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CICI-package Causal Inference with Continuous (Multiple Time Point) Interventions

Description

This package facilitates the estimation of counterfactual outcomes for multiple values of continuous
interventions at different time points, and allows plotting of causal dose-response curves.
It offers implementations of both the (semi-)parametric g-formula and the sequential g-computation
formula. Positivity violations can be detected with diagnostics, and addressed either through feasi-
ble intervention strategies, or outcome weights. Details are given in Schomaker et al. (2025) and
Bao and Schomaker (2025), see references below.
Details
Package:  CICI
Type: Package
Version:  0.9.8
Date: 2025-12-19
License:  GPL-2
Depends: R (>=4.0)
Imports: mgcv, glmnet, ggplot2, parallel, doParallel, foreach, doRNG, rngtools, SuperLearner, survival
Suggests:  haldensify, hal9001
Author(s)

Michael Schomaker

Maintainer: Michael Schomaker <michael.schomaker @stat.uni-muenchen.de>
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References

Schomaker M, Mcllleron H, Denti P, Diaz 1. (2024) Causal Inference for Continuous Multiple Time
Point Interventions, Statistics in Medicine, 43:5380-5400, see also https://arxiv.org/abs/2305.06645.

Bao H, Schomaker M (2025) Addressing Positivity Violations in Continuous Interventions through
Data-Adaptive Strategies, arXiv ePrint, https://arxiv.org/abs/2502.14566.

calc.weights

Calculate outcome weights to address positivity violations

Description

The weights are calculated according to formula (14) in Schomaker et al. (2023).

Usage

calc.weights(X, Anodes = NULL, Ynodes = NULL, Lnodes = NULL, Cnodes = NULL,

Arguments

X
Anodes
Ynodes

Lnodes

Cnodes
abar

times

screen

survival

eps

zero

abar = NULL, times = length(Anodes), ¢ = 0.01, screen = FALSE,
survival = FALSE, eps = 1le-10, zero = 0,
d.method = c("binning”, "parametric”, "hal_density”, "hazardbinning"),

z.method = c("density”, "eps”), w.function = "gal_ga",
for.sgf = TRUE,
verbose = TRUE, ...)

A data frame, following the time-ordering of the variables.
A character string of column names in X of the intervention variable(s).
A character string of column names in X of the outcome variable(s).

A character string of column names in X of all confounders, both baseline and
time-varying.

A character string of column names in X of the censoring variable(s).
Numeric vector or matrix of intervention values. See Details.

Numeric value specifying for how many time points the weights should be cal-
culated.

A numeric value (or vector) specifying the threshold(s) below which the weights
correspond to the density ratios, rather than 1.

Logical. If TRUE, variable screening with LASSO is performed prior to estimat-
ing the conditional densities for the weights.

Logical. If TRUE, a survival setting is assumed and taken into account for model
specification.

A numeric value specifying epsilon if z.method="eps". See details.

A numeric value specifying which actual number is considered to be "zero" in
the denominator.
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d.method A string specifying which method should be used to estimate the conditional
density. One of "binning"”, "parametric”, "hal_density".

z.method A string specifying the method which should be used if the denominator is zero:
The default is "density”, which modifies the density according to formula (14)
in Schomaker et al. (2023). Alternatively, "eps" replaces the denominator with
a fixed value specified under eps.

w. function A string specifying the weight function which specifies how the conditional den-
sities from numerator and denominator as well as ¢ should be combined. Cur-
rently, "gal_ga" equates to formula (14) of Schomaker et al. (2023); whereas
"gal_ga2" equates to the same weights, but where the cutoff for ¢ to define
positivity violations is not based on the conditional treatment density alone, but
relative to the density defined in the denominator.

for.sgf Logical. If TRUE, weights are organized such that they fit the order required for
sgf.
verbose Logical. If TRUE, notes and warnings are printed.

Further arguments to be passed on.

Details

Calculates the outcome weights as described in formula (14) of Schomaker et al. (2023).

If d.method="parametric”, parametric conditional density estimation with generalized (additive
models) is used. Under d.method="binning” the continuous intervention is categorized into
length(abar) bins, and then logistic (additive) models are used to approximate the conditional
treatment density. The method d.method="hal_density” estimates the conditional treatment
density non-parametrically using highly adaptive LASSO density estimation, as implemented in
haldensify. This option is experimental so far, and may take long, especially if the sample size is
large.

In survival settings, past censoring and outcome nodes are omitted from the formulae. If censoring
is present without a survival setting (e.g. Cnodes describe drop-outs and Y is a continuous outcome),
then survival should be set as FALSE.

Value

An object of class Yweights. This is a named list of length of c; each list entry is another list of
length(number of time points); each entry is a matrix of size n times I (n=sample size; [=number of
Interventions).

Author(s)

Michael Schomaker

References

Schomaker M, Mcllleron H, Denti P, Diaz 1. (2023) Causal Inference for Continuous Multiple Time
Point Interventions, ArXiv e-prints: https://arxiv.org/abs/2305.06645.



contrast 5

Examples
data(EFV)
w <- calc.weights(X=EFV, Lnodes = c("sex", "metabolic”,
"log_age”, "NRTI" ,"weight.0",
"adherence.1","weight.1",
"adherence.2","weight.2",
"adherence. 3", "weight.3",
"adherence.4","weight.4"),
Ynodes = c("VL.@","VL.1","VL.2", "VL.3" "VL.4"),
Anodes = c("efv.Q@","efv.1","efv.2","efv.3","efv.4"),
d.method="parametric”, abar=seq(9,5,1), c=0.01)
summary (w)

# w can now be used under 'Yweights' in sgf()

contrast Counterfactual contrast from the parametric or sequential g-formula
for continuous multiple time point interventions

Description

Estimation of a contrast between counterfactual outcomes under different values of (continuous)
interventions, or across different time points, using the parametric or sequential g-formula.

Usage
contrast(X, abar, nodes, contrastType = "difference”, measure = mean,
cond = NULL, cilevel = 0.95, ...)
Arguments
X An object of class gformula produced by gformula, with option ret = TRUE, or
sgf.
abar Numeric vector or the string ’natural’. Specifies the intervention value(s) for
the contrast. If two values are given, a contrast between these two interven-
tion regimes is computed at the same outcome node. If a single value is given
and nodes has two elements, a contrast between time points is computed under
that intervention. If more than two entries are given, contrastType must be a
custom function. See Details.
nodes A character string vector specifying the variable(s) used in the contrast. If two

values are given, a temporal contrast is computed (e.g., outcome change over
time under the same intervention level). If more than two entries are given,
contrastType must be a custom function. See Details.
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contrastType Type of contrast to compute between the counterfactual measures. Accepts one
of “difference’, 'ratio’, ’oddsratio’, or a user-defined function taking length(abar)
* length(nodes) numeric arguments and returning a numeric value. The de-
fault is ’difference’.

measure Specifies the summary measure applied to the post-intervention counterfactual
data. Defaults to mean.

cond Optional filtering condition(s) applied to the post-intervention counterfactual
data. Must be a quoted expression, e.g., cond = quote(sex == 1), or a list of
quoted expressions, e.g., cond = list(quote(sex == 1), quote(sex ==0)).

cilevel Numeric value between 0 and 1 specifying the confidence level of the bootstrap
confidence intervals. Defaults to 95%.

Additional arguments to be passed to measure.

Details

Causal effects are defined as contrasts between the distributions of counterfactual variables under
different interventions, across different time points or across different covariate strata. The coun-
terfactual distributions to compare must be uniquely determined, by either specifying two values
of abar at a single nodes or two nodes at a single intervention level abar or the natural course
scenario with abar = 'natural’ or two covariate strata cond. If the natural course scenario is se-
lected and two nodes are specified, the natural intervention is compared across the two nodes. If
one nodes is specified, the natural and observed scenarios are compared at a single node.

