
Package ‘ClimProjDiags’
January 8, 2026

Title Set of Tools to Compute Various Climate Indices

Version 0.3.5

Description Set of tools to compute metrics and indices for climate analysis.
The package provides functions to compute extreme indices, evaluate the
agreement between models and combine theses models into an ensemble. Multi-model
time series of climate indices can be computed either after averaging the 2-D
fields from different models provided they share a common grid or by combining
time series computed on the model native grid. Indices can be assigned weights
and/or combined to construct new indices. The package makes use of some of the
methods described in:
N. Manubens et al. (2018) <doi:10.1016/j.envsoft.2018.01.018>.

Depends R (>= 3.2.0)

Imports graphics, methods, multiApply (>= 2.0.0), stats

Suggests knitr, testthat, markdown, rmarkdown

License GPL-3

URL https://gitlab.earth.bsc.es/es/ClimProjDiags

BugReports https://gitlab.earth.bsc.es/es/ClimProjDiags/-/issues

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

Author BSC-CNS [aut, cph],
Nuria Perez-Zanon [aut] (ORCID:
<https://orcid.org/0000-0001-8568-3071>),

An-Chi Ho [ctb],
Victòria Agudetse [cre],
Nicolau Manubens [ctb],
Alasdair Hunter [aut],
Louis-Philippe Caron [ctb],
Eva Rifà [ctb],

1

https://doi.org/10.1016/j.envsoft.2018.01.018
https://gitlab.earth.bsc.es/es/ClimProjDiags
https://gitlab.earth.bsc.es/es/ClimProjDiags/-/issues
https://orcid.org/0000-0001-8568-3071

2 AnoAgree

Ulrich Drepper [ctb],
David Bronaugh [ctb],
James Hiebert [ctb]

Maintainer Victòria Agudetse <victoria.agudetse@bsc.es>

Repository CRAN

Date/Publication 2026-01-08 06:12:13 UTC

Contents

AnoAgree . 2
ArrayToList . 3
as.PCICt . 4
Climdex . 5
CombineIndices . 6
DailyAno . 7
DTRIndicator . 8
DTRRef . 10
Extremes . 12
Lon2Index . 13
SeasonSelect . 14
SelBox . 15
ShiftLon . 16
Subset . 17
Threshold . 18
WaveDuration . 20
WeightedCells . 21
WeightedMean . 22

Index 24

AnoAgree Percentage of anomalies which agrees with the sign of the mean
anomaly for multidimensional arrays

Description

This function computes the mean and the percentage of agreement between anomalies.

Usage

AnoAgree(ano, membersdim, na.rm = TRUE, ncores = NULL)

ArrayToList 3

Arguments

ano A multidimensional array.

membersdim The dimension in which models are stored.

na.rm A logical indicating whether missing values should be removed. If na.rm is
FALSE an NA value in any of the arguments will cause a value of NA to be
returned, otherwise (TRUE by default) NA values are ignored.

ncores The number of cores to be used when computing the agreement.

Value

An array of one dimension less than the ano object, except for one dimensional arrays or vectors,
for which an array of dimension 1 called ’var’ is returned.

Examples

Example with random sample:
a <- NULL
for(i in 1:20) { a <- c(a, rnorm(6)) }
dim(a) <- c(lat = 2, lon = 3, var = 4, mod = 5)

agree <- AnoAgree(ano = a, membersdim = which(names(dim(a)) == 'mod'),
na.rm = TRUE, ncores = NULL)

print(agree)

a <- rnorm(6)
agree <- AnoAgree(ano = a, membersdim = 1, na.rm = TRUE, ncores = NULL)
print(agree)

ArrayToList Split an array into list by a given array dimension

Description

This function splits an array into a list as required by PlotLayout function from package "s2dv" when
parameter ’special_args’ is used. See: N. Manubens et al. (2018) «doi:10.1016/j.envsoft.2018.01.018>.
The function ArrayToList allows to add names to the elements of the list in two different levels, the
’list’ or the ’sublist’.

Usage

ArrayToList(data, dim, level = "list", names = NULL)

4 as.PCICt

Arguments

data A multidimensional array.

dim A character string indicating the name of the dimension to split or an integer
indicating the position of the dimension.

level A string character ’list’ or ’sublist’ indicating if it should be a list or a sublist.
By default it creates a list.

names A vector of character strings to name the list (if it is a single string, it would be
reused) or a single character string to name the elements in the sublist.

Value

A list of arrays of the length of the dimension set in parameter ’dim’.

