Package ‘CDMConnector’

January 10, 2026

Title Connect to an OMOP Common Data Model
Version 2.3.0

Description Provides tools for working with observational health data in the
Observational Medical Outcomes Partnership (OMOP) Common Data Model for-
mat with a pipe friendly syntax.

Common data model database table references are stored in a single compound ob-
ject along with metadata.

License Apache License (>= 2)

URL https://darwin-eu.github.io/CDMConnector/,
https://github.com/darwin-eu/CDMConnector

BugReports https://github.com/darwin-eu/CDMConnector/issues
Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=4.1.0)

Imports dplyr, dbplyr (>=2.5.0), DBI (>= 0.3.0), checkmate, cli,
purrr, rlang, tidyselect, glue, methods, withr, lifecycle,
stringr, stringi, generics, tidyr, jsonlite, readr,
omopgenerics (>= 1.2.0)

Suggests SqlRender, CirceR, rJava, covr, knitr, rmarkdown, duckdb,
RSQLite, RPostgres, DatabaseConnector, odbc, ggplot2,
bigrquery, lubridate, clock, tibble, testthat (>= 3.0.0), pool,
snakecase, digest

Enhances arrow
Config/testthat/edition 3
Config/testthat/parallel false
VignetteBuilder knitr
NeedsCompilation no

Author Adam Black [aut, cre] (ORCID: <https://orcid.org/0000-0001-5576-8701>),
Artem Gorbachev [aut],
Edward Burn [aut],

https://darwin-eu.github.io/CDMConnector/
https://github.com/darwin-eu/CDMConnector
https://github.com/darwin-eu/CDMConnector/issues
https://orcid.org/0000-0001-5576-8701

2 Contents
Marti Catala Sabate [aut],
Ioanna Nika [aut]

Maintainer Adam Black <black@ohdsi.org>

Repository CRAN

Date/Publication 2026-01-10 07:52:52 UTC

Contents
appendPermanent L. L 3
asDate e e e 4
benchmarkCDMConnector o v i it e e e 4
cdmCon e e e e 5
cdmDisconnect.db_cdm e 6
cdmFlatten e e e e e 6
cdmFromCon e e 8
cdmSample e 10
cdmSubset e e 11
cdmSubsetCohort e e e e 12
cdmWriteSchema 13
computeDataHashByTable 14
computeQUETY L e e e e e e e e e e e e e e 15
copyCdmTo e 16
dateadd L e e e e e 17
datediff e 17
datepart e e e 18
dbms e e e 19
dbSource e e e e 20
downloadEunomiaData 20
dropTable.db_cdm 21
eunomiaDir L L e e e e 21
eunomialsAvailable 23
exampleDatasets e e e e 23
generateCohortSet oL 24
generateConceptCohortSet L 25
InSchema e e e 27
listTables e e e 27
readCohortSet e 28
requireEunomia 28
snapshot e 29
summariseQuantile L L e 30
summariseQuantile2 L 31
tbIGroup 32
VEISION . . . o v v v e i e e e e e e e e e e e e e e 33

Index 34

appendPermanent 3

appendPermanent Run a dplyr query and add the result set to an existing

Description

Run a dplyr query and add the result set to an existing

Usage

appendPermanent(x, name, schema = NULL)

Arguments
X A dplyr query
name Name of the table to be appended. If it does not already exist it will be created.
schema Schema where the table exists. Can be a length 1 or 2 vector. (e.g. schema =
"my_schema", schema = c¢("my_schema", "dbo"))
Value

A dplyr reference to the newly created table

Examples

Not run:
library(CDMConnector)

con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())
concept <- dplyr::tbl(con, "concept")

create a table

rxnorm_count <- concept %>%
dplyr::filter(domain_id == "Drug") %>%
dplyr::mutate(isRxnorm = (vocabulary_id == "RxNorm")) %>%
dplyr::count(domain_id, isRxnorm) %>%
compute(”rxnorm_count™)

append to an existing table

rxnorm_count <- concept %>%
dplyr::filter(domain_id == "Procedure") %>%
dplyr::mutate(isRxnorm = (vocabulary_id == "RxNorm")) %>%
dplyr::count(domain_id, isRxnorm) %>%
appendPermanent ("rxnorm_count")

DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

4 benchmarkCDMConnector

asDate as.Date dbplyr translation wrapper

Description

This is a workaround for using as.Date inside dplyr verbs against a database backend. This function
should only be used inside dplyr verbs where the first argument is a database table reference. asDate
must be unquoted with !! inside dplyr verbs (see example).

Usage

asDate(x)

Arguments

X an R expression

Examples

Not run:

con <- DBI::dbConnect(odbc::odbc(), "Oracle”)

date_tbl <- dplyr::copy_to(con,
data.frame(y = 2000L, m = 1oL, d = 10L),
name = "tmp",
temporary = TRUE)

df <- date_tbl %>%

dplyr::mutate(date_from_parts = !!asDate(pasted(
.datasy, "/",
.data$m, "/",
.data$d

))) %%
dplyr::collect()

End(Not run)

benchmarkCDMConnector Run benchmark of tasks using CDMConnector

Description

Run benchmark of tasks using CDMConnector

Usage

benchmarkCDMConnector (cdm)

cdmCon

Arguments

cdm A CDM reference object

Value

a tibble with time taken for different analyses

Examples

Not run:

library(CDMConnector)

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())

cdm <- cdmFromCon(con, cdmSchema = "main"”, writeSchema = "main")
benchmarkCDMConnector (cdm)

DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

cdmCon Get underlying database connection

Description

Get underlying database connection

Usage
cdmCon(cdm)

Arguments

cdm A cdm reference object created by cdmFromCon

Value

A reference to the database containing tables in the cdm reference

Examples

Not run:
con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())

cdm <- cdmFromCon(con = con, cdmName = "Eunomia”,
cdmSchema = "main”, writeSchema = "main")

cdmCon (cdm)

DBI: :dbDisconnect(con)

6 cdmPFlatten

End(Not run)

cdmDisconnect.db_cdm Disconnect the connection of the cdm object

Description

This function will disconnect from the database as well as drop "temporary" tables that were created
on database systems that do not support actual temporary tables. Currently temp tables are emulated
on Spark/Databricks systems.

