Package ‘FSA’

January 10, 2026
Version 0.10.1
Date 2026-1-7
Title Simple Fisheries Stock Assessment Methods

Description A variety of simple fish stock assessment methods.
URL https://fishr-core-team.github.io/FSA/

BugReports https://github.com/fishR-Core-Team/FSA/issues
License GPL (>=2)

LazyData true

Depends R (>=3.5.0)

Imports graphics, grDevices, stats, tools, utils, car, dunn.test,
FlexParamCurve, Imtest, plotrix, purrr, withr

Suggests dplyr, fishmethods, FSAdata, knitr, nlme, nlstools,
rmarkdown, testthat (>= 3.0.0), tidyr, covr

Encoding UTF-8

RoxygenNote 7.3.3

Config/testthat/edition 3

Config/Needs/website 1-lib/pkgdown, quarto, ggplot2
NeedsCompilation no

Author Derek H. Ogle [aut, cre],
Jason C. Doll [aut],
A. Powell Wheeler [aut],
Alexis Dinno [aut] (Provided base functionality of dunnTest())

Maintainer Derek H. Ogle <DerekOgle51@gmail. com>
Repository CRAN
Date/Publication 2026-01-10 07:52:39 UTC

https://fishr-core-team.github.io/FSA/
https://github.com/fishR-Core-Team/FSA/issues

2 Contents

Contents
addZeroCatch e e 4
ageBias 7
agePrecision 15
alkAgeDist e 19
alkIndivAge e e e 21
alkMeanVar e e e e e 24
alkPlot e e e 26
binCL e 29
BluegillJL e 31
BrookTroutTH e 32
capFirst L 33
capHistConvert e e e e e 34
capHistSum L e e e 41
catchCurve e e 44
chapmanRobson 49
ChinooKATg e 54
CodNorwegian e 55
col2rgbt . . . L 56
confint.boot L. e e e 57
CutthroatAL e e e e 60
depletion e e e 61
dunnTest e e e e e e 66
Ecoli e 69
expandCounts e 70
expandLenFreq 73
extraTests e e e e 75
factZnum L e e e 78
findGrowthStarts L 79
fishR . . . o e 82
FSA-defunct. e 83
GEOMECAM .« .« « v v e et e e e e e e e e e e e e e e e e e e e 84
GrowthDatal e e e e 85
GrowthData2 e e e e 86
GrowthData3 e e e 87
growthModels e 88
headtail L 94
hist.formula 95
histFromSum e e 98
hyperCIL e 100
1s.odd .. oL e e 101
JOIY o o e e e 102
KCounts e e e e 106
ksTest . . . o o e e 109
lagratio L e e 111
lencat L e e e e e e 112

logbtef o L 117

Contents

Index

3

IwCompPreds e 118
makeGrowthFun 121
MIreX o e e e e e e e e e e e e 125
Mmethods e 126
mrClosed e e e e 131
nlsBoot e e e 139
nlsTracePlot e 141
PEEK . . e e e e 144
PEIC . o o 145
PikeNY e e e e e 147
PikeNYPartiall e 148
PIOtAB . . . e 149
PoiCL . . e e e 152
psdAdd . . . e 153
psdCalc L e e 158
psACL . o 161
PSDIit e e e e e e 163
psdPlot . . . 165
psdVal . . . 168
PSDWRtest e e e e e 171
TCUMSUI . v . v v vt e 172
removal e e 173
repeatedRows2Keep L 180
rSquared L e 181
S e e e e e 182
showGrowthFun 183
SMBassLS e e e 186
SMBassWB e 187
SpotVAL . . e e 188
stFuns L e e 189
SISTATLS e e e e e e e 192
Summarize e e e e e e e 195
sumTable e 198
HCLACIOC . . . v o o e o e e e e e e e e e e e e e e e e e 199
validn e e e 202
VOStarts e e e e 203
WhitefishLC e 206
WRT9 . e 207
WIAdd e e e e 208
WSHt . . e 212
wsVal .. e e e 214
217

4 addZeroCatch

addZeroCatch Adds zeros for catches of species not collected in some sampling
events.

Description

Adds zeros for catches of species that were not captured in a sampling event but were captured in at
least one other sampling event (i.e., adds zeros to the data.frame for capture events where a species
was not observed).

Usage

addZeroCatch(df, eventvar, specvar, zerovar, na.rm = TRUE)

Arguments
df A data.frame that contains the capture summary data as described in the details.
eventvar A string for the variable that identifies unique capture events.
specvar A string or vector of strings for the variable(s) that identify the “species” (if
multiple variables, could be species, sex, and life stage, for example) captured.
See examples.
zerovar A string or vector of strings for the variable(s) that should be set equal to zero.
See details and examples.
na.rm A logical that indicates if rows where specvar that are NA should be removed
after adding the zeros. See details.
Details

The data.frame in df must contain a column that identifies a unique capture event (given in eventvar),
a column with the name for the species captured (given in specvar), and a column that contains
the number of that species captured (potentially given to zerovar; see details). All sampling event
and species combinations where catch information does not exist is identified and a new data.frame
that contains a zero for the catch for all of these combinations is created. This new data.frame is ap-
pended to the original data.frame to construct a data.frame that contains complete catch information
—1i.e., including zeros for species in events where that species was not captured.

The data.frame may contain other information related to the catch, such as number of recaptured
fish, number of fish released, etc. These additional variables can be included in zerovar so that
zeros will be added to these variables as well (e.g., if the catch of the species is zero, then the number
of recaptures must also be zero). All variables not given in eventvar, specvar, or zerovar will be
assumed to be related to eventvar and specvar (e.g., date, gear type, and habitat) and, thus, will
be repeated with these variables.

In situations where no fish were captured in some events, the df may contain rows that have a value
for eventvar but not for specvar. These rows are important because zeros need to be added for
each observed species for these events. However, in these situations, a <NA> species will appear
in the resulting data.frame. It is unlikely that these “missing” species are needed so they will be
removed if na.rm=TRUE (DEFAULT) is used.

addZeroCatch 5

One should test the results of this function by creating a frequency table of the eventvar or
specvar. In either case, the table should contain the same value in each cell of the table. See
the examples.

Value

A data.frame with the same structure as df but with rows of zero observation data appended.

IFAR Chapter

2-Basic Data Manipulations

Note

An error will be returned if either specvar or eventvar are factors with any NA levels. This usually
arises if the data.frame was subsetted/filtered prior to using addZeroCatch. See droplevels for
descriptions of how to drop unused levels.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

See Also

complete in tidyr package.

Examples

Example Data #1 (some nets missing some fish, ancillary net data)
df1 <- data.frame(net=c(1,1,1,2,2,3),
eff=c(1,1,1,1,1,1),
species=c("BKT","LKT","RBT", "BKT", "LKT", "RBT"),
catch=c(3,4,5,5,4,3))
df1
not all 1s
xtabs(~net+species,data=df1)

df1mod1 <- addZeroCatch(df1,"net","species"”,zerovar="catch")
df1mod1

check, should all be 3

xtabs(~net,data=df1mod1)

check, should all be 1

xtabs(~net+species,data=df1mod1)

correct mean/sd of catches
Summarize(catch~species,data=df1mod1)

incorrect mean/sd of catches (no zeros)
Summarize(catch~species,data=df1)

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

addZeroCatch

Same as example 1 but with no ancillary data specific to the net number
df2 <- df1[,-2]

df2

df1mod2 <- addZeroCatch(df2,"net","species"”,zerovar="catch")

df1mod?2

check, should all be 1

xtabs(~net+species,data=df1mod2)

Example Data #3 (All nets have same species ... no zeros needed)
df3 <- data.frame(net=c(1,1,1,2,2,2,3,3,3),
eff=c(1,1,1,1,1,1,1,1,1),
species=c("BKT", "LKT","RBT","BKT", "LKT",
"RBT", "BKT", "LKT","RBT"),
catch=c(3,4,5,5,4,3,3,2,7))
df3
should all be 1 for this example
xtabs(~net+species,data=df3)

should receive a warning and table should still all be 1
df3mod1 <- addZeroCatch(df3,"net"”,"species”,zerovar="catch")
xtabs(~net+species,data=df3mod1)

Example Data #4 (another variable that needs zeros)
df4 <- df1

df4$recaps <- c(0,0,0,1,2,1)

df4

not all 1s

xtabs(~net+species,data=df4)

df4mod1 <- addZeroCatch(df4,"net"”,"species"”,zerovar=c("catch”,"recaps"”))
note zeros in both variables

df4mod1

check, should all be 1
xtabs(~net+species,data=df4mod1)

observe difference from next
Summarize(catch~species,data=df4)
Summarize(catch~species,data=df4mod1)
observe difference from next
Summarize(recaps~species,data=df4)
Summarize(recaps~species,data=df4mod1)

Example Data #5 (two "specvar”s)

df5 <- df1

df5$sex <- c('m”,"m", "€, Tt e e
df5

not all 1s

xtabs(~sex+species+net,data=df5)

df5mod1 <- addZeroCatch(df5,"net"”,c("species”,"sex"),zerovar="catch")
df5mod1

all 1s

xtabs(~sex+species+net,data=df5mod1)

str(df5mod1)

ageBias 7

Example Data #6 (three "specvar”s)

dfé <- df5
df6$size <- C("].rg” , "lrg” , nlrgu , nsmn , "lrg" , ”Sm”)
dfé

dfémod1 <- addZeroCatch(df6,"net",c("species”,"sex","size"),zerovar="catch")
dfémod1

ageBias Compute and view possible differences between paired sets of ages.

Description

Constructs age-agreement tables, statistical tests to detect differences, and plots to visualize poten-
tial differences in paired age estimates. Ages may be from, for example, two readers of the same
structure, one reader at two times, two structures (e.g., scales, spines, otoliths), or one structure and
known ages.

Usage

ageBias(
formula,
data,
ref.lab = tmp$Enames,
nref.lab = tmp$Rname,
method = stats::p.adjust.methods,
sig.level = 0.05,

min.n.CI = 3
)
S3 method for class 'ageBias'
summary (
object,
what = c("table”, "symmetry"”, "Bowker"”, "EvansHoenig"”, "McNemar”, "bias", "diff.bias"”,
n"),

flip.table = FALSE,

n_mn

zero.print = ,

digits = 3,

cont.corr = c("none”, "Yates", "Edwards"),
)
S3 method for class 'ageBias'
plot(

X’

xvals = c("reference”, "mean"),

xlab
ylab

ageBias

ifelse(xvals == "reference”, x$ref.lab, "Mean Age"),
paste(x$nref.lab, "-", x$ref.lab),

xlim = NULL,
ylim = NULL,

yaxt

graphics::par("yaxt"),

xaxt = graphics::par("xaxt"),

col.agree
lwd. agree
lty.agree

lwd =1,
sfrac =

"gray60"”,
lwd,
2,

show.pts = NULL,

pch.pts
cex.pts
col.pts

= 20,
ifelse(xHist | yHist, 1.5, 1),
= "black",

transparency = 1/10,
show.CI = FALSE,
col.CI = "black”,
col.CIsig = "red”,
lwd.CI = 1wd,
sfrac.CI = sfrac,
show.range = NULL,

col.range = ifelse(show.CI, "gray70"”, "black"),
lwd.range = 1lwd,
sfrac.range = sfrac,
pch.mean = 19,
pch.mean.sig = ifelse(show.CI | show.range, 21, 19),
cex.mean = lwd,
yHist = TRUE,
xHist = NULL,
hist.panel.size = 1/7,
col.hist = "gray9e”,
allowAdd = FALSE,
)
Arguments
formula A formula of the form nrefvar~refvar, where nrefvar and refvar generi-
cally represent variables that contain the paired “nonreference” and “reference”
age estimates, respectively. See details.
data A data.frame that minimally contains the paired age estimates given in formula.
ref.lab A string label for the reference age estimates.
nref.lab A string label for the nonreference age estimates.
method A string for which method to use to adjust p-values for multiple comparisons.
See ?p.adjust.methods.
sig.level A numeric value to determine whether a p-value indicates a significant result.

The confidence level used in plot is 100*(1-sig.level).

ageBias

min.n.CI

what

flip.table

zero.print

digits

cont.corr

X, object

xvals

xlab, ylab

xLlim, ylim

xaxt, yaxt

col.agree

lwd.agree

1ty.agree

1wd

sfrac

show.pts
pch.pts
cex.pts

col.pts

transparency

show.CI

A numeric value (default is 3) that is the smallest sample size for which a confi-
dence interval will be computed.

A string that indicates what type of summary to print or plot to construct. See
details.

A logical that indicates whether the age-agreement table should be ‘flipped’
(i.e., rows are reversed so that younger ages are at the bottom of the table). This
makes the table more directly comparable to the age bias plot.

A string for what should be printed in place of the zeros on an age-agreement
table. The default is to print a single dash.

A numeric for the minimum number of digits to print when showing what="bias"
or what="diff.bias" in summary.

A string that indicates the continuity correction method to be used with (only)
McNemar test. If "none” (default) then no continuity correction is used, if
"Yates" then 0.5 is used, and if "Edwards” then 1 is used.

Additional arguments for methods.
An object of class ageBias, usually a result from ageBias.

A string for whether the x-axis values are reference ages or mean of the reference
and nonreference ages.

A string label for the x-axis (reference) or y-axis (non-reference) age estimates,
respectively.

A numeric vector of length 2 that contains the limits of the x-axis (reference
ages) or y-axis (non-reference ages), respectively.

[N 1]

A string which specifies the x- and y-axis types. Specifying “n” suppresses

plotting of the axis. See ?par.

A string or numeric for the color of the 1:1 or zero (if difference=TRUE) refer-
ence line.

A numeric for the line width of the 1:1 or zero (if difference=TRUE) reference
line.

A numeric for the line type of the 1:1 or zero (if difference=TRUE) reference
line.

A numeric that controls the separate ‘lwd’ argument (e.g., lwd.CI and 1wd. range).

A numeric that controls the separate ‘sfrac’ arguments (e.g., sfrac.CI and
sfrac.range). See sfrac in plotCI of plotrix.

A logical for whether or not the raw data points are plotted.
A numeric for the plotting character of the raw data points.
A character expansion value for the size of the symbols for pch.pts.

A string or numeric for the color of the raw data points. The default is to use
black with the transparency found in transparency.

A numeric (between 0 and 1) for the level of transparency of the raw data points.
This number of points plotted on top of each other will represent the color in
col.pts.

A logical for whether confidence intervals should be plotted or not.

10 ageBias

col.CI A string or numeric for the color of confidence interval bars that are considered
non-significant.

col.CIsig A string or numeric for the color of confidence interval bars that are considered
significant.

lwd.CI A numeric for the line width of the confidence interval bars.

sfrac.CI A numeric for the size of the ends of the confidence interval bars. See sfrac in

plotCI of plotrix.

show. range A logical for whether or not vertical bars that represent the range of the data
points are plotted.

col.range A string or numeric for the color of the range intervals.

lwd. range A numeric for the line width of the range intervals.

sfrac.range A numeric for the size of the ends of the range intervals. See sfrac in plotCI
of plotrix.

pch.mean A numeric for the plotting character used for the mean values when the means

are considered insignificant.

pch.mean.sig A numeric for the plotting character for the mean values when the means are
considered significant.

cex.mean A character expansion value for the size of the mean symbol in pch.mean and
pch.mean.sig.

yHist A logical for whether a histogram of the y-axis variable should be added to the
right margin of the age bias plot. See details.

xHist A logical for whether a histogram of the x-axis variable should be added to the
top margin of the age bias plot. See details.

hist.panel.size
A numeric between 0 and 1 that indicates the proportional size of histograms
(relative to the entire plotting pane) in the plot margins (only used if xHist=TRUE
or yHist=TRUE).

col.hist A string for the color of the bars in the marginal histograms (only used if
xHist=TRUE or yHist=TRUE).

allowAdd A logical that will allow the user to add items to the main (i.e., not the marginal
histograms) plot panel (if TRUE). Defaults to FALSE.

Details

Generally, one of the two age estimates will be identified as the “reference” set. In some cases this
may be the true ages, the ages from the more experienced reader, the ages from the first reading, or
the ages from the structure generally thought to provide the most accurate results. In other cases,
such as when comparing two novice readers, the choice may be arbitrary. The reference ages will
form the columns of the age-agreement table and will be the “constant” age used in the t-tests and
age bias plots (i.e., the x-axis). See further details below.

The age-agreement table is constructed with what="table"” in summary. The agreement table can
be “flipped” (i.e., the rows in descending rather than ascending order) with flip.table=TRUE. By
default, the tables are shown with zeros replaced by dashes. This behavior can be changed with
zero.print.

ageBias 11

Three statistical tests of symmetry for the age-agreement table can be computed with what= in
summary. The “unpooled” or Bowker test as described in Hoenig et al. (1995) is constructed
with what="Bowker", the “semi-pooled” or Evans-Hoenig test as described in Evans and Hoenig
(1998) is constructed with what="EvansHoenig"”, and the “pooled” or McNemar test as described
in Evans and Hoenig (1998) is constructed with what="McNemar". All three tests are computed
with what="symmetry".

The age bias plot introduced by Campana et al. (1995) can be constructed with plotAB. Muir et al.
(2008) modified the original age bias plot by plotting the difference between the two ages on the
y-axis (still against a reference age on the x-axis). McBride (2015) introduced the Bland-Altman
plot for comparing fish ages where the difference in ages is plotted on the y-axis versus the mean of
the ages on the x-axis. Modifications of these plots are created with plot (rather than plotAB) using
xvals= to control what is plotted on the x-axis (i.e., xvals="reference"” uses the reference ages,
whereas xvals="mean" uses the mean of the two ages for the x-axis). In both plots, a horizontal
agreement line at a difference of zero is shown for comparative purposes. In addition, a histogram
of the differences is shown in the right margin (can be excluded with yHist=FALSE.) A histogram
of the reference ages is shown by default in the top margin for the modified age bias plot, but not
for the modified Bland-Altman-like plot (the presence of this histogram is controlled with xHist=).

By default, the modified age bias plot shows the mean and range for the nonreference ages at
each of the reference ages. Means shown with an open dot are mean age differences that are
significantly different from zero. The ranges of differences in ages at each reference age can be
removed with show.range=FALSE. A confidence interval for difference in ages can be added with
show.CI=FALSE. Confidence intervals are only shown if the sample size is greater than the value
in min.n.CI= (also from the original call to ageBias). Confidence intervals plotted in red with
an open dot (by default; these can be changed with col.CIsig and pch.mean.sig, respectively)
do not contain the reference age (see discussion of t-tests below). Individual points are plotted if
show. pts=TRUE, where there color is controlled by col.pts= and transparency=. See examples
for use of these arguments.

The main (i.e., not the marginal histograms) can be "added to" after the plot is constructed if
allowAdd=TRUE is used. For example, the Bland-Altman-like plot can be augmented with a hori-
zontal line at the mean difference in ages, a line for the regression between the differences and the
means, or a generalized additive model that describes the relationship between the differences and
the means. See the examples for use of allowAdd=TRUE. It is recommended to save the plotting
parameters (e.g., op <- par(no.readonly=TRUE)) before using plot with allowAdd=TRUE so that
the original parameters can be reset (e.g., par (op)); see the examples.

Individual t-tests to determine if the mean age of the nonreference set at a particular age of the
reference set is equal to the reference age (e.g., is the mean age of the nonreference set at age-3 of the
reference set statistically different from 3?) are shown with what="bias"” in summary. The results
provide a column that indicates whether the difference is significant or not as determined by adjusted
p-values from the t-tests and using the significance level provided in sig. level (defaults to 0.05).
Similar results for the difference in ages (e.g., is the mean reference age minus nonreference age at
a nonreference age of 3 different from 0?) are constructed with what="diff.bias"” in summary.

The sample size present in the age-agreement table is found with what="n"".

Value

ageBias returns a list with the following items:

12 ageBias

* data A data.frame with the original paired age estimates and the difference between those
estimates.

 agree The age-agreement table.
e bias A data.frame that contains the bias statistics.
 bias.diff A data.frame that contains the bias statistics for the differences.

* ref.lab A string that contains an optional label for the age estimates in the columns (reference)
of the age-agreement table.

« nref.lab A string that contains an optional label for the age estimates in the rows (non-reference)
of the age-agreement table.

summary returns the result if what= contains one item, otherwise it returns nothing. Nothing is
returned by plot or plotAB, but see details for a description of the plot that is produced.

Testing

Tested all symmetry test results against results in Evans and Hoenig (2008), the McNemar and
Evans-Hoenig results against results from compare2 in fishmethods, and all results using the

AlewifelH data set from FSAdata against results from the online resource at http://www.nefsc.noaa.gov/fbp/age-
prec/.

IFAR Chapter

4-Age Comparisons. Note that plot has changed since IFAR was published. Some of the
original functionality is in plotAB.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Campana, S.E., M.C. Annand, and J.I. McMillan. 1995. Graphical and statistical methods for de-
termining the consistency of age determinations. Transactions of the American Fisheries Society
124:131-138. [Was (is?) available from http://www.bio.gc.ca/otoliths/documents/Campana%?20et%20al%201995%20TAFS.

Evans, G.T. and J.M. Hoenig. 1998. Testing and viewing symmetry in contingency tables, with
application to readers of fish ages. Biometrics 54:620-629.

Hoenig, .M., M.J. Morgan, and C.A. Brown. 1995. Analysing differences between two age de-
termination methods by tests of symmetry. Canadian Journal of Fisheries and Aquatic Sciences
52:364-368.

McBride, R.S. 2015. Diagnosis of paired age agreement: A simulation approach of accuracy and
precision effects. ICES Journal of Marine Science 72:2149-2167.

Muir, A.M., M.P. Ebener, J.X. He, and J.E. Johnson. 2008. A comparison of the scale and otolith
methods of age estimation for lake whitefish in Lake Huron. North American Journal of Fisheries
Management 28:625-635. [Was (is?) available from http://www.tandfonline.com/doi/abs/10.1577/M06-
160.1]

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

ageBias 13

See Also

See agePrecision for measures of precision between pairs of age estimates. See compare?2 in
fishmethods for similar functionality. See plotAB for a more traditional age-bias plot.

Examples

ab1 <- ageBias(scaleC~otolithC,data=WhitefishLC,
ref.lab="0tolith Age”,nref.lab="Scale Age")

summary (ab1)

summary (ab1,what="symmetry")

summary (ab1,what="Bowker")

summary (ab1,what="EvansHoenig")

summary (ab1,what="McNemar")

summary (ab1,what="McNemar",cont.corr="Yates")

summary (ab1,what="bias")

summary (ab1,what="diff.bias")

summary(ab1,what="n")

summary (ab1,what=c("n","symmetry"”, "table"))

flip table (easy to compare to age bias plot) and show zeroes (not dashes)

summary (ab1,what="table"”,flip.table=TRUE,zero.print="0")

HEHHHHHHHEHHE A EHHEHEHEEEEE PR

Differences Plot (inspired by Muir et al. (2008))

Default (ranges, open circles for sig diffs, marginal hists)

plot(ab1)

Show CIs for means (with and without ranges)

plot(ab1,show.CI=TRUE)

plot(ab1,show.CI=TRUE, show.range=FALSE)

show points (with and without CIs)

plot(ab1,show.CI=TRUE, show.range=FALSE, show.pts=TRUE)

plot(ab1,show.range=FALSE, show.pts=TRUE)

Use same symbols for all means (with ranges)

plot(ab1,pch.mean.sig=19)

Use same symbols/colors for all means/CIs (without ranges)

plot(ab1, show.range=FALSE, show.CI=TRUE,pch.mean.sig=19,col.CIsig="black")

Remove histograms

plot(ab1,xHist=FALSE)

plot(ab1,yHist=FALSE)

plot(ab1,xHist=FALSE,yHist=FALSE)

Suppress confidence intervals for n < a certain value

must set this in the original ageBias() call

ab2 <- ageBias(scaleC~otolithC,data=WhitefishLC,min.n.CI=8,
ref.lab="0tolith Age”,nref.lab="Scale Age")

plot(ab2, show.CI=TRUE, show.range=FALSE)

HHHHHHARHHEE A A

Differences Plot (inspired by Bland-Altman plots in McBride (2015))
plot(ab1,xvals="mean")

Modify axis limits

plot(ab1,xvals="mean",xlim=c(1,17))

14

Add and remove histograms
plot(ab1,xvals="mean",xHist=TRUE)
plot(ab1,xvals="mean",xHist=TRUE,yHist=FALSE)
plot(ab1,xvals="mean",yHist=FALSE)

AR AR AR A
Adding post hoc analyses to the main plot

get original graphing parameters to be reset at the end

op <- par(no.readonly=TRUE)

get raw data
tmp <- ab1$d
head (tmp)

Add mean difference (w/ approx. 95% CI)

bias <- mean(tmp$diff)+c(-1.96,0,1.96)*se(tmp$diff)
plot(ab1,xvals="mean",x1lim=c(1,17),allowAdd=TRUE)
abline(h=bias,lty=2,col="red")

par(op)

Same as above, but without marginal histogram, and with
95% agreement lines as well (1.96SDs)

(this is nearly a replicate of a Bland-Altman plot)
bias <- mean(tmp$diff)+c(-1.96,0,1.96)*se(tmp$diff)
agline <- mean(tmp$diff)+c(-1.96,1.96)*sd(tmp$diff)
plot(ab1,xvals="mean",yHist=FALSE,allowAdd=TRUE)
abline(h=bias,lty=2,col="red")

abline(h=agline, lty=3,1wd=2,col="blue")

par(op)

Add linear regression line of differences on means (w/ approx. 95% CI)
Im1 <- Im(diff~mean,data=tmp)

xval <- seq(0,19,0.1)

predl <- predict(lml,data.frame(mean=xval),interval="confidence")
bias1 <- data.frame(xval,pred?l)

head(bias1)

plot(ab1,xvals="mean",xlim=c(1,17),allowAdd=TRUE)
lines(lwr~xval,data=bias1,1ty=2,col="red")
lines(upr~xval,data=bias1,1ty=2,col="red")
lines(fit~xval,data=bias1,1ty=2,col="red")

par(op)

Add loess of differences on means (w/ approx. 95% CI as a polygon)

lo2 <- loess(diff~mean,data=tmp)

xval <- seq(min(tmp$mean),max(tmp$mean),0.1)

pred2 <- predict(lo2,data.frame(mean=xval), se=TRUE)

bias2 <- data.frame(xval,pred2)

bias2$lwr <- bias2$fit-1.96*bias2$se.fit

bias2$upr <- bias2$fit+1.96*bias2$se.fit

head(bias2)

plot(ab1,xvals="mean",xlim=c(1,17),allowAdd=TRUE)

with(bias2,polygon(c(xval,rev(xval)),c(lwr,rev(upr)),
col=col2rgbt("red”,1/10),border=NA))

ageBias

agePrecision 15

lines(fit~xval,data=bias2,1ty=2,col="red")
par(op)

Same as above, but polygon and line behind the points
plot(ab1,xvals="mean",xlim=c(1,17),col.pts="white"”,allowAdd=TRUE)
with(bias2,polygon(c(xval,rev(xval)),c(lwr,rev(upr)),

col=col2rgbt("red”,1/10),border=NA))
lines(fit~xval,data=bias2,1ty=2,col="red")
points(diff~mean,data=tmp,pch=19,col=col2rgbt(”"black”,1/8))
par(op)

Can also be made with the reference ages on the x-axis

lo3 <- loess(diff~otolithC,data=tmp)

xval <- seq(min(tmp$otolithC),max(tmp$otolithC),0.1)

pred3 <- predict(lo3,data.frame(otolithC=xval), se=TRUE)

bias3 <- data.frame(xval,pred3)

bias3$lwr <- bias3$fit-1.96*xbias3$se.fit

bias3$upr <- bias3$fit+1.96*bias3%$se.fit

plot(ab1, show.range=FALSE, show.pts=TRUE, col.pts="white"”, 6 allowAdd=TRUE)

with(bias3,polygon(c(xval,rev(xval)),c(lwr,rev(upr)),
col=col2rgbt(”"red”,1/10),border=NA))

lines(fit~xval,data=bias3,1ty=2,col="red")

points(diff~otolithC,data=tmp,pch=19,col=col2rgbt("black”,1/8))

par(op)

agePrecision Compute measures of precision among sets of ages.

Description

Computes overall measures of precision for multiple age estimates made on the same individuals.
Ages may be from two or more readers of the same structure, one reader at two or more times, or
two or more structures (e.g., scales, spines, otoliths). Measures of precision include ACV (Average
Coefficient of Variation), APE (Average Percent Error), AAD (Average Absolute Deviation), and
ASD (Average Standard Deviation), and various percentage difference values.

Usage

agePrecision(formula, data)

S3 method for class 'agePrec'
summary (
object,
what = c("precision”, "difference"”, "absolute difference”, "details"),
percent = TRUE,
trunc.diff = NULL,
digits = 4,
show.prec2 = FALSE,

16 agePrecision

Arguments

formula A formula of the form ~var1+var2+var3+. .. or, alternatively, var1~var2+var3+. . .,
where the varX generically represent the variables that contain the age estimates.
The alternative formula allows for similar code as used in ageBias and can have
only one variable on the left-hand side.

data A data.frame that minimally contains the variables in formula.

object An object of class agePrec, usually from agePrecision.

what A string (or vector of strings) that indicates what type of summary to print. See
details.

percent A logical that indicates whether the difference table (see details) should be rep-
resented as percentages (TRUE; default) or frequency (FALSE) of fish.

trunc.diff A single integer that identifies the age for which all values that age and greater
are combined into one category. See the examples.

digits A single numeric that indicates the minimum number of digits to print when
using summary.

show.prec2 A logical that indicates whether the precision metrics that use the median (i.e.,
ACV2 and APE2) should be shown when only two age estimates were made (in
this instance they will be exactly equal to ACV and APE). Default is to not show
these values in this situation.
Additional arguments for methods.

Details

If what="precision” in summary then a summary table that contains the following items will be
printed:

* n Number of fish in data.

* validn Number of fish in data that have non-NA data for all R age estimates.

* R Number of age estimates given in formula.

» PercAgree The percentage of fish for which all age estimates perfectly agree.

* ASD The average (across all fish) standard deviation of ages within a fish.

* ACV The average (across all fish) coefficient of variation of ages within a fish using the mean
as the divisor. See the IFAR chapter for calculation details.

* ACV2 The average (across all fish) coefficient of variation of ages within a fish using the
median as the divisor. This will only be shown if R>2 or show.prec2=TRUE.

* AAD The average (across all fish) absolute deviation of ages within a fish.

* APE The average (across all fish) percent error of ages within a fish using the mean as the
divisor. See the IFAR chapter for calculation details.

* APE2 The average (across all fish) percent error of ages within a fish using the median as the
divisor. This will only be shown if R>2 or show.prec2=TRUE.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r
https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

agePrecision 17

* AD The average (across all fish) index of precision (D).

Note that ACV2 and APE2 will not be printed when what="precision” if only two sets of ages are
given (because mean=median such that ACV=ACV2 and APE=APE2). If what="difference" is
used in summary, then a table that describes either the percentage (if percent=TRUE, DEFAULT) or
frequency of fish by the difference in paired age estimates. This table has one row for each possible
pair of age estimates.

If what="absolute difference” is used in summary, then a table that describes either the per-
centage (if percent=TRUE, DEFAULT) or frequency of fish by the absolute value of the difference
in paired age estimates. This table has one row for each possible pair of age estimates. The “1”
column, for example, represents age estimates that disagree by one year (in either direction).

If what="detail” is used in summary, then a data.frame of the original data along with the in-
termediate calculations of the mean age, median age, modal age (will be NA if a mode does not
exist (e.g., all different ages) or multiple modes exist), standard deviation of age (SD), coefficient of
variation using the mean as the divisor (CV), coefficient of variation using the median as the divisor
(CV2), absolute deviation using the mean as the divisor (AD), absolute deviation using the median
as the divisor (AD2), average percent error (PE), and index of precision (D) for each individual will
be printed.

All percentage calculations above use the validn value in the denominator.

Value
The main function returns a list with the following items:
* detail A data.frame with all data given in data and intermediate calculations for each fish. See
details
» rawdiff A frequency table of fish by differences for each pair of ages.
* absdiff A frequency table of fish by absolute differences for each pair of ages.
* AAD The average absolute deviation.
* APE The average percent error (using the mean age as the divisor).
* APE2 The average percent error (using the median age as the divisor).
* ASD The average standard deviation.
* ACV The average coefficient of variation (using the mean age as the divisor).
* ACV2 The average coefficient of variation (using the median age as the divisor).
* AD The average index of precision.
* R The number of readings for each individual fish.
* n Number of fish in data.
* validn Number of fish in data that have non-NA data for all R age estimates.

The summary returns the result if what= contains only one item, otherwise it returns nothing. See
details for what is printed.

Testing

Tested all precision results against published results in Herbst and Marsden (2011) for the WhitefishLC
data and the results for the AlewifelH data set from FSAdata against results from the online re-
source at http://www.nefsc.noaa.gov/fbp/age-prec/.

18 agePrecision

IFAR Chapter

4-Age Comparisons.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Beamish, R.J. and D.A. Fournier. 1981. A method for comparing the precision of a set of age de-
terminations. Canadian Journal of Fisheries and Aquatic Sciences 38:982-983. [Was (is?) available
from http://www.pac.dfo-mpo.gc.ca/science/people-gens/beamish/PDF _files/compareagecjfas1981.pdf.]

Campana, S.E. 1982. Accuracy, precision and quality control in age determination, including a re-
view of the use and abuse of age validation methods. Journal of Fish Biology 59:197-242. [Was (is?)
available from http://www.denix.osd.mil/nr/crid/Coral_Reef_Iniative_Database/References_for_Reef_Assessment_files/Can

Campana, S.E., M.C. Annand, and J.I. McMillan. 1995. Graphical and statistical methods for de-
termining the consistency of age determinations. Transactions of the American Fisheries Society
124:131-138. [Was (is?) available from http://www.bio.gc.ca/otoliths/documents/Campana%20et%20al%201995%20TAFS.

Chang, W.Y.B. 1982. A statistical method for evaluating the reproducibility of age determination.
Canadian Journal of Fisheries and Aquatic Sciences 39:1208-1210. [Was (is?) available from
http://www.nrcresearchpress.com/doi/abs/10.1139/f82-158.]

McBride, R.S. 2015. Diagnosis of paired age agreement: A simulation approach of accuracy and
precision effects. ICES Journal of Marine Science, 72:2149-2167.

See Also

See ageBias for computation of the full age agreement table, along with tests and plots of age bias.

Examples

Example with just two age estimates

ap1 <- agePrecision(~otolithC+scaleC,data=WhitefishLC)
summary (ap1)

summary (ap1,what="precision")

summary (ap1,what="difference")

summary (ap1,what="difference",percent=FALSE)
summary (ap1,what="absolute")

summary (ap1,what="absolute",percent=FALSE)
summary (ap1,what="absolute"”, trunc.diff=4)
summary (ap1,what=c("precision”,"difference"))
summary (ap1,what="detail")

barplot(ap1$rawdiff,ylab="Frequency"”,xlab="0tolith - Scale Age")
plot(AD~mean,data=ap1$detail,pch=19,col=col2rgbt("black",1/5),
xlab="Mean Age",ylab="Absolute Deviation Age")
plot(SD~mean,data=ap1$detail,pch=19,col=col2rgbt("black”,1/5),
xlab="Mean Age",ylab="Standard deviation Age")
plot(SD~AD,data=apli$detail,pch=19,col=col2rgbt("black"”,1/5),

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

alkAgeDist 19

xlab="Absolute Deviation Age",ylab="Standard deviation Age")
plot(CV~PE,data=api$detail,pch=19,col=col2rgbt("black"”,1/5),
xlab="Percent Error Age",6ylab="Coefficient of Variation Age")

Example with three age estimates

ap2 <- agePrecision(~otolithC+finrayC+scaleC,data=WhitefishLC)
summary (ap2,digits=3)

summary (ap2,what="precision")

summary (ap2,what="difference")

summary (ap2,what="absolute”,percent=FALSE, trunc.diff=4)
summary (ap2,what="detail"”,digits=3)

plot (AD~mean,data=ap2$detail,pch=19,col=col2rgbt("black",1/5),
xlab="Mean Age",ylab="Absolute Deviation Age")

plot(SD~mean,data=ap2$detail,pch=19,col=col2rgbt("black”,1/5),
xlab="Mean Age",ylab="Standard Deviation Age")

plot(SD~AD,data=ap2$detail,pch=19,col=col2rgbt("black"”,1/5),
xlab="Absolute Deviation Age”,ylab="Standard Deviation Age")

plot(CV~PE,data=ap2$detail,pch=19,col=col2rgbt("black"”,1/5),
xlab="Percent Error Age",6ylab="Coefficient of Variation Age")

plot(median~mean,data=ap2$detail,pch=19,col=col2rgbt("black”,1/5),
xlab="Mean Age",ylab="Median Age")

alkAgeDist Proportions-at-age from an age-length key

Description

Computes the proportions-at-age (with standard errors) in a larger sample based on an age-length-
key created from a subsample of ages through a two-stage random sampling design. Follows the
methods in Quinn and Deriso (1999).

Usage

alkAgeDist(key, lenA.n, len.n)

Arguments
key A numeric matrix that contains the age-length key. See details.
lenA.n A numeric vector of sample sizes for each length interval in the aged sample.
len.n A numeric vector of sample sizes for each length interval in the complete sample

(i.e., all fish regardless of whether they were aged or not).

20 alkAgeDist

Details

The age-length key in key must have length intervals as rows and ages as columns. The row names
of key (i.e., rownames(key)) must contain the minimum values of each length interval (e.g., if an
interval is 100-109 then the corresponding row name must be 100). The column names of key (i.e.,
colnames(key)) must contain the age values (e.g., the columns can NOT be named with “age.1”,
for example).

The length intervals in the rows of key must contain all of the length intervals present in the larger
sample. Thus, the length of 1en.n must, at least, equal the number of rows in key. If this constraint
is not met, then the function will stop with an error message.

The values in lenA.n are equal to what the row sums of key would have been before key was
converted to a row proportions table. Thus, the length of 1enA.n must also be equal to the number
of rows in key. If this constraint is not met, then the function will stop with an error message.

Value
A data.frame with as many rows as ages (columns) present in key and the following three variables:
* age The ages.

* prop The proportion of fish at each age.
* se The SE for the proportion of fish at each age.

Testing

The results from this function perfectly match the results in Table 8.4 (left) of Quinn and Deriso
(1999) using SnapperHG2 from FSAdata. The results also perfectly match the results from using
alkprop in fishmethods.

IFAR Chapter

5-Age-Length Key.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Lai, H.-L. 1987. Optimum allocation for estimating age composition using age-length key. Fishery
Bulletin, 85:179-185.

Lai, H.-L. 1993. Optimum sampling design for using the age-length key to estimate age composition
of a fish population. Fishery Bulletin, 92:382-388.

Quinn, T. J. and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New
York, New York. 542 pages.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

alkIndivAge 21

See Also

See alkIndivAge and related functions for a completely different methodology. See alkprop from
fishmethods for the exact same methodology but with a different format for the inputs.

Examples

Example -- Even breaks for length categories

WR1 <- WR79

add length intervals (width=5)

WR1$LCat <- lencat(WR1$len,w=5)

get number of fish in each length interval in the entire sample
len.n <- xtabs(~LCat,data=WR1)

isolate aged sample and get number in each length interval
WR1.age <- subset(WR1, !is.na(age))

lenA.n <- xtabs(~LCat,data=WR1.age)

create age-length key

raw <- xtabs(~LCat+age,data=WR1.age)

(WR1.key <- prop.table(raw, margin=1))

use age-length key to estimate age distribution of all fish
alkAgeDist (WR1.key,lenA.n,len.n)

alkIndivAge Use an age-length key to assign age to individuals in the unaged sam-
ple.

Description

Use either the semi- or completely-random methods from Isermann and Knight (2005) to assign
ages to individual fish in the unaged sample according to the information in an age-length key
supplied by the user.

Usage

alkIndivAge(
key,
formula,
data,
type = c("SR", "CR"),
breaks = NULL,
seed = NULL

Arguments

key A numeric matrix that contains the age-length key. The format of this matrix is
important. See details.

22

alkIndivAge

formula A formula of the form age~length where age generically represents the vari-
able that will contain the estimated ages once the key is applied (i.e., should
currently contain no values) and length generically represents the variable that
contains the known length measurements. If only ~length is used, then a new
variable called “age” will be created in the resulting data frame.

data A data.frame that minimally contains the length measurements and possibly
contains a variable that will receive the age assignments as given in formula.

type A string that indicates whether to use the semi-random (type="SR", default) or
completely-random (type="CR") methods for assigning ages to individual fish.
See the IFAR chapter for more details.

breaks A numeric vector of lower values that define the length intervals. See details.

seed A single numeric that is given to set. seed to set the random seed. This allows
repeatability of results.

Details

The age-length key in key must have length intervals as rows and ages as columns. The row names
of key (i.e., rownames(key)) must contain the minimum values of each length interval (e.g., if an
interval is 100-109, then the corresponding row name must be 100). The column names of key (i.e.,
colnames(key)) must contain the age values (e.g., the columns can NOT be named with “age.1”,
for example).

The length intervals in the rows of key must contain all of the length intervals present in the unaged
sample to which the age-length key is to be applied (i.e., sent in the length portion of the formula).
If this constraint is not met, then the function will stop with an error message.

If breaks=NULL, then the length intervals for the unaged sample will be determined with a starting
interval at the minimum value of the row names in key and a width of the length intervals as
determined by the minimum difference in adjacent row names of key. If length intervals of differing
widths were used when constructing key, then those breaks should be supplied to breaks=. Use of
breaks= may be useful when “uneven” length interval widths were used because the lengths in the
unaged sample are not fully represented in the aged sample. See the examples.

Assigned ages will be stored in the column identified on the left-hand-side of formula (if the for-
mula has both a left- and right-hand-side). If this variable is missing in formula, then the new
column will be labeled with age.

Value

The original data.frame in data with assigned ages added to the column supplied in formula or in
an additional column labeled as age. See details.

Testing

The type="SR" method worked perfectly on a small example. The type="SR" method provides
results that reasonably approximate the results from alkAgeDist and alkMeanVar, which suggests
that the age assessments are reasonable.

IFAR Chapter

5-Age-Length Key.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

alkIndivAge 23

Author(s)

Derek H. Ogle, <DerekOgle51@gmail. com>. This is largely an R version of the SAS code provided
by Isermann and Knight (2005).

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Isermann, D.A. and C.T. Knight. 2005. A computer program for age-length keys incorporating age
assignment to individual fish. North American Journal of Fisheries Management, 25:1153-1160.
[Was (is?) from http://www.tandfonline.com/doi/abs/10.1577/M04-130.1.]

See Also

See alkAgeDist and alkMeanVar for alternative methods to derived age distributions and mean
(and SD) values for each age. See alkPlot for methods to visualize age-length keys.

