

Check if metadata was parsed
print(token$tenant)
print(token$resource)

Use with AzureGraph
library(AzureGraph)
gr <- ms_graph$new(token = token)
me <- gr$get_user("me")

Check token validity
token$validate()

End(Not run)

4 AzureR_dir

AzureR_dir Data directory for AzureR packages

Description

Data directory for AzureR packages

Usage

AzureR_dir()

create_AzureR_dir()

Details

AzureAuth can save your authentication credentials in a user-specific directory, using the rappdirs
package. On recent Windows versions, this will usually be in the location C:\\Users\\(username)\\AppData\\Local\\AzureR.
On Unix/Linux, it will be in ~/.local/share/AzureR, and on MacOS, it will be in ~/Library/Application Support/AzureR.Alternatively,
you can specify the location of the directory in the environment variable R_AZURE_DATA_DIR.
AzureAuth does not modify R’s working directory, which significantly lessens the risk of acci-
dentally introducing cached tokens into source control.

On package startup, if this directory does not exist, AzureAuth will prompt you for permission to
create it. It’s recommended that you allow the directory to be created, as otherwise you will have
to reauthenticate with Azure every time. Note that many cloud engineering tools, including the
Azure CLI, save authentication credentials in this way. The prompt only appears in an interactive
session (in the sense that interactive() returns TRUE); if AzureAuth is loaded in a batch script,
the directory is not created if it doesn’t already exist.

create_AzureR_dir is a utility function to create the caching directory manually. This can be use-
ful not just for non-interactive sessions, but also Jupyter and R notebooks, which are not technically
interactive in that interactive() returns FALSE.

The caching directory is also used by other AzureR packages, notably AzureRMR (for storing
Resource Manager logins) and AzureGraph (for Microsoft Graph logins). You should not save your
own files in it; instead, treat it as something internal to the AzureR packages.

Value

A string containing the data directory.

See Also

get_azure_token

rappdirs::user_data_dir

https://learn.microsoft.com/en-us/cli/azure/?view=azure-cli-latest

AzureToken 5

AzureToken Azure OAuth authentication

Description

Azure OAuth 2.0 token classes, with an interface based on the Token2.0 class in httr. Rather than
calling the initialization methods directly, tokens should be created via get_azure_token().

Format

An R6 object representing an Azure Active Directory token and its associated credentials. AzureToken
is the base class, and the others inherit from it.

Methods

• refresh: Refreshes the token. For expired tokens without an associated refresh token, re-
freshing really means requesting a new token.

• validate: Checks if the token has not yet expired. Note that a token may be invalid for
reasons other than having expired, eg if it is revoked on the server.

• hash: Computes an MD5 hash on the input fields of the object. Used internally for identifica-
tion purposes when caching.

• cache: Stores the token on disk for use in future sessions.

See Also

get_azure_token, httr::Token

build_authorization_uri

Standalone OAuth authorization functions

Description

Standalone OAuth authorization functions

Usage

build_authorization_uri(
resource,
tenant,
app,
username = NULL,
...,
aad_host = "https://login.microsoftonline.com/",
version = 1

6 build_authorization_uri

)

get_device_creds(
resource,
tenant,
app,
aad_host = "https://login.microsoftonline.com/",
version = 1

)

Arguments

resource, tenant, app, aad_host, version
See the corresponding arguments for get_azure_token.

username For build_authorization_uri, an optional login hint to be sent to the autho-
rization endpoint.

... Named arguments that will be added to the authorization URI as query parame-
ters.

Details

These functions are mainly for use in embedded scenarios, such as within a Shiny web app. In this
case, the interactive authentication flows (authorization code and device code) need to be split up
so that the authorization step is handled separately from the token acquisition step. You should not
need to use these functions inside a regular R session, or when executing an R batch script.

Value

For build_authorization_uri, the authorization URI as a string. This can be set as a redirect
from within a Shiny app’s UI component.

