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as_bsim Construct a Fitted Model Object from Model Setup and MCMC Output

Description

Create a fitted bsim object by combining a BayesSIM setup object with MCMC samples returned
by runMCMC().

Usage

as_bsim(setup, mcmc.out)

Arguments

setup A BayesSIM setup object, typically the output of a _setup function.

mcmc.out MCMC output corresponding to the result of a call to runMCMC().
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Details

This function is mainly intended for workflows where the model structure and the MCMC sampling
are performed separately. It collects the MCMC draws across chains, and returns an object of class
"bsim" that can be used with generic functions such as summary(), plot(), and predict().

Value

An object of class "bsim" containing posterior samples, point estimates, fitted values, and related
model information.

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
summary(fit2)

BayesSIM Integrated Function for Bayesian Single-Index Regression

Description

Fitting a single–index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n in single integrated function.

Usage

BayesSIM(
formula,
data,
indexprior = "fisher",
link = "bspline",
prior = NULL,
init = NULL,
method = "FB",
lowerB = NULL,
upperB = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
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nchain = 1,
setSeed = FALSE

)

BayesSIM_setup(
formula,
data,
indexprior = "fisher",
link = "bspline",
prior = NULL,
init = NULL,
method = "FB",
lowerB = NULL,
upperB = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

## S3 method for class 'bsim'
print(x, digits = 3, ...)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.

indexprior Index vector prior among "fisher" (default), "sphere", "polar", "spike".

link Link function among "bspline" (default), "gp"

prior Optional named list of prior settings. Further descriptions are in every specific
model’s Details section.

init Optional named list of initial values. If the values are not assigned, they are
randomly sampled from prior or designated value. Further descriptions are in
every specific model’s Details section.

method Character, gpSphere model has 3 different types of sampling method, fully
Bayesian method ("FB"), empirical Bayes approach ("EB"), and empirical Gibbs
sampler ("EG"). Assign one sampler method. Empirical sampling approach is
recommended in high-dimensional data. By default, fully Bayesian approach is
assigned.

lowerB This parameter is only for gpSphere model. Numeric vector of element-wise
lower bounds for the "L-BFGS-B" method. When the empirical Bayes or Gibbs
sampler method is used, the marginal likelihood is optimized via optim(method
= "L-BFGS-B"). The vector must be ordered as c(index vector, lengthscale,
amp, sigma2). Note that sigma2 is included only for the empirical Bayes method
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(omit it for Gibbs). By default, the lower bounds are -1 for the index vector and
-1e2 for logarithm of lengthscale, amp, and (if present) sigma2.

upperB This parameter is only for gpSphere model. Numeric vector of element-wise
upper bounds for the "L-BFGS-B" method. When the empirical Bayes or Gibbs
sampler method is used, the marginal likelihood is optimized via optim(method
= "L-BFGS-B"). The vector must be ordered as c(index vector, lengthscale,
amp, sigma2). Note that sigma2 is included only for the empirical Bayes method
(omit it for Gibbs). By default, the upper bounds are 1 for the index vector and
1e2 for logarithm of lengthscale, amp, and (if present) sigma2.

monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).
nburnin Integer. Burn-in iterations (default 1000).
thin Integer. Thinning for monitors (default 1).
nchain Integer. Number of MCMC chains (default 1).
setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed

argument.
x A fitted BayesSIM object.
digits Number of digits to display.
... Additional arguments.

Details

Integrated function for Bayesian single-index model. Default model is von-Mises Fisher distribu-
tion for index vector with B-spline link function.

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.
ses Mean standard error of index vector. Return list of model_setup does not include it.
residuals Residuals with mean estimates of fitted values. Return list of model_setup does not

include it.
fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.
linear.predictors Mean estimates of single-index values. Return list of model_setup does not

include it.
gof Goodness-of-fit. Return list of model_setup function does not include it.
samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.

Return list of model_setup does not include it.
input List of data used in modeling, formula, input values for prior and initial values, and compu-

tation time without compiling.
defModel Nimble model object.
defSampler Nimble sampler object.
modelName Name of the model.
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See Also

bsFisher(), bsSphere(), bsPolar(), bsSpike(), gpFisher(), gpSphere(), gpPolar(), gpPolarHigh(),
gpSpike()

Examples

set.seed(123)
n <- 200; d <- 4
theta <- c(2, 1, 1, 1); theta <- theta / sqrt(sum(theta^2))
f <- function(u) u^2 * exp(u)
sigma <- 0.5
X <- matrix(runif(n * d, -1, 1), nrow = n)
index_vals <- as.vector(X %*% theta)
y <- f(index_vals) + rnorm(n, 0, sigma)
simdata <- data.frame(x = X, y = y)
colnames(simdata) <- c(paste0("X", 1:4), "y")

# One tool version - bsFisher
fit1 <- BayesSIM(y ~ ., data = simdata,

niter = 5000, nburnin = 1000,
nchain = 1)

# Split version- bsFisher
models <- BayesSIM_setup(y ~ ., data = simdata)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
summary(fit2)

bsFisher Bayesian Single-Index Regression with B-Spline Link and von Mises-
Fisher Prior

Description

Fits a single-index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n where the link f(·) is represented by
B-spline and the index vector θ has von Mises–Fisher prior.

Usage

bsFisher(
formula,
data,
prior = NULL,
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init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

bsFisher_setup(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.
prior Optional named list of prior settings. Further descriptions are in Details section.
init Optional named list of initial values. If the values are not assigned, they are

randomly sampled from prior or designated value. Further descriptions are in
Details section.

monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).
nburnin Integer. Burn-in iterations (default 1000).
thin Integer. Thinning for monitors (default 1).
nchain Integer. Number of MCMC chains (default 1).
setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed

argument.

Details

Model The single–index model uses a m-order polynomial spline with k interior knots as follows:

f(t) =

m+k∑
j=1

Bj(t)βj
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on [a, b] with ti = X ′
iθ, i = 1, · · · , n and ∥θ∥2 = 1. {βj}m+k

j=1 are spline coefficients and aθ, bθ are
boundary knots where aθ = min(ti, i = 1, · · · , n)− δ, and bθ = max(ti, i = 1, · · · , n) + δ.

Priors

• von Mises–Fisher prior on the index θ with direction and concentration.

• Conditioned on θ and σ2, the link coefficients β = (β1, . . . , βm+k)
⊤ follow normal distribu-

tion with estimated mean vector β̂θ = (X ′
θXθ)

−1X ′
θY and covariance σ2(X⊤

θ Xθ)
−1, where

Xθ is the B-spline basis design matrix.

• Inverse gamma prior on σ2 with shape parameter aσ and rate parameter bσ .

Sampling Random walk metropolis algorithm is used for index vector θ. Given θ, σ2 and β are sam-
pled from posterior distribution. Further sampling method is described in Antoniadis et al(2004).

Prior hyper-parameters These are the prior hyper-parameters set in the function. You can define
new values for each parameter in prior_param.

1. Index vector: von Mises–Fisher prior for the projection vector θ (index). index_direction
is a unit direction vector of the von Mises–Fisher distribution. By default, the estimated vector
from projection pursuit regression is assigned. index_dispersion is the positive concentra-
tion parameter. By default, 150 is assigned.

2. Link function: B-spline basis and coefficient of B-spline setup.

• basis: For the basis of B-spline, link_basis_df is the number of basis functions (de-
fault 21), link_basis_degree is the spline degree (default 2) and link_basis_delta is
a small jitter for boundary knots spacing control (default 0.001).

• beta: For the coefficient of B-spline, multivariate normal prior is assigned with mean
link_beta_mu, and covariance link_beta_cov. By default, Np

(
0, Ip

)
is assigned.

3. Error variance (sigma2): An Inverse gamma prior is assigned to σ2 where sigma2_shape is
shape parameter and sigma2_rate is rate parameter of inverse gamma distribution. (default
sigma2_shape = 0.001, sigma2_rate = 100)

Initial values These are the initial values set in the function. You can define new values for each
initial value in init_param.

1. Index vector: Initial unit index vector θ. By default, the vector is randomly sampled from the
von Mises–Fisher prior.

2. Link function: Initial spline coefficients (link_beta). By default,
(
X⊤

θ Xθ + ρ I
)−1

X⊤
θ Y is

computed, where Xθ is the B-spline basis design matrix.

3. Error variance (sigma2): Initial scalar error variance (default 0.01).

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.

ses Mean standard error of index vector. Return list of model_setup does not include it.

residuals Residuals with mean estimates of fitted values. Return list of model_setup does not
include it.

fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.
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linear.predictors Mean estimates of single-index values. Return list of model_setup does not
include it.

gof Goodness-of-fit. Return list of model_setup function does not include it.

samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.
Return list of model_setup does not include it.

input List of data used in modeling, formula, input values for prior and initial values, and compu-
tation time without compiling.

defModel Nimble model object.

defSampler Nimble sampler object.

modelName Name of the model.

References

Antoniadis, A., Grégoire, G., & McKeague, I. W. (2004). Bayesian estimation in single-index
models. Statistica Sinica, 1147-1164.

Hornik, K., & Grün, B. (2014). movMF: an R package for fitting mixtures of von Mises-Fisher
distributions. Journal of Statistical Software, 58, 1-31.