Usage
S3 method for class 'db_cdm'
cdmDisconnect(cdm, dropWriteSchema = FALSE, ...)
Arguments
cdm cdm reference
dropWriteSchema

Whether to drop tables in the writeSchema
Not used

cdmFlatten Flatten a cdm into a single observation table

Description

This experimental function transforms the OMOP CDM into a single observation table. This is only
recommended for use with a filtered CDM or a cdm that is small in size.

Usage

cdmFlatten(
cdm,
domain = c("condition_occurrence”, "drug_exposure”, "procedure_occurrence”),
includeConceptName = TRUE

)

cdmPFlatten 7

Arguments
cdm A cdm_reference object
domain Domains to include. Must be a subset of "condition_occurrence", "drug_exposure",
"procedure_occurrence”, "measurement”, "visit_occurrence", "death", "obser-
vation"
includeConceptName
Should concept_name and type_concept_name be include in the output table?
TRUE (default) or FALSE
Value

A lazy query that when evaluated will result in a single table

Examples

Not run:
library(CDMConnector)
library(dplyr, warn.conflicts = FALSE)

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())

cdm <- cdmFromCon(con, cdmSchema = "main")

all_observations <- cdmSubset(cdm, personld = c(2, 18, 42)) %>%
cdmFlatten() %>%

collect()

all_observations
#> # A tibble: 213 x 8

#> person_id observation_. start_date end_date type_. domain obser. type_.
#> <dbl> <dbl> <date> <date> <dbl> <chr> <chr> <chr>
#> 1 2 40213201 1986-09-09 1986-09-09 5.81e5 drug pneumo <NA>
#> 2 18 4116491 1997-11-09 1998-01-09 3.20e4 condi Escher <NA>
3 18 40213227 2017-01-04 2017-01-04 5.81e5 drug tetanu <NA>
#> 4 42 4156265 1974-06-13 1974-06-27 3.20e4 condi Facial <NA>
#> 5 18 40213160 1966-02-23 1966-02-23 5.81e5 drug poliov <NA>
#> 6 42 4198190 1933-10-29 1933-10-29 3.80e7 proce Append <NA>
#> 7 2 4109685 1952-07-13 1952-07-27 3.20e4 condi Lacera <NA>
#> 8 18 40213260 2017-01-04 2017-01-04 5.81e5 drug zoster <NA>
#> 9 42 4151422 1985-02-03 1985-02-03 3.80e7 proce Sputum <NA>
#> 10 2 4163872 1993-03-29 1993-03-29 3.80e7 proce Plain <NA>
#> # ... with 203 more rows, and abbreviated variable names observation_concept_id,

#> # type_concept_id, observation_concept_name, type_concept_name
DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

8 cdmFromCon

cdmFromCon Create a CDM reference object from a database connection

Description

Create a CDM reference object from a database connection

Usage

cdmFromCon(
con,
cdmSchema,
writeSchema = NULL,
cohortTables = NULL,
cdmVersion = NULL,
cdmName = NULL,
achillesSchema = NULL,
.softValidation = FALSE,
writePrefix = NULL

)
Arguments

con A DBI database connection to a database where an OMOP CDM v5.4 or v5.3
instance is located.

cdmSchema The schema where the OMOP CDM tables are located. Defaults to NULL.

writeSchema An optional schema in the CDM database that the user has write access to.

cohortTables A character vector listing the cohort table names to be included in the CDM
object.

cdmVersion The version of the OMOP CDM. Cam be "5.3", "5.4", or NULL (default). If

NULL we will attempt to automatically determine the cdm version using the
cdm_source table and heuristics.

cdmName The name of the CDM. If NULL (default) the cdm_source_name . field in the
CDM_SOURCE table will be used.

achillesSchema An optional schema in the CDM database that contains achilles tables.
.softValidation
Normally the observation period table should not have overlapping observation
periods for a single person. If .softValidation is TRUE the validation check
that looks for overlapping observation periods will be skipped. Other analytic
packages may break or produce incorrect results if softValidation is TRUE and
the observation period table contains overlapping observation periods.

writePrefix A prefix that will be added to all tables created in the write_schema. This can
be used to create namespace in your database write_schema for your tables.

cdmFromCon 9

Details

cdmFromCon creates a new cdm reference object from a DBI database connection. In addition to
the connection the user needs to pass in the schema in the database where the cdm data can be found
as well as another schema where the user has write access to create tables. Nearly all downstream
analytic packages need the ability to create temporary data in the database so the write_schema is
required.

Some database systems have the idea of a catalog or a compound schema with two components.
See examples below for how to pass in catalogs and schemas.

You can also specify awritePrefix. This is a short character string that will be added to any tables
created in the writeSchema effectively a namespace in the schema just for your analysis. If the
write_schema is a shared between multiple users setting a unique write_prefix ensures you do not
overwrite existing tables and allows you to easily clean up tables by dropping all tables that start
with the prefix.