By default, the difference between the expectations of the two counterfactual outcome distributions
is calculated. The difference can be exchanged for a ratio, odds ratio or custom contrast in the
contrastType argument, and expectations can be exchanged for custom measures in the measure
argument. Conditional measures can be specified through the cond argument. Custom contrasts,
including those comparing more than two counterfactuals, can be defined by passing a function to
contrastType.

Confidence intervals are based on the nonparametric bootstrap with B samples.

Value

Returns a list of class contrastResult:

counterfactuals
The estimated measures of the counterfactual distributions.

contrast The estimated contrast between the counterfactual measures.
ciContrast The lower and upper bounds of the bootstrap confidence interval for the contrast.
B The number of successful bootstrap samples. Will usually be equal to the input
B.
varContrast The estimated bootstrap variance of the contrast.
See Also

gformula and sgf for estimating expected counterfactual outcomes under multiple intervention
values and custom.measure for measures other than expectations.
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Examples

data(EFV)
gf1 <- gformula(
X = EFV, Anodes = c("efv.0", "efv.1", "efv.2", "efv.3", "efv.4"),
Ynodes = c("VL.@", "VL.1", "VL.2", "VL.3", "VL.4"),
Lnodes = c("adherence.1"”, "weight.1", "adherence.2", "weight.2",
"adherence.3", "weight.3", "adherence.4", "weight.4"),
abar = seq(1, 5), B = 10, ret = TRUE

# compare outcomes at last time point under (1,...,1) and (5,...,5)
contrast(gf1, abar = c¢(1, 5), nodes = "VL.4")

# compare outcomes at different time points, for same intervention (2,...)
contrast(gf1, abar = 2, nodes = c("VL.3", "VL.2"))

# compare own measure (rel. risk reduction) instead of mean
# ... and conditional on subset
relativeRiskReduction <- function(k, 1){(k - 1) / k}

contrast(
gf1, abar = c(1, 2), nodes = "VL.4",
contrastType = relativeRiskReduction,
cond = quote(sex == 1)

)

# Instead of the mean, any other measure can be taken,
# and - of course - applied also to counterfactual Lnodes
contrast(
gf1, abar = 2, nodes = c("weight.3", "weight.2"),
measure = median

custom.measure Custom estimands after applying gformula

Description

The default estimate returned by gformula is the expected outcome under the respective interven-
tion strategies abar. custom.measure takes an object of class gformula and enables estimation of
other estimands based on the counterfactual datasets produced by gformula (if the option ret=TRUE
had been chosen), for example estimands conditional on baseline variables, quantiles instead of ex-
pectations, and others.

Usage

custom.measure(X, fun = NULL, cond = NULL, verbose = TRUE, with.se = FALSE,
cilevel = 0.95, ...)



Arguments

X

fun
cond
verbose
with.se
cilevel

Details

custom.measure

An object of class gformula produced by gformula with option ret=TRUE.
A function to be applied to the outcome(s) of the counterfactual data set.

A string containing a condition to be applied to the counterfactual datasets.
Logical. TRUE if notes should be printed.

Logical. TRUE if standard deviation should be calculated and returned.

Numeric value between 0 and 1 specifying the confidence level. Defaults to
95%.

other parameters to be passed to fun

In settings with censoring, it will often be needed to pass on the option na.rm=T, e.g. for the mean,
median, quantiles, and others.

Calculation of the bootstrap standard error (i.e., with.se=T) is typically not needed; but, for exam-
ple, necessary for the calculations after multiple imputation and hence used by mi.boot.

Value

An object of class gformula. See gformula for details.

See Also

see also gformula

Examples

data(EFV)

est <- gformula(X=EFV,

est

Lnodes = c("adherence.1"”,"weight.1",
"adherence.2","weight.2",
"adherence.3","weight.3",
"adherence.4","weight.4"

),

Ynodes = c("VL.Q","VL.1","VL.2","VL.3","VL.4"),

Anodes = c("efv.0","efv.1","efv.2","efv.3","efv.4"),
abar=seq(0,2,1), ret=TRUE

custom.measure(est, fun=prop,categ=1) # identical
custom.measure(est, fun=prop,categ=0)
custom.measure(est, fun=prop, categ=0, cond="sex==1")

# note:

metabolic has been recoded internally (see output above)

custom.measure(est, fun=prop, categ=0, cond="metabolic==0")
# does not make sense here, just for illustration (useful for metric outcomes)
custom.measure(est, fun=quantile, probs=0.1)
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EFV Pharmacoepidemiological HIV treatment data

Description

A hypothetical, simulated dataset which is line with the data-generating process of Schomaker et
al. (2024) and inspired by the data of Bienczak et al. (2017); see references below.

Usage
data(EFV)

Format
A data frame with 5000 observations on the following variables:

sex The patient’s sex

metabolic Metabolism status (slow, intermediate, extensive) related to the single nucleotide poly-
morphisms in the CYP2B6 gene, which is relevant for metabolizing evafirenz and directly
affects its concentration in the body.

log_age log(age) at baseline

NRTI Nucleoside reverse transcriptase inhibitor (NRTI) component of HIV treatment, i.e. abacavir,
stavudine or zidovudine.

weight.@ log(weight) at time O (baseline)

efv.0@ Efavirenz concentration at time O (baseline)

VL.@ Elevated viral load (viral failure) at time O (baseline)
adherence.1 Adherence at time 1 (if 0, then signs of non-adherence)
weight.1 log(weight) at time 1

efv.1 Efavirenz concentration at time 1

VL.1 Elevated viral load (viral failure) at time 1

adherence.2 Adherence at time 2 (if 0, then signs of non-adherence)
weight.2 log(weight) at time 2

efv.2 Efavirenz concentration at time 2

VL.2 Elevated viral load (viral failure) at time 2

adherence.3 Adherence at time 3 (if 0, then signs of non-adherence)
weight.3 log(weight) at time 3

efv.3 Efavirenz concentration at time 3

VL. 3 Elevated viral load (viral failure) at time 3

adherence.4 Adherence at time 4 (if 0, then signs of non-adherence)
weight.4 log(weight) at time 4

efv.4 Efavirenz concentration at time 4

VL.4 Elevated viral load (viral failure) at time 4
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References

Schomaker M, Mcllleron H, Denti P, Diaz 1. (2024) Causal Inference for Continuous Multiple Time
Point Interventions, Statistics in Medicine, 43:5380-5400, see also https://arxiv.org/abs/2305.06645.

Bienczak et al. (2017) Determinants of virological outcome and adverse events in African children
treated with paediatric nevirapine fixed-dose-combination tablets, AIDS, 31:905-915

Examples

data(EFV)
str(EFV)

EFVfull Pharmacoepidemiological HIV treatment data

Description

A hypothetical, simulated dataset which is line with the data-generating process of Schomaker et
al. (2024) and inspired by the data of Bienczak et al. (2017); see references below. Compared to
the dataset EFV, it contains all variables of the DAG in Figure 3 of Schomaker et al. (2023), also
those which are not needed for identification of the counterfactual quantity of interest; that is, the
expected viral suppression (VL) under a specific intervention on efavirenz concentrations (efv.o,
efv.1, ...).