Examples

data <- array(1:240, c(month = 12, member = 5, time = 4))
Create a list:
datalist <- ArrayToList(data, dim = 'month', level = 'list', names = month.name)
class(datalist)
class(datalist[[1]])
str(datalist)
Create a sublist:
datalist <- ArrayToList(data, dim = 'month', level = 'sublist', names = 'dots')
class(datalist)
class(datalist[[1]])
class(datalist[[1]][[1]])
str(datalist)

as.PCICt PCICt

Description

Functions from the PCICt package. These functions convert between PCICt objects and other types
of data.

Usage

as.PCICt(x, cal, ...)

Arguments

x The input data.

cal The calendar type.

... Any additional arguments passed on.

Climdex 5

Value

For as.PCICt and .PCICt, a PCICt object with the given calendar type. For as.POSIXct.PCICt and
as.POSIXlt.PCICt, a POSIXct or POSIXlt object, respectively.

Climdex Wrapper for applying the climdex routine ETCCDI climate change
indices to n-dimensional arrays.

Description

This function computes the t90p, t10p, cdd or rx5day indices from n-dimensional arrays.

Usage

Climdex(
data,
metric,
threshold = NULL,
base.range = NULL,
dates = NULL,
timedim = NULL,
calendar = NULL,
ncores = NULL

)

Arguments

data A numeric n-dimensional array containing daily maximum or minimum temper-
ature, wind speed or precipitation amount.

metric The metric to be computed, either ’t90p’, ’t10p’, ’Wx’, ’cdd’ or ’rx5day’.

threshold For the ’t90p’ and ’t10p’ metrics, an array of the 90th/10th percentiles must be
included. This parameter can be computed with the Threshold function.

base.range The years used for the reference period. If NULL (by default), all years are
used.

dates A vector of dates with a calendar attributes. If NULL (by default), the ’time’
attributes of parameter ’data’ are considered.

timedim An integer number indicating the position of the time dimension in the parameter
data. If NULL (by default), the dimension called ’time’ in parameter data is
considered as temporal dimension.

calendar A character indicating the calendar type.

ncores The number of cores to be used when computing the index.

6 CombineIndices

Value

A list of length 2:

• $result, an array with the same dimensions as the input array, except for the temporal dimen-
sion which is renamed to ’year’, moved to the first dimension position and reduce to annual
resolution.

• $years, a vector of the corresponding years.

References

David Bronaugh for the Pacific Climate Impacts Consortium (2015). climdex.pcic: PCIC Imple-
mentation of Climdex Routines. R package version 1.1-6. http://CRAN.R-project.org/package=climdex.pcic

Examples

##Example synthetic data:
data <- 1:(2 * 3 * 372 * 1)
dim(data) <- c(lon = 2, lat = 3, time = 372, model = 1)
time <- c(seq(ISOdate(1900, 1, 1), ISOdate(1900, 1, 31), "day"),

seq(ISOdate(1901, 1, 1), ISOdate(1901, 1, 31), "day"),
seq(ISOdate(1902, 1, 1), ISOdate(1902, 1, 31), "day"),
seq(ISOdate(1903, 1, 1), ISOdate(1903, 1, 31), "day"),
seq(ISOdate(1904, 1, 1), ISOdate(1904, 1, 31), "day"),
seq(ISOdate(1905, 1, 1), ISOdate(1905, 1, 31), "day"),
seq(ISOdate(1906, 1, 1), ISOdate(1906, 1, 31), "day"),
seq(ISOdate(1907, 1, 1), ISOdate(1907, 1, 31), "day"),
seq(ISOdate(1908, 1, 1), ISOdate(1908, 1, 31), "day"),
seq(ISOdate(1909, 1, 1), ISOdate(1909, 1, 31), "day"),
seq(ISOdate(1910, 1, 1), ISOdate(1910, 1, 31), "day"),
seq(ISOdate(1911, 1, 1), ISOdate(1911, 1, 31), "day"))

metadata <- list(time = list(standard_name = 'time', long_name = 'time',
calendar = 'gregorian',
units = 'days since 1970-01-01 00:00:00',
prec = 'double',
dim = list(list(name = 'time', unlim = FALSE))))

attr(time, "variables") <- metadata
attr(data, 'Variables')$dat1$time <- time

thres <- rep(10, 31 * 2 * 3)
dim(thres) <- c(jdays = 31, lon = 2, lat = 3, model = 1)
str(thres)

clim <- Climdex(data, metric = "t90p", threshold = thres)
str(clim)

CombineIndices Combine weighted indices of n-dimensional arrays

DailyAno 7

Description

Function to combine climate indices for multiple models through addition, subtraction, division or
averaging, optionally applying weights to each index.

Usage

CombineIndices(indices, weights = NULL, operation = "mean")

Arguments

indices List of n-dimensional arrays with equal dimensions to be combined.

weights Vector of weights for the indices, whose length is the same as the list of pa-
rameter indices. If not provided, a weight of 1 is assigned to each index. If
operation = 'mean' the weights are normalized to sum 1 all together.

operation The operation for combining the indices, either "mean" (default), "add", "subtract"
or "divide".