Value

A list of dplyr database table references pointing to CDM tables

Examples

Not run:
library(CDMConnector)
con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())

minimal example

cdm <- cdmFromCon(con,
cdmSchema = "main”,
writeSchema = "scratch”)

write prefix is optional but recommended if write_schema is shared
cdm <- cdmFromCon(con,

cdmSchema = "main”,
writeSchema = "scratch”,
writePrefix = "tmp_")

Some database systems use catalogs or compound schemas.
These can be specified as follows:
cdm <- cdmFromCon(con,

cdmSchema = "catalog.main”,
writeSchema = "catalog.scratch”,
writePrefix = "tmp_")

cdm <- cdmFromCon(con,

cdmSchema = c("my_catalog”, "main"),
writeSchema = c("my_catalog”, "scratch"),
writePrefix = "tmp_")

cdm <- cdmFromCon(con,
cdmSchema = c(catalog = "my_catalog”, schema = "main"),
writeSchema = c(catalog = "my_catalog”, schema = "scratch”),

10 cdmSample

writePrefix = "tmp_")
DBI::dbDisconnect(con)

End(Not run)

cdmSample Subset a cdm object to a random sample of individuals

Description

cdmSample takes a cdm object and returns a new cdm that includes only a random sample of per-
sons in the cdm. Only person_ids in both the person table and observation_period table will be

considered.
Usage

cdmSample(cdm, n, seed = sample.int(1e+@6, 1), name = "person_sample")
Arguments

cdm A cdm_reference object.

n Number of persons to include in the cdm.

seed Seed for the random number generator.

name Name of the table that will contain the sample of persons.
Value

A modified cdm_reference object where all clinical tables are lazy queries pointing to subset

Examples

Not run:
library(CDMConnector)
library(dplyr, warn.conflicts = FALSE)

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())
cdm <- cdmFromCon(con, cdmSchema = "main"
cdmSampled <- cdmSample(cdm, n = 2)
cdmSampled$person %>%

select(person_id)

#> # Source: SQL [2 x 1]
#> # Database: DuckDB 0.6.1

cdmSubset 11

#> person_id

#> <dbl>
#> 1 155
#> 2 3422

DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

cdmSubset Subset a cdm object to a set of persons

Description

cdmSubset takes a cdm object and a list of person IDs as input. It returns a new cdm that includes
data only for persons matching the provided person IDs. Generated cohorts in the cdm will also be
subset to the IDs provided.

Usage

cdmSubset(cdm, personld)

Arguments

cdm A cdm_reference object

personld A numeric vector of person IDs to include in the cdm
Value

A modified cdm_reference object where all clinical tables are lazy queries pointing to subset

Examples

Not run:
library(CDMConnector)
library(dplyr, warn.conflicts = FALSE)

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())
cdm <- cdmFromCon(con, cdmSchema = "main")
cdm2 <- cdmSubset(cdm, personld = c(2, 18, 42))

cdm2$person %>%
select(1:3)
#> # Source: SQL [3 x 3]
#> # Database: DuckDB 0.6.1
#> person_id gender_concept_id year_of_birth
#> <dbl> <dbl> <dbl>

12 cdmSubsetCohort

#> 1 2 8532 1920
#> 2 18 8532 1965
#> 3 42 8532 1909

DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

cdmSubsetCohort Subset a cdm to the individuals in one or more cohorts

Description

cdmSubset will return a new cdm object that contains lazy queries pointing to each of the cdm
tables but subset to individuals in a generated cohort. Since the cdm tables are lazy queries, the
subset operation will only be done when the tables are used. computeQuery can be used to run the
SQL used to subset a cdm table and store it as a new table in the database.

Usage

cdmSubsetCohort(cdm, cohortTable = "cohort”, cohortId = NULL, verbose = FALSE)

Arguments
cdm A cdm_reference object
cohortTable The name of a cohort table in the cdm reference
cohortId IDs of the cohorts that we want to subset from the cohort table. If NULL (de-
fault) all cohorts in cohort table are considered.
verbose Should subset messages be printed? TRUE or FALSE (default)
Value

A modified cdm_reference with all clinical tables subset to just the persons in the selected cohorts.

Examples
Not run:
library(CDMConnector)
library(dplyr, warn.conflicts = FALSE)
con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())

cdm <- cdmFromCon(con, cdmSchema = "main"”, writeSchema = "main")

generate a cohort
path <- system.file("cohorts2”, mustWork = TRUE, package = "CDMConnector")

cohortSet <- readCohortSet(path) %>%

cdmWriteSchema

filter(cohort_name == "GIBleed_male")

subset cdm to persons in the generated cohort
cdm <- generateCohortSet(cdm, cohortSet = cohortSet, name = "gibleed")

cdmGiBleed <- cdmSubsetCohort(cdm, cohortTable = "gibleed")

cdmGiBleed$person %>%
tally()

#> # Source: SQL [1 x 1]

#> # Database: DuckDB 0.6.1

#> n
#> <dbl>
#> 1 237

cdm$person %>%

tally()
#> # Source: SQL [1 x 1]
#> # Database: DuckDB 0.6.1

#> n
#> <dbl>
#> 1 2694

DBI: :dbDisconnect(con, shutdown = TRUE)

End(Not run)

13

cdmWriteSchema Get cdm write schema

Description

Get cdm write schema

Usage

cdmWriteSchema(cdm)
Arguments

cdm A cdm reference object created by cdmFromCon
Value

The database write schema

14 computeDataHashByTable

Examples

Not run:
con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())

cdm <- cdmFromCon(con = con, cdmName = "Eunomia”,
cdmSchema = "main"”, writeSchema = "main”
cdmWriteSchema(cdm)

DBI: :dbDisconnect(con)

End(Not run)

computeDataHashByTable
Compute a hash for each CDM table

Description

Compute a hash for each CDM table

Usage

computeDataHashByTable (cdm)

Arguments

cdm A cdm_reference object created by cdmFromCon

Details

This function is used to track changes in CDM databases. It returns a dataframe with one hash for
each table. The hash is based on the overall row count and the number of unique values of one
column of the table. For clinical tables we count the number of unique concept IDs. For some
tables we do not calculate any unique value count (e.g. the location table) and simply use the total
row count.