Usage
data(EFVfull)

Format

A data frame with 5000 observations on the following variables:

sex The patient’s sex

metabolic Metabolism status (slow, intermediate, extensive) related to the single nucleotide poly-
morphisms in the CYP2B6 gene, which is relevant for metabolizing evafirenz and directly
affects its concentration in the body.

log_age log(age) at baseline

NRTI Nucleoside reverse transcriptase inhibitor (NRTI) component of HIV treatment, i.e. abacavir,
stavudine or zidovudine.

weight.@ log(weight) at time O (baseline)

comorbidity.@ Presence of co-morbidities at time 0 (baseline)
dose.@ Dose of efavirenz administered at time O (basline)
efv.0@ Efavirenz concentration at time O (baseline)

VL.0 Elevated viral load (viral failure) at time O (baseline)

adherence.1 Adherence at time 1 (if 0, then signs of non-adherence)
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weight.1 log(weight) at time 1

comorbidity.1 Presence of co-morbidities at time 1

dose.1 Dose of efavirenz administered at time 1

efv.1 Efavirenz concentration at time 1

VL.1 Elevated viral load (viral failure) at time 1

adherence.2 Adherence at time 2 (if 0, then signs of non-adherence)
weight.2 log(weight) at time 2

comorbidity.2 Presence of co-morbidities at time 2

dose.2 Dose of efavirenz administered at time 2

efv.2 Efavirenz concentration at time 2

VL.2 Elevated viral load (viral failure) at time 2

adherence.3 Adherence at time 3 (if 0, then signs of non-adherence)
weight.3 log(weight) at time 3

comorbidity.3 Presence of co-morbidities at time 3

dose.3 Dose of efavirenz administered at time 3

efv.3 Efavirenz concentration at time 3

VL. 3 Elevated viral load (viral failure) at time 3

adherence.4 Adherence at time 4 (if 0, then signs of non-adherence)
weight.4 log(weight) at time 4

comorbidity.4 Presence of co-morbidities at time 4

dose.4 Dose of efavirenz administered at time 4

efv.4 Efavirenz concentration at time 4

VL.4 Elevated viral load (viral failure) at time

References

Schomaker M, Mcllleron H, Denti P, Diaz 1. (2024) Causal Inference for Continuous Multiple Time
Point Interventions, Statistics in Medicine, 43:5380-5400, see also https://arxiv.org/abs/2305.06645.

Bienczak et al. (2017) Determinants of virological outcome and adverse events in African children
treated with paediatric nevirapine fixed-dose-combination tablets, AIDS, 31:905-915

Examples

data(EFVfull)
str(EFVfull)
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feasible

feasible

Estimate Feasible Intervention Strategies

Description

Estimate a family of feasible intervention strategies for a continuous treatment (and optionally time-
varying covariates). The method returns, for each intervention strategy, the corresponding “feasible”
intervention values and a summary of overlap and positivity-violation diagnostics.

Usage

feasible(

X, Anodes = NULL, Ynodes = NULL, Lnodes = NULL, Cnodes = NULL,

abar
alpha

0.95, grid.size = 0.5, tol = 1e-2,

left.boundary = NULL, right.boundary = NULL,

screen = FALSE, survival = FALSE,
d.method = c("hazardbinning”, "binning", "parametric”, "hal_density"),
verbose = TRUE,
)
Arguments
X A data frame containing all nodes in temporal order. Columns must include the
treatment, outcome, covariate and censoring nodes specified in Anodes, Ynodes,
Lnodes, and Cnodes.
Anodes Character vector giving the column names in X of the (possibly time-varying)
treatment nodes. These define the treatment history.
Ynodes Character vector giving the column names in X of the outcome nodes. At least
one outcome node must be specified, and all of them must occur after the first
treatment node in the column ordering of X.
Lnodes Optional character vector of confounder nodes. May be NULL if there are no
such nodes.
Cnodes Optional character vector of censoring (or competing event) nodes. May be
NULL if there is no censoring.
abar Numeric vector or matrix specifying the target interventions.

e If a vector, each element defines a static intervention that sets the treatment
to that value at all time points. In this case, each strategy corresponds to a
single scalar target value.

e If a matrix, rows index intervention strategies and columns index time
points (one column per element in Anodes). Then abar[k, t] is the tar-
get treatment value for strategy k at time t.

The argument must be numeric; NULL is not allowed.
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alpha

grid.size

tol

left.boundary

right.boundary

screen

survival

d.method

verbose

Details
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Numeric scalar in (@, 1) controlling the density-truncation level. For each ob-
servation and time point, the method finds the smallest density threshold f, such
that at most alpha of the total mass lies above this threshold. Cells with density
below f, are treated as “infeasible”. Default is @. 95.

Positive numeric scalar giving the spacing of the grid used to approximate the
treatment density. If NULL, no internal grid is constructed and abar itself is used
as the grid of evaluation points (this is only allowed when abar is a vector).
Defaultis @.5.

Non-negative numeric tolerance used when combining abar with the grid. Points
closer than tol to an element of abar are considered duplicates and are dropped
from the internal grid before merging with abar. Default is 1e-2.

Optional numeric scalar setting the left boundary of the grid used to approximate
the treatment density. If NULL, the minimum of the observed treatment values
and abar is used.

Optional numeric scalar setting the right boundary of the density grid. If NULL,
the maximum of the observed treatment values and abar is used.

Logical; if TRUE, use variable-screening (via internal functions from CICI) for
the treatment models, otherwise use the full treatment model formulae. Default
is FALSE.

Logical; indicates whether the outcome nodes correspond to a survival-type
structure. Passed to the internal model-building function. Default is FALSE.
Character string specifying the density-estimation method used to estimate the

conditional treatment density. Must be one of "hazardbinning”, "binning",
"parametric”, or "hal_density".

Logical; if TRUE, print warnings about ignored arguments passed via ... and
other diagnostic messages. Default is TRUE.

Additional arguments passed to the underlying density-estimation function de-
termined by d.method. For example, these may include SL.1library for Super
Learner-based methods, or tuning parameters for specific density estimators.
Arguments not recognised by the chosen d.method are silently ignored when
verbose = FALSE and produce a warning when verbose = TRUE.

The main steps of the algorithm are:

1. Model specification: Treatment models for each time point are constructed via helper routines
from CICI. If screen = TRUE, a screening step updates the treatment formulas before density
estimation (only recommended to address computational constraints).

2. Grid construction: A grid of treatment values, query_abar, is formed by combining:

e observed treatment values in X[, Anodes],

* the target values in abar, and

* aregular grid from left.boundary to right.boundary with spacing grid.size (when
grid.size is not NULL).
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If grid.size = NULL, the grid is restricted to the unique values in abar (only allowed when
abar is a vector).

3. Density estimation: For each time point, the conditional treatment density is evaluated on the
grid for each observation using the specified d. method. The resulting matrices are normalised
so that each row integrates to one over the grid (accounting for bin width).

4. Feasibility threshold: For each observation and time point, a density threshold f, is com-
puted such that the cumulative mass below the sorted densities first exceeds 1 - alpha. Cells
with density below f,, are flagged as “infeasible”.

5. Feasible mapping: For each grid cell with density below f,, the algorithm finds the closest
grid cell with density at or above f,, (in terms of grid index) and maps its value to that cell.
This defines a “feasible” intervention that avoids low-density regions.

6. Summary: For each time point ¢ and each intervention strategy (row of abar), the method
collects:

¢ the mean feasible value across individuals (column Feasible),

* the proportion of cells below the density threshold (column Low, interpreted as %infeasible
in the associated S3 methods),

* the corresponding target value Abar at time ¢, and
* the strategy index Strategy.

These are combined into a data frame stored as the "summary” attribute of the returned object.

Plotting and printing methods are available for visual and tabular diagnostics; see plot.feasible,
print.feasible, and summary.feasible.

Value
An object of class "feasible"” with the following components:

» feasible: alist of length equal to the number of strategies (rows of abar). Each element is
a matrix with one column per time point, containing the feasible intervention values for that
strategy and time point across observations.

e low_matrix: a list of length equal to the number of time points. Each element is a logical
matrix indicating, on the internal grid, which cells were marked as below the density threshold.

The object additionally has a "summary” attribute, a data frame with at least the columns time,
Strategy, Abar, Feasible, and Low, which is accessed and formatted by summary.feasible and
print.feasible.