Examples

First Example -- Even breaks for length categories
WR1 <- WR79

add length categories (width=5)
WR1$LCat <- lencat(WR1$len,w=5)

isolate aged and unaged samples
WR1.age <- subset(WR1, !is.na(age))
WR1.len <- subset(WR1, is.na(age))

note no ages in unaged sample
head(WR1.1en)

create age-length key

raw <- xtabs(~LCat+age,data=WR1.age)

(WR1.key <- prop.table(raw, margin=1))
apply the age-length key

WR1.len <- alkIndivAge(WR1.key,age~len,data=WR1.len)
now there are ages

head(WR1.1en)

combine orig age & new ages

WR1.comb <- rbind(WR1.age, WR1.len)

mean length-at-age
Summarize(len~age,data=WR1.comb,digits=2)
age frequency distribution

(af <- xtabs(~age,data=WR1.comb))

proportional age distribution

(ap <- prop.table(af))

Second Example -- length sample does not have an age variable
WR2 <- WR79

isolate age and unaged samples

WR2.age <- subset(WR2, !is.na(age))

WR2.len <- subset(WR2, is.na(age))

remove age variable (for demo only)

WR2.len <- WR2.len[,-3]

add length categories to aged sample

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

24 alkMean Var

WR2.age$LCat <- lencat(WR2.age$len,w=5)
create age-length key

raw <- xtabs(~LCat+age,data=WR2.age)

(WR2.key <- prop.table(raw, margin=1))
apply the age-length key

WR2.len <- alkIndivAge(WR2.key,~len,data=WR2.len)
add length cat to length sample
WR2.1len$LCat <- lencat(WR2.len$len,w=5)
head(WR2.1en)

combine orig age & new ages

WR2.comb <- rbind(WR2.age, WR2.len)
Summarize(len~age,data=WR2.comb,digits=2)

Third Example -- Uneven breaks for length categories
WR3 <- WR79

set up uneven breaks

brks <- c(seq(35,100,5),110,130)

WR3$LCat <- lencat(WR3$len,breaks=brks)

WR3.age <- subset(WR3, !is.na(age))

WR3.len <- subset(WR3, is.na(age))

head(WR3.1en)

raw <- xtabs(~LCat+age,data=WR3.age)

(WR3.key <- prop.table(raw, margin=1))

WR3.len <- alkIndivAge(WR3.key,age~len,data=WR3.len,breaks=brks)
head(WR3.1en)

WR3.comb <- rbind(WR3.age, WR3.len)
Summarize(len~age,data=WR3.comb,digits=2)

alkMeanVar Mean Values-at-age from an age-length key

Description

Computes the mean value-at-age in a larger sample based on an age-length-key created from a
subsample of ages through a two-stage random sampling design. The mean values could be mean
length-, weight-, or fecundity-at-age, for example. The methods of Bettoli and Miranda (2001) or
Quinn and Deriso (1999) are used. A standard deviation is computed for the Bettoli and Miranda
(2001) method and standard error for the Quinn and Deriso (1999) method. See the testing section
notes.

Usage

alkMeanVar(
key,
formula,
data,
len.n,
method = c("BettoliMiranda”, "QuinnDeriso")

alkMean Var

Arguments

key

formula

data

len.n

method

Details

25

A numeric matrix that contains the age-length key. See details.

A formula of the form var~lencat+age where var generically represents the
variable to be summarized (e.g., length, weight, fecundity), lencat generically
represents the variable that contains the length intervals, and age generically
represents the variable that contains the assigned ages.

A data.frame that minimally contains the length intervals, assessed ages, and
the variable to be summarized (i.e., this should be the aged sample) as given in
formula.

A vector of sample sizes for each length interval in the complete sample (i.e., all
fish regardless of whether they were aged or not).

A string that indicates which method of calculation should be used. See details.

The age-length key key must have length intervals as rows and ages as columns. The row names
of key (i.e., rownames(key)) must contain the minimum values of each length interval (e.g., if an

interval is 100-109,

then the corresponding row name must be 100). The column names of key (i.e.,

colnames(key)) must contain the age values (e.g., the columns can NOT be named with “age.1”,

for example).

The length intervals in the rows of key must contain all of the length intervals present in the larger
sample. Thus, the length of 1en.n must, at least, equal the number of rows in key. If this constraint

is not met, then the

function will stop with an error message.

Note that the function will stop with an error if the formula in formula does not meet the specific
criteria outlined in the parameter list above.

Value

A data.frame with as many rows as ages (columns) present in key and the following three variables:

* age The ages.

* mean The mean value at each age.

¢ sd,se The SD

if method="BettoliMiranda"” or SE of the mean if method="QuinnDeriso”

for the value at each age.

Testing

The results of these functions have not yet been rigorously tested. The Bettoli and Miranda (2001)
results appear, at least, approximately correct when compared to the results from alkIndivAge.
The Quinn and Deriso (1999) results appear at least approximately correct for the mean values, but
do not appear to be correct for the SE values. Thus, a note is returned with the Quinn and Deriso
(1999) results that the SE should not be trusted.

IFAR Chapter
5-Age-Length Key.

26 alkPlot

Author(s)

Derek H. Ogle, <Derek0Ogle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Bettoli, P. W. and Miranda, L. E. 2001. A cautionary note about estimating mean length at age with
subsampled data. North American Journal of Fisheries Management, 21:425-428.

Quinn, T. J. and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New
York, New York. 542 pages

See Also

See alkIndivAge and related functions for a completely different methodology. See alkAgeDist
for a related method of determining the proportion of fish at each age. See the ALKr package.

Examples

Example -- Even breaks for length categories
WR1 <- WR79

add length intervals (width=5)

WR1$LCat <- lencat(WR1$len,w=5)

get number of fish in each length interval in the entire sample
len.n <- xtabs(~LCat,data=WR1)

isolate aged sample

WR1.age <- subset(WR1, !is.na(age))

create age-length key

raw <- xtabs(~LCat+age,data=WR1.age)

(WR1.key <- prop.table(raw, margin=1))

use age-length key to estimate mean length-at-age of all fish
Bettoli-Miranda method
alkMeanVar (WR1.key, len~LCat+age,WR1.age,len.n)

Quinn-Deriso method
alkMeanVar (WR1.key, len~LCat+age,WR1.age,len.n,method="QuinnDeriso")

alkPlot Plots to visualize age-length keys.

Description

Various plots to visualize the proportion of fish of certain ages within length intervals in an age-
length key.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

alkPlot

Usage

alkPlot(
key,

27

type = c("barplot”, "area"”, "lines"”, "splines", "bubble"),
xlab = "Length”,

ylab = ifelse(type != "bubble”, "Proportion”, "Age"),
xlim = NULL,
ylim = NULL,
showLegend = FALSE,
1bl.cex = 1.25,
leg.cex =1,
lwd = 2,
span = 0.25,
grid = TRUE,
col = NULL,
buf = 0.45,
add = FALSE,
)
Arguments
key A numeric matrix that contains the age-length key.
type A string that indicates the type of plot to construct. See details.
xlab, ylab A string that contains the label for the x- or y-axis.
x1lim, ylim A numeric of length 2 that provide the limits for the x-axis or y-axis.
showLegend A logical that indicates whether a legend should be displayed (not implemented
for type="bubble"). See examples.
1bl.cex A numeric character expansion value for labels inside the bars when type="barplot”
or on the lines when type="1ines" or type="splines”. Only used if showLegend=FALSE.
leg.cex A numeric character expansion value for labels on the legend when showLegend=TRUE.
lwd A numeric that indicates the line width when type="1ines" or type="splines".
span A numeric that indicates the span value to use in loess when type="splines”.
grid A logical that indicates whether a grid should be placed under the bubbles when
type="bubble"” or a character or appropriate vector that identifies a color for
the grid. See examples.
col A single character string that is a palette from hcl.pals or a vector of character
strings containing colors for the bars, areas, lines, or spline lines of different
ages; defaults to the "viridis" palette in hcl.colors. A single string that indi-
cates the color of the bubbles when type="bubble".
buf A single numeric that indicates the relative width of the bubbles when type="bubble".

A value of 0.5 means that two full-width bubbles would touch each other either
in the x- or y-direction (i.e., this would represent half of the minimum of the
physical distance between values one-unit apart on the x- and y-axes). Set this
to a value less than 0.5 so that the bubbles will not touch (the default is 0.45).

28

add

Details

alkPlot

A logical that indicates whether the data should be added to an already existing
plot. May be useful for visually comparing age-length keys. Only implemented
when type="bubble".

Additional arguments to pass to plot or barplot.

A variety of plots can be used to visualize the proportion of fish of certain ages within length inter-
vals of an age-length key. The types of plots are described below and illustrated in the examples.

A “stacked” bar chart where vertical bars over length intervals sum to 1 but are segmented by
the proportion of each age in that length interval is constructed with type="barplot”. The
ages will be labeled in the bar segments unless showLegend=TRUE is used.

A “stacked” area chart similar to the bar chart described above is constructed with type="area".

A plot with (differently colored) lines that connect the proportions of ages within each length
interval is constructed with type="1ines".

A plot with (differently colored) lines, as estimated by loess splines, that connect the propor-
tions of ages within each length interval is constructed with type="splines"”.

A “bubble” plot where circles whose size is proportional to the proportion of fish of each age
in each length interval is constructed with type="bubble”. The color of the bubbles can be
controlled with col= and an underlying grid for ease of seeing the age and length interval
for each bubble can be controlled with grid=. Bubbles from a second age-length key can be
overlaid on an already constructed bubble plot by using add=TRUE in a second call to alkPlot.

Note that all plots are “vertically conditional” —i.e., each represents the proportional ages WITHIN
each length interval.

Value

None, but a plot is constructed.

IFAR Chapter

5-Age-Length Key.

Note

These plots are used primarily to explore the structure of an age-length key. While some may find
them of "publication-quality", that level of quality and overall control of aspects of the plot are not
the primary purpose of this function. Publication-quality plots can be readily made using ggplot?2
as demonstrated in this fishR post.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

https://fishr-core-team.github.io/fishR/blog/posts/2025-1-5_ALKPlots_GGplot/
https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

binCI 29

See Also

See alkIndivAge for using an age-length key to assign ages to individual fish. See hcl.colors for
a simple way to choose other colors.

Examples

Make an example age-length key

WR.age <- droplevels(subset(WR79, !is.na(age)))
WR.age$LCat <- lencat(WR.age$len,w=5)

raw <- xtabs(~LCat+age,data=WR.age)

WR.key <- prop.table(raw, margin=1)
round(WR.key, 3)

Various visualizations of the age-length key
alkPlot (WR.key, "barplot™)

alkPlot (WR.key, "barplot”,col="Cork")

alkPlot (WR.key, "barplot”,col=heat.colors(8))
alkPlot (WR.key, "barplot”, showLegend=TRUE)
alkPlot (WR.key, "area")

alkPlot (WR.key, "lines")

alkPlot (WR.key, "splines™)

alkPlot (WR.key, "splines”,span=0.2)

alkPlot (WR.key, "bubble™)

alkPlot (WR.key, "bubble"”,col=col2rgbt("black",0.5))

binCI Confidence intervals for binomial probability of success.

Description

Uses one of three methods to compute a confidence interval for the probability of success (p) in a
binomial distribution.

Usage
binCI(
X’
n ’
conf.level = 0.95,
type = c("wilson”, "exact"”, "asymptotic"),
verbose = FALSE
)
Arguments
X A single or vector of numbers that contains the number of observed successes.

n A single or vector of numbers that contains the sample size.

30 binCI

conf.level A single number that indicates the level of confidence (default is @. 95).
type A string that identifies the type of method to use for the calculations. See details.
verbose A logical that indicates whether x, n, and x/n should be included in the returned

matrix (=TRUE) or not (=FALSE; DEFAULT).

Details
This function will compute confidence interval for three possible methods chosen with the type
argument.
type="wilson” Wilson’s (Journal of the American Statistical Association, 1927) confidence interval for a proportion.
type="exact" Computes the Clopper/Pearson exact CI for a binomial success probability.

type="asymptotic” This uses the normal distribution approximation.

Note that Agresti and Coull (2000) suggest that the Wilson interval is the preferred method and is,
thus, the default type.

Value
A #x2 matrix that contains the lower and upper confidence interval bounds as columns and, if
verbose=TRUE x, n, and x/n .

Author(s)
Derek H. Ogle, <Derek0Ogle51@gmail. com>, though this is largely based on binom.exact, binom.wilson,
and binom.approx from the old epitools package.

References
Agresti, A. and B.A. Coull. 1998. Approximate is better than “exact” for interval estimation of
binomial proportions. American Statistician, 52:119-126.

See Also

See binom. test; binconf in Hmisc; and functions in binom.

Examples

All types at once
binCI(7,20)

Individual types
binCI(7,20,type="wilson")
binCI(7,20,type="exact")
binCI(7,20,type="asymptotic")
binCI(7,20,type="asymptotic"”,verbose=TRUE)

Multiple types
binCI(7,20,type=c("exact”, "asymptotic"))

BluegillJL 31

binCI(7,20,type=c("exact”,"asymptotic"),verbose=TRUE)

Use with multiple inputs
binCI(c(7,10),c(20,30),type="wilson")
binCI(c(7,10),c(20,30),type="wilson",verbose=TRUE)

BluegillJL Capture histories (2 samples) of Bluegill from Jewett Lake, MI.

Description

Each line consists of the capture history over two samples of Bluegill (Lepomis macrochirus) in
Jewett Lake (MI). This file contains the capture histories for only Bluegill larger than 6-in.

Format
A data frame with 277 observations on the following 2 variables.

first a numeric vector of indicator variables for the first sample (1=captured)

second a numeric vector of indicator variables for the second sample (1=captured)

Topic(s)

* Population Size

* Abundance

* Mark-Recapture

* Capture-Recapture
* Petersen

* Capture History

Source

From example 8.1 in Schneider, J.C. 1998. Lake fish population estimates by mark-and-recapture
methods. Chapter 8 in Schneider, J.C. (ed.) 2000. Manual of fisheries survey methods II: with peri-
odic updates. Michigan Department of Natural Resources, Fisheries Special Report 25, Ann Arbor.

[Was (is?) from http://www.michigandnr.com/publications/pdfs/IFR/manual/SMI1%20Chapter08.pdf.]
CSV file

See Also

Used in mrClosed examples.

Examples

str(BluegillJL)
head(BluegillJL)

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/BluegillJL.csv

32 BrookTroutTH

BrookTroutTH Catch-at-age for Tobin Harbor, Isle Royale Brook Trout.

Description

Catch-at-age in fyke nets from 1996-1998 for “Coaster” Brook Trout (Salvelinus fontinalis) in Tobin
Harbor, Isle Royale, Lake Superior.

Format
A data frame with 7 observations on the following 2 variables.

age A numeric vector of assigned ages

catch A numeric vector of number of Brook Trout caught

Topic(s)
* Mortality
¢ Catch Curve

* Chapman-Robson

Source

Quinlan, HR. 1999. Biological Characteristics of Coaster Brook Trout at Isle Royale National
Park, Michigan, 1996-98. U.S. Fish and Wildlife Service Ashland Fishery Resources Office report.
November 1999. CSV file

See Also

Used in catchCurve and chapmanRobson examples.

Examples

str(BrookTroutTH)
head (BrookTroutTH)
plot(log(catch)~age,data=BrookTroutTH)

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/BrookTroutTH.csv

capFirst 33

capFirst Capitalizes the first letter of first or all words in a string.

Description

Capitalizes the first letter of first or all words in a string.

Usage

capFirst(x, which = c("all”, "first"))

Arguments
X A single string.
which A single string that indicates whether all (the default) or only the first words
should be capitalized.
Value

A single string with the first letter of the first or all words capitalized.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

Examples

Capitalize first letter of all words (the default)
capFirst("Derek Ogle")

capFirst("derek ogle")

capFirst("derek")

Capitalize first letter of only the first words

capFirst("Derek Ogle"”,which="first")

capFirst("derek ogle"”,which="first")

capFirst("derek"”,which="first")

apply to all elements in a vector

vec <- c("Derek Ogle"”,"derek ogle”, "Derek ogle”,"derek Ogle","DEREK OGLE")
capFirst(vec)

capFirst(vec,which="first")

check class types
class(vec)

vecl <- capFirst(vec)
class(vecl)

fvec <- factor(vec)
fvecl <- capFirst(fvec)
class(fvecl)

34 capHistConvert

capHistConvert Convert between capture history data.frame formats.

Description

Use to convert between simple versions of several capture history data.frame formats — “individual”,
“frequency”, “event”’, “MARK?”, and “RMark”. The primary use is to convert to the “individual”
format for use in capHistSum.

Usage

capHistConvert(
df,
cols2use = NULL,
cols2ignore = NULL,
in.type = c("frequency”, "event”, "individual”, "MARK", "marked"”, "RMark"),
out.type = c("individual”, "event”, "frequency", "MARK", "marked”, "RMark"),

id = NULL,
event.ord = NULL,
freq = NULL,
var.lbls = NULL,
var.lbls.pre = "event”,
include.id = ifelse(is.null(id), FALSE, TRUE)
)
Arguments
df A data.frame that contains the capture histories and, perhaps, a unique fish iden-
tifier or frequency variable. See details.
cols2use A string or numeric vector that indicates columns in df to use. Negative numeric
values will not use those columns. Cannot use both cols2use and col2ignore.
cols2ignore A string or numeric vector that indicates columns in df to ignore. Typical
columns to ignore are those that are not either in id= or freq= or part of the
capture history data. Cannot use both cols2use and col2ignore.
in.type A single string that indicates the type of capture history format to convert FROM.
out.type A single string that indicates the type of capture history format to convert TO.
id A string or numeric that indicates the column in df that contains the unique iden-
tifier for an individual fish. This argument is only used if in.type="event",
in.type="individual”, or, possibly, in.type="RMark".
event.ord A string that contains a vector of ordered levels to be used when in. type="event".
The default is to order alphabetically which may not be desirable if, for exam-
ple, the events are labeled as ‘first’, ‘second’, ‘third’, and ‘fourth’. In this case,
use event.ord=c("first”, "second”,"third”,"fourth").
freq A string or numeric that indicates the column in df that contains the frequency

of individual fish corresponding to a capture history. This argument is only used
if in.type="MARK", in. type="frequency”, or, possibly, in. type="RMark".

capHistConvert 35

var.lbls A string vector of labels for the columns that contain the returned individual or
frequency capture histories. If var.1lbls=NULL or the length is different then
the number of events then default labels using var. 1bls.pre will be used. This
argument is only used if out . type="frequency” or out.type="individual”.

var.lbls.pre A single string used as a prefix for the labels of the columns that contain the
returned individual or frequency capture histories. This prefix will be appended
with a number corresponding to the sample event. This argument is only used if
out.type="frequency” or out.type="individual” and will be ignored if a
proper vector is given in var.lbls.

include.id A logical that indicates whether a unique fish identifier variable/column should
be included in the output data.frame. This argument is only used if out. type="individual”
or out.type="RMark".

Details

capHistSum requires capture histories to be recorded in the “individual” format. In this format, the
data frame contains (at least) as many columns as sample events and as many rows as individually
tagged fish. Optionally, the data.frame may also contain a column with unique fish identifiers (e.g.,
tag numbers). Each cell in the capture history portion of the data.frame contains a ‘0’ if the fish of
that row was NOT seen in the event of that column and a ‘1’ if the fish of that row WAS seen in
the event of that column. For example, suppose that five fish were marked on four sampling events;
fish 17 was captured on the first two events; fish ‘18’ was captured on the first and third events;
fish ‘19° was captured on only the third event; fish “20° was captured on only the fourth event; and
fish 21’ was captured on the first and second events. The “individual” capture history date.frame
for these data looks like:

fish eventl event2 event3 event4

17 1 1 0 0
18 1 0 1 0
19 0 0 1 0
20 0 0 0 1
21 1 1 0 0

The “frequency” format data.frame (this format is used in Rcapture) has unique capture histories
in separate columns, as in the “individual” format, but also includes a column with the frequency of
individuals that had the capture history of that row. It will not contain a fish identifier variable. The
same data from above looks like:

eventl event2 event3 eventd freq

1 1 0 0 2
1 0 1 0 1
0 0 1 0 1
0 0 0 1 1

The “event” format data.frame has a column with the unique fish identifier and a column with the
event in which the fish of that row was observed. The same data from above looks like:

36

capHistConvert

fish event
17 1

18
21
17
21
18
19
20

BLW W N ==

MARK (http://www.phidot.org/software/mark/index.html) is the “gold-standard” software for ana-
lyzing complex capture history information. In the “MARK” format the Os and 1s of the capture
histories are combined together as a string without any spaces. Thus, the “MARK” format has the
capture history strings in one column with an additional column that contains the frequency of in-
dividuals that exhibited the capture history of that row. The final column ends with a semi-colon.
The same data from above looks like:

ch fre
0001 1;
0010 1;
1010 1;
1100 2;

)

The RMark and marked are packages used to replace some of the functionality of MARK or to
interact with MARK. The “RMark” or “marked” format requires the capture histories as one string
(must be a character string and called ‘ch’), as in the “MARK” format, but without the semicolon.
The data.frame may be augmented with an identifier for individual fish OR with a frequency vari-
able. If augmented with a unique fish identification variable then the same data from above looks
like:

fish ch

17 1100
18 1010
19 0010
20 0001
21 1100

However, if augmented with a frequency variable then the same data from above looks like:

ch freq
0001 1
0010 1
1010 1
1100 2

capHistConvert 37

Each of the formats can be used to convert from (i.e., in in.type=) or to convert to (i.e., in
out.type=) with the exception that only the individual fish identifier version can be converted
to when out. type="RMark".

Value

A data frame of the proper type given in out. type is returned. See details.

Warning

capHistConvert may give unwanted results if the data are in.type="event" but there are unused
levels for the variable, as would result if the data.frame had been subsetted on the event variable.
The unwanted results can be corrected by using droplevels before capHistConvert. See the last
example for an example.

IFAR Chapter

9-Abundance from Capture-Recapture Data.

Note

The formats as used here are simple in the sense that one is only allowed to have the individual fish
identifier or the frequency variable in addition to the capture history information. More complex
analyses may use a number of covariates. For these more complex analyses, one should work
directly with the Rcapture, RMark, or marked packages.

This function also assumes that all unmarked captured fish are marked and returned to the popula-
tion (i.e., no losses at the time of marking are allowed).
Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

See Also

See capHistSum to summarize “individual” capture histories into a format usable in mrClosed and
mrOpen. Also see Reapture, RMark, or marked packages for handling more complex analyses.

Examples

A small example of 'event' format

(ex1 <- data.frame(fish=c(17,18,21,17,21,18,19,20),yr=c(1987,1987,1987,1988,1988,1989,1989,1990)))
convert to 'individual' format

(ex1.E2I <- capHistConvert(ex1,id="fish",in.type="event"))

convert to 'frequency' format

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

38

capHistConvert

(ex1.E2F <- capHistConvert(ex1,id="fish",in.type="event"”,out.type="frequency”))
convert to 'MARK' format

(ex1.E2M <- capHistConvert(ex1,id="fish",in.type="event"”, out.type="MARK"))

convert to 'RMark' format

(ex1.E2R <- capHistConvert(ex1,id="fish",in.type="event”,out.type="RMark"))

convert converted 'individual' format ...

to 'frequency' format (must ignore "id")

(ex1.I2F <- capHistConvert(ex1.E2I,id="fish",in.type="individual”,out.type="frequency”))
to 'MARK' format

(ex1.I2M <- capHistConvert(ex1.E2I,id="fish”,in.type="individual”, out.type="MARK"))

to 'RMark' format

(ex1.I2R <- capHistConvert(ex1.E2I,id="fish",in.type="individual"”,out.type="RMark"))

to 'event' format

(ex1.I2E <- capHistConvert(ex1.E2I,id="fish",in.type="individual”,out.type="event"))

#' ## convert converted 'frequency' format ...

to 'individual' format

(ex1.F2I <- capHistConvert(ex1.E2F,freq="freq",in.type="frequency"))

(ex1.F2Ia <- capHistConvert(ex1.E2F,freg="freq",in.type="frequency”,include.id=TRUE))

to 'Mark' format

(ex1.F2M <- capHistConvert(ex1.E2F,freq="freq",in.type="frequency"”,
out.type="MARK"))

to 'RMark' format

(ex1.F2R <- capHistConvert(ex1.E2F,freq="freq",in.type="frequency"”,
out.type="RMark"))

(ex1.F2Ra <- capHistConvert(ex1.E2F,freq="freq",in.type="frequency”,
out.type="RMark"”,include.id=TRUE))

to 'event' format

(ex1.F2E <- capHistConvert(ex1.E2F,freq="freq",in.type="frequency"”,
out.type="event"))

convert converted 'MARK' format ...

to 'individual' format

ex1.M2I <- capHistConvert(ex1.E2M,freq="freq",in.type="MARK"))

ex1.M2Ia <- capHistConvert(ex1.E2M,freq="freq",in.type="MARK", include.id=TRUE))

to 'frequency' format

ex1.M2F <- capHistConvert(ex1.E2M,freq="freq",in.type="MARK" out.type="frequency”))
to 'RMark' format

ex1.M2R <- capHistConvert(ex1.E2M,freq="freq"”,in.type="MARK" out.type="RMark"))
ex1.M2Ra <- capHistConvert(ex1.E2M,freq="freq",in.type="MARK" out.type="RMark"”,include.id=TRUE))
to 'event' format

ex1.M2E <- capHistConvert(ex1.E2M,freq="freq"”,in.type="MARK",out.type="event"))

AFHE ~A~AFAFHF A H

convert converted 'RMark' format ...

to 'individual' format

ex1.R2I <- capHistConvert(ex1.E2R,id="fish",in.type="RMark"))

to 'frequency' format

ex1.R2F <- capHistConvert(ex1.E2R,id="fish",in.type="RMark"”, out.type="frequency”))
to 'MARK' format

ex1.R2M <- capHistConvert(ex1.E2R,id="fish",in.type="RMark", out.type="MARK"))

to 'event' format

#
(
#
(
#
(
#
(ex1.R2E <- capHistConvert(ex1.E2R,id="fish",in.type="RMark"”, out.type="event"))

capHistConvert 39

Remove semi-colon from MARK format to make a RMark 'frequency' format

ex1.E2R1 <- ex1.E2M

ex1.E2R1$freq <- as.numeric(sub(";","",ex1.E2R1$freq))

ex1.E2R1

convert this to 'individual' format

(ex1.R2I1 <- capHistConvert(ex1.E2R1,freg="freq",in.type="RMark"))

(ex1.R2I1a <- capHistConvert(ex1.E2R1,freq="freq",in.type="RMark"”,include.id=TRUE))
convert this to 'frequency' format

(ex1.R2F1 <- capHistConvert(ex1.E2R1,freqg="freq",in.type="RMark"”,out.type="frequency"”))
convert this to 'MARK' format

(ex1.R2M1 <- capHistConvert(ex1.E2R1,freq="freq",in.type="RMark”, out.type="MARK"))
convert this to 'event' format

(ex1.R2ET <- capHistConvert(ex1.E2R1,freq="freq",in.type="RMark"”, out.type="event"))

HHHHHARHE A A R

A small example using character ids

(ex2 <- data.frame(fish=c("id17","id18","id21","id17","id21","id18","id19","id20"),
yr=c(1987,1987,1987,1988,1988,1989,1989,1990)))

convert to 'individual' format

ex2.E2I <- capHistConvert(ex2,id="fish"”,in.type="event"))

convert to 'frequency' format

ex2.E2F <- capHistConvert(ex2,id="fish",in.type="event”,out.type="frequency"”))

convert to 'MARK' format

ex2.E2M <- capHistConvert(ex2,id="fish"”,in.type="event"”,out.type="MARK"))

convert to 'RMark' format

ex2.E2R <- capHistConvert(ex2,id="fish",in.type="event"”,out.type="RMark"))

~A HEAA HT A HFT N H

convert converted 'individual' format ...

to 'frequency' format

(ex2.12F <- capHistConvert(ex2.E2I,id="fish",in.type="individual”,out.type="frequency”))
to 'MARK' format

(ex2.I2M <- capHistConvert(ex2.E2I,id="fish”,in.type="individual”, out.type="MARK"))

to 'RMark' format

(ex2.I2R <- capHistConvert(ex2.E2I,id="fish"”,in.type="individual”,out.type="RMark"))

to 'event' format

(ex2.I2E <- capHistConvert(ex2.E2I,id="fish",in.type="individual”,out.type="event"))

demo use of var.lbls

(ex2.E2Ia <- capHistConvert(ex2,id="fish"”,in.type="event”, var.lbls.pre="Sample"))

(ex2.E2Ib <- capHistConvert(ex2,id="fish",in.type="event",
var.lbls=c("first","second”,"third”,"fourth")))

demo use of event.ord

(ex2.I2Ea <- capHistConvert(ex2.E2Ib,id="fish",in.type="individual”,out.type="event"))

(ex2.E2Ibad <- capHistConvert(ex2.I2Ea,id="fish"”,in.type="event"))

(ex2.E2Igood <- capHistConvert(ex2.I2Ea,id="fish",in.type="event",
event.ord=c("first”,"second”,"”third”,"fourth")))

ONLY RUN IN INTERACTIVE MODE
Not run:

40

capHistConvert

HHEHHHHHHEHEHHEEEEEHEHHHEHHREEEEHEEEEEEHEHHHHEHEEEEEHEEEEE BB

if (require(Rcapture)) {
A larger example of 'frequency' format (data from Rcapture package)
data(bunting, package="Rcapture")
head(bunting)
convert to 'individual' format
bun.F2I <- capHistConvert(bunting,in.type="frequency"”,freq="freq")
head(bun.F2I)
convert to 'MARK' format

bun.F2M <- capHistConvert(bunting,id="id",in.type="frequency"”, freq="freq",out.type="MARK")
head(bun.F2M)
convert converted 'individual' back to 'MARK' format
bun.I2M <- capHistConvert(bun.F2I,id="id",in.type="individual”,out.type="MARK")
head(bun.I2M)
convert converted 'individual' back to 'frequency' format
bun.I2F <- capHistConvert(bun.F2I,id="id",in.type="individual”,

out.type="frequency"”,var.lbls.pre="Sample")

head(bun.I2F)

S PR HE PP R

if (require(marked)) {
A larger example of 'marked' or 'RMark' format, but with a covariate
and when the covariate is removed there is no frequency or individual
fish identifier.
data(dipper, package="marked")
head(dipper)
isolate males and females
dipperF <- subset(dipper,sex=="Female")
dipperM <- subset(dipper,sex=="Male")
convert females to 'individual' format
dipF.R2I <- capHistConvert(dipperF,cols2ignore="sex"”,in.type="RMark")
head(dipF.R2I)
convert males to 'individual' format
dipM.R2I <- capHistConvert(dipperM,cols2ignore="sex"”,in.type="RMark")
head(dipM.R2I)
add sex variable to each data.frame and then combine
dipF.R2I$sex <- "Female”
dipM.R2I$sex <- "Male”
dip.R2I <- rbind(dipF.R2I,dipM.R2I)
head(dip.R2I)
tail(dip.R2I)

}

End(Not run) # end \dontrun

An example of problem with unused levels

Create a set of test data with several groups

(df <- data.frame(fish=c("id17","id18","id21","id17","id21","id18","id19","id2@","id17"),
group=c("B1","B1","B1","B2","B2","B3","B4","C1","C1")))

Let's assume the user wants to subset the data from the "B" group

capHistSum 41

(df1 <- subset(df,group %in% c("B1","B2","B3","B4")))

Looks like capHistConvert() is still using the unused factor
level from group C
capHistConvert(df1,id="fish",in.type="event")

use droplevels() to remove the unused groups and no problem
df1 <- droplevels(df1)
capHistConvert(df1,id="fish",in.type="event")

capHistSum Summarize capture histories in individual fish format.

Description

Use to summarize a capture history data file that is in the “individual” fish format (see capHistConvert
for a discussion of data file format types). Summarized capture history results may be used in the
Lincoln-Petersen, Schnabel, Schumacher-Eschmeyer, or Jolly-Seber methods for estimating popu-
lation abundance (see mrClosed and mrOpen).

Usage

capHistSum(df, cols2use = NULL, cols2ignore = NULL)
is.CapHist(x)

S3 method for class 'CapHist'

plot(x, what = c("u", "f"), pch = 19, cex.pch = 0.7, lwd =1, ...)
Arguments
df A data.frame that contains the capture histories (and, perhaps, other information)

in “individual” fish format. See details.

cols2use A string or numeric vector that indicates columns in df that contain the capture
histories. Negative numeric values will not use those columns. Cannot use both
cols2use and col2ignore. See details.

cols2ignore A string or numeric vector that indicates columns in df that do not contain
the capture histories and should be ignored. Cannot use both cols2use and
col2ignore.

X An object from capHistSum.

what A string that indicates what type of diagnostic plot to construct with plot. See
details.

pch A numeric that indicates the plotting character for the diagnostic plot.

cex.pch A numeric that indicates the character expansion value for the plotting characters

in the diagnostic plot. The default is to be “slightly smaller” (i.e., cex.pch=0.7).
lwd A numeric that indicates the line width in the diagnostic plot.

Optional arguments to send to plot.

42 capHistSum

Details

This function requires the capture history data file to be in the “individual” fish format. See
capHistConvert for a description of this (and other) formats and for methods to convert from
other formats to the “individual” fish format. In addition, this function requires only the capture
history portion of the data file. Thus, if df contains columns with non-capture history information
(e.g., fish ID, length, location, etc.) then use cols2use= to identify which columns contain only the
capture history information. Columns to use can be identified by listing the column numbers (e.g.,
columns 2 through 7 could be included with cols2use=2:7). In many instances it may be easier to
identify columns to exclude which can be done by preceding the column number by a negative sign
(e.g., columns 1 through 3 are excluded with cols2use=-(1:3)).

The object returned from this function can be used directly in mrClosed and mrOpen. See examples
of this functionality on the help pages for those functions.

The plot function can be used to construct the two diagnostic plots described by Baillargeon and
Rivest (2007). The what="f" plot will plot the log of the number of fish seen i times divided by
choose(t, i) against i. The what="u" plot will plot the log of the number of fish seen for the first
time on event i against i. Baillargeon and Rivest (2007) provide a table that can be used to diagnosed
types of heterogeneities in capture probabilities from these plots.

Value

If the capture history data file represents only two samples, then a list with the following two
components is returned.

* caphist A vector summarizing the frequency of fish with each capture history.

* sum A data.frame that contains the number of marked fish from the first sample (M), the num-
ber of captured fish in the second sample (n), and the number of recaptured (i.e. previously
marked) fish in the second sample (m).

If the capture history data file represents more than two samples, then a list with the following five
components is returned

* caphist A vector summarizing the frequency of fish with each capture history.

e sum A data frame that contains the the number of captured fish in the ith sample (n), the
number of recaptured (i.e. previously marked) fish in the ith sample (m), the number of marked
fish returned to the population following the ith sample (R; this will equal n as the function
currently does not handle mortalities); the number of marked fish in the population prior to
the ith sample (M); the number of fish first seen in the ith sample (u); the number of fish last
seen in the ith sample (v); and the number of fish seen i times (f).

» methodB. top A matrix that contains the top of the Method B table used for the Jolly-Seber
method (i.e., a contingency table of capture sample (columns) and last seen sample (rows)).

» methodB.bot A data.frame that contains the bottom of the Method B table used for the Jolly-
Seber method (i.e., the number of marked fish in the sample (m), the number of unmarked fish
in the sample (u), the total number of fish in the sample (n), and the number of marked fish
returned to the population following the sample (R).

* m.array A matrix that contains the the so-called “m-array”. The first column contains the
number of fish captured on the ith event. The columns labeled with “cX” prefix show the
number of fish originally captured in the ith row that were captured in the Xth event. The last
column shows the number of fish originally captured in the ith row that were never recaptured.

capHistSum 43

IFAR Chapter

9-Abundance from Capture-Recapture Data.

Note

This function assumes that all unmarked captured fish are marked and returned to the population
(i.e., no losses at the time of marking are allowed).

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Baillargeon, S. and Rivest, L.-P. (2007). Rcapture: Loglinear models for capture-recapture in R.
Journal of Statistical Software, 19(5):1-31.

See Also

See descriptive in Rcapture for m. array and some of the same values in sum. See capHistConvert
for a descriptions of capture history data file formats and how to convert between them. See
mrClosed and mrOpen for how to estimate abundance from the summarized capture history in-
formation.

Examples

data.frame with IDs in the first column
head(PikeNYPartiall)

Three ways to ignore first column of ID numbers

(ch1 <- capHistSum(PikeNYPartiall,cols2use=-1))

(ch1 <- capHistSum(PikeNYPartiall,cols2ignore=1))

(chl <- capHistSum(PikeNYPartiall,cols2ignore="id"))

diagnostic plots
plot(ch1)

plot(ch1,what="f")
plot(ch1,what="u")

An examle with only two sample events (for demonstration only)
(ch2 <- capHistSum(PikeNYPartiall,cols2use=-c(1,4:5)))

(ch2 <- capHistSum(PikeNYPartiall,cols2use=2:3))

(ch2 <- capHistSum(PikeNYPartiall,cols2ignore=c(1,4:5)))

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

44 catchCurve

catchCurve Mortality estimates from the descending limb of a catch curve.

Description

Fits a linear model to the user-defined descending limb of a catch curve. Method functions extract
estimates of the instantaneous (Z) and total annual (A) mortality rates with associated standard
errors and confidence intervals. A plot method highlights the descending limb, shows the linear
model on the descending limb, and, optionally, prints the estimated Z and A.

Usage

catchCurve(x, ...)

Default S3 method:
catchCurve(
X,
catch,
ages2use = age,
weighted = FALSE,
negWeightReplace = 0,

)

S3 method for class 'formula'
catchCurve(
X,
data,
ages2use = age,
weighted = FALSE,
negWeightReplace = 0,

)

S3 method for class 'catchCurve'
summary(object, parm = c("both”, "all", "z", "A", "Im"), as.df = FALSE, ...)

S3 method for class 'catchCurve'
coef(object, parm = c("all”, "both", "Z", "A", "1m"), as.df = FALSE, ...)

S3 method for class 'catchCurve'
anova(object, ...)

S3 method for class 'catchCurve'
confint(

object,

parm = c("all”, "both", "z", "A", "lm"),

catchCurve

45

level = conf.level,
conf.level = 0.95,
as.df = FALSE,
incl.est = FALSE,

)

S3 method for class 'catchCurve'
rSquared(object, digits = getOption("digits"), percent = FALSE, ...)

S3 method for class 'catchCurve'

plot(
X ’
pos.est = "topright",
cex.est = 0.95,
round.est = c(3, 1),
ylab = "log(Catch)”,
xlab = "Age",
ylim = NULL
col.pt = "gray30”,
col.mdl = "black”,
lwd = 2,
1ty = 1,
)
Arguments
X A numerical vector of assigned ages in the catch curve or a formula of the form
catch~age when used in catchCurve. An object saved from catchCurve (i.e.,
of class catchCurve) when used in the methods.
Additional arguments for methods.
catch A numerical vector of catches or CPUEs for the ages in the catch curve. Not
used if x is a formula.
ages2use A numerical vector of ages that define the descending limb of the catch curve.
weighted A logical that indicates whether a weighted regression should be used. See
details.
negWeightReplace
A single non-negative numeric that will replace negative weights (defaults to 0).
Only used when weighted=TRUE. See details.
data A data.frame from which the variables in the x formula can be found. Not used
if x is not a formula.
object An object saved from the catchCurve call (i.e., of class catchCurve).
parm A numeric or string (of parameter names) vector that specifies which parameters

are to be given confidence intervals. If parm="1m" then confidence intervals for
the underlying linear model are returned.

46

as.df

level

conf.level

incl.est

digits

percent

pos.est

cex.est

round.est

ylab
x1lab
ylim

col.pt
col.mdl
lwd

1ty

Details

catchCurve

A logical that indicates whether the results of coef, confint, or summary should
be returned as a data.frame. Ignored in summary if parm="1m".

Same as conf.level. Used for compatibility with the generic confint func-
tion.

A number representing the level of confidence to use for constructing confidence
intervals.

A logical that indicated whether the parameter point estimate should be included
in the results from confint. Defaults to FALSE.

The number of digits to round the rSquared result to.

A logical that indicates if the rSquared result should be returned as a percentage
(=TRUE) or as a proportion (=FALSE; default).

A string to identify where to place the estimated mortality rates on the plot. Can
be set to one of "bottomright”, "bottom”, "bottomleft”, "left"”, "topleft”,
"top”, "topright”, "right" or "center" for positioning the estimated mor-
tality rates on the plot. Typically "bottomleft” (DEFAULT) and "topright”
will be “out-of-the-way” placements. Set pos.est to NULL to remove the esti-

mated mortality rates from the plot.

A single numeric character expansion value for the estimated mortality rates on
the plot.

A numeric that indicates the number of decimal place to which Z (first value)
and A (second value) should be rounded. If only one value then it will be used
for both Z and A.

A label for the y-axis ("log(Catch)” is the default).
A label for the x-axis ("Age" is the default).

A numeric for the limits of the y-axis. If NULL then will default to a minimum
of 0 or the lowest negative log catch and a maximum of the maximum log catch.
If a single value then it will be the maximum of the y-axis. If two values then
these will the minimum and maximum values of the y-axis.

A string that indicates the color of the plotted points.
A string that indicates the color of the fitted line.
A numeric that indicates the line width of the fitted line.

A numeric that indicates the type of line used for the fitted line.

The default is to use all ages in the age vector. This is appropriate only when the age and catch
vectors contain only the ages and catches on the descending limb of the catch curve. Use ages2use
to isolate only the catch and ages on the descending limb.

If weighted=TRUE then a weighted regression is used where the weights are the log(number) at
each age predicted from the unweighted regression of log(number) on age (as proposed by Ma-
ceina and Bettoli (1998)). If a negative weight is computed it will be changed to the value in
negWeightReplace and a warning will be issued.

catchCurve 47

Value

A list that contains the following items:

* age The original vector of assigned ages.

* catch The original vector of observed catches or CPUE:s.

* age.e A vector of assigned ages for which the catch curve was fit.

* log.catch.e A vector of log catches or CPUEs for which the catch curve was fit.

* W A vector of weights used in the catch curve fit. Will be NULL unless weighted=TRUE.

* Im An 1m object from the fit to the ages and log catches or CPUEs on the descending limb
(i.e., in age.e and log.catch.e).

Testing

Tested the results of catch curve, both unweighted and weighted, against the results in Miranda and
Bettoli (2007). Results for Z and the SE of Z matched perfectly. Tested the unweighted results
against the results from agesurv in fishmethods using the rockbass data.frame in fishmethods.
Results for Z and the SE of Z matched perfectly.

IFAR Chapter

11-Mortality.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Maceina, M.J., and P.W. Bettoli. 1998. Variation in Largemouth Bass recruitment in four main-
stream impoundments on the Tennessee River. North American Journal of Fisheries Management
18:998-1003.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Tech-
nical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. [Was (is?) from
http://www.dfo-mpo.gc.ca/Library/1485.pdf.]

See Also

See agesurv in fishmethods for similar functionality. See chapmanRobson and agesurvcl in fish-
methods for alternative methods to estimate mortality rates. See metaM for empirical methods to
estimate natural mortality.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

48 catchCurve

Examples

plot(catch~age,data=BrookTroutTH, pch=19)

demonstration of formula notation

ccl <- catchCurve(catch~age,data=BrookTroutTH, ages2use=2:6)
summary(ccl)

coef(ccl)

confint(ccl)

confint(ccl,incl.est=TRUE)

rSquared(ccl)

plot(ccl)

summary (ccl,parm="2")

confint(ccl,parm="2",incl.est=TRUE)

demonstration of excluding ages2use

cc2 <- catchCurve(catch~age,data=BrookTroutTH, ages2use=-c(0,1))
summary (cc2)

plot(cc2)

demonstration of using weights

cc3 <- catchCurve(catch~age,data=BrookTroutTH, ages2use=2:6,weighted=TRUE)
summary (cc3)

plot(cc3)

demonstration of returning the linear model results
summary(cc3,parm="1m")
confint(cc3,parm="1m",incl.est=TRUE)

demonstration of ability to work with missing age classes
df <- data.frame(age=c(2, 3, 4, 5, 7, 9,12),
ct= c¢(100,92,83,71,56,35, 1))
cc4 <- catchCurve(ct~age,data=df,ages2use=4:12)
summary (cc4)
plot(cc4)

demonstration of ability to work with missing age classes

even if catches are recorded as NAs

df <- data.frame(age=c(2, 3, 4, 5, 6, 7, 8, 9,10,11,12),
ct= ¢(100,92,83,71,NA,56,NA,35,NA,NA, 1))

cc5 <- catchCurve(ct~age,data=df,ages2use=4:12)

summary (cc5)

plot(cch)

Demonstration of computation for multiple groups

only ages on the descending limb for each group are in the data.frame
Get example data

data(FHCatfish,package="FSAdata")

FHCatfish

Note use of incl.est=TRUE and as.df=TRUE
if (require(dplyr)) {
res <- FHCatfish %>%

chapmanRobson 49

dplyr::group_by(river) %>%
dplyr::group_modify(~confint(catchCurve(abundance~age,data=.x),
incl.est=TRUE,as.df=TRUE)) %>%
as.data.frame() # removes tibble and grouping structure
res

}

Demonstration of computation for multiple groups

ages not on descending limb are in the data.frame, but use same
#i# ages.use= for each group

Get example data

data(WalleyeKS, package="FSAdata")

Note use of incl.est=TRUE and as.df=TRUE
if (require(dplyr)) {
res <- WalleyeKS %>%
dplyr::group_by(reservoir) %>%
dplyr::group_modify(~confint(catchCurve(catch~age,data=.x,ages2use=2:10),
incl.est=TRUE,as.df=TRUE)) %>%
as.data.frame() # removes tibble and grouping structure
res

chapmanRobson Computes Chapman-Robson estimates of S and Z.