‘r lifecycle::badge("experimental")

Value

A dataframe with one row per table, row counts, unique value counts for one column, and a hash

computeQuery 15

Examples

Not run:
library(CDMConnector)
con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())

cdm <- cdmFromCon(con, "main”, "main")
computeDataHashByTable (cdm)
cdmDisconnect (cdm)

End(Not run)

computeQuery Execute dplyr query and save result in remote database

Description

This function is a wrapper around dplyr: : compute that is tested on several database systems. It is
needed to handle edge cases where dplyr: : compute does not produce correct SQL.

Usage

computeQuery (
X,
name = uniqueTableName(),
temporary = TRUE,
schema = NULL,
overwrite = TRUE,

)
Arguments
X A dplyr query
name The name of the table to create.
temporary Should the table be temporary: TRUE (default) or FALSE
schema The schema where the table should be created. Ignored if temporary = TRUE.
overwrite Should the table be overwritten if it already exists: TRUE (default) or FALSE
Ignored if temporary = TRUE.
Further arguments passed on the dplyr: : compute
Value

A dplyr::tb1() reference to the newly created table.

16 copyCdmTo

Examples

Not run:
library(CDMConnector)

con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())
cdm <- cdmFromCon(con, "main")

create a temporary table in the remote database from a dplyr query
drugCount <- cdm$concept %>%

dplyr::count(domain_id == "Drug") %>%

computeQuery ()

create a permanent table in the remote database from a dplyr query
drugCount <- cdm$concept %>%

dplyr::count(domain_id == "Drug") %>%

computeQuery("tmp_table"”, temporary = FALSE, schema = "main”)

DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

copyCdmTo Copy a cdm object from one database to another

Description

It may be helpful to be able to easily copy a small test cdm from a local database to a remote for
testing. copyCdmTo takes a cdm object and a connection. It copies the cdm to the remote database
connection. CDM tables can be prefixed in the new database allowing for multiple cdms in a single
shared database schema.

Usage

copyCdmTo(con, cdm, schema, overwrite = FALSE)

Arguments
con A DBI database connection created by DBI: :dbConnect
cdm A cdm reference object created by CDMConnector : : cdmFromCon or CDMConnector: : cdm_from_con
schema schema name in the remote database where the user has write permission
overwrite Should the cohort table be overwritten if it already exists? TRUE or FALSE
(default)
Value

A cdm reference object pointing to the newly created cdm in the remote database

dateadd

17

dateadd Add days or years to a date in a dplyr query

Description

This function must be "unquoted" using the "bang bang" operator (!!). See example.

Usage

dateadd(date, number, interval = "day")

Arguments
date The name of a date column in the database table as a character string
number The number of units to add. Can be a positive or negative whole number.
interval The units to add. Must be either "day" (default) or "year"

Value

Platform specific SQL that can be used in a dplyr query.

Examples

Not run:
con <- DBI::dbConnect(duckdb: :duckdb())
date_tbl <- dplyr::copy_to(con, data.frame(datel = as.Date("”1999-01-01")),
name = "tmpdate”, overwrite = TRUE, temporary = TRUE)

df <- date_tbl %>%
dplyr::mutate(date2 = !!dateadd("date1l”, 1, interval = "year")) %>%
dplyr::collect()

DBI: :dbDisconnect(con, shutdown = TRUE)

End(Not run)

datediff Compute the difference between two days

Description

This function must be "unquoted" using the "bang bang" operator (!!). See example.

Usage

datediff(start, end, interval = "day")

18

datepart
Arguments
start The name of the start date column in the database as a string.
end The name of the end date column in the database as a string.
interval The units to use for difference calculation. Must be either "day" (default) or
"year".
Value
Platform specific SQL that can be used in a dplyr query.
Examples
Not run:
con <- DBI::dbConnect(duckdb: :duckdb())
date_tbl <- dplyr::copy_to(con, data.frame(datel = as.Date("1999-01-01")),
name = "tmpdate”, overwrite = TRUE, temporary = TRUE)
df <- date_tbl %>%
dplyr::mutate(date2 = !!dateadd("datel”, 1, interval = "year")) %>%
dplyr::mutate(dif_years = !!datediff("datel”, "date2", interval = "year")) %>%
dplyr::collect()
DBI::dbDisconnect(con, shutdown = TRUE)
End(Not run)
datepart Extract the day, month or year of a date in a dplyr pipeline
Description
Extract the day, month or year of a date in a dplyr pipeline
Usage
datepart(date, interval = "year”, dbms = NULL)
Arguments
date Character string that represents to a date column.
interval Interval to extract from a date. Valid options are "year", "month", or "day".

dbms Database system, if NULL it is auto detected.

dbms 19

Examples

Not run:

con <- DBI::dbConnect(duckdb: :duckdb(), ":memory:")

date_tbl <- dplyr::copy_to(con,
data.frame(birth_date = as.Date("”1993-04-19")),
name = "tmp",
temporary = TRUE)

df <- date_tbl %>%

dplyr::mutate(year = !!datepart("birth_date”, "year")) %>%
dplyr::mutate(month = !!datepart(”"birth_date”, "month")) %>%
dplyr::mutate(day = !!datepart("birth_date”, "day")) %>%

dplyr::collect()
DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

dbms Get the database management system (dbms) from a cdm_reference or
DBI connection

Description

Get the database management system (dbms) from a cdm_reference or DBI connection

Usage
dbms (con)

Arguments

con A DBI connection or cdm_reference

Value

A character string representing the dbms that can be used with SqlRender

Examples

Not run:

con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())
cdm <- cdmFromCon(con)

dbms (cdm)

dbms (con)

End(Not run)

20 downloadEunomiaData

dbSource Create a source for a cdm in a database.