Examples

set.seed(123)
n <- 200; d <- 4
theta <- c(2, 1, 1, 1); theta <- theta / sqrt(sum(theta^2))
f <- function(u) u^2 * exp(u)
sigma <- 0.5
X <- matrix(runif(n * d, -1, 1), nrow = n)
index_vals <- as.vector(X %*% theta)
y <- f(index_vals) + rnorm(n, 0, sigma)
simdata <- data.frame(x = X, y = y)
colnames(simdata) <- c(paste0("X", 1:4), "y")

# One tool version
fit1 <- bsFisher(y ~ ., data = simdata,

niter = 5000, nburnin = 1000, nchain = 1)

# Split version
models <- bsFisher_setup(y ~ ., data = simdata)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
summary(fit2)
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bsPolar Bayesian Single-Index Regression with B-Spline Link and One-to-One
Polar Transformation

Description

Fits a single-index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n where the link f(·) is represented by
B-spline link function and the index vector θ is parameterized on the unit sphere via a one-to-one
polar transformation.

Usage

bsPolar(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

bsPolar_setup(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.
prior Optional named list of prior settings. Further descriptions are in Details section.
init Optional named list of initial values. If the values are not assigned, they are

randomly sampled from prior or designated value. Further descriptions are in
Details section.
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monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).

nburnin Integer. Burn-in iterations (default 1000).

thin Integer. Thinning for monitors (default 1).

nchain Integer. Number of MCMC chains (default 1).

setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed
argument.

Details

Model The single–index model uses a m-order polynomial spline with k interior knots as follows:

f(t) =

m+k∑
j=1

Bj(t)βj

on [a, b] with ti = X ′
iθ, i = 1, · · · , n and ∥θ∥2 = 1. {βj}m+k

j=1 are spline coefficient and aθ, bθ
are boundary knots where aθ = min(ti, i = 1, · · · , n) − δ, and bθ = max(ti, i = 1, · · · , n) + δ.
θ lies on the unit sphere (∥θ∥2 = 1) to ensure identifiability and is parameterized via a one-to-one
polar transformation with angle ψ1, ..., ψp−1, where p is the dimension of predictor. Sampling is
performed on the angular parameters
psi defining the index vector.

The mapping is
θ1 = sin(ψ1),

θi =
( i−1∏

j=1

cos(ψj)
)
sin(ψi), i = 2, . . . , p− 1,

θp =

p−1∏
j=1

cos(ψj).

The vector is then scaled to unit length.

Priors

• ψ is p− 1 dimension of polar angle of index vector and re-scaled Beta distribution on [0, π] is
assigned.

• Conditioned on θ and σ2, the link coefficients β = (β1, . . . , βm+k)
⊤ follow normal distribu-

tion with estimated mean vector β̂θ = (X ′
θXθ)

−1X ′
θY and covariance σ2(X⊤

θ Xθ)
−1, where

Xθ is the B-spline basis design matrix.

• Inverse gamma prior on σ2 with shape parameter aσ and rate parameter bσ .

Sampling Samplers are automatically assigned by nimble.

Prior hyper-parameters These are the prior hyper-parameters set in the function. You can define
new values for each parameter in prior_param.
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1. Index vector: Only shape parameter index_psi_alpha of p − 1 dimension vector is needed
since rate parameters is computed to satisfy θj,MAP. By default, the shape parameter for each
element of the polar vector is set to 5000.

2. Link function: B-spline basis and coefficient of B-spline setup.

• basis: For the basis of B-spline, link_basis_df is the number of basis functions (de-
fault 21), link_basis_degree is the spline degree (default 2) and link_basis_delta is
a small jitter for boundary-knot spacing control (default 0.001).

• beta: For the coefficient of B-spline, multivariate normal prior is assigned with mean
link_beta_mu, and covariance link_beta_cov. By default, Np

(
0, Ip

)
is assigned.

3. Error variance (sigma2): An Inverse gamma prior is assigned to σ2 where sigma2_shape is
shape parameter and sigma2_rate is rate parameter of inverse gamma distribution. (default
sigma2_shape = 0.001, sigma2_rate = 100)

Initial values These are the initial values set in the function. You can define new values for each
initial value in init_param.

1. Index vector: Initial vector of polar angle index_psi (p − 1 dimension). Each element of
angle is between 0 and π. By default, it is randomly draw from uniform distribution.

2. Link function: Initial spline coefficients(link_beta). By default,
(
X⊤

θ Xθ + ρ I
)−1

X⊤
θ Y is

computed, where Xθ is the B-spline basis design matrix.

3. Error variance (sigma2): Initial scalar error variance (default 0.01).

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.

ses Mean standard error of index vector. Return list of model_setup does not include it.

residuals Residuals with mean estimates of fitted values. Return list of model_setup does not
include it.

fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.

linear.predictors Mean estimates of single-index values. Return list of model_setup does not
include it.

gof Goodness-of-fit. Return list of model_setup function does not include it.

samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.
Return list of model_setup does not include it.

input List of data used in modeling, formula, input values for prior and initial values, and compu-
tation time without compiling.

defModel Nimble model object.

defSampler Nimble sampler object.

modelName Name of the model.



bsSphere 13

References

Antoniadis, A., Grégoire, G., & McKeague, I. W. (2004). Bayesian estimation in single-index
models. Statistica Sinica, 1147-1164.

Hornik, K., & Grün, B. (2014). movMF: an R package for fitting mixtures of von Mises-Fisher
distributions. Journal of Statistical Software, 58, 1-31.

Dhara, K., Lipsitz, S., Pati, D., & Sinha, D. (2019). A new Bayesian single index model with or
without covariates missing at random. Bayesian analysis, 15(3), 759.

Examples

set.seed(123)
n <- 200; d <- 4
theta <- c(2, 1, 1, 1); theta <- theta / sqrt(sum(theta^2))
f <- function(u) u^2 * exp(u)
sigma <- 0.5
X <- matrix(runif(n * d, -1, 1), nrow = n)
index_vals <- as.vector(X %*% theta)
y <- f(index_vals) + rnorm(n, 0, sigma)
simdata <- data.frame(x = X, y = y)
colnames(simdata) <- c(paste0("X", 1:4), "y")

# One tool version
fit1 <- bsPolar(y ~ ., data = simdata,

niter = 5000, nburnin = 1000, nchain = 1)

# Split version
models <- bsPolar_setup(y ~ ., data = simdata)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
summary(fit2)

bsSphere Bayesian Single-Index Regression with B-Spline Link and Half-Unit
Sphere Prior

Description

Fits a single-index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n where the link f(·) is represented by
B-spline link and the index vector θ is on half-unit sphere.
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Usage

bsSphere(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

bsSphere_setup(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.

prior Optional named list of prior settings. Further descriptions are in Details section.

init Optional named list of initial values. If the values are not assigned, they are
randomly sampled from prior or designated value. Further descriptions are in
Details section.

monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).

nburnin Integer. Burn-in iterations (default 1000).

thin Integer. Thinning for monitors (default 1).

nchain Integer. Number of MCMC chains (default 1).

setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed
argument.
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Details

Model The single–index model uses am-order polynomial spline with k interior knots and intercept
as follows:

f(t) =

1+m+k∑
j=1

Bj(t)βj

on [a, b] with ti = X ′
iθ, i = 1, · · · , n and ∥θ∥2 = 1. {βj}m+k+1

j=1 are spline coefficients and aθ, bθ
are boundary knots where aθ = min(ti, i = 1, · · · , n), and bθ = max(ti, i = 1, · · · , n). Variable
selection is encoded by a binary vector ν, equivalently setting components of θ to zero when νi = 0.

Priors

• The variable selection indicator ν has Beta–Bernoulli hierarchy prior. Beta hyper-prior on
the Bernoulli–inclusion probability w, inducing p(ν) ∝ Beta(r1 + nν , r2 + p − nν) where
nν = Σp

i=1I(νi = 1). r1, r2 are shape and rate parameter of beta distribution.

• Free-knot prior: the number of knots k with mean λk. The knot locations ξi, i = 1, ..., k have
a Dirichlet prior on the scaled interval [0, 1].

• Index vector prior is uniform on the half-sphere of dimension nν with first nonzero positive.

• Conjugate normal–inverse-gamma on (β, σ2) enables analytic integration for RJMCMC with
covariance τΣ0.

Sampling Posterior exploration follows a hybrid RJMCMC with six move types: add/remove pre-
dictor ν, update θ, add/delete/relocate a knot. The θ update is a random-walk Metropolis via local
rotations in a two-coordinate subspace. Knot changes use simple proposals with tractable accep-
tance ratios. Further sampling method is described in Wang (2009).

Prior hyper-parameters These are the prior hyper-parameters set in the function. You can define
new values for each parameter in prior_param.

1. Index vector: index_nu_r1, index_nu_r2 gives the shape and rate parameter of beta-binomial
prior, respectively. (default index_nu_r1 = 1, index_nu_r2 = 1).

2. Link function: B-spline knots, basis and coefficient setup.

• knots: Free-knot prior for the spline. link_knots_lambda_k is the Poisson mean for
the number of interior knot k (default 5). link_knots_maxknots is the maximum num-
ber of interior knots. If link_knots_maxknots is NULL, the number of interior knots is
randomly drawn from a Poisson distribution.

• basis: For the basis of B-spline, link_basis_degree is the spline degree (default 2).
• beta: For the coefficient of B-spline, By default, link_beta_mu is a zero vector, link_beta_tau

is set to the sample size, and link_beta_Sigma0 is the identity matrix of dimension
1 + k +m, where k is the number of interior knots and m is the spline order.