Description

Computes the Chapman-Robson estimates of annual survival rate (S) and instantaneous mortality
rate (Z) from catch-at-age data on the descending limb of a catch-curve. Method functions ex-
tract estimates with associated standard errors and confidence intervals. A plot method highlights
the descending-limb, shows the linear model on the descending limb, and, optionally, prints the
estimated Z and A.

Usage

chapmanRobson(x, ...)

Default S3 method:
chapmanRobson (
X,
catch,
ages2use = age,
zmethod = c("Smithetal”, "Hoenigetal”, "original”),

S3 method for class 'formula'

50 chapmanRobson

chapmanRobson (
X,
data,
ages2use = age,
zmethod = c("Smithetal”, "Hoenigetal”, "original”),

)

S3 method for class 'chapmanRobson'
summary (
object,
parm = c("all", "both", "Z", "S"),
verbose = FALSE,
as.df = FALSE,

)

S3 method for class 'chapmanRobson'
coef(object, parm = c("all”, "both", "z", "S"), as.df = FALSE, ...)

S3 method for class 'chapmanRobson'
confint(

object,

parm = c("all”, "both", "S", "Z"),

level = conf.level,

conf.level = 0.95,

as.df = FALSE,

incl.est = FALSE,

)

S3 method for class 'chapmanRobson'
plot(

X,

pos.est = "topright",

cex.est = 0.95,

round.est = c(3, 1),

ylab = "Catch”,
xlab = "Age",
ylim = NULL,
col.pt = "gray30",
axis.age = c("both”, "age", "recoded age"),

)

Arguments
X A numerical vector of the assigned ages in the catch curve or a formula of

the form catch~age when used in chapmanRobson. An object saved from

chapmanRobson

catch

ages2use

zmethod
data

object

parm

verbose

as.df

level

conf.level

incl.est

pos.est

cex.est

round.est

ylab

x1lab
ylim

col.pt

axis.age

51

chapmanRobson (i.e., of class chapmanRobson) when used in the methods.
Additional arguments for methods.

A numerical vector of the catches or CPUEs for the ages in the catch curve. Not
used if x is a formula.

A numerical vector of the ages that define the descending limb of the catch
curve.

A string that indicates the method to use for estimating Z. See details.

A data frame from which the variables in the x formula can be found. Not used
if x is not a formula.

An object saved from the chapmanRobson call (i.e., of class chapmanRobson).

A numeric or string (of parameter names) vector that specifies which parameters
are to be given confidence intervals If missing, all parameters are considered.

A logical that indicates whether the method should return just the estimate
(FALSE; default) or a more verbose statement.

A logical that indicates whether the results of coef, confint, or summary should
be returned as a data.frame. Ignored in summary if parm="1m".

Same as conf.level. Used for compatibility with the generic confint func-
tion.

A number representing the level of confidence to use for constructing confidence
intervals.

A logical that indicated whether the parameter point estimate should be included
in the results from confint. Defaults to FALSE.

A string to identify where to place the estimated mortality rates on the plot. Can
be set to one of "bottomright”, "bottom”, "bottomleft”, "left"”, "topleft”,
"top”, "topright”, "right" or "center" for positioning the estimated mor-
tality rates on the plot. Typically "bottomleft” (DEFAULT) and "topright”
will be “out-of-the-way” placements. Set pos.est to NULL to remove the esti-

mated mortality rates from the plot.

A single numeric character expansion value for the estimated mortality rates on
the plot.

A numeric that indicates the number of decimal place to which Z (first value)
and S (second value) should be rounded. If only one value then it will be used
for both Z and S.

A label for the y-axis ("Catch” is the default).

A label for the x-axis ("Age" is the default).

A numeric for the limits of the y-axis. If NULL then will default to O or the
lowest catch and a maximum of the maximum catch. If a single value then it
will be the maximum of the y-axis. If two values then these will the minimum
and maximum values of the y-axis.

A string that indicates the color of the plotted points.

A string that indicates the type of x-axis to display. The age will display only
the original ages, recoded age will display only the recoded ages, and both

(DEFAULT) displays the original ages on the main axis and the recoded ages on
the secondary axis.

52 chapmanRobson

Details

The default is to use all ages in the age vector. This is only appropriate if the age and catch vectors
contain only the ages and catches on the descending limb of the catch curve. Use ages2use to
isolate only the catch and ages on the descending limb.

The Chapman-Robson method provides an estimate of the annual survival rate, with the annual
mortality rate (A) determined by 1-S. The instantaneous mortality rate is often computed as -log(S).
However, Hoenig et al. (1983) showed that this produced a biased (over)estimate of Z and provided
a correction. The correction is applied by setting zmethod="Hoenigetal”. Smith ef al. (2012)
showed that the Hoenig ef al. method should be corrected for a variance inflation factor. This
correction is applied by setting zmethod="Smithetal” (which is the default behavior). Choose
zmethod="original” to use the original estimates for Z and it’s SE as provided by Chapman and
Robson.

Value

A list with the following items:

* age the original vector of assigned ages.

* catch the original vector of observed catches or CPUEs.

* age.e a vector of assigned ages used to estimate mortalities.

* catch.e a vector of catches or CPUEs used to estimate mortalities.

* age.r a vector of recoded ages used to estimate mortalities. See references.
* n a numeric holding the intermediate calculation of n. See references.

* T a numeric holding the intermediate calculation of T. See references.

e est A 2x2 matrix that contains the estimates and standard errors for S and Z.

Testing

Tested the results of chapmanRobson against the results in Miranda and Bettoli (2007). The point
estimates of S matched perfectly but the SE of S did not because Miranda and Bettoli used a rounded
estimate of S in the calculation of the SE of S but chapmanRobson does not.

Tested the results against the results from agesurv in fishmethods using the rockbass data.frame
in fishmethods. Results for Z and the SE of Z matched perfectly for non-bias-corrected results. The
estimate of Z, but not the SE of Z, matched for the bias-corrected (following Smith et al. (2012))
results. FSA uses equation 2 from Smith et al. (2012) whereas fishmethods appears to use equation
5 from the same source to estimate the SE of Z.

IFAR Chapter

11-Mortality.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

chapmanRobson 53

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.
Chapman, D.G. and D.S. Robson. 1960. The analysis of a catch curve. Biometrics. 16:354-368.

Hoenig, J.M. and W.D. Lawing, and N.A. Hoenig. 1983. Using mean age, mean length and median
length data to estimate the total mortality rate. International Council for the Exploration of the Sea,
CM 1983/D:23, Copenhagen.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Tech-
nical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. [Was (is?) from
http://www.dfo-mpo.gc.ca/Library/1485.pdf.]

Robson, D.S. and D.G. Chapman. 1961. Catch curves and mortality rates. Transactions of the
American Fisheries Society. 90:181-189.

Smith, M.W., A.Y. Then, C. Wor, G. Ralph, K.H. Pollock, and J.M. Hoenig. 2012. Recommenda-
tions for catch-curve analysis. North American Journal of Fisheries Management. 32:956-967.

See Also

See agesurv in fishmethods for similar functionality. See catchCurve and agesurvcl in fish-
methods for alternative methods. See metaM for empirical methods to estimate natural mortality.

Examples

plot(catch~age,data=BrookTroutTH, pch=19)

demonstration of formula notation
crl <- chapmanRobson(catch~age,data=BrookTroutTH,ages2use=2:6)
summary(cri1)
summary (cr1, verbose=TRUE)

coef(cril)

confint(crl)
confint(crl,incl.est=TRUE)

plot(cril)

plot(cril,axis.age="age")
plot(cril,axis.age="recoded age")
summary(cr1,parm="2")
coef(cril,parm="2")
confint(cril,parm="2",incl.est=TRUE)

demonstration of excluding ages2use

cr2 <- chapmanRobson(catch~age,data=BrookTroutTH,ages2use=-c(@,1))
summary(cr2)

plot(cr2)

demonstration of ability to work with missing age classes
age <- c(2,3, 4,5,7,9,12)

ct <- ¢(100,92,83,71,56,35, 1)

cr3 <- chapmanRobson(age,ct,4:12)

summary(cr3)

plot(cr3)

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

54 ChinookArg

Demonstration of computation for multiple groups

only ages on the descending limb for each group are in the data.frame
Get example data

data(FHCatfish,package="FSAdata")

FHCatfish

Note use of incl.est=TRUE and as.df=TRUE
if (require(dplyr)) {
res <- FHCatfish %>%
dplyr::group_by(river) %>%
dplyr::group_modify(~confint(chapmanRobson(abundance~age,data=.x),
incl.est=TRUE,as.df=TRUE)) %>%
as.data.frame() # removes tibble and grouping structure
res

}

Demonstration of computation for multiple groups

ages not on descending limb are in the data.frame, but use same
ages.use= for each group

Get example data

data(WalleyeKS, package="FSAdata")

Note use of incl.est=TRUE and as.df=TRUE
if (require(dplyr)) {
res <- WalleyeKS %>%
dplyr::group_by(reservoir) %>%
dplyr::group_modify(~confint(chapmanRobson(catch~age,data=.x,ages2use=2:10),
incl.est=TRUE,as.df=TRUE)) %>%
as.data.frame() # removes tibble and grouping structure

res
3
ChinookArg Lengths and weights for Chinook Salmon from three locations in Ar-
gentina.
Description

Lengths and weights for Chinook Salmon from three locations in Argentina.

Format
A data frame with 112 observations on the following 3 variables:
tl Total length (cm)
w Weight (kg)

loc Capture location (Argentina, Petrohue, Puyehue)

CodNorwegian 55

Topic(s)
* Weight-Length

Source

From Figure 4 in Soto, D., I. Arismendi, C. Di Prinzio, and F. Jara. 2007. Establishment of
Chinook Salmon (Oncorhynchus tshawytscha) in Pacific basins of southern South America and its
potential ecosystem implications. Revista Chilena d Historia Natural, 80:81-98. [Was (is?) from
http://www.scielo.cl/pdf/rchnat/v80n1/art07.pdf.] CSV file

See Also

Used in 1wCompPreds examples.

Examples

str(ChinookArg)

head(ChinookArg)

op <- par(mfrow=c(2,2),pch=19,mar=c(3,3,0.5,0.5),mgp=c(1.9,0.5,0),tcl=-0.2)
plot(w~tl,data=ChinookArg, subset=1loc=="Argentina")
plot(w~tl,data=ChinookArg, subset=1oc=="Petrohue")
plot(w~tl,data=ChinookArg, subset=1oc=="Puyehue")

par(op)

CodNorwegian Stock and recruitment data for Norwegian cod, 1937-1960.

Description

Norwegian cod (Gadus morhua) stock and recruitment by year, 1937-1960.

Format
A data frame of 24 observations on the following 3 variables:

year Year of data
recruits Recruits — year-class strength index

stock Spawning stock index

Topic(s)

¢ Stock-Recruit
¢ Recruitment

Source

From Garrod, D.J. 1967. Population dynamics of the Arcto-Norwegian Cod. Journal of the Fish-
eries Research Board of Canada, 24:145-190. CSV file

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/ChinookArg.csv
https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/CodNorwegian.csv

56 col2rgbt

See Also

Used in srStarts, srFuns, and nlsTracePlot examples.

Examples

str(CodNorwegian)

head(CodNorwegian)

op <- par(mfrow=c(1,2),pch=19,mar=c(3,3,0.5,0.5),mgp=c(1.9,0.5,0),tcl=-0.2)
plot(recruits~year,data=CodNorwegian, type="1")
plot(recruits~stock,data=CodNorwegian)

par(op)
col2rgbt Converts an R color to RGB (red/green/blue) including a transparency
(alpha channel).
Description

Converts an R color to RGB (red/green/blue) including a transparency (alpha channel). Similar to
col2rgb except that a transparency (alpha channel) can be included.

Usage
col2rgbt(col, transp = 1)

Arguments
col A vector of any of the three kinds of R color specifications (i.e., either a color
name (as listed by colors()), a hexadecimal string of the form "#rrggbb" or
"#rrggbbaa" (see rgb), or a positive integer i meaning palette()[i].
transp A numeric vector that indicates the transparency level for the color. The trans-
parency values must be greater than 0. Transparency values greater than 1 are
interpreted as the number of points plotted on top of each other before the trans-
parency is lost and is, thus, transformed to the inverse of the transparency value
provided.
Value

A vector of hexadecimal strings of the form "#rrggbbaa" as would be returned by rgb.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

See Also

See col2rgb for similar functionality.

confint.boot 57

Examples

col2rgbt(”"black™)

col2rgbt("black”,1/4)

clrs <- c("black”,"blue"”,"red"”, "green")
col2rgbt(clrs)

col2rgbt(clrs,1/4)

trans <- (1:4)/5

col2rgbt(clrs,trans)

confint.boot Associated S3 methods for bootstrap results from car::Boot.

Description

S3 methods are provided to construct non-parametric bootstrap confidence intervals, predictions
with non-parametric confidence intervals, hypothesis tests, and plots of the parameter estimates for
objects returned from Boot from car.

Usage

S3 method for class 'boot'
confint(
object,
parm = NULL,
level = conf.level,
conf.level = 0.95,

type = c("bca”, "norm"”, "basic"”, "perc"),
plot = FALSE,
err.col = "black”,
err.lwd = 2,
rows = NULL,
cols = NULL,
)
S3 method for class 'boot'
htest(
object,
parm = NULL,
bo = 0,
alt = c("two.sided”, "less", "greater"),
plot = FALSE,
)

S3 method for class 'boot'

58 confint.boot

predict(object, FUN, conf.level = 0.95, digits = NULL, ...)

S3 method for class 'boot'

hist(
X,
same.ylim = TRUE,
ymax = NULL,

rows = round(sqrt(ncol(x$t))),
cols = ceiling(sqrt(ncol(x$t))),

)
Arguments

object, x An object of class boot from Boot.

parm A number or string that indicates which column of object contains the param-
eter estimates to use for the confidence interval or hypothesis test.

level Same as conf.level.

conf.level A level of confidence as a proportion.

type Confidence interval type; types implemented are the "percentile" method, which
uses the function quantile to return the appropriate quantiles for the confidence
limit specified, the default bca which uses the bias-corrected and accelerated
method presented by Efron and Tibshirani (1993, Chapter 14). For the other
types, see the documentation for boot.

plot A logical that indicates whether a plot should be constructed. If confint then
a histogram of the parm parameters from the bootstrap samples with error bars
that illustrate the bootstrapped confidence intervals will be constructed. If htest
then a histogram of the parm parameters with a vertical line illustrating the bo
value will be constructed.

err.col A single numeric or character that identifies the color for the error bars on the
plot.

err.lwd A single numeric that identifies the line width for the error bars on the plot.

rows A single numeric that contains the number of rows to use on the graphic.

cols A single numeric that contains the number of columns to use on the graphic.
Additional items to send to functions. See details.

bo The null hypothesized parameter value.

alt A string that indicates the “direction” of the alternative hypothesis. See details.

FUN The function to be applied for the prediction. See the examples.

digits A single numeric that indicates the number of digits for the result.

same.ylim A logical that indicates whether the same limits for the y-axis should be used on
each histogram. Defaults to TRUE. Ignored if ylmts is non-null.

ymax A single value that sets the maximum y-axis limit for each histogram or a vector

of length equal to the number of groups that sets the maximum y-axis limit for
each histogram separately.

col A named color for the histogram bars.

confint.boot 59

Details

confint is largely a wrapper for Confint from car (see its manual page).

predict applies a user-supplied function to each row of object and then finds the median and
the two quantiles that have the proportion (1-conf . level)/2 of the bootstrapped predictions below
and above. The median is returned as the predicted value and the quantiles are returned as an
approximate 100conf.level% confidence interval for that prediction. Values for the independent
variable in FUN must be a named argument sent in the . . . argument (see examples). Note that if other
arguments are needed in FUN besides values for the independent variable, then these are included in
the ...argument AFTER the values for the independent variable.

In htest the “direction” of the alternative hypothesis is identified by a string in the alt= argument.
The strings may be "less” for a “less than” alternative, "greater" for a “greater than” alternative,
or "two.sided" for a “not equals” alternative (the DEFAULT). In the one-tailed alternatives the p-
value is the proportion of bootstrapped parameter estimates in object$coefboot that are extreme
of the null hypothesized parameter value in bo. In the two-tailed alternative the p-value is twice the
smallest of the proportion of bootstrapped parameter estimates above or below the null hypothesized
parameter value in bo.

Value

If object is a matrix, then confint returns a matrix with as many rows as columns (i.e., parameter
estimates) in object and two columns of the quantiles that correspond to the approximate confi-
dence interval. If object is a vector, then confint returns a vector with the two quantiles that
correspond to the approximate confidence interval.

htest returns a two-column matrix with the first column containing the hypothesized value sent to
this function and the second column containing the corresponding p-value.

hist constructs histograms of the bootstrapped parameter estimates.
plot constructs scatterplots of all pairs of bootstrapped parameter estimates.

predict returns a matrix with one row and three columns, with the first column holding the pre-
dicted value (i.e., the median prediction) and the last two columns holding the approximate confi-
dence interval.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail. com>

References

S. Weisberg (2005). Applied Linear Regression, third edition. New York: Wiley, Chapters 4 and
11.

See Also

Boot in car.

60 CutthroatAL

Examples

fnx <- function(days,B1,B2,B3) {
if (length(B1) > 1) {
B2 <- B1[2]
B3 <- B1[3]
B1 <- B1[1]
3
B1/(1+exp(B2+B3*days))
3
nl1l <- nls(cells~fnx(days,B1,B2,B3),data=Ecoli,
start=1ist(B1=6,B2=7.2,B3=-1.45))

if (require(car)) {
nl1.bootc <- car::Boot(nll,f=coef,R=99) # R=99 too few to be useful
confint(nl1.bootc,"B1")
confint(nll.bootc,c(2,3))
confint(nl1.bootc,conf.level=0.90)
confint(nl1.bootc,"B1",plot=TRUE)
htest(nll.bootc,1,bo=6,alt="1ess")
htest(nl1.bootc,1,bo=6,alt="1ess"”,plot=TRUE)
predict(nlil.bootc, fnx,days=1:3)
predict(nli.bootc, fnx,days=3)
hist(nl1.bootc)

CutthroatAL Capture histories (9 samples) of Cutthroat Trout from Auke Lake.

Description

Individual capture histories of Cutthroat Trout (Oncorhynchus clarki) in Auke Lake, Alaska, from
samples taken in 1998-2006.

Format
A data frame with 1684 observations on the following 10 variables.

id Unique identification numbers for each fish

y1998 Indicator variable for whether the fish was captured in 1998 (1=captured)
¥1999 Indicator variable for whether the fish was captured in 1999 (1=captured)
¥2000 Indicator variable for whether the fish was captured in 2000 (1=captured)
¥2001 Indicator variable for whether the fish was captured in 2001 (1=captured)
y2002 Indicator variable for whether the fish was captured in 2002 (1=captured)
y2003 Indicator variable for whether the fish was captured in 2003 (1=captured)
y2004 Indicator variable for whether the fish was captured in 2004 (1=captured)
y2005 Indicator variable for whether the fish was captured in 2005 (1=captured)
y2006 Indicator variable for whether the fish was captured in 2006 (1=captured)

depletion 61

Topic(s)
 Population Size
* Abundance
* Mark-Recapture
» Capture-Recapture

Jolly-Seber

* Capture History

Note
Entered into “RMark” format (see CutthroatALf in FSAdata) and then converted to individual
format with capHistConvert

Source

From Appendix A.3 of Harding, R.D., C.L. Hoover, and R.P. Marshall. 2010. Abundance of Cut-
throat Trout in Auke Lake, Southeast Alaska, in 2005 and 2006. Alaska Department of Fish and

Game Fisheries Data Series No. 10-82. [Was (is?) from http://www.sf.adfg.state.ak.us/Fed AidPDFs/FDS10-
82.pdf.] CSV file

See Also

Used in mrOpen examples.

Examples
str(CutthroatAL)
head(CutthroatAL)
depletion Computes the Leslie or DeLury population estimate from catch and
effort data.
Description

Computes the Leslie or DeLury estimates of population size and catchability coefficient from paired
catch and effort data. The Ricker modification may also be used.

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/CutthroatAL.csv

62

Usage

depletion(catch, ...)

S3 method for class 'formula'
depletion(
catch,
data,
method = c("Leslie”, "DeLury"”, "Delury"),
Ricker.mod = FALSE,

)

Default S3 method:
depletion(
catch,
effort,
method = c("Leslie”, "DeLury"”, "Delury"),
Ricker.mod = FALSE,

)

S3 method for class 'depletion'
summary (
object,
parm = c("all”, "both”, "No"”, "q", "lm"),
verbose = FALSE,
as.df = FALSE,

)

S3 method for class 'depletion'
coef(object, parm = c("all”, "both”, "No", "q", "lm"), as.df = FALSE,

S3 method for class 'depletion'
confint(
object,
parm = c("all”, "both”, "No"”, "q", "lm"),
level = conf.level,
conf.level = 0.95,
incl.est = FALSE,
as.df = FALSE,

)

S3 method for class 'depletion'
anova(object, ...)

S3 method for class 'depletion'

depletion

)

depletion

63

rSquared(object, digits = getOption("digits"), percent = FALSE, ...)

S3 method for class 'depletion'

plot(
X,
xlab = NULL,
ylab = NULL,
pch = 19,

col.pt = "black”,

col.mdl
Iwd = 1,
1ty = 1,
pos.est

ugray7®n ,

"topright”,

cex.est = 0.95,

Arguments

catch

data

method

Ricker.mod

effort
object
parm
verbose

as.df

level

conf.level

incl.est

digits

percent

A numeric vector of catches of fish at each time, or a formula of the form
catch~effort.

Additional arguments for methods.

A data.frame from which the variables in the catch formula can be found. Not
used if catch is not a formula.

A single string that indicates which depletion method to use

A single logical that indicates whether to use the modification proposed by
Ricker (=TRUE) or not (=FALSE, default).

A numeric vector of efforts expended at each time.
An object saved from the removal call (i.e., of class depletion).

A specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

A logical that indicates whether a reminder of the method used should be printed
with the summary results.

A logical that indicates whether the results of coef, confint, or summary should
be returned as a data.frame. Ignored in summary if parm="1m".

Same as conf . level but used for compatibility with generic confint function.

A single number that represents the level of confidence to use for constructing
confidence intervals.

A logical that indicated whether the parameter point estimate should be included
in the results from confint. Defaults to FALSE.

The number of digits to round the rSquared result to.

A logical that indicates if the rSquared result should be returned as a percentage
(=TRUE) or as a proportion (=FALSE; default).

64 depletion
X An object saved from the depletion call (i.e., of class depletion).
xlab A label for the x-axis.
ylab A label for the y-axis.
pch A numeric that indicates the type of plotting character.
col.pt A string that indicates the color of the plotted points.
col.mdl A string that indicates the color of the fitted line.
lwd A numeric that indicates the line width of the fitted line.
1ty A numeric that indicates the type of line used for the fitted line.
pos.est A single string to identify where to place the estimated population estimate
and catchability on the plot. Can be set to one of "bottomright”, "bottom”,
"bottomleft”, "left”, "topleft”, "top”, "topright”, "right"” or "center”
for positioning the estimated mortality rates on the plot. Typically "bottomleft”
(DEFAULT) and "topright"” will be “out-of-the-way” placements. Set pos.est
to NULL to remove the estimated population size and catchability coefficient from
the plot.
cex.est A single numeric that identifies the character expansion value for the estimated
population estimate and catchability placed on the plot.
Details

For the Leslie method, a linear regression model of catch-per-unit-effort on cumulative catch prior
to the sample is fit. The catchability coefficient (q) is estimated from the negative of the slope and
the initial population size (No) is estimated by dividing the intercept by the catchability coefficient.
If Ricker.mod=TRUE then the cumulative catch is modified to be the cumulative catch prior to the
sample plus half of the catch of the current sample.

For the DeLury method, a linear regression model of log (catch-per-unit-effort) on cumulative effort
is fit. The catchability coefficient (q) is estimated from the negative of the slope and the initial
population size (No) is estimated by dividing the intercept as an exponent of e by the catchability
coefficient. If Ricker.mod=TRUE then the cumulative effort is modified to be the cumulative effort
prior to the sample plus half of the effort of the current sample.

Standard errors for the catchability and population size estimates are computed from formulas on
page 298 (for Leslie) and 303 (for DeLury) from Seber (2002). Confidence intervals are computed
using standard large-sample normal distribution theory with the regression error df.

Value

A list with the following items:

* method A string that indicates whether the "Leslie” or "DeLury” model was used.

* catch The original vector of catches.

* effort The original vector of efforts.

* cpe A computed vector of catch-per-unit-effort for each time.

* KorE A computed vector of cumulative catch (K; Leslie method) or effort (E; DeLury method).
* Im The 1m object from the fit of CPE on K (Leslie method) or log(CPE) on E (DeLury method).

* est A 2x2 matrix that contains the estimates and standard errors for No and q.

depletion 65

testing

The Leslie method without the Ricker modification and the DeLury method with the Ricker mod-
ification matches the results from deplet in fishmethods for the darter (from fishmethods),
LobsterPEI and BlueCrab from FSAdata, and SMBassLS for NO to whole numbers, the SE for
No to one decimal, q to seven decimals, and the SE of q to at least five decimals.

The Leslie method matches the results of Seber (2002) for NO, g, and the CI for Q but not the CI
for N (which was so far off that it might be that Seber’s result is incorrect) for the lobster data and
the q and CI for q but the NO or its CI (likely due to lots of rounding in Seber 2002) for the Blue
Crab data.

The Leslie and DeLury methods match the results of Ricker (1975) for No and Q but not for the CI
of No (Ricker used a very different method to compute Cls).

IFAR Chapter

10-Abundance from Depletion Data.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail . com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Tech-
nical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. [Was (is?) from
http://www.dfo-mpo.gc.ca/Library/1485.pdf.]

Seber, G.A.F. 2002. The Estimation of Animal Abundance. Edward Arnold, Second edition
(reprinted).

See Also

See removal for related functionality and deplet in fishmethods for similar functionality.

Examples

Leslie model examples

no Ricker modification

11 <- depletion(SMBassLS$catch,SMBassLS$effort,method="Leslie")
summary (11)
summary (11, verbose=TRUE)
summary (11, parm="No")

rSquared(11)
rSquared(l1,digits=1,percent=TRUE)
coef (11)

confint(11)
confint(1l1,incl.est=TRUE)
confint(l1,incl.est=TRUE, parm="No")
confint(1l1,incl.est=TRUE,parm="q")
confint(1l1,incl.est=TRUE,parm="1m")

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

66 dunnTest

plot(11)

with Ricker modification

12 <- depletion(SMBassLS$catch,SMBassLS$effort,method="Leslie",Ricker.mod=TRUE)
summary (12)

confint(1l1,incl.est=TRUE)

plot(12)

DeLury model examples with no Ricker modification

d1 <- depletion(SMBassLS$catch,SMBassLS$effort,method="DeLury")
summary (d1)

rSquared(d1)

confint(dl,incl.est=TRUE)

plot(d1)

Leslie model using formula notation
13 <- depletion(catch~effort,data=SMBassLS)
summary (13)

Leslie model by group (requires dplyr package)
Dummy example data (lake=="A" is SMBassLS example ... just FYI)
tmpdf <- data.frame(ct=c(131,69,99,78,56,76,49,42,63,47,
117,75,87,67,58,67,42),
ft=c(7,7,7,7,7,7,7,7,7,7,
5,7,5,5,4,6,5),
lake=as.factor(c(rep("A",10),rep("B",7))))

if (require(dplyr)) {
res <- tmpdf %>%
dplyr::group_by(lake) %>%
dplyr::group_modify(~confint(depletion(ct~ft,data=.x),
incl.est=TRUE,as.df=TRUE)) %>%
as.data.frame() # removes tibble and grouping structure
res

dunnTest Dunn’s Kruskal-Wallis Multiple Comparisons.

Description

Performs Dunn’s (1964) test of multiple comparisons following a significant Kruskal-Wallis test,
possibly with a correction to control the experimentwise error rate. This is largely a wrapper for the
dunn. test function in dunn.test. Please see and cite that package.

Usage

dunnTest(x, ...)

dunnTest 67

Default S3 method:
dunnTest(
X,
g,
method = dunn.test::p.adjustment.methods[c(4, 2:3, 5:8, 1)1,
two.sided = TRUE,
altp = two.sided,

)

S3 method for class 'formula’
dunnTest(
X,
data = NULL,
method = dunn.test::p.adjustment.methods[c(4, 2:3, 5:8, 1)1,
two.sided = TRUE,
altp = two.sided,

)
S3 method for class 'dunnTest'
print(x, dunn.test.results = FALSE, ...)
Arguments
X A numeric vector of data values or a formula of the form x~g.
Not yet used.
g A factor vector or a (non-numeric) vector that can be coerced to a factor vector.
method A single string that identifies the method used to control the experimentwise

error rate. See the list of methods in p.adjustment.methods (documented with
dunn. test) in dunn.test.

two.sided A single logical that indicates whether a two-sided p-value should be returned
(TRUE; default) or not. See details.

altp Same as two.sided. Allows similar code with the dunn. test function in dunn.test.

two. sided is maintained because it pre-dates altp.

data A data.frame that minimally contains x and g.
dunn.test.results

A single logical that indicates whether the results that would have been printed
by dunn. test function in dunn.test are shown.

Details

This function performs “Dunn’s” test of multiple comparisons following a Kruskal-Wallis test. Un-
adjusted one- or two-sided p-values for each pairwise comparison among groups are computed
following Dunn’s description as implemented in the dunn.test function from dunn.test. These
p-values may be adjusted using methods in the p.adjustment.methods function in dunn.test.

68 dunnTest

This function is largely a wrapper for the dunn. test function in dunn.test. Changes here are the
possible use of formula notation, results not printed by the main function (but are printed in a more
useful format (in my opinion) by the print function), the p-values are adjusted by default with
the “holm” method, and two-sided p-values are returned by default. See dunn.test function in
dunn.test for more details underlying these computations.

Value

A list with three items — method is the long name of the method used to control the experimentwise
error rate, dtres is the strings that would have been printed by the dunn. test function in dunn.test,
and res is a data.frame with the following variables:

» Comparison: Labels for each pairwise comparison.

 Z: Values for the Z test statistic for each comparison.

* Punadj: Unadjusted p-values for each comparison.

* Padj: Adjusted p-values for each comparison.

Note

The data.frame will be reduced to only those rows that are complete cases for x and g. In other
words, rows with missing data for either x or g are removed from the analysis and a warning will
be issued.

There are a number of functions in other packages that do similar analyses.

The results from DunnTest match the results (in a different format) from the dunn. test function
from dunn.test.

The pairw. kw function from the asbio package performs the Dunn test with the Bonferroni correc-
tion. The pairw.kw also provides a confidence interval for the difference in mean ranks between
pairs of groups. The p-value results from DunnTest match the results from pairw.kw.

The posthoc.kruskal.nemenyi.test function from the PMCMR package uses the “Nemenyi”
(1963) method of multiple comparisons.

The kruskalmc function from the pgirmess package uses the method described by Siegel and
Castellan (1988).

It is not clear which method kruskal from the agricolae package uses. It does not seem to output
p-values but it does allow for a wide variety of methods to control the experimentwise error rate.
Author(s)
Derek H. Ogle, <DerekOgle51@gmail . com>, but this is largely a wrapper (see details) for dunn. test
in dunn.test written by Alexis Dinno.
References

Dunn, O.J. 1964. Multiple comparisons using rank sums. Technometrics 6:241-252.

See Also

See kruskal.test, dunn. test in dunn.test, posthoc.kruskal.nemenyi.test in PMCMR, kruskalmc
in pgirmess, and kruskal in agricolae.

Ecoli

Examples

pH in four ponds data from Zar (2010)
ponds <- data.frame(pond=as.factor(rep(1:4,each=8)),
pH=c(7.68,7.69,7.70,7.70,7.72,7.73,7.73,7.76,
7.71,7.73,7.74,7.74,7.78,7.78,7.80,7.81,
7.74,7.75,7.77,7.78,7.80,7.81,7.84 ,NA,
7.71,7.71,7.74,7.79,7.81,7.85,7.87,7.91))
ponds2 <- ponds[complete.cases(ponds),]

non-formula usage (default "holm” method)
dunnTest (ponds2$pH, ponds2$pond)

formula usage (default "holm” method)
dunnTest (pH~pond, data=ponds2)

other methods

dunnTest (pH~pond, data=ponds2,method="bonferroni")
dunnTest (pH~pond, data=ponds2,method="bh")
dunnTest (pH~pond, data=ponds2,method="none")

one-sided
dunnTest (pH~pond, data=ponds2, two.sided=FALSE)

warning message if incomplete cases were removed
dunnTest (pH~pond, data=ponds)

print dunn.test results
tmp <- dunnTest(pH~pond, data=ponds2)
print(tmp,dunn.test.results=TRUE)

Ecoli Population growth of Escherichia coli.

Description

The number of Escherichia coli cells versus time.

Format
A data frame with 8 observations on the following 2 variables:

days Elapsed duration of the experiment

cells Number of cells in the population

Topic(s)

¢ Nonlinear Model
e Other

70 expandCounts

Source

McKendrick, A.G. and M. Kesava Pai. 1911. The Rate of Multiplication of Micro-Organisms: a
Mathematical Study. Proceedings of the Royal Society of Edinburgh. 31:649-655. CSV file

expandCounts Repeat individual fish data (including lengths) from tallied counts.

Description

Repeat individual fish data, including lengths, from tallied counts and, optionally, add a random
digit to length measurements to simulate actual length of fish in the bin. This is useful as a precur-
sor to summaries that require information, e.g., lengths, of individual fish (e.g., length frequency
histograms, means lengths).

Usage
expandCounts(

data,
cform,
1form = NULL,
removeCount = TRUE,
lprec = 0.1,
new.name = "newlen”,
cwid = 0,

verbose = TRUE,

Arguments

data A data.frame that contains variables in cform and 1form.

cform A formula of the form ~countvar where countvar generically represents the
variable in data that contains the counts of individuals. See details.

1form An optional formula of the form ~lowerbin+upperbin where lowerbin and
upperbin generically represent the variables in data that identify the lower-
and upper-values of the length bins. See details.

removeCount A single logical that indicates if the variable that contains the counts of individ-
uals (as given in cform) should be removed form the returned data.frame. The
default is TRUE such that the variable will be removed as the returned data.frame
contains individuals and the counts of individuals in tallied bins is not relevant
to an individual.

lprec A single numeric that controls the precision to which the random lengths are
recorded. See details.

new.name A single string that contains a name for the new length variable if random lengths

are to be created.

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/Ecoli.csv

expandCounts 71

cwid A single positive numeric that will be added to the lower length bin value in
instances where the count exceeds one but only a lower (and not an upper) length
were recorded. See details.

verbose A logical indicating whether progress message should be printed or not.

Not yet implemented.

Details

Fisheries data may be recorded as tallied counts in the field. For example, field biologists may have
simply recorded that there were 10 fish in one group, 15 in another, etc. More specifically, the
biologist may have recorded that there were 10 male Bluegill from the first sampling event between
100 and 124 mm, 15 male Bluegill from the first sampling event between 125 and 149 mm, and
so on. At times, it may be necessary to expand these counts such that the repeated information
appears in individual rows in a new data.frame. In this specific example, the tallied counts would
be repeated such that the male, Bluegill, first sampling event, 100-124 mm information would be
repeated 10 times; the male, Bluegill, first sampling event, 125-149 mm information would be
repeated 15 times, and so on. This function facilitates this type of expansion.

Length data has often been collected in a “binned-and-tallied” format (e.g., 10 fish in the 100-124
mm group, 15 in the 125-149 mm group, etc.). This type of data collection does not facilitate easy
or precise calculations of summary statistics of length (i.e., mean and standard deviations of length).
Expanding the data as described above does not solve this problem because the length data are still
essentially categorical (i.e., which group the fish belongs to rather than what it’s actual length is).
To facilitate computation of summary statistics, the data can be expanded as described above and
then a length can be randomly selected from within the recorded length bin to serve as a “measured”
length for that fish. This function performs this type of expansion by randomly selecting the length
from a uniform distribution within the length bin (e.g., each value between 100 and 124 mm has the
same probability of being selected).

This function makes some assumptions for some coding situations. First, it assumes that all lowerbin
values are actually lower than all upperbin values. The function will throw an error if this is not
true. Second, it assumes that if a lowerbin but no upperbin value is given then the lowerbin value
is the exact measurement for those fish. Third, it assumes that if an upperbin but no lowerbin value
is given that this is a data entry error and that the upperbin value should be the lowerbin value.
Fourth, it assumes that it is a data entry error if varcount is zero or NA and lowerbin or upperbin
contains values (i.e., why would there be lengths if no fish were captured?).

Value

A data.frame of the same structure as data except that the variable in cform may be deleted and
the variable in new.name may be added. The returned data.frame will have more rows than data
because of the potential addition of new individuals expanded from the counts in cform.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

See Also

See expandLenFreq for expanding length frequencies where individual fish measurements were
made on individual fish in a subsample and the remaining fish were simply counted.

72 expandCounts

Examples

all need expansion

(d1 <- data.frame(name=c("Johnson”,"Johnson","Jones","Frank”,"Frank"”, "Max"),
lwr.bin=c(15,15.5,16,16,17,17),
upr.bin=c(15.5,16,16.5,16.5,17.5,17.5),
fregq=c(6,4,2,3,1,1)))

expandCounts(d1,~freq)

expandCounts(d1,~freq,~1lwr.bin+upr.bin)

some need expansion

(d2 <- data.frame(name=c("Johnson”,"Johnson"”,"Jones","Frank”,"Frank"”, "Max"),
lwr.bin=c(15,15.5,16,16,17.1,17.3),
upr.bin=c(15.5,16,16.5,16.5,17.1,17.3),
freq=c(6,4,2,3,1,1)))

expandCounts(d2,~freq)

expandCounts(d2,~freq, ~1wr.bin+upr.bin)

none need expansion

(d3 <- data.frame(name=c("Johnson","Johnson","Jones","Frank"”,"Frank"”, "Max"),
lwr.bin=c(15,15.5,16,16,17.1,17.3),
upr.bin=c(15,15.5,16,16,17.1,17.3),
freg=c(6,4,2,3,1,1)))

expandCounts(d3,~freq)

expandCounts(d3,~freq,~1wr.bin+upr.bin)

some need expansion, but different bin widths

(d4 <- data.frame(name=c("Johnson”,"Johnson","Jones","Frank”,"Frank"”, "Max"),
lwr.bin=c(15, 15, 16, 16, 17.1,17.3),
upr.bin=c(15.5,15.9,16.5,16.9,17.1,17.3),
freq=c(6,4,2,3,1,1)))

expandCounts(d4,~freq)

expandCounts(d4,~freq,~1lwr.bin+upr.bin)

some need expansion but include zeros and NAs for counts

(d2a <- data.frame(name=c("Johnson”,"Johnson”,"Jones","Frank"”,"Frank”, "Max", "Max", "Max", "Max"),
lwr.bin=c(15, 15.5,16 ,16 ,17.1,17.3,NA,NA,NA),
upr.bin=c(15.5,16 ,16.5,16.5,17.1,17.3,NA,NA,NA),
freq=c(6,4,2,3,1,1,NA,0,NA)))

expandCounts(d2a,~freq,~lwr.bin+upr.bin)

some need expansion but include NAs for upper values

(d2b <- data.frame(name=c("Johnson","Johnson","Jones","Frank"”,"Frank"”, "Max"),
lwr.bin=c(15, 15.5,16 ,16 ,17.1,17.3),
upr.bin=c(NA ,NA ,16.5,16.5,17.1,17.3),
freg=c(6,4,2,3,1,1)))

expandCounts(d2b,~freq,~1lwr.bin+upr.bin)

some need expansion but include NAs for upper values

(d2c <- data.frame(name=c("Johnson","Johnson”,"Jones","Frank”,"Frank","Max"),
lwr.bin=c(NA,NA, 16 ,16 ,17.1,17.3),
upr.bin=c(15,15.5,16.5,16.5,17.1,17.3),
freg=c(6,4,2,3,1,1)))

expandLenFreq 73

expandCounts(d2c,~freq,~1lwr.bin+upr.bin)

Not run:
#i#! 1##! 1## Change path to where example file is and then run to demo

Read in datafile (note periods in names)

df <- read.csv("c:/aaawork/consulting/R_WiDNR/Statewide/Surveysummaries201@.csv")

str(df)

narrow variables for simplicity

df1 <- df[,c("County”, "Waterbody.Name","Survey.Year","Gear","Species”,
"Number.of.Fish"”,"Length.or.Lower.Length.IN","Length.Upper.IN",
"Weight.Pounds”, "Gender")]

Sum the count to see how many fish there should be after expansion

sum(df1$Number.of.Fish)

Simple expansion
df2 <- expandCounts(df1,~Number.of.Fish)

Same expansion but include random component to lengths (thus new variable)

also note default lprec=0.1
df3 <- expandCounts(df1,~Number.of.Fish,~Length.or.Lower.Length.IN+Length.Upper.IN)

End(Not run)

expandLenFreq Expands a length frequency based on a subsample.

Description

Creates a vector of lengths for the individuals not measured based on the lengths measured in a
subsample of individuals.

Usage

expandLenFreq(
X!
W,
additional,
startcat = NULL,
total = additional + length(x),
decimals = decs$wdec,
show. summary = TRUE,

74 expandLenFreq

Arguments

X A numeric vector of length measurements.

w A number that indicates the width of length classes to create.

additional The number of individuals that were not measured in the sample (for which
measurements should be determined).

startcat A number that indicates the beginning of the first length-class.

total The total number of individuals in the sample (including those that were mea-
sured in the subsample).

decimals A number that indicates the number of decimals used in the output vector of

estimated lengths.

show.summary A logical that indicates whether a summary of the process should be shown at
the end.

Optional arguments to be passed to lencat.

Details

Creates a vector of lengths for the individuals not measured based on the lengths measured in a
subsample of individuals. Length categories are created first that begin with the value in startcat
(or the minimum observed value by default) and continue by values of w until a category value
greater than the largest observed length in x. Categories of different widths are not allowed.

The resulting “expanded” lengths are created by allocating individuals to each length class based
on the proportion of measured individuals in the subsample in that length class. Individuals within
a length class are then assigned a specific length within that length class based on a uniform dis-
tribution. Because the expanded number of individuals in a length class is rounded down based on
the measured number per length class, not all individuals will initially be assigned a length value.
The remaining individuals are assigned to a length class randomly according to weights based on
the proportion of individuals in the measured length classes. Finally, these individuals are randomly
assigned a specific length within the respective length class from a uniform distribution, same as
above.

The resulting length assignments are rounded to the number of decimals shown in decimal. If
decimals is not set by the user then it will default to the same number of decimals shown in the
w value. Care is taken to make sure that the rounded result will not pass out of the given length
category (i.e., will not be allowed to round up to the next length category). Generally speaking, one
will want to use more decimals then is shown in w. For example, one may want to create length
categories with a width of 1 inch (i.e., w=1) but have the results recorded as if measured to within
0.1 inch (i.e., decimals=1).

Value
Returns a vector that consists of measurements for the non-measured individuals in the entire sam-
ple.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

extraTests 75

See Also

See expandCounts for expanding more than just lengths or expanding lengths when there is a
known number in each length bin. See lencat for creating length bins.

