
Bessel Functions in other CRAN Packages

Martin Mächler

ETH Zurich

Abstract

Why do I write yet another R package, when R itself has Bessel functions and several
CRAN packages also have versions of these?

Short answer: I myself added the Bessel functions to R version 0.63, second half of
1998, but they have been seen to be limited for “large” x and / or large order ν.

Keywords: Bessel Functions, Accuracy, R.

1. Introduction

R itself has had the function besselI(),besselJ(),besselK() and besselY(), from very
early on. Specifically, I myself added them to R version 0.63, in 1998. This helped quite a
bit to attract people from computational finance to R in these early times. For some reason
I must have been under the impression that the Fortran code I ported to C and interfaced
with R to be state of the art at the time, even though I now doubt it.

However, they had shown deficiencies: First, they did only work for real (double) but not for
complex arguments, even though the Bessel functions are well-defined on the whole complex
plain. Second, for x ≈ 1500 and larger, besselI(x,nu, expon.scaled=TRUE) jumped to
zero, as I found, because of an overflow in the backward recursion (via difference equation),
which I found elegantly to resolve (by re-scaling), for R2.9.0. However, the algorithm com-
plexity is proportional to ⌊x⌋, and for large x, a better algorithm has been desired for years.
Hence, I had started experimenting with the two asymptotic expansions from Abramowitz
and Stegun (1972).

The following R packages on CRAN (as of Jan.29, 2009) also provide Bessel functions:

gsl See Section refsec:gsl below

Rmpfr provides arbitrary precision Bessel functions of integer order ν =: n of the first kind
only, Jn(x) =jn(n,x) and Yn(x) =yn(n,x) (and j0(), j1, y0, y1) and—since MPFR
version 3.0.0— the Airy function Ai(x) =Ai(x).

> suppressPackageStartupMessages(require("Rmpfr"))

QRMlib Uses many ‘GSL’ (GNU Scientific Library) C functions in its own code, or, rather,
has copy-pasted “Bessel-related” parts of GSL into its own ‘src/’ directory.

Notably ‘QRMlib/src/bessel.c’ is a copy (slightly modified to work as “standalone” in the
QRMlib sources) of ‘GSL’’s ‘specfunc/bessel.c’ but has not been adapted to the latest

2 Bessel Functions in other CRAN Packages

GSL sources. Further note that QRMlib only provides function besselM3()(): “M3”
for the modified Bessel function of the 3rd kind, i.e., K(); note that it already has
optional argument logvalue=FALSE and will call ‘GSL’’s gsl_sf_bessel_lnKnu_e()

for logvalue=TRUE. Note that it calls different GSL routines for integer ν (=: n in that
case) than for non-integer which presumably has at least computational advantages.

GeneralizeHyperbolic (todo)

ghyp (todo)

CircularDDM provides (a Rcpp and gsl based) function besselzero(nu, k, kind) to
compute the first k zeros of the Jν() (kind=1) and Yν() (kind=0) functions but fails
to work for Iν() (kind=0) where there is one zero for negative ν ∈ [−2k, −2k + 1],
k = 1, 2,

2. Package ‘gsl’

The R package gsl by Robin Hankin provides an R interface on a function-by-function basis
to much of the GSL, the GNU Scientific Library. You get a first overview with

> library(gsl)

> ?bessel_Knu

> ?Airy

where the ?bessel_Knu lists all “Bessel” functions and ?Airy additionally the “Airy” func-
tions Ai() and Bi() and their derivatives which are strongly related to the Bessel functions
(and can be defined via them).