3. Error variance (sigma2): Inverse gamma prior is assigned to σ2 where sigma2_shape is shape
parameter and sigma2_rate is rate parameter of inverse gamma distribution. Small values for
shape and rate parameters yield a weakly-informative prior on σ2. (default sigma2_shape =
0.001, sigma2_rate = 0.001)

Initial values These are the initial values set in the function. You can define new values for each
initial value in init_param.
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1. Index vector: index_nu is binary vector indicating active predictors for the index. index is
initial unit-norm index vector θ (automatically normalized if necessary, with the first nonzero
element made positive for identifiability). The vector length must match the number of predic-
tor. Ideally, positions where index_nu has a value of 1 should correspond to nonzero elements
in θ; elements corresponding to index_nu = 0 will be set to zero.

2. Link function: link_k is initial number of interior knots. link_knots is initial vector of
interior knot positions in [0, 1], automatically scaled to the true boundary. Length of this vector
should be equal to the initial value of k. link_beta is initial vector of spline coefficients.
Length should be equal to the initial number of basis functions with intercept (1 + k +m).

3. Error variance (sigma2): Initial scalar error variance. (default 0.01)

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.

ses Mean standard error of index vector. Return list of model_setup does not include it.

residuals Residuals with mean estimates of fitted values. Return list of model_setup does not
include it.

fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.

linear.predictors Mean estimates of single-index values. Return list of model_setup does not
include it.

gof Goodness-of-fit. Return list of model_setup function does not include it.

samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.
Return list of model_setup does not include it.

input List of data used in modeling, formula, input values for prior and initial values, and compu-
tation time without compiling.

defModel Nimble model object.

defSampler Nimble sampler object.

modelName Name of the model.

References

Wang, H.-B. (2009). Bayesian estimation and variable selection for single index models. Compu-
tational Statistics & Data Analysis, 53, 2617–2627.

Hornik, K., & Grün, B. (2014). movMF: an R package for fitting mixtures of von Mises-Fisher
distributions. Journal of Statistical Software, 58, 1-31.

Examples

set.seed(123)
n <- 200; d <- 4
theta <- c(2, 1, 1, 1); theta <- theta / sqrt(sum(theta^2))
f <- function(u) u^2 * exp(u)
sigma <- 0.5
X <- matrix(runif(n * d, -1, 1), nrow = n)
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index_vals <- as.vector(X %*% theta)
y <- f(index_vals) + rnorm(n, 0, sigma)
simdata <- data.frame(x = X, y = y)
colnames(simdata) <- c(paste0("X", 1:4), "y")

# One tool version
fit1 <- bsSphere(y ~ ., data = simdata,

niter = 5000, nburnin = 1000, nchain = 1)

# Split version
models <- bsSphere_setup(y ~ ., data = simdata)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
summary(fit2)

bsSpike Bayesian Single-Index Regression with B-Spline Link and Spike-and-
Slab Prior

Description

Fits a single-index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n where the link f(·) is represented by
B-spline link function and the index vector θ has spike-and-slab prior.

Usage

bsSpike(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

bsSpike_setup(
formula,
data,
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prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.

prior Optional named list of prior settings. Further descriptions are in Details section.

init Optional named list of initial values. If the values are not assigned, they are
randomly sampled from prior or designated value. Further descriptions are in
Details section.

monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).

nburnin Integer. Burn-in iterations (default 1000).

thin Integer. Thinning for monitors (default 1).

nchain Integer. Number of MCMC chains (default 1).

setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed
argument.

Details

Model The single–index model uses a m-order polynomial spline with k interior knots as follows:

f(t) =

m+k∑
j=1

Bj(t)βj

on [a, b] with ti = X ′
iθ, i = 1, · · · , n and ∥θ∥2 = 1. {βj}m+k

j=1 are spline coefficient and aθ and bθ
are boundary knots where aθ = min(ti, i = 1, · · · , n)− δ, and bθ = max(ti, i = 1, · · · , n) + δ. θ
is a p-dimensional index vector subject to a spike-and-slab prior for variable selection with binary
indicator variable ν.

Priors

• The variable selection indicator ν has Beta–Bernoulli hierarchy prior. Beta hyper-prior on
the Bernoulli–inclusion probability w, inducing p(ν) ∝ Beta(r1 + nν , r2 + p − nν) where
nν = Σp

i=1I(νi = 1). r1, r2 are shape and rate parameter of beta distribution.

• Slab coefficients θ have normal distribution with zero mean and σ2
θ variance.
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• Conditioned on θ and σ2, the link coefficients β = (β1, . . . , βm+k)
⊤ follow normal distribu-

tion with estimated mean vector β̂θ = (X ′
θXθ)

−1X ′
θY and covariance σ2(X⊤

θ Xθ)
−1, where

Xθ is the B-spline basis design matrix.

• Inverse gamma prior on σ2 with shape parameter aσ and rate parameter bσ .

Sampling Samplers are automatically assigned by nimble.

Prior hyper-parameters These are the prior hyper-parameters set in the function. You can define
new values for each parameter in prior_param.

1. Index vector: index_nu_r1, index_nu_r2 gives the shape and rate parameter of beta-binomial
prior, respectively. For slab prior, normal distribution with zero mean is assigned for selected
variables θ. index_sigma_theta is for variance of θ, and it is assigned 0.25 by default.

2. Link function: B-spline basis and coefficient of B-spline setup.

• basis: For the basis of B-spline, link_basis_df is the number of basis functions (default
21), link_basis_degree is the spline degree (default 2) and link_basis_delta is a
small jitter for boundary-knot spacing control (default 0.01).

• beta: For the coefficient of B-spline, multivariate normal prior is assigned with mean
link_beta_mu, and covariance link_beta_cov. By default, Np

(
0, Ip

)
3. Error variance (sigma2): Inverse gamma prior is assigned to σ2 where sigma2_shape is

shape parameter and sigma2_rate is rate parameter of inverse gamma distribution. (default
sigma2_shape = 0.001, sigma2_rate = 100)

Initial values These are the initial values set in the function. You can define new values for each
initial value in init_param.

1. Index vector:

• index_pi Initial selecting variable probability. (default: 0.5)
• index_nu Initial vector of inclusion indicators . By default, each nu is randomly drawn

by Bernoulli(1/2)
• index Initial vector of index. By default, each element of index vector, which is chosen

by ν, is proposed by normal distribution.

2. Link function: Initial spline coefficients (link_beta). By default,
(
X⊤

θ Xθ + ρ I
)−1

X⊤
θ Y is

computed, where Xθ is the B-spline basis design matrix.

3. Error variance (sigma2): Initial scalar error variance (default 0.01).

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.

ses Mean standard error of index vector. Return list of model_setup does not include it.

residuals Residuals with mean estimates of fitted values. Return list of model_setup does not
include it.

fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.

linear.predictors Mean estimates of single-index values. Return list of model_setup does not
include it.
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gof Goodness-of-fit. Return list of model_setup function does not include it.

samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.
Return list of model_setup does not include it.

input List of data used in modeling, formula, input values for prior and initial values, and compu-
tation time without compiling.

defModel Nimble model object.

defSampler Nimble sampler object.

modelName Name of the model.

References

Antoniadis, A., Grégoire, G., & McKeague, I. W. (2004). Bayesian estimation in single-index
models. Statistica Sinica, 1147-1164.

Hornik, K., & Grün, B. (2014). movMF: an R package for fitting mixtures of von Mises-Fisher
distributions. Journal of Statistical Software, 58, 1-31.

McGee, G., Wilson, A., Webster, T. F., & Coull, B. A. (2023). Bayesian multiple index models for
environmental mixtures. Biometrics, 79(1), 462-474.

Examples

set.seed(123)
n <- 200; d <- 4
theta <- c(2, 1, 1, 1); theta <- theta / sqrt(sum(theta^2))
f <- function(u) u^2 * exp(u)
sigma <- 0.5
X <- matrix(runif(n * d, -1, 1), nrow = n)
index_vals <- as.vector(X %*% theta)
y <- f(index_vals) + rnorm(n, 0, sigma)
simdata <- data.frame(x = X, y = y)
colnames(simdata) <- c(paste0("X", 1:4), "y")

# One tool version
fit1 <- bsSpike(y ~ ., data = simdata,

niter = 5000, nburnin = 1000, nchain = 1)

# Split version
models <- bsSpike_setup(y ~ ., data = simdata)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
summary(fit2)
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coef.bsim Extract Index Vector Coefficients from BayesSIM

Description

Computes posterior summaries of the single-index model index vector from a fitted BayesSIM.
Users may choose either the posterior mean or median as the point estimate.

Usage

## S3 method for class 'bsim'
coef(object, method = c("mean", "median"), se = FALSE, ...)

Arguments

object A fitted object of BayesSIM or individual model.

method Character string indicating the summary statistic to compute. Options are "mean"
or "median". Default is "mean".

se Logical value whether computing standard error for index estimates. If method
is "mean", standard deviation of index vector MCMC samples is gained. If
method is "median", median absolute deviation of index vector MCMC samples
is gained. FALSE is default.

... Additional arguments passed to other methods.

Value

A numeric vector or data.frame of estimated coefficient and standard error of the index vector.