For get_device_creds, a list containing the following components:

• user_code: A short string to be shown to the user

• device_code: A long string to verify the session with the AAD server

• verification_uri: The URI the user should browse to in order to login

• expires_in: The duration in seconds for which the user and device codes are valid

• interval: The interval between polling requests to the AAD token endpoint

• message: A string with login instructions for the user

Examples

build_authorization_uri("https://myresource", "mytenant", "app_id",
redirect_uri="http://localhost:8100")

Not run:

obtaining an authorization code separately to acquiring the token
first, get the authorization URI

cert_assertion 7

auth_uri <- build_authorization_uri("https://management.azure.com/", "mytenant", "app_id")
browsing to the URI will log you in and redirect to another URI containing the auth code
browseURL(auth_uri)
use the code to acquire the token
get_azure_token("https://management.azure.com/", "mytenant", "app_id",

auth_code="code-from-redirect")

obtaining device credentials separately to acquiring the token
first, contact the authorization endpoint to get the user and device codes
creds <- get_device_creds("https://management.azure.com/", "mytenant", "app_id")
print the login instructions
creds$message
use the creds to acquire the token
get_azure_token("https://management.azure.com/", "mytenant", "app_id",

auth_type="device_code", device_creds=creds)

End(Not run)

cert_assertion Create a client assertion for certificate authentication

Description

Create a client assertion for certificate authentication

Usage

cert_assertion(certificate, duration = 3600, signature_size = 256, ...)

Arguments

certificate An Azure Key Vault certificate object, or the name of a PEM or PFX file con-
taining both a private key and a public certificate.

duration The requested validity period of the token, in seconds. The default is 1 hour.

signature_size The size of the SHA2 signature.

... Other named arguments which will be treated as custom claims.

Details

Use this function to customise a client assertion for authenticating with a certificate.

Value

An object of S3 class cert_assertion, which is a list representing the assertion.

8 decode_jwt

See Also

get_azure_token

Examples

Not run:

cert_assertion("mycert.pem", duration=2*3600)
cert_assertion("mycert.pem", custom_data="some text")

using a cert stored in Azure Key Vault
cert <- AzureKeyVault::key_vault("myvault")$certificates$get("mycert")
cert_assertion(cert, duration=2*3600)

End(Not run)

decode_jwt Get raw access token (which is a JWT object)

Description

Get raw access token (which is a JWT object)

Usage

decode_jwt(token, ...)

S3 method for class 'AzureToken'
decode_jwt(token, type = c("access", "id"), ...)

S3 method for class 'Token'
decode_jwt(token, type = c("access", "id"), ...)

S3 method for class 'character'
decode_jwt(token, ...)

extract_jwt(token, ...)

S3 method for class 'AzureToken'
extract_jwt(token, type = c("access", "id"), ...)

S3 method for class 'Token'
extract_jwt(token, type = c("access", "id"), ...)

S3 method for class 'character'
extract_jwt(token, ...)

format_auth_header 9

Arguments

token A token object. This can be an object of class AzureToken, of class httr::Token,
or a character string containing the encoded token.

... Other arguments passed to methods.

type For the AzureToken and httr::Token methods, the token to decode/retrieve:
either the access token or ID token.

Details

An OAuth token is a JSON Web Token, which is a set of base64URL-encoded JSON objects con-
taining the token credentials along with an optional (opaque) verification signature. decode_jwt
decodes the credentials into an R object so they can be viewed. extract_jwt extracts the creden-
tials from an R object of class AzureToken or httr::Token.

Note that decode_jwt does not touch the token signature or attempt to verify the credentials. You
should not rely on the decoded information without verifying it independently. Passing the token
itself to Azure is safe, as Azure will carry out its own verification procedure.

Value

For extract_jwt, the character string containing the encoded token, suitable for including in
a HTTP query. For decode_jwt, a list containing up to 3 components: header, payload and
signature.

See Also

jwt.io, the main JWT informational site

jwt.ms, Microsoft site to decode and explain JWTs

JWT Wikipedia entry

format_auth_header Format an AzureToken object

Description

Format an AzureToken object

Usage

format_auth_header(token)

Arguments

token An Azure OAuth token.

https://jwt.io
https://jwt.ms
https://en.wikipedia.org/wiki/JSON_Web_Token

10 get_managed_token

get_managed_token Manage Azure Active Directory OAuth 2.0 tokens

Description

Use these functions to authenticate with Azure Active Directory (AAD).