See Also

plot.feasible, print.feasible, summary.feasible

Examples

data(EFV)

Lnodes <- c("adherence.1"”,"weight.1",
"adherence.2","weight.2",
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"adherence.3","weight.3",
"adherence.4","weight.4")
Ynodes <- c("VL.@","VL.1","VL.2" "VL.3", "VL.4")
Anodes <- c("efv.Q@","efv.1","efv.2","efv.3","efv.4")

B oo
## Example 1: Hazard binning with default grid

## Static grid of targets (vector abar) over the full support of efv.*
B = m o m

abar_static <- seq(@, 10, by = 1)

m_hazard <- feasible(
X = EFV,
Anodes = Anodes,
Lnodes = Lnodes,
Ynodes = Ynodes,

d.method = "hazardbinning”, # long computation, but appropriate
abar = abar_static,
grid.size = 0.5,

left.boundary = 0,
right.boundary = 10

## Individual-level feasible values (one matrix per strategy):
## rows = individuals, columns = time points

feasible_matrix <- m_hazard$feasible # pass on to gofrmula/sgf
lapply(feasible_matrix, head)

## Inspect feasability of strategies

m_hazard # see also ?print.feasible
summary (m_hazard) # see also ?summary.feasible
B m oo

## Example 2: Parametric density, using abar as the grid
## Here grid.size = NULL, so only the target values are used as grid
e e L S

abar_param <- seq(@, 10, by = 2)

m_param <- feasible(
X = EFV,
Anodes = Anodes,
Lnodes = Lnodes,
Ynodes = Ynodes,
# fast, but useful for reasonably symmetric distributions

d.method = "parametric”,
abar = abar_param,
grid.size = NULL,

left.boundary = 0,
right.boundary = 10

15
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)

## Inspect feasability of strategies

m_param # see also ?print.feasible

summary (m_param) # see also ?summary.feasible

B m o o
## Example 3: Matrix abar with non-constant strategies over time

## Each row is a strategy, each column corresponds to efv.0, ..., efv.4
#H - e

abar_matrix <- rbind(
c(o, 2, 4, 6, 8), # strategy 1
c(9, 6, 2, 1, 9), # strategy 2
c(1, 3, 5,7, 9 # strategy 3
)

m_matrix <- feasible(
X = EFV,
Anodes = Anodes,
Lnodes = Lnodes,
Ynodes = Ynodes,

d.method = "parametric”,
abar = abar_matrix,
grid.size =1,

left.boundary = 0,
right.boundary = 10

)

## Inspect feasability of strategies

m_matrix # see also ?print.feasible
summary (m_matrix) # see also ?summary.feasible

fit.updated.formulas Fit models after screening

Description

Fits the models that have been generated with screening using model . formulas.update.

Usage

fit.updated.formulas(formulas, X)

Arguments

formulas An object returned by model. formulas.update

X A data frame on which the model formulas should be evaluated
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Details

Fits generalized (additive) linear models based on the screened model formula list generated by
model . formulas.update.

Value

Returns a list of length 2:

fitted.models A list of length 4, containing the fitted Y-/L-/C- and A-models.
all.summaries A list of length 4, containing the summary of the fitted Y-/L-/C- and A-models.

See Also

model.formulas.update

Examples

data(EFV)

# first: generate generic model formulas
m <- make.model.formulas(X=EFV,
Lnodes = c("adherence.1"”,"weight.1",
"adherence.2","weight.2",
"adherence. 3", "weight.3",
"adherence.4","weight.4"
),
Ynodes = c("VL.Q","VL.1",6"VL.2","VL.3","VL.4"),
Anodes = c("efv.0","efv.1","efv.2","efv.3","efv.4"),
evaluate=FALSE)

# second: update these model formulas based on variable screening with LASSO
glmnet.formulas <- model.formulas.update(m$model.names, EFV)
glmnet.formulas

# then: fit and inspect the updated models

fitted.models <- fit.updated.formulas(glmnet.formulas, EFV)
fitted.models$all.summaries
fitted.models$all.summaries$Ynames[1] # first outcome model

gformula Parametric g-formula for continuous multiple time point interventions

Description

Estimation of counterfactual outcomes for multiple values of continuous interventions at different
time points using the g-formula.
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Usage
gformula(X, Anodes, Ynodes, Lnodes = NULL, Cnodes = NULL,
abar = NULL, cbar = "uncensored”,
survivalY = FALSE,
Yform = "GLM", Lform = "GLM", Aform = "GLM", Cform = "GLM",
calc.support = FALSE, B = @, ret = FALSE, ncores = 1,
verbose = TRUE, seed = NULL, prog = NULL, cilevel = 0.95, ...)
Arguments
X A data frame, following the time-ordering of the nodes. Categorical variables
with k categories should be a factor, with levels 0,....k-1. Binary variables should
be coded 0/1.
Anodes A character string of column names in X of the intervention variable(s).
Ynodes A character string of column names in X of the outcome variable(s).
Lnodes A character string of column names in X of the time-dependent (post first treat-
ment) variable(s).
Cnodes A character string of column names in X of the censoring variable(s).
abar Numeric vector or matrix of intervention values, or the string "natural”. See
Details.
cbar Typically either the string "uncensored" or "natural”, but a numeric vector or
matrix of censoring values is not forbidden. See Details.
survivalY Logical. If TRUE, then Y nodes are indicators of an event, and if Y at some
time point is 1, then all following should be 1.
Yform A string of either "GLM", "GAM" or of length 'number of Ynodes’ with model
formulas. See Details.
Lform A string of either "GLM", "GAM" or of length 'number of Lnodes’ with model
formulas. See Details.
Aform A string of either "GLM", "GAM" or of length 'number of Anodes’ with model
formulas. See Details.
Cform A string of either "GLM", "GAM" or of length number of Cnodes’ with model

calc.support
B

ret

ncores

verbose
seed

prog

cilevel

formulas. See Details.

Logical. If TRUE, both crude and conditional support is estimated.

An integer specifying the number of bootstrap samples to be used, if any.
Logical. If TRUE, the simulated post-intervention data is returned.

An integer for the number of threads/cores to be used. If >1, parallelization will
be utilized.

Logical. If TRUE, notes and warnings are printed.

An integer specifying the seed to be used to create reproducable results for par-
allel computing (i.e. when ncores>1).

A character specifying a path where progress should be saved (typically, when
ncores>1)

Numeric value between 0 and 1 specifying the confidence level. Defaults to
95%.

Further arguments to be passed on.
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Details

By default, expected counterfactual outcomes (specified under Ynodes) under the intervention abar
are calculated. Other estimands can be specified via custom.measure.

If abar is a vector, then each vector component is used as the intervention value at each time point;
that is, interventions which are constant over time are defined. If abar is a matrix (of size 'number
interventions’ X ’time points’), then each row of the length of Anodes refers to a particular time-
varying intervention strategy. The natural intervention can be picked by setting abar="natural’.

The fitted outcome and confounder models are based on generalized additive models (GAMs) as im-
plemented in the mgcv package. Model families are picked automatically and reported in the output
if verbose=TRUE (see manual for modifications, though they hardly ever make sense). The model
formulas are standard GLMs or GAMs (with penalized splines for continuous covariates), condi-
tional on the past, unless specific formulae are given. It is recommended to use customized formulae
to reduce the risk of model mis-specification and to ensure that the models make sense (e.g., not too
many splines are used when this is computationally not meaningful). This can be best facilitated
by using objects generated through make .model. formulas, followed by model. formulas.update
and/or model . update (see examples for those functions).

For survival settings, it is required that i) survivalY=TRUE and ii) after a Cnode/Ynode is 1, every
variable thereafter is set to NA. See manual for an example. By default, the package intervenes on
Cnodes, i.e. calculates counterfactual outcomes under no censoring.