Examples

Set the random seed for reproducibility
set.seed(15343437)

First example

random lengths measured to nearest 0.1 unit -- values in a vector
len1 <- round(runif(50,0.1,9.9),1)

assignment of integer lengths to 110 non-measured individuals
new.lenla <- expandLenFreq(lenl,w=1,total=160)

new.lenla

assignment of lengths to 0.1 to 110 non-measured individuals
new.lenlb <- expandLenFreq(lenl,w=1,total=160,decimals=1)

new.lenlb

Second example -- if values are in a data.frame

random lengths measured to nearest 0.1 unit

len2 <- data.frame(len=round(runif(50,10,117),1))

assignment of lengths to 0.1 for 140 non-measured indivs
new.len2a <- expandLenFreq(len2$len,w=10,total=190,decimals=1)
new.len2a

Third example

hypothetically measured lengths

len <- ¢(6.7,6.9,7.3,7.4,7.5,8.2,8.7,8.9)

find lengths for unmeasured fish assuming a total of 30

newlenl <- expandLenFreq(len,w=0.5,total=30,decimals=1)

newlenl

set a starting length category

newlen2 <- expandLenFreq(len,w=0.5,startcat=6.2,total=30,decimals=1)
newlen2

extraTests Likelihood ratio and extra sum-of-squares tests.

Description

Likelihood ratio and extra sum-of-squares tests with multiple 1m or nls models nested within one
common model. This function is most useful when the nested functions are all at the same level;
otherwise use anova() or lrtest() which are more flexible.

76 extraTests
Usage
Irt(sim, ..., com, sim.names = sim.name, sim.name = NULL, com.name = NULL)
extraSS(sim, ..., com, sim.names = sim.name, sim.name = NULL, com.name = NULL)
S3 method for class 'extraTest'
print(x, ...)
Arguments
sim The results of one 1m or nls model, for example, that is a nested subset of the
model in com=.
More model results that are nested subsets of the model in com=.
com The results of one 1m or nls model, for example, that the models in sim= and
. are a subset of.
sim.name, sim.names
A string vector of “names” for simple model in sim=and sim.names is
preferred but sim. name is allowed to allow for a common typing mistake.
com. name A single “name” string for the complex model in com=.
X An object from 1rt () or extraSS().
Details
anova and 1rtest (from Imtest) provide simple methods for conducting extra sum-of-squares or
likelihood ratio tests when one model is nested within another model or when there are several
layers of simple models all sequentially nested within each other. However, to compare several
models that are nested at the same level with one common more complex model, then anova() and
lrtest() must be repeated for each comparison. This repetition can be eliminated with lapply ()
but then the output is voluminous. This function is designed to remove the repetitiveness and to
provide output that is compact and easy to read.
Value

The main function returns a matrix with as many rows as model comparisons and columns of the
following types:

DfO The error degrees-of-freedom from the subset (more simple) model.

RSSO, loglLikO The residual sum-of-squares (from extraSS) or log-likelihood (from 1lrt)
from the subset (more simple) model.

DfA The error degrees-of-freedom from the com= model.

RSSA, logLikA The residual sum-of-squares (from extraSS) or log-likelihood (from 1rt)
from the com= model.

Df The difference in error degrees-of-freedom between the two models.

SS, loglL ik The difference in residual sum-of-squares (from extraSS) or log-likelihood (from
1rt) between the two models.

F, Chisq The corresponding F- (from extraSS) or Chi-square (from 1rt) test statistic.
Pr(>F), Pr(>Chisq) The corresponding p-value.

extraTests 77

Note

This function is experimental at this point. It seems to work fine for 1m and nls models. An error
will be thrown by extraSs for other model classes, but 1rt will not (but it has not been thoroughly

tests for other models).

Author(s)
Derek H. Ogle, <DerekOgle51@gmail . com>

Examples

Example data

df <- data.frame(x=c(1,2,3,4,5,6,7,8,9,10),
y=c(4,6,5,7,9,8,7,12,16,22),
z=as.factor(rep(c("A","B"),each=5)),
w=as.factor(rep(c("A","B"),times=5)))

df$x2 <- df$x*2

Linear (1Im()) models

... regression

fit.o <- Im(y~1,data=df)

fit.1 <- Im(y~x,data=df)

fit.2 <- lm(y~x2+x,data=df)
extraSS(fit.o,fit.1,com=fit.2)
Irt(fit.o,fit.1,com=fit.2)

... show labels for models
extraSS(fit.o,fit.1,com=fit.2,

sim.names=c(”"Null Model”,"Linear"),com.name="Quadratic")
lrt(fit.o,fit.1,com=fit.2,

sim.names=c(”Null Model”,"Linear"),com.name="Quadratic")

... dummy variable regression
fit.2b <- 1lm(y~x*z,data=df)
extraSS(fit.o,fit.1,com=fit.2b)
lrt(fit.o,fit.1,com=fit.2b)

... ANOVAs

fit.1 <- 1lm(y~w,data=df)

fit.2 <- Im(y~w*z,data=df)
extraSS(fit.o,fit.1,com=fit.2)
lrt(fit.o,fit.1,com=fit.2)

Non-linear (nls()) models

fit.® = nls(y~c,data=df,start=1ist(c=10))

fit.1 = nls(y~a*x+c,data=df,start=1list(a=1,c=1))

fit.2 = nls(y~b*x2+a*x+c,data=df,start=1list(a=-1,b=0.3,c=10))
extraSS(fit.o,fit.1,com=fit.2)

lrt(fit.o,fit.1,com=fit.2)

General least-squares (gls()) models

78 fact2num

Not run:
require(nlme)
fit.0 <- gls(y~1,data=df,method="ML")
fit.1 <- gls(y~x,data=df,method="ML")
fit.2 <- gls(y~x2+x,data=df,method="ML")
Irt(fit.o,fit.1, com=fit.2)
will return an error ... does not work with gls() models
extraSS(fit.o,fit.1, com=fit.2)

End(Not run)

fact2num Converts "numeric" factor levels to numeric values.

Description

Converts “numeric” factor levels to numeric values.

Usage

fact2num(object)
Arguments

object A vector with “numeric” factor levels to be converted to numeric values.
Value

A numeric vector.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

Examples

junk <- factor(c(1,7,2,4,3,10))
str(junk)

junk2 <- fact2num(junk)
str(junk2)

ONLY RUN IN INTERACTIVE MODE
if (interactive()) {

bad <- factor(c("A","B","C"))
This will result in an error -- levels are not 'numeric'

bad2 <- fact2num(bad)

} #4# END IF INTERACTIVE MODE

findGrowthStarts 79

findGrowthStarts Find reasonable starting values for common fish growth functions.

Description

Finds reasonable starting values for the parameters in a specific parameterization of common growth
functions (von Bertalanffy, Gompertz, logistic, Richards, Schnute, and Schnute-Richards).

Usage

findGrowthStarts(
formula,
data,
type = c("von Bertalanffy"”, "Gompertz", "logistic"”, "Richards"”, "Schnute”,
"Schnute-Richards"),

param = 1,
pname = NULL,
case = NULL,
constvals = NULL,
fixed = NULL,
plot = FALSE
)
Arguments
formula A formula of the form length~age for length-at-age models or deltaL~deltat+lengthM
for tag-recapture models. length and age generically represent the observed
length and annual age, and deltal, deltat, and lengthM generically represent
the observed change in length, observed change in time, and observed length at
marking.
data A data frame that contains the variables in formula.
type A single string (i.e., one of “von Bertalanffy”, “Gompertz”, “logistic”, “Richards”,
“Schnute”, “Schnute-Richards”) that indicates the type of growth function to
show.
param A single numeric that indicates the specific parameterization of the growth func-
tion. Will be ignored if pname is non-NULL. See details.
pname A single character that indicates the specific parameterization of the growth
function. If NULL then param will be used. See details.
case A numeric that indicates the specific case of the Schnute function to use.
constvals A NAMED numeric vector of constant values (either lengths or ages) to be used
in some of the von Bertalanffy parameterizations. See details.
fixed A NAMED numeric vector that contains user-defined (i.e., fixed rather than au-
tomatically generated) starting values for one or more parameters. See details.
plot A logical that indicates whether a plot of the data with the superimposed model

fit at the starting values should be created. This plot is for diagnostic purposes
and, thus, cannot be modified in this function.

80 findGrowthStarts

Details

This function attempts to find reasonable starting values for a variety of parameterizations of com-
mon functions used to model fish growth (von Bertalanffy, Gompertz, logistic, Richards, Schnute,
and Schnute-Richards). The starting values tend to work well in nls and related non-linear mod-
eling functions, but there is no guarantee that they are the ‘best’ starting values (especially if the
model is not appropriate for the data). One should perform sensitivity analyses to determine the
impact of different starting values on the final model results.

In some instances it may be beneficial to fix one or more of the starting values to a user-defined
choice. This can be done with fixed as shown in the examples. Note that starting values for other
parameters that depend on the value of the fixed parameter may also be affected. For example, a
starting value for ¢ in the "Typical" von Bertalanffy function depends on values of L, and K.
Thus, if, for example, K is fixed by the user then the starting value for ¢, will also be affected as it
will used the fixed rather than the automatically derived value for K.

It is good practice for two reasons to use plot=TRUE to superimpose the growth function evaluated
at the starting values over a scatterplot of the observed lengths versus ages. First, this will give the
user a feel for how well the growth function fits the data given the starting values. If the "model line"
does not represent the data well then the starting values are likely poor and the non-linear model
may not converge. Second, the user may iteratively supply values for the parameters in fixed with
plot=TRUE to "guess" at useful starting values. This is demonstrated in the examples.

See this article for complete examples of "fitting" growth models with FSA.

Value

A named vector that contains reasonable starting values. Note that the parameters will be listed
with the same names in the same order as listed in makeGrowthFun.

IFAR Chapter

12-Individual Growth.

Note

Derivation of the starting values is detailed in this article. Further note that starting values have
not yet been coded for every parameterization of the growth functions available in FSA. In those
instances, you will need to derive starting values by other means.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail. com>

See Also

See makeGrowthFun to make functions that use these starting values and showGrowthFun to display
the equations used in FSA. See nlsTracePlot for help troubleshooting nonlinear models that don’t
converge.

https://fishr-core-team.github.io/FSA/articles/Fitting_Growth_Functions.html
https://fishr-core-team.github.io/FSA/articles/Growth_Starting_Values.html

findGrowthStarts 81

Examples

These examples use the hypothetical length-at-age (annual) data in GrowthData1l

#===== Example starting values for 1st parameterization of each type

(svonb1 <- findGrowthStarts(tlV~age,data=GrowthDatal,type="von Bertalanffy"))
(sgomp1 <- findGrowthStarts(tlG~age,data=GrowthDatal,type="Gompertz"))

(slogil <- findGrowthStarts(tlL~age,data=GrowthDatal,type="logistic"))

(srich1l <- findGrowthStarts(tlR~age,data=GrowthDatal,type="Richards"))

#====== Example starting values at other parameterizations

(svonb4 <- findGrowthStarts(tlV~age,data=GrowthDatal,type="von Bertalanffy", 6 param=4))
(sgomp2 <- findGrowthStarts(tlG~age,data=GrowthDatal,type="Gompertz", param=2))

(slogi3 <- findGrowthStarts(tlL~age,data=GrowthDatal,type="logistic", param=3))

(srich3 <- findGrowthStarts(tlR~age,data=GrowthDatal,type="Richards"”, param=3))

#' #====== Example using pname instead of param

(svonb4 <- findGrowthStarts(tlV~age,data=GrowthDatal, type="von Bertalanffy",h pname="Mooij"))

(sgomp2 <- findGrowthStarts(tlG~age,data=GrowthDatal, type="Gompertz",pname="Ricker1"))

(slogi3 <- findGrowthStarts(tlL~age,data=GrowthDatal,type="logistic",pname="Campana-Jones2"))
(srich3 <- findGrowthStarts(tlR~age,data=GrowthDatal, type="Richards",pname="Tjorve7"))

#====== Some vonB parameterizations require constant values in constvals=
(svonb8 <- findGrowthStarts(tlV~age,data=GrowthDatal,type="von Bertalanffy"”,
pname="Francis"”,constvals=c(t1=2,t3=11)))

#====== Demonstrate use of fixed= with 2nd (Original) param of von B as e.g.

(svonb2 <- findGrowthStarts(tlV~age,data=GrowthDatal,param=2))

(svonb2 <- findGrowthStarts(tlV~age,data=GrowthDatal,param=2,fixed=c(Linf=500)))

(svonb2 <- findGrowthStarts(tlV~age,data=GrowthDatal,param=2,fixed=c(Linf=500,K=0.25)))

#===== Starting values with diagnostic plot
(sgomp3 <- findGrowthStarts(tlG~age,data=GrowthDatal, type="Gompertz",h param=3,plot=TRUE))

#===== Iteratively guess at starting values (stop when the model seems to "fit")
findGrowthStarts(tlV~age,data=GrowthDatal,plot=TRUE, fixed=c(Linf=600,K=0.5,t0=0)) #att 1
findGrowthStarts(tlV~age,data=GrowthDatal,plot=TRUE, fixed=c(Linf=450,K=0.5,t0=0)) #att 2
findGrowthStarts(tlV~age,data=GrowthDatal,plot=TRUE, fixed=c(Linf=450,K=0.3,t0=0)) #att 3
findGrowthStarts(tlV~age,data=GrowthDatal,plot=TRUE, fixed=c(Linf=450,K=0.3,t0=-0.5)) #looks OK, stop

#===== Plot at starting and final values

#--——- creating growth function corresponding to first param of von B
vonb1 <- makeGrowthFun(type="von Bertalanffy")

#-—--- plot data
plot(tlV~age,data=GrowthDatal,pch=19,col=col2rgbt("black”,0.2))

#-—--- plot von b growth function at starting values (svonbl from above)
curve(vonb1(x,Linf=svonb1),col="blue", 1lwd=5,add=TRUE)

#--—-- fit growth function to data

rvonb1l <- nls(tlV~vonbl(age,Linf,K,t@),data=GrowthDatal,start=svonbl)

cvonbl <- coef(rvonbl)

#--—-- plot growth function at final values ... starting values were very good!
curve(vonb1(x,Linf=cvonb1),col="red",1lwd=2,add=TRUE)

82 fishR

#===== Example for tag-recapture data (in GrowthData3)

#----- Fabens model
findGrowthStarts(deltalL~deltat+t1lM, data=GrowthData3, pname="Fabens")
#--——- Francis model

findGrowthStarts(deltalL~deltat+t1M, data=GrowthData3,pname="Francis2",
constvals=c(L1=150,L2=400))

fishR Opens web pages associated with the fishR website.

Description

Opens web pages associated with the fishR website in a browser. The user can open the main page
or choose a specific page to open.

Usage
fishR(
where = c("home"”, "posts”, "books"”, "IFAR", "AIFFD", "packages"”, "data”, "teaching"),
open = TRUE
)
Arguments
where A string that indicates a particular page on the fishR website to open.
open A logical that indicates whether the webpage should be opened in the default
browser. Defaults to TRUE; FALSE is used for unit testing.
Value

None, but a webpage will be opened in the default browser.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

Examples

Not run:

Opens an external webpage ... only run interactively

fishR() # home page

fishR("posts") # blog posts (some examples) page

fishR("books") # examples page

fishR("IFAR") # Introduction to Fisheries Analysis with R page
fishR("AIFFD") # Analysis & Interpretation of Freshw. Fisher. Data page
fishR("packages") # list of r-related fisheries packages
fishR("data") # list of fisheries data sets
fishR("teaching”) # teaching resources

https://fishr-core-team.github.io/fishR/

FSA-defunct

End(Not run)

83

FSA-defunct DEFUNCT functions.

Description

These functions were once part of FSA but have now been removed.
Usage

bootCase(...)

chooseColors(...)

compIntercepts(...)

compSlopes(...)

diags(...)
filterD(...)
fitPlot(...)
fsaNews(...)
hoCoef(...)

mapvalues(...)
plotBinResp(...)
residPlot(...)
Subset(...)
Schnute(...)

Arguments

Additional arguments to pass through.

84 geomean

geomean Calculates the geometric mean or geometric standard deviation.

Description

Calculates the geometric mean or standard deviation of a vector of numeric values.

Usage

geomean(x, na.rm = FALSE, zneg.rm = FALSE)

geosd(x, na.rm = FALSE, zneg.rm = FALSE)

Arguments
X Vector of numeric values.
na.rm Logical indicating whether to remove missing values or not.
zneg.rm Logical indicating whether to ignore or remove zero or negative values found in
X.
Details

The geometric mean is computed by log transforming the raw data in x, computing the arithmetic
mean of the transformed data, and back-transforming this mean to the geometric mean by exponen-
tiating.

The geometric standard deviation is computed by log transforming the raw data in x, computing the
arithmetic standard deviation of the transformed data, and back-transforming this standard deviation
to the geometric standard deviation by exponentiating.

Value
A numeric value that is the geometric mean or geometric standard deviation of the numeric values
in Xx.

Note
This function is largely an implementation of the code suggested by Russell Senior on R-help in
November, 1999.

See Also

See geometric.mean in psych and Gmean for geometric mean calculators. See Gsd (documented
with Gmean) from DescTools for geometric standard deviation calculators.

GrowthDatal 85

Examples

generate random lognormal data

d <- rlnorm(500,meanlog=0,sdlog=1)

d has a mean on log scale of @; thus, gm should be exp(@)~=
d has a sd on log scale of 1; thus, gsd should be exp(1)~=2.7
geomean(d)

geosd(d)

Not run:

Demonstrate handling of zeros and negative values

x <- seq(-1,5)

this will given an error

geomean (x)

this will only give a warning, but might not be what you want
geomean(x, zneg.rm=TRUE)

End(Not run)

GrowthDatal Hypothetical growth data for testing

Description

Hypothetical lengths at annual ages. These data are useful for testing growth related functions (e.g.,
findGrowthStarts) as they were generated from known growth functions (e.g., von Bertalanffy)
with some random error and are, thus, “as good as it gets” for testing.

Format

A data frame of 179 observations on the following 5 variables:

age Ages as a whole number

tIV Total length simulated from a von Bertalanffy growth function with Linf=450, K=0.3, and
t0=-0.5

tlIG Total length simulated from a Gompertz growth function with Linf=450, gi=0.3, and ti=3
tIL Total length simulated from a logistic growth function with Linf=450, gninf=0.5, and ti=3
tIR Total length simulated from a Richards growth function with Linf=450, k=0.5, ti=2, and b=-0.5

Topic(s)
¢ Growth

* von Bertalanfty

See Also

GrowthData2, GrowthData3, and findGrowthStarts

86 GrowthData2

Examples

str(GrowthDatal)
head(GrowthData1l)
plot(tlV~age,data=GrowthDatal)
plot(tlG~age,data=GrowthDatal)
plot(tlL~age,data=GrowthDatal)
plot(tlR~age,data=GrowthDatal)

GrowthData2 Hypothetical growth data for testing seasonal age models.

Description

Hypothetical lengths at seasonal ages. These data are useful for testing growth related functions
(e.g., findGrowthStarts) as they were generated from known growth functions (e.g., von Berta-
lanffy) with some random error and are, thus, “as good as it gets” for testing.

Format
A data frame of 126 observations on the following 2 variables:

age Ages with decimals representing a fraction of a year

tlS Total length simulated from a the “Somers” parameterization of the von Bertalanffy growth
function with Linf=450, K=0.3, t0=-0.5, C=0.9, and ts=0.1

Topic(s)

¢ Growth

* von Bertalanffy

See Also

GrowthDatal, GrowthData2, and findGrowthStarts

Examples

str(GrowthData2)
head(GrowthData2)
plot(tlS~age,data=GrowthData2)

GrowthData3 87

GrowthData3 Hypothetical growth data for testing

Description

Hypothetical lengths at time of marking/tagging and recapture and time-at-large (i.e., between
marking and recapture). These data are useful for testing growth related functions (e.g., findGrowthStarts)
as they were generated from known growth functions (e.g., von Bertalanffy) with some random er-

ror and are, thus, “as good as it gets” for testing.

Format

A data frame of 128 observations on the following 5 variables:

tag A unique fish ID (i.e., tag) number

tIM Total length at time of marking/tagging simulated from a von Bertalanffy growth function with
Linf=450, K=0.3, and t0=-0.5

tIR Total length at time of recapture simulated from a von Bertalanffy growth function with Linf=450,
gi=0.3, and ti=3 and assuming a random time-at-large from marking/tagging of roughly 1, 2,
or 3 years.

deltat Time-at-large (i.e., time between marking/tagging and recapture) simulate to be 1, 2, or 3
years (with decreasing probability) and some random error of a few days.

deltal. Change in length between the time or marking/tagging and recapture (i.e., t1R-t1M).

Topic(s)
¢ Growth

 von Bertalanfty

See Also

GrowthDatal, GrowthData2, and findGrowthStarts

Examples

str(GrowthData3)
head(GrowthData3)
plot(tlR~t1M,data=GrowthData3)
abline(a=0,b=1,col="red")

88 growthModels

growthModels DEPRECATED (as of v0.10.0). Creates a function for a specific pa-
rameterization of the von Bertalanffy, Gompertz, Richards, and logis-
tic growth functions.

Description

DEPRECATED (as of v0.10.0). Creates a function for a specific parameterizations of the von
Bertalanffy, Gompertz, Richards, and logistic growth functions. Use growthFunShow() to see the
equations for each growth function.

Usage
vbFuns (
param = c("Typical”, "typical”, "Traditional”, "traditional”, "BevertonHolt",
"Original”, "original”, "vonBertalanffy"”, "GQ", "GallucciQuinn", "Mooij", "Weisberg",
"Ogle"”, "Schnute"”, "Francis”, "Laslett”, "Polacheck”, "Somers”, "Somers2", "Pauly”,
"Fabens", "Fabens2", "Wang"”, "Wang2", "Wang3", "Francis2", "Francis3"),
simple = FALSE,
msg = FALSE
)
GompertzFuns(
param = c("Ricker1”, "Ricker2", "Ricker3"”, "QuinnDeriso1”, "QuinnDeriso2",

"QuinnDeriso3”, "QD1", "QD2", "QD3", "Original”, "original”, "Troynikov1",
"Troynikov2"),
simple = FALSE,
msg = FALSE
)

RichardsFuns(param = 1, simple = FALSE, msg = FALSE)

logisticFuns(
param = c("CJ1", "CJ2", "Karkach”, "Haddon"”, "CampanaJones1”, "CampanaJones2"),
simple = FALSE,
msg = FALSE

)

growthFunShow(
type = c("vonBertalanffy"”, "Gompertz"”, "Richards"”, "Logistic”, "Schnute”,
"SchnuteRichards"),

param = NULL,
case = param,
plot = FALSE,

growthModels 89

Arguments
param A string (for von Bertalanffy, Gompertz, and logistic) or numeric (for Richards)
that indicates the specific parameterization of the growth function. See details.
simple A logical that indicates whether the function will accept all parameter values
in the first parameter argument (=FALSE; DEFAULT) or whether all individual
parameters must be specified in separate arguments (=TRUE).
msg A logical that indicates whether a message about the growth function and pa-
rameter definitions should be output (=TRUE) or not (=FALSE; DEFAULT).
type A string (in growthFunShow) that indicates the type of growth function to show.
case A numeric that indicates the specific case of the Schnute function to use. See
details.
plot A logical that indicates whether the growth function expression should be shown
as an equation in a simple plot.
Not implemented.
Details

DEPRECATED ... use makeGrowthFun and showGrowthFun instead.

Value

The functions ending in xxxFuns return a function that can be used to predict fish size given a vector
of ages and values for the growth function parameters and, in some parameterizations, values for
constants. The result should be saved to an object that is then the function name. When the resulting
function is used, the parameters are ordered as shown when the definitions of the parameters are
printed after the function is called (if msg=TRUE). If simple=FALSE (DEFAULT), then the values for
all parameters may be included as a vector in the first parameter argument (but in the same order).
Similarly, the values for all constants may be included as a vector in the first constant argument (i.e.,
t1). If simple=TRUE, then all parameters and constants must be declared individually. The resulting
function is somewhat easier to read when simple=TRUE, but is less general for some applications.

An expression of the equation for each growth function may be created with growthFunShow. In this
function type= is used to select the major function type (e.g., von Bertalanffy, Gompertz, Richards,
Logistic, Schnute) and param= is used to select a specific parameterization of that growth function.
If plot=TRUE, then a simple graphic will be created with the equation using plotmath for a pretty
format.

IFAR Chapter
12-Individual Growth.

Note

Take note of the following for parameterizations (i.e., param) of each growth function:

* von Bertalanfty

90

growthModels

The ‘Original’ and ‘vonBertalanffy’ are synonymous as are ‘Typical’, ‘Traditional’, and

‘BevertonHolt’. Further note that the ‘Ogle’ parameterization has the ‘Original’/‘vonBertalanffy’

and “Typical’/‘Traditional’/‘BevertonHolt’ parameterizations as special cases.

* Gompertz

The ‘Ricker2’ and ‘QuinnDerisol’ are synonymous, as are ‘Ricker3’ and ‘QuinnDeriso2’.

The parameterizations and parameters for the Gompertz function are varied and confusing
in the literature. [have attempted to use a uniform set of parameters in these functions, but
that makes a direct comparison to the literature difficult. Common sources for Gompertz
models are listed in the references below. I make some comments here to aid comparisons
to the literature.

Within FSA, LO is the mean length at age 0, Linf is the mean asymptotic length, ti is the
age at the inflection point, gi is the instantaneous growth rate at the inflection point, t0 is
a the hypothetical age at a mean length of 0, and a, b, and ¢ are nuisance parameters with
no real-world interpretations.

The function in Ricker (1975)[p. 232] is the same as ‘Ricker2’ where the a parameter
here is equal to G there and the gi parameter here is equal to the g parameter there. Also
note that their w is L here.

In the Ricker (1979)[p. 705] functions (the ‘RickerX’ functions), the a parameter here is
equal to k there and the gi parameter here is equal to the g parameter there. Also note
that their w is L here. In the Ricker (1979) functions as presented in Campana and Jones
(1992), the a parameter here is equal to k parameter there and the gi parameter here is
equal to the G parameter there. Also note that their X is L here.

In the Quinn and Deriso (1999) functions (the ‘QuinnDerisoX’ functions), the a parameter
here is equal to lambda/K there and the gi parameter here is equal to the K parameter
there. Also note that their Y is L here.

The function in Quist ez al. (2012)[p. 714] is the same as ‘Ricker1’ where the gi parameter
here is equal to the G parameter there and the ti parameter here is equal to the t0 parameter
there.

The function in Katsanevakis and Maravelias (2008) is the same as ‘Rickerl’ where the

gi parameter here is equal to the k2 parameter there and the ti parameter here is equal to
the t2 parameter there.

¢ Richards

Only 4-parameter parameterizations from Tjorve and Tjorve (2010) that seemed useful
for modeling fish growth are provided here.

Within FSA, Linf is the mean asymptotic length; ti is the age at the inflection point; k
controls the slope at the inflection point (maximum relative growth rate); a is dimension-
less but related to the horizontal position (i.e., age) of the inflection point; b, ¢, and d are
dimensionless but related to the vertical position (i.e., size) of the inflection point; and LO
is the mean length at age-0.

The parameterizations (1-5) correspond to functions/equations 5, 3(alt), 7, 4, and 6, re-
spectively, in Tjorve and Tjorve (2010). Note that their A, S, k are Linf, a, k and their d
is b, c, and d, respectively, here (in FSA).

* logistic

Within FSA, LO is the mean length at age 0, Linf is the mean asymptotic length, ti is the
age at the inflection point, and gninf is the instantaneous growth rate at negative infinity.

growthModels 91

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>, thanks to Gabor Grothendieck for a hint about using
get().

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Campana, S.E. and C.M. Jones. 1992. Analysis of otolith microstructure data. Pages 73-100
In D.K. Stevenson and S.E. Campana, editors. Otolith microstructure examination and analysis.
Canadian Special Publication of Fisheries and Aquatic Sciences 117. [Was (is?) from https://waves-
vagues.dfo-mpo.gc.ca/library-bibliotheque/141734.pdf.]

Fabens, A. 1965. Properties and fitting of the von Bertalanffy growth curve. Growth 29:265-289.

Francis, R.I.C.C. 1988. Are growth parameters estimated from tagging and age-length data compa-
rable? Canadian Journal of Fisheries and Aquatic Sciences, 45:936-942.

Gallucci, V.F. and T.J. Quinn II. 1979. Reparameterizing, fitting, and testing a simple growth model.
Transactions of the American Fisheries Society, 108:14-25.

Garcia-Berthou, E., G. Carmona-Catot, R. Merciai, and D.H. Ogle. A technical note on seasonal
growth models. Reviews in Fish Biology and Fisheries 22:635-640.

Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on
a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal
Society of London. 115:513-583.

Haddon, M., C. Mundy, and D. Tarbath. 2008. Using an inverse-logistic model to describe growth
increments of blacklip abalone (Haliotis rubra) in Tasmania. Fishery Bulletin 106:58-71. [Was
(is?) from https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/2008/106 1/haddon.pdf.]

Karkach, A. S. 2006. Trajectories and models of individual growth. Demographic Research 15:347-
400. [Was (is?) from https://www.demographic-research.org/volumes/vol15/12/15-12.pdf.]

Katsanevakis, S. and C.D. Maravelias. 2008. Modeling fish growth: multi-model inference as a
better alternative to a priori using von Bertalanffy equation. Fish and Fisheries 9:178-187.

Mooij, WM., J.M. Van Rooij, and S. Wijnhoven. 1999. Analysis and comparison of fish growth
from small samples of length-at-age data: Detection of sexual dimorphism in Eurasian perch as an
example. Transactions of the American Fisheries Society 128:483-490.

Polacheck, T., J.P. Eveson, and G.M. Laslett. 2004. Increase in growth rates of southern bluefin tuna
(Thunnus maccoyii) over four decades: 1960 to 2000. Canadian Journal of Fisheries and Aquatic
Sciences, 61:307-322.

Quinn, T. J. and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New
York, New York. 542 pages.

Quist, M.C., M.A. Pegg, and D.R. DeVries. 2012. Age and growth. Chapter 15 in A.V. Zale, D.L
Parrish, and T.M. Sutton, editors. Fisheries Techniques, Third Edition. American Fisheries Society,
Bethesda, MD.

Richards, F. J. 1959. A flexible growth function for empirical use. Journal of Experimental Biology
10:290-300.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Tech-
nical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. [Was (is?) from
https://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs94-191-eng.pdf.]

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

92 growthModels

Ricker, W.E. 1979. Growth rates and models. Pages 677-743 In W.S. Hoar, D.J. Randall, and J.R.
Brett, editors. Fish Physiology, Vol. 8: Bioenergetics and Growth. Academic Press, New York, NY.
[Was (is?) from https://books.google.com/books?id=CB 1qu2VbKwQC&pg=PA705&lpg=PA705&dq=Gompertz+fish&sour

Schnute, J. 1981. A versatile growth model with statistically stable parameters. Canadian Journal
of Fisheries and Aquatic Sciences, 38:1128-1140.

Somers, I. F. 1988. On a seasonally oscillating growth function. Fishbyte 6(1):8-11. [Was (is?)
from https://www.fishbase.us/manual/English/fishbaseSeasonal_Growth.htm.]

Tjorve, E. and K. M. C. Tjorve. 2010. A unified approach to the Richards-model family for use in
growth analyses: Why we need only two model forms. Journal of Theoretical Biology 267:417-425.
[Was (is?) from https://www.researchgate.net/profile/Even_Tjorve/publication/46218377_A_unified_approach_to_the_Rich
model_family_for_use_in_growth_analyses_why_we_need_only_two_model_forms/links/54ba83b80cf29e0cb04bd24e.pdf

Tjorve, K. M. C. and E. Tjorve. 2017. The use of Gompertz models in growth analyses, and new
Gompertz-model approach: An addition to the Unified-Richards family. PLOS One. [Was (is?)
from https://doi.org/10.1371/journal.pone.0178691.]

Troynikov, V. S., R. W. Day, and A. M. Leorke. Estimation of seasonal growth parameters using
a stochastic Gompertz model for tagging data. Journal of Shellfish Research 17:833-838. [Was (is?)
from https://www.researchgate.net/profile/Robert_Day2/publication/249340562_Estimation_of_seasonal_growth_paramete:

Vaughan, D. S. and T. E. Helser. 1990. Status of the Red Drum stock of the Atlantic coast: Stock
assessment report for 1989. NOAA Technical Memorandum NMFS-SEFC-263, 117 p. [Was (is?)
from https://repository.library.noaa.gov/view/noaa/5927/noaa_5927_DS1.pdf.]

Wang, Y.-G. 1998. An improved Fabens method for estimation of growth parameters in the von
Bertalanffy model with individual asymptotes. Canadian Journal of Fisheries and Aquatic Sciences
55:397-400.

Weisberg, S., G.R. Spangler, and L. S. Richmond. 2010. Mixed effects models for fish growth.
Canadian Journal of Fisheries And Aquatic Sciences 67:269-277.

Winsor, C.P. 1932. The Gompertz curve as a growth curve. Proceedings of the National Academy of
Sciences. 18:1-8. [Was (is?) from https://pmc.ncbi.nlm.nih.gov/articles/PMC1076153/pdf/pnas01729-
0009.pdf.]

Examples

HHHEHHHEHEE AR R

Simple Examples -- Von B

(vb1 <= vbFuns())

ages <- 0:20

plot(vb1(ages,Linf=20,K=0.3,t0=-0.2)~ages, type="b",pch=19)

(vb2 <- vbFuns("Francis"))
plot(vb2(ages,L1=10,L2=19,L3=20,t1=2,t3=18)~ages, type="b",pch=19)
(vb2c <- vbFuns("Francis"”,simple=TRUE)) # compare to vb2

Simple Examples -- Gompertz

(gomp1 <- GompertzFuns())
plot(gomp1(ages,Linf=800,gi=0.5,ti=5)~ages, type="b",pch=19)

(gomp2 <- GompertzFuns("Ricker2"))
plot(gomp2(ages,L0=2,b=6,gi=0.5)~ages, type="b",pch=19)

(gomp2c <- GompertzFuns("Ricker2",simple=TRUE)) # compare to gomp2
(gompT <- GompertzFuns("Troynikov1"))

growthModels

Simple Examples -- Richards

(richl <- RichardsFuns(1))
plot(rich1(ages,Linf=800,k=0.5,ti=3,b1=0.15)~ages, type="b",pch=19)
(rich2 <- RichardsFuns(2))
plot(rich2(ages,Linf=800,k=0.5,t0=-1,b2=6)~ages, type="b",pch=19)

(rich3 <- RichardsFuns(3))
plot(rich3(ages,Linf=800,k=0.5,L0=50,b3=1.5)~ages, type="b",pch=19)
(rich4 <- RichardsFuns(4))
plot(rich4(ages,Linf=800,k=0.5,ti=3,b2=6)~ages, type="b",pch=19)

(rich5 <- RichardsFuns(5))
plot(rich5(ages,Linf=800,k=0.5,ti=3,b3=0.95)~ages, type="b",pch=19)
lines(rich5(ages,Linf=800,k=0.5,ti=3,b3=1.5)~ages, type="b",pch=19,col="blue")
(rich2c <- RichardsFuns(2,simple=TRUE)) # compare to rich2

Simple Examples -- Logistic

(logl <- logisticFuns())
plot(logl(ages,Linf=800,gninf=0.5,ti=5)~ages, type="b",pch=19)
(log2 <- logisticFuns("CJ2"))
plot(log2(ages,Linf=800,gninf=0.5,a=10)~ages, type="b",pch=19)
(log2c <- logisticFuns("CJ2",simple=TRUE)) # compare to log2
(log3 <- logisticFuns("Karkach"))
plot(log3(ages,L0=10,Linf=800,gninf=0.5)~ages, type="b",pch=19)
(log4 <- logisticFuns("Haddon"))

HHHHHHHHHEHEHE AR R

Examples of fitting

After the last example a plot is constructed with three

or four lines on top of each other illustrating that the
parameterizations all produce the same fitted values.

However, observe the correlations in the summary() results.

Von B
plot(tl~age,data=SpotVA1l,pch=19)

Fitting the typical parameterization of the von B function

fit1l <- nls(tl~vbl(age,Linf,K,t@),data=SpotVATl,
start=vbStarts(tl~age,data=SpotVA1))

summary (fit1,correlation=TRUE)

curve(vb1(x,Linf=coef (fit1)),from=0,to=5,col="red"”,1lwd=10,add=TRUE)

Fitting the Francis parameterization of the von B function
fit2 <- nls(tl~vb2c(age,L1,L2,L3,t1=0,t3=5),data=SpotVA1l,
start=vbStarts(tl~age,data=SpotVA1l, type="Francis”, ages2use=c(9,5)))
summary (fit2,correlation=TRUE)
curve(vb2c(x,L1=coef (fit2)[1],L2=coef (fit2)[2],L3=coef (fit2)[3],t1=0,t3=5),
from=0,to=5,col="blue”,1lwd=5,add=TRUE)

Fitting the Schnute parameterization of the von B function

vb3 <- vbFuns("”Schnute")

fit3 <- nls(tl~vb3(age,L1,L3,K,t1=0,t3=4),data=SpotVAT,
start=vbStarts(tl~age,data=SpotVA1l, type="Schnute”, ages2use=c(0,4)))

93

94 headtail

summary (fit3,correlation=TRUE)
curve(vb3(x,L1=coef(fit3),t1=c(0,4)),from=0,to=5,col="green",lwd=2,add=TRUE)

headtail Shows rows from the head and tail of a data frame or matrix.

Description

Shows rows from the head and tail of a data frame or matrix.

Usage
headtail(x, n = 3L, which = NULL, addrownums = TRUE, ...)
Arguments
X A data frame or matrix.
n A single numeric that indicates the number of rows to display from each of the
head and tail of structure.
which A numeric or string vector that contains the column numbers or names to dis-
play. Defaults to showing all columns.
addrownums If there are no row names for the MATRIX, then create them from the row
numbers.
Arguments to be passed to or from other methods.
Value

A matrix or data.frame with 2*n rows.

Note

If n is larger than the number of rows in x then all of x is displayed.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail . com>

See Also

peek

hist.formula

Examples

headtail(iris)

headtail(iris,10)
headtail(iris,which=c("Sepal.Length"”,"Sepal.Width","Species"))
headtail(iris,which=grep("”Sepal”,names(iris)))
headtail(iris,n=200)

Make a matrix for demonstration purposes only
miris <- as.matrix(iris[,1:4])

headtail(miris)

headtail(miris,10)
headtail(miris,addrownums=FALSE)
headtail(miris,10,which=2:4)

Make a tibble type from tibble ... note how headtail() is not limited by
the tibble restriction on number of rows to show (but head() is).
Not run:

if (require(tibble)) {
iris2 <- as_tibble(iris)
class(iris2)
headtail(iris2,n=15)
head(iris2,n=15)

}

End(Not run)

95

hist.formula Creates separate histograms by levels.

Description

Creates separate histograms of a quantitative variable by levels of a factor variable.

Usage
S3 method for class 'formula'
hist(
formula,
data = NULL,
main = ""
right = FALSE,
pre.main = "",
xlab = NULL,

ylab = "Frequency”,
same.breaks = TRUE,
breaks = "Sturges",
w = NULL,

96 hist.formula
same.ylim = TRUE,
ymax = NULL,
col = "gray90",
nrow = round(sgrt(num)),
ncol = ceiling(sqrt(num)),
byrow = TRUE,
iaxs = TRUE,
)
Arguments
formula A formula. See details.
data An optional data frame that contains the variables in the model.
main A character string used as the main title for when a SINGLE histogram is pro-
duced.
right A logical that indicates if the histogram bins are right-closed (left open) intervals
(=TRUE) or not (=FALSE; default).
pre.main A character string to be used as a prefix for the main title when multiple his-
tograms are produced. See details.
xlab A character label for the x-axis. Defaults to name of quantitative variable in
formula.
ylab A character label for the y-axis. Defaults to “Frequency”.

same.breaks

breaks

same.ylim

ymax

col

nrow
ncol
byrow

iaxs

A logical that indicates whether the same break values (i.e., bins) should be used
on each histogram. Ignored if breaks or w is provided by the user. Defaults to
TRUE.

A single numeric that indicates the number of bins or breaks or a vector that
contains the lower values of the breaks. Ignored if w is not NULL. See hist for
more details.

A single numeric that indicates the width of the bins to use. The bins will start
at “rounded” values depending on the value of w. See 1lencat for more details.

A logical that indicates whether the same limits for the y-axis should be used on
each histogram. Defaults to TRUE.

A single value that sets the maximum y-axis limit for each histogram or a vector
of length equal to the number of groups that sets the maximum y-axis limit for
each histogram separately. If NULL (default), then a value will be found.

A string that indicates the color for the bars on the histogram. Defaults to a light
shade of gray (i.e., "gray90").

A single numeric that contains the number of rows to use on the graphic.
A single numeric that contains the number of columns to use on the graphic.

A single logical that indicates if the histograms should fill rows first (=TRUE or
columns first (=FALSE).

A single logical that indicates whether both axes should be plotted using xaxs="1
and yaxs="1" (the default) or xaxs="r" and yaxs="r" (what R typically does).

Other arguments to pass through to the default hist ().

hist.formula 97

Details

The formula must be of the form ~quantitative, quantitative~1, quantitative~factor, or
quantitative~factor*factor2 where quantitative is the quantitative variable to construct the
histograms for and factor or factor?2 are factor variables that contain the levels for which separate
histograms should be constructed.

If the formula is of the form ~quantitative or quantitative~1 then only a single histogram of
the quantitative variable will be produced. This allows hist.formula() to be used similarly to
hist() but with a data= argument.

The function produces a single (but see below) graphic that consists of a grid on which the separate
histograms are printed. The rows and columns of this grid are determined to construct a plot that
is as square as possible. However, the rows and columns can be set by the user with the nrow= and
ncol= arguments. If the product of the number of rows and number of columns set by the user is
less than the total number of histograms to be constructed then multiple pages of histograms will
be produced (each requiring the user to click on the graph to go to the next graph). The x-axis
of each separate histogram will be labeled identically. The default x-axis label is the name of the
quantitative variable. This can be changed by the user with the x1ab= argument.

The default for right= is not the same as that used in hist() from graphics. Thus, right-open
(left-closed) bins are the default.

The iaxs= argument defaults to TRUE so that xaxs="1" and yaxs="1" are used for both axes, which
eliminates the “floating” x-axis that R typically plots for histograms.

Value

A graphic is produced and nothing is returned unless formula results in only one histogram. In that
case, an object of class "histogram” is returned, which is described in hist.

IFAR Chapter

3-Plotting Fundamentals.

Note

Students often need to look at the distribution of a quantitative variable separated for different levels

of a categorical variable. One method for examining these distributions is with boxplot (quantitative~factor).
Other methods use functions in Lattice and ggplots2 but these packages have some learning ‘over-

head’ for newbie students. The formula notation, however, is a common way in R to tell R to

separate a quantitative variable by the levels of a factor. Thus, this function adds code for formulas

to the generic hist function. This allows newbie students to use a common notation (i.e., formula)

to easily create multiple histograms of a quantitative variable separated by the levels of a factor.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>, but this implementation is largely a modification of

the code provided by Marc Schwartz on the R-help mailing list on 1Jun07.

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

98 histFromSum

See Also

See base hist for related functionality and multhist in plotrix for similar functionality.

Examples

Using the defaults
hist(Sepal.Length~Species,data=iris)

Add x-labels and use a pre-fix on the main labels
hist(Sepal.Length~Species,data=iris,xlab="Sepal Length (cm)",
pre.main="Species=="

Use different breaks and different y-axis limits for each graph
hist(Sepal.Length~Species,data=iris,xlab="Sepal Length (cm)",
same.breaks=FALSE, same.ylim=FALSE)

Single histogram without grouping using formula notation
hist(~Sepal.Length,data=iris,xlab="Sepal Length (cm)")

Using the bin width argument
hist(~Sepal.Length,data=iris,xlab="Sepal Length (cm)"”,w=1)
hist(Sepal.Length~Species,data=iris,xlab="Sepal Length (cm)",w=0.25)

histFromSum Create a histogram from a frequency table.