Usage

get_managed_token(resource, token_args = list(), use_cache = NULL)

get_azure_token(
resource,
tenant,
app,
password = NULL,
username = NULL,
certificate = NULL,
auth_type = NULL,
aad_host = "https://login.microsoftonline.com/",
version = 1,
authorize_args = list(),
token_args = list(),
use_cache = NULL,
on_behalf_of = NULL,
auth_code = NULL,
device_creds = NULL

)

delete_azure_token(
resource,
tenant,
app,
password = NULL,
username = NULL,
certificate = NULL,
auth_type = NULL,
aad_host = "https://login.microsoftonline.com/",
version = 1,
authorize_args = list(),
token_args = list(),
on_behalf_of = NULL,
hash = NULL,
confirm = TRUE

)

load_azure_token(hash)

get_managed_token 11

clean_token_directory(confirm = TRUE)

list_azure_tokens()

token_hash(
resource,
tenant,
app,
password = NULL,
username = NULL,
certificate = NULL,
auth_type = NULL,
aad_host = "https://login.microsoftonline.com/",
version = 1,
authorize_args = list(),
token_args = list(),
on_behalf_of = NULL

)

is_azure_token(object)

is_azure_v1_token(object)

is_azure_v2_token(object)

Arguments

resource For AAD v1.0, the URL of your resource host, or a GUID. For AAD v2.0, a
character vector of scopes, each consisting of a URL or GUID along with a path
designating the access scope. See ’Details’ below.

token_args An optional list of further parameters for the token endpoint. These will be
included in the body of the request for get_azure_token, or as URI query
parameters for get_managed_token.

use_cache If TRUE and cached credentials exist, use them instead of obtaining a new token.
The default value of NULL means to use the cache only if AzureAuth is not
running inside a Shiny app.

tenant Your tenant. This can be a name ("myaadtenant"), a fully qualified domain name
("myaadtenant.onmicrosoft.com" or "mycompanyname.com"), or a GUID. It
can also be one of the generic tenants "common", "organizations" or "con-
sumers"; see ’Generic tenants’ below.

app The client/app ID to use to authenticate with.

password For most authentication flows, this is the password for the app where needed,
also known as the client secret. For the resource owner grant, this is your per-
sonal account password. See ’Details’ below.

username Your AAD username, if using the resource owner grant. See ’Details’ below.

12 get_managed_token

certificate A file containing the certificate for authenticating with (including the private
key), an Azure Key Vault certificate object, or a call to the cert_assertion
function to build a client assertion with a certificate. See ’Certificate authentica-
tion’ below.

auth_type The authentication type. See ’Details’ below.

aad_host URL for your AAD host. For the public Azure cloud, this is https://login.microsoftonline.com/.
Change this if you are using a government or private cloud. Can also be a full
URL, eg https://mydomain.b2clogin.com/mydomain/other/path/names/oauth2
(this is relevant mainly for Azure B2C logins).

version The AAD version, either 1 or 2. Authenticating with a personal account as
opposed to a work or school account requires AAD 2.0. The default is AAD 1.0
for compatibility reasons, but you should use AAD 2.0 if possible.

authorize_args An optional list of further parameters for the AAD authorization endpoint. These
will be included in the request URI as query parameters. Only used if auth_type="authorization_code".

on_behalf_of For the on-behalf-of authentication type, a token. This should be either an
AzureToken object, or a string containing the JWT-encoded token itself.

auth_code For the authorization_code flow, the code. Only used if auth_type == "authorization_code".

device_creds For the device_code flow, the device credentials used to verify the session be-
tween the client and the server. Only used if auth_type == "device_code".

hash The MD5 hash of this token, computed from the above inputs. Used by load_azure_token
and delete_azure_token to identify a cached token to load and delete, respec-
tively.

confirm For delete_azure_token, whether to prompt for confirmation before deleting
a token.

object For is_azure_token, is_azure_v1_token and is_azure_v2_token, an R ob-
ject.

Details

get_azure_token does much the same thing as httr::oauth2.0_token(), but customised for
Azure. It obtains an OAuth token, first by checking if a cached value exists on disk, and if not, ac-
quiring it from the AAD server. load_azure_token loads a token given its hash, delete_azure_token
deletes a cached token given either the credentials or the hash, and list_azure_tokens lists cur-
rently cached tokens.

get_managed_token is a specialised function to acquire tokens for a managed identity. This is
an Azure service, such as a VM or container, that has been assigned its own identity and can be
granted access permissions like a regular user. The advantage of managed identities over the other
authentication methods (see below) is that you don’t have to store a secret password, which im-
proves security. Note that get_managed_token can only be used from within the managed identity
itself.