If calc.support=TRUE, conditional and crude support measures (i.e., diagnostics) are calculated
as described in Section 3.4 of Schomaker et al. (2023). Another useful diagnostic for multiple
time points is the natural course scenario, which can be evaluated under abar="natural' and
cbar="natural"'.

To parallelize computations automatically, it is sufficient to set ncores>1, as appropriate. To make
estimates under parallelization reproducible, use the seed argument. To watch the progress of
parallelized computations, set a path in the prog argument: then, a text file reports on the progress,
which is particularly useful if lengthy bootstrapping computations are required.

Value

Returns an object of of class ‘gformula’:
results data.frame of results. That is, the estimated counterfactual outcomes depending
on the chosen intervention strategies, and time points.
diagnostics list of diagnostics and weights based on the estimated support (if calc. support=TRUE)

simulated.data list of counterfactual data sets related to the interventions defined through option
abar (and cbar). Will be NULL is ret=FALSE.

observed.data list of observed data (and bootstrapped observed data). Will be NULL is ret=FALSE.

setup list of chosen setup parameters

Author(s)

Michael Schomaker
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See Also

plot.gformula for plotting results as (causal) dose response curves, custom.measure for evaluat-
ing custom estimands and mi.boot for using gformula on multiply imputed data.

Examples
## Not run:
data(EFV)
est <- gformula(X=EFV,
Lnodes = c("adherence.1”,"weight.1",
"adherence.2","weight.2",
"adherence. 3", "weight.3",
"adherence.4","weight.4"
),
Ynodes = c("VL.Q","VL.1","VL.2","VL.3","VL.4"),
Anodes = c("efv.Q","efv.1","efv.2","efv.3","efv.4"),
abar=seq(0,10,1)
)
est

## End(Not run)

make.model.formulas Compose appropriate model formulas

Description

Function that generates generic model formulas for Y-/L-/A- and Cnodes, according to time order-
ing and to be used in gformula or model. formulas.update.

Usage

make.model . formulas(X, Ynodes = NULL, Lnodes = NULL, Cnodes = NULL, Anodes = NULL,
survival = FALSE, evaluate = FALSE)

Arguments

X A data frame, following the time-ordering of the nodes.

Ynodes A character string of column names in X of the outcome variable(s).

Lnodes A character string of column names in X of time-dependent (post first treatment)
variable(s).

Cnodes A character string of column names in X of the censoring variable(s).

Anodes A character string of column names in X of intervention variable(s).

survival Logical. If TRUE, a survival setting is assumed and taken into account for model
specification.

evaluate Logical. TRUE if model formulas should model formulas be evaluated on X.
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Details

This is a helper function to generate model formulas for Y-/L-/A- and Cnodes, according to the
time ordering: i.e. to generate GLM/GAM model formulas for the respective nodes given all past
variables. In survival settings, past censoring and outcome nodes are omitted from the formulae. If
censoring is present without a survival setting (e.g. Cnodes describe drop-outs and Y is a continuous
outcome), then survival should be set as FALSE.

Value
Returns a named list:

model.names A list of length 4 containing strings of the actual formulas

fitted.models A list of the fitted models (if evaluate=TRUE)
fitted.model.summary
A list of the summary of the fitted models (if evaluate=TRUE)

See Also

The generated generic model formulas can be updated manually with model . update or in an auto-
mated manner with screening using model . formulas.update.

Examples

data(EFV)

m <- make.model.formulas(X=EFV,

Lnodes = c("adherence.1”,"weight.1",
"adherence.2","weight.2",
"adherence. 3", "weight.3",
"adherence.4”,"weight.4"

),

Ynodes = c("VL.@","VL.1","VL.2","VL.3","VL.4"),

Anodes = c("efv.Q","efv.1","efv.2","efv.3","efv.4"),

evaluate=FALSE) # set TRUE to see fitted models

m$model.names # all models potentially relevant for gformula(), given full past

mi.boot Obtaining estimates from multiply imputed data

Description

Combines gformula estimates obtained from multiple imputed data sets according to the MI Boot
and MI Boot pooled methods decribed in Schomaker and Heumann (2018, see reference section
below)

Usage

mi.boot(x, fun, cond = NULL, pooled = FALSE, cilevel = 0.95, ...)
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Arguments
X A list of objects of class ‘gformula’
fun A function to be applied to the outcome(s) of the counterfactual data set. For
expected outcome, use mean and possibly pass on option na. rm=TRUE.
cond A string containing a condition to be applied to the counterfactual datasets.
pooled Logical. If TRUE, confidence interval estimation is based on the MI Boot pooled
from Schomaker and Heumann (2018), otherwise on MI Boot.
cilevel Numeric value between 0 and 1 specifying the confidence level. Defaults to
95%.
additional arguments to be passed on to fun
Value

An object of class gformula. See gformula for details.

Author(s)
Michael Schomaker

References

Schomaker, M., Heumann, C. (2018) Bootstrap inference when using multiple imputation, Statistics
in Medicine, 37:2252-2266

Examples

data(EFV)

# suppose the following subsets were actually multiply imputed data (M=2)
EFV_1 <- EFV[1:2500,]
EFV_2 <- EFV[2501:5000, ]

# first: conduct analysis on each imputed data set. Set ret=T.
ml <- gformula(X=EFV_1,
Lnodes = c("adherence.1”,"weight.1",
"adherence.2","weight.2",
"adherence. 3", "weight.3",
"adherence.4","weight.4"
),
Ynodes = c("VL.@","VL.1","VL.2","VL.3","VL.4"),
Anodes = c("efv.Q","efv.1","efv.2","efv.3","efv.4"),
abar=seq(@,5,1), verbose=FALSE, ret=TRUE
)

m2 <- gformula(X=EFV_2,
Lnodes = c("adherence.1”,"weight.1",
"adherence.2","weight.2",
"adherence.3", "weight.3",
"adherence.4","weight.4"
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D,

Ynodes = c("VL.@","VL.1","VL.2","VL.3","VL.4"),
Anodes = c("efv.0","efv.1","efv.2","efv.3","efv.4"),
abar=seq(0,5,1), verbose=FALSE, ret=TRUE

)

# second combine results
m_imp <- mi.boot(list(m1,m2), mean) # uses MI rules & returns 'gformula' object
plot(m_imp)

# custom estimand: evaluate probability of suppression (Y=0), among females
m_imp2 <- mi.boot(list(m1,m2), prop, categ=0, cond="sex==1")
plot(m_imp2)

model.formulas.update Update model formulas based on variable screening

Description

Wrapper function to facilitate variable screening on all models generated through make . model. formulas
and return updated formulas in the appropriate format for gformula.

Usage
model.formulas.update(formulas, X, screening = screen.glmnet.cramer,
with.s = FALSE, by= NA, ...)
Arguments
formulas A named list of length 4 containing model formulas for all Y-/L-/A- and Cnodes.
These are likely formulas returned from make .model. formulas.
X A data frame on which the model formulas are to be evaluated.
screening A screening function. Default is screen.glmnet.cramer, see Details below.
with.s Logical. If TRUE, a spline, i.e. s(), will be added to all continuous variables.
by A character vector specifying the variables with which to multiply the smooth
(if with.s=TRUE).
optional arguments to be passed to the screening algorithm
Details

The default screening algorithm uses LASSO for variable screening (and Cramer’s V for the cat-
egorized version of all variables if LASSO fails). It is possible to provide user-specific screening
algorithms. User-specific algorithms should take the data as first argument, one model formula (i.e.
one entry of the list in model. formulas) as second argument and return a vector of strings, con-
taining the variable names that remain after screening. Another screening algorithm available in
the package is screen.cramersv, which categorizes all variables, calculates their association with
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the outcome based on Cramer’s V and selects the 4 variables with strongest associations (can be
changed with option nscreen). The manual provides more information.

The fitted models of the updated models can be evaluated with fit.updated.formulas.