Value

An array of the same dimensions as one of the elements in the parameter indices.

Examples

a <- matrix(rnorm(6), 2, 3)
b <- matrix(rnorm(6), 2, 3)

comb_ind <- CombineIndices(indices = list(a, b), weights = c(2, 1),
operation = "add")

print(comb_ind)

a <- rnorm(24)
dim(a) <- c(lon = 2, lat = 3, mod = 4)
b <- rnorm(24)
dim(b) <- c(lon = 2, lat = 3, mod = 4)
comb_ind <- CombineIndices(indices = list(a, b), weights = c(2, 1),

operation = "add")
print(comb_ind)

DailyAno Daily anomalies

Description

This function computes daily anomalies from a vector containing the daily time series.

Usage

DailyAno(data, jdays = NULL, dates = NULL, calendar = NULL, na.rm = TRUE)

8 DTRIndicator

Arguments

data A vector of daily data.

jdays A vector of the corresponding day of the year. This vector must be the same
length as parameter data.

dates If jdays is not supplied, a vector of dates corresponding to the observations in
data with defined calendar attributes.

calendar A character indicating the calendar type.

na.rm A logical indicating whether missing values should be removed. If na.rm is
FALSE an NA value in any of the arguments will cause a value of NA to be
returned, otherwise (TRUE by default) NA values are ignored.

Value

A vector of daily anomalies of the same length as parameter data.

Examples

Time series in a vector example:
data <- 1:10
jdays <- c(rep(1, 5), rep(2, 5))
daily_anomaly <- DailyAno(data = data, jdays = jdays, na.rm = TRUE)
print(daily_anomaly)

DTRIndicator Diurnal temperature range indicator (DTR) of multidimensional ar-
rays

Description

This function computes the diurnal temperature indicator, defined as the number of days where the
diurnal temperature variation exceeds the vulnerability threshold (defined as the mean(tmax -tmin)
+ 5 from the reference period).

Usage

DTRIndicator(
tmax,
tmin,
ref,
by.seasons = TRUE,
dates = NULL,
timedim = NULL,
calendar = NULL,
ncores = NULL

)

DTRIndicator 9

Arguments

tmax A numeric multidimensional array containing daily maximum temperature.

tmin A numeric multidimensional array containing daily minimum temperature. This
array must be the same dimensions as tmax parameter.

ref An output list from the DTRRef function with the same dimensions as param-
eters tmax and tmin, except the time dimension, containing the mean diurnal
temperature variation for the reference period.

by.seasons If TRUE (by default), the DTR is computed for each season (December-January-
February, March-April-May, June-July-August and September-October-November)
seperately. If FALSE is specified, the montly mean DTR is computed.

dates A vector of dates with a calendar attributes. If NULL (by default), the ’time’
attributes of parameter ’tmax’ and ’tmin’ are considered.

timedim An integer number indicating the position of the time dimension in the param-
eters tmax and tmin. If NULL (by default), the dimension called ’time’ in pa-
rameter tmax and tmin is considered as time dimension.

calendar A character indicating the calendar type.

ncores The number of cores to be used when computing the index.

Value

A list of length 3:

• $dtr.ref, an array with the same dimensions as the input data, but with the time dimension
reduce from daily to monthly or seasonal resolution depending on the selected resolution in
by.season.

• $year, a vector of the corresponding years.

• $season, a vector of the seasons or months corresponding to the resolution selected in by.season.

Examples

##Exmaple with synthetic data:
tmax <- 1 : (2 * 3 * 730 * 1)
dim(tmax) <- c(lon = 2, lat = 3, time = 730, model = 1)
tmin <- (1 : (2 * 3 * 730 * 1)) - 1
dim(tmin) <- c(lon = 2, lat = 3, time = 730, model = 1)
time <- seq(as.POSIXct("1900-01-01 12:00:00", tz = "",

format = "%Y-%d-%m %H:%M:%S"),
as.POSIXct("1901-31-12 18:00:00", tz = "",

format = "%Y-%d-%m %H:%M:%S"), "day")
time <- as.POSIXct(time, tz = "CET")
metadata <- list(time = list(standard_name = 'time', long_name = 'time',

calendar = 'noleap',
units = 'days since 1970-01-01 00:00:00',
prec = 'double',
dim = list(list(name ='time', unlim = FALSE))))

attr(time, "variables") <- metadata
attr(tmax, 'Variables')$dat1$time <- time

10 DTRRef

attr(tmax, 'Variables')$common[[2]]$dim[[3]]$len = length(time)
attr(tmax, 'Variables')$common[[2]]$dim[[3]]$vals <- time
attr(tmin, 'Variables')$dat1$time <- time
attr(tmin, 'Variables')$common[[2]]$dim[[3]]$len = length(time)
attr(tmin, 'Variables')$common[[2]]$dim[[3]]$vals <- time
a <- DTRRef(tmax, tmin, by.seasons = FALSE, ncores = NULL)

aa <- DTRIndicator(tmax, tmin, ref = a, by.seasons = FALSE, ncores = NULL)
str(aa)
dim(aa$indicator)

DTRRef Diurnal temperature range of multidimensional arrays

Description

This function computes the mean diurnal temperature range (tmax - tmin).