Indeed, the GSL and hence the R package gsl does contain quite an array of Bessel functions
and the Airy functions, we can also get via

> igsl <- match("package:gsl", search())

> aB <- apropos("Bessel", where=TRUE); unname(aB)[names(aB) == igsl]

[1] "bessel_I0" "bessel_I0_scaled"

[3] "bessel_I1" "bessel_I1_scaled"

[5] "bessel_In" "bessel_In_array"

[7] "bessel_In_scaled" "bessel_In_scaled_array"

[9] "bessel_Inu" "bessel_Inu_scaled"

[11] "bessel_J0" "bessel_J1"

[13] "bessel_Jn" "bessel_Jn_array"

[15] "bessel_Jnu" "bessel_K0"

[17] "bessel_K0_scaled" "bessel_K1"

[19] "bessel_K1_scaled" "bessel_Kn"

[21] "bessel_Kn_array" "bessel_Kn_scaled"

[23] "bessel_Kn_scaled_array" "bessel_Knu"

Martin Mächler 3

[25] "bessel_Knu_scaled" "bessel_Y0"

[27] "bessel_Y1" "bessel_Yn"

[29] "bessel_Yn_array" "bessel_Ynu"

[31] "bessel_i0_scaled" "bessel_i1_scaled"

[33] "bessel_i2_scaled" "bessel_il_scaled"

[35] "bessel_il_scaled_array" "bessel_j0"

[37] "bessel_j1" "bessel_j2"

[39] "bessel_jl" "bessel_jl_array"

[41] "bessel_jl_steed_array" "bessel_k0_scaled"

[43] "bessel_k1_scaled" "bessel_k2_scaled"

[45] "bessel_kl_scaled" "bessel_kl_scaled_array"

[47] "bessel_lnKnu" "bessel_sequence_Jnu"

[49] "bessel_y0" "bessel_y1"

[51] "bessel_y2" "bessel_yl"

[53] "bessel_yl_array" "bessel_zero_J0"

[55] "bessel_zero_J1" "bessel_zero_Jnu"

> aA <- apropos("Airy", where=TRUE); unname(aA)[names(aA) == igsl]

[1] "airy_Ai" "airy_Ai_deriv" "airy_Ai_deriv_scaled"

[4] "airy_Ai_scaled" "airy_Bi" "airy_Bi_deriv"

[7] "airy_Bi_deriv_scaled" "airy_Bi_scaled" "airy_zero_Ai"

[10] "airy_zero_Ai_deriv" "airy_zero_Bi" "airy_zero_Bi_deriv"

Features (and drawbacks):

• only real ’x’, not complex

• provides separate functions for integer and fractional ν where the latter should be more
general than the former (untested in detail though).

• For fractional ν, the relevant, i.e., interesting functions are

bessel_Jnu (nu, x, give=FALSE, strict=TRUE)

bessel_Ynu (nu, x, give=FALSE, strict=TRUE)

bessel_Inu (nu, x, give=FALSE, strict=TRUE)

bessel_Inu_scaled(nu, x, give=FALSE, strict=TRUE)

bessel_Knu (nu, x, give=FALSE, strict=TRUE)

bessel_Knu_scaled(nu, x, give=FALSE, strict=TRUE)

bessel_lnKnu (nu, x, give=FALSE, strict=TRUE)

where the *_scaled() version of each corresponds to our functions expon.scaled=TRUE.

• For fractional nu , the (only) interesting functions are

4 Bessel Functions in other CRAN Packages

> lst <- ls(patt="bessel_.*nu", pos="package:gsl")

> l2 <- sapply(lst, function(.) args(get(.)), simplify=FALSE)

> lnms <- setNames(format(lst), lst)

> arglst <- lapply(lst, ## a bit ugly, using deparse(.)

+ function(nm) sub(" *$","", sub("^function", lnms[[nm]], deparse(l2[[nm]])[[1]])))

> .tmp <- lapply(arglst, function(.) cat(format(.),"\n"))

bessel_Inu (nu, x, give = FALSE, strict = TRUE)

bessel_Inu_scaled (nu, x, give = FALSE, strict = TRUE)

bessel_Jnu (nu, x, give = FALSE, strict = TRUE)

bessel_Knu (nu, x, give = FALSE, strict = TRUE)

bessel_Knu_scaled (nu, x, give = FALSE, strict = TRUE)

bessel_Ynu (nu, x, give = FALSE, strict = TRUE)

bessel_lnKnu (nu, x, give = FALSE, strict = TRUE)

bessel_sequence_Jnu (nu, v, mode = 0, give = FALSE, strict = TRUE)

bessel_zero_Jnu (nu, s, give = FALSE, strict = TRUE)

where the *_scaled() version of each function corresponds to our functions with option
expon.scaled=TRUE.