Value

A list of length 4 containing the updated model formulas:

Lnames A vector of strings containing updated model formulas for all L nodes.

Ynames A vector of strings containing updated model formulas for all Y nodes.

Anames A vector of strings containing updated model formulas for all A nodes.

Cnames A vector of strings containing updated model formulas for all C nodes.
See Also

make.model . formulas, model.update, fit.updated. formulas

Examples

data(EFV)

# first: generate generic model formulas
m <- make.model.formulas(X=EFV,
Lnodes = c("adherence.1”,"weight.1",
"adherence.2","weight.2",
"adherence. 3", "weight.3",
"adherence.4","weight.4"
),
Ynodes c("VL.@","VL.1","VL.2","VL.3","VL.4"),
Anodes c("efv.0","efv.1","efv.2","efv.3","efv.4"),
evaluate=FALSE)

# second: update these model formulas based on variable screening with LASSO
glmnet.formulas <- model.formulas.update(m$model.names, EFV)
glmnet.formulas

# third: use these models for estimation
est <- gformula(X=EFV,

Lnodes = c("adherence.1"”,"weight.1",
"adherence.2","weight.2",
"adherence.3","weight.3",
"adherence.4","weight.4"

),

Ynodes = c("VL.Q","VL.1","VL.2","VL.3","VL.4"),

Anodes = c("efv.0","efv.1", "efv.2","efv.3","efv.4"),
Yform=glmnet.formulas$Ynames, Lform=glmnet.formulas$Lnames,
abar=seq(0,2,1)

est
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model.update Update GAM models

Description

A wrapper to simplify the update of GAM models

Usage

model .update(gam.object, form)

Arguments
gam.object A gam object produced with package mgev.
form A new model formula in the form .~formula
Details

The gam object needs to be fitted with the option control=list(keepData=T), otherwise the function
can not access the data that is needed to update the model fit. Note that both fit.updated. formulas
and make.model. formulas with option evaluate=T produce results that are based on this option.

Value

An object of class ‘gam’, ‘glm’ and ‘Im’.

Examples

data(EFV)

m <- make.model.formulas(X=EFV,

Lnodes = c("adherence.1”,"weight.1",
"adherence.2","weight.2",
"adherence.3","weight.3",
"adherence.4","weight.4"

),

Ynodes = c("VL.@","VL.1","VL.2","VL.3","VL.4"),

Anodes = c("efv.0","efv.1","efv.2","efv.3","efv.4"),
evaluate=TRUE) # set TRUE for model.update()

# update first confounder model of weight manually
model.update(m$fitted.models$fitted.L$m_weight.1, .~s(weight.@, by=sex))

# manual update of model formula
m$model.names$Lnames[2] <- "weight.1 ~ s(weight.@, by=sex)”
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msm Marginal structural model from the parametric g-formula for contin-
uous multiple time point interventions

Description

Estimation of a marginal structural model using the parametric g-formula.

Usage
msm(X, formula, family = gaussian, se = NULL, cilevel = 0.95, abar=NULL)

Arguments
X An object of class gformula produced by gformula, with option ret = TRUE.
formula Form of the marginal structural model. Can be specified as a formula object, e.g.,
formula =VL.4 ~efv.4, as a quoted expression, e.g., formula = quote(VL.4
~efv.4), or as a character string, e.g., formula = "VL.4 ~ efv.4".
family A description of the error distribution and link function to be used in the model.
See family for details of family functions.
se A character string specifying the standard errors used to compute confidence
intervals. One of c('bootstrap', 'glm'). See Details.
cilevel Numeric value between 0 and 1 specifying the confidence level of the bootstrap
confidence intervals. Defaults to 95%.
abar Vector or matrix that is a subset of the intervention used in X. Can be used to fit
an MSM on a subset of the stacked counterfactual data.
Details

The marginal structural model (MSM) is estimated as a GLM. Confidence intervals are calcu-
lated using GLM standard errors (if se = 'glm') or nonparametric boostrap standard errors (if se =
'bootstrap' and gformula was run with B > @.) By default: se = 'bootstrap' if gformula was
run with B > @, and se = 'glm' otherwise.

Value

Returns a list of class msmResult:

MSM The fitted MSM of class glm.

coefs The estimated coefficients of the MSM.

CIlow Lower confidence interval bounds for each coefficient.
CIup Upper confidence interval bounds for each coefficient.
formula The *formula’ input argument.

se The ’se’ input argument.

vcov Covariance matrix.
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See Also

gformula for estimating expected counterfactual outcomes under multiple intervention values.

Examples

data(EFV)
gf <- gformula(
X = EFV, Anodes = c("efv.0", "efv.1", "efv.2", "efv.3", "efv.4"),
Ynodes = c("VL.@", "VL.1", "VL.2", "VL.3", "VL.4"),
Lnodes = c("adherence.1”, "weight.1", "adherence.2", "weight.2",
"adherence.3"”, "weight.3", "adherence.4", "weight.4"),
abar = seq(@, 5), B = 10, ret = TRUE

)
msm(gf, VL.4 ~ efv.4, se = "bootstrap”) # default if B>0
msm(gf, VL.4 ~ efv.4, se = "glm") # fast, but not valid (undercoverage)
plot.feasible Plot Method for feasible objects
Description

Generate diagnostic plots for objects of class "feasible”, returned by feasible. One can display
either (i) mean feasible vs. target interventions, or (ii) the non-overlap ratio.

Usage
## S3 method for class 'feasible’
plot(x, x.axis = c("strategy”, "time"),
which = c("feasible”, "nonoverlap"”),
facet = c("none”, "time", "strategy"), ...)
Arguments
X An object of class "feasible” with a "summary" attribute (typically returned
by feasible).
X.axis A string specifying the x-axis:

» If "strategy”, and each strategy corresponds to the same target value at ev-
ery time-point (i.e., this relationship is consistent across time), the method
uses abar for the x-axis, otherwise the strategy index is used.

o If "time", the x-axis shows discrete time-points and colors represent targets
or strategies, depending on the context.

which Which plot to show:

* "feasible": mean feasible intervention values compared to original target
intervention.



28 plot.feasible

* "nonoverlap”: non-overlap ratio (proportion of mass below the density
threshold).

facet Optional faceting to reduce overplotting:

* "none” (default): no faceting, all series in a single panel.
e "time": one panel per time-point.
* "strategy”: one panel per intervention strategy.
Facet strips are labelled with variable name and value (via label_both).

Additional arguments (currently unused). Included for method consistency.

Details

Both plot types are drawn with ggplot2. To reduce overplotting, lines and points use transparency
(alpha) and slightly smaller widths/sizes by default. Faceting by time or strategy can further
improve readability when many series are present.

The "summary"” attribute of a "feasible” object is expected to contain (at least) the following
columns:

e time: discrete time index.

* Strategy: strategy index (row index of the intervention design).

* Abar: target value (intervention level) for that strategy at that time.

* Feasible: mean feasible value under the estimated feasible intervention.

* Low: non-overlap ratio (proportion of mass below the density threshold).
Interpretation of abar:

* In feasible, the abar argument may be either a numeric vector (static grid of targets) or a
numeric matrix (dynamic interventions).

* If abar is a vector, each distinct value defines a strategy that is constant over time; in this case
each strategy represents the same target value at every time-point.

* If abar is a matrix, rows index intervention strategies and columns index time-points. In the
summary, Strategy identifies the row, and Abar is the entry of that row at the corresponding
time-point.

Plot types:

1. Feasible vs Target (which = "feasible"):

¢ Y-axis: mean feasible intervention (Feasible).
e X-axis: controlled by x.axis:

— x.axis ="time": x-axis shows time; colors represent Targets (Abar) when each
strategy has the same target at all time-points, or represent strategies when targets
vary over time within a strategy.