Description

Creates a histogram from values in a frequency table. Primarily used with already summarized
length frequency data.

Usage

histFromSum(x, ...)

Default S3 method:
histFromSum(x, vy, ...)

S3 method for class 'table'’
histFromSum(x, ...)

S3 method for class 'formula'
histFromSum(x, data = NULL, ...)

histFromSum 99

Arguments
X A numeric vector of bin/category values, a formula of the form freq~cat where
freq contains the count/frequency values and cat contains the bin/category val-
ues, an object of class table from table() or xtabs().
Additional arguments for hist.
y A numeric vector of count/frequency values.
data A data.frame that contains the freq and cat variables if a formula is given in x.
Details

Creates a histogram fro values in a frequency table. The frequency table may be constructed from
xtabs, table, or be in the form of a matrix or a data.frame (as if read in from an external data file).

Value

None, but a graphic is created.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

See Also

See hist and hist.formula for related functionality.

Examples

Make some dummy data with a length category variable
set.seed(634434789)

df <- data.frame(tl=round(rnorm(100,100,20)))

df$lcat10 <- lencat(df$tl,w=10)

Summarize as tables
(thl1 <- xtabs(~lcatl@,data=df))
(thl2 <- table(df$lcat10))

Turn the tables into a data.frame for testing (convert
the categories variables to numeric with fact2num())
df2 <- data.frame(tbl1)

df2$lcat10 <- fact2num(df2$lcatio)

Turn the table into a matrix for testing
(mat1 <- cbind(lcat1@=as.numeric(rownames(tbl1)),freq=tbl1))

Histogram of the raw data ... set breaks and x-axis label
brks <- seq(20,160,10)

x1lbl <- "Total Length (mm)"”
hist(~tl,data=df,breaks=brks,xlab=x1bl)

Use this function with various inputs ... changed colors

100 hyperCI

on each plot so that it was obvious that a new plot was made.

table from xtabs()
histFromSum(tbl1,breaks=brks,xlab=x1bl,col="gray75")

table from table()
histFromSum(tbl2,breaks=brks,xlab=x1bl,col="gray70")

vectors from data.frame

histFromSum(df2$lcat10,df2$Freq, breaks=brks,xlab=x1bl,col="gray65")
vectors from matrix
histFromSum(mat1[,"lcat10"],mat1[,"freq"],breaks=brks,xlab=x1bl,col="gray60")
formula from a data.frame
histFromSum(Freq~lcat10@,data=df2,breaks=brks,xlab=x1bl,col="gray55")

hyperCI Confidence interval for population size (N) in hypergeometric distri-
bution.

Description

Computes a confidence interval for population size (N) in hypergeometric distribution.

Usage

hyperCI(M, n, m, conf.level = 0.95)

Arguments

M Number of successes in the population.

n Number of observations in the sample.

m Number of observed successes in the sample.

conf.level Level of confidence to use for constructing confidence intervals (defaultis @. 95).
Details

This is an inefficient brute-force algorithm. The algorithm computes the conf.level range of
possible values for m, as if it was unknown, for a large range of values of N. It then finds all possible
values of N for which m was in the conf.level range. The smallest and largest values of N for
which m was in the conf. level range are the CI endpoints.

Value

A 1x2 matrix that contains the lower and upper confidence interval bounds.

Note

This algorithm is experimental at this point.

is.odd

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

Examples

hyperCI(50,25,10)

101

is.odd Determine if a number is odd or even.

Description

Determine if a number is odd or even.

Usage
is.odd(x)

is.even(x)

Arguments

X A numeric vector.

Value

A logical vector of the same length as x.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

Examples

Individual values
is.odd(1)
is.odd(2)
is.even(3)
is.even(4)

Vector of values
d<-1:8
data.frame(d,odd=is.odd(d),even=is.even(d))

102 jolly

jolly Jolly-Seber analysis from multiple mark-recapture events from an
open population.

Description

This function takes the two parts of a Method B table and uses the Jolly-Seber method to estimate
the population size at each possible sample period and the apparent survival rate and number of ad-
ditional individuals added to the population between possible sample periods. This method assumes
that the population is open.

Usage

jolly(...)

mrOpen (
mb. top,
mb.bot = NULL,
type = c("Jolly"”, "Manly"),
conf.level = 0.95,
phi.full = TRUE
)

S3 method for class 'mrOpen'’
summary(object, parm = c("N", "phi", "B", "M"), verbose = FALSE, ...)

S3 method for class 'mrOpen'

confint(
object,
parm = C("N”, "phi"7 HBH),
level = NULL,

conf.level = NULL,
verbose = FALSE,

Arguments
Additional arguments for methods.
mb . top A matrix that contains the “top” of the Method B table (i.e., a contingency table
of capture sample (columns) and last seen sample (rows)) or an object of class
CapHist from capHistSum. See details.
mb.bot A data frame that contains the “bottom” of the Method B table (i.e., the number

of marked fish in the sample (m), the number of unmarked fish in the sample
(u), the total number of fish in the sample (n), and the number of marked fish
returned to the population following the sample (R)).

jolly 103

type A string that indicates whether the large sample (normal theory) method of Jolly
(type="Jolly") or the “arbitrary”” method of Manly (type="Manly") should be
used to construct confidence intervals.

conf.level A single numeric that indicates the level of confidence to use for constructing
confidence intervals (default is 0.95). See details.

phi.full A logical that indicates whether the standard error for phi should include only
sampling variability (phi.full=FALSE) or sampling and individual variability
(phi. full=TRUE,default).

object An object from mrOpen (i.e., of class mrOpen).

parm A string that identifies the model parameters for which to return summaries or
confidence intervals. By default, all parameters are returned.

verbose A logical that indicates if the observables and other notes should be printed
in summary and if the type of confidence interval used should be printed in
confint. See details.

level Same as conf. level but used for compatibility with generic confint function.

Details

jolly is just a convenience wrapper that produces the exact same results as mrOpen.

If mb. top contains an object from the capHistSum function then mb.bot can be left missing. In this
case, the function will extract the needed data from the methodB. top and methodB.bot portions of
the CapHist class object.

If mb. top is a matrix then it must be square, must have non-negative and no NA values in the upper
triangle, and all NA values on the lower triangle and diagonal. If mb.bot is a matrix then it must
have four rows named m, u, n, and R (see capHistSum for definitions), all values must be non-NA,
and the first value of m must be 0. The last value of R can either be 0 or some positive number (it is
ultimately ignored in all calculations).

All parameter estimates are performed using equations 4.6-4.9 from Pollock et al. (1990) and from
page 204 in Seber 2002. If type="Jolly" then all standard errors (square root of the variances)
are from equations 4.11, 4.12, and 4.14 in Pollock et al. (1990) (these are different than those in
Seber (2002) ... see Pollock et al.’s note on page 21). If type="Jolly" and phi.full=TRUE then
the full variance for the phi parameter is given as in eqn 4.18 in Pollock et al. (1990), otherwise eqn
4.13 from Pollock et al. (1990) is used. When type="Jolly" the confidence interval are produced
using normal theory (i.e., estimate +/- z*SE). If type="Manly" then the confidence intervals for N
and phi (none will be produced for B) are constructed using the methods of Manly (1984) and as
described in 2.24-2.33 of Krebs (1989). No standard errors are returned when type="Manly".

The summary function returns estimates of M, N, phi, B, and their associated standard errors and, if
verbose=TRUE the intermediate calculations of “observables” from the data —n, m, R, r, and z.

The level of confidence is not set in the confint function, in contrast to most confint functions.
Rather the confidence level is set in the main mrOpen function.

Value

A list with the following items:

104 jolly

» df A data frame that contains observable summaries from the data and estimates of the num-
ber of extant marked fish (M), population size for each possible sample period (N), apparent
survival rate between each possible pair of sample periods (phi), and the number of additional
individuals added to the population between each possible pair of sample periods (B). In addi-
tion to the estimates, values of the standard errors and the lower and upper confidence interval
bounds for each parameter are provided (however, see the details above).

* type The provided type of confidence intervals that was used.
* phi.full The provided logical that indicates the type of standard error for phi that was used.

* conf.level The provided level of confidence that was used.

Testing

The formulas have been triple-checked against formulas in Pollock et al. (1990), Manly (1984),
and Seber (2002).

The results for the CutthroatAL data file (as analyzed in the example) was compared to results
from the JOLLY program available at http://www.mbr-pwrc.usgs.gov/software/jolly.html. The r
and z values matched, all M and N estimates match at one decimal place, all phi are within 0.001,
and all B are within 0.7. The SE match for M except for two estimates that are within 0.1, match
for N except for one estimate that is within 0.1, are within 0.001 for phi, and are within 1.3 for B
(except for for the first estimate which is dramatically off).

The results of mrOpen related to Table 4.4 of Pollock et al. (1990) match (to one decimal place)
except for three estimates that are within 0.1% for N, match (to two decimal places) for phi except
for where Pollock set phi>1 to phi=1, match for B except for Pollock set B<0 to B=0. The SE match
(to two decimal places) for N except for N15 (which is within 0.5, <5%), match (to three decimal
places) for phi except for phil5 (which is within 0.001, <0.5%), match (to two decimal places) for
B except for B17 and B20 which are within 0.2 (<0.2%)

All point estimates of M, N, phi, and B and the SE of phi match the results in Table 2.3 of Krebs
(1989) (within minimal rounding error for a very small number of results). The SE of N results
are not close to those of Krebs (1989) (who does not provide a formula for SE so the discrepancy
cannot be explored). The SE of B results match those of Krebs (1989) for 5 of the 8 values and are
within 5% for 2 of the other 3 values (the last estimate is off by 27%).

For comparing to Jolly’s data as presented in Tables 5.1 and 5.2 of Seber (2002), M was within 4
(less than 1.5%), N was within 3% (except N2 which was within 9%), phi was within 0.01 (less
than 1.5

IFAR Chapter

9-Abundance from Capture-Recapture Data and 11-Mortality.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail. com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

jolly 105

Jolly, G.M. 1965. Explicit estimates from capture-recapture data with both death and immigration
— stochastic model. Biometrika, 52:225-247.

Krebs, C.J. 1989. Ecological Methodology. Harper & Row Publishers, New York.

Leslie, P.H. and D. Chitty. 1951. The estimation of population parameters from data obtained by
means of the capture-recapture method. I. The maximum likelihood equations for estimating the
death-rate. Biometrika, 38:269-292.

Manly, B.F.J. 1984. Obtaining confidence limits on parameters of the Jolly-Seber model for capture-
recapture data. Biometrics, 40:749-758.

Pollock, K.H., J.D. Nichols, C. Brownie, and J.E. Hines. 1991. Statistical inference for capture-
recapture experiments. Wildlife Monographs, 107:1-97.

Seber, G.A.F. 1965. A note on the multiple recapture census. Biometrika 52:249-259.
Seber, G.A.F. 2002. The Estimation of Animal Abundance. Edward Arnold, second edition (reprinted).

See Also

capHistSum, mrClosed

Examples

First example -- capture histories summarized with capHistSum()
ch1l <- capHistSum(CutthroatAL,cols2use=-1) # ignore first column of fish ID
ex1 <- mrOpen(ch1)

summary (ex1)

summary (ex1,verbose=TRUE)

summary (ex1,parm="N")

summary (ex1,parm=c("N","phi"))

confint(ex1)

confint(ex1,parm="N")

confint(ex1,parm=c("N","phi"))

confint(ex1,verbose=TRUE)

Second example - Jolly's data -- summarized data entered "by hand”
s1 <- rep(NA,13)

s2 <- c(10,rep(NA,12))

s3 <- ¢(3,34,rep(NA,11))

s4 <- c(5,18,33,rep(NA,10))

s5 <- ¢(2,8,13,30,rep(NA,9))

s6 <- c¢(2,4,8,20,43,rep(NA,8))

s7 <- ¢(1,6,5,10,34,56,rep(NA,7))

s8 <- ¢(0,4,0,3,14,19,46,rep(NA,6))

s9 <- ¢(0,2,4,2,11,12,28,51,rep(NA,5))

s10 <- ¢(9,0,1,2,3,5,17,22,34,rep(NA,4))

s11 <- ¢(1,2,3,1,0,4,8,12,16,30,rep(NA, 3))

s12 <- c(0,1,3,1,1,2,7,4,11,16,26,NA,NA)

s13 <- c(0,1,0,2,3,3,2,10,9,12,18,35,NA)

jolly.top <- cbind(s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,513)

n <- c(54,146,169,209,220,209,250,176,172,127,123,120,142)
R <- c(54,143,164,202,214,207,243,175,169,126,120,120,0)
m <- c(,10,37,56,53,77,112,86,110,84,77,72,95)

106

u <= n-m

jolly.bot <- rbind(m,u,n,R)

ex2 <- mrOpen(jolly.top,jolly.bot)
summary (ex2, verbose=TRUE)
confint(ex2,verbose=TRUE)

ex3 <- mrOpen(jolly.top,jolly.bot,type="Manly")
summary (ex3, verbose=TRUE)
confint(ex3, verbose=TRUE)

demonstrate use of jolly()
ex3a <- jolly(jolly.top,jolly.bot)

kCounts

kCounts

Specific utilities for use in a knitr document.

Description

Specific utilities for pretty printing various items in a knitr document.

Usage

kCounts(value, capitalize = FALSE)

kPvalue(value, digits = 4, include.p = TRUE, latex = TRUE)

purl2(
file,

out.dir
newname
topnotes

moreItems = NULL,
blanks = c("extra”, "all”, "none"),
delHeader = NULL,
timestamp = TRUE,

reproInfo(

out = c("r", "markdown”, "latex"),
rqrdPkgs = NULL,

elapsed = NULL,

width = 0.95 * getOption("width"),
addTOC = TRUE,

newpage = FALSE,

links = NULL,

kCounts

107

closeGraphics = TRUE,

ind = 1

Arguments

value

capitalize

digits

include.p

latex

file

out.dir

newname

topnotes

moreltems

blanks

delHeader

timestamp

out

rqrdPkgs

elapsed

width

addToC

A single numeric count or p-value.

A logical that indicates if the returned words should be capitalized or not (the
default).

Number of decimal places to round the values to.

A logical that indicates whether the result should be a character string with “p="
appended to the numerical result.

A logical that indicates whether the resultant p-value string should be contained
within dollar signs to form a latex formula.

A string that contains the root name of the .RNW file. This will also be the name
of the resultant purled file with .R appended.

A string that indicates the directory structure in which the purled file should be
located. This should not have a forward slash at the end.

A string for the output filename (without the extension) from purl2.

A character vector of lines to be added to the top of the output file. Each value
in the vector will be placed on a single line at the top of the output file.

A string that contains additional words that when found in the purled file will
result in the entire line with those words to be deleted.

A string that indicates if blank lines should be removed. If blanks="all" then
all blank lines will be removed. If blanks="extra" then only “extra” blanks
lines will be removed (i.e., one blank line will be left where there was originally
more than one blank line).

A single character that denotes the top and bottom of a block of lines that should
be deleted from the script created by purl2.

A logical that indicates whether a timestamp comment should be appended to
the bottom of the script created by purl2.

Additional arguments for the original purl.

A string that indicates the type of output from reproInfo — Markdown, LaTeX,
or simple R code.

A string vector that contains packages that are required for the vignette and for
which all dependencies should be found.

A numeric, usually from proc. time, that is the time required to run the vignette.
If NULL then this output will not be used. See the note below.

A numeric that indicates the width to use for wrapping the reproducibility infor-
mation when out="r".

A logical that indicates whether or not a table of contents entry for the repro-
ducibility section should be added to the LaTeX output. Used only if out="1atex"

108 kCounts

newpage A logical that indicates whether or not the reproducibility information should
begin on a new page. Used only if out="1atex"

links A named character vector that will add a links bullet to the reproducibility in-
formation. The names will be shown and the values are the links. Used only if
out="markdown".

closeGraphics A logical that indicates whether the graphics device should be closed or not.

ind An integer that indicates the CRAN mirror to use. Defaults to 1.

Details

* kCounts is used to convert numeric numbers to ‘word’ numbers in a sentence.
* kPvalue is used to print ‘pretty’ p-values.
* purl2is used to create a modified (see below) Stangled or purled script.

* reprolnfo is used to print ‘reproducibility information’ for the document.

Value

* kCounts returns a numeric value if the count is less than zero or greater than ten and returns a
character string of the number ‘name’. See the examples.

* kPvalue returns a character string of the supplied p-value rounded to the requested number of
digits or a character string that indicates what the p-value is less than the value with a ‘5 in
the digits+1 place. See the examples.

¢ purl?2 is a modification of purl from knitr that creates a file with the same name as file but
with lines removed that contain certain words (those found in ItemsToRemove and moreItems).

* reprolInfo returns Markdown, LaTeX, or R code that prints “reproducibility information™ at
the bottom of the knitted document.

Note

In reproInfo, elapsed can be used to print the time it took to process the document by sending the

elapsed time for processing to this argument. The simplest way to get an approximate elapsed time

is to put st <- proc. time() very early (first line?) in your knitr code, put et <- proc.time()-st

very late in your knitr code (i.e., just prior to reproInfo), and then used elapsed=et["user.self"]+et["sys.self"]
in reproInfo.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

See Also

See formatC for functionality similar to kPvalue. See purl and knit in knitr for functionality
similar to purl2.

ksTest

Examples

kCounts(7)
kCounts(17)
kCounts (@)
kCounts(-6)
kCounts(3,capitalize=TRUE)

kPvalue(@.123456789)
kPvalue(0.000123456)
kPvalue(0.000012345)
kPvalue(0.000012345,include.p=FALSE)

kPvalue(@.000012345,include.p=FALSE, latex=FALSE)

109

ksTest Kolmogorov-Smirnov Tests.

Description

Performs a one- or two-sample Kolmogorov-Smirnov test. Includes the option to perform the two-

sample test using the formula notation.

Usage

ksTest(x, ...)

Default S3 method:

ksTest(
X)
Y,
alternative = c("two.sided”, "less", "greater"),
exact = NULL

)

S3 method for class 'formula'

ksTest(
X y
data = NULL,
alternative = c("two.sided”, "less"”, "greater"),
exact = NULL

)

Arguments

X A numeric vector of data values or a formula (see details).

110 ksTest

Parameters of the distribution specified (as a character string) by y.

y A numeric vector of data values, a character string naming a cumulative distri-
bution function, or an actual cumulative distribution function. See ks. test.

alternative A string that indicates the alternative hypothesis. See ks. test.
exact NULL or a logical that indicates whether an exact p-value should be computed.
See ks. test. Not available if ties are present, nor for the one-sided two-sample
case.
data A data frame that contains the variables in the formula for x.
Details

This is exactly ks. test except that a formula may be used for the two-sample situation. The default
version is simply a pass through to ks. test. See ks. test for more details.

Value

See ks. test.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail. com>

See Also

ks.test.

Examples

see ks.test for other examples

x <- rnorm(50)

y <- runif(30)

df <- data.frame(dat=c(x,y),
grp=factor(rep(c("x","y"),c(50,30))),
stringsAsFactors=FALSE)

one-sample (from ks.test) still works
ksTest(x+2, "pgamma”, 3, 2)
ks.test(x+2, "pgamma”, 3, 2)

first two-sample example in ?ks.test
ksTest(x,y)
ks.test(x,y)

same as above but using data.frame and formula
ksTest(dat~grp,data=df)

lagratio

111

lagratio

Ratio of lagged observations.

Description

Computes the ratio of lagged observations in a vector.

Usage
lagratio(
X ’
lag = 1L,
recursion = 1L,
differences recursion,
direction = c("backward”, "forward"),
)
Arguments
X A numeric vector or matrix.
lag An integer representing the lag ‘distance’.
recursion An integer that indicates the level of recursion for the calculations. A 1 will
simply compute the ratios. A 2, for example, will compute the ratios, save
the result, and then compute the ratios of the results using the same lag. See
examples.
differences Same as recursion. Used for symmetry with diff.
direction A string that indicates the direction of calculation. A "backward” indicates
that ‘latter’ values are divided by ‘former’ values. A "forward” indicates that
‘former’ values are divided by ‘latter’ values. See examples.
Additional arguments to diff ().
Details

This function behaves similarly to diff () except that it returns a vector or matrix of ratios rather

than differences.

Value

A vector or matrix of lagged ratios.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail. com>

112 lencat

See Also
diff

Examples

Backward lagged ratios
no recursion
lagratio(1:10,1)
lagratio(1:10,2)

with recursion
lagratio(1:10,1,2)
lagratio(1:10,2,2)

Forward lagged ratios

no recursion
lagratio(10:1,1,direction="forward")
lagratio(10:1,2,direction="forward")
with recursion
lagratio(10:1,1,2,direction="forward")
lagratio(10:1,2,2,direction="forward")

lencat Constructs length class/category variable.

Description

Constructs a vector that contains the length class or category to which an individual belongs. Op-
tionally, that vector can be appended to the original data frame.

Usage

lencat(x, ...)

Default S3 method:

lencat(
X)
w=1,

startcat = NULL,

breaks = NULL,

right = FALSE,

use.names = FALSE,
as.fact = use.names,
droplevels = drop.levels,
drop.levels = FALSE,

lencat

113

S3 method for class 'formula'

lencat(
X,
data,
w=1,

startcat = NULL,
breaks = NULL,

right =

FALSE

’

use.names = FALSE,
as.fact = use.names,
droplevels = drop.levels,
drop.levels =

vhame =

Arguments

X

startcat

breaks

right

use.names

as.fact

NULL,

FALSE,

A numeric vector that contains the length measurements or a formula of the

form ~x where “x” generically represents a variable in data that contains length
measurements. This formula can only contain one variable.

Not implemented.

A single numeric that indicates the width of length categories to create. Ignored
if breaks is not NULL.

A single numeric that indicates the beginning of the first length category. Only
used with w. See details for how this is handled when NULL.

A numeric vector of lower values for the break points of the length categories.

A logical that indicates if the intervals should be closed on the right (and open
on the left) or vice versa.

A logical that indicates whether the names for the values in breaks should be
used for the levels in the new variable. Will throw a warning and then use default
levels if TRUE but names (breaks) is NULL.

A logical that indicates that the new variable should be returned as a factor
(=TRUE) or not (=FALSE; default).

droplevels, drop.levels

data

vhame

Details

A logical that indicates that the new variable should retain all levels indicated in
breaks (=FALSE; default) or not. Ignored if as. fact=FALSE.

A data.frame that minimally contains the length measurements given in the vari-
able in the formula.

A string that contains the name for the new length class variable.

If breaks is non-NULL, then w and startcat will be ignored. The vector of values in breaks
should begin with a value smaller than the minimum observed value and end with a value larger
than the maximum observed value. If the lowest break value is larger than the minimum observed

114 lencat

value, then an error will occur. If the largest break value is smaller than the maximum observed
value, then an additional break value larger than the maximum observed value will be added to
breaks (and a warning will be sent). The values in breaks do not have to be equally spaced.

If breaks=NULL (the default), then the value in w is used to create equally spaced categories. If
startcat=NULL (the default), then the length categories will begin with the first value less than
the minimum observed value “rounded” by w. For example, if the minimum observed value is 67,
then the first length category will be 65 if w=5, 60 if w=10, 50 if w=25, and 50 if w=50. The length
categories will continue from this starting value by values of w until a value greater than the largest
observed value in x. The length categories are left-inclusive and right-exclusive by default (i.e.,
right=FALSE).

The start of the length categories may also be set with startcat. The number in the startcat
argument should be less than the smallest value in x. Additionally, the number of decimals in
startcat should not be more than the number of decimals in w (e.g., startcat=0.4 and w=1 will
result in an error).

One may want to convert apparent numeric values to factor values if some of the length categories
are missing (e.g., if factor values are used, for example, then tables of the length category values
will have values for all length categories; i.e., it will have zeros for the length categories that are
missing). The numeric values can be converted to factors by including as. fact. See the “real data”
example.

The observed values in x should be rounded to the appropriate number of decimals to avoid mis-
placement of individuals into incorrect length categories due to issues with machine-precision (see
discussion in all.equal.)

Value

If the formula version of the function is used, then a data.frame is returned with the a new variable,
named as in vnhame (defaults to LCat), appended to the original data.frame. If the default version
of the function is used, then a single vector is returned. The returned values will be numeric unless
breaks is named and use.names=TRUE or if as.fact=TRUE.

IFAR Chapter

2-Data Manipulation.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Examples

Create random lengths measured to nearest 0.1 unit
df1 <- data.frame(len=round(runif(50,0.1,9.9),1))

Create length categories by 0.1 unit
df1$LCatl <- lencat(dfi1$len,w=0.1)

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

lencat 115

xtabs(~LCat1,data=df1)

length categories by 0.2 units
df1$LCat2 <- lencat(df1$len,w=0.2)
xtabs(~LCat2,data=df1)

length categories by 0.2 units starting at 0.1
df1$LCat3 <- lencat(dfi1$len,w=0.2,startcat=0.1)
xtabs(~LCat3,data=df1)

length categories as set by breaks
df1$LCat4 <- lencat(dfi1$len,breaks=c(0,2,4,7,10))
xtabs(~LCat4,data=df1)

A Second example
random lengths measured to nearest unit
df2 <- data.frame(len=round(runif(50,10,117),0))

length categories by 5 units
df2$LCat1 <- lencat(df2$len,w=5)
xtabs(~LCat1,data=df2)

length categories by 5 units starting at 7
df2$LCat2 <- lencat(df2$len,w=5,startcat=7)
xtabs(~LCat2,data=df2)

length categories by 10 units
df2$LCat3 <- lencat(df2$len,w=10)
xtabs(~LCat3,data=df2)

length categories by 10 units starting at 5
df2$LCat4 <- lencat(df2$len,w=10,startcat=5)
xtabs(~LCat4,data=df2)

length categories as set by breaks
df2$LCat5 <- lencat(df2$len,breaks=c(5,50,75,150))
xtabs(~LCat5,data=df2)

A Third example
random lengths measured to nearest 0.1 unit
df3 <- data.frame(len=round(runif(50,10,117),1))

length categories by 5 units
df3$LCat1 <- lencat(df3$len,w=5)
xtabs(~LCat1,data=df3)

A Fourth example
random lengths measured to nearest .01 unit
df4 <- data.frame(len=round(runif(50,0.1,9.9),2))

length categories by 0.1 unit
df4$LCat1 <- lencat(df4$len,w=0.1)
xtabs(~LCat1,data=df4)

116 lencat

length categories by ©.1 unit, but without missing categories
df4$LCat2 <- lencat(df4$len,w=0.1,as.fact=TRUE)
xtabs(~LCat2,data=df4)

length categories by 2 unit
df4$LCat3 <- lencat(df4$len,w=2)
xtabs(~LCat3,data=df4)

A Fifth example -- with real data
remove variables with "anu” and "radcap” just for simplicity
smb1 <- smb2 <- SMBassWB[,-c(8:20)]

n

10 mm length classes - in default LCat variable
smb1$LCat10 <- lencat(smbl$lencap,w=10)
head(smb1)

xtabs(~LCat10,data=smb1)

Same as previous but returned as factor so levels with no fish still seen
smb1$LCat10A <- lencat(smbl$lencap,w=10,as.fact=TRUE)

head(smb1)

xtabs(~LCat10A,data=smb1)

Same as previous but returned as a factor with unused levels dropped
smb1$LCat10B <- lencat(smbl$lencap,w=10,as.fact=TRUE,droplevels=TRUE)
head(smb1)

xtabs(~LCat10B,data=smb1)

25 mm length classes - in custom variable name
smb1$LCat25 <- lencat(smbl$lencap,w=25)
head(smb1)

xtabs(~LCat25,data=smb1)

using values from psdVal for Smallmouth Bass

smb1$PSDCat1 <- lencat(smbl$lencap,breaks=psdvVal(”Smallmouth Bass"))
head(smb1)

xtabs(~PSDCat1,data=smb1)

add category names

smb1$PSDCat2 <- lencat(smbl1$lencap,breaks=psdVal(”Smallmouth Bass"),use.names=TRUE)
head(smb1)

xtabs(~PSDCat2,data=smb1)

same as above but drop the unused levels

smb1$PSDCat2A <- lencat(smbl$lencap,breaks=psdval(”Smallmouth Bass"),
use.names=TRUE,droplevels=TRUE)

head(smb1)

xtabs(~PSDCat2A, data=smb1)

str(smb1)

same as above but not returned as a factor (returned as a character)
smb1$PSDcat2B <- lencat(smb1$lencap,breaks=psdVal(”Smallmouth Bass"),
use.names=TRUE, as.fact=FALSE)

logbtcf 117

str(smb1)

A Sixth example -- similar to fifth example but using the formula notation
10 mm length classes - in default LCat variable

smb2 <- lencat(~lencap,data=smb2,w=10)

head(smb2)

25 mm length classes - in custom variable name
smb2 <- lencat(~lencap,data=smb2,w=25,vname="LenCat25")
head(smb2)

using values from psdVal for Smallmouth Bass
smb2 <- lencat(~lencap,data=smb2,breaks=psdVal("”Smallmouth Bass"),vname="LenPsd")
head(smb2)

add category names
smb2 <- lencat(~lencap,data=smb2,breaks=psdvVal(”Smallmouth Bass"),vname="LenPsd2",
use.names=TRUE,droplevels=TRUE)

head(smb2)
str(smb2)
logbtcf Constructs the correction-factor used when back-transforming log-
transformed values.
Description

Constructs the correction-factor used when back-transforming log-transformed values according
to Sprugel (1983). Sprugel’s main formula — exp((syx"2)/2) — is used when syx is estimated for
natural log transformed data. A correction for any base is obtained by multiplying the syx term by
log_e(base) to give exp(((log_e(base)*syx)"2)/2). This more general formula is implemented here
(if, of course, the base is exp(1) then the general formula reduces to the original specific formula).

Usage
logbtcf(obj, base = exp(1))

Arguments

obj An object from 1m.

base A single numeric that indicates the base of the logarithm used.
Value

A numeric value that is the correction factor according to Sprugel (1983).

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

118 IwCompPreds

References

Sprugel, D.G. 1983. Correcting for bias in log-transformed allometric equations. Ecology 64:209-
210.

Examples

toy data

df <- data.frame(y=rlnorm(10),x=rlnorm(10))
df$logey <- log(dfsy)

df$logloy <- loglo(dfsy)

df$logex <- log(df$x)

df$loglox <- loglo(df$x)

model and predictions on loge scale

lme <- Im(logey~logex,data=df)

(ploge <- predict(lme,data.frame(logex=1log(10))))
(pe <- exp(ploge))

(cfe <- logbtcf(lme))

(cpe <- cfex*pe)

model and predictions on log1@ scale

Im10 <- 1Im(logl@y~logl1@x,data=df)

plog1@ <- predict(1lm10,data.frame(logl0x=1og10(10)))
p1@ <- 10*(plogl10@)

(cf10 <- logbtcf(1m10,10))

(cpl@ <- cfl1oxpl0)

cfe and cf10, cpe and cpl1@ should be equal
all.equal(cfe,cf10)
all.equal(cpe,cp10)

lwCompPreds Constructs plots of predicted weights at given lengths among different
groups.

Description

Constructs plots of predicted weights at given lengths among different groups. These plots allow
the user to explore differences in predicted weights at a variety of lengths when the weight-length
relationship is not the same across a variety of groups.

Usage

1wCompPreds(
object,
lens = NULL,
glens = c(0.05, 0.25, 0.5, 0.75, 0.95),
glens.dec = 1,

IwCompPreds 119

base = exp(1),

interval = c("confidence”, "prediction”, "both"),
center.value = 0,
Iwd =1,

connect.preds = TRUE,
show.preds = FALSE,

col.connect = "gray70",
ylim = NULL,
main.pre = "Length==",
cex.main = 0.8,
xlab = "Groups”,
ylab = "Predicted Weight",
anS = llr" ,
rows = round(sqrt(num)),
cols = ceiling(sqrt(num))
)
Arguments
object An 1m object (i.e., returned from fitting a model with 1m). This model should
have log(weight) as the response and log(length) as the explanatory covariate
and an explanatory factor variable that describes the different groups.
lens A numeric vector that indicates the lengths at which the weights should be pre-
dicted.
glens A numeric vector that indicates the quantiles of lengths at which weights should
be predicted. This is ignored if 1ens is non-null.
glens.dec A single numeric that identifies the decimal place that the lengths derived from
glens should be rounded to (Default is 1).
base A single positive numeric value that indicates the base of the logarithm used in
the 1m object in object. The default is exp(1), or the value e.
interval A single string that indicates whether to plot confidence (="confidence"), pre-

center.value

Iwd

connect.preds

show.preds

col.connect

ylim

diction (="prediction”), or both (="both") intervals.

A single numeric value that indicates the log length used if the log length data
was centered when constructing object.

A single numeric that indicates the line width to be used for the confidence and
prediction interval lines (if not interval="both") and the prediction connec-
tions line. If interval="both" then the width of the prediction interval will be
one less than this value so that the CI and PI appear different.

A logical that indicates whether the predicted values should be connected with
a line across groups or not.

A logical that indicates whether the predicted values should be plotted with a
point for each group or not.

A color to use for the line that connects the predicted values (if connect . preds=TRUE).

A numeric vector of length two that indicates the limits of the y-axis to be used
for each plot. If null then limits will be chosen for each graph individually.

120 IwCompPreds
main.pre A character string to be used as a prefix for the main title. See details.
cex.main A numeric value for the character expansion of the main title. See details.
xlab A single string for labeling the x-axis.
ylab A single string for labeling the y-axis.
yaxs A single string that indicates how the y-axis is formed. See par for more details.
rows A single numeric that contains the number of rows to use on the graphic.
cols A single numeric that contains the number of columns to use on the graphic.

Value

None. However, a plot is produced.

IFAR Chapter

7-Weight-Length.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Examples

add log length and weight data to ChinookArg data
ChinookArg$logtl <- log(ChinookArg$tl)
ChinookArg$logwt <- log(ChinookArg$w)

fit model to assess equality of slopes

Im1 <- Im(logwt~logtlxloc,data=ChinookArg)
anova(lm1)

set graphing parameters so that the plots will look decent

op <- par(mar=c(3.5,3.5,1,1),mgp=c(1.8,0.4,0),tcl=-0.2)

show predicted weights (w/ CI) at the default quantile lengths
lwCompPreds(1m1,xlab="Location")

show predicted weights (w/ CI) at the quartile lengths
1lwCompPreds(1m1,xlab="Location"”,glens=c(0.25,0.5,0.75))

show predicted weights (w/ CI) at certain lengths
1wCompPreds(1m1,xlab="Location",lens=c(60,90,120,150))

show predicted weights (w/ just PI) at certain lengths
1lwCompPreds(1m1,xlab="Location"”,lens=c(60,90,120,150),interval="prediction")
1wCompPreds(1m1,xlab="Location"”,lens=c(60,90,120,150),connect.preds=FALSE, show.preds=TRUE)

fit model with a different base (plot should be the same as the first example)
ChinookArg$logtl <- logl@(ChinookArg$tl)

ChinookArg$logwt <- logl1@(ChinookArgs$w)

Im1 <- Im(logwt~logtlxloc,data=ChinookArg)
1wCompPreds(1m1,base=10,xlab="Location")

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

makeGrowthFun 121

return graphing parameters to original state

par(op)
makeGrowthFun Creates a function for a specific parameterization of the von Berta-
lanffy and other common growth functions.
Description

Creates a function for a specific parameterizations of the von Bertalanffy, Gompertz, logistic,
Richards, Schnute, and Schnute-Richards growth functions. The resulting function can be used
to calculate length(s) from age(s) and specific growth function parameters, which is useful for
model-fitting and plotting. Equations for each parameterization are shown in this article and with
showGrowthFun.

Usage

makeGrowthFun(
type = c("von Bertalanffy"”, "Gompertz", "logistic"”, "Richards"”, "Schnute”,
"Schnute-Richards"),

param = 1,
pname = NULL,
case = NULL,
simple = FALSE,
msg = FALSE
)
Arguments
type A single string (i.e., one of “von Bertalanffy”, “Gompertz”, “logistic”, “Richards”,
“Schnute”, “Schnute-Richards”) that indicates the type of growth function to
show.
param A single numeric that indicates the specific parameterization of the growth func-
tion. Will be ignored if pname is non-NULL. See details.
pname A single character that indicates the specific parameterization of the growth
function. If NULL then param will be used. See details.
case A numeric that indicates the specific case of the Schnute function to use.
simple A logical that indicates whether the function will accept all parameter values
in the first parameter argument (=FALSE; DEFAULT) or whether all individual
parameters must be specified in separate arguments (=TRUE). See examples.
msg A logical that indicates whether a message about the growth function and pa-

rameter definitions should be output (=TRUE) or not (=FALSE; DEFAULT).

https://fishr-core-team.github.io/FSA/articles/Growth_Function_Parameterizations.html

122 makeGrowthFun

Details

Specific parameterizations can be chosen by including a name for the equation in ‘pname‘ or a
number in ‘param="‘ (‘param‘ will be ignored if ‘pname° is specificied). Specifics equations for the
various parameterizations, along with parameter definitions, are in this article.

See this article and examples for how to use this function in the larger context of fitting growth
models to data.

Value

Returns a function that can be used to predict fish size given a vector of ages and values for the
growth function parameters and, in some parameterizations, values for constants. The result should
be saved to an object that is then the function name. When the resulting function is used, the
parameters are ordered as shown when the definitions of the parameters are printed after the function
is called (if msg=TRUE). If simple=FALSE (DEFAULT), then the values for all parameters may be
included as a vector in the first parameter argument (but in the same order). Similarly, the values for
all constants may be included as a vector in the first constant argument (i.e., t1). If simple=TRUE,
then all parameters and constants must be declared individually. The resulting function is somewhat
easier to read when simple=TRUE, but is less general for some applications.

IFAR Chapter
12-Individual Growth.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>, thanks to Gabor Grothendieck for a hint about using
get().

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Campana, S.E. and C.M. Jones. 1992. Analysis of otolith microstructure data. Pages 73-100
In D.K. Stevenson and S.E. Campana, editors. Otolith microstructure examination and analysis.
Canadian Special Publication of Fisheries and Aquatic Sciences 117. [Was (is?) from https://waves-
vagues.dfo-mpo.gc.ca/library-bibliotheque/141734.pdf.]

Fabens, A. 1965. Properties and fitting of the von Bertalanffy growth curve. Growth 29:265-289.

Francis, R.I.C.C. 1988. Are growth parameters estimated from tagging and age-length data compa-
rable? Canadian Journal of Fisheries and Aquatic Sciences, 45:936-942.

Gallucci, V.F. and T.J. Quinn II. 1979. Reparameterizing, fitting, and testing a simple growth model.
Transactions of the American Fisheries Society, 108:14-25.

Garcia-Berthou, E., G. Carmona-Catot, R. Merciai, and D.H. Ogle. A technical note on seasonal
growth models. Reviews in Fish Biology and Fisheries 22:635-640.

Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on
a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal
Society of London. 115:513-583.

https://fishr-core-team.github.io/FSA/articles/Growth_Function_Parameterizations.html
https://fishr-core-team.github.io/FSA/articles/Fitting_Growth_Functions.html
https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

makeGrowthFun 123

Haddon, M., C. Mundy, and D. Tarbath. 2008. Using an inverse-logistic model to describe growth
increments of blacklip abalone (Haliotis rubra) in Tasmania. Fishery Bulletin 106:58-71. [Was
(is?) from https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/2008/1061/haddon.pdf.]

Karkach, A. S. 2006. Trajectories and models of individual growth. Demographic Research 15:347-
400. [Was (is?) from https://www.demographic-research.org/volumes/vol15/12/15-12.pdf.]

Katsanevakis, S. and C.D. Maravelias. 2008. Modeling fish growth: multi-model inference as a
better alternative to a priori using von Bertalanffy equation. Fish and Fisheries 9:178-187.

Mooij, WM., J.M. Van Rooij, and S. Wijnhoven. 1999. Analysis and comparison of fish growth
from small samples of length-at-age data: Detection of sexual dimorphism in Eurasian perch as an
example. Transactions of the American Fisheries Society 128:483-490.

Polacheck, T., J.P. Eveson, and G.M. Laslett. 2004. Increase in growth rates of southern bluefin tuna
(Thunnus maccoyii) over four decades: 1960 to 2000. Canadian Journal of Fisheries and Aquatic
Sciences, 61:307-322.

Quinn, T. J. and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New
York, New York. 542 pages.

Quist, M.C., M.A. Pegg, and D.R. DeVries. 2012. Age and growth. Chapter 15 in A.V. Zale, D.L
Parrish, and T.M. Sutton, editors. Fisheries Techniques, Third Edition. American Fisheries Society,
Bethesda, MD.

Richards, F. J. 1959. A flexible growth function for empirical use. Journal of Experimental Biology
10:290-300.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Tech-
nical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. [Was (is?) from
https://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs94-191-eng.pdf.]

Ricker, W.E. 1979. Growth rates and models. Pages 677-743 In W.S. Hoar, D.J. Randall, and J.R.
Brett, editors. Fish Physiology, Vol. 8: Bioenergetics and Growth. Academic Press, New York, NY.
[Was (is?) from https://books.google.com/books?id=CB 1qu2VbKwQC&pg=PA705&1pg=PA705&dq=Gompertz+fish&sour

Schnute, J. 1981. A versatile growth model with statistically stable parameters. Canadian Journal
of Fisheries and Aquatic Sciences, 38:1128-1140.

Schnute, J.T. and L.J. Richards. 1990. A unified approach to the analysis of fish growth, maturity,
and survivorship data. Canadian Journal of Fisheries and Aquatic Sciences 47:24-40.

Somers, I. F. 1988. On a seasonally oscillating growth function. Fishbyte 6(1):8-11. [Was (is?)
from https://www.fishbase.us/manual/English/fishbaseSeasonal_Growth.htm.]

Tjorve, E. and K. M. C. Tjorve. 2010. A unified approach to the Richards-model family for use in
growth analyses: Why we need only two model forms. Journal of Theoretical Biology 267:417-425.
[Was (is?) from https://www.researchgate.net/profile/Even_Tjorve/publication/46218377_A_unified_approach_to_the_Rich
model_family_for_use_in_growth_analyses_why_we_need_only_two_model_forms/links/54ba83b80cf29e0cb04bd24e.pdf

Tjorve, K. M. C. and E. Tjorve. 2017. The use of Gompertz models in growth analyses, and new
Gompertz-model approach: An addition to the Unified-Richards family. PLOS One. [Was (is?)
from https://doi.org/10.1371/journal.pone.0178691.]

Troynikov, V. S., R. W. Day, and A. M. Leorke. Estimation of seasonal growth parameters using
a stochastic Gompertz model for tagging data. Journal of Shellfish Research 17:833-838. [Was (is?)
from https://www.researchgate.net/profile/Robert_Day2/publication/249340562_Estimation_of_seasonal_growth_paramete:

124 makeGrowthFun

Vaughan, D. S. and T. E. Helser. 1990. Status of the Red Drum stock of the Atlantic coast: Stock
assessment report for 1989. NOAA Technical Memorandum NMFS-SEFC-263, 117 p. [Was (is?)
from https://repository.library.noaa.gov/view/noaa/5927/moaa_5927_DS1.pdf.]

Wang, Y.-G. 1998. An improved Fabens method for estimation of growth parameters in the von
Bertalanffy model with individual asymptotes. Canadian Journal of Fisheries and Aquatic Sciences
55:397-400.

Weisberg, S., G.R. Spangler, and L. S. Richmond. 2010. Mixed effects models for fish growth.
Canadian Journal of Fisheries And Aquatic Sciences 67:269-277.

Winsor, C.P. 1932. The Gompertz curve as a growth curve. Proceedings of the National Academy of
Sciences. 18:1-8. [Was (is?) from https://pmc.ncbi.nlm.nih.gov/articles/PMC1076153/pdf/pnas01729-
0009.pdf.]

See Also

showGrowthFun to create an expression of the equation and findGrowthStarts to develop starting
values for a growth function using the same type and pname/param arguments.