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)

# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")

# Residuals of median prediction
residuals(fit_one, method = "median")

# Summary of the model
summary(fit_one)
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# Convergence diagnostics
nimTraceplot(fit_one)

# Goodness of fit
GOF(fit_one)

# Fitted plot
plot(fit_one)

# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

compileModelAndMCMC Compile a ’nimble’ Model and Its MCMC

Description

Compiles a nimble model object and a corresponding (uncompiled) MCMC algorithm and returns
the compiled pair.

Usage

compileModelAndMCMC(object)

Arguments

object Class BayesSIM_setup object

Details

The function first compiles nimble model object, then compiles nimble sampler. Both compiled
model and compiled MCMC samplers are returned as a list.
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Value

A list with two elements:

model the compiled NIMBLE model (external pointer object).

mcmc the compiled MCMC function/algorithm bound to the model.

See Also

nimbleModel, configureMCMC, buildMCMC, compileNimble, runMCMC

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

concrete UCI Concrete Compressive Strength (n = 1030, p = 8)

Description

Concrete compressive strength dataset from the UCI Machine Learning Repository. No missing
variables and there are 8 quantitative inputs and 1 quantitative output.

Usage

data(concrete)
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Format

Numeric data.frame of size 1030 × 8.

cement Numeric. Cement content (kg/m3).

blast_furnace_slag Numeric. Blast furnace slag (kg/m3).

fly_ash Numeric. Fly ash (kg/m3).

water Numeric. Mixing water (kg/m3).

superplasticizer Numeric. Superplasticizer (kg/m3).

coarse_aggreate Numeric. Coarse aggregate (kg/m3).

fine_aggregate Numeric. Fine aggregate (kg/m3).

age Numeric. Curing age (days; typically 1–365).

strength Numeric. Concrete compressive strength (MPa).

Details

Source Concrete Compressive Strength in UCI Machine Learning Repository. This data is inte-
grated by experimental data from 17 different sources to check the realiability of the strength. This
dataset compiles experimental concrete mixes from multiple studies and is used to predict compres-
sive strength and quantify how mixture ingredients and curing age affect that strength.

Variables.

• Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, Fine Aggre-
gate: quantities in kg per m3 of mixture.

• Age: curing time in days (1–365).

• Target(strength): compressive strength in MPa.

References

Yeh, I. (1998). Concrete Compressive Strength [Dataset]. UCI Machine Learning Repository.
https://doi.org/10.24432/C5PK67.

Yeh, I. (1998). Modeling of strength of high-performance concrete using artificial neural networks.
Cement and Concrete research, 28(12), 1797-1808.

Examples

data(concrete)
str(concrete)
plot(density(concrete$strength), main = "Concrete compressive strength (MPa)")
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DATA1 Simulated Single–Index Data (n = 200, p = 4)

Description

Synthetic data from a single–index model y = f(X ′θ) + ε with f(u) = u2 exp(u) and ε ∼
N(0, σ2). The index vector is θ = (2, 1, 1, 1)/∥(2, 1, 1, 1)∥2 and σ = 0.5.

Usage

data(DATA1)

Format

X Numeric matrix of size 200 × 4, entries i.i.d. Unif(−1, 1).

y Numeric vector of length 200.

Examples

data(DATA1)
str(DATA1)

fitted.bsim Extract Fitted Values from BayesSIM

Description

Computes fitted values from a BayesSIM, using either the posterior mean or median of the estimated
link function with index values. Fitted values can be returned on the latent scale or on the linear
predictor scale.

Usage

## S3 method for class 'bsim'
fitted(
object,
type = c("latent", "linpred"),
method = c("mean", "median"),
...

)
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Arguments

object A fitted object of BayesSIM or individual model.

type Character string indicating the scale on which fitted values are returned. Default
is "latent".

• "latent": fitted response values ŷ = E(Y|X).
• "linpred": linear predictor X ′θ.

method Character string specifying the summary statistic used to compute the fitted val-
ues. Options are "mean" or "median". Default is "mean".

... Additional arguments passed to other methods.

Value

A numeric vector of fitted values.

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)

# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")

# Residuals of median prediction
residuals(fit_one, method = "median")

# Summary of the model
summary(fit_one)

# Convergence diagnostics
nimTraceplot(fit_one)

# Goodness of fit
GOF(fit_one)

# Fitted plot
plot(fit_one)

# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)

# 2. Split version
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models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

genBasic Extract Residuals from BayesSIM

Description

Returns the model residuals based on the posterior fitted values of a BayesSIM. Residuals can be
computed using either the posterior mean or median fitted values.

Usage

## S3 method for class 'bsim'
residuals(object, method = c("mean", "median"), ...)

Arguments

object A fitted object of BayesSIM or individual model.

method Character string specifying the summary statistic used to compute the fitted val-
ues. Options are "mean" or "median". Default is "mean".

... Additional arguments passed to other methods.

Value

A numeric vector of residuals. (r = Y − Ŷ) Ŷ can be mean or median of MCMC samples.

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)
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# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")

# Residuals of median prediction
residuals(fit_one, method = "median")

# Summary of the model
summary(fit_one)

# Convergence diagnostics
nimTraceplot(fit_one)

# Goodness of fit
GOF(fit_one)

# Fitted plot
plot(fit_one)

# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

getFunction Get nimbleModel and nimbleSampler Object from the Result of
compileModelAndMCMC

Description

Return compiled nimble model object and a corresponding MCMC samplers.

Usage

get_model(object)

get_sampler(object)
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Arguments

object The result of compileModelAndMCMC function.

Value

get_model returns compiled Nimble model object. get_sampler returns compiled Nimble sampler
object, directly using in runMCMC function.

See Also

nimbleModel, configureMCMC, buildMCMC, compileNimble, runMCMC

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

getInit Get Initial Value of the Model

Description

Functions for getting list of initial values of the nimble model.

Usage

getInit(object)

Arguments

object A fitted object of BayesSIM, BayesSIM_setup or individual model.
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Details

The list of initial values are returned. This can be helpful to use when you use BayesSIM_setup.
You should be aware of that if you want to get more than 1 chain of MCMC samples, you should
change nchain argument in BayesSIM_setup. The output of initial values would be different,
depending on the number of chain.

You can apply BayesSIM object when you want to check the list of initial values.

Value

BUGS code of the model definition.

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

getModelDef Get Definition of the Model

Description

Functions for identifying definition of the nimble model.

Usage

getModelDef(object)

Arguments

object A fitted object of BayesSIM or individual model.
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Details

The function that contain Bayes SIM model structure in nimble. This function is for advanced
users. There are several functions used in the model definition.

• transX_fisher, transX_sp: Making B-spline basis.

• dvMFnim: Distribution of von Mises-Fisher.

• dKnotsSimple: Distribution of the free knots for bsSphere.

• dunitSphere: Distribution of unit sphere.

• alphaTheta: One-to-one polar transformation. Making index vector from individual angular
vector psi.

• expcov_gpSphere, expcov_gpPolar, expcov_gpSpike: Covariance kernel of each model.
expcov_gpSphere uses squared-exponential kernel, expcov_gpPolar uses OU process ker-
nel, and expcov_gpSpike uses squared-exponential including its own parameter, λ−1.

• Xlinear: Making linear combination with index vector.

Value

BUGS code of the model definition.

See Also

getVarMonitor

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)
models <- bsFisher_setup(y ~ ., data = simdata2)
# Get model definition
getModelDef(models)

getVarMonitor Retrieve Monitorable Variables

Description

Functions for retrieving the variables that can be monitored.

Usage

getVarMonitor(object, type = c("name", "list"))
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Arguments

object A fitted object of BayesSIM, BayesSIM_setup or individual model.

type Options for variables. By default, type = "name" is used that it only prints the
name of the node. If you put name of the nodes, the MCMC outputs gave you all
elements of the variable, in case of the vector. If type = "list", the dimension
of the nodes are printed. If you put name and dimension of the nodes, only
specific location of vector or matrix can be seen in summary or nimTraceplot.

Details

The function returns a list of variables that can be used in monitors2 in the bayesSIM function. You
can also refer to getModelDef to understand the model structure and designate necessary variables.
Stochastic nodes of the model are recommended to be monitored.

Value

A vector of variables that can be monitored in the model.

See Also

getModelDef

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)
models <- BayesSIM_setup(y ~ ., data = simdata2)

# Get monitorable variables
getVarMonitor(models)
# Get the list of variables with dimension
getVarMonitor(models, type = "list")

GOF Goodness of Fit for BayesSIM

Description

Generic function applied to BayesSIM. It extracts goodness of fit of the BayesSIM.

Usage

GOF(object)

## S3 method for class 'bsim'
GOF(object, ...)
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Arguments

object A fitted object of BayesSIM or individual model.

... Additional arguments passed to other methods.

Value

Mean squared error of model with mean of MCMC sample is applied.

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)

# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")

# Residuals of median prediction
residuals(fit_one, method = "median")

# Summary of the model
summary(fit_one)

# Convergence diagnostics
nimTraceplot(fit_one)

# Goodness of fit
GOF(fit_one)

# Fitted plot
plot(fit_one)

# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)
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# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

gpFisher Bayesian Single-Index Regression with Gaussian Process Link and
von Mises-Fisher Prior

Description

Fits a single–index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n, where the index θ lies on the unit
sphere with von Mises-Fisher prior, and the link f(·) is represented with Gaussian process.

