Package ‘Buddle’

December 19, 2025
Type Package

Title A Deep Learning for Statistical Classification and Regression
Analysis with Random Effects

Version 2.0.2
Date 2025-12-15

Description Statistical classification and regression have been popular among vari-
ous fields and stayed in the limelight of scientists of those fields. Examples of the fields in-
clude clinical trials where the statistical classification of patients is indispensable to pre-
dict the clinical courses of diseases. Considering the negative impact of diseases on perform-
ing daily tasks, correctly classifying patients based on the clinical information is vi-
tal in that we need to identify patients of the high-risk group to develop a severe state and ar-
range medical treatment for them at an opportune moment. Deep learning - a part of artificial in-
telligence - has gained much attention, and research on it burgeons dur-
ing past decades: see, e.g, Kazemi and Mirroshan-
del (2018) <DOI:10.1016/j.artmed.2017.12.001>. It is a veritable technique which was origi-
nally designed for the classification, and hence, the Buddle package can provide sublime solu-
tions to various challenging classification and regression problems encountered in the clinical tri-
als. The Buddle package is based on the back-propagation algorithm - together with various pow-
erful techniques such as batch normalization and dropout - which performs a multi-layer feed-
forward neural network: see Krizhevsky et. al (2017) <DOI:10.1145/3065386>, Schmidhu-
ber (2015) <DOI:10.1016/j.neunet.2014.09.003> and Le-
Cun et al. (1998) <DOI:10.1109/5.726791> for more details. This package con-
tains two main functions: TrainBuddle() and FetchBuddle(). TrainBuddle() builds a feed-
forward neural network model and trains the model. FetchBuddle() re-
calls the trained model which is the output of TrainBuddle(), classifies or re-
gresses given data, and make a final prediction for the data.

License GPL-2

Encoding UTF-8

Depends R (>=2.10)

Imports Rcpp (>=1.0.10), plyr, stats, graphics
LinkingTo Rcpp, ReppArmadillo
RoxygenNote 7.3.2

LazyData true

https://doi.org/10.1016/j.artmed.2017.12.001
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/5.726791

2 CheckNonNumeric

NeedsCompilation yes

Author Jiwoong Kim [aut, cre]

Maintainer Jiwoong Kim <jwboys26@gmail.com>
Repository CRAN

Date/Publication 2025-12-19 05:30:02 UTC

Contents
CheckNonNuUmeric o o o e e e e 2
FetchBuddle e 3
GetPreciSion e e e 4
MakeConfusionMatriX e e e e e e 5
mnist_data e e e 6
OneHot2Label e 7
Split2TrainTest o o e 8
TrainBuddle 9
Index 14
CheckNonNumeric Detecting Non-numeric Values.
Description
Check whether or not an input matrix includes any non-numeric values (NA, NULL, "", charac-

ter, etc) before being used for training. If any non-numeric values exist, then TrainBuddle() or
FetchBuddle() will return non-numeric results.

Usage

CheckNonNumeric(X)
Arguments

X an n-by-p matrix.
Value

A list of (n+1) values where n is the number of non-numeric values. The first element of the list
is n, and all other elements are entries of X where non-numeric values occur. For example, when
the (1,1)th and the (2,3)th entries of a 5-by-5 matrix X are non-numeric, then the list returned by
CheckNonNumeric() will contain 2, (1,1), and (2,3).

See Also

GetPrecision(), FetchBuddle(), MakeConfusionMatrix(), OneHot2Label(), Split2TrainTest(), Train-
Buddle()

FetchBuddle 3

Examples
n = 5;
p=>5;
X = matrix(@, n, p) #i### Generate a 5-by-5 matrix which includes two NA's.
X[1,1] = NA
X[2,3] = NA

1st = CheckNonNumeric(X)

FetchBuddle Predicting Classification and Regression.

Description

Yield prediction (softmax value or value) for regression and classification for given data based on
the results of training.