• bessel_Inu_scaled() works for large x, comparably to our BesselI(.) which give
warnings about accuracy loss here :

> x <- (1:500)*50000; b2 <- BesselI(x, pi, expo=TRUE)

> b1 <- bessel_Inu_scaled(pi, x)

> all.equal(b1,b2,tol=0) ## "Mean relative difference: 1.544395e-12"

[1] "Mean relative difference: 2.226772e-12"

> ## the accuracy is *as* limited (probably):

> b1 <- bessel_Inu_scaled(pi, x, give=TRUE)

> summary(b1$err)

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.299e-08 9.580e-08 1.173e-07 1.606e-07 1.655e-07 1.856e-06

where the GSL (info) manual says that err is an absolute error estimate, hence for
relative error estimates, we look at

> range(b1$err/ b1$val)

[1] 0.001040159 0.001040161

So, we see that either the error estimate is too conservative, or the results only have 3
digit accuracy.

• Jν(.): Here (also), the GSL employs different algorithms in different regions, notably
also several asymptotic formula. When x < ν, notably 0 ≈ x ≪ ν, it does not seem to
be ok, in the the “left tail”, returning NaN, for moderate ν:

Martin Mächler 5

> bessel_Jnu(100, 2^seq(-5,1, by=1/4))

[1] NaN NaN NaN NaN NaN

[6] 1.098354e-301 3.685445e-294 1.236620e-286 4.149362e-279 1.392272e-271

[11] 4.671585e-264 1.567474e-256 5.259330e-249 1.764625e-241 5.920564e-234

[16] 1.986357e-226 6.663900e-219 2.235461e-211 7.498243e-204 2.514703e-196

[21] 8.431829e-189 2.826353e-181 9.469925e-174 3.171070e-166 1.060953e-158

> bessel_Jnu(20, 2^seq(-50,-40, by=1/2))

[1] NaN NaN NaN NaN NaN

[6] NaN 4.217737e-308 4.318963e-305 4.422618e-302 4.528761e-299

[11] 4.637451e-296 4.748750e-293 4.862720e-290 4.979426e-287 5.098932e-284

[16] 5.221306e-281 5.346617e-278 5.474936e-275 5.606335e-272 5.740887e-269

[21] 5.878668e-266

> bessel_Jnu(5, 2^seq(-210,-200, by=.5))

[1] NaN NaN NaN NaN NaN

[6] NaN NaN NaN NaN NaN

[11] NaN NaN NaN NaN NaN

[16] NaN 2.373412e-308 1.342605e-307 7.594919e-307 4.296335e-306

[21] 2.430374e-305

giving NaN instead of just underflowing to zero. However, looking at the phenomenon
shows that it is only because of the gsl’s default optional argument strict = TRUE:
The underflow to zero which no longer allows the error to be controlled (and returned
in err when give = TRUE), giving status = 15 here:

> as.data.frame(bessel_Jnu(20, 2^seq(-50,-40, by=1/2), give=TRUE, strict=FALSE))

val err status

1 0.000000e+00 2.225074e-308 15

2 0.000000e+00 2.225074e-308 15

3 0.000000e+00 2.225074e-308 15

4 0.000000e+00 2.225074e-308 15

5 0.000000e+00 2.225074e-308 15

6 0.000000e+00 2.225074e-308 15

7 4.217737e-308 2.371515e-322 0

8 4.318963e-305 2.397503e-319 0

9 4.422618e-302 2.455046e-316 0

10 4.528761e-299 2.513967e-313 0

11 4.637451e-296 2.574303e-310 0

12 4.748750e-293 2.636086e-307 0

13 4.862720e-290 2.699352e-304 0

14 4.979426e-287 2.764136e-301 0

15 5.098932e-284 2.830476e-298 0

16 5.221306e-281 2.898407e-295 0

6 Bessel Functions in other CRAN Packages

17 5.346617e-278 2.967969e-292 0

18 5.474936e-275 3.039200e-289 0

19 5.606335e-272 3.112141e-286 0

20 5.740887e-269 3.186832e-283 0

21 5.878668e-266 3.263316e-280 0

If we do use strict = FALSE, consequently, all is fine:

> gslJ <- function(nu, f1 = .90, f2 = 1.10, nout = 512, give=FALSE, strict=FALSE) {

+ stopifnot(is.numeric(nu), length(nu) == 1, nout >= 1, f1 <= 1, f2 >= 1)

+ x <- seq(f1*nu, f2*nu, length.out = nout)

+ list(x=x, Jnu.x = bessel_Jnu(nu, x, give=give, strict=strict))

+ }

> plJ <- function(nu, f1 =.90, f2=1.10, nout=512,

+ col=2, lwd=2, main = bquote(nu == .(nu)), ...) {

+ dJ <- gslJ(nu, f1=f1, f2=f2, nout=nout)

+ plot(Jnu.x ~ x, data=dJ, type="l", col=col, lwd=lwd, main=main, ...)

+ abline(h=0, lty=3, col=adjustcolor(1, 0.5))

+ invisible(dJ)

+ }

> sfsmisc::mult.fig(4)

> plJ(500, f1=0)

> r1k <- plJ(1000, f1=0)

> head(as.data.frame(r1k)) # all 0 now (NaN's for 'strict=TRUE' !!)

x Jnu.x

1 0.000000 NaN

2 2.152642 0

3 4.305284 0

4 6.457926 0

5 8.610568 0

6 10.763209 0

> r10k <- plJ(10000, f1=0.5, f2=2)

> str(with(r10k, x[!is.finite(Jnu.x)])) # empty; had all NaN upto x = 8317

num(0)

> r1M <- plJ(1e6, f1=0.8)

Martin Mächler 7

0 100 200 300 400 500

−
0.

05
0.

05

ν = 500

x

Jn
u.

x

0 200 400 600 800 1000

−
0.

04
0.

02

ν = 1000

x

Jn
u.

x

5000 10000 15000 20000

−
0.

02
0.

01

ν = 10000

x

Jn
u.

x

800000 900000 1000000 1100000

−
0.

00
3

0.
00

1

ν = 1e+06

x
Jn

u.
x

3. Session Info

> toLatex(sessionInfo(), locale=FALSE)

• R version 4.5.2 Patched (2026-01-07 r89293), x86_64-pc-linux-gnu

• Running under: Fedora Linux 42 (Adams)

• Matrix products: default

• BLAS: /sfs/u/maechler/R/D/r-patched/F42-64-inst/lib/libRblas.so

• LAPACK: /usr/lib64/liblapack.so.3.12.0

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: Bessel 0.7-0, Rmpfr 1.1-2, gmp 0.7-5, gsl 2.1-9

• Loaded via a namespace (and not attached): compiler 4.5.2, sfsmisc 1.1-23, tools 4.5.2

Date (run in R): 2026-01-10

References

Abramowitz M, Stegun IA (1972). Handbook of Mathematical Functions. Dover Publications,
N. Y. URL https://en.wikipedia.org/wiki/Abramowitz_and_Stegun.

https://en.wikipedia.org/wiki/Abramowitz_and_Stegun

8 Bessel Functions in other CRAN Packages

Affiliation:

Martin Mächler
Seminar für Statistik, HG G 14.2
ETH Zurich
8092 Zurich, Switzerland
E-mail: maechler@stat.math.ethz.ch

URL: https://people.math.ethz.ch/~maechler/

mailto:maechler@stat.math.ethz.ch
https://people.math.ethz.ch/~maechler/

	Introduction
	Package `gsl'
	Session Info