Examples

#===== Create typical von B function, calc length at single then multiple ages
vb <- makeGrowthFun()

vb(t=1,Linf=450,K=0.3,t0=-0.5)

vb(t=1:5,Linf=450,K=0.3,t0=-0.5)

#===== All parameters can be given to first parameter (default), unless simple=TRUE
vb(t=1,Linf=c(450,0.3,-0.5))

vbS <- makeGrowthFun(simple=TRUE)

Not run: vbS(t=1,Linf=c(450,0.3,-0.5)) # will error, parms must be separate
vbS(t=1,Linf=450,K=0.3,t0=-0.5)

#===== Create original von B, first using param, then using pname
vb0 <- makeGrowthFun(param=2)

vb02 <- makeGrowthFun(pname="0Original”)
vbO(t=1:5,Linf=450,K=0.3,L0=25)

vb02(t=1:5,Linf=450,K=0.3,L0=25)

#===== Create the third parameterization of the logistic growth function
and show some details, and demo calculations

logi <- makeGrowthFun(type="logistic",param=3,msg=TRUE)
logi(t=1:10,Linf=450,gninf=0.3,L0=25)

#===== Simple example of comparing several models
vb <- makeGrowthFun(type="von Bertalanffy")

gomp <- makeGrowthFun(type="Gompertz",h param=2)
logi <- makeGrowthFun(type="logistic")

ages <- 0:15

vb1 <- vb(ages,Linf=450,K=0.3,t0=-0.5)
gomp1 <- gomp(ages,Linf=450,gi=0.3,ti=3)
logil <- logi(ages,Linf=450,gninf=0.3,ti=3)

Mirex 125

plot(vbl~ages,type="1",1wd=2,ylim=c(0,450),ylab="Length",xlab="Age")
lines(gomp1~ages,lwd=2,col="red")
lines(logil~ages,lwd=2,col="blue")

#===== Simple example of four cases of Schnute model (note a,b choices)
Schnutel <- makeGrowthFun(type="Schnute"”, case=1)

Schnute2 <- makeGrowthFun(type="Schnute"”, case=2)

Schnute3 <- makeGrowthFun(type="Schnute"”, case=3)

Schnute4 <- makeGrowthFun(type="Schnute"”, case=4)

ages <- seq(0,15,0.1)

s1 <- Schnutel(ages,L1=30,L3=400,a=0.3,b=2,t1=1,t3=15)

s2 <- Schnute2(ages,L1=30,L3=400,a=0.3, t1=1,t3=15)
s3 <- Schnute3(ages,L1=30,L3=400, b=2,t1=1,t3=15)
s4 <- Schnute4(ages,L1=30,L3=400, t1=1,t3=15)

plot(si~ages, type="1",1wd=2,ylim=c(@,450),ylab="Length" f xlab="Age")
lines(s2~ages,lwd=2,col="red")

lines(s3~ages,lwd=2,col="blue")

lines(s4~ages,lwd=2,col="green")

#===== Fitting the 8th parameterization of the von B growth model to data

make von B function

vb8 <- makeGrowthFun(type="von Bertalanffy",6 param=8,msg=TRUE)

get starting values

sv8 <- findGrowthStarts(tl~age,data=SpotVA1,type="von Bertalanffy", 6 param=8,
constvals=c(t1=1,t3=5))

fit function

nls8 <- nls(tl~vb8(age,L1,L2,L3,t1=c(t1=1,t3=5)),data=SpotVAl,start=sv8)

cbind(Est=coef(nls8),confint(nls8))

plot(tl~age,data=SpotVA1,pch=19,col=col2rgbt(”"black”,0.1))

curve(vb8(x,L1=coef(nls8),t1=c(t1=1,t3=5)),col="blue",lwd=3,add=TRUE)

Mirex Mirex concentration, weight, capture year, and species of Lake On-
tario salmon.

Description

Mirex concentration, weight, capture year, and species of Lake Ontario Coho and Chinook salmon.

Format
A data frame with 122 observations on the following 4 variables.
year anumeric vector of capture years
weight a numeric vector of salmon weights (kg)

mirex a numeric vector of mirex concentration in the salmon tissue (mg/kg)

species a factor with levels chinook and coho

126 Mmethods

Details

The year variable should be converted to a factor as shown in the example.

Topic(s)

¢ Linear models
¢ Other

Source

From (actual data) Makarewicz, J.C., E.Damaske, T.W. Lewis, and M. Merner. 2003. Trend analysis
reveals a recent reduction in mirex concentrations in Coho (Oncorhynchus kisutch) and Chinook (O.
tshawytscha) Salmon from Lake Ontario. Environmental Science and Technology, 37:1521-1527.
CSV file

Examples

Mirex$year <- factor(Mirex$year)
Iml <- Im(mirex~weight*year*species,data=Mirex)
anova(lm1)

Mmethods Estimate natural mortality from a variety of empirical methods.

Description

Several methods can be used to estimated natural mortality (M) from other types of data, including
parameters from the von Bertalanffy growth equation, maximum age, and temperature. These re-
lationships have been developed from meta-analyses of a large number of populations. Several of
these methods are implemented in this function.

Usage
Mmethods(method = c("all”, "tmax", "K", "Hoenig", "Pauly”, "FAMS"))

metaM(

method = Mmethods(),
tmax = NULL,
K = NULL,
Linf = NULL,
t@ = NULL,

b = NULL,

L = NULL,
Temp = NULL,
t50 = NULL,
Winf = NULL,

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/Mirex.csv

Mmethods 127

PS = NULL,
verbose = TRUE
)
Arguments

method A string that indicates what grouping of methods to return (defaults to all meth-
ods) in Mmethods() or which methods or equations to use in metaM(). See
details.

tmax The maximum age for the population of fish.

K The Brody growth coefficient from the fit of the von Bertalanffy growth function.

Linf The asymptotic mean length (cm) from the fit of the von Bertalanffy growth
function.

to The x-intercept from the fit of the von Bertalanffy growth function.

b The exponent from the weight-length relationship (slope from the logW-logL.
relationship).

L The body length of the fish (cm).

Temp The temperature experienced by the fish (C).

t50 The age (time) when half the fish in the population are mature.

Winf The asymptotic mean weight (g) from the fit of the von Bertalanffy growth func-
tion.

PS The proportion of the population that survive to tmax. Should usually be around
0.01 or 0.05.

verbose Logical for whether to include method name and given inputs in resultant data.frame.
Defaults to TRUE.

Details

One of several methods is chosen with method. The available methods can be seen with Mmethods ()
and are listed below with a brief description of where the equation came from. The sources (listed
below) should be consulted for more specific information.

* method="HoenigNLS": The “modified Hoenig equation derived with a non-linear model” as
described in Then et al. (2015) on the third line of Table 3. This method was the preferred
method suggested by Then et al. (2015). Requires only tmax.

* method="PaulyLNoT": The “modified Pauly length equation” as described on the sixth line
of Table 3 in Then et al. (2015). Then ef al. (2015) suggested that this is the preferred method
if maximum age (tmax) information was not available. Requires K and Linf.

* method="PaulyL": The “Pauly (1980) equation using fish lengths” from his equation 11.
This is the most commonly used method in the literature. Note that Pauly used common loga-
rithms as used here but the model is often presented in other sources with natural logarithms.
Requires K, Linf, and T.

* method="PaulyW": The “Pauly (1980) equation for weights” from his equation 10. Requires
K, Winf, and T.

128

Mmethods

method="Hoeing0", method="HoeingOF", method="HoeingOM", method="HoeingOC": The
original “Hoenig (1983) composite”, “fish”, “mollusc”, and “cetacean” (fit with OLS) equa-
tions from the second column on page 899 of Hoenig (1983). Requires only tmax.
method="Hoeing02", method="Hoeing02F", method="Hoeing02M", method="Hoeing02C":
The original “Hoenig (1983) composite”, “fish”, “mollusc”, and “cetacean” (fit with Geomet-
ric Mean Regression) equations from the second column on page 537 of Kenchington (2014).
Requires only tmax.

method="HoeniglLM": The “modified Hoenig equation derived with a linear model” as de-
scribed in Then et al. (2015) on the second line of Table 3. Requires only tmax.
method="HewittHoenig": The “Hewitt and Hoenig (2005) equation” from their equation 8.
Requires only tmax.

method="tmax1": The “one-parameter tmax equation” from the first line of Table 3 in Then
et al. (2015). Requires only tmax.

method="HamelCope": The equation 7 from Hamel and Cope (2022). Requires only tmax.
method="K1": The “one-parameter K equation” from the fourth line of Table 3 in Then et al.
(2015). Requires only K.

method="K2": The “two-parameter K equation” from the fifth line of Table 3 in Then ef al.
(2015). Requires only K.

method="JensenK1": The “Jensen (1996) one-parameter K equation”. Requires only K.
method="JensenK2": The “Jensen (2001) two-parameter K equation” from their equation 8.
Requires only K.

method="Gislason": The “Gislason et al. (2010) equation” from their equation 2. Requires
K, Linf, and L.

method="AlversonCarney": The “Alverson and Carney (1975) equation” as given in equa-
tion 10 of Zhang and Megrey (2006). Requires tmax and K.

method="Charnov": The “Charnov et al. (2013) equation” as given in the second column of
page 545 of Kenchington (2014). Requires K, Linf, and L.

method="ZhangMegreyD", method="ZhangMegreyP": The “Zhang and Megrey (2006) equa-
tion” as given in their equation 8 but modified for demersal or pelagic fish. Thus, the user
must choose the fish type with group. Requires tmax, K, t@, t50, and b.
method="RikhterEfanov1": The “Rikhter and Efanov (1976) equation (#2)” as given in the
second column of page 541 of Kenchington (2014) and in Table 6.4 of Miranda and Bettoli
(2007). Requires only t50.

method="RikhterEfanov2": The “Rikhter and Efanov (1976) equation (#1)” as given in the
first column of page 541 of Kenchington (2014). Requires t59, K, t@, and b.
method="QuinnDeriso”: The “Quinn & Derison (1999)” equation as given in the FAMS
manual as equation 4:18. Requires PS and tmax. Included only for use with rFAMS package.
method="ChenWatanabe": The “Chen & Watanabe (1989)” equation as given in the FAMS
manual as equation 4:24. As suggested in FAMS manual used tmax for final time and 1 as
initial time. Requires tmax, K, and t@. Included only for use with rFAMS package.
method="PetersonWroblewski": The ‘“Peterson & Wroblewski (1984)” equation as given in
the FAMS manual as equation 4:22. As suggested in FAMS manual used Winf for weight.
Requires Winf. Included only for use with rFAMS package.

Conditional mortality (cm) is estimated from instantaneous natural mortality (M) with 1-exp(-M).
It is returned with M here simply as a courtesy for those using the rFAMS package.

Mmethods 129

Value

Mmethods returns a character vector with a list of methods.

metaM returns a data.frame with the following items:

* M: The estimated natural mortality rate.

» cm: The estimated conditional natural mortality rate (computed directly from M).
* method: The name for the method within the function (as given in method).

* name: A more descriptive name for the method.

* givens: A string that contains the input values required by the method to estimate M.

Testing

Kenchington (2014) provided life history parameters for several stocks and used many models

to estimate M. I checked the calculations for the "PaulyL”, "PaulyW"”, "Hoenig0", "HoenigOF",
"Hoenig02", "Hoenig02F", "JensenK1", "Gislason"”, "AlversonCarney”, "Charnov”, "ZhangMegrey",
"RikhterEfanov1”, and "RikhterEfanov2” methods for three stocks. All results perfectly matched
Kenchington’s results for Chesapeake Bay Anchovy and Rio Formosa Seahorse. For the Norwegian

Fjord Lanternfish, all results perfectly matched Kenchington’s results except for "HoenigOF" and
"HoenigO2F".

Results for the Rio Formosa Seahorse data were also tested against results from M. empirical from
fishmethods for the "PaulyL"”, "PaulyW”, "Hoenig0", "HoenigOF", "Gislason", and "AlversonCarney"
methods (the only methods in common between the two packages). All results matched perfectly.

IFAR Chapter
11-Mortality.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail . com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Alverson, D.L. and M.J. Carney. 1975. A graphic review of the growth and decay of population
cohorts. Journal du Conseil International pour I’Exploration de la Mer. 36:133-143.

Chen, S. and S. Watanabe. 1989. Age dependence of natural mortality coefficient in fish population
dynamics. Nippon Suisan Gakkaishi 55:205-208.

Charnov, E.L., H. Gislason, and J.G. Pope. 2013. Evolutionary assembly rules for fish life histories.
Fish and Fisheries. 14:213-224.

Gislason, H., N. Daan, J.C. Rice, and J.G. Pope. 2010. Size, growth, temperature and the natural
mortality of marine fish. Fish and Fisheries 11:149-158.

Hamel, O. and J. M. Cope. 2022. Development and considerations for application of a longevity-
based prior for the natural mortality rate. Fisheries Research 256:106477 [Was (is? from https://www.researchgate.net/public:
based_prior_for_the_natural_mortality_rate).]

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

130 Mmethods

Hewitt, D.A. and J.M. Hoenig. 2005. Comparison of two approaches for estimating natural mortal-
ity based on longevity. Fishery Bulletin. 103:433-437. [Was (is?) from http://fishbull.noaa.gov/1032/hewitt.pdf.]

Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin.
82:898-903. [Was (is?) from http://www.afsc.noaa.gov/REFM/age/Docs/Hoenig_EmpiricalUseOfLongevityData.pdf.]

Jensen, A.L. 1996. Beverton and Holt life history invariants result from optimal trade-off of repro-
duction and survival. Canadian Journal of Fisheries and Aquatic Sciences. 53:820-822. [Was (is?)
from .]

Jensen, A.L. 2001. Comparison of theoretical derivations, simple linear regressions, multiple linear
regression and principal components for analysis of fish mortality, growth and environmental tem-
perature data. Environometrics. 12:591-598. [Was (is?) from http://deepblue.lib.umich.edu/bitstream/handle/2027.42/35236

Kenchington, T.J. 2014. Natural mortality estimators for information-limited fisheries. Fish and
Fisheries. 14:533-562.

Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean
environmental temperature in 175 fish stocks. Journal du Conseil International pour I’Exploration
de laMer. 39:175-192. [Was (is?) from http://innri.unuftp.is/pauly/On%20the %20interrelationships %20betwe.pdf.]

Peterson, I. and J.S. Wroblewski. 1984. Mortality rate of fishes in the pelagic ecosystem. Canadian
Journal of Fisheries and Aquatic Sciences. 41:1117-1120.

Quinn III, T.J. and R.B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press, New
York.

Rikhter, V.A., and V.N. Efanov. 1976. On one of the approaches for estimating natural mortality in
fish populations (in Russian). ICNAF Research Document 76/IV/8, 12pp.

Slipke, J.W. and M.J. Maceina. 2013. Fisheries Analysis and Modeling Simulator (FAMS 1.64).
American Fisheries Society.

Then, A.Y., .M. Hoenig, N.G. Hall, and D.A. Hewitt. 2015. Evaluating the predictive performance
of empirical estimators of natural mortality rate using information on over 200 fish species. ICES
Journal of Marine Science. 72:82-92.

Zhang, C-I and B.A. Megrey. 2006. A revised Alverson and Carney model for estimating the
instantaneous rate of natural mortality. Transactions of the American Fisheries Society. 135-620-
633. [Was (is?) from http://www.pmel.noaa.gov/foci/publications/2006/zhan0531.pdf.]

See Also

See M.empirical in fishmethods for similar functionality and the "Natural Mortality Tool" Shiny
app on-line.

Examples

List names for available methods
Mmethods ()
Mmethods ("tmax")

Simple Examples

metaM("HamelCope”, tmax=20)
metaM("HoenigNLS", tmax=20)
metaM("HoenigNLS", tmax=20,verbose=FALSE)

mrClosed

Example Patagonian Sprat ... from Table 2 in Cerna et al. (2014)
http://www.scielo.cl/pdf/lajar/v42n3/art15.pdf
Temp <- 11

Linf <- 17.71

K <-0.78

t0 <- -0.46

tmax <- t@+3/K

t50 <- t0-(1/K)*log(1-13.5/Linf)
metaM(”"RikhterEfanov1”,t50=t50)
metaM("PaulyL"”,K=K,Linf=Linf, Temp=Temp)
metaM("HoenigNLS", tmax=tmax)

metaM("Hoenig0", tmax=tmax)

metaM("HewittHoenig", tmax=tmax)
metaM(”AlversonCarney” K=K, tmax=tmax)

Example of multiple calculations
metaM(c("RikhterEfanov1”,"PaulyL"”, "Hoenig0Q", "HewittHoenig", "AlversonCarney"),
K=K,Linf=Linf, Temp=Temp, tmax=tmax, t50=t50)

Example of multiple methods using Mmethods
select some methods

metaM(Mmethods () [-c(16,21,23:25,27:30)1,K=K,Linf=Linf, Temp=Temp, tmax=tmax, t50=t50)

select just the Hoenig methods
metaM(Mmethods("Hoenig"),K=K,Linf=Linf, Temp=Temp, tmax=tmax, t50=t50)

Example of computing an average M

select multiple models used in FAMS (example only, these are not best models)

(res <- metaM(Mmethods("FAMS"), tmax=tmax,K=K,Linf=Linf, t0=t0,
Temp=Temp,PS=0.01,Winf=30))

(meanM <- mean(res$M))

(meancm <- mean(res$cm))

131

mrClosed
recapture data.

Estimate initial population size for single or multiple census mark-

Description

Estimates of the initial population size, along with associated confidence intervals, are constructed
from single or multiple census mark-recapture data using a variety of methods. For single census
data, the initial population size (N) is estimated from the number of marked animals from a first
sample (M), number of captured animals in a second sample (n), and the number of recaptured
marked animals in the second sample (m) using either the ‘naive’ Petersen method or Chapman,
Ricker, or Bailey modifications of the Petersen method. Single census data can also be separated by
group (e.g., size class) to estimate the initial population size by class and for the overall population
size. For multiple census data, the initial population size is estimated from the number of captured
animals (n), number of recaptured marked animals (m), the number of marked animals that are
marked and returned to the population (R), or the number of extant marked animals prior to the

132

mrClosed

sample (M) on each of several samples using either the Schnabel (1938) or Schumacher-Eschmeyer

(1943) method.
Usage

mrClosed(
M = NULL,
n = NULL,
m = NULL,
R = NULL,
method = c("Petersen”, "Chapman”, "Ricker"”, "Bailey"”, "Schnabel”,

"SchumacherEschmeyer"),

labels = NULL,
chapman.mod = TRUE
)

S3 method for class 'mrClosedl’
summary (
object,
digits = 0,
incl.SE = FALSE,
incl.all = TRUE,
verbose = FALSE,
)
S3 method for class 'mrClosedl’
confint(
object,
parm = NULL,
level = conf.level,
conf.level = 0.95,
digits = 0,
type = c("suggested”, "binomial”, "hypergeometric”, "normal”, "Poisson"),
bin.type = c("wilson”, "exact”, "asymptotic"),
poi.type = c("exact"”, "daly", "byar"”, "asymptotic"),

incl.all = TRUE,
verbose = FALSE,

)

S3 method for class

'mrClosed?2’

summary(object, digits = @, verbose = FALSE,

S3 method for class
confint(

object,

parm = NULL,

level = conf.level,

'mrClosed?2’

)

mrClosed

conf.level = 0.95,

digits = 0,

type = c("suggested”, "normal”, "Poisson"),

poi.type = c("exact”, "daly", "byar"”, "asymptotic"),

133

verbose = FALSE,

)

S3 method for class 'mrClosed2’

plot(
X,
pch = 19,

col.pt = "black”,

xlab = "Marked in Population”,

ylab = "Prop. Recaptures in Sample”,
loess = FALSE,

1ty.loess

lwd.loess =

col.loess

trans.loess
span = 0.9,

Arguments

M

method

labels

chapman.mod

object, x

=2,
T,
"gray20",
=10,

A numeric representing the number of marked fish from the first sample (single-
census), an object from capHistSum() (single- or multiple-census), or numeric
vector of marked fish prior to ith samples (multiple-census).

A numeric representing the number of captured fish in the second sample (single-
census) or numeric vector of captured fish in ith sample (multiple-census).

A numeric representing the number of recaptured (marked) fish in the second
sample (single-census) or numeric vector of recaptured (marked) fish in ith sam-
ple (multiple-census).

A numeric vector representing the number of marked fish returned to the popu-
lation (multiple-census). Note that several references use the number of “new”
marks returned to the population rather than the “total” number of marks re-
turned to the population that is used here.

A single string that identifies the type of calculation method to use in the main
function.

A character or character vector used to label the rows of the resulting output
matrix when using a single census method separated by groups. Must be the
same length as M, n, and m. Defaults to upper-case letters if no values are given.

A logical that represents whether the Chapman modification should be used
(=TRUE, default) or not (=FALSE) when performing the Schnabel multiple census
method.

An mrClosed1 or mrClosed? object.

134

digits

incl.SE

incl.all

verbose

parm
level

conf.level

type

bin.type

poi.type

pch
col.pt
xlab
ylab

loess

1ty.loess
lwd.loess
col.loess

trans.loess

span

Details

mrClosed

The number of decimal digits to round the population estimates to. If incl.SE=TRUE
then SE will be rounded to one more decimal place then given in digits.

A logical that indicates whether the results should include the calculated SE
value. See details.

A logical that indicates whether an overall population estimate should be com-
puted when using a single census method that has been separated into sub-
groups. See details.

A logical that indicates whether a reminder of the inputted values and what type
of method was used should be printed with the summary and confidence interval
results.

Additional arguments for methods.

Not used here (included in confint generic).

Same as conf. level but used for compatibility with confint generic.

A numeric representing the level of confidence to use for confidence intervals.

A single string that identifies the distribution to use when constructing confi-
dence intervals in confint. See details.

A string that identifies the method used to construct binomial confidence inter-
vals (default is "wilson"). This is only used if type="binomial” in confint.
See details of binCI.

A string that identifies the method used to construct Poisson confidence intervals
(default is "exact"”). This is only used if type="Poisson"” in confint. See
details of poiCI.

A numeric used to indicate the type of plotting character.
a string used to indicate the color of the plotted points.
A label for the x-axis.

A label for the y-axis.

A logical that indicates if a loess smoother line (and approximate 95% confi-
dence band) is fit to and shown on plot.

A single numeric used to indicate the type of line used for the loess line.
A single numeric used to indicate the line width of the loess line.
A single string used to indicate the color of the loess line.

A single numeric that indicates how transparent the loess band should be (larger
numbers are more transparent).

A single numeric that controls the degree of smoothing. Values closer to 1 are
more smooth.

For single census data, the following methods can be used:

* method="Petersen”. The ‘naive’ Petersen as computed using equation 2.1 from Krebs (1989).

* method="Chapman". The Chapman (1951) modification of the Petersen method as computed
using equation 2.2 from Krebs (1989).

mrClosed 135

* method="Ricker"”. The Ricker (1975) modification of the Petersen as computed using equa-
tion 3.7 from Ricker (1975). This is basically the same method="Chapman” except that Ricker
(1975) did NOT subtract a 1 from the answer in the final step. Thus, the estimate from
method="Chapman” will always be one less than the estimate from method="Ricker".

* method="Bailey”. The Bailey (1951, 1952) modification of the Petersen as computed using
equation 2.3 from Krebs (1989).

If M contains an object from capHistSum and one of Petersen, Chapman, Ricker, or Bailey methods
has been selected with method= then n= and m= can be left missing or will be ignored and the
needed data will be extracted from the sum portion of the CapHist class object. If the data were not
summarized with capHistSum then all of M=, n=, and m= must be supplied by the user.

The population estimate (as computed with the formulas noted in the table above) is extracted
with summary. In addition, the standard error of the population estimate (SE) can be extracted by
including incl.SE=TRUE. The SE is from equation 3.6 (p. 78) in Ricker (1975) for the Petersen
method, from p. 60 (near bottom) of Seber (2002) for the Chapman method, from p. 61 (middle)
of Seber (2002) (and as noted on p. 79 of Ricker (1975)) for the Bailey method, and from equation
3.8 (p. 78) in Ricker (1975) for the Ricker method.

Confidence intervals for the initial population size from the single census methods can be con-
structed using four different distributions as chosen with type=in confint. If type="suggested”
then the type of confidence interval suggested by the rules on p. 18 in Krebs (1989) are used. The
general methods for constructing confidence intervals for N are described below

* type="hypergeometric”. Uses hyperCI. This is experimental at this point.

* type="binomial”. Use binCI to construct a confidence interval for m/n (Petersen method)
or (m+1)/(n+1) (Chapman, Bailey, Ricker methods), divides M or (M+1) by the CI endpoints,
and subtract 1 (for the Chapman method).

e type="Poisson"”. Use poiCI to construct a confidence interval for m (Petersen method) or
(m+1) (Chapman, Bailey, Ricker methods), substitute the CI endpoints into the appropriate
equation for estimating N, and subtract 1 (for the Chapman method).

* type="normal”. Used equation 2.4 (p.20) from Krebs (2002) for the Petersen method. For
the other methods, used N+/- Z(0.975)*SE, where the SE was computed as noted above.

If incl.all=TRUE in summary and population estimates have been constructed for multiple sub-
groups then an overall population estimate is included by summing the population estimates for the
multiple sub-groups. If incl.SE=TRUE, then an overall SE is computed by taking the square root of
the summed VARIANCES for the multiple sub-groups.

For multiple census data, the following methods can be declared for use with the method= argument:

* method="Schnabel”. The Schnabel (1938) method as computed with equation 3.15 from
Ricker (1975).

» method="SchumacherEschmeyer"”. The Schumacher and Eschmeyer (1943) method as com-
puted with equation 3.12 from Ricker (1975) eqn 3.12.

If M contains an object from capHistSum and the Schnabel or Schumacher-Eschmeyer methods has
been chosen then n, m and R can be left missing or will be ignored. In this case, the needed data is
extracted from the sum portion of the CapHist class object. Otherwise, the user must supply vectors
of results in n, m, and R or M.

136 mrClosed

The population estimate for each method is extracted with summary. Standard errors for the pop-
ulation estimate can NOT be computed for the Schnabel or Schumacher-Eschmeyer methods (a
warning will be produced if incl.SE=TRUE is used).

Confidence intervals for the initial population size using multiple census methods can be constructed
using the normal or Poisson distributions for the Schnabel method or the normal distribution for
the Schumacher-Eschmeyer method as chosen with type=. If type="suggested” then the type
of confidence interval suggested by the rule on p. 32 of Krebs (1989) is used (for the Schnabel
method). If type="Poisson” for the Schnabel method then a confidence interval for the sum of m
is computed with poiCI and the end points are substituted into the Schnabel equation to produce a
CI for the population size. If type="normal” for the Schnabel method then the standard error for
the inverse of the population estimate is computed as the square root of equation 2.11 from Krebs
(1989) or equation 3.16 from Ricker (1975). The standard error for the Schumacher-Eschmeyer
method is for the inverse of the population estimate and is computed with equation 2.14 from Krebs
(1989) [Note that the divisor in Krebs (1989) is different than the divisor in equation 3.12 in Ricker
(1975), but is consistent with equation 4.17 in Seber (2002).] The confidence interval for the inverse
population estimate is constructed from the inverse population estimate plus/minus a t critical value
times the standard error for the inverse population estimate. The t critical value uses the number
of samples minus 1 for the Schnabel method and the number of samples minus 2 when for the
Schumacher-Eschmeyer method according to p. 32 of Krebs (1989) (note that this is different than
what Ricker (1975) does). Finally, the confidence interval for the population estimate is obtained by
inverting the confidence interval for the inverse population estimate. Note that confidence intervals
for the population size when type="normal” may contain negative values (for the upper value)
when the population estimate is relatively large and the number of samples is small (say, three)
because the intervals are originally constructed on the inverted population estimate and they use the
t-distribution.

The plot can be used to identify assumption violations in the Schnabel and Schumacher-Eschmeyer
methods (an error will be returned if used with any of the other methods). If the assumptions ARE
met then the plot of the proportion of marked fish in a sample versus the cumulative number of
marked fish should look linear. A loess line (with approximate 95% confidence bands) can be
added to aid interpretation with loess=TRUE. Note, however, that adding the loess line may return
a number of warning or produce a non-informative if the number of samples is small (<8).

Value
A list with the following items

* M The number of marked fish from the first sample that was provided.

* n The number of captured fish in the second sample that was provided.

* m The number of recaptured (marked) fish in the second sample that was provided.
* M1 The adjusted (depending on type) number of marked fish from the first sample.
* nl The adjusted (depending on type) number of captured fish in the second sample.

* ml The adjusted (depending on type) number of recaptured (marked) fish in the second sam-
ple.

* cf A correction factor for the population estimate that depends on type.
* method The type of method used (provided by the user).
* methodLbl A label for the type of method used.

mrClosed 137

* N The estimated initial population size.

* labels Labels for the rows of summary matrix.

Testing

The results from the single census methods have had the following checks. The population estimates
for all methods match reputable sources. The SE for the Chapman and Bailey methods match the
results from mrN. single in fishmethods, The CI for the Petersen, Chapman, and Bailey methods
partially match (are within 1

The results for the multiple census methods have had the following checks. The population esti-
mates for both methods match reputable sources. The intermediate calculations for both methods
match those in Krebs (1989). The confidence interval for the Schnabel method using the Poisson
distribution does NOT match Krebs (1989). This appears to be a difference in the use poiCI here
versus distributional tables in Krebs (i.e., the difference appears to be completely in the critical
values from the Poisson distribution). The confidence interval for the Schnabel method using the
normal or the Poisson distribution do NOT match Ricker (1975), but there is not enough informa-
tion in Ricker to determine why (it is likely due to numerical differences on the inverse scale). The
confidence interval for the Schumacher-Eschmeyer method do match Krebs (1989) but not Ricker
(1975). The Ricker result may be due to different df as noted above.

IFAR Chapter

9-Abundance from Capture-Recapture Data.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.
Krebs, C.J. 1989. Ecological Methodology. Addison-Welsey Educational Publishing.
Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Tech-

nical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. [Was (is?) from
http://www.dfo-mpo.gc.ca/Library/1485.pdf.]

Seber, G.A.F. 2002. The Estimation of Animal Abundance and Related Parameters. Edward Arnold,
second edition.

Schnabel, Z.E. 1938. The estimation of the total fish population of a lake. American Mathematician
Monthly, 45:348-352.

Schumacher, F.X. and R.W. Eschmeyer. 1943. The estimation of fish populations in lakes and
ponds. Journal of the Tennessee Academy of Sciences, 18:228-249.

See Also

See capHistSum for generating input data from capture histories. See poiCI, binCI, and hyperCI
for specifics on functions used in confidence interval construction. See mrOpen for handling mark-
recapture data in an open population. See SunfishINin FSAdata for an example to test matching of
results with Ricker (1975)” See mrN. single and schnabel in fishmethods for similar functionality.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

138 mrClosed

Examples

Single census with no sub-groups
Petersen estimate -- the default
mr1 <- mrClosed(346,184,49)

summary (mr1)
summary (mr1, verbose=TRUE)
summary(mr1,incl.SE=TRUE)
summary(mri1,incl.SE=TRUE,digits=1)
confint(mr1)
confint(mr1,verbose=TRUE)
confint(mrl, type="hypergeometric")

Chapman modification of the Petersen estimate
mr2 <- mrClosed(346,184,49,method="Chapman")
summary (mr2,incl.SE=TRUE)

summary (mr2,incl.SE=TRUE, verbose=TRUE)

Single census, using capHistSum() results
data in capture history format
str(BluegillJL)

ch1l <- capHistSum(BluegillJL)

mr3 <- mrClosed(chl)

summary(mr3, verbose=TRUE)
confint(mr3,verbose=TRUE)

Single census with sub-groups

marked <- ¢(93,35,72,16,46,20)

captured <- c¢(103,30,73,17,39,18)

recaps <- ¢(20,23,52,15,35,16)

1lbls <- c("YOY","Juvenile”,"Stock”,"Quality”,"Preferred”, "Memorable")
mr4 <- mrClosed(marked,captured, recaps,method="Ricker"”, labels=1bls)
summary (mr4)

summary (mr4,incl.SE=TRUE)

summary (mr4,incl.SE=TRUE, verbose=TRUE)

summary(mr4,incl.SE=TRUE, incl.all=FALSE, verbose=TRUE)

confint(mr4)

confint(mr4,verbose=TRUE)

confint(mr4,incl.all=FALSE, verbose=TRUE)

Multiple Census

Data in summarized form ... Schnabel method

mr5 <- with(PikeNY,mrClosed(n=n,m=m,R=R,method="Schnabel”))
plot(mr5)

plot(mr5,loess=TRUE)

summary (mr5)

summary (mr5, verbose=TRUE)

confint(mr5)

confint(mr5, verbose=TRUE)

Schumacher-Eschmeyer method
mr6 <- with(PikeNY,mrClosed(n=n,m=m,R=R,method="Schumacher"))
summary (mré)

nlsBoot

confint(mré)

Capture history data summarized by capHistSum()

ignore first column of ID numbers

ch2 <- capHistSum(PikeNYPartiall,cols2ignore="id")

Schnabel method

mr7 <- mrClosed(ch2,method="Schnabel”)

plot(mr7)
summary(mr7)
confint(mr7)

139

nlsBoot

Associated S3 methods for nlsBoot from nistools.

Description

Provides S3 methods to construct non-parametric bootstrap confidence intervals and hypothesis
tests for parameter values and predicted values of the response variable for a n1sBoot object from
the nlstools package.

Usage

S3 method for class 'nlsBoot'
confint(

)

object,

parm = NULL,

level = conf.level,
conf.level = 0.95,
plot = FALSE,
err.col = "black”,
err.lwd = 2,

rows = NULL,

cols = NULL,

S3 method for class 'nlsBoot'

predict(object, FUN, conf.level = 0.95, digits

htest(object, ...)

S3 method for class 'nlsBoot'
htest(

object,
parm = NULL,
bo = 0,

= NULL,

.2

140 nlsBoot

alt = c("two.sided”, "less", "greater"),
plot = FALSE,
)
Arguments

object An object saved from nlsBoot ().

parm An integer that indicates which parameter to compute the confidence interval or
hypothesis test for. The confidence interval Will be computed for all parameters
if NULL.

level Same as conf. level. Used for compatibility with the main confint.

conf.level A level of confidence as a proportion.

plot A logical that indicates whether a plot should be constructed. If confint, then a
histogram of the parm parameters from the bootstrap samples with error bars that
illustrate the bootstrapped confidence intervals will be constructed. If htest,
then a histogram of the parm parameters with a vertical lines illustrating the
bovalue will be constructed.

err.col A single numeric or character that identifies the color for the error bars on the
plot.

err.lwd A single numeric that identifies the line width for the error bars on the plot.

rows A numeric that contains the number of rows to use on the graphic.

cols A numeric that contains the number of columns to use on the graphic.
Additional arguments to functions.

FUN The function to be applied for the prediction. See the examples.

digits A single numeric that indicates the number of digits for the result.

bo The null hypothesized parameter value.

alt A string that identifies the “direction” of the alternative hypothesis. See details.

Details

confint finds the two quantiles that have the proportion (1-conf. level)/2 of the bootstrapped pa-
rameter estimates below and above. This is an approximate 100conf. level% confidence interval.

In htest the “direction” of the alternative hypothesis is identified by a string in the alt= argument.
The strings may be "less” for a “less than” alternative, "greater” for a “greater than” alternative,
or "two.sided" for a “not equals” alternative (the DEFAULT). In the one-tailed alternatives the p-
value is the proportion of bootstrapped parameter estimates in object$coefboot that are extreme
of the null hypothesized parameter value in bo. In the two-tailed alternative the p-value is twice the
smallest of the proportion of bootstrapped parameter estimates above or below the null hypothesized
parameter value in bo.

In predict, a user-supplied function is applied to each row of the coefBoot object in a nl1sBoot
object and then finds the median and the two quantiles that have the proportion (1-conf.level)/2 of
the bootstrapped predictions below and above. The median is returned as the predicted value and the
quantiles are returned as an approximate 100conf . level% confidence interval for that prediction.

nlsTracePlot 141

Value

confint returns a matrix with as many rows as columns (i.e., parameter estimates) in the object$coefboot
data frame and two columns of the quantiles that correspond to the approximate confidence interval.

htest returns a matrix with two columns. The first column contains the hypothesized value sent to
this function and the second column is the corresponding p-value.

predict returns a matrix with one row and three columns, with the first column holding the pre-
dicted value (i.e., the median prediction) and the last two columns holding the approximate confi-
dence interval.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

See Also

Boot and related methods in car and summary.nlsBoot in nlstools.

Examples

fnx <- function(days,B1,B2,B3) {
if (length(B1) > 1) {
B2 <- B1[2]
B3 <- B1[3]
B1 <- B1[1]
3
B1/(1+exp(B2+B3*days))
3
nl1l <- nls(cells~fnx(days,B1,B2,B3),data=Ecoli,
start=1ist(B1=6,B2=7.2,B3=-1.45))
if (require(nlstools)) {
nl1.bootn <- nlstools::nlsBoot(nll,niter=99) # too few to be useful
confint(nl1.bootn,"B1")
confint(nll.bootn,c(2,3))
confint(nll.bootn,conf.level=0.90)
confint(nl1.bootn,plot=TRUE)
predict(nll.bootn, fnx,days=3)
predict(nll.bootn, fnx,days=1:3)
htest(nll.bootn,1,bo=6,alt="1ess")

nlsTracePlot Adds model fits from nls iterations to active plot.

Description

Adds model fits from iterations of the nls algorithm as returned when trace=TRUE. Useful for
diagnosing model fitting problems or issues associated with starting values.

142

Usage

nlsTracePlot(
object,
fun,
from = NULL,
= NULL,
= 199

Q_

col NULL,

nlsTracePlot

rev.col = FALSE,
legend = "topright”,
cex.leg = 0.9,

box.lty.leg =
add = TRUE

Arguments

object

fun

from, to

1wd

col

rev.col

legend

cex.leg

box.1lty.leg

add

Details

Nonlinear models

An object saved from nls or from capture.output using try with nls. See
details.

A function that represents the model being fit in nls. This must take the x-axis
variable as the first argument and model parameters as a vector in the second
argument. See details.

The range over which the function will be plotted. Defaults to range of the x-axis
of the active plot.

The number of value at which to evaluate the function for plotting (i.e., the
number of values from from to to). Larger values make smoother lines.

A numeric used to indicate the line width of the fitted line.

A single character string that is a palette from hcl.pals or a vector of character
strings containing colors for the fitted lines at each trace.

A logical that indicates that the order of colors for plotting the lines should be
reversed.

Controls use and placement of the legend. See details.

A single numeric value that represents the character expansion value for the
legend. Ignored if legend=FALSE.

A single numeric values that indicates the type of line to use for the box around
the legend. The default is to not plot a box.

A logical indicating whether the lines should be added to the existing plot (de-
faults to =TRUE).

fit with the nls function start with starting values for model parameters and

iteratively search for other model parameters that continuously reduce the residual sum-of-squares
(RSS) until some pre-determined criterion suggest that the RSS cannot be (substantially) further

nlsTracePlot 143

reduced. With good starting values and well-behaved data, the minimum RSS may be found in a
few (<10) iterations. However, poor starting values or poorly behaved data may lead to a prolonged
and possibly failed search. An understanding of the iterations in a prolonged or failed search may
help identify the failure and lead to choices that may result in a successful search. The trace=TRUE
argument of nls allows one to see the values at each iterative step. The function documented here
plots the “trace” results at each iteration on a previously existing plot of the data. This creates a
visual of the iterative process.

The object argument may be an object saved from a successful run of nls. See the examples with
SpotVA1 and CodNorwegion.

However, if nls fails to converge to a solution then no useful object is returned. In this case,
trace=TRUE must be added to the failed nls call. The call is then wrapped in try to work-around
the failed convergence error. This is also wrapped in capture.output to capture the “trace” results.
This is then saved to an object that which can then be the object of the function documented here.
This process is illustrated with the example using BSkateGB.

The function in fun is used to make predictions given the model parameter values at each step of
the iteration. This function must accept the explanatory/independent variable as its first argument
and values for all model parameters in a vector as its second argument. These types of functions
are returned by vbFuns, GompertzFuns, logisticFuns, and RichardsFuns for common growth
models and srFuns for common stock-recruitment models. See the examples.

Value

A matrix with the residual sum-of-squares in the first column and parameter estimates in the re-
maining columns for each iteration (rows) of nls as provided when trace=TRUE.

Note

The position of the “legend” can be controlled in three ways. First, if legend=TRUE, then the R
console is suspended until the user places the legend on the plot by clicking on the point where the
upper-left corner of the legend should appear. Second, 1legend= can be set to one of "bottomright”,
"bottom”, "bottomleft”, "left”, "topleft”, "top”, "topright”, "right"” and "center”. In
this case, the legend will be placed inside the plot frame at the given location. Finally, legend=
can be set to a vector of length two which identifies the plot coordinates for the upper-left corner of
where the legend should be placed. A legend will not be drawn if 1legend=FALSE or legend=NULL.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail . com>

Examples

Examples following a successful fit

vb1 <- vbFuns()

fitl <- nls(tl~vb1(age,Linf,K,t0),data=SpotVAl,start=list(Linf=12,K=0.3,t0=0))
plot(tl~age,data=SpotVA1,pch=21,bg="gray40")
nlsTracePlot(fit1,vb1,legend="bottomright")

r1 <- srFuns("Ricker")
fitSR1 <- nls(log(recruits)~log(ri(stock,a,b)),data=CodNorwegian,start=1ist(a=3,b=0.03))

144

peek

plot(recruits~stock,data=CodNorwegian,pch=21,bg="gray40",x1lim=c(0,200))
nlsTracePlot(fitSR1,r1)

no plot, but returns trace results as a matrix
(tmp <- nlsTracePlot(fitSR1,r1,add=FALSE))

Not run:
if (require(FSAdata)) {

}

data(BSkateGB,package="FSAdata")

wtr <- droplevels(subset(BSkateGB,season=="winter"))

bh1 <- srFuns()

trc <- capture.output(try(

fitSR1 <- nls(recruits~bh1(spawners,a,b),wtr,
start=srStarts(recruits~spawners,data=wtr),trace=TRUE)

»

plot(recruits~spawners,data=wtr,pch=21,bg="gray40")

nlsTracePlot(trc,bh1)

zoom in on y-axis

plot(recruits~spawners,data=wtr,pch=21,bg="gray40",ylim=c(0.02,0.05))

nlsTracePlot(trc,bh1,legend="top")

return just the trace results

(tmp <- nlsTracePlot(trc,bhl1,add=FALSE))

End(Not run)

peek Peek into (show a subset of) a data frame or matrix.

Description

Shows the first, last, and approximately evenly spaced rows from a data frame or matrix.

Usage

peek(x, n = 20L, which = NULL, addrownums = TRUE)

Arguments

X

n

A data frame or matrix.

A single numeric that indicates the number of rows to display.

which A numeric or string vector that contains the column numbers or names to dis-

play. Defaults to showing all columns.

addrownums If there are no row names for the MATRIX, then create them from the row

numbers.

perc 145

Value

A matrix or data.frame with n rows.

Note

If n is larger than the number of rows in x then all of x is displayed.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail . com>

A. Powell Wheeler, <powell.wheeler@gmail.com>

See Also
headtail

Examples

peek(CutthroatAL)
peek(CutthroatAL,n=6)
peek (CutthroatAL,n=6,which=c("id","y1998","y1999", "y2000"))

Make a matrix for demonstration purposes only
mCutthroatAL <- as.matrix(CutthroatAL)

peek (mCutthroatAL)

peek(mCutthroatAL,n=6)

peek (mCutthroatAL,n=6,addrownums=FALSE)
peek(mCutthroatAL,n=6,which=2:4)

Make a tibble type from dplyr ... note how peek() is not limited by
the tibble restriction on number of rows to show (but head() is).
Not run:

if (require(dplyr)) {
CutthroatAL2 <- as_tibble(CutthroatAL)
class(CutthroatAL2)
peek(CutthroatAL2,n=6)
head(CutthroatAL2,n=15)

}

End(Not run)

perc Computes the percentage of values in a vector less than or greater
than (and equal to) some value.

Description

Computes the percentage of values in a vector less than or greater than (and equal to) a user-supplied
value.