By default get_managed_token retrieves a token using the system-assigned identity for the re-
source. To obtain a token with a user-assigned identity, pass either the client, object or Azure
resource ID in the token_args argument. See the examples below.

The resource arg should be a single URL or GUID for AAD v1.0. For AAD v2.0, it should be a
vector of scopes, where each scope consists of a URL or GUID along with a path that designates

get_managed_token 13

the type of access requested. If a v2.0 scope doesn’t have a path, get_azure_token will append
the /.default path with a warning. A special scope is offline_access, which requests a refresh
token from AAD along with the access token: without this scope, you will have to reauthenticate if
you want to refresh the token.

The auth_code and device_creds arguments are intended for use in embedded scenarios, eg when
AzureAuth is loaded from within a Shiny web app. They enable the flow authorization step to be
separated from the token acquisition step, which is necessary within an app; you can generally
ignore these arguments when using AzureAuth interactively or as part of an R script. See the help
for build_authorization_uri for examples on their use.

token_hash computes the MD5 hash of its arguments. This is used by AzureAuth to identify tokens
for caching purposes. Note that tokens are only cached if you allowed AzureAuth to create a data
directory at package startup.

One particular use of the authorize_args argument is to specify a different redirect URI to the
default; see the examples below.

Authentication methods

1. Using the authorization_code method is a multi-step process. First, get_azure_token opens
a login window in your browser, where you can enter your AAD credentials. In the back-
ground, it loads the httpuv package to listen on a local port. Once you have logged in,
the AAD server redirects your browser to a local URL that contains an authorization code.
get_azure_token retrieves this authorization code and sends it to the AAD access endpoint,
which returns the OAuth token.

2. The device_code method is similar in concept to authorization_code, but is meant for situa-
tions where you are unable to browse the Internet – for example if you don’t have a browser
installed or your computer has input constraints. First, get_azure_token contacts the AAD
devicecode endpoint, which responds with a login URL and an access code. You then visit the
URL and enter the code, possibly using a different computer. Meanwhile, get_azure_token
polls the AAD access endpoint for a token, which is provided once you have entered the code.

3. The client_credentials method is much simpler than the above methods, requiring only one
step. get_azure_token contacts the access endpoint, passing it either the app secret or the
certificate assertion (which you supply in the password or certificate argument respec-
tively). Once the credentials are verified, the endpoint returns the token. This is the method
typically used by service accounts.

4. The resource_owner method also requires only one step. In this method, get_azure_token
passes your (personal) username and password to the AAD access endpoint, which validates
your credentials and returns the token.

5. The on_behalf_of method is used to authenticate with an Azure resource by passing a token
obtained beforehand. It is mostly used by intermediate apps to authenticate for users. In par-
ticular, you can use this method to obtain tokens for multiple resources, while only requiring
the user to authenticate once: see the examples below.

If the authentication method is not specified, it is chosen based on the presence or absence of the
other arguments, and whether httpuv is installed.

The httpuv package must be installed to use the authorization_code method, as this requires a web
server to listen on the (local) redirect URI. See httr::oauth2.0_token for more information; note that
Azure does not support the use_oob feature of the httr OAuth 2.0 token class.

https://github.com/rstudio/httpuv

14 get_managed_token

Similarly, since the authorization_code method opens a browser to load the AAD authorization
page, your machine must have an Internet browser installed that can be run from inside R. In partic-
ular, if you are using a Linux Data Science Virtual Machine in Azure, you may run into difficulties;
use one of the other methods instead.

Certificate authentication

OAuth tokens can be authenticated via an SSL/TLS certificate, which is considered more secure
than a client secret. To do this, use the certificate argument, which can contain any of the
following:

• The name of a PEM or PFX file, containing both the private key and the public certificate.

• A certificate object from the AzureKeyVault package, representing a cert stored in the Key
Vault service.

• A call to the cert_assertion() function to customise details of the requested token, eg the
duration, expiry date, custom claims, etc. See the examples below.