Usage

DTRRef(
tmax,
tmin,
by.seasons = TRUE,
dates = NULL,
timedim = NULL,
calendar = NULL,
na.rm = TRUE,
ncores = NULL

)

Arguments

tmax A numeric multidimensional array containing daily maximum temperature.
tmin A numeric multidimensional array containing daily minimum temperature.
by.seasons If TRUE (by default), the DTR is computed for each season (December-January-

February, March-April-May, June-July-August and September-October-November)
seperately. If FALSE is specified, the montly mean DTR is computed.

dates A vector of dates with a calendar attributes. If NULL (by default), the ’time’
attributes of parameter ’tmax’ and ’tmin’ are considered.

timedim An integer number indicating the position of the time dimension in the param-
eters tmax and tmin. If NULL (by default), the dimension called ’time’ in pa-
rameter tmax and tmin is considered as time dimension.

calendar A character indicating the calendar type.
na.rm A logical indicating whether missing values should be removed. If na.rm is

FALSE an NA value in any of the arguments will cause a value of NA to be
returned, otherwise (TRUE by default) NA values are ignored.

ncores The number of cores to be used when computing the index.

DTRRef 11

Details

The function returns a reordered array with ’time’ dimension in the first position in the dtr.ref
label.

Value

A list of length 2:

• $dtr.ref, an array with the same dimensions as the input data, but with the time dimension
reduce from daily to monthly or seasonal resolution depending on the selected resolution in
by.season.

• $season, a vector of the season or months corresponding to the resolution selected in by.season.

Examples

##Exmaple with synthetic data:
tmax <- 1:(2 * 3 * 365 * 1)
dim(tmax) <- c(lon = 2, lat = 3, time = 365, model = 1)
tmin <- (1:(2 * 3 * 365 * 1))-1
dim(tmin) <- c(lon = 2, lat = 3, time = 365, model = 1)
time <- seq.Date(as.Date("1900-01-01", format = "%Y-%d-%m"),

as.Date("1900-31-12", format = "%Y-%d-%m"), 1)
time <- as.POSIXct(time, tz = "CET")
metadata <- list(time = list(standard_name = 'time', long_name = 'time',

calendar = 'noleap',
units = 'days since 1970-01-01 00:00:00',
prec = 'double',
dim = list(list(name ='time', unlim = FALSE))))

attr(time, "variables") <- metadata
attr(tmax, 'Variables')$dat1$time <- time
attr(tmax, 'Variables')$common[[2]]$dim[[3]]$len = length(time)
attr(tmax, 'Variables')$common[[2]]$dim[[3]]$vals <- time
attr(tmin, 'Variables')$dat1$time <- time
attr(tmin, 'Variables')$common[[2]]$dim[[3]]$len = length(time)
attr(tmin, 'Variables')$common[[2]]$dim[[3]]$vals <- time

a <- DTRRef(tmax, tmin, by.seasons = FALSE, ncores = NULL)
str(a)

tmax <- 1:(2 * 3 * 365 * 1)
dim(tmax) <- c(2, 3, 365)
tmin <- (1:(2 * 3 * 365 * 1))-1
dim(tmin) <- c(2, 3, 365)

a <- DTRRef(tmax, tmin, by.seasons = FALSE, dates = time, timedim = 3,
ncores = NULL)

str(a)

12 Extremes

Extremes Sum of spell lengths exceeding daily threshold for n-dimensional ar-
rays

Description

This function returns the number of spells of more than min.length days which exceed or are
below the given threshold from daily data.

Usage

Extremes(
data,
threshold,
op = ">",
min.length = 6,
spells.can.span.years = TRUE,
max.missing.days = 5,
dates = NULL,
timedim = NULL,
calendar = NULL,
ncores = NULL

)

Arguments

data A n-dimensional array containing daily data.

threshold A n-dimensional array with the threshold to be/not to be reach, usually given by
the a percentile computed with the Threshold function.

op The operator to use to compare data to threshold.

min.length The minimum spell length to be considered.

spells.can.span.years

Whether spells can span years.

max.missing.days

Maximum number of NA values per time period.

dates A vector of dates with a calendar attributes. If NULL (by default), the ’time’
attributes of parameter ’data’ are considered.

timedim An integer number indicating the position of the time dimension in the parameter
data. If NULL (by default), the dimension called ’time’ in parameter data.

calendar A character indicating the calendar type.

ncores The number of cores to be used when computing the extreme.