— x.axis ="strategy": x-axis shows strategy index; if each strategy corresponds to
a single target value at all time-points and this relationship is consistent, the x-axis is
relabelled to show Abar (Targets) instead.

* Reference line and ticks:
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2. Non
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When the x-axis is on the Target scale (strategies are constant over time with respect to
Abar), the plot includes a dashed 1:1 reference line Feasible = Target and aligns the x-
and y-axis limits to the range of Abar, when plausible (i.e., when the feasible values lie
within the range of Abar).

When x.axis = "time", short horizontal ticks at each time-point indicate the Abar values
for each strategy (or Target when strategies are constant over time), using the same color
mapping as the series.

When x.axis = "strategy” and strategies do not correspond to a single target over all
time-points, ticks are drawn at each strategy to indicate the Abar values across time.

-overlap Ratio (which = "nonoverlap"):

Y-axis: non-overlap ratio Low (bounded between 0 and 1), plotted with fixed limits c(@,

.

* X-axis: same choice of x.axis as for the feasible plot.

Terminology: Throughout the plots, “Target” refers to the intervention values passed as the abar ar-

gument to
over time

feasible (stored as column Abar in the object’s summary). When strategies are constant
with respect to Abar and this structure is consistent across time, each Target corresponds

to an identical intervention pattern at all time-points. This is reflected in both the x-axis labelling
and the legend.

Value

Invisibly returns the ggplot2 object that is drawn (either the feasible plot or the non-overlap plot).

Author(s)

Han Bao, Michael Schomaker

See Also

feasible

Examples

data(EFV)

Lnodes <-

Ynodes <-
Anodes <-

#H# --—-—-
## Exampl
## Each s
R

abar_stat

, summary.feasible

c("adherence.1","weight.1",
"adherence.2","weight.2",
"adherence.3", "weight.3",
"adherence.4","weight.4")
c("VL.@","VL.1","VL.2","VL.3","VL.4")
c("efv.0","efv.1","efv.2","efv.3","efv.4")

e 1: Static grid of Targets (vector abar)
trategy uses the same target value at every time-point

ic <- seq(@, 10, by = 2)
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m_static <- feasible(X = EFV,
Anodes = Anodes,
Lnodes = Lnodes,
Ynodes = Ynodes,
d.method = "parametric”,
abar = abar_static,
grid.size = NULL,
left.boundary = 0,
right.boundary = 10)

## Feasible vs Target with time on x-axis (default).
## Colors indicate Targets (Abar), and short ticks show Abar at each time.
plot(m_static, which = "feasible")

## Feasible vs Target with time on x-axis.
plot(m_static, x.axis = "time"”, which = "feasible")

## Non-overlap ratio
plot(m_static, which = "nonoverlap")

## Facet by time to reduce overplotting
plot(m_static, which = "feasible”, facet = "time")

e
## Example 2: Non-constant intervention strategies (matrix abar)

## Strategies can have different target values at different time-points
e

## Here rows define strategies and columns define time-points.
abar_matrix <- rbind(

c(o, 2, 4, 6, 8), # strategy 1

c(9, 6, 2, 1, @), # strategy 2

c(1, 3, 5, 7, 9) # strategy 3
)

set.seed(456)

m_matrix <- feasible(X = EFV,
Anodes = Anodes,
Lnodes = Lnodes,
Ynodes = Ynodes,
d.method = "parametric”,
abar = abar_matrix,
grid.size = 1,
left.boundary = 0,
right.boundary = 10)

## Feasible vs Target with time on the x-axis.
## Colors represent strategies; short ticks at each time show
## the corresponding Abar for each strategy.
plot(m_matrix,
X.axis = "time",
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which = "feasible”,
facet = "none")

## Feasible vs Target with strategy on the x-axis.

## Strategies no longer use the same target at all time-points,
## so the x-axis stays on the strategy index, and ticks at each
## strategy indicate the Abar values across time.
plot(m_matrix,

x.axis = "strategy”,
which = "feasible"”,
facet = "none")

## Non-overlap ratio for these non-constant strategies,
## shown over time and faceted by strategy for clarity.
plot(m_matrix,

X.axis = "time",
which = "nonoverlap",
facet = "strategy”)
plot.gformula Plot dose-response curves
Description

Function to plot dose-response curves based on results returned from gformula

Usage

## S3 method for class 'gformula'
plot(x, msm.method = c("line"”,"loess"”, "gam”, "none"),
CI = FALSE, time.points = NULL,
cols = NULL, weight = NULL, xaxis=NULL,

variable = "psi"”, difference = FALSE, ...)
Arguments

X An object of class ‘gformula’.

msm.method A string specifying the method to connect individual estimates into a curve
(marginal structural model). One of "1ine","none”,"gam" and "loess".

CI Logical. If TRUE, confidence bands are drawn; or confidence intervals for spe-
cific points if both msm.method="none" and appropriate.

time.points A vector of time points for which the respective curves should be drawn. Default
is all time points.

cols A vector of strings specifying custom colours for each drawn curve.

weight Weight vector of size "number of interventions times time points"”, that is used

for the MSM if msm.method="10ess" or msm.method="gam".
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xaxis Either NULL or a string. If set to "time", then the x-axis is forced to represent
time (unless this is impossible)

variable A string specifying the variable to be plotted under the natural course scenario
(i.e., if abar”natural” and cbar="natural” in the respective gformula ob-
ject).

difference Logical. If TRUE, differences of observed outcomes and outcomes under the

natural intervention will be plotted (if abar”natural” and cbar="natural” in
the respective gformula object.).

Further arguments to be passed on

Details
Time points and variable names should be specified according to the labeling of the results table
returned by gformula.

Value

Draws an object of class ‘ggplot’.

Examples
data(EFV)
est <- gformula(X=EFV,
Lnodes = c("adherence.1"”,"weight.1",
"adherence.2","weight.2",
"adherence.3","weight.3",
"adherence.4","weight.4"
),
Ynodes = c("VL.@","VL.1","VL.2","VL.3", "VL.4"),
Anodes = c("efv.0","efv.1","efv.2","efv.3","efv.4"),
abar=seq(0,10,1)
)
plot(est)

plot(est, time.points=c(1,5))

print.feasible Print method for feasible objects

Description

Produces a concisey summary of a feasible intervention object. The printout summarizes informa-
tion jointly over time and strategy, using tables with strategies as rows and time points as columns.
Separate tables are printed for the proportion of infeasible mass (%infeasible) and the mean fea-
sible value (Feasible).
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Usage
## S3 method for class 'feasible’
print(x, digits = 3, strategies = "all”, times = "all"”, ...)
Arguments
X A "feasible” object returned by feasible.
digits Integer; number of digits used when printing numeric values.
strategies Either "all” (default) or a numeric vector of strategy indices to include in the

printed summary. When a numeric vector is supplied, all summaries and tables
are restricted to these strategies.

times Either "all"” (default) or a numeric vector of time indices to include in the
printed summary. When a numeric vector is supplied, all summaries and tables
are restricted to these time points.

Ignored; provided for S3 method compatibility.

Details

The method extracts the data. frame stored in the "summary” attribute of x and optionally restricts
it to the selected strategies and times. All reported values are based on this restricted data.

The summary data typically contains at least the following columns:

* time: time index t.
» Strategy: index of the intervention strategy.
» Abar: target intervention value at time t.

* %infeasible: proportion of mass (on the O—1 scale) falling below the estimated density thresh-
old for the targeted Abar.

* Feasible: mean of the mapped feasible values (after replacing low-density bins) for the tar-
geted bin.

The output consists of:

* A short header showing how many strategies and time points exist in the underlying object,
and how many are being displayed after subsetting via strategies and times.

Table 1: %infeasible summarized by strategy (rows) and time (columns), printed as per-
centage.

Table 2: Feasible (mean feasible value) summarized by strategy (rows) and time (columns),
printed on the original scale.