Generic tenants

There are 3 generic values that can be used as tenants when authenticating:

Tenant Description
common Allows users with both personal Microsoft accounts and work/school accounts from Azure AD to sign into the application.
organizations Allows only users with work/school accounts from Azure AD to sign into the application.
consumers Allows only users with personal Microsoft accounts (MSA) to sign into the application.

Authentication vs authorization

Azure Active Directory can be used for two purposes: authentication (verifying that a user is who
they claim they are) and authorization (granting a user permission to access a resource). In AAD,
a successful authorization process concludes with the granting of an OAuth 2.0 access token, as
discussed above. Authentication uses the same process but concludes by granting an ID token, as
defined in the OpenID Connect protocol.

get_azure_token can be used to obtain ID tokens along with regular OAuth access tokens, when
using an interactive flow (authorization_code or device_code). The behaviour depends on the AAD
version:

When retrieving ID tokens, the behaviour depends on the AAD version:

• AAD v1.0 will return an ID token as well as the access token by default; you don’t have to do
anything extra. However, AAD v1.0 will not refresh the ID token when it expires; you must
reauthenticate to get a new one. To ensure you don’t pull the cached version of the credentials,
specify use_cache=FALSE in the calls to get_azure_token.

• Unlike AAD v1.0, AAD v2.0 does not return an ID token by default. To get a token, include
openid as a scope. On the other hand it does refresh the ID token, so bypassing the cache is
not needed. It’s recommended to use AAD v2.0 if you only want an ID token.

If you only want to do authentication and not authorization (for example if your app does not use
any Azure resources), specify the resource argument as follows:

https://azure.microsoft.com/en-us/products/virtual-machines/data-science-virtual-machines/

get_managed_token 15

• For AAD v1.0, use a blank resource (resource="").

• For AAD v2.0, use resource="openid" without any other elements. Optionally you can add
"offline_access" as a 2nd element if you want a refresh token as well.

See also the examples below.

Caching

AzureAuth caches tokens based on all the inputs to get_azure_token as listed above. Tokens are
cached in a custom, user-specific directory, created with the rappdirs package. On recent Windows
versions, this will usually be in the location C:\\Users\\(username)\\AppData\\Local\\AzureR.
On Linux, it will be in ~/.config/AzureR, and on MacOS, it will be in ~/Library/Application Support/AzureR.
Alternatively, you can specify the location of the directory in the environment variable R_AZURE_DATA_DIR.
Note that a single directory is used for all tokens, and the working directory is not touched (which
significantly lessens the risk of accidentally introducing cached tokens into source control).

To list all cached tokens on disk, use list_azure_tokens. This returns a list of token objects,
named according to their MD5 hashes.

To delete a cached token, use delete_azure_token. This takes the same inputs as get_azure_token,
or you can specify the MD5 hash directly in the hash argument.

To delete all files in the caching directory, use clean_token_directory.

Refreshing

A token object can be refreshed by calling its refresh() method. If the token’s credentials contain
a refresh token, this is used; otherwise a new access token is obtained by reauthenticating.

Note that in AAD, a refresh token can be used to obtain an access token for any resource or scope
that you have permissions for. Thus, for example, you could use a refresh token issued on a request
for Azure Resource Manager (https://management.azure.com/) to obtain a new access token
for Microsoft Graph (https://graph.microsoft.com/).

To obtain an access token for a new resource, change the object’s resource (for an AAD v1.0
token) or scope field (for an AAD v2.0 token) before calling refresh(). If you also want to retain
the token for the old resource, you should call the clone() method first to create a copy. See the
examples below.

Value

For get_azure_token, an object inheriting from AzureToken. The specific class depends on the
authentication flow: AzureTokenAuthCode, AzureTokenDeviceCode, AzureTokenClientCreds,
AzureTokenOnBehalfOf, AzureTokenResOwner. For get_managed_token, a similar object of
class AzureTokenManaged.

For list_azure_tokens, a list of such objects retrieved from disk.

The actual credentials that are returned from the authorization endpoint can be found in the credentials
field, the same as with a httr::Token object. The access token (if present) will be credentials$access_token,
and the ID token (if present) will be credentials$id_token. Use these if you are manually con-
structing a HTTP request and need to insert an "Authorization" header, for example.