Lon2Index 13

Details

This routine compares data to the thresholds using the given operator, generating a series of TRUE
or FALSE values; these values are then filtered to remove any sequences of less than min.length
days of TRUE values. It then computes the lengths of the remaining sequences of TRUE values
(spells) and sums their lengths. The spells.can.spa .years option controls whether spells must
always terminate at the end of a period, or whether they may continue until the criteria ceases to be
met or the end of the data is reached. The default for fclimdex is FALSE.

Value

A list of length 2:

• $output1, an array with the same dimensions as the original data, except the time dimension
which is reduced to annual resolution given a timeseries of maximum spell lengths for each
year.

• $year, a vector indicating the corresponding years.

Examples

##Example synthetic data:
data <- 1:(2 * 3 * 310 * 1)
dim(data) <- c(time = 310, lon = 2, lat = 3, model = 1)
time <- as.POSIXct(paste(sort(rep(1902:1911, 31)), 1, 1:31, sep = "-"), tz = "CET")
metadata <- list(time = list(standard_name = 'time', long_name = 'time',

calendar = 'noleap',
units = 'days since 1970-01-01 00:00:00',
prec = 'double',
dim = list(list(name = 'time', unlim = FALSE))))

attr(time, "variables") <- metadata
attr(data, 'Variables')$dat1$time <- time
threshold <- Threshold(data, dates = NULL, base.range = NULL, qtiles = 0.9,

ncores = NULL)
res <- Extremes(data, threshold = threshold, op = ">", min.length = 6,

spells.can.span.years = TRUE, max.missing.days = 5,
ncores = NULL)

str(res)

Lon2Index Obtain the index of positions for a region in longitudes

Description

This auxiliary function returns the index of position of a region of longitudes in a given vector of
longitudes.

Usage

Lon2Index(lon, lonmin, lonmax)

14 SeasonSelect

Arguments

lon vector of longitudes values.

lonmin a numeric value indicating the minimum longitude of the region (understand as
the left marging of the region).

lonmax a numeric value indicating the maximum longitude of the region (understand as
the right mariging of the region).

Value

the index of positions of all values inside the region in the vector lon.

Examples

lon <- 1 : 360
pos <- Lon2Index(lon, lonmin = -20, lonmax = 20)
lon[pos]
pos <- Lon2Index(lon, lonmin = 340, lonmax = 20)
lon[pos]
lon <- -180 : 180
pos <- Lon2Index(lon, lonmin = -20, lonmax = 20)
lon[pos]
pos <- Lon2Index(lon, lonmin = 340, lonmax = 20)
lon[pos]

SeasonSelect Selects a season from daily data for multidimensional arrays

Description

This function selects the daily data corresponding to the specified season.

Usage

SeasonSelect(data, season, dates = NULL, timedim = NULL, calendar = NULL)

Arguments

data A numeric multidimensional array containing daily data.

season A charcater string indicating the season by the three months initials in capitals:
’DJF’ for winter (summer), ’MAM’ spring (autumn), ’JJA’ for summer (winter)
or ’SON’ for autumn (spring) in the northern (southern) hemisphere.

dates A vector of dates with a calendar attributes. If NULL (by default), the ’time’
attributes of parameter ’data’ are considered.

timedim An integer number indicating the position of the time dimension in the parameter
data. If NULL (by default), the dimension called ’time’ in parameter data.

calendar A character indicating the calendar type.

SelBox 15

Value

A list of length 2:

• $data, a vector or array containing the daily values for the selected season, with the same
dimensions as data input but the ’time’ dimension reduce to the number of days corresponding
to the selected season.

• $dates, a vector of dates reduce to the number of days corresponding to the selected season.

Examples

Example with synthetic data:
data <- 1:(2 * 3 * (366 + 365) * 2)
dim(data) <- c(lon = 2, lat = 3, time = 366 + 365, model = 2)
time <- seq(ISOdate(1903,1,1), ISOdate(1904,12,31), "days")
time <- as.POSIXct(time, tz = "CET")
metadata <- list(time = list(standard_name = 'time', long_name = 'time',

calendar = 'noleap',
units = 'days since 1970-01-01 00:00:00',
prec = 'double',
dim = list(list(name ='time', unlim = FALSE))))

attr(time, "variables") <- metadata
attr(data, 'Variables')$dat1$time <- time
attr(data, 'Variables')$dat2$time <- time
attr(data, 'Variables')$common[[2]]$dim[[3]]$len = length(time)
attr(data, 'Variables')$common[[2]]$dim[[3]]$vals <- time

a <- SeasonSelect(data = data, season = 'JJA')
str(a)

SelBox Select spatial region from multidimensional arrays

Description

Subset a spatial region from spatial data giving a vector with the maximum and minimum of lati-
tudes and longitudes of the selected region.