Description

Create a source for a cdm in a database.

Usage

dbSource(con, writeSchema)

Arguments
con Connection to a database.
writeSchema Schema where cohort tables are. You must have read and write access to it.

downloadEunomiaData Download Eunomia data files

Description

Download the Eunomia data files from https://github.com/darwin-eu/EunomiaDatasets

Usage
downloadEunomiaData(
datasetName = "GiBleed”,
cdmVersion = "5.3",

pathToData = Sys.getenv("EUNOMIA_DATA_FOLDER"),
overwrite = FALSE

)
Arguments

datasetName The data set name as found on https://github.com/darwin-eu/EunomiaDatasets.
The data set name corresponds to the folder with the data set ZIP files

cdmVersion The OMOP CDM version. This version will appear in the suffix of the data file,
for example: synpuf_5.3.zip. Must be ’5.3” (default) or ’5.4’.

pathToData The path where the Eunomia data is stored on the file system., By default the
value of the environment variable "EUNOMIA_DATA_FOLDER" is used.

overwrite Control whether the existing archive file will be overwritten should it already

exist.

dropTable.db_cdm 21

Value

Invisibly returns the destination if the download was successful.

Examples

Not run:
downloadEunomiaData("GiBleed")

End(Not run)

dropTable.db_cdm Drop table from a database backed cdm object

Description

Tables will be dropped from the write schema of the cdm.

Usage

S3 method for class 'db_cdm'
dropTable(cdm, name)

Arguments
cdm a cdm_reference object
name A character vector of table names to be dropped
eunomiaDir Create a copy of an example OMOP CDM dataset
Description

Eunomia is an OHDSI project that provides several example OMOP CDM datasets for testing and
development. This function creates a copy of a Eunomia database in duckdb and returns the path
to the new database file. If the dataset does not yet exist on the user’s computer it will attempt to
download the source data to the the path defined by the EUNOMIA_DATA_FOLDER environment

variable.
Usage
eunomiaDir(
datasetName = "GiBleed”,
cdmVersion = "5.3",
databaseFile = tempfile(fileext = ".duckdb")

https://duckdb.org/

22

Arguments

datasetName

eunomiaDir

One of "GiBleed" (default), "synthea-allergies-10k", "synthea-anemia-10k", "synthea-
breast_cancer-10k", "synthea-contraceptives-10k", "synthea-covid19-10k", "synthea-
covid19-200k", "synthea-dermatitis-10k", "synthea-heart-10k", "synthea-hiv-10k",
"synthea-lung_cancer-10k", "synthea-medications-10k", "synthea-metabolic_syndrome-
10k", "synthea-opioid_addiction-10k", "synthea-rheumatoid_arthritis-10k", "synthea-
snf-10k", "synthea-surgery-10k", "synthea-total_joint_replacement-10k", "synthea-
veteran_prostate_cancer-10k", "synthea-veterans-10k", "synthea-weight loss-10k",

non

"empty_cdm", "synpuf-1k"
cdmVersion The OMOP CDM version. Must be "5.3" or "5.4".
databaseFile The full path to the new copy of the example CDM dataset.

Details

Most of the Eunomia datasets available in CDMConnector are from the Synthea project. Synthea
is an open-source synthetic patient generator that models the medical history of synthetic pa-
tients. The Synthea datasets are generated using the Synthea tool and then converted to the OMOP
CDM format using the OHDSI ETL-Synthea project https://ohdsi.github.io/ETL-Synthea/.
Currently the synthea datasets are only available in the OMOP CDM v5.3 format. See https:
//synthetichealth.github.io/synthea/ for details on the Synthea project.

In addition to Synthea, the Eunomia project provides the CMS Synthetic Public Use Files (Syn-
PUFs) in both 5.3 and 5.4 OMOP CDM formats. This data is synthetic US Medicare claims data
mapped to OMOP CDM format. The OMOP CDM has a set of optional metadata tables, called
Achilles tables, that include pre-computed analytics about the entire dataset such as record and
person counts. The Eunomia Synpuf datasets include the Achilles tables.

Eunomia also provides empty cdms that can be used as a starting point for creating a new exam-
ple CDM. This is useful for creating test data for studies or analytic packages. The empty CDM
includes the vocabulary tables and all OMOP CDM tables but the clinical tables are empty and
need to be populated with data. For additional information on creating small test CDM datasets see
https://ohdsi.github.io/omock/ and https://darwin-eu.github.io/TestGenerator/.

To contribute synthetic observational health data to the Eunomia project please open an issue at
https://github.com/OHDSI/Eunomia/issues/

Setup: To use the eunomiaDir function please set the EUNOMIA_DATA_FOLDER in your .Renviron file
to a folder on your computer where the datasets will be downloaded to. This file can be opened by
calling usethis::edit_r_environ().