Usage

gpFisher(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

gpFisher_setup(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.
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prior Optional named list of prior settings. Further descriptions are in Details section.

init Optional named list of initial values. If the values are not assigned, they are
randomly sampled from prior or designated value. Further descriptions are in
Details section.

monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).

nburnin Integer. Burn-in iterations (default 1000).

thin Integer. Thinning for monitors (default 1).

nchain Integer. Number of MCMC chains (default 1).

setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed
argument.

Details

Model The single-index model uses Gaussian process with zero mean and and covariance kernel
η · exp(− (ti−tj)

2

l ) as a link function, where ti, tj , j = 1, . . . , n is index value. Index vector should
be length 1.

Priors

• von Mises–Fisher prior on the index θ with direction and concentration.

• Covariance kernel: Amplitude, η, follows log normal distribution with mean aη and variance
bη . Length-scale parameter follows gamma distribution with shape parameter αl and rate
parameter βl.

• Inverse gamma prior on σ2 with shape parameter aσ and rate parameter bσ .

Sampling All sampling parameters’ samplers are assigned by nimble.

Prior hyper-parameters These are the prior hyper-parameters set in the function. You can define
new values for each parameter in prior_param.

1. Index vector: von Mises–Fisher prior for the projection vector θ (index). index_direction
is a unit direction vector of the von Mises–Fisher distribution. By default, the estimated vector
from projection pursuit regression is assigned. index_dispersion is the positive concentra-
tion parameter. By default, 150 is assigned.

2. Link function:

• Length-scale:Gamma distribution is assigned for length-scale parameter, l. link_lengthscale_shape
is shape parameter (default 1/8) and link_lengthscale_rate is rate parameter of lengthscale.
(default 1/8)

• Amplitude: Log-normal distribution is assigned for amplitude parameter, η. link_amp_a
is mean (default -1), and link_amp_b is variance. (default 1)

3. Error variance (sigma2): An inverse-gamma prior is assigned to σ2 where sigma2_shape is
shape parameter and sigma2_rate is rate parameter of inverse gamma distribution. (default
sigma2_shape = 1, sigma2_rate = 1)
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Initial values These are the initial values set in the function. You can define new values for each
initial value in init_param.

1. Index vector (index): Initial unit index vector θ. By default, the vector is sampled from the
von Mises–Fisher prior.

2. Link function: link_lengthscale is initial scalar length-scale parameter. (default: 0.1)
link_amp is initial scalar amplitude parameter. (default: 1)

3. Error variance (sigma2): Initial scalar error variance. (default: 1)

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.

ses Mean standard error of index vector. Return list of model_setup does not include it.

residuals Residuals with mean estimates of fitted values. Return list of model_setup does not
include it.

fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.

linear.predictors Mean estimates of single-index values. Return list of model_setup does not
include it.

gof Goodness-of-fit. Return list of model_setup function does not include it.

samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.
Return list of model_setup does not include it.

input List of data used in modeling, formula, input values for prior and initial values, and compu-
tation time without compiling.

defModel Nimble model object.

defSampler Nimble sampler object.

modelName Name of the model.

References

Antoniadis, A., Grégoire, G., & McKeague, I. W. (2004). Bayesian estimation in single-index
models. Statistica Sinica, 1147-1164.

Choi, T., Shi, J. Q., & Wang, B. (2011). A Gaussian process regression approach to a single-index
model. Journal of Nonparametric Statistics, 23(1), 21-36.

Hornik, K., & Grün, B. (2014). movMF: an R package for fitting mixtures of von Mises-Fisher
distributions. Journal of Statistical Software, 58, 1-31.

Examples

set.seed(123)
N <- 60; p <- 2
x1 <- runif(N, -3, 5)
x2 <- runif(N, -3, 5)
beta1 <- 0.45; beta2 <- sqrt(1-beta1^2)
sigma <- sqrt(0.0036)
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xlin <- x1*beta1 + x2*beta2
eta <- 0.1*xlin + sin(0.5*xlin)^2
y <- rnorm(N, eta, sigma)
x <- matrix(c(x1, x2), ncol = 2)
simdata <- data.frame(x = x, y = y)
colnames(simdata) <- c("X1", "X2", "y")

# One tool version
fit1 <- gpFisher(y ~ ., data = simdata, nchain = 1, niter = 1000, nburnin = 100)

# Split version
models <- gpFisher_setup(y ~ ., data = simdata, nchain = 1)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 1000, nburnin = 100, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
summary(fit2)

gpPolar Bayesian Single-Index Regression with Gaussian Process Link and
One-to-One Polar Transformation

Description

Fits a single–index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n, where the index θ is specified and
computed via a one-to-one polar transformation, and the link f(·) is represented with a Gaussian
process.

Usage

gpPolar(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

gpPolar_setup(
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formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

gpPolarHigh(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

gpPolarHigh_setup(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.

prior Optional named list of prior settings. Further descriptions are in Details section.

init Optional named list of initial values. If the values are not assigned, they are
randomly sampled from prior or designated value. Further descriptions are in
Details section.
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monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).

nburnin Integer. Burn-in iterations (default 1000).

thin Integer. Thinning for monitors (default 1).

nchain Integer. Number of MCMC chains (default 1).

setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed
argument.

Details

Model The single–index model is specified as Yi = f(X ′
iθ) + ϵi, where the index vector θ lies

on the unit sphere with (∥θ∥2 = 1) with non-zero first component to ensure identifiability and is
parameterized via a one-to-one polar transformation with angle ψ1, ..., ψp−1.

The mapping is
θ1 = sin(ψ1),

θi =
( i−1∏

j=1

cos(ψj)
)
sin(ψi), i = 2, . . . , p− 1,

θp =

p−1∏
j=1

cos(ψj).

The vector is then scaled to unit length.

Sampling is performed on the angular parameters θ defining the index vector. The link function
f(·) is modeled by a Gaussian process prior with zero mean and an Ornstein–Uhlenbeck (OU) co-
variance kernel exp(−κ · |ti− tj |), i, j = 1, . . . , n, where κ is a bandwidth (smoothness) parameter
and ti, tj is index value (ti = X ′

iθ).

Priors

• ψ is p− 1 dimension of polar angle of index vector and re-scaled Beta distribution on [0, π] is
assigned for prior.

• Prior for κ (bandwidth parameter) is discrete uniform of equally spaced grid points in [κmin, κmax].

• Inverse gamma prior on σ2 with shape parameter aσ and rate parameter bσ .

Sampling For gpPolar, θ is sampled by Metropolis-Hastings and updated with f , κ is chosen by
grid search method that maximizes likelihood, σ2 are sampled from their full conditional distribu-
tions using Gibbs sampling. Since κ is sampled by grid search, more than 5 dimension of variables
gpPolarHigh is recommended. For gpPolarHigh, all sampling parameters’ samplers are assigned
by nimble.

Prior hyper-parameters These are the prior hyper-parameters set in the function. You can define
new values for each parameter in prior_param.

1. Index vector: Only shape parameter index_psi_alpha of p − 1 dimension vector is needed
since rate parameters is computed to satisfy θj,MAP. By default, the shape parameter for each
element of the polar vector is set to 5000.
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2. Link function: link_kappa_min is minimum value of kappa (default 0.5), link_kappa_max
is maximum value of kappa (default 4), and link_kappa_grid_width is space (default 0.1).

3. Error variance (sigma2): An Inverse gamma prior is assigned to σ2 where sigma2_shape is
shape parameter and sigma2_rate is rate parameter of inverse gamma distribution. (default
sigma2_shape = 2, sigma2_rate = 0.01)

Initial values These are the initial values set in the function. You can define new values for each
initial value in init_param.

1. Index vector: Initial vector of polar angle index_psi with p− 1 dimension. Each element of
angle is between 0 and π.

2. Link function: Initial scalar scale parameter of covariance kernel link_kappa. (default: 2)

3. Error variance (sigma2): Initial scalar error variance. (default: 0.01)

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.

ses Mean standard error of index vector. Return list of model_setup does not include it.

residuals Residuals with mean estimates of fitted values. Return list of model_setup does not
include it.

fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.

linear.predictors Mean estimates of single-index values. Return list of model_setup does not
include it.

gof Goodness-of-fit. Return list of model_setup function does not include it.

samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.
Return list of model_setup does not include it.

input List of data used in modeling, formula, input values for prior and initial values, and compu-
tation time without compiling.

defModel Nimble model object.

defSampler Nimble sampler object.

modelName Name of the model.

References

Dhara, K., Lipsitz, S., Pati, D., & Sinha, D. (2019). A new Bayesian single index model with or
without covariates missing at random. Bayesian analysis, 15(3), 759.