Usage

SelBox(data, lon, lat, region, londim = "lon", latdim = "lat", mask = NULL)

Arguments

data An array with minimum two dimensions of latitude and longitude.

lon Numeric vector of longitude locations of the cell centers of the grid of data’.

lat Numeric vector of latitude locations of the cell centers of the grid of data’.

region A vector of length four indicating the minimum longitude, the maximum longi-
tude, the minimum latitude and the maximum latitude.

16 ShiftLon

londim A character string indicating the name of the longitudinal dimension. The de-
fault value is ’lon’.

latdim A character string indicating the name of the latitudinal dimension. The default
value is ’lat’.

mask A matrix with the same spatial dimensions of data.

Value

A list of length 4:

• $data, an array with the same dimensions as the input data array, but with spatial dimension
reduced to the selected region.

• $lat, a vector with the new corresponding latitudes for the selected region.

• $lon, a vector with the new corresponding longitudes for the selected region.

• $mask, if parameter mask is supplied, an array with reduced length of the dimensions to the
selected region. Otherwise, a NULL element is returned.

Examples

Example with synthetic data:
data <- 1:(20 * 3 * 2 * 4)
dim(data) <- c(lon = 20, lat = 3, time = 2, model = 4)
lon <- seq(2, 40, 2)
lat <- c(1, 5, 10)

a <- SelBox(data = data, lon = lon, lat = lat, region = c(2, 20, 1, 5),
londim = "lon", latdim = "lat", mask = NULL)

ShiftLon Shift longitudes of a data array

Description

Shift the longitudes of a data array. Only reasonable for global longitude shifting. It is useful for
map plotting or aligning datasets.

Usage

ShiftLon(data, lon, westB, lon_dim = "lon", ncores = NULL)

Arguments

data A named multidimensional array with at least ’lon_dim’ dimension.

lon A numeric vector of longitudes. The values are expected to be monotonic in-
creasing.

westB A number indicating the west boundary of the new longitudes.

Subset 17

lon_dim A character string indicating the name of the longitude dimension in ’data’. The
default value is ’lon’.

ncores An integer indicating the number of cores used for computation. The default
value is NULL (use only one core).

Value

A list of 2:

data Array of the shifted data with the same dimensions as parameter ’data’.

lon The monotonic increasing new longitudes with the same length as parameter
’lon’ and start at ’westB’.

Examples

data <- array(data = 1:50, dim = c(lon = 360, lat = 181))
lon <- array(data = 0:359, dim = c(lon = 360))
lat <- -90:90 ## lat does not change
shifted <- ShiftLon(data = data, lon = lon, westB = -180, ncores = 1)

Not run:
s2dv::PlotEquiMap(var = data, lon = lon, lat = lat, filled.continents = FALSE)
s2dv::PlotEquiMap(var = shifted$data, lon = shifted$lon, lat = lat, filled.continents = FALSE)

End(Not run)

Subset Subset a Data Array

Description

This function allows to subset (i.e. slice, take a chunk of) an array, in a similar way as done in the
function take() in the package plyr. There are two main snprovements:

First, the input array can have dimension names, either in names(dim(x)) or in the attribute ’di-
mensions’. If both exist, names(dim(x)) is prioritized. The dimensions to subset along can be
specified via the parameter along either with integer indices or either by their name.

Second, there are additional ways to adjust which dimensions are dropped in the resulting array:
either to drop all, to drop none, to drop only the ones that have been sliced or to drop only the ones
that have not been sliced.

Usage

Subset(x, along, indices, drop = FALSE)

18 Threshold

Arguments

x A named multidimensional array to be sliced. It can have dimension names
either in names(dim(x)) or in the attribute ’dimensions’.

along A vector with references to the dimensions to take the subset from: either inte-
gers or dimension names.

indices A list of indices to take from each dimension specified in ’along’. If a single
dimension is specified in ’along’, it can be directly provided as an integer or a
vector.

drop Whether to drop all the dimensions of length 1 in the resulting array, none, only
those that are specified in ’along’, or only those that are not specified in ’along’.
The possible values are: ’all’ or TRUE, ’none’ or FALSE, ’selected’, and ’non-
selected’. The default value is FALSE.

Value

An array with similar dimensions as the x input, but with trimmed or dropped dimensions.