Value

The file path to the new Eunomia dataset copy

Examples

Not run:

The defaults GiBleed dataset is a small dataset that is useful for testing
library(CDMConnector)
con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())

https://ohdsi.github.io/ETL-Synthea/
https://synthetichealth.github.io/synthea/
https://synthetichealth.github.io/synthea/
https://ohdsi.github.io/omock/
https://darwin-eu.github.io/TestGenerator/
https://github.com/OHDSI/Eunomia/issues/

eunomialsAvailable

cdm <- cdmFromCon(con, "main”, "main")
cdmDisconnect (cdm)

Synpuf datasets include the Achilles tables

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir("synpuf-1k”, "5.3"))
cdm <- cdmFromCon(con, "main”, "main”, achillesSchema = "main")
cdmDisconnect (cdm)

Currently the only 5.4 dataset is synpuf-1k

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir("synpuf-1k"”, "5.4"))
cdm <- cdmFromCon(con, "main”, "main”, achillesSchema = "main")
cdmDisconnect (cdm)

End(Not run)

23

eunomialsAvailable Has the Eunomia dataset been cached?

Description

Has the Eunomia dataset been cached?

Usage

eunomialsAvailable(datasetName = "GiBleed”, cdmVersion = "5.3")
Arguments

datasetName Name of the Eunomia dataset to check. Defaults to "GiBleed".

cdmVersion Version of the Eunomia dataset to check. Must be "5.3" or "5.4".
Value

TRUE if the eunomia example dataset is available and FALSE otherwise

exampleDatasets List the available example CDM datasets

Description

List the available example CDM datasets

Usage

exampleDatasets()

24 generateCohortSet

Value

A character vector with example CDM dataset identifiers

Examples

Not run:
library(CDMConnector)
exampleDatasets()[1]
#> [1] "GiBleed”

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir("GiBleed"))
cdm <- cdmFromCon(con)

End(Not run)

generateCohortSet Generate a cohort set on a cdm object

Description
A "cohort_table" object consists of four components

¢ A remote table reference to an OHDSI cohort table with at least the columns: cohort_definition_id,
subject_id, cohort_start_date, cohort_end_date. Additional columns are optional and some
analytic packages define additional columns specific to certain analytic cohorts.

* A settings attribute which points to a remote table containing cohort settings including the
names of the cohorts.

* An attrition attribute which points to a remote table with attrition information recorded dur-
ing generation. This attribute is optional. Since calculating attrition takes additional compute
it can be skipped resulting in a NULL attrition attribute.

* A cohortCounts attribute which points to a remote table containing cohort counts

Each of the three attributes are tidy tables. The implementation of this object is experimental and
user feedback is welcome.

[Experimental] One key design principle is that cohort_table objects are created once and can
persist across analysis execution but should not be modified after creation. While it is possible to
modify a cohort_table object doing so will invalidate it and it’s attributes may no longer be accurate.

Usage

generateCohortSet(
cdm,
cohortSet,
name,
computeAttrition = TRUE,
overwrite = TRUE

generateConceptCohortSet 25

Arguments
cdm A cdm reference created by CDMConnector. write_schema must be specified.
cohortSet A cohortSet dataframe created with readCohortSet ()
name Name of the cohort table to be created. This will also be used as a prefix for the
cohort attribute tables. This must be a lowercase character string that starts with
a letter and only contains letters, numbers, and underscores.
computeAttrition
Should attrition be computed? TRUE (default) or FALSE
overwrite Should the cohort table be overwritten if it already exists? TRUE (default) or
FALSE
Examples
Not run:

library(CDMConnector)
con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())
cdm <- cdmFromCon(con,

cdmSchema = "main”,

writeSchema = "main")

cohortSet <- readCohortSet(system.file("cohorts2”, package = "CDMConnector"))
cdm <- generateCohortSet(cdm, cohortSet, name = "cohort")

print(cdm$cohort)
attrition(cdm$cohort)
settings(cdm$cohort)

cohortCount (cdm$cohort)

End(Not run)

generateConceptCohortSet
Create a new generated cohort set from a list of concept sets

Description

Generate a new cohort set from one or more concept sets. Each concept set will result in one cohort
and represent the time during which the concept was observed for each subject/person. Concept
sets can be passed to this function as:

* A named list of numeric vectors, one vector per concept set
* A named list of Capr concept sets

Clinical observation records will be looked up in the respective domain tables using the vocabulary
in the CDM. If a required domain table does not exist in the cdm object a warning will be given.
Concepts that are not in the vocabulary or in the data will be silently ignored. If end dates are
missing or do not exist, as in the case of the procedure and observation domains, the the start date
will be used as the end date.

26 generateConceptCohortSet

Usage
generateConceptCohortSet(
cdm,
conceptSet = NULL,
name,
limit = "first”,
requiredObservation = c(0, 0),
end = "observation_period_end_date",

subsetCohort = NULL,
subsetCohortId = NULL,
overwrite = TRUE

)
Arguments
cdm A cdm reference object created by CDMConnector : : cdmFromCon or CDMConnector: : cdm_from_con
conceptSet A named list of numeric vectors or a Concept Set Expression created omopgenerics: : newConceptSetEx|
name The name of the new generated cohort table as a character string
limit Include "first" (default) or "all" occurrences of events in the cohort
* "first" will include only the first occurrence of any event in the concept set
in the cohort.
* "all" will include all occurrences of the events defined by the concept set in
the cohort.
requiredObservation
A numeric vector of length 2 that specifies the number of days of required ob-
servation time prior to index and post index for an event to be included in the
cohort.
end How should the cohort_end_date be defined?