Examples

library(MASS)
N <- 100 # Sample Size
p <- 3
mu <- c(0,0,0)
rho <- 0
Cx <- rbind(c(1,rho,rho), c(rho,1,rho), c(rho, rho,1))



gpSphere 41

X <- mvrnorm(n = N, mu=mu, Sigma=Cx, tol=1e-8)
alpha <- c(1,1,1)
alpha <- alpha/sqrt(sum(alpha^2))
z <- matrix(0,N)
z <- X %*% alpha
z <- z[,1]
sigma <- 0.3
f <- exp(z)
y <- f + rnorm(N, 0, sd=sigma) # adding noise
y <- y-mean(y)
f_all <- f
x_all <- X
y_all <- y
simdata <- cbind(x_all, y, f)
simdata <- as.data.frame(simdata)
colnames(simdata) = c('x1', 'x2', 'x3', 'y','f')

# One tool version
fit1 <- gpPolar(y ~ x1 + x2 + x3, data = simdata,

niter = 5000, nburnin = 1000, nchain = 1)
fit2 <- gpPolarHigh(y ~ x1 + x2 + x3, data = simdata,

niter = 5000, nburnin = 1000, nchain = 1)

# Split version
models1 <- gpPolar_setup(y ~ x1 + x2 + x3, data = simdata)
models2 <- gpPolarHigh_setup(y ~ x1 + x2 + x3, data = simdata)
Ccompile1 <- compileModelAndMCMC(models1)
Ccompile2 <- compileModelAndMCMC(models2)
sampler1 <- get_sampler(Ccompile1)
sampler2 <- get_sampler(Ccompile2)
initList1 <- getInit(models1)
initList2 <- getInit(models2)
mcmc.out1 <- runMCMC(sampler1, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, init = initList1,
summary = TRUE, samplesAsCodaMCMC = TRUE)

mcmc.out2 <- runMCMC(sampler2, niter = 5000, nburnin = 1000, thin = 1,
nchains = 1, setSeed = TRUE, init = initList2,
summary = TRUE, samplesAsCodaMCMC = TRUE)

fit1_split <- as_bsim(models1, mcmc.out1)
fit2_split <- as_bsim(models2, mcmc.out2)

gpSphere Bayesian Single-Index Regression with Gaussian Process Link and
Unit Sphere Prior

Description

Fits a single–index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n, where the index θ lies on the unit
sphere, and the link f(·) is represented with Gaussian process.
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Usage

gpSphere(
formula,
data,
prior = NULL,
init = NULL,
method = "FB",
lowerB = NULL,
upperB = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

gpSphere_setup(
formula,
data,
prior = NULL,
init = NULL,
method = "FB",
lowerB = NULL,
upperB = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.

prior Optional named list of prior settings. Further descriptions are in Details section.

init Optional named list of initial values. If the values are not assigned, they are
randomly sampled from prior or designated value. Further descriptions are in
Details section.

method Character, gpSphere model has 3 different types of sampling method, fully
Bayesian method ("FB"), empirical Bayes approach ("EB"), and empirical Gibbs
sampler ("EG"). Assign one sampler method. Empirical sampling approach is
recommended in high-dimensional data. By default, fully Bayesian approach is
assigned.
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lowerB This parameter is only for gpSphere model. Numeric vector of element-wise
lower bounds for the "L-BFGS-B" method. When the empirical Bayes or Gibbs
sampler method is used, the marginal likelihood is optimized via optim(method
= "L-BFGS-B"). The vector must be ordered as c(index vector, lengthscale,
amp, sigma2). Note that sigma2 is included only for the empirical Bayes method
(omit it for Gibbs). By default, the lower bounds are -1 for the index vector and
-1e2 for logarithm of lengthscale, amp, and (if present) sigma2.

upperB This parameter is only for gpSphere model. Numeric vector of element-wise
upper bounds for the "L-BFGS-B" method. When the empirical Bayes or Gibbs
sampler method is used, the marginal likelihood is optimized via optim(method
= "L-BFGS-B"). The vector must be ordered as c(index vector, lengthscale,
amp, sigma2). Note that sigma2 is included only for the empirical Bayes method
(omit it for Gibbs). By default, the upper bounds are 1 for the index vector and
1e2 for logarithm of lengthscale, amp, and (if present) sigma2.

monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).
nburnin Integer. Burn-in iterations (default 1000).
thin Integer. Thinning for monitors (default 1).
nchain Integer. Number of MCMC chains (default 1).
setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed

argument.

Details

Model The single-index model uses Gaussian process with zero mean and and covariance kernel
η · exp(− (ti−tj)

2

l ) as a link function, where ti, tj , j = 1, . . . , n is index value. Index vector should
be length 1.

Priors

• von Mises–Fisher prior on the index θ with direction and concentration.
• Covariance kernel: Amplitude, η, follows log normal distribution with mean aη and variance
bη . Length-scale parameter follows gamma distribution with shape parameter αl and rate
parameter βl.

• Inverse-Gamma prior on σ2 with shape parameter aσ and rate parameter bσ .

Sampling In the fully Bayesian approach, θ, l, and η are updated via the Metropolis–Hastings
algorithm, while f and σ2 are sampled using Gibbs sampling.

In the empirical Bayes approach, θ, l, η, and σ2 are estimated by maximum a posteriori (MAP), and
f is sampled from its full conditional posterior distribution.

In the empirical Gibbs sampler, θ, l, and η are estimated by MAP, whereas f and σ2 are sampled
via Gibbs sampling.

For estimation via MAP, effective sample size or potential scale reduction factor is meaningless.

Prior hyper-parameters These are the prior hyper-parameters set in the function. You can define
new values for each parameter in prior_param.
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1. Index vector: Nothing to assign.

2. Link function:

• Length-scale:Gamma distribution is assigned for length-scale parameter, l. link_lengthscale_shape
is shape parameter (default 1/8) and link_lengthscale_rate is rate parameter of lengthscale.
(default 1/8)

• Amplitude: Log-normal distribution is assigned for amplitude parameter, η. link_amp_a
is mean (default -1), and link_amp_b is variance. (default 1)

3. Error variance (sigma2): inverse gamma prior is assigned to σ2 where sigma2_shape is
shape parameter and sigma2_rate is rate parameter of inverse gamma distribution. (default
sigma2_shape = 1, sigma2_rate = 1)

Initial values These are the initial values set in the function. You can define new values for each
initial value in init_param.

1. Index vector (index): Initial unit index vector. By default, vector is randomly drawn from
normal distribution and standardized.

2. Link function: link_lengthscale is initial scalar length-scale parameter. (default: 0.1)
link_amp is initial scalar amplitude parameter. (default: 1)

3. Error variance (sigma2): Initial scalar error variance. (default: 1)

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.

ses Mean standard error of index vector. Return list of model_setup does not include it.

residuals Residuals with mean estimates of fitted values. Return list of model_setup does not
include it.

fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.

linear.predictors Mean estimates of single-index values. Return list of model_setup does not
include it.

gof Goodness-of-fit. Return list of model_setup function does not include it.

samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.
Return list of model_setup does not include it.

input List of data used in modeling, formula, input values for prior and initial values, and compu-
tation time without compiling.

defModel Nimble model object.

defSampler Nimble sampler object.

modelName Name of the model.

References

Choi, T., Shi, J. Q., & Wang, B. (2011). A Gaussian process regression approach to a single-index
model. Journal of Nonparametric Statistics, 23(1), 21-36.
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Examples

set.seed(123)
n <- 200; d <- 4
theta <- c(2, 1, 1, 1); theta <- theta / sqrt(sum(theta^2))
f <- function(u) u^2 * exp(u)
sigma <- 0.5
X <- matrix(runif(n * d, -1, 1), nrow = n)
index_vals <- as.vector(X %*% theta)
y <- f(index_vals) + rnorm(n, 0, sigma)
simdata <- data.frame(x = X, y = y)
colnames(simdata) <- c(paste0("X", 1:4), "y")

# One tool version
fit1 <- gpSphere(y ~ ., method = "EB", data = simdata,

niter = 1000, nburnin = 100)

# Split version
models <- gpSphere_setup(y ~ ., method = "EB", data = simdata)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 1000, nburnin = 100, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
# The estimates computed by MAP - standard error of the esitmate is meaningless.
summary(fit2)

gpSpike Bayesian Single-Index Regression with Gaussian Process Link and
Spike-and-Slab Prior

Description

Fits a single-index model Yi ∼ N (f(X ′
iθ), σ

2), i = 1, · · · , n, where index vector θ has a spike and
slab prior and the link f(·) is represented by Gaussian process and the

Usage

gpSpike(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
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nchain = 1,
setSeed = FALSE

)

gpSpike_setup(
formula,
data,
prior = NULL,
init = NULL,
monitors = NULL,
niter = 10000,
nburnin = 1000,
thin = 1,
nchain = 1,
setSeed = FALSE

)

Arguments

formula an object of class formula. Interaction term is not allowed for single-index
model.

data an data frame.

prior Optional named list of prior settings. Further descriptions are in Details section.

init Optional named list of initial values. If the values are not assigned, they are
randomly sampled from prior or designated value. Further descriptions are in
Details section.

monitors Optional character vector of additional monitor nodes. To check the names of
the nodes, fit the model_setup function and then inspect the variable names
stored in the model object using getVarMonitor.

niter Integer. Total MCMC iterations (default 10000).

nburnin Integer. Burn-in iterations (default 1000).

thin Integer. Thinning for monitors (default 1).

nchain Integer. Number of MCMC chains (default 1).

setSeed Logical or numeric argument. Further details are provided in runMCMC setSeed
argument.

Details

Model The single–index model is specified as Yi = f(X ′
iθ) + ϵi, where θ is a p-dimensional

index vector subject to a spike-and-slab prior for variable selection. The link function f(·) is mod-
eled using a Gaussian process prior with zero mean and squared exponential covariance kernel
K(x1, x2) = exp{−ρ(x1 − x2)

T θ
2}, where ρ determines the smoothness of f . The covariance

kernel is re-parameterized to exp{−(x1 − x2)
T θ∗

2} where ρ = ||θ∗|| and θ = ||θ||−1θ∗. There-
fore, θ∗ is sampled in MCMC.