16 get_managed_token

See Also

AzureToken, httr::oauth2.0_token, httr::Token, cert_assertion, build_authorization_uri, get_device_creds

Azure Active Directory for developers, Managed identities overview Device code flow on OAuth.com,
OAuth 2.0 RFC for the gory details on how OAuth works

Examples

Not run:

authenticate with Azure Resource Manager:
no user credentials are supplied, so this will use the authorization_code
method if httpuv is installed, and device_code if not
get_azure_token("https://management.azure.com/", tenant="mytenant", app="app_id")

you can force a specific authentication method with the auth_type argument
get_azure_token("https://management.azure.com/", tenant="mytenant", app="app_id",

auth_type="device_code")

to default to the client_credentials method, supply the app secret as the password
get_azure_token("https://management.azure.com/", tenant="mytenant", app="app_id",

password="app_secret")

authenticate to your resource with the resource_owner method: provide your username and password
get_azure_token("https://myresource/", tenant="mytenant", app="app_id",

username="user", password="abcdefg")

obtaining multiple tokens: authenticate (interactively) once...
tok0 <- get_azure_token("serviceapp_id", tenant="mytenant", app="clientapp_id",

auth_type="authorization_code")
...then get tokens for each resource (Resource Manager and MS Graph) with on_behalf_of
tok1 <- get_azure_token("https://management.azure.com/", tenant="mytenant", app="serviceapp_id",

password="serviceapp_secret", on_behalf_of=tok0)
tok2 <- get_azure_token("https://graph.microsoft.com/", tenant="mytenant", app="serviceapp_id",

password="serviceapp_secret", on_behalf_of=tok0)

authorization_code flow with app registered in AAD as a web rather than a native client:
supply the client secret in the password arg
get_azure_token("https://management.azure.com/", "mytenant", "app_id",

password="app_secret", auth_type="authorization_code")

use a different redirect URI to the default localhost:1410
get_azure_token("https://management.azure.com/", tenant="mytenant", app="app_id",

authorize_args=list(redirect_uri="http://localhost:8000"))

request an AAD v1.0 token for Resource Manager (the default)
token1 <- get_azure_token("https://management.azure.com/", "mytenant", "app_id")

same request to AAD v2.0, along with a refresh token
token2 <- get_azure_token(c("https://management.azure.com/.default", "offline_access"),

https://learn.microsoft.com/en-us/azure/active-directory/develop/
https://learn.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://www.oauth.com/oauth2-servers/device-flow/token-request/
https://datatracker.ietf.org/doc/html/rfc6749

get_managed_token 17

"mytenant", "app_id", version=2)

requesting multiple scopes (Microsoft Graph) with AAD 2.0
get_azure_token(c("https://graph.microsoft.com/User.Read.All",

"https://graph.microsoft.com/User.ReadWrite.All",
"https://graph.microsoft.com/Directory.ReadWrite.All",
"offline_access"),

"mytenant", "app_id", version=2)

list saved tokens
list_azure_tokens()

delete a saved token from disk
delete_azure_token(resource="https://myresource/", tenant="mytenant", app="app_id",

username="user", password="abcdefg")

delete a saved token by specifying its MD5 hash
delete_azure_token(hash="7ea491716e5b10a77a673106f3f53bfd")

authenticating for B2C logins (custom AAD host)
get_azure_token("https://mydomain.com", "mytenant", "app_id", "password",

aad_host="https://mytenant.b2clogin.com/tfp/mytenant.onmicrosoft.com/custom/oauth2")

authenticating with a certificate
get_azure_token("https://management.azure.com/", "mytenant", "app_id",

certificate="mycert.pem")

authenticating with a certificate stored in Azure Key Vault
cert <- AzureKeyVault::key_vault("myvault")$certificates$get("mycert")
get_azure_token("https://management.azure.com/", "mytenant", "app_id",

certificate=cert)

get a token valid for 2 hours (default is 1 hour)
get_azure_token("https://management.azure.com/", "mytenant", "app_id",

certificate=cert_assertion("mycert.pem", duration=2*3600))

ID token with AAD v1.0
if you only want an ID token, set the resource to blank ("")
tok <- get_azure_token("", "mytenant", "app_id", use_cache=FALSE)
extract_jwt(tok, "id")