 "observation_period_end_date" (default): The earliest observation_period_end_date
after the event start date

e numeric scalar: A fixed number of days from the event start date

* "event_end_date": The event end date. If the event end date is not populated
then the event start date will be used

subsetCohort A cohort table containing the individuals for which to generate cohorts for. Only
individuals in the cohort table will appear in the created generated cohort set.

subsetCohortId A set of cohort IDs from the cohort table for which to include. If none are
provided, all cohorts in the cohort table will be included.

overwrite Should the cohort table be overwritten if it already exists? TRUE (default) or
FALSE.

Value

A cdm reference object with the new generated cohort set table added

inSchema 27

inSchema Helper for working with compound schemas

Description

This is similar to dbplyr::in_schema but has been tested across multiple database platforms. It only
exists to work around some of the limitations of dbplyr::in_schema.

Usage

inSchema(schema, table, dbms = NULL)

Arguments

schema A schema name as a character string

table A table name as character string

dbms The name of the database management system as returned by dbms (connection)
Value

A DBI::1d that represents a qualified table and schema

listTables List tables in a schema

Description

DBI::dbListTables can be used to get all tables in a database but not always in a specific schema.
listTables will list tables in a schema.

Usage

listTables(con, schema = NULL)

Arguments

con A DBI connection to a database

schema The name of a schema in a database. If NULL, returns DBI::dbListTables(con).
Value

A character vector of table names

28

requireEunomia
Examples
Not run:
con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())
listTables(con, schema = "main")

End(Not run)

readCohortSet Read a set of cohort definitions into R

Description

A "cohort set" is a collection of cohort definitions. In R this is stored in a dataframe with co-
hort_definition_id, cohort_name, and cohort columns. On disk this is stored as a folder with a
CohortsToCreate.csv file and one or more json files. If the CohortsToCreate.csv file is missing then
all of the json files in the folder will be used, cohort_definition_id will be automatically assigned in
alphabetical order, and cohort_name will match the file names.

Usage
readCohortSet(path)
Arguments
path The path to a folder containing Circe cohort definition json files and optionally
a csv file named CohortsToCreate.csv with columns cohortld, cohortName, and
jsonPath.
requireEunomia Require eunomia to be available. The function makes sure that you
can later create a eunomia database with eunomiaDir ().
Description

Require eunomia to be available. The function makes sure that you can later create a eunomia
database with eunomiaDir ().

Usage

requireEunomia(datasetName = "GiBleed”, cdmVersion = "5.3")
Arguments

datasetName Name of the Eunomia dataset to check. Defaults to "GiBleed".

cdmVersion Version of the Eunomia dataset to check. Must be "5.3" or "5.4".

snapshot 29

Value

Path to eunomia database.

snapshot Extract CDM metadata

Description

Extract the name, version, and selected record counts from a cdm.

Usage

snapshot(cdm, computeDataHash = FALSE)

Arguments
cdm A cdm object
computeDataHash
Compute a hash of the CDM. See ?DatabaseConnector::computeDataHash for
details.
Value

A named list of attributes about the cdm including selected fields from the cdm_source table and
record counts from the person and observation_period tables

Examples

Not run:

library(CDMConnector)

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())
cdm <- cdmFromCon(con, "main")

snapshot (cdm)

DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

30 summariseQuantile

summariseQuantile Quantile calculation using dbplyr

Description
This function provides DBMS independent syntax for quantiles estimation. Can be used by itself
or in combination with mutate () when calculating other aggregate metrics (min, max, mean).

summarise_quantile(), summarize_quantile(), summariseQuantile() and summarizeQuantile()
are synonyms.

Usage

summariseQuantile(.data, x = NULL, probs, nameSuffix = "value")
Arguments

.data lazy data frame backed by a database query.

X column name whose sample quantiles are wanted.

probs numeric vector of probabilities with values in [0,1].

nameSuffix character; is appended to numerical quantile value as a column name part.
Details

Implemented quantiles estimation algorithm returns values analogous to quantile{stats} with ar-
gument type = 1. See discussion in Hyndman and Fan (1996). Results differ from PERCENTILE_CONT
natively implemented in various DBMS, where returned values are equal to quantile{stats} with
default argument type = 7

Value

An object of the same type as ’.data’

Examples

Not run:
con <- DBI::dbConnect(duckdb: :duckdb())
mtcars_tbl <- dplyr::copy_to(con, mtcars, name = "tmp"”, overwrite = TRUE, temporary = TRUE)

df <- mtcars_tbl %>%

dplyr::group_by(cyl) %>%

dplyr::mutate(mean = mean(mpg, na.rm = TRUE)) %>%

summariseQuantile(mpg, probs = c(0, 0.2, 0.4, 0.6, 0.8, 1),
nameSuffix = "quant") %>%

dplyr::collect()

DBI: :dbDisconnect(con, shutdown = TRUE)

End(Not run)

summariseQuantile2 31

summariseQuantile? Quantile calculation using dbplyr

Description

This function provides DBMS independent syntax for quantile estimation. Some database systems
do not have a quantile function. The SQL generated by summarizeQuantile2 should work on all
supported database systems. This function can be added to a dplyr pipeline and adds an additional
query to the input. No computation is triggered by summarizeQuantile?2 if the input is a tbl
reference to a database table.