Priors
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• The variable selection indicator ν has Beta–Bernoulli hierarchy prior. Beta hyper-prior on
the Bernoulli–inclusion probability w, inducing p(ν) ∝ Beta(r1 + nν , r2 + p − nν) where
nν = Σp

i=1I(νi = 1). r1, r2 are shape and rate parameter of beta distribution.

• Slab coefficients θ have normal distribution with zero mean and σ2
θ variance.

• GP precision λ−1 follows gamma distribution with shape parameter aλ, and rate parameter
bλ.

• Error precision (σ2)−1 follows gamma distribution with shape parameter aσ , and rate param-
eter bσ .

Sampling A random walk Metropolis algorithm is used to sample λ−1 and a Metropolis-Hastings
algorithm is used for the main parameters (θ∗, ν). The variance σ2 is directly sampled from poste-
rior distribution. f is not directly sampled by MCMC.

Prior hyper-parameters These are the prior hyper-parameters set in the function. You can define
new values for each parameter in prior_param.

1. Index vector: index_nu_r1, index_nu_r2 gives the shape and rate parameter of beta-binomial
prior, respectively. For slab prior, normal distribution with zero mean is assigned for selected
variables θ. index_sigma_theta is for variance of θ, and it is assigned 0.25 by default.

2. Link function: Inverse gamma prior is assigned for hyper-parameters λ−1 link_inv_lambda_shape
is shape parameter and link_inv_lambda_rate is rate parameter of inverse gamma distribu-
tion. (default link_inv_lambda_shape = 1, link_inv_lambda_rate = 0.1)

3. Error variance (sigma2): An Inverse gamma prior is assigned to σ2 where sigma2_shape is
shape parameter and sigma2_rate is rate parameter of inverse gamma distribution. (default
sigma2_shape = 0.001, sigma2_rate = 100)

Initial values These are the initial values set in the function. You can define new values for each
initial value in init_param

1. Index vector:

• index_pi: Initial selecting variable probability. (default: 0.5)
• index_nu: Initial vector of inclusion indicators . By default, each index_nu is randomly

drawn by Bernoulli(1/2)
• index: Initial vector of index. By default, each element of index vector, which is chosen

by indicator, is proposed by normal distribution.

2. Link function: Initial scalar of lambda (link_inv_lambda) for covariance kernel of Gaussian
process.

3. Error variance (sigma2): Initial scalar error variance. (default: 0.01)

Value

A list typically containing:

coefficients Mean estimates of index vector. Return list of model_setup does not include it.

ses Mean standard error of index vector. Return list of model_setup does not include it.

residuals Residuals with mean estimates of fitted values. Return list of model_setup does not
include it.
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fitted.values Mean estimates of fitted values. Return list of model_setup does not include it.

linear.predictors Mean estimates of single-index values. Return list of model_setup does not
include it.

gof Goodness-of-fit. Return list of model_setup function does not include it.

samples Posterior draws of variables for computing fitted values of the model, including θ, σ2.
Return list of model_setup does not include it.

input List of data used in modeling, formula, input values for prior and initial values, and compu-
tation time without compiling.

defModel Nimble model object.

defSampler Nimble sampler object.

modelName Name of the model.

References

McGee, G., Wilson, A., Webster, T. F., & Coull, B. A. (2023). Bayesian multiple index models for
environmental mixtures. Biometrics, 79(1), 462-474.

Examples

set.seed(123)
n <- 200; d <- 4
theta <- c(2, 1, 1, 1); theta <- theta / sqrt(sum(theta^2))
f <- function(u) u^2 * exp(u)
sigma <- 0.5
X <- matrix(runif(n * d, -1, 1), nrow = n)
index_vals <- as.vector(X %*% theta)
y <- f(index_vals) + rnorm(n, 0, sigma)
simdata <- data.frame(x = X, y = y)
colnames(simdata) <- c(paste0("X", 1:4), "y")

# One tool version
fit1 <- gpSpike(y ~ ., data = simdata,

niter = 5000, nburnin = 1000)

# Split version
models <- gpSpike_setup(y ~ ., data = simdata)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

fit2 <- as_bsim(models, mcmc.out)
summary(fit2)
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init_param Build an Initial Value List for BayesSIM Models

Description

init_param is a convenience helper that constructs a nested initial value list for a given combination
of index vector and link function. It starts from the model-specific default prior, and then overwrites
only those components for which the user supplies non-NULL arguments.

This allows users to modify selected hyper-parameters without having to know or manually recon-
struct the full nested prior list structure.

Usage

init_param(
indexprior,
link,
index = NULL,
index_nu = NULL,
index_psi = NULL,
index_pi = NULL,
link_beta = NULL,
link_k = NULL,
link_knots = NULL,
link_lengthscale = NULL,
link_amp = NULL,
link_kappa = NULL,
link_inv_lambda = NULL,
sigma2 = NULL

)

Arguments

indexprior Character scalar indicating the prior for the index. Typically one of "fisher",
"sphere", "polar", or "spike". The valid options mirror those used in the
corresponding model functions.

link Character scalar indicating the link function family. Typically "bspline" for
B-spline link functions or "gp" for Gaussian process link functions. The valid
options mirror those used in the corresponding model functions.

index, index_nu, index_psi, index_pi
Optional initial values for index and related parameter values.

link_beta, link_k, link_knots, link_lengthscale, link_amp, link_kappa,
link_inv_lambda

Optional initial values for components under link functions.

sigma2 Optional numeric scalar giving the initial value of σ2.
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Details

init_param(indexprior, link) can be used to obtain the random initial values list for the re-
quested combination of index prior and link function. For any argument that is not NULL, the corre-
sponding field in the nested prior list is overwritten.

The detailed meaning and recommended choices for each initial values depend on the specific
model, index vector and link function. For those details, please refer to the documentation of the
corresponding model-fitting functions.

Value

A nested list with components index, link, and sigma2.

See Also

bsFisher(), bsSphere(), bsPolar(), bsSpike(), gpFisher(), gpSphere(), gpPolar(), gpPolarHigh(),
gpSpike()

Examples

## Default initial values for Fisher index + B-spline link:
i0 <- init_param("fisher", "bspline")

## Modify only a few initial values:
i1 <- init_param(

indexprior = "fisher",
link = "bspline",
index = c(1, 0, 0), # initial direction of the index
link_beta = rep(0, 21), # initial values for spline coefficients
sigma2 = 0.1 # initial value for sigma^2

)

## Example with GP link:
i2 <- init_param(

indexprior = "sphere",
link = "gp",
link_lengthscale = 0.2, # initial GP length-scale
link_amp = 1.5, # initial GP amplitude
sigma2 = 1 # initial variance

)

nimTraceplot Traceplot for BayesSIM

Description

Provides traceplot for objects of BayesSIM.
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Usage

nimTraceplot(x, ...)

Arguments

x A fitted object of BayesSIM or individual model.

... Further arguments passed to plot.

Value

Traceplots for MCMC samples are displayed. By default, the index vector and error variance are
only included in the summary. Extra monitor variables are included, if specified.

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)

# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")

# Residuals of median prediction
residuals(fit_one, method = "median")

# Summary of the model
summary(fit_one)

# Convergence diagnostics
nimTraceplot(fit_one)

# Goodness of fit
GOF(fit_one)

# Fitted plot
plot(fit_one)

# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
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nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

plot Plot Method for BayesSIM

Description

Produce diagnostic plots for a fitted Bayesian single-index model.

Usage

## S3 method for class 'bsim'
plot(x, method = c("mean", "median"), interval = TRUE, alpha = 0.95, ...)

## S3 method for class 'bsimPred'
plot(x, ...)

Arguments

x A fitted object of BayesSIM or individual model.

method Character string specifying the summary used for the posterior fitted values.
Options are "mean" or "median". Default is "mean".

interval A logical value indicating whether a credible interval is included in the fitted
plot. Default is TRUE.

alpha Numeric value between 0 and 1 specifying the credible level. By default, alpha
= 0.95 produces a 95% credible interval.

... Additional arguments passed to underlying plotting functions.

Details

The function internally calls predict() on the fitted model object to obtain posterior summaries of
ŷ. Predicted value of y is f̂(X ′θ̂).

• If interval = TRUE, the function requests posterior credible intervals and overlays them on
the fitted curve.

• If interval = FALSE, only the posterior mean or median curve is drawn.
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Value

The output consists of two plots:

1. Observed vs Predicted plot: a diagnostic scatter plot comparing actual outcomes with poste-
rior fitted values to visually assess model fit.

2. Fitted curve plot: posterior ŷ as a function of the estimated single index, optionally with
100× α % credible intervals.

See Also

predict.bsim(), summary.bsim()

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)

# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")

# Residuals of median prediction
residuals(fit_one, method = "median")

# Summary of the model
summary(fit_one)

# Convergence diagnostics
nimTraceplot(fit_one)

# Goodness of fit
GOF(fit_one)

# Fitted plot
plot(fit_one)

# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)



54 predict.bsim

mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,
nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

predict.bsim Prediction Method for BayesSIM

Description

Generate predictions from a fitted Bayesian single-index model.

Usage

## S3 method for class 'bsim'
predict(
object,
newdata = NULL,
se.fit = FALSE,
type = c("response", "latent", "index"),
method = c("mean", "median"),
interval = c("none", "credible"),
level = 0.95,
...