Usage
FetchBuddle(X, 1W, 1lb, 1Param)

Arguments
X a matrix of real values which will be used for predicting classification or regres-
sion.
1w a list of weight matrices obtained after training.
1b a list of bias vectors obtained after training.
1Param a list of parameters used for training. It includes: label, hiddenlayer, batch, drop,
drop.ratio, Ir, init.weight, activation, optim, type, rand.eff, distr, and disp.
Value

A list of the following values:

predicted predicted real values (regression) or softmax values (classification).

One.Hot.Encoding one-hot encoding values of the predicted softmax values for classification. For
regression, a zero matrix will be returned. To convert the one-hot encoding values to labels,
use OneHot2Label().

References
[1] Geron, A. Hand-On Machine Learning with Scikit-Learn and TensorFlow. Sebastopol: O’Reilly,
2017. Print.

[2] Han, J., Pei, J, Kamber, M. Data Mining: Concepts and Techniques. New York: Elsevier, 2011.
Print.

[3] Weilman, S. Deep Learning from Scratch. O’Reilly Media, 2019. Print.

4 GetPrecision

See Also
CheckNonNumeric(), GetPrecision(), MakeConfusionMatrix(), OneHot2Label(), Split2TrainTest(),
TrainBuddle()

Examples

Using mnist data again
data(mnist_data)

X1 mnist_data$Images ### X1: 100 x 784 matrix
Y1 = mnist_data$Labels ### Y1: 100 x 1 vector

HHHHHHBHAHAERHAHAHAHAEAAE# Train Buddle

1st = TrainBuddle(Y1, X1, train.ratio=0.6, arrange=TRUE, batch.size=10, total.iter = 100,
hiddenlayer=c(20, 10), batch.norm=TRUE, drop=TRUE,
drop.ratio=0.1, 1lr=0.1, init.weight=0.1,
activation=c("Relu”, "SoftPlus"”), optim="AdaGrad",
type = "Classification”, rand.eff=TRUE, distr = "Logistic"”, disp=TRUE)

IW = 1st[[1]]
1b 1st[[2]]
1Param = 1st[[3]]

X2 = matrix(rnorm(20%784,0,1), 20,784) ## Genderate a 20-by-784 matrix

1st = FetchBuddle(X2, 1W, 1lb, lParam) ## Pass X2 to FetchBuddle for prediction

GetPrecision Obtaining Accuracy.

Description

Compute measures of accuracy such as precision, recall, and F1 from a given confusion matrix.

Usage

GetPrecision(confusion.matrix)

MakeConfusionMatrix 5

Arguments

confusion.matrix
a confusion matrix.

Value

An (r+1)-by-3 matrix when the input is an r-by-r confusion matrix.

See Also

CheckNonNumeric(), FetchBuddle(), MakeConfusionMatrix(), OneHot2Label(), Split2TrainTest(),
TrainBuddle()

Examples
data(iris)
Label = c("setosa”, "versicolor”, "virginica")
predicted.label = c("setosa”, "setosa”, "virginica”, "setosa"”, "versicolor”, "versicolor")
true.label = c("setosa”, "virginica”, "versicolor”,"setosa", "versicolor”, "virginica")

confusion.matrix = MakeConfusionMatrix(predicted.label, true.label, Label)
precision = GetPrecision(confusion.matrix)

confusion.matrix
precision

MakeConfusionMatrix Making a Confusion Matrix.

Description

Create a confusion matrix from two vectors of labels: predicted label obtained from FetchBuddle()
as a result of prediction and true label of a test set.

Usage

MakeConfusionMatrix(predicted.label, true.label, Label)

Arguments

predicted. label
a vector of predicted labels.

true.label a vector of true labels.

Label a vector of all possible values or levels which a label can take.

6 mnist_data

Value

An r-by-r confusion matrix where r is the length of Label.