Examples

#Example synthetic data:
Dimension has name already
data <- 1:(2 * 3 * 372 * 1)
dim(data) <- c(time = 372, lon = 2, lat = 3, model = 1)
data_subset <- Subset(data, c('time', 'model'),

list(1:10, TRUE), drop = 'selected')
dim(data_subset)
Use attributes 'dimensions'
data <- array(1:(2 * 3 * 372 * 1), dim = c(2, 3, 372, 1))
attributes(data)[['dimensions']] <- c('lat', 'lon', 'time', 'model')
data_subset <- Subset(data, c('lon', 'lat'), list(1, 1), drop = TRUE)
dim(data_subset)

Threshold Daily thresholds based on quantiles for n-dimensional arrays

Description

This function computes the threshold based on a quantile value for each day of the year of the daily
data input.

Usage

Threshold(
data,
dates = NULL,
calendar = NULL,

Threshold 19

base.range = NULL,
qtiles = 0.9,
ncores = NULL,
na.rm = FALSE

)

Arguments

data A numeric n-dimensional array containing daily data.

dates A vector of dates with a calendar attributes. If NULL (by default), the ’time’
attributes of parameter ’data’ is considered.

calendar A character indicating the calendar type.

base.range The years used for computing the threshold.

qtiles Numeric vector with values between 0 and 1 indicating the quantiles to be com-
puted.

ncores The number of cores to be used when computing the threshold.

na.rm A logical value. If TRUE, any NA and NaN’s are removed before the quantiles
are computed (default as FALSE).

Value

An array with similar dimensions as the data input, but without ’time’ dimension, and a new ’jdays’
dimension.

Examples

##Example synthetic data:
data <- 1:(2 * 3 * 372 * 1)
dim(data) <- c(time = 372, lon = 2, lat = 3, model = 1)
time <- as.POSIXct(paste(sort(rep(1900:1911, 31)), 1, 1:31, sep = "-"),

tz = "CET")
metadata <- list(time = list(standard_name = 'time', long_name = 'time',

calendar = 'noleap',
units = 'days since 1970-01-01 00:00:00', prec = 'double',
dim = list(list(name = 'time', unlim = FALSE))))

attr(time, "variables") <- metadata
attr(data, 'Variables')$dat1$time <- time

a <- Threshold(data, dates = NULL, base.range = NULL, qtiles = 0.9,
ncores = NULL)

str(a)

20 WaveDuration

WaveDuration Heat and cold waves duration for n-dimensional arrays

Description

This function computes the duration of a heat/cold wave as the number of consecutive days for
which the maximum/minimum temperature is exceeding/below a threshold over a minimum number
of days in month or seasonal resolution.

Usage

WaveDuration(
data,
threshold,
op = ">",
spell.length = 6,
by.seasons = TRUE,
dates = NULL,
calendar = NULL,
ncores = NULL

)

Arguments

data A numeric n-dimensional array containing daily maximum or minimum temper-
ature

threshold An array with the threshold to be/not to be reach, usually given by the 90th/10th
percentiles for heat/cold waves computed with the Threshold function.

op A character ">" (by default) or ">=" for heat waves and "<" or "<=" for cold
waves indicating the operator must be used to compare data to threshold.

spell.length A number indicating the number of consecutive days with extreme temperature
to be considered heat or cold wave.

by.seasons If TRUE (by default), the wave duration is computed for each season (DJF/MAM/JJA/SON)
separately. If FALSE is specified, the monthly wave duration is computed.

dates A vector of dates including calendar attributes. If NULL (by default), the ’time’
attributes of parameter ’data’ is used.

calendar A character indicating the calendar type.

ncores The number of cores to be used when computing the wave duration.

Value

A list of length 2:

• $result, an array with the same dimensions as the input data, but with the time dimension
reduce from daily to monthly or seasonal resolution depending on the selected resolution in
by.season.

WeightedCells 21

• $years, a vector of the years and season/months corresponding to the resolution selected in
by.season and temporal length of the input data.

Examples

##Example synthetic data:
data <- 1:(2 * 3 * 31 * 5)
dim(data) <- c(lon = 2, lat = 3, time = 31, model = 5)
time <- as.POSIXct(paste(paste(1900, 1, 1:31, sep = "-"), paste(12, 0, 0.0,

sep = ":")), tz = "CET")
metadata <- list(time = list(standard_name = 'time', long_name = 'time',

calendar = 'standard',
units = 'days since 1970-01-01 00:00:00', prec = 'double',
dim = list(list(name ='time', unlim = FALSE))))

attr(time, "variables") <- metadata
attr(data, 'Variables')$dat1$time <- time
threshold <- rep(40, 31)

a <- WaveDuration(data, threshold, op = ">", spell.length = 6,
by.seasons = TRUE, ncores = NULL)

str(a)

WeightedCells Compute the square-root of the cosine of the latitude weighting on the
given array.

Description

This function performs square-root of the cosine of the latitude weighting on the given array.