ID token with AAD v2.0 (recommended)
tok2 <- get_azure_token(c("openid", "offline_access"), "mytenant", "app_id", version=2)
extract_jwt(tok2, "id")

get a token from within a managed identity (VM, container or service)
get_managed_token("https://management.azure.com/")

18 get_manual_token

get a token from a managed identity, with a user-defined identity:
specify one of the identity's object_id, client_id and mi_res_id (Azure resource ID)
you can get these values via the Azure Portal or Azure CLI
get_managed_token("https://management.azure.com/", token_args=list(

mi_res_id="/subscriptions/zzzz-zzzz/resourceGroups/resgroupname/..."
))

use a refresh token from one resource to get an access token for another resource
tok <- get_azure_token("https://myresource", "mytenant", "app_id")
tok2 <- tok$clone()
tok2$resource <- "https://anotherresource"
tok2$refresh()

same for AAD v2.0
tok <- get_azure_token(c("https://myresource/.default", "offline_access"),

"mytenant", "app_id", version=2)
tok2 <- tok$clone()
tok2$scope <- c("https://anotherresource/.default", "offline_access")
tok2$refresh()

manually adding auth header for a HTTP request
tok <- get_azure_token("https://myresource", "mytenant", "app_id")
header <- httr::add_headers(Authorization=paste("Bearer", tok$credentials$access_token))
httr::GET("https://myresource/path/for/call", header, ...)

End(Not run)

get_manual_token Get a manual Azure token

Description

Create an Azure token object from a pre-existing access token string. This is useful when you have
obtained a token externally (e.g., via Azure CLI, Python, or another authentication mechanism) and
want to use it with the AzureR ecosystem.

Usage

get_manual_token(token, type = "Bearer", tenant = NULL, resource = NULL)

Arguments

token A character string containing the access token.

type The token type, usually "Bearer".

tenant Optional tenant ID. If NULL, will be extracted from JWT claims if possible.

resource Optional resource/audience URL or GUID. If NULL, will be extracted from
JWT claims if possible.

get_manual_token 19

Details

This function creates an AzureManualToken object that wraps an externally-obtained access token.
The token object can then be used with packages like AzureGraph, AzureRMR, and other AzureR
family packages.

If the provided token is a JWT (JSON Web Token), the function will attempt to parse it to extract
metadata like tenant ID, resource, and expiration time. For opaque tokens or tokens that cannot be
parsed, you can provide the tenant and resource parameters manually.

Value

An object of class AzureManualToken, inheriting from AzureToken.

Token sources

Common ways to obtain tokens externally include:

• Azure CLI: az account get-access-token --resource <resource>

• Azure PowerShell: Get-AzAccessToken -ResourceUrl <resource>

• Python (azure-identity): DefaultAzureCredential().get_token(<scope>)

• MSAL libraries in various languages

Limitations

Manual tokens have the following limitations compared to tokens obtained via get_azure_token:

• Cannot be automatically refreshed when they expire

• Are not cached to disk

• May have incomplete metadata if JWT parsing fails

See Also

AzureManualToken, get_azure_token, decode_jwt

Examples

Not run:
Example: Use a token from Azure CLI
First, get the token from command line:
az account get-access-token --resource https://graph.microsoft.com --query accessToken -o tsv

raw_token <- "eyJ0eXAiOiJKV1QiLC..."
token <- get_manual_token(raw_token)

Check token properties
print(token)
token$validate()

Use with AzureGraph
library(AzureGraph)

20 normalize_tenant

gr <- ms_graph$new(token = token)

For opaque tokens, provide metadata explicitly
token2 <- get_manual_token(

token = "opaque_token_string",
tenant = "your-tenant-id",
resource = "https://management.azure.com/"

)

End(Not run)

normalize_tenant Normalize GUID and tenant values

Description

These functions are used by get_azure_token to recognise and properly format tenant and app
IDs. is_guid can also be used generically for identifying GUIDs/UUIDs in any context.

Usage

normalize_tenant(tenant)

normalize_guid(x)

is_guid(x)

Arguments

tenant For normalize_tenant, a string containing an Azure Active Directory tenant.
This can be a name ("myaadtenant"), a fully qualified domain name ("myaad-
tenant.onmicrosoft.com" or "mycompanyname.com"), or a valid GUID.

x For is_guid, a character string; for normalize_guid, a string containing a
validly formatted GUID.