See Also

CheckNonNumeric(), GetPrecision(), FetchBuddle(), OneHot2Label(), Split2TrainTest(), Train-
Buddle()

Examples
data(iris)
Label = c("setosa”, "versicolor”, "virginica")
predicted.label = c("setosa”, "setosa”, "virginica"”, "setosa"”, "versicolor”, "versicolor")
true.label = c("setosa”, "virginica”, "versicolor”,"setosa"”, "versicolor”, "virginica")

confusion.matrix = MakeConfusionMatrix(predicted.label, true.label, Label)
precision = GetPrecision(confusion.matrix)

confusion.matrix
precision

mnist_data Image data of handwritten digits.

Description

A dataset containing 100 images of handwritten digits.

Usage

data(mnist_data)

Details
@format A list containing a matrix of image data and a vector of labels:

Images 100-by-784 matrix of image data of handwritten digits.
Labels 100-by-1 vector of labels of handwritten digits.

Source

http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

OneHot2Label 7

Examples
data(mnist_data)

Img_Mat = mnist_data$Images
Img_Label = mnist_data$Labels

digit_data = Img_Mat[1,] ### image data (784-by-1 vector) of the first handwritten digit (=5)
label = Img_Label[1] #i## label of the first handwritten digit (=5)
imgmat = matrix(digit_data, 28, 28) ### transform the vector of image data to a matrix

OneHot2Label Obtaining Labels

Description

Convert a one-hot encoding matrix to a vector of labels.

Usage

OneHot2Label (OHE, Label)

Arguments

OHE an r-by-n one-hot encoding matrix.

Label an r-by-1 vector of values or levels which a label can take.
Value

An n-by-1 vector of labels.

See Also

CheckNonNumeric(), GetPrecision(), FetchBuddle(), MakeConfusionMatrix(), Split2TrainTest(),
TrainBuddle()

8 Split2TrainTest

Split2TrainTest Splitting Data into Training and Test Sets.

Description

Convert data into training and test sets so that the training set contains approximately the specified
ratio of all labels.

Usage

Split2TrainTest(Y, X, train.ratio)

Arguments

Y an n-by-1 vector of responses or labels.

X an n-by-p design matrix of predictors.

train.ratio a ratio of the size of the resulting training set to the size of data.
Value

A list of the following values:

y.train the training set of Y.
y.test the test set of Y.
x.train the training set of X.

x.test the test set of X.

See Also

CheckNonNumeric(), GetPrecision(), FetchBuddle(), MakeConfusionMatrix(), OneHot2Label(),
TrainBuddle()

Examples
data(iris)
Label = c("setosa"”, "versicolor”, "virginica”)

train.ratio=0.8
Y = iris$Species
X = cbind(iris$Sepal.Length, iris$Sepal.Width, iris$Petal.Length, iris$Petal.Width)

Ist = Split2TrainTest(Y, X, train.ratio)

Ytrain = 1lst$y.train
Ytest = lst$y.test

TrainBuddle 9

length(Ytrain)
length(Ytest)

length(which(Ytrain==Label[1]))
length(which(Ytrain==Label[2]))
length(which(Ytrain==Label[3]))

length(which(Ytest==Label[1]))
length(which(Ytest==Label[2]))
length(which(Ytest==Label[3]))

TrainBuddle Implementing Statistical Classification and Regression.

Description

Build a multi-layer feed-forward neural network model for statistical classification and regression
analysis with random effects.

Usage

TrainBuddle(
formula.string,
data,
train.ratio = 0.7,
arrange = 0,
batch.size = 10,
total.iter = 10000,
hiddenlayer = c(100),
batch.norm = TRUE,
drop = TRUE,
drop.ratio = 0.1,
lr = 0.1,
init.weight = 0.1,
activation = c("Sigmoid"),

optim = "SGD",

type = "Classification”,
rand.eff = FALSE,

distr = "Normal”,

disp = TRUE

10

Arguments

TrainBuddle

formula.string a formula string or a vector of numeric values. When it is a string, it denotes a

data

train.ratio

arrange

batch.size
total.iter
hiddenlayer
batch.norm

drop

drop.ratio
1r
init.weight

activation

optim

type

rand.eff

distr

disp

classification or regression equation, of the form label ~ predictors or response
~ predictors, where predictors are separated by + operator. If it is a numeric
vector, it will be a label or a response variable of a classification or regression
equation, respectively.