)

Arguments

object A fitted object of BayesSIM or individual model.

newdata Optional data frame for which predictions should be made. If NULL, predictions
are returned for the training data.

se.fit A logical value indicating whether standard errors are required. Default is
FALSE.

type Character string specifying the type of prediction. "response" is the default.

"response" Posterior predictive summaries of the response Y . This corre-
sponds to draws from the posterior predictive distribution Y (m) ∼ N(f(X ′θ(m)), σ2(m))
and therefore incorporates both the uncertainty in the link function and the
variability of the error term for each mth MCMC sample.

"latent" Posterior summaries of the latent mean structureE(Y | X) = f (m)(t(m)),
where t(m) = X ′θ(m). Unlike "response", it excludes the noise term and
calculated by f (m)(X ′θ(m)) for each mth MCMC sample of θ.

"index" Posterior summaries of the single index t(m) = X ′θ(m).
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method Character string determining the posterior summary used for point predictions.
Options are "mean" or "median". Default is "mean".

interval Character string indicating whether a credible interval should be returned. De-
fault is "none".

"none" Return only point predictions.
"credible" Return a 100× level% credible interval.

level Numeric value between 0 and 1 specifying the credible level. level = 0.95
yields a 95% credible interval. Default is 0.95.

... Additional arguments.

Details

This method extracts MCMC posterior samples stored in a BayesSIM object and computes posterior
summaries of:

• the posterior predictive response Y | X (type "response"),

• the latent link function evaluation E(Y | X) = f(X ′θ) (type "latent"), or

• the single index X ′θ (type "index").

The key distinction is that "response" incorporates the posterior variability of the error term ϵ,
whereas "latent" represents the noiseless conditional expectation E(Y | X) computed directly
from the link function and the posterior draws of θ.

When interval = "credible", the returned object includes lower and upper credible bounds com-
puted via posterior quantiles for the chosen prediction scale.

If newdata is supplied, predictions are evaluated at the new covariate values by computing the
corresponding posterior index t = X ′θ and applying the link function.

Value

A list containing at least the following components:

fitted Posterior mean or median predictions. If se.fit = TRUE or interval = "credible", stan-
dard error and lower, upper bounds of the credible interval is also included.

truey True response value of test data. When true response value is not available, NULL is saved.

idxValue Linear index value is saved where θ is estimated by method.

level Credible level.

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)
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# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")

# Residuals of median prediction
residuals(fit_one, method = "median")

# Summary of the model
summary(fit_one)

# Convergence diagnostics
nimTraceplot(fit_one)

# Goodness of fit
GOF(fit_one)

# Fitted plot
plot(fit_one)

# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)

prior_param Build a Prior List for BayesSIM Models

Description

prior_param is a convenience helper that constructs a nested prior list for a given combination of
index prior and link function. It starts from the model-specific default prior, and then overwrites
only those components for which the user supplies non-NULL arguments.

This allows users to modify selected hyper-parameters without having to know or manually recon-
struct the full nested prior list structure.
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Usage

prior_param(
indexprior,
link,
index_direction = NULL,
index_dispersion = NULL,
index_nu_r1 = NULL,
index_nu_r2 = NULL,
index_psi_alpha = NULL,
index_sigma_theta = NULL,
index_r1 = NULL,
index_r2 = NULL,
link_basis_df = NULL,
link_basis_degree = NULL,
link_basis_delta = NULL,
link_knots_lambda_k = NULL,
link_knots_maxknots = NULL,
link_beta_mu = NULL,
link_beta_cov = NULL,
link_beta_tau = NULL,
link_beta_Sigma0 = NULL,
link_lengthscale_shape = NULL,
link_lengthscale_rate = NULL,
link_amp_a = NULL,
link_amp_b = NULL,
link_kappa_min = NULL,
link_kappa_max = NULL,
link_kappa_grid_width = NULL,
link_inv_lambda_shape = NULL,
link_inv_lambda_rate = NULL,
sigma2_shape = NULL,
sigma2_rate = NULL

)

Arguments

indexprior Character scalar indicating the prior for the index. Typically one of "fisher",
"sphere", "polar", or "spike". The valid options mirror those used in the
corresponding model functions.

link Character scalar indicating the link function family. Typically "bspline" for
B-spline link functions or "gp" for Gaussian process link functions. The valid
options mirror those used in the corresponding model functions.

index_direction, index_dispersion, index_nu_r1, index_nu_r2,
index_psi_alpha, index_sigma_theta, index_r1, index_r2

Optional overrides for hyper-parameters related to the index prior.
link_basis_df, link_basis_degree, link_basis_delta

Optional overrides for the B-spline basis hyper-parameters, such as the effective
degrees of freedom, spline degree, and penalty parameter.
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link_knots_lambda_k, link_knots_maxknots
Optional overrides for the B-spline knot-selection hyper-parameters in, used for
models with adaptive knot placement.

link_beta_mu, link_beta_cov, link_beta_tau, link_beta_Sigma0
Optional overrides for the prior on spline coefficients. The detailed interpreta-
tion of these hyper-parameters depends on the specific model and is described
in the documentation of each model-fitting function.

link_lengthscale_shape, link_lengthscale_rate
Optional overrides for the hyper-parameters of the GP length-scale prior.

link_amp_a, link_amp_b
Optional overrides for the hyper-parameters of the GP amplitude prior.

link_kappa_min, link_kappa_max, link_kappa_grid_width
Optional overrides for the hyper-parameters in used in models with polar index
and GP-type link, to control the grid or support for the concentration parameter
κ in gpPolar.

link_inv_lambda_shape, link_inv_lambda_rate
Optional overrides for spike-and-slab–type GP link priors.

sigma2_shape, sigma2_rate
Optional overrides for the inverse-gamma prior on the observation variance σ2.

Details

prior_param(indexprior, link) can be used to obtain the default prior list for the requested
combination of index prior and link function. For any argument that is not NULL, the corresponding
field in the nested prior list is overwritten.

The detailed meaning and recommended choices for each hyper-parameter depend on the specific
model, prior of index vector and link function. For those details, please refer to the documentation
of the corresponding model-fitting functions.

Value

A nested list with top-level elements index, link, and sigma2, suitable for passing to the prior
argument of the various BayesSIM model fitting functions.

See Also

bsFisher(), bsSphere(), bsPolar(), bsSpike(), gpFisher(), gpSphere(), gpPolar(), gpPolarHigh(),
gpSpike()

Examples

## Default prior for Fisher index + B-spline link:
p0 <- prior_param("fisher", "bspline")

## Modify only a few hyper-parameters:
p1 <- prior_param(

indexprior = "fisher",
link = "bspline",
sigma2_shape = 0.5,
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link_basis_df = 30,
index_direction = c(1, 0, 0)

)

summary.bsim Summarize BayesSIM

Description

Provides a summary for BayesSIM.

Usage

## S3 method for class 'bsim'
summary(object, ...)

## S3 method for class 'summary.bsim'
print(x, digits = 3, ...)

Arguments

object A fitted object of BayesSIM or individual model.

... Further arguments passed.

x A summary output of BayesSIM or individual model.

digits The minimum number of significant digits to be printed.

Details

A list of summary statistics for MCMC samples, including data.frame table for the results. Each
row corresponds to a model parameter, and columns report the statistics.

Value

The function summarizes posterior MCMC samples by reporting key statistics, including:

• Posterior mean and median

• Empirical standard deviation

• 95% credible interval (lower and upper quantiles)

• Potential scale reduction factor (gelman) for multiple chains

• Effective sample size (ESS)

By default, the index vector and error variance are only included in the summary. If variable selec-
tion methods are used, such as uniform sphere and spike-and-slab prior, the indicator vector (nu) is
also included. Note that the potential scale reduction factor for nu can be reported as NaN or Inf,
since the indicator rarely changes during the MCMC run.

If the model is fitted with single chain, both all.chain and chain have identical information.
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See Also

gelman.diag, effectiveSize

Examples

simdata2 <- data.frame(DATA1$X, y = DATA1$y)

# 1. One tool version
fit_one <- BayesSIM(y ~ ., data = simdata2,

niter = 5000, nburnin = 1000, nchain = 1)

# Check median index vector estimates with standard errors
coef(fit_one, method = "median", se = TRUE)

# Fitted index values of median prediction
fitted(fit_one, type = "linpred", method = "median")

# Residuals of median prediction
residuals(fit_one, method = "median")

# Summary of the model
summary(fit_one)

# Convergence diagnostics
nimTraceplot(fit_one)

# Goodness of fit
GOF(fit_one)

# Fitted plot
plot(fit_one)

# Prediction with 95% credible interval at new data
newx <- data.frame(X1 = rnorm(10), X2 = rnorm(10), X3 = rnorm(10), X4 = rnorm(10))
pred <- predict(fit_one, newdata = newx, interval = "credible", level = 0.95)
plot(pred)

# 2. Split version
models <- BayesSIM_setup(y ~ ., data = simdata2)
Ccompile <- compileModelAndMCMC(models)
nimSampler <- get_sampler(Ccompile)
initList <- getInit(models)
mcmc.out <- runMCMC(nimSampler, niter = 5000, nburnin = 1000, thin = 1,

nchains = 1, setSeed = TRUE, inits = initList,
summary = TRUE, samplesAsCodaMCMC = TRUE)

# "fit_split" becomes exactly the same as the class of "fit_one" object and apply generic functions.
fit_split <- as_bsim(models, mcmc.out)
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