146

Usage

perc(
X,
val,

perc

dir = C(“geq“, ”gt”, ”].eq”, ”].t”),

na.rm
digits

Arguments

X
val
dir

na.rm

digits

Details

getOption("digits”)

A numeric vector.
A single numeric value.

A string that indicates whether the percentage is for values in x that are “greater
than and equal” "geq", “greater than” "gt", “less than and equal” "leq"”, “less

than” "1t" the value in val.

A logical that indicates whether NA values should be removed (DEFAULT) from
X or not.

N

A single numeric that indicates the number of decimals the percentage should
be rounded to.

This function is most useful when used with an apply-type of function.

Value

A single numeric that is the percentage of values in x that meet the criterion in dir relative to val.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail. com>

Examples

vector of values
(tmp <- c(1:8,NA,NA))

percentages excluding NA values
perc(tmp,5)

perc(tmp,5,"gt")

perc(tmp,5,"leq")

perc(tmp,5,"1t")

percentages including NA values
perc(tmp,5,na.rm=FALSE)
perc(tmp,5,"gt"”,na.rm=FALSE)
perc(tmp,5,"1leq"”,na.rm=FALSE)
perc(tmp,5,"1t",na.rm=FALSE)

PikeNY 147

PikeNY Summarized multiple mark-recapture data for all Northern Pike from
Buckhorn Marsh, NY.

Description

Summary results of capture histories (number captured, number of recaptured fish, and number of
unmarked fish that were marked) for all Buckhorn Marsh Northern Pike (Esox lucius).

Format

A data frame with 21 observations on the following 4 variables:

date Capture date
n Total fish captured in each sample
m Marked fish captured in each sample

R Marked fish returned to the population

Topic(s)
* Population Size
* Abundance
* Mark-Recapture
* Capture-Recapture
* Schnabel

* Schumacher-Eschmeyer

Source

New York Power Authority. 2004. Use of Buckhorn Marsh and Grand Island tributaries by Northern
Pike for spawning and as a nursery. Technical report, New York Power Authority, January 2004.
Niagara Power Project (FERC No. 2216). CSV file

See Also

Used in mrClosed examples. Also see PikeNYPartiall.

Examples

str(PikeNY)
head(PikeNY)

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/PikeNY.csv

148 PikeNYPartiall

PikeNYPartiall Capture histories (4 samples), in capture history format, of a subset of
Northern Pike from Buckhorn Marsh, NY.

Description

Each line consists of the capture history over four samples of Northern Pike (Esox lucius) in Buck-
horn Marsh. This file contains the capture histories for only those pike captured from April 1-4.

Format
A data frame with 57 observations on the following 4 variables.

id A unique identification numbers

first Indicator variable for the first sample (1=captured)
second Indicator variable for the second sample (1=captured)
third Indicator variable for the third sample (1=captured)

fourth Indicator variable for the fourth sample (1=captured)

Topic(s)
* Population Size
* Abundance
e Mark-Recapture
» Capture-Recapture
* Schnabel
* Schumacher-Eschmeyer

* Capture History

Source

Summary values taken from Table C-1 of New York Power Authority. 2004. Use of Buckhorn
Marsh and Grand Island tributaries by Northern Pike for spawning and as a nursery. Technical
report, New York Power Authority, January 2004. Niagara Power Project (FERC No. 2216). CSV
file

See Also

Used in capHistSum and mrClosed examples. Also see PikeNY.

Examples

str(PikeNYPartiall)
head(PikeNYPartiall)

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/PikeNYPartial1.csv
https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/PikeNYPartial1.csv

plotAB 149

plotAB Construct traditional (Campana-like) age-bias plots.

Description

Constructs a traditional (e.g., like that described in Campana et al. (1995)) age-bias plot to visualize
potential differences in paired age estimates. Ages may be from, for example, two readers of the
same structure, one reader at two times, two structures (e.g., scales, spines, otoliths), or one structure
and known ages.

Usage

plotAB(
X,
what = c("bias”, "Campana"”, "numbers”),
xlab = x$ref.lab,
ylab = x$nref.lab,
xlim = NULL,
ylim = NULL,
yaxt = graphics::par("yaxt"),
xaxt = graphics::par("xaxt"),
col.agree = "gray60",
lwd.agree = 1wd,
lty.agree = 2,
Iwd = 1,
sfrac = 0,
pch.mean = 19,
pch.mean.sig = 21,
cex.mean = lwd,
col.CI = "black”,
col.CIsig = "red”,
lwd.CI = 1lwd,
sfrac.CI = sfrac,
show.n = FALSE,
nYpos = 1.03,
cex.n = 0.75,
cex.numbers = 0.75,

col.numbers = "black”,
)
Arguments
X An object of class ageBias, usually a result from ageBias.
what A string that indicates what type of plot to construct. See details.
xlab, ylab A string label for the x-axis (reference) or y-axis (non-reference) age estimates,

respectively.

xlim, ylim

xaxt, yaxt

col.agree

lwd.agree

lty.agree

Iwd

sfrac

pch.mean

pch.mean.sig

cex.mean

col.CI

col.CIsig

lwd.CI
sfrac.CI

show.n

nYpos

cex.n

cex.numbers

col.numbers

Details

plotAB

A numeric vector of length 2 that contains the limits of the x-axis (reference
ages) or y-axis (non-reference ages), respectively.

[N 1]

A string which specifies the x- and y-axis types. Specifying “n” suppresses
plotting of the axis. See ?par.

A string or numeric for the color of the 1:1 or zero (if difference=TRUE) refer-
ence line.

A numeric for the line width of the 1:1 or zero (if difference=TRUE) reference
line.

A numeric for the line type of the 1:1 or zero (if difference=TRUE) reference
line.

A numeric that controls the separate ‘lwd’ argument (e.g., lwd.CI and 1wd. range).

A numeric that controls the separate ‘sfrac’ arguments (e.g., sfrac.CI and
sfrac.range). See sfrac in plotCI of plotrix.

A numeric for the plotting character used for the mean values when the means
are considered insignificant.

A numeric for the plotting character for the mean values when the means are
considered significant.

A character expansion value for the size of the mean symbol in pch.mean and
pch.mean.sig.

A string or numeric for the color of confidence interval bars that are considered
non-significant.

A string or numeric for the color of confidence interval bars that are considered
significant.

A numeric for the line width of the confidence interval bars.

A numeric for the size of the ends of the confidence interval bars. See sfrac in
plotCI of plotrix.

A logical for whether the sample sizes for each level of the x-axis variable is
shown (=TRUE, default) or not (=FALSE).

A numeric for the relative Y position of the sample size values when show. n=TRUE.
For example, if nYpos=1.03 then the sample size values will be centered at 3
percent above the top end of the y-axis.

A character expansion value for the size of the sample size values.

A character expansion value for the size of the numbers plotted when what="numbers"
is used.

A string for the color of the numbers plotted when what="numbers" is used.

Additional arguments for methods.

Two types of plots for visualizing differences between sets of two age estimates may be created.
The reference ages are plotted on the x-axis and the nonreference ages are on the y-axis. The 1:1 (45
degree) agreement line is shown for comparative purposes. The default plot (using what="bias")
was inspired by the age bias plot introduced by Campana et al. (1995). The default settings for this

plotAB 151

age bias plot show the mean and confidence interval for the nonreference ages at each of the refer-
ence ages. The level of confidence is controlled by sig.level= given in the original ageBias call
(i.e., confidence level is 100*(1-sig.level)). Confidence intervals are only shown if the sample
size is greater than the value in min.n.CI= (also from the original call to ageBias). Confidence
intervals plotted in red with an open dot (by default; these can be changed with col.CIsig and
pch.mean.sig, respectively) do not contain the reference age (see discussion of t-tests in ageBias).
Sample sizes at each reference age are shown if show.n=TRUE. The position of the sample sizes is
controlled with nYpos=, whereas their size is controlled with cex.n. Arguments may be used to
nearly replicate the age bias plot as introduced by Campana et al. (1995) as shown in the examples.

The frequency of observations at each unique (x,y) coordinate are shown by using what="numbers"
in plotAB. The size of the numbers is controlled with cex.numbers.

Value

Nothing, but see details for a description of the plot that is produced.

IFAR Chapter

4-Age Comparisons. This is most of the original functionality that was in plot in the book. See
examples.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

References

Campana, S.E., M.C. Annand, and J.I. McMillan. 1995. Graphical and statistical methods for de-
termining the consistency of age determinations. Transactions of the American Fisheries Society
124:131-138. [Was (is?) available from http://www.bio.gc.ca/otoliths/documents/Campana%?20et%20al%201995%20TAFS.

See Also

See ageBias and its plot method for what I consider a better age-bias plot; agePrecision for
measures of precision between pairs of age estimates; and compare? in fishmethods for similar
functionality.

Examples

Must create ageBias object first
ab1 <- ageBias(scaleC~otolithC,data=WhitefishLC,
ref.lab="0tolith Age”,nref.lab="Scale Age")

Default plot
plotAB(ab1)

Very close to Campana et al. (2001)

plotAB(ab1,pch.mean.sig=19,col.CIsig="black"”,sfrac=0.01,
ylim=c(-1,23),xlim=c(-1,23))

Show sample sizes (different position and size than default)

152 poiCI

plotAB(ab1, show.n=TRUE,nYpos=0.02,cex.n=0.5)

Traditional numbers plot
plotAB(ab1,what="numbers")

poiCI Confidence interval for Poisson counts.

Description

Computes a confidence interval for the Poisson counts.

Usage

poiCI(
X,
conf.level = 0.95,
type = c("exact”, "daly", "byar", "asymptotic”),
verbose = FALSE

)
Arguments
X A single number or vector that represents the number of observed successes.
conf.level A number that indicates the level of confidence to use for constructing confi-
dence intervals (default is @.95).
type A string that identifies the type of method to use for the calculations. See details.
verbose A logical that indicates whether x should be included in the returned matrix
(=TRUE) or not (=FALSE; DEFAULT).
Details

Computes a CI for the Poisson counts using the exact, gamma distribution (daly‘), Byar’s (byar),
or normal approximation (asymptotic) methods.

The pois.daly function gives essentially identical answers to the pois.exact function except
when x=0. When x=0, for the upper confidence limit pois.exact returns 3.689 and pois.daly
returns 2.996.

Value
A #x2 matrix that contains the lower and upper confidence interval bounds as columns and, if
verbose=TRUE x.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail. com>, though this is largely based on pois.exact, pois.daly,
pois.byar, and pois. approx from the old epitools package.

psdAdd 153

Examples

Demonstrates using all types at once
poiCI(12)

Selecting types

poiCI(12,type="daly")

poiCI(12,type="byar")
poiCI(12,type="asymptotic")
poiCI(12,type="asymptotic”,verbose=TRUE)
poiCI(12,type=c("exact”,"daly"))
poiCI(12,type=c("exact"”,"daly"),verbose=TRUE)

Demonstrates use with multiple inputs
poiCI(c(7,10),type="exact")
poiCI(c(7,10),type="exact"”,verbose=TRUE)

psdAdd Creates a vector of Gabelhouse lengths for each species in an entire
data frame.

Description

Creates a vector of the Gabelhouse lengths specific to a species for all individuals in an entire data
frame.

Usage
psdAdd(len, ...)

Default S3 method:

psdAdd(
len,
species,
thesaurus = NULL,
group = NULL,
units = c¢("mm", "cm", "in"),

use.names = TRUE,

as.fact = ifelse(is.null(addLens), use.names, FALSE),
addLens = NULL,

verbose = TRUE,

S3 method for class 'formula'
psdAdd(

len,

data = NULL,

154

psdAdd

thesaurus = NULL,

group = NULL,
units = C(“mm", “Cm“, llin”)’
use.names = TRUE,
as.fact = ifelse(is.null(addLens), use.names, FALSE),
addLens = NULL,
verbose = TRUE,
)
Arguments
len A numeric vector that contains lengths measurements or a formula of the form
len~spec where “len” generically represents the length variable and “spec”
generically represents the species variable. Note that this formula can only con-
tain two variables and must have the length variable on the left-hand-side and
the species variable on the right-hand-side.
Not used.
species A character or factor vector that contains the species names. Ignored if len is a
formula.
thesaurus A named list for providing alternative species names (the values in the list) that
correspond to specific names in PSD1it (the names in the list). See details and
examples.
group A named list that provides specific choices for group for species for which more
than one set of Gabelhouse lengths exists in PSD1it.
units A string that indicates the type of units used for the lengths. Choices are mm for
millimeters (DEFAULT), cm for centimeters, and in for inches.
use.names A logical that indicates whether the vector returned is numeric (=FALSE) or string
(=TRUE; default) representations of the Gabelhouse lengths. See details.
as.fact A logical that indicates that the new variable should be returned as a factor
(=TRUE) or not (=FALSE). Defaults to same as use.names unless addLens is not
NULL, in which case it will default to FALSE. See details.
addLens A named list with (possibly named) numeric vectors of lengths that should be
used in addition to the Gabelhouse lengths for the species that form the names
in the list. See examples.
verbose A logical that indicates whether detailed messages about species without Gabel-
house lengths or with no recorded values should be printed or not.
data A data.frame that minimally contains the length measurements and species names
if 1en is a formula.
Details

This computes a vector that contains the Gabelhouse lengths specific to each species for all individu-
als in an entire data frame. The vector can be appended to an existing data.frame to create a variable
that contains the Gabelhouse lengths for each individual. The Gabelhouse length value will be NA
for each individual for which Gabelhouse length definitions do not exist in PSD1it. Species names

psdAdd 155

in the data.frame must be the same as those used in PSD1it (i.e., same spelling and capitalization;
use psdVal() to see the list of species).

The thesaurus argument may be used to relate alternate species names to the species names used
in PSD1it. For example, you (or your data) may use “Bluegill Sunfish”, but “Bluegill” is used in
PSD1it. The alternate species name can be used here if it is defined in a named vector (or list)
given to thesarus=. The alternate species name is the value and the species name in PSD1it is
the name in this vector/list - e.g., c("Bluegill”="Bluegill Sunfish"”). See the examples for a
demonstration.

Some species have length categories separated by sub-group. For example, length categories exist
for both lentic and lotic populations of Brown Trout. The length values for a sub-group may be
obtained by either including the species name in species and the sub-group name in group or
by using the combined species and sub-group name, with the sub-group name in parentheses, in
species. Both methods are demonstrated in the examples. Note that an error is returned if a
species has sub-groups but neither method is used to define the sub-group.#’

Individuals shorter than “stock” length will be listed as substock if use.names=TRUE or @ if
use.names=FALSE.

Additional lengths to be used for a species may be included by giving a named list with vectors of
additional lengths in addLens. Note, however, that as. fact will be reset to FALSE if addLens are
specified, as there is no way to order the names (i.e., factor levels) for all species when additional
lengths are used.

See examples and this article for a demonstration.

Value

A numeric or factor vector that contains the Gabelhouse length categories.

IFAR Chapter

6-Size Structure.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail . com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Guy, C.S., R.M. Neumann, and D.W. Willis. 2006. New terminology for proportional stock density
(PSD) and relative stock density (RSD): proportional size structure (PSS). Fisheries 31:86-87. [Was
(is?) from http://pubstorage.sdstate.edu/wfs/415-F.pdf.]

Guy, C.S., RM. Neumann, D.W. Willis, and R.O. Anderson. 2006. Proportional size distribution
(PSD): A further refinement of population size structure index terminology. Fisheries 32:348. [Was
(is?) from http://pubstorage.sdstate.edu/wfs/450-F.pdf.]

Willis, D.W., B.R. Murphy, and C.S. Guy. 1993. Stock density indices: development, use, and limi-
tations. Reviews in Fisheries Science 1:203-222. [Was (is?) from http://web1.cnre.vt.edu/murphybr/web/Readings/Willis % 2(

https://fishr-core-team.github.io/FSA/articles/Computing_PSDs.html
https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

156 psdAdd

See Also

psdVal, psdCalc, psdPlot, PSD1it, and wrAdd for related functions. See mapvalues for help in
changing species names to match those in PSD1it.

Examples
#===== Simple examples -- 2 species, no groups, names as in PSDlit
H--- Isolate simple data from PSDWRtest

tmp <- subset(PSDWRtest,
species %in% c("Yellow Perch”,"Largemouth Bass"),
select=c("species”,"len"))

peek (tmp,n=6)

#-—---- Add variable using category names -- non-formula notation
tmp$PSD <- psdAdd(tmp$len, tmp$species)
peek (tmp,n=6)

#--——- Add variable using category names -- formula notation
tmp$PSD1 <- psdAdd(len~species,data=tmp)
peek (tmp,n=6)

#-—--- Add variable using length values as names
tmp$PSD2 <- psdAdd(len~species,data=tmp,use.names=FALSE)
peek (tmp,n=6)

#-—---- Same as above but using dplyr
if (require(dplyr)) {
tmp <- tmp %>%
mutate(PSD1A=psdAdd(len, species),
PSD2A=psdAdd(len, species,use.names=FALSE))
peek (tmp,n=6)

#===== Add lengths besides Gabelhouse lengths (start over with same simple data)
tmp <- subset(PSDWRtest,
species %in% c("Yellow Perch”,"Largemouth Bass"),
select=c("species”,"len"))

#--—-= Add a "minimum length” for one species
tmp$PSD3 <- psdAdd(len~species,data=tmp,
addLens=1list("Yellow Perch”=c("minLen"=225)))
tmp$PSD3A <- psdAdd(len~species,data=tmp,
addLens=1list("Yellow Perch”=225))
tmp$PSD3B <- psdAdd(len~species,data=tmp,
addLens=1ist("Yellow Perch”=c("minLen"=225)),use.names=FALSE)
head(tmp,n=6)

#-—-—- Add add'l lengths and names for multiple species
tmp$psd4 <- psdAdd(len~species,data=tmp,
addLens=1list("Yellow Perch”=175,
"Largemouth Bass"=c(254,306)))
peek (tmp,n=20)

#===== Handle additional species in PSDlit but named differently
#----- Isolate different species data from PSDWRtest
tmp <- subset(PSDWRtest,
species %in% c("Bluegill Sunfish”,"Lean Lake Trout"),
select=c("species”,"len"))

#-—-—- No "Bluegill Sunfish” in PSDlit, use thesaurus to note this is "Bluegill”
Note: "Lean Lake Trout” not processed as not in PSDlit
tmp$psd5 <- psdAdd(len~species,data=tmp,
thesaurus=c("Bluegill”="Bluegill Sunfish"))
peek (tmp,n=6)

#-—-—- Process multiple species in PSDlit with different names

Note: Can still use addlLens=, but with original name

thes <- c("Bluegill”="Bluegill Sunfish"”,"Lake Trout"="Lean Lake Trout")

tmp$psd6 <- psdAdd(len~species,data=tmp,thesaurus=thes)

tmp$psd7 <- psdAdd(len~species,data=tmp, thesaurus=thes,
addLens=1ist("Bluegill Sunfish”=c("minLen"=175)))

peek (tmp,n=20)

#===== Example for a species with sub-groups but only one sub-group in data
#-—-—- Isolate species data from PSDWRtest ... only Brook Trout has sub-group
tmp <- subset(PSDWRtest,
species %in% c("Yellow Perch”,"Brook Trout"),
select=c("species”,"len"))

#----- This will err as Brook Trout has sub-groups in PSDlit (as message notes)
tmp$psd8 <- psdAdd(len~species,data=tmp)

#----- Can choose "overall” sub-group with group=
tmp$psd8 <- psdAdd(len~species,data=tmp,

group=list("Brook Trout”="overall"”))
peek(tmp,n=10)

#-—---- Or can create species name with sub-group name in parentheses

Note: this is more useful in next examples

tmp$species2 <- ifelse(tmp$species=="Brook Trout”,"Brook Trout (overall)",
tmp$species)

tmp$psd8A <- psdAdd(len~species2,data=tmp) # note use of species2
peek (tmp,n=10)

#===== Example for species with more than one sub-group in data
#-—-—- Isolate species data from PSDWRtest ... Brown Trout has two sub-groups
tmp <- subset(PSDWRtest,
species %in% c("Yellow Perch”,"Largemouth Bass”,"Brown Trout"),
select=c("species”,"len","location"))
peek (tmp,n=10)

#-—-—- Must create a species name variable with sub-groups in parentheses

Note: there are likely many ways to do this specific to each use-case
tmp$species2 <- tmp$species

tmp$species2[tmp$species=="Brown Trout” &

157

158 psdCalc

tmp$location=="Trout Lake"] <- "Brown Trout (lotic)”
tmp$species2[tmp$species=="Brown Trout” &

tmp$location=="Brushy Creek"”] <- "Brown Trout (lentic)”
peek(tmp,n=10)

tmp$psd9 <- psdAdd(len~species2,data=tmp)
peek(tmp,n=10)

psdCalc Convenience function for calculating PSD-X and PSD X-Y values.

Description

Convenience function for calculating (traditional) PSD-X and (incremental) PSD X-Y values for all
Gabelhouse lengths and increments thereof.

Usage

psdCalc(
formula,
data,
species,
group = NULL,
units = c¢("mm"”, "cm", "in"),
method = c("multinomial”, "binomial"),
conf.level = 0.95,
addLens = NULL,
addNames = NULL,
justAdds = FALSE,
what = c("all"”, "traditional”, "incremental”, "none"),
drop@Est = TRUE,
showIntermediate = FALSE,

digits = @
)
Arguments

formula A formula of the form ~1length where “length” generically represents a variable
in data that contains the observed lengths. Note that this formula may only
contain one variable and it must be numeric.

data A data.frame that minimally contains the observed lengths given in the variable
in formula.

species A string that contains the species name for which Gabelhouse lengths exist. See

psdVal for details. See details for how to use this function for species for which
Gabelhouse lengths are not defined.

psdCalc 159

group A string that contains the sub-group of species for which to find the Gabel-
house lengths; e.g., things like “landlocked”, “lentic”.

units A string that indicates the type of units used for the lengths. Choices are mm for
millimeters (DEFAULT), cm for centimeters, and in for inches.

method A character that identifies the confidence interval method to use. See details in
psdCI.

conf.level A number that indicates the level of confidence to use for constructing confi-
dence intervals (default is 0. 95).

addLens A numeric vector that contains minimum lengths for additional categories. See
psdval for details.

addNames A string vector that contains names for the additional lengths added with addLens.
See psdVal for details.

justAdds A logical that indicates whether just the values related to the lengths in addLens
should be returned.

what A string that indicates the type of PSD values that will be printed. See details.

drop@Est A logical that indicates whether the PSD values that are zero should be dropped
from the output.

showIntermediate

A logical that indicates whether the number of fish in the category and the num-
ber of stock fish (i.e., “intermediate” values) should be included in the returned
matrix. Default is to not include these values.

digits A numeric that indicates the number of decimals to round the result to. Default
is zero digits following the recommendation of Neumann and Allen (2007).

Details

Computes the (traditional) PSD-X and (incremental) PSD X-Y values, with associated confidence
intervals, for each Gabelhouse length. All PSD-X and PSD X-Y values are printed if what="all"
(DEFAULT), only PSD-X values are printed if what="traditional"”, only PSD X-Y values are
printed if what="incremental”, and nothing is printed (but the matrix is still returned) if what="none".

Confidence intervals can be computed with either the multinomial (DEFAULT) or binomial distri-
bution as set in methodSee details in psdCI for more information.

This function may be used for species for which Gabelhouse length categories are not defined. In
this case do not include a name in species, but define at least two lengths in addLens where the
first category MUST be called “stock”.

See examples and this article for a demonstration.

Value

A matrix with columns that contain the computed PSD-X or PSD X-Y values and associated confi-
dence intervals. If showIntermediate=TRUE then the number of fish in the category and the number
of stock fish will also be shown.

Testing

Point estimate calculations match those constructed "by hand."

https://fishr-core-team.github.io/FSA/articles/Computing_PSDs.html

160 psdCalc

IFAR Chapter

6-Size Structure.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with RChapman & Hall/CRC, Boca Raton, FL.

Guy, C.S., R.M. Neumann, and D.W. Willis. 2006. New terminology for proportional stock density
(PSD) and relative stock density (RSD): proportional size structure (PSS). Fisheries 31:86-87. [Was
(is?) from http://pubstorage.sdstate.edu/wfs/415-F.pdf.]

Guy, C.S., RM. Neumann, D.W. Willis, and R.O. Anderson2006Proportional size distribution
(PSD): A further refinement of population size structure index terminology. Fisheries. 32:348.
[Was (is?) from http://pubstorage.sdstate.edu/wfs/450-F.pdf.]

Neumann, R.M. and Allen, M.S. 2007. Size structure. In Guy, C.S. and Brown, M.L., editors,
Analysis and Interpretation of Freshwater Fisheries Data, Chapter 9, pages 375-421. American
Fisheries Society, Bethesda, MD.

Willis, D.W., B.R. Murphy, and C.S. Guy. 1993. Stock density indices: development, use, and limi-
tations. Reviews in Fisheries Science 1:203-222. [Was (is?) from http://web1.cnre.vt.edu/murphybr/web/Readings/Willis % 2(

See Also

See psdVal, psdPlot, psdAdd, PSD1it, tictactoe, lencat, and rcumsum for related functionality.

Examples

#===== Simple (typical) uses with just Gabelhouse lengths
tmp <- subset(PSDWRtest,species=="Yellow Perch”,6select=c("species”,"len"))

#--——- All results
psdCalc(~len,data=tmp,species="Yellow Perch")

#-—--- Just the traditional indices
psdCalc(~len,data=tmp,species="Yellow Perch”,what="traditional")

#--—-- Just the incremental indices
psdCalc(~len,data=tmp,species="Yellow Perch”,what="incremental")

#===== Add a custom length of interest (to the Gabelhouse lengths)
psdCalc(~len,data=tmp, species="Yellow Perch”,6addLens=150)

#--——- Additional lengths can be named
psdCalc(~len,data=tmp,species="Yellow Perch”, addLens=c("minLen"=150))
psdCalc(~len,data=tmp, species="Yellow Perch”,

addLens=c("minLen"=150, "maxslot"=275))

#----- Can return just those results that include the additional lengths

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

psdCI 161

psdCalc(~len,data=tmp,species="Yellow Perch”,

addLens=c("minSlot"=150, "maxSlot"=275), justAdds=TRUE)
psdCalc(~len,data=tmp, species="Yellow Perch”,

addLens=c("minSlot"=150, "maxSlot"=275), justAdds=TRUE,what="traditional")

#===== Can show intermediate values (num in category and in stock)
psdCalc(~len,data=tmp,species="Yellow Perch”, showInterm=TRUE)

#===== Some species require use of group

tmp <- subset(PSDWRtest,species=="Brown Trout” & location=="Trout Lake",
select=c("species”,"location”,"len"))

peek (tmp,n=6)

will err because Brown Trout has sub-groups in PSDlit

psdCalc(~len,data=tmp, species="Brown Trout")
psdCalc(~len,data=tmp, species="Brown Trout"”,group="lotic")
psdCalc(~len,data=tmp, species="Brown Trout (lotic)")

#===== For species not in PSDlit ... don't include species and use addLens

Note these are same data as above, but treated as species not in PSDlit

psdCalc(~len,data=tmp,addLens=c("stock”=130,"quality"=200, "preferred”=250,
"memorable"=300, "trophy"=380))

psdCI Compute confidence intervals for PSD-X and PSD X-Y values.

Description

Compute confidence intervals for (traditional) PSD-X and (incremental) PSD X-Y values as re-
quested by the user.

Usage

psdCI(
indvec,
ptbl,
n,
method = c("binomial”, "multinomial"),
bin.type = c("wilson”, "exact"”, "asymptotic"),
conf.level = 0.95,
label = NULL,
digits =1

Arguments

indvec A numeric vector of Os and 1s that identify the linear combination of proportions
from ptbl that the user is interested in. See details.

162 psdCI

ptbl A numeric vector or array that contains the proportion or percentage of all indi-
viduals in each length category. See details.

n A single numeric of the number of fish used to construct ptbl.

method A string that identifies the confidence interval method to use. See details.

bin.type A string that identifies the type of method to use for calculation of the confidence
intervals when method="binomial”. See details of binCI.

conf.level A number that indicates the level of confidence to use for constructing confi-
dence intervals (default is @.95).

label A single string that can be used to label the row of the output matrix.

digits A numeric that indicates the number of decimals to round the result to.

Details

Computes confidence intervals for (traditional) PSD-X and (incremental) PSD X-Y values. Two
methods can be used as chosen with method=. If method="binomial” then the binomial distri-
bution (via binCI()) is used. If method="multinomial” then the multinomial method described
by Brenden et al. (2008) is used. This function is defined to compute one confidence interval so
method="binomial” is the default. See examples and psdCalc for computing several simultaneous
confidence intervals.

A table of proportions within each length category is given in ptbl. If ptbl has any values greater
than 1 then it is assumed that a table of percentages was supplied and the entire table will be divided
by 100 to continue. The proportions must sum to 1 (with some allowance for rounding).

A vector of length equal to the length of ptbl is given in indvec which contains zeros and ones to
identify the linear combination of values in ptbl to use to construct the confidence intervals. For
example, if ptbl has four proportions then indvec=c(1, 90,0, 0) would be used to construct a confi-
dence interval for the population proportion in the first category. Alternatively, indvec=c(0,0,1,1)
would be used to construct a confidence interval for the population proportion in the last two cate-
gories. This vector must not contain all zeros or all ones.

Value

A matrix with columns that contain the computed PSD-X or PSD X-Y value and the associated
confidence interval. The confidence interval values were set to zero or 100 if the computed value
was negative or greater than 100, respectively.

Testing

The multinomial results match the results given in Brenden et al. (2008).

IFAR Chapter

6-Size Structure.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

PSDlit 163

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Brenden, T.O., T. Wagner, and B.R. Murphy. 2008. Novel tools for analyzing proportional size dis-
tribution index data. North American Journal of Fisheries Management 28:1233-1242. [Was (is?)
from http://qfc.fw.msu.edu/Publications/Publication%20List/2008/Novel %20Tools %20for%20Analyzing %20Proportional %

See Also

See psdVal, psdPlot, psdAdd, PSD1it, tictactoe, lencat, and rcumsum for related functionality.

Examples

similar to Brenden et al. (2008)
n <- 997
ipsd <- ¢c(130,491,253,123)/n

single binomial
psdCI(c(0,0,1,1),ipsd,n=n)
psdCI(c(1,0,0,0),ipsd,n=n,label="PSD S-Q")

single multinomial
psdCI(c(@,0,1,1),ipsd,n=n,method="multinomial”)
psdCI(c(1,0,0,0),ipsd,n=n,method="multinomial”,6 label="PSD S-Q")

multiple multinomials (but see psdCalc())

1bls <- c("PSD S-Q","PSD Q-P","PSD P-M","PSD M-T","PSD","PSD-P")

imat <- matrix(c(1,90,0,0,

,1,0,0,

,0,1,0,

,0,0,1,
1,1
1,1

71:

’

[SEE SRS RN ENGS]

,1),nrow=6,byrow=TRUE)

)0,
rownames(imat) <- 1lbls
imat

mcis <- t(apply(imat,MARGIN=1,FUN=psdCI,ptbl=ipsd,n=n,method="multinomial”))
colnames(mcis) <- c("Estimate”,"95% LCI","95% UCI")
mcis

Multiple "Bonferroni-corrected” (for six comparisons) binomial method
bcis <- t(apply(imat,MARGIN=1,FUN=psdCI,ptbl=ipsd,n=n,conf.level=1-0.05/6))
colnames(bcis) <- c("Estimate”,"95% LCI","95% UCI")

bcis

PSDlit Gabelhouse five-cell length categories for various species.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

164 PSDlit

Description

Cutoffs for the Gabelhouse five-cell length categories for a variety of species.

Format

A data frame of 58 observations on the following 11 variables:

species Species name.

group Sub-group name (e.g., "landlocked” or "lotic").
substock.in Zero inches.

stock.in Stock length in inches.

quality.in Quality length in inches.
preferred.in Preferred length in inches.
memorable.in Memorable length in inches.
trophy.in Trophy length in inches.
substock.cm Zero cm.

stock.cm Stock length in cm.

quality.cm Quality length in cm.
preferred.cm Preferred length in cm.
memorable.cm Memorable length in cm.
trophy.cm Trophy length in cm.

source Literature source for the length entries.

Details

Entries for some species (e.g., “Muskellunge” and “Walleye”) have been duplicated for sub-groups
to facilitate use with relative weight calculations. For example, entries for “Muskellunge (overall)”,
“Muskellunge (female)”, and “Muskellunge (male)” are duplicates of the entry for “Muskellunge”;
i.e., these entries in PSD1it are not necessarily just for those sub-groups but this allows for seamless
similar computations of relative weights for these sub-groups.

Topic(s)
* Size structure
* Proportional size structure
* Relative stock density

* Proportional stock density

IFAR Chapter

6-Size Structure.

psdPlot 165

Source
Original summary table from Dr. Michael Hansen, University of Wisconsin-Stevens Point. Addi-
tional species have been added by the package author from the literature.

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

See Also

See psdVal, psdCalc, psdPlot, psdAdd, and tictactoe for related functionality.

Examples

str(PSDlit)
head(PSD1it)

psdPlot Length-frequency histogram with Gabelhouse lengths highlighted.

Description

Constructs a length-frequency histogram with Gabelhouse lengths highlighted.

Usage

psdPlot(
formula,
data,
species = "List",
group = NULL,
units = c¢("mm"”, "cm", "in"),
startcat = 0,
w=1,
justPSDQ = FALSE,
main = ""

xlab = "Length"”,
ylab = "Number”,

xlim = NULL,
ylim = c(@, max(h$counts) * 1.05),
substock.col = "white"”,

stock.col = "gray9e",
psd.col = "black”,
psd.lty = 2,

psd.lwd = 1,

show. abbrevs = TRUE,

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

166

psd.add
psd.pos
psd.cex

Arguments

formula

data

species

group

units

startcat
W

justPSDQ

main
xlab
ylab

x1lim

ylim

substock.col

stock.col

psd.col

psd.lty

psd. lwd

show. abbrevs

psdPlot

TRUE,
"topleft”,
.75,

A formula of the form ~1ength where “length” generically represents a variable
in data that contains length measurements. Note that this formula can only
contain one variable.

A data.frame that minimally contains the length measurements given in the vari-
able in the formula.

A string that contains the species name for which Gabelhouse length categories
exist. See psdVal for details.

A string that contains the sub-group of species for which to find the Gabel-
house lengths; e.g., things like “landlocked”, “lentic”.

A string that indicates the type of units used for the length measurements. Choices
are mm for millimeters (DEFAULT), cm for centimeters, and in for inches.

A number that indicates the beginning of the first length-class.
A number that indicates the width of length classes to create.

A logical that indicates whether just stock and quality (for PSD-Q calculations)
categories should be used. If FALSE (default) then the five Gabelhouse categories
will be used.

A string that serves as the main label for the histogram.
A string that serves as the label for the x-axis.
A string that serves as the label for the y-axis.

A numeric vector of length two that indicates the minimum and maximum values
(i.e., fish lengths) for the x-axis.

A numeric vector of length two that indicates the minimum and maximum values
for the y-axis.

A string that indicates the color to use for the bars representing under-stock size
fish.

A string that indicates the color to use for the bars representing stock size fish.

A string that indicates the color to use for the vertical lines at the Gabelhouse
length category values.

A numeric that indicates the line type to use for the vertical lines at the Gabel-
house length category values.

A numeric that indicates the line width to use for the vertical lines at the Gabel-
house length category values.

A logical that indicates if the abbreviations for the Gabelhouse length categories
should be added to the top of the plot.

psdPlot 167

psd.add A logical that indicates if the calculated PSD values should be added to the plot
(default is TRUE).
psd.pos A string that indicates the position for where the PSD values will be shown. See

details in legend.
psd.cex A numeric value that indicates the character expansion for the PSD values text.

Arguments to be passed to the low-level plotting functions.

Details

Constructs a length-frequency histogram with the stock-sized fish highlighted, the Gabelhouse
lengths marked by vertical lines, and the (traditional) PSD-X values superimposed. The length
of fish plotted on the x-axis can be controlled with x1im, however, the minimum value in x1im must
be less than the stock length for that species.

This plot is meant to be illustrative and not of “publication-quality.” Thus, only some aspects of the
plot can be modified to change its appearance.

See examples and this article for a demonstration.

Value

None. However, a graphic is produced.

IFAR Chapter

6-Size Structure.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Guy, C.S., R.M. Neumann, and D.W. Willis. 2006. New terminology for proportional stock density
(PSD) and relative stock density (RSD): proportional size structure (PSS). Fisheries 31:86-87. [Was
(is?) from http://pubstorage.sdstate.edu/wfs/415-F.pdf.]

Guy, C.S., RM. Neumann, D.W. Willis, and R.O. Anderson. 2006. Proportional size distribution
(PSD): A further refinement of population size structure index terminology. Fisheries 32:348. [Was
(is?) from http://pubstorage.sdstate.edu/wfs/450-F.pdf.]

Willis, D.W., B.R. Murphy, and C.S. Guy. 1993. Stock density indices: development, use, and limi-
tations. Reviews in Fisheries Science 1:203-222. [Was (is?) from http://web1.cnre.vt.edu/murphybr/web/Readings/Willis%2(
See Also

See psdval, psdCalc, psdAdd, PSDlit, lencat, tictactoe, lencat, and rcumsum for related
functionality.

https://fishr-core-team.github.io/FSA/articles/Computing_PSDs.html
https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

168 psdVal

Examples

#===== Random length data for Yellow Perch (for example) to the nearest mm
set.seed(633437)
yepdf <- data.frame(yepmm=round(c(rnorm(100,mean=125,sd=15),
rnorm(50,mean=200, sd=25),
rnorm(20,mean=270,sd=40)),0),
species=rep("Yellow Perch”,170))

#===== Example graphics
op <- par(mar=c(3,3,2,1),mgp=c(1.7,0.5,0))
Hemm Using 10-mm increments

psdPlot (~yepmm,data=yepdf, species="Yellow Perch”,w=10)
psdPlot (~yepmm,data=yepdf, species="Yellow Perch"”,w=10,substock.col="gray9e",
stock.col="gray30")

#-———- Same, but without the PSD values
psdPlot (~yepmm,data=yepdf, species="Yellow Perch”,w=10,psd.add=FALSE)
par (op)
psdval Finds Gabelhouse lengths (for PSD calculations) for a species.
Description

Returns a vector with the five Gabelhouse lengths for a chosen species.

Usage
psdVal(
species = "List",
group = NULL,
units = c("mm”, "cm", "in"),

addLens = NULL,
addNames = NULL,
incl.zero = TRUE,
showJustSource = FALSE,

dat = NULL
)
Arguments

species A string that contains the species name for which to find Gabelhouse lengths.
See details.

group A string that contains the sub-group of species for which to find the Gabel-
house lengths; e.g., things like “landlocked”, “lentic”.

units A string that indicates the units for the returned lengths. Choices are mm for

millimeters (DEFAULT), cm for centimeters, and in for inches.

psdVal 169

addLens A numeric vector that contains minimum length definitions for additional cate-
gories. See details.

addNames A string vector that contains names for the additional length categories added
with addLens. See details.

incl.zero A logical that indicates if a zero is included in the first position of the returned
vector (DEFAULT) or not. This position will be named “substock”. See details.

showJustSource A logical that indicates whether just the literature source information should be
returned (TRUE) or not. If TRUE this will NOT return any of the Gabelhouse
length information.

dat Data.frame of Gabelhouse length categories for all species. Defaults to ‘PSDIit*
and is generally not used by the user (this simplifies use of this function in
psdAdd).
Details

Finds the Gabelhouse lengths from data(PSD1it) for the species given in species. The species
name must be spelled exactly (including capitalization) as it appears in data(PSDlit). Type
psdVal() to see the list of species and how they are spelled.

Some species have length categories separated by sub-group. For example, length categories exist
for both lentic and lotic populations of Brown Trout. The length values for a sub-group may be
obtained by either including the species name in species and the sub-group name in group or
by using the combined species and sub-group name, with the sub-group name in parentheses, in
species. Both methods are demonstrated in the examples. Note that an error is returned if a
species has sub-groups but neither method is used to define the sub-group.#’

A zero is included in the first position of the returned vector if incl.zero=TRUE. This is useful
when computing PSD values with a data.frame that contains fish smaller than the stock length.

Additional lengths may be added to the returned vector with addLens. Names for these lengths can
be included as names in addLens or separately in addNames. If addNames is NULL and addLens
is not named then the default category names will be the lengths from addLens. The addLens
argument is useful for calculating PSD values that are different from the Gabelhouse lengths.

See examples and this article for a demonstration.

Value

A vector of minimum values for length categories for the chosen species.

IFAR Chapter

6-Size Structure.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

https://fishr-core-team.github.io/FSA/articles/Computing_PSDs.html

170 psdVal

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Guy, C.S., R.M. Neumann, and D.W. Willis. 2006. New terminology for proportional stock density
(PSD) and relative stock density (RSD): proportional size structure (PSS). Fisheries 31:86-87. [Was
(is?) from http://pubstorage.sdstate.edu/wfs/415-F.pdf.]

Guy, C.S., RM. Neumann, D.W. Willis, and R.O. Anderson. 2006. Proportional size distribution
(PSD): A further refinement of population size structure index terminology. Fisheries 32:348. [Was
(is?) from http://pubstorage.sdstate.edu/wfs/450-F.pdf.]

Willis, D.W., B.R. Murphy, and C.S. Guy. 1993. Stock density indices: development, use, and limi-
tations. Reviews in Fisheries Science 1:203-222. [Was (is?) from http://web1.cnre.vt.edu/murphybr/web/Readings/Willis % 2(

See Also

See psdCalc, psdPlot, psdAdd, PSD1it, tictactoe, lencat, and rcumsum for related functional-
ity.

Examples

#===== List all available species in PSDlit
psdval()

#===== Typical usages

psdval("Bluegill")
psdVal("Bluegill”,units="in"
psdval("Bluegill”,units="in",incl.zero=FALSE)
psdval("Bluegill”, showJustSource=TRUE)

#===== For species that have sub-groups

#--—-- using group= argument

psdvVal("Brown Trout”,group="lentic")

psdVal("Brown Trout",group="lotic")

#-———- group combined in species name, so no group= use
psdVal("Brown Trout (lentic)")

#===== For species with revised values
psdVal("Palmetto Bass")
psdvVal("Palmetto Bass (original)")

#===== Adding user-defined categories

#-—-—- with lengths and names separately in addLens= and addNames=
psdval("Bluegill”,units="in",addLens=7)

psdVal("Bluegill” units="in",addLens=7,addNames="MinLen")
psdval("Bluegill”,units="in",addLens=c(7,9),addNames=c("MinSlot"”, "MaxSlot"))
#----- with a named vector in addlLens=

psdVal("Bluegill” ,units="in",addLens=c("MinLen"=7))
psdval("Bluegill”,units="in",addLens=c("MinSlot"=7,"MaxSlot"=9))

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

PSDWRtest 171

PSDWRtest Hypothetical weight-length data for testing PSD and relative weight
functions

Description

Hypothetical weight-length and associated data. These data are useful for testing PSD and relative
weight functions (e.g., psdAdd and wrAdd).

Format

A data frame of many observations on the following 5 variables:

species Species name

location Broad location of capture
len Length in mm

wt Weightin g

sex Sex as F for female, M for male, or U or NA for unknown or unrecorded

Topic(s)
* Size structure
* Proportional size structure
* Relative stock density
* Proportional stock density
* Relative weight
 Standard weight

¢ Condition

See Also

psdAdd, psdCalc, and wrAdd

Examples

str(PSDWRtest)
peek (PSDWRtest,n=20)
unique (PSDWRtest$species)

172 rcumsum

rcumsum Computes the prior to or reverse cumulative sum of a vector.

Description

Computes the prior-to (i.e., the cumulative sum prior to but not including the current value) or
the reverse (i.e., the number that large or larger) cumulative sum of a vector. Also works for 1-
dimensional tables, matrices, and data.frames, though it is best used with vectors.

Usage

rcumsum(x)

pcumsum(x)

Arguments

X a numeric object.

Value

A numeric vector that contains the prior-to or reverse cumulative sums.