a data frame or a design matrix. When formula.string is a string, data should
be a data frame which includes the label (or the response) and the predictors
expressed in the formula string. When formula.string is a vector, i.e. a vector of
labels or responses, data should be an nxp numeric matrix whose columns are
predictors for further classification or regression.

aratio that is used to split data into training and test sets. When data is an n-by-p
matrix, the resulting train data will be a (train.ratio X n)-by-p matrix. The default
is 0.7.

a logical value to arrange data for the classification only (automatically set up
to FALSE for regression) when splitting data into training and test sets. If it is
true, data will be arranged for the resulting training set to contain the specified
ratio (train.ratio) of labels of the whole data. See also Split2TrainTest().

a batch size used for training during iterations.
a number of iterations used for training.
a vector of numbers of nodes in hidden layers.

a logical value to specify whether or not to use the batch normalization option
for training. The default is TRUE.

a logical value to specify whether or not to use the dropout option for training.
The default is TRUE.

a ratio for the dropout; used only if drop is TRUE. The default is 0.1.

a learning rate. The default is 0.1.

a weight used to initialize the weight matrix of each layer. The default is 0.1.

a vector of activation functions used in all hidden layers. For two hidden layers
(e.g., hiddenlayer=c(100, 50)), it is a vector of two activation functions, e.g.,
c("Sigmoid", "SoftPlus"). The list of available activation functions includes
Sigmoid, Relu, LeakyRelu, TanH, ArcTan, ArcSinH, ElliotSig, SoftPlus, Ben-
tldentity, Sinusoid, Gaussian, Sinc, and Identity. For details of the activation
functions, please refer to Wikipedia.

an optimization method which is used for training. The following methods are
available: "SGD", "Momentum", "AdaGrad", "Adam", "Nesterov", and "RM-
Sprop."

a statistical model for the analysis: "Classification" or "Regression."

a logical value to specify whether or not to add a random effect into classification
or regression.

a distribution of a random effect; used only if rand.eff is TRUE. The following
distributions are available: "Normal", "Exponential", "Logistic", and "Cauchy."

a logical value which specifies whether or not to display intermediate training
results (loss and accuracy) during the iterations.

TrainBuddle 11

Value
A list of the following values:

IW alist of n terms of weight matrices where n is equal to the number of hidden layers plus one.
Ib alist of n terms of bias vectors where n is equal to the number of hidden layers plus one.
IParam a list of parameters used for the training process.

train.loss a vector of loss values of the training set obtained during iterations where its length is
eqaul to number of epochs.

train.accuracy a vector of accuracy values of the training set obtained during during iterations
where its length is eqaul to number of epochs.

test.loss a vector of loss values of the test set obtained during the iterations where its length is eqaul
to number of epochs.

test.accuracy a vector of accuracy values of the test set obtained during the iterations where its
length is eqaul to number of epochs.

predicted.softmax an r-by-n numeric matrix where r is the number of labels (classification) or 1
(regression), and n is the size of the test set. Its entries are predicted softmax values (classifi-
cation) or predicted values (regression) of the test sets, obtained by using the weight matrices
(IW) and biases (Ib).

predicted.encoding an r-by-n numeric matrix which is a result of one-hot encoding of the pre-
dicted.softmax; valid for classification only.

confusion.matrix an r-by-r confusion matrix; valid classification only.

precision an (r+1)-by-3 matrix which reports precision, recall, and F1 of each label; valid classifi-
cation only.

References
[1] Geron, A. Hand-On Machine Learning with Scikit-Learn and TensorFlow. Sebastopol: O’Reilly,
2017. Print.

[2] Han, J., Pei, J, Kamber, M. Data Mining: Concepts and Techniques. New York: Elsevier, 2011.
Print.