Details

A tenant can be identified either by a GUID, or its name, or a fully-qualified domain name (FQDN).
The rules for normalizing a tenant are:

1. If tenant is recognised as a valid GUID, return its canonically formatted value

2. Otherwise, if it is a FQDN, return it

3. Otherwise, if it is one of the generic tenants "common", "organizations" or "consumers", return
it

4. Otherwise, append ".onmicrosoft.com" to it

These functions are vectorised. See the link below for the GUID formats they accept.

normalize_tenant 21

Value

For is_guid, a logical vector indicating which values of x are validly formatted GUIDs.

For normalize_guid, a vector of GUIDs in canonical format. If any values of x are not recognised
as GUIDs, it throws an error.

For normalize_tenant, the normalized tenant IDs or names.

See Also

get_azure_token

Parsing rules for GUIDs in .NET. is_guid and normalize_guid recognise the "N", "D", "B" and
"P" formats.

Examples

is_guid("72f988bf-86f1-41af-91ab-2d7cd011db47") # TRUE
is_guid("{72f988bf-86f1-41af-91ab-2d7cd011db47}") # TRUE
is_guid("72f988bf-86f1-41af-91ab-2d7cd011db47}") # FALSE (unmatched brace)
is_guid("microsoft") # FALSE

all of these return the same value
normalize_guid("72f988bf-86f1-41af-91ab-2d7cd011db47")
normalize_guid("{72f988bf-86f1-41af-91ab-2d7cd011db47}")
normalize_guid("(72f988bf-86f1-41af-91ab-2d7cd011db47)")
normalize_guid("72f988bf86f141af91ab2d7cd011db47")

normalize_tenant("microsoft") # returns 'microsoft.onmicrosoft.com'
normalize_tenant("microsoft.com") # returns 'microsoft.com'
normalize_tenant("72f988bf-86f1-41af-91ab-2d7cd011db47") # returns the GUID

vector arguments are accepted
ids <- c("72f988bf-86f1-41af-91ab-2d7cd011db47", "72f988bf86f141af91ab2d7cd011db47")
is_guid(ids)
normalize_guid(ids)
normalize_tenant(c("microsoft", ids))

https://learn.microsoft.com/en-us/dotnet/api/system.guid.parse

Index

AzureManualToken, 2, 19
AzureR_dir, 4
AzureToken, 3, 5, 16
AzureTokenAuthCode (AzureToken), 5
AzureTokenClientCreds (AzureToken), 5
AzureTokenDeviceCode (AzureToken), 5
AzureTokenManaged (AzureToken), 5
AzureTokenOnBehalfOf (AzureToken), 5
AzureTokenResOwner (AzureToken), 5

build_authorization_uri, 5, 13, 16

cert_assertion, 7, 16
clean_token_directory

(get_managed_token), 10
create_AzureR_dir (AzureR_dir), 4

decode_jwt, 3, 8, 19
delete_azure_token (get_managed_token),

10

extract_jwt (decode_jwt), 8

format_auth_header, 9

get_azure_token, 4–6, 8, 19, 21
get_azure_token (get_managed_token), 10
get_azure_token(), 5
get_device_creds, 16
get_device_creds

(build_authorization_uri), 5
get_managed_token, 10
get_manual_token, 3, 18

httr::oauth2.0_token, 13, 16
httr::oauth2.0_token(), 12
httr::Token, 5, 16

is_azure_token (get_managed_token), 10
is_azure_v1_token (get_managed_token),

10

is_azure_v2_token (get_managed_token),
10

is_guid (normalize_tenant), 20

list_azure_tokens (get_managed_token),
10

load_azure_token (get_managed_token), 10

normalize_guid (normalize_tenant), 20
normalize_tenant, 20

rappdirs::user_data_dir, 4

Token2.0 class, 5
token_hash (get_managed_token), 10

22

	AzureManualToken
	AzureR_dir
	AzureToken
	build_authorization_uri
	cert_assertion
	decode_jwt
	format_auth_header
	get_managed_token
	get_manual_token
	normalize_tenant
	Index