Usage

WeightedCells(data, lat, lat_dim = "lat", method = "cos", ncores = NULL)

Arguments

data A numeric array with named dimensions, representing the data to be applied the
weights. It should have at least the latitude dimension and it can have more other
dimensions.

lat A numeric vector or array with one dimension containing the latitudes (in de-
grees).

lat_dim A character string indicating the name of the latitudinal dimension. The default
value is ’lat’.

method A character string indicating the type of weighting applied: ’cos’ (cosine of the
latitude) or ’sqrtcos’ (square-root of the cosine of the latitude). The default value
is ’cos’.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

22 WeightedMean

Value

An array containing the latitude weighted data with same dimensions as parameter ’data’.

Examples

exp <- array(rnorm(1:30), dim = c(lat = 3, lon = 5, sdate = 2))
lat <- c(10, 15, 20)
res <- WeightedCells(data = exp, lat = lat)

WeightedMean Calculate spatial area-weighted average of multidimensional arrays

Description

This function computes a spatial area-weighted average of n-dimensional arrays being possible to
select a region and to add a mask to be applied when computing the average.

Usage

WeightedMean(
data,
lon,
lat,
region = NULL,
mask = NULL,
londim = "lon",
latdim = "lat",
na.rm = TRUE,
ncores = NULL

)

Arguments

data A numeric array with named dimensions, representing the data to be applied the
weights. It should have at least the latitude dimension and it can have more other
dimensions.

lon A numeric vector of longitude locations of the cell centers of the grid of data.
This vector must be of the same length as the longitude dimension in the param-
eter data (in degrees).

lat A numeric vector of latitude locations of the cell centers of the grid of data.
This vector must be of the same length as the latitude dimension in the parameter
data (in degrees).

region A vector of length four indicating the minimum longitude, the maximum longi-
tude, the minimum latitude and the maximum latitude of the region to be aver-
aged.

WeightedMean 23

mask A matrix with the same spatial dimensions of data. It can contain either a)
TRUE where the value at that position is to be accounted for and FALSE where
not, or b) numeric values, where those greater or equal to 0.5 are to be accounted
for, and those smaller are not. Attention: if the longitude and latitude dimensions
of the data and mask coincide in length, the user must ensure the dimensions of
the mask are in the same order as the dimensions in the array provided in the
parameter data.

londim A character string indicating the name of the longitudinal dimension. The de-
fault value is ’lon’.

latdim A character string indicating the name of the latitudinal dimension. The default
value is ’lat’.

na.rm A logical value indicating whether missing values should be stripped before the
computation proceeds, by default it is set to TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

An array, matrix or vector containig the area-weighted average with the same dimensions as data,
except for the spatial longitude and latitude dimensions, which disappear.

Examples

Example 1:
data <- 1:(2 * 3 * 4 * 5)
dim(data) <- c(lon = 2, lat = 3, time = 4, model = 5)
lat <- c(1, 10, 20)
lon <- c(1, 10)
a <- WeightedMean(data = data, lon = lon, lat = lat, region = NULL)

mask <- c(0, 1, 0, 1, 0, 1)
dim(mask) <- c(lon = 2, lat = 3)
a <- WeightedMean(data = data, lon = lon, lat = lat, mask = mask)

region <- c(1, 10, 1, 10)
a <- WeightedMean(data = data, lon = lon, lat = lat, region = region,

mask = mask)

Example 2:
data <- 1:(2 * 3 * 4)
dim(data) <- c(lon = 2, lat = 3, time = 4)
lat <- c(1, 10, 20)
lon <- c(1, 10)
a <- WeightedMean(data = data, lon = lon, lat = lat)

Index

+.PCICt (as.PCICt), 4
-.PCICt (as.PCICt), 4
.PCICt (as.PCICt), 4
[.PCICt (as.PCICt), 4
[<-.PCICt (as.PCICt), 4

AnoAgree, 2
ArrayToList, 3
as.character.PCICt (as.PCICt), 4
as.PCICt, 4
as.POSIXct.PCICt (as.PCICt), 4
as.POSIXlt.PCICt (as.PCICt), 4

Climdex, 5
CombineIndices, 6

DailyAno, 7
DTRIndicator, 8
DTRRef, 10

Extremes, 12

Lon2Index, 13

Ops.PCICt (as.PCICt), 4

round.PCICt (as.PCICt), 4

SeasonSelect, 14
SelBox, 15
ShiftLon, 16
Subset, 17

Threshold, 18

WaveDuration, 20
WeightedCells, 21
WeightedMean, 22

24

	AnoAgree
	ArrayToList
	as.PCICt
	Climdex
	CombineIndices
	DailyAno
	DTRIndicator
	DTRRef
	Extremes
	Lon2Index
	SeasonSelect
	SelBox
	ShiftLon
	Subset
	Threshold
	WaveDuration
	WeightedCells
	WeightedMean
	Index