[3] Weilman, S. Deep Learning from Scratch. O’Reilly Media, 2019. Print.

Examples
HHHEHHEEEE
train.ratio = 0.6 ## 60% of data is used for training
batch.size = 10
total.iter = 100
hiddenlayer=c(20,10) ## Use two hidden layers
arrange=TRUE #### Use "arrange"” option
activations = c("Relu”,"SoftPlus"”) #i## Use Relu and SoftPlus
optim = "Nesterov” #i## Use the "Nesterov” method for the optimization.
type = Classification
rand.eff = TRUE #i### Add some random effect
distr="Normal” #### The random effect is a normal random variable
disp = TRUE #### Display intemeidate results during iterations.

12 TrainBuddle

data(iris)

1st = TrainBuddle("Species~Sepal.Width+Petal.Width", iris, train.ratio=0.6,
arrange=TRUE, batch.size=10, total.iter = 100, hiddenlayer=c(20, 10),
batch.norm=TRUE, drop=TRUE, drop.ratio=0.1, 1lr=0.1, init.weight=0.1,
activation=c("Relu”,"SoftPlus”), optim="Nesterov”,
type = "Classification”, rand.eff=TRUE, distr = "Normal”, disp=TRUE)

IW = 1st$lw
1b = 1st$lb
1Param = 1lst$1Param

confusion.matrix = 1lst$confusion.matrix
precision = lst$precision

confusion.matrix

precision

Another classification example
Using mnist data
data(mnist_data)

Img_Mat = mnist_data$Images
Img_Label = mnist_data$Labels

Use 100 images

>
n

Img_Mat ### X: 100 x 784 matrix
Img_Label ### Y: 100 x 1 vector

<
1

1st = TrainBuddle(Y, X, train.ratio=0.6, arrange=TRUE, batch.size=10, total.iter = 100,
hiddenlayer=c(20, 10), batch.norm=TRUE, drop=TRUE,
drop.ratio=0.1, 1r=0.1, init.weight=0.1,
activation=c("Relu”,"SoftPlus"”), optim="AdaGrad",
type = "Classification”, rand.eff=TRUE, distr = "Logistic"”, disp=TRUE)

confusion.matrix = lst$confusion.matrix
precision = lst$precision

confusion.matrix
precision

TrainBuddle

A

n=100

p=10

X

b
e
Y

matrix(rnorm(nxp, 1, 1), n, p) ## X is a 100-by-10 design matrix

matrix(rnorm(p, 1, 1), p,1)
matrix(rnorm(n, @, 1), n,1)
X %% b + e

##FHHHH## train.ratio=0.7

#iHHEHHHE batch.size=20

#######H# arrange=FALSE

#iHHHEEHE total.iter = 100
#iHHHHHH# hiddenlayer=c(20)
##HHEHHH# activation = c("Identity”)
#iHHHAEHE "optim” = "Adam”
#itHEHHH# type = "Regression”
#ittHHHH rand. ef f=FALSE

Regression example

Y=X b + e

13

1st = TrainBuddle(Y, X, train.ratio=0.7, arrange=FALSE, batch.size=20, total.iter = 100,
hiddenlayer=c(20), batch.norm=TRUE, drop=TRUE, drop.ratio=0.1, 1r=0.1,

init.weight=0.1, activation=c("Identity"), optim="AdaGrad",
type = "Regression”, rand.eff=FALSE, disp=TRUE)

Index

x datasets
mnist_data, 6

CheckNonNumeric, 2
FetchBuddle, 3
GetPrecision, 4

MakeConfusionMatrix, 5
mnist_data, 6

OneHot2Label, 7
Split2TrainTest, 8

TrainBuddle, 9

14

	CheckNonNumeric
	FetchBuddle
	GetPrecision
	MakeConfusionMatrix
	mnist_data
	OneHot2Label
	Split2TrainTest
	TrainBuddle
	Index