* A compact display of the Abar targets by strategy and time.

Within the selected subset, the method also checks whether each strategy uses the same Abar at ev-
ery selected time point. If that is the case, the printout notes that each selected strategy corresponds
to the same intervention pattern over time. Otherwise, differences in Abar across time are made
visible by the Abar-by-time display.
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Value

Invisibly returns x.

See Also

feasible, summary.feasible, plot.feasible

Examples

data(EFV)

Lnodes <- c("adherence.1”,"weight.1",
"adherence.2","weight.2",
"adherence.3","weight.3",
"adherence.4","weight.4")

Ynodes <- c("VL.@","VL.1","VL.2","VL.3","VL.4")

Anodes <- c("efv.0","efv.1","efv.2","efv.3","efv.4")

e
## Example 1: Static grid of targets (vector abar)

## Each strategy uses the same target value at every time point
T

abar_static <- seq(@, 10, by = 2)

set.seed(123)

m_static <- feasible(X = EFV,
Anodes = Anodes,
Lnodes = Lnodes,
Ynodes = Ynodes,
d.method = "parametric”,
abar = abar_static,
grid.size = NULL,
left.boundary = 0,
right.boundary = 10)

## Full time x strategy summary
print(m_static)

## Use fewer digits in the numeric summaries
print(m_static, digits = 2)

## Focus on a subset of strategies (e.g., 1 and 3)
print(m_static, strategies = c(1, 3))

## Focus on early time points only (e.g., times 1, 2)
print(m_static, times = c(1, 2))

## Combine selection: only strategies 1 and 3 over times 1, 2, 3
print(m_static, strategies = c(1, 3), times = 1:3)



G e e
## Example 2: Non-constant intervention strategies (matrix abar)

## Strategies can have different target values at different time points
#H - e

## Rows define strategies, columns define time points.
## The first row increases over time, the second decreases, the third increases.
abar_matrix <- rbind(
c(o, 2, 4, 6, 8), # strategy 1
c(9, 6, 2, 1, 0), # strategy 2
c(1, 3, 5, 7, 9) # strategy 3
)

set.seed(456)

m_matrix <- feasible(X = EFV,
Anodes = Anodes,
Lnodes = Lnodes,
Ynodes = Ynodes,
d.method = "parametric”,
abar = abar_matrix,
grid.size = 1,
left.boundary = 0,
right.boundary = 10)

## Time x strategy summary where targets vary over time within strategies
print(m_matrix)

## Focus on strategies 1 and 3 over a subset of time points
print(m_matrix, strategies = c(1, 3), times = 1:3)

sgf Sequential g-formula for continuous multiple time point interventions

Description

Estimation of counterfactual outcomes for multiple values of continuous interventions at different
time points using the sequential (weighted) g-formula.

Usage
sgf (X, Anodes, Ynodes, Lnodes = NULL, Cnodes = NULL,
abar = NULL, survivalY = FALSE,
SL.library = "SL.glm", SL.export = NULL,
Yweights = NULL, calc.support = FALSE, B = 0,

ncores = 1, verbose = TRUE, seed = NULL, prog = NULL,
cilevel = 0.95, ...)



Arguments

X
Anodes
Ynodes

Lnodes

Cnodes
abar
survivalY

SL.library

SL.export

Yweights

calc.support

B

ncores

verbose

seed

prog

cilevel

Details

A data frame, following the time-ordering of the variables.
A character string of column names in X of the intervention variable(s).
A character string of column names in X of the outcome variable(s).

A character string of column names in X of the time-dependent (post first treat-
ment) variable(s).

A character string of column names in X of the censoring variable(s).
Numeric vector or matrix of intervention values. See Details.
Logical. If TRUE, then Y nodes are indicators of an event.

Either a character vector of prediction algorithms or a list containing character
vectors. See details.

A string vector of user-written learning and screening algorithms that are not
part of SuperLearner, but are part of the learning library. Only required if
ncores>1. See details.

A list of length of Ynodes, likely generated with calc.weights.
Logical. If TRUE, both crude and conditional support is estimated.
An integer specifying the number of bootstrap samples to be used, if any.

An integer for the number of threads/cores to be used. If >1, parallelization will
be utilized.

Logical. If TRUE, notes and warnings are printed.

An integer specifying the seed to be used to create reproducable results for par-
allel computing (i.e. when ncores>1).

A character specifying a path where progress should be saved (typically, when
ncores>1).

Numeric value between 0 and 1 specifying the confidence level. Defaults to
95%.

Further arguments to be passed on.

The function calculates the expected counterfactual outcomes (specified under Ynodes) under the

intervention abar.

If abar is a vector, then each vector component is used as the intervention value at each time point;
that is, interventions which are constant over time are defined. If abar is a matrix (of size ‘number
interventions’ x time points’), then each row of the length of Anodes refers to a particular time-
varying intervention strategy.

The nested iterated outcome models are fitted using super learning. The specified prediction al-
gorithms (possibly coupled with algorithms for prior variable screening) are passed on to package
SuperLearner. See ?SuperLearner for examples of permitted structures. Note: User-written
prediction algorithms, corresponding S3 prediction functions and screening algorithms need to be
specified under SL . export, if parallelization is used.
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For survival settings, it is required that i) survivalY=TRUE and ii) after a Cnode/Ynode is 1, every
variable thereafter is set to NA. See manual for an example. The package intervenes on Cnodes, i.e.
calculates counterfactual outcomes under no censoring.

If calc. support=TRUE, conditional and crude support measures (i.e., diagnostics) are calculated as
described in Section 3.3.2 of Schomaker et al. (2023).

To parallelize computations automatically, it is sufficient to set ncores>1, as appropriate. No further
customization or setup is needed, everything will be done by the package. To make estimates
under parallelization reproducible, use the seed argument. To watch the progress of parallelized
computations, set a path in the prog argument: then, a text file reports on the progress, which is
particularly useful if lengthy bootstrapping computations are required.

Value

Returns an object of of class ‘gformula’:

results matrix of results
diagnostics list of diagnostics and weights based on the estimated support (if calc. support=TRUE)
SL.weights matrix of average super learner weights, at each time point

boot.results  matrix of bootstrap results

setup list of chosen setup parameters
Author(s)

Michael Schomaker
References

Schomaker M, Mcllleron H, Denti P, Diaz 1. (2024) Causal Inference for Continuous Multiple Time
Point Interventions, ArXiv e-prints: https://arxiv.org/abs/2305.06645.

See Also

See gformula for parametric g-computation and calc.weights on generating outcome weights.

Examples
data(EFV)
est <- sgf(X=EFV,
Lnodes = c("adherence.1"”,"weight.1",
"adherence.2","weight.2",
"adherence.3","weight.3",
"adherence.4","weight.4"
),
Ynodes = c("VL.Q","VL.1","VL.2","VL.3","VL.4"),
Anodes = c("efv.0","efv.1","efv.2","efv.3","efv.4"),

abar=seq(0,5,1)
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est

# Note: replace sgf() with gformula() for parametric g-computation

summary . feasible Summarize a feasible object

Description

Displays the full summary of an object returned by feasible.

Usage
## S3 method for class 'feasible’
summary (object, ...)
Arguments
object An object of class "feasible"” as returned by feasible.

Unused; included for S3 method compatibility.

Details

The method extracts the data frame stored in the "summary"” attribute of the feasible object. This
data frame contains (at least) the following columns:

e time: Time index t.

* Strategy: Index of the intervention strategy.

* Abar: The target intervention value at time t.

* Feasible: Mean of the mapped feasible values for the targeted bin.

* %infeasible: Proportion of observations falling below the estimated density threshold for
the given Abar as targeted.

If the "summary" attribute is NULL, the method prints “No summary available.”

Value

A data frame containing the summary if available; otherwise NULL.

See Also

feasible, plot.feasible
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