Usage
summariseQuantile2(.data, x, probs, nameSuffix = "{x3}")
Arguments
.data lazy data frame backed by a database query created by dplyr::tbl().
X A string vector of column names whose sample quantiles are wanted.
probs A numeric vector of probabilities with values in [0,1].
nameSuffix A single character character string, evaluated by glue: : glue() that is appended
to numerical quantile value as a column name part.
Details

Implemented quantiles estimation algorithm returns values analogous to quantile{stats} with ar-
gument type = 1. See discussion in Hyndman and Fan (1996). Results differ from PERCENTILE_CONT
natively implemented in various DBMS, where returned values are equal to quantile{stats} with
default argument type = 7

[Experimental]

Value

A lazy query with quantile calculation added. The result (after computation) will have one row per
combination of grouping variables and one column for every variable/quantile combination. (see
examples)

Examples

Not run:
con <- DBI::dbConnect(duckdb: :duckdb())
mtcars_tbl <- dplyr::copy_to(con, mtcars, name = "tmp"”, overwrite = TRUE, temporary = TRUE)

quantiles for a single column
mtcars_tbl %>%
dplyr::group_by(cyl) %>%
dplyr::mutate(mean = mean(mpg, na.rm = TRUE)) %>%

32 tblGroup

summariseQuantile2("mpg"”, probs = c(@, 0.2, 0.4, 0.6, 0.8, 1), nameSuffix = "quant") %>%
dplyr::collect()

#> cyl p@_quant p20_quant p4@_quant p60@_quant p8@_quant p100_quant

#> 6 17.8 18.1 19.2 21 21 21.4
#> 8 10.4 13.3 15 15.5 17.3 19.2
#> 4 21.4 22.8 24.4 27.3 30.4 33.9

multiple columns
mtcars_tbl %>%
dplyr::group_by(cyl) %>%
dplyr::mutate(mean = mean(mpg, na.rm = TRUE)) %>%
summariseQuantile2(c("mpg"”, "hp", "wt"), probs = c(0.2, 0.8), nameSuffix = "{x}_quant") %>%
dplyr::collect()

#> cyl p20_mpg_quant p8@_mpg_quant p2@_hp_quant p80_hp_quant p20_wt_quant p80_wt_quant

#> 4 22.8 30.4 65 97 1.84 2.78
#> 6 18.1 21 110 123 2.77 3.44
#> 8 13.3 17.3 175 245 3.44 5.25

DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

tb1lGroup CDM table selection helper

Description

The OMOP CDM tables are grouped together and the tb1Group function allows users to easily
create a CDM reference including one or more table groups.

Usage
tb1Group(group)
Arguments
group A character vector of CDM table groups: "vocab", "clinical", "all", "default",
"derived".
Details

The "default" table group is meant to capture the most commonly used set of CDM tables. Cur-
rently the "default" group is: person, observation_period, visit_occurrence, visit_detail, condi-
tion_occurrence, drug_exposure, procedure_occurrence, device_exposure, measurement, observa-
tion, death, note, note_nlp, specimen, fact_relationship, location, care_site, provider, payer_plan_period,
cost, drug_era, dose_era, condition_era, concept, vocabulary, concept_relationship, concept_ancestor,
concept_synonym, drug_strength

version

Value

A character vector of CDM tables names in the groups

Examples

Not run:

con <- DBI::dbConnect(RPostgres: :Postgres(),
dbname = "cdm”,
host = "localhost”,
user = "postgres”,
password = Sys.getenv("PASSWORD"))

cdm <- cdmFromCon(con, cdmName = "test"”, cdmSchema = "public") %>%

cdmSelectTbl(tb1lGroup(”vocab"))

End(Not run)

version Get the CDM version

Description

Extract the CDM version attribute from a cdm_reference object

Usage

version(cdm)

Arguments

cdm A cdm object

Value

"5.3"or "5.4"

Examples

Not run:

library(CDMConnector)

con <- DBI::dbConnect(duckdb: :duckdb(), eunomiaDir())

cdm <- cdmFromCon(con, cdmSchema = "main”, writeSchema = "main")
version(cdm)

DBI::dbDisconnect(con, shutdown = TRUE)

End(Not run)

Index

appendPermanent, 3
asDate, 4

benchmarkCDMConnector, 4

cdmCon, 5
cdmDisconnect.db_cdm, 6
cdmFlatten, 6
cdmFromCon, 8
cdmSample, 10
cdmSubset, 11
cdmSubsetCohort, 12
cdmWriteSchema, 13

computeDataHashByTable, 14

computeQuery, 15
copyCdmTo, 16

dateadd, 17

datediff, 17
datepart, 18

dbms, 19

dbSource, 20
downloadEunomiaData, 20
dropTable.db_cdm, 21

eunomiaDir, 21
eunomialsAvailable, 23
exampleDatasets, 23

generateCohortSet, 24

generateConceptCohortSet, 25

inSchema, 27
listTables, 27

readCohortSet, 28
requireEunomia, 28

snapshot, 29
summariseQuantile, 30

summariseQuantile?2, 31
tb1lGroup, 32

version, 33

	appendPermanent
	asDate
	benchmarkCDMConnector
	cdmCon
	cdmDisconnect.db_cdm
	cdmFlatten
	cdmFromCon
	cdmSample
	cdmSubset
	cdmSubsetCohort
	cdmWriteSchema
	computeDataHashByTable
	computeQuery
	copyCdmTo
	dateadd
	datediff
	datepart
	dbms
	dbSource
	downloadEunomiaData
	dropTable.db_cdm
	eunomiaDir
	eunomiaIsAvailable
	exampleDatasets
	generateCohortSet
	generateConceptCohortSet
	inSchema
	listTables
	readCohortSet
	requireEunomia
	snapshot
	summariseQuantile
	summariseQuantile2
	tblGroup
	version
	Index