Note

An NA in the vector causes all returned values at and after the first NA for pcumsum and at and before
the last NA for rcumsum to be NA. See the examples.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail . com>

See Also

cumsum.

Examples

Simple example

cbind(vals=1:10,
cum=cumsum(1:10),
pcum=pcumsum(1:10),
rcum=rcumsum(1:10))

Example with NA

vals <- ¢(1,2,NA,3)

cbind(vals,
cum=cumsum(vals),
pcum=pcumsum(vals),

removal 173

rcum=rcumsum(vals))

Example with NA

vals <- c(1,2,NA,3,NA,4)

cbind(vals,
cum=cumsum(vals),
pcum=pcumsum(vals),
rcum=rcumsum(vals))

Example with a matrix

mat <- matrix(c(1,2,3,4,5),nrow=1)
cumsum(mat)

pcumsum(mat)

rcumsum(mat)

Example with a table (must be 1-d)
df <- sample(1:10,100,replace=TRUE)
tbl <- table(df)

cumsum(tbl)

pcumsum(tbl)

rcumsum(tbl)

Example with a data.frame (must be 1-d)
df <- sample(1:10,100,replace=TRUE)

tbl <- as.data.frame(table(df))[,-1]
cumsum(tbl)

pcumsum(tbl)

rcumsum(tbl)

removal Population estimates for k-, 3-, or 2-pass removal data.

Description

Computes estimates, with confidence intervals, of the population size and probability of capture
from the number of fish removed in k-, 3-, or 2-passes in a closed population.

Usage

removal (catch, ...)

S3 method for class 'formula'

removal (
catch,
data,
method = c("CarleStrub”, "Zippin"”, "Seber3", "Seber2"”, "RobsonRegier2", "Moran",
"Schnute”, "Burnham"),
alpha = 1,

beta = 1,

174

CS.se = c("Zippin", "alternative"),
conf.level = 0.95,

Tmult = 3,

CIMicroFish = FALSE,

)

Default S3 method:
removal (
catch,

removal

method = c("CarleStrub”, "Zippin"”, "Seber3"”, "Seber2", "RobsonRegier2", "Moran”,

"Schnute”, "Burnham"),
alpha = 1,
beta = 1,
CS.se = c("Zippin", "alternative”),
conf.level = 0.95,
Tmult = 3,
CIMicroFish = FALSE,
just.ests = FALSE,

)

S3 method for class 'removal'

coef(object, parm = c("all”, "No", "p", "p1"), as.df = FALSE,

S3 method for class 'removal'
confint(
object,
parm = c("all”, "No", "p", "p1"),
level = conf.level,
conf.level = NULL,
digits = getOption("digits"),
verbose = FALSE,
incl.est = FALSE,
as.df = FALSE,

)

S3 method for class 'removal'
summary (
object,
parm = c("all”, "No", "p", "p1"),
digits = getOption("digits"),
verbose = FALSE,
as.df = FALSE,

.2

removal

Arguments

catch

data

method

alpha

beta

CS.se

conf.level

Tmult

CIMicroFish

just.ests

object

parm

as.df

level

digits

verbose

incl.est

175

A numerical vector of catch at each pass, or a formula of the form ~catch.
Additional arguments for methods.

A data.frame from which the variables in the catch formula can be found. Not
used if catch is not a formula.

A single string that identifies the removal method to use. See details.

A single numeric value for the alpha parameter in the CarleStrub method (default
is 1).

A single numeric value for the beta parameter in the CarleStrub method (default
is 1).

A single string that identifies whether the SE in the CarleStrub method should
be computed according to Seber or Zippin.

A single number representing the level of confidence to use for constructing con-
fidence intervals. This is sent in the main removal function rather than confint.

A single numeric that will be multiplied by the total catch in all samples to
set the upper value for the range of population sizes when minimizing the log-
likelihood and creating confidence intervals for the Moran and Schnute methods.
Large values are much slower to compute, but values that are too low may re-
sult in missing the best estimate. A warning is issued if too low of a value is
suspected.

A logical that indicates whether the t value used to calculate confidence inter-
vals when method="Burnham” should be rounded to two or three decimals and
whether the confidence intervals for No should be rounded to whole numbers as
done in MicroFish 3.0. The default (=FALSE) is to NOT round the t values or
No confidence interval. This option is provided only so that results will exactly
match MicroFish results (see testing).

Deprecated as of v0.9.6. This was primarily used when using removal with a
split-and-apply approach to estimate N for multiple groups. See examples and
use of incl.ests=in confint for similar functionality.

An object saved from removal().

A specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

A logical that indicates whether the results of coef, confint, or summary should
be returned as a data.frame. Defaults to FALSE.

Not used, but here for compatibility with generic confint function.

A single numeric that controls the number of decimals in the output from summary
and confint.

A logical that indicates whether descriptive labels should be printed from summary
and if certain warnings are shown with confint.

A logical that indicated whether the parameter point estimate should be included
in the results from confint. Defaults to FALSE.

176 removal

Details

The main function computes the estimates and associated standard errors, if possible, for the initial
population size, No, and probability of capture, p, for eight methods chosen with method=. The
possible methods are:

» method="CarleStrub”: The general weighted k-pass estimator proposed by Carle and Strub
(1978). This function iteratively solves for No in equation 7 of Carle and Strub (1978).

* method="Zippin": The general k-pass estimator generally attributed to Zippin. This function
iteratively solves for No in bias corrected version of equation 3 (page 622) of Carle and Strub
(1978). These results are not yet trustworthy (see Testing section below).

* method="Seber3": The special case for k=3 estimator shown in equation 7.24 of Seber(2002).

* method="Seber2": The special case for k=2 estimator shown on page 312 of Seber(2002).

* method="RobsonRegier2": The special case for k=2 estimator shown by Robson and Regier
(1968).

* method="Moran": The likelihood method of Moran (1951) as implemented by Schnute (1983).

¢ method="Schnute"”: The likelihood method of Schnute (1983) for the model that has a dif-
ferent probability of capture for the first sample but a constant probability of capture for all
ensuing samples.

* method="Burnham": The general k-pass estimator likelihood method created by Ken Burn-
ham and presented by Van Deventer and Platts (1983). This method is used in the Microfish
software (Van Deventer 1989).

Confidence intervals for the first five methods are computed using standard large-sample normal
distribution theory. Note that the confidence intervals for the 2- and 3-pass special cases are only
approximately correct if the estimated population size is greater than 200. If the estimated popula-
tion size is between 50 and 200 then a 95% CI behaves more like a 90% CI.

Confidence intervals for the next two methods use likelihood ratio theory as described in Schnute
(1983) and are only produced for the No parameter. Standard errors are not produced with the
Moran or Schnute methods.

Confidence intervals for the last method are computed as per Ken Burnham’s instructions for the
Burnham Method (Jack Van Deventer, personal communication). Specifically, they are calculated
with the t-statistic and No-1 degrees of freedom. Please note that the MicroFish software rounds the
t-statistic before it calculates the confidence intervals about No and p. If you need the confidence
interals produced by FSA::removal to duplicate MicroFish, please use CIMicroFish=TRUE.

Value

A list with at least the following items:

* catch The original vector of observed catches.
* method The method used (provided by the user).
* Ibl A descriptive label for the method used.

* est A matrix that contains the estimates and standard errors for No and p.
In addition, if the Moran or Schnute methods are used the list will also contain

* min.nlogLH The minimum value of the negative log-likelihood function.

e Tmult The Tmult value sent by the user.

removal 177

testing

The Carle-Strub method matches the examples in Carle and Strub (1978) for No, p, and the variance
of No. The Carle-Strub estimates of No and p match the examples in Cowx (1983) but the SE of
No does not. The Carle-Strub estimates of No match the results (for estimates that they did not
reject) from Jones and Stockwell (1995) to within 1 individual in most instances and within 1% for
all other instances (e.g., off by 3 individuals when the estimate was 930 individuals).

The Seber3 results for No match the results in Cowx (1983).

The Seber2 results for No, p, and the SE of No match the results in example 7.4 of Seber (2002)
and in Cowx (1983).

The RobsonRegier2 results for No and the SE of NO match the results in Cowx (1983)

The Zippin method results do not match the examples in Seber (2002) or Cowx (1983) because
removal uses the bias-corrected version from Carle and Strub (1978) and does not use the tables in
Zippin (1958). The Zippin method is not yet trustworthy.

The Moran and Schnute methods match the examples in Schnute (1983) perfectly for all point
estimates and within 0.1 units for all confidence intervals.

The Burnham method was tested against the free (gratis) Demo Version of MicroFish 3.0. Powell
Wheeler used R to simulate 100, three-pass removal samples with capture probabilities between
0 and 1 and population sizes <= 1000. The Burnham method implemented here exactly matched
MicroFish in all 100 trials for No and p. In addition, the CIs for No exactly matched all 100
trials when CIMicroFish=TRUE. Powell was not able to check the CIs for p because the MicroFish
’Quick Population Estimate’ does not report them.

IFAR Chapter

10-Abundance from Depletion Data.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail . com>

A. Powell Wheeler, <powell.wheeler@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Carle, F.L. and M.R. Strub. 1978. A new method for estimating population size from removal data.
Biometrics, 34:621-630.

Cowx, I.G. 1983. Review of the methods for estimating fish population size from survey removal
data. Fisheries Management, 14:67-82.

Moran, P.A.P. 1951. A mathematical theory of animal trapping. Biometrika 38:307-311.

Robson, D.S., and H.A. Regier. 1968. Estimation of population number and mortality rates. pp.
124-158 in Ricker, W.E. (editor) Methods for Assessment of Fish Production in Fresh Waters. IBP
Handbook NO. 3 Blackwell Scientific Publications, Oxford.

Schnute, J. 1983. A new approach to estimating populations by the removal method. Canadian
Journal of Fisheries and Aquatic Sciences, 40:2153-2169.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

178 removal

Seber, G.A.F. 2002. The Estimation of Animal Abundance. Edward Arnold, second edition (Reprint).

van Dishoeck, P. 2009. Effects of catchability variation on performance of depletion estimators:
Application to an adaptive management experiment. Masters Thesis, Simon Fraser University.
[Was (is?) from http://rem-main.rem.sfu.ca/theses/vanDishoeckPier_2009_MRM483.pdf.]

Van Deventer, J.S. 1989. Microcomputer Software System for Generating Population Statistics
from Electrofishing Data—User’s Guide for MicroFish 3.0. USDA Forest Service, General Technical
Report INT-254. 29 p. [Was (is?) from https://relicensing.pcwa.net/documents/Library/PCWA-L

Van Deventer, J.S., and W.S. Platts. 1983. Sampling and estimating fish populations from streams.
Transactions of the 48th North American Wildlife and Natural Resource Conference. pp. 349-354.

See Also

See depletion for related functionality.

Examples

First example -- 3 passes
ct3 <- c(77,50,37)

Carle Strub (default) method
p1 <- removal(ct3)

summary(p1)
summary (p1, verbose=TRUE)
summary (p1,parm="No")
summary(p1,parm="p")
confint(p1)
confint(p1,parm="No")
confint(p1,parm="p")

Moran method

p2 <- removal(ct3,method="Moran")
summary (p2, verbose=TRUE)
confint(p2, verbose=TRUE)

#

Schnute method

p3 <- removal(ct3,method="Schnute")
summary (p3, verbose=TRUE)
confint(p3,verbose=TRUE)

Burnham method

p4 <- removal(ct3,method="Burnham")
summary (p4)
summary (p4, verbose=TRUE)
summary (p4,parm="No")

summary (p4,parm="p")
confint(p4)
confint(p4,parm="No")
confint(p4,parm="p")

Second example -- 2 passes
ct2 <- c(77,37)

removal 179

Seber method

p4 <- removal(ct2,method="Seber2")
summary (p4, verbose=TRUE)
confint(p4)

Use formula with a data.frame
d <- data.frame(ct=ct3)

pla <- removal(~ct,data=d)
summary (pla, verbose=TRUE)
confint(pla,incl.est=TRUE)

Test if catchability differs between first sample and the other samples
chi-square test statistic from negative log-likelihoods

from Moran and Schnute fits (from above)

chi2.val <- 2*(p2$min.nloglLH-p3$min.nloglLH)

p-value ... no significant difference
pchisq(chi2.val,df=1,lower.tail=FALSE)

Another LRT example ... sample 1 from Schnute (1983)

ct4 <- c(45,11,18,8)

p2a <- removal(ct4,method="Moran")

p3a <- removal(ct4,method="Schnute")

chi2.val <- 2*(p2a$min.nloglLH-p3a$min.nloglH) # 4.74 in Schnute(1983)

pchisq(chi2.val,df=1,lower.tail=FALSE) # sig diff (catchability differs)
summary (p3a)
Demonstrate multiple groups ... data in long format

create a dummy data frame
d <- data.frame(lake=factor(rep(c("Ash Tree","Bark”,"Clay"),each=5)),
year=factor(rep(c(”2010","2011","2010","2011","2010","2011"),
times=c(2,3,3,2,2,3))),
pass=factor(c(1,2,1,2,3,1,2,3,1,2,1,2,1,2,3)),
catch=c(57,34,65,34,12,54,26,9,54,27,67,34,68,35,12))

note use of confint with incl.est= and as.df=
if (require(dplyr) & require(tidyr)) {
res <- d %>%
dplyr::group_by(interaction(lake,year)) %>%
dplyr::group_modify(~confint(removal(~catch,data=.x),
incl.est=TRUE,as.df=TRUE)) %>%

tidyr::separate_wider_delim(1,names=c("lake"”,"year"),delim=".") %>%
as.data.frame() # removes tibble and grouping structure
res
3
Demonstrate multiple groups ... data in wide format
create a dummy data frame ... same data as previous ... note that this is

not an efficient way to enter data, used here just for simple example

d2w <- rbind(data.frame(lake="Ash Tree",year=2011,pass1=65,pass2=34,pass3=12),
data.frame(lake="Bark",year=2010,pass1=54,pass2=26,pass3=9),
data.frame(lake="Bark",6year=2011,pass1=54,pass2=27,pass3=NA),
data.frame(lake="Clay",year=2010,pass1=67,pass2=34,pass3=NA),

180 repeatedRows2Keep

data.frame(lake="Clay",year=2011,pass1=68,pass2=35,pass3=12))
d2w

convert to long format first

d21 <- tidyr::pivot_longer(d2w,cols=c("passl1”, "pass2"”,"pass3"),
names_to="pass",values_to="catch")

d21

then same process as previous example
if (require(dplyr)) {
res2 <- d21 %>%
dplyr::group_by(interaction(lake,year)) %>%
dplyr::group_modify(~confint(removal(~catch,data=.x),
incl.est=TRUE,as.df=TRUE)) %>%

tidyr::separate_wider_delim(1,names=c("lake"”,"year"),delim=".") %>%
as.data.frame() # removes tibble and grouping structure
res2
3
repeatedRows2Keep Find non-repeated consecutive rows in a data.frame.
Description

Finds the rows in a data.frame that are not repeats of the row immediately above or below it.

Usage

repeatedRows2Keep (
df,
cols2use = NULL,
cols2ignore = NULL,
keep = c("first”, "last")

)
Arguments

df A data.frame.

cols2use A string or numeric vector that indicates columns in df to use. Negative numeric
values will not use those columns. Cannot use both cols2use and col2ignore.

cols2ignore A string or numeric vector that indicates columns in df to ignore. Cannot use
both cols2use and col2ignore.

keep A string that indicates whether the first (DEFAULT) or last row of consecu-

tive repeated rows should be kept.

rSquared 181

Value

A single logical that indicates which rows of df to keep such that no consecutive rows (for the
columns used) will be repeated.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

Examples

testl <- data.frame(ID=1:10,

KEEP=c("First","Last","Both","Both","Both",
"Both","First"”,"Neither”,"Last","Both"),

Vi=c("a","a","a","B","b","B","A","A","A","a"),
vzzc(llan s Hall s IIAII , IIBII s HBII s Ilbll s ”All , IIAH , IIAH s Ilall))

keepFirst <- repeatedRows2Keep(testl,cols2ignore=1:2)

keepLast <- repeatedRows2Keep(testl,cols2use=3:4,keep="1last")

data.frame(test1,keepFirst,keeplLast)

droplevels(subset(testl,keepFirst)) # should be all "First” or "Both"” (7 items)
droplevels(subset(test1,keeplLast)) # should be all "Last” or "Both"” (7 items)

rSquared Extract the coefficient of determination from a linear model object.

Description

Extracts the coefficient of determination (i.e., “r-squared”) from a linear model (i.e., 1m) object.
Usage
rSquared(object, ...)

Default S3 method:
rSquared(object, ...)

S3 method for class 'lm'

rSquared(object, digits = getOption("digits"), percent = FALSE, ...)
Arguments
object An object saved from 1m.

Additional arguments for methods.
digits A single number that is the number of digits to round the returned result to.

percent A logical that indicates if the result should be returned as a percentage (=TRUE)
or as a proportion (=FALSE; default).

182 se

Details

This is a convenience function to extract the r. squared part from summary (1m).

Value

A numeric, as either a proportion or percentage, that is the coefficient of determination for a linear
model.

Examples

Iml <- Im(mirex~weight, data=Mirex)
rSquared(1lm1)
rSquared(lml,digits=3)
rSquared(1lml,digits=1,percent=TRUE)

rSquared only works with 1m objects

Not run:

nls1l <- nls(mirex~a*weight”b,data=Mirex,start=list(a=1,b=1))
rSquared(nls1)

End(Not run)

se Computes standard error of the mean.

Description

Computes the standard error of the mean (i.e., standard deviation divided by the square root of the
sample size).

Usage
se(x, na.rm = TRUE)

Arguments
X A numeric vector.
na.rm A logical that indicates whether missing values should be removed before com-
puting the standard error.
Details

The standard error of the value in vector x is simply the standard deviation of x divided by the
square root of the number of valid items in x

Value

A single numeric that is the standard error of the mean of x.

showGrowthFun 183

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

See Also

See se in sciplot for similar functionality.

Examples

example vector

X <- 1:20

se(x)

sd(x)/sqgrt(length(x)) ## matches

all return NA if missing values are not removed
x2 <= c(x,NA)
sd(x2)/sqgrt(length(x2))

Better if missing values are removed

se(x2) ## Default behavior
sd(x2,na.rm=TRUE)/sqrt(length(x2[complete.cases(x2)])) ## Matches
se(x2,na.rm=FALSE) ## Result from not removing NAs

showGrowthFun Creates a string or an expression for a specific growth function.

Description

Creates a string or expression for a specific parameterization of the von Bertalanffy, Gompertz,
Richards, logistic growth functions, as well as the Schnute and Schnute-Richards growth functions.
Parameters may be replaced with values from a model fit. The string or expression can be added
to plots as titles, annotations, etc. The string/expression can also be plotted to a blank plot with
plot=TRUE to see the equation of the growth function.

Usage

showGrowthFun(
type = c("von Bertalanffy", "Gompertz"”, "Richards”, "logistic"”, "Schnute",
"Schnute-Richards"),

param = 1,
pname = NULL,
case = NULL,

constvals = NULL,
parse = FALSE,
yvar = NULL,

xvar = NULL,

fit = NULL,

184 showGrowthFun

digits = NULL,
stackWhere = FALSE,

A string or expression representing the equation of the growth function given in type and param/pname.

plot = FALSE,
)
Arguments

type A single string (i.e., one of “von Bertalanffy”, “Gompertz”, “logistic”, “Richards”,
“Schnute”, “Schnute-Richards”) that indicates the type of growth function to
show.

param A single numeric that indicates the specific parameterization of the growth func-
tion. Will be ignored if pname is non-NULL. See details.

pname A single character that indicates the specific parameterization of the growth
function. If NULL then param will be used. See details.

case A numeric that indicates the specific case of the Schnute function to use.

constvals A NAMED numeric vector of constant values (either lengths or ages) to be used
in some of the von Bertalanffy parameterizations. See details.

parse A logical indicating whether a string (FALSE; default) or an expression (TRUE)
should be returned.

yvar A string that represents the right-hand-side (or y-variable) of the equation. De-
faults to NULL such that a reasonable default for the model type will be chosen.

xvar A string that represents the left-hand-side (or x) variable) of the equation. De-
faults to NULL such that ¢ will be used for models with ages and Delta * t will
be used for models with tag-recapture data.

fit An optional nls (or related) object from fitting data to the growth function. If
NULL then a string/expression with symbols for parameters will be returned. If
an nls object then values for the parameters will be extracted from fit and put
in place of the parameters symbols.

digits An optional numerical vector for which to round the parameter values. Only
used if fit is not NULL. Digits must be in the same order as the order of param-
eters for the growth model as in makeGrowthFun and should include values for
the model constants given in constvals (if so used).

stackWhere A logical that indicates whether strings/expressions that use “where” to explain
a constant or function that simplifies the expression of the equation should be
shown in “inline” (FALSE; default) or “stacked” (TRUE). See examples.

plot A logical for whether the expression should be shown on a “blank™ plot. See
examples.
Arguments for plot. In particular use cex= to make the expression larger and
easier to read. See examples.

Value

showGrowthFun 185

See Also

See makeGrowthFun to make functions that correspond to these expressions. Also see this article
and examples for how to use this function in practice.

Examples

#===== The string (first) and expression (second) for default type="von Bertalanffy")
showGrowthFun()

showGrowthFun(parse=TRUE)

showGrowthFun(pname="Typical")

#===== Show on a plot, and then larger
showGrowthFun(plot=TRUE)
showGrowthFun(plot=TRUE, cex=2)

#===== Other growth functions
showGrowthFun(type="Richards”,param=3,plot=TRUE, cex=1.5)
showGrowthFun(type="Schnute"”,case=2,plot=TRUE, cex=1.5)

#===== Growth functions which use "where"” to define simplifying constants/functions
showGrowthFun(pname="Somers" ,plot=TRUE)
showGrowthFun(pname="Somers",stackWhere=TRUE,plot=TRUE, cex=1.25)

#===== Multiple expressions in one plot (need to use parse=TRUE here)

op <- par(mar=c(0.1,0.1,0.1,0.1))

plot (0, type="n",xlab="" ylab="" x1lim=c(0,1),ylim=c(@,3),xaxt="n",yaxt="n")
text(0,2.5,"0riginal:",pos=4)

text(0.5,2.5, showGrowthFun(type="von Bertalanffy"”,6 pname="0Original"”,6parse=TRUE))
text(0,1.5,"Typical:",pos=4)

text(0.5,1.5,showGrowthFun(type="von Bertalanffy” pname="Typical"”, parse=TRUE))
text(0,0.5,"Francis: ", pos=4)

text(0.5,0.5, showGrowthFun(type="von Bertalanffy” K pname="Francis", parse=TRUE))
par(op)

#===== Put expression in title or otherwise on the plot

Make a von Bertalanffy function

vb1 <- makeGrowthFun()

Get and save the expression of the von Bertalanffy growth function
tmp <- showGrowthFun(parse=TRUE)

Make plot and put expression in plot title
ages <- 1:20
plot(vb1(ages,Linf=20,K=0.3,t0=-0.2)~ages, type="b",pch=19,ylab="Length” ,main=tmp)

Put expression in plot body (as demo)
text (15,10, tmp)

#===== Fill expression with values from model fit

Fit von Bertalanffy to GrowthDatal data

sv <- findGrowthStarts(tlV~age,data=GrowthDatal)

rv <- nls(tlV~vb1(age,Linf,K,t0),data=GrowthDatal,start=sv)

https://fishr-core-team.github.io/FSA/articles/Fitting_Growth_Functions.html

186 SMBassLS

Show expression with values

showGrowthFun(fit=rv,plot=TRUE)

Same, but control decimals (Linf, K, and then t@ order as in vb1())
showGrowthFun(fit=rv,digits=c(1,5,3),plot=TRUE)

Same, but change variables

showGrowthFun(fit=rv,yvar="Length",h xvar="Age",plot=TRUE)

Put on a plot

plot(tlV~age,data=GrowthDatal,ylab="Length (mm)",xlab="Age (yrs)")
curve(vb1(x,Linf=coef(rv)),from=0,to=15,col="blue”,1lwd=2,add=TRUE)
text (10,150, showGrowthFun(fit=rv,parse=TRUE))

Put on a ggplot (note parse=TRUE is outside showGrowthFun)

Not run:

library(ggplot2)

ggplot(data=GrowthDatal,mapping=aes(y=tlV,x=age)) +
geom_point() +
stat_function(fun=vb1,args=list(Linf=coef(rv)),color="blue”,linewidth=1) +
annotate(geom="text",label=showGrowthFun(fit=rv),parse=TRUE,size=4,x=10,y=150) +
labs(y="Length (mm)",6x="Age (yrs)") +
theme_bw()

End(Not run)

SMBassLS Catch-effort data for Little Silver Lake (Ont) Smallmouth Bass.

Description

Catch-effort data for Smallmouth Bass (Micropterus dolomieu) in Little Silver Lake, Ont.

Format
A data frame with 10 observations on the following 3 variables:

day Day of the catch
catch Number of smallmouth bass caught

effort Number of traps set per day

Topic(s)
* Population size
e Abundance
* Depletion methods
* Leslie method
¢ DeLury method
* Catchability

SMBassWB 187

Source
From Omand, D.N. 1951. A study of populations of fish based on catch-effort statistics. Journal of
Wildlife Management, 15:88-98. CSV file

See Also

Used in depletion examples.

Examples

str(SMBassLS)
head(SMBassLS)

SMBassWB Growth increment data for West Bearskin Lake, MN, Smallmouth Bass.

Description

Growth data from Smallmouth Bass (Micropterus dolomieu) captured in West Bearskin Lake, MN.
Five samples were collected over three years (1988-1990) with two gears (fall — trapnets, spring —
electrofishing).

Format
A data frame of 445 observations on the following 20 variables:

species Species of the fish (SMB for each fish in this file)
lake Lake fish was captured in (WB for each fish in this file)
gear Gear used to capture the fish (T=Trapnet and E=Electrofishing)
yearcap Year fish was captured (1988, 1989, or 1990)

fish A unique identifier for each fish

agecap Assigned age-at-capture for the fish (from scales)
lencap Total length-at-capture for the fish (mm)

anul Magnified scale radius (mm) to the 1st annulus
anu2 Magnified scale radius (mm) to the 2nd annulus
anu3d Magnified scale radius (mm) to the 3rd annulus
anu4 Magnified scale radius (mm) to the 4th annulus
anuS Magnified scale radius (mm) to the 5th annulus
anu6 Magnified scale radius (mm) to the 6th annulus
anu7 Magnified scale radius (mm) to the 7th annulus
anu8 Magnified scale radius (mm) to the 8th annulus

anu9 Magnified scale radius (mm) to the 9th annulus

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/SMBassLS.csv

188 SpotVAI

anul0 Magnified scale radius (mm) to the 10th annulus
anull Magnified scale radius (mm) to the 11th annulus
anul2 Magnified scale radius (mm) to the 12th annulus

radcap Total scale radius at time of capture

Topic(s)

* Growth increment analysis
* Weisberg linear growth model

¢ Back-Calculation

Note

Data are in one-fish-per-line format.

Source

Data from the linear growth modeling software distributed in support of Weisberg, S. 1993. Using
hard-part increment data to estimate age and environmental effects. Canadian Journal of Fisheries
and Aquatic Sciences 50:1229-1237. CSV file

See Also
Used in capHistSum and mrClosed examples. Also see wblake from alr4 for the same dataset with
only the agecap, lencap, and radcap variables.

Examples

str(SMBassWB)
head (SMBassWB)

SpotVA1 Age and length of spot.

Description

Ages (from otoliths) and lengths of Virginia Spot (Leiostomus xanthurus).

Format
A data frame of 403 observations on the following 2 variables:

tl Measured total lengths (in inches)

age Ages assigned from examination of otoliths

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/SMBassWB.csv

srFuns 189

Details

Final length measurements were simulated by adding a uniform error to the value at the beginning
of the length category.

Topic(s)
¢ Growth

* von Bertalanffy

Source

Extracted from Table 1 in Chapter 8 (Spot) of the VMRC Final Report on Finfish Ageing, 2002 by
the Center for Quantitative Fisheries Ecology at Old Dominion University. CSV file

See Also

Used in vbFuns, vbStarts, and nlsTracePlot examples. Also see SpotVA2 in FSAdata for related
data.

Examples

str(SpotVA1)
head (SpotVA1)
plot(tl~age,data=SpotVAl)

srFuns Creates a function for a specific parameterization of a common stock-
recruitment function .

Description

Creates a function for a specific parameterization of a “Beverton-Holt”, “Ricker”, “Shepherd”, or
“Saila-Lorda” stock-recruitment function. Use srFunShow() to see the equations of each function.

Usage

srFuns(
type = c("BevertonHolt”, "Ricker"”, "Shepherd”, "SailalLorda"”, "independence"),
param = 1,
simple = FALSE,
msg = FALSE

)

srFunShow(

type = c("BevertonHolt"”, "Ricker”, "Shepherd”, "Sailalorda"),
param = 1,

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/SpotVA1.csv

190

plot = FALSE,

Arguments

type

param

simple

msg

plot

Value

srFuns

A string that indicates the type of stock-recruitment function.

A single numeric that indicates the parameterization of the stock-recruitment
function.

A logical that indicates whether the user should be allowed to send all parameter
values in the first parameter argument (=FALSE; default) or whether all individual
parameters must be specified (=TRUE).

A logical that indicates whether a message about the function and parameter
definitions should be output (=TRUE) or not (=FALSE; default).

A logical that indicates whether the growth function expression should be shown
as an equation in a simple plot.

Not implemented.

srFuns returns a function that can be used to predict recruitment given a vector of stock sizes and
values for the function parameters. The result should be saved to an object that can then be used as a
function name. When the resulting function is used, the parameters are ordered as shown when the
definitions of the parameters are printed after the function is called (assuming that msg=TRUE). The
values for both/all parameters can be included as a vector of length two/three in the first parameter
argument. If simple=FALSE then the values for all parameters can be included as a vector in the
first parameter argument. If simple=TRUE then all parameters must be declared individually in each
function. The resulting function is somewhat easier to read when simple=TRUE.

srFunShow returns an expression that can be use with plotmath to show the function equation in a
pretty format. See examples.

IFAR Chapter

13-Recruitment.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>, thanks to Gabor Grothendieck for a hint about using

get().

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Beverton, R.J.H. and S.J. Holt. 1957. On the dynamics of exploited fish populations, Fisheries
Investigations (Series 2), volume 19. United Kingdom Ministry of Agriculture and Fisheries, 533

Pp-

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

srFuns 191

Iles, T.C. 1994. A review of stock-recruitment relationships with reference to flatfish populations.
Netherlands Journal of Sea Research 32:399-420.

Quinn II, T.J. and R.B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press.

Ricker, W.E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada
11:559-623.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Tech-
nical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. [Was (is?) from
http://www.dfo-mpo.gc.ca/Library/1485.pdf.]

Shepherd, J. 1982. A versatile new stock-recruitment relationship for fisheries and construction of
sustainable yield curves. Journal du Conseil International pour 1I’Exploration de la Mar 40:67-75.

See Also

See srStarts for related functionality.

Examples

See the formulae

Simple Examples

show what a message looks like with the function definition
srFuns("Ricker"”,msg=TRUE)

create some dummy stock data
stock <- seq(0.01,1000,length.out=199)

Beverton-Holt #1 parameterization
(bh1 <= srFuns())
plot(bh1(stock,a=0.5,b=0.01)~stock, type="1",1wd=2,ylab="Recruits”, xlab="Spawners”,ylim=c(0,50))

Ricker #1 parameterization
(r1 <- srFuns("Ricker"))
lines(r1(stock,a=0.5,b=0.005)~stock,lwd=2,col="red")

Shephered parameterization
(s1 <= srFuns("Shepherd”))
lines(s1(stock,a=0.5,b=0.005,c=2.5)~stock,lwd=2,col="blue")

Saila-Lorda parameterization
(sl1 <- srFuns("”SailalLorda"))
lines(sl1(stock,a=0.5,b=0.005,c=1.05)~stock,lwd=2,col="salmon")

Examples of fitting stock-recruitment functions

Fitting the Beverton-Holt #1 parameterization with multiplicative errors

bh1s <- srStarts(recruits~stock,data=CodNorwegian)

fitl <- nls(log(recruits)~log(bh1(stock,a,b)),data=CodNorwegian,start=bhils)

summary (fit1,correlation=TRUE)
plot(recruits~stock,data=CodNorwegian,pch=19,x1im=c(0,200))

curve(bh1(x,a=coef (fit1)[1],b=coef(fit1)[2]),from=0,t0=200,col="red",1lwd=3,add=TRUE)

Fitting the Ricker #3 parameterization with multiplicative errors

192 srStarts

r3 <- srFuns("Ricker”,param=3)

r3s <- srStarts(recruits~stock,data=CodNorwegian, type="Ricker" 6 param=3)

fit2 <- nls(log(recruits)~log(r3(stock,a,Rp)),data=CodNorwegian,start=r3s)

summary (fit2,correlation=TRUE)

curve(r3(x,a=coef (fit2)[1]1,Rp=coef (fit2)[2]),from=0,to=200,col="blue”,1lwd=3,add=TRUE)

S HEHHHEHEHEEEHEE A HEEHHEE R HHEHHEEEEHBEHEEHHHEHE BB
Create expressions of the functions

HHHEHHHEHEHE AR AR R A
Simple example

srFunShow()

srFunShow(plot=TRUE)

srFunShow("BevertonHolt”,1,plot=TRUE)

Get and save the expression

(tmp <- srFunShow("BevertonHolt",1))

Use expression as title on a plot

plot(bh1(stock,a=0.5,b=0.01)~stock, type="1",ylim=c(0@,50),
ylab="Recruits"”,xlab="Spawners"”,main=tmp)

Put expression in the main plot

text (800,10, tmp)

Put multiple expressions on a plot

op <- par(mar=c(0.1,0.1,0.1,0.1))

plot (0, type="n",xlab="",ylab="",x1lim=c(0,1),ylim=c(0Q,3),xaxt="n",yaxt="n")

text(0,2.5, " "Beverton-Holt #1:",pos=4)

text(0.5,2.5,srFunShow("BevertonHolt”,1))

text(0,1.5,"Ricker #2:",pos=4)

text(0.5,1.5,srFunShow("Ricker”,2))

text(0,0.5, "Shepherd:",pos=4)

text(0.5,0.5,srFunShow("Shepherd”))

par(op)
srStarts Finds reasonable starting values for parameters in specific parame-
terizations of common stock-recruitment models.
Description

Finds reasonable starting values for parameters in specific parameterizations of the “Beverton-
Holt”, “Ricker”, “Shepherd”, or “Saila-Lorda” stock-recruitment models. Use srFunShow() to
see the equations of each model.

Usage

srStarts(
formula,
data = NULL,
type = c("BevertonHolt"”, "Ricker”, "Shepherd”, "Sailalorda"”, "independence"),
param = 1,

srStarts 193

fixed = NULL,

plot = FALSE,
col.mdl = "gray70",
lwd.mdl = 3,
lty.mdl = 1,
cex.main = 0.9,
col.main = "red",

dynamicPlot = FALSE,

)
Arguments

formula A formula of the form Recruits~Stock.

data A data frame in which Recruits and Stock are found.

type A string that indicates the type of the stock-recruitment model. Must be one of
"BevertonHolt"”, "Ricker"”, "Shepherd”, or "SailalLorda".

param A numeric that indicates the parameterization of the stock-recruitment model
type. This is ignored if type="Shepherd” or type="Sailalorda"”

fixed A named list that contains user-defined rather than automatically generated (i.e.,
fixed) starting values for one or more parameters. See details.

plot A logical that indicates whether or not a plot of the data with the model fit at the
starting values superimposed is created.

col.mdl A color for the model when plot=TRUE.

lwd.mdl A line width for the model when plot=TRUE.

lty.mdl A line type for the model when plot=TRUE.

cex.main A character expansion value for the main title when plot=TRUE.

col.main A color for the main title when plot=TRUE.

dynamicPlot DEPRECATED.

Further arguments passed to the methods.

Details

This function attempts to find reasonable starting values for a variety of parameterizations of the
“Beverton-Holt”, “Ricker”, “Shepherd”, or “Saila-Lorda” stock-recruitment models. There is no
guarantee that these starting values are the ‘best’ starting values. One should use them with caution
and should perform sensitivity analyses to determine the impact of different starting values on the
final model results.

Starting values for the first parameterization of the Beverton-Holt model were derived by linearizing
the function (inverting both sides and simplifying), fitting a linear model to the observed data, and
extracting parameter values from the corresponding linear model parameters. Starting values for
the other parameterizations of the Beverton-Holt model were derived from known relationships
between the parameters of each parameterization and the first parameterization. If the computed
starting value for the Rp parameter was larger than the largest observed recruitment value, then the
starting value for Rp was set to the largest observed recruitment value.

194 srStarts

Starting values for the Shepherd function were the same as those for the first parameterization of
the Beverton-Holt function with the addition that c=1.

Starting values for the Ricker parameterizations followed the same general procedure as described
for the Beverton-Holt parameterizations. If the computed starting value for atilde was less than
zero then the starting value was set to 0.00001.

Starting values for the Saila-Lorda function were the same as those for the first parameterization of
the Ricker function with the addition that c=1.

Value

A list that contains reasonable starting values. Note that the parameters will be listed in the same
order and with the same names as listed in srFuns.

IFAR Chapter

13-Recruitment.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Beverton, R.J.H. and S.J. Holt. 1957. On the dynamics of exploited fish populations, Fisheries
Investigations (Series 2), volume 19. United Kingdom Ministry of Agriculture and Fisheries, 533

Pp-

Iles, T.C. 1994. A review of stock-recruitment relationships with reference to flatfish populations.
Netherlands Journal of Sea Research 32:399-420.

Quinn II, T.J. and R.B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press.

Ricker, W.E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada
11:559-623.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Tech-
nical Report Bulletin 191, Bulletin of the Fisheries Research Board of Canada. [Was (is?) from
http://www.dfo-mpo.gc.ca/Library/1485.pdf.]

Shepherd, J. 1982. A versatile new stock-recruitment relationship for fisheries and construction of
sustainable yield curves. Journal du Conseil International pour 1I’Exploration de la Mar 40:67-75.

See Also

See srFunShow and srFuns for related functionality. See nlsTracePlot for help troubleshooting
nonlinear models that don’t converge.

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

Summarize

Examples

Simple Examples

srStarts(recruits~stock,data=CodNorwegian)
srStarts(recruits~stock,data=CodNorwegian,param=2)
srStarts(recruits~stock,data=CodNorwegian, param=3)
srStarts(recruits~stock,data=CodNorwegian, param=4)
srStarts(recruits~stock,data=CodNorwegian, type="Ricker")

srStarts(recruits~stock,data=CodNorwegian, type="Ricker",param=2)
srStarts(recruits~stock,data=CodNorwegian, type="Ricker"”,param=3)

srStarts(recruits~stock,data=CodNorwegian, type="Shepherd")
srStarts(recruits~stock,data=CodNorwegian, type="Sailalorda")

srStarts(recruits~stock,data=CodNorwegian, type="independence")

Simple Examples with a Plot

srStarts(recruits~stock,data=CodNorwegian, type="Ricker",plot=TRUE)
srStarts(recruits~stock,data=CodNorwegian, type="BevertonHolt", plot=TRUE)
srStarts(recruits~stock,data=CodNorwegian, type="Shepherd”,plot=TRUE)
srStarts(recruits~stock,data=CodNorwegian, type="Sailalorda",plot=TRUE)
srStarts(recruits~stock,data=CodNorwegian, type="independence”,plot=TRUE)

See examples in srFuns() for use of srStarts() when fitting stock-recruit models

195

Summarize

Summary statistics for a numeric variable.

Description

Summary statistics for a single numeric variable, possibly separated by the levels of a factor variable

or variables. This function is very similar to summary for a numeric variable.

Usage

Summarize(object,

Default S3 method:

>

Summarize(
object,
digits = getOption("digits"),
na.rm = TRUE,
exclude = NULL,
nvalid = c("different”, "always", "never”),
percZero = c("different”, "always"”, "never"),

S3 method for class 'formula'

Summarize(

196

Summarize

object,
data = NULL,
digits = getOption("digits"),
na.rm =
exclude = NULL,
nvalid = c("different”, "always", "never”),
percZero = c("different”, "always"”, "never"),
)
Arguments
object A vector of numeric data.
Not implemented.
digits A single numeric that indicates the number of decimals to round the numeric
summaries.
na.rm A logical that indicates whether numeric missing values (NA) should be removed
(=TRUE, default) or not.
exclude A string that contains the level that should be excluded from a factor variable.
nvalid A string that indicates how the “validn” result will be handled. If "always"
then “validn” will always be shown and if "never"” then “validn” will never
be shown. However, if "different” (DEFAULT), then “validn” will only be
shown if it differs from “n” (or if at least one group differs from “n” when
summarized by multiple groups).
percZero A string that indicates how the “percZero” result will be handled. If "always”
then “percZero” will always be shown and if "never” then “percZero” will
never be shown. However, if "different” (DEFAULT), then “percZero” will
only be shown if it is greater than zero (or if at least one group is greater than
zero when summarized by multiple groups).
data A data.frame that contains the variables in formula.
Details

This function is primarily used with formulas of the following types (where quant and factor
generically represent quantitative/numeric and factor variables, respectively):

Formula
~quant
quant~factor

quant~factorixfactor?2

Description of Summary
Numerical summaries (see below) of quant.
Summaries of quant separated by levels in factor.

Numerical summaries include all results from summary (min, Q1, mean, median, Q3, and max) and
the sample size, valid sample size (sample size minus number of NAs), and standard deviation (i.e.,
sd). NA values are removed from the calculations with na.rm=TRUE (the DEFAULT). The number
of digits in the returned results are controlled with digits=.

Summaries of quant separated by the combined levels in factor1 and factor2.

Summarize 197

Value

A named vector or data frame (when a quantitative variable is separated by one or two factor vari-
ables) of summary statistics for numeric data.

Note

Students often need to examine basic statistics of a quantitative variable separated for different
levels of a categorical variable. These results may be obtained with tapply, by, or aggregate (or
with functions in other packages), but the use of these functions is not obvious to newbie students
or return results in a format that is not obvious to newbie students. Thus, the formula method
to Summarize allows newbie students to use a common notation (i.e., formula) to easily compute
summary statistics for a quantitative variable separated by the levels of a factor.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail. com>

See Also

See summary for related one dimensional functionality. See tapply, summaryBy in doBy, describe
in psych, describe in prettyR, and basicStats in fBasics for similar “by” functionality.

Examples

Create a data.frame of "data”

n <- 102

d <- data.frame(y=c(@,0,NA,NA,NA, runif(n-5)),
w=sample(7:9,n,replace=TRUE),
v=sample(@:2,n,replace=TRUE),
gl=factor(sample(c("A","B","C",NA),n,replace=TRUE)),
g2=factor(sample(c("male”,"female"”, "UNKNOWN"),n,replace=TRUE)),
g3=sample(c("a","b","c","d"),n,replace=TRUE),
stringsAsFactors=FALSE)

typical output of summary() for a numeric variable
summary (d$y)

this function
Summarize(d$y,digits=3)
Summarize(~y,data=d,digits=3)
Summarize(y~1,data=d,digits=3)

note that nvalid is not shown if there are no NAs and
percZero is not shown if there are no zeros
Summarize(~w,data=d,digits=3)
Summarize(~v,data=d,digits=3)

note that the nvalid and percZero results can be forced to be shown
Summarize(~w,data=d,digits=3,nvalid="always",percZero="always")

Numeric vector by levels of a factor variable

198 sumTable

Summarize(y~gl,data=d,digits=3)
Summarize(y~g2,data=d,digits=3)
Summarize(y~g2,data=d,digits=3,exclude="UNKNOWN")

Numeric vector by levels of two factor variables
Summarize(y~gl+g2,data=d,digits=3)
Summarize(y~gl+g2,data=d,digits=3,exclude="UNKNOWN")

What happens if RHS of formula is not a factor
Summarize(y~w,data=d,digits=3)

Summarizing multiple variables in a data.frame (must reduce to numerics)
lapply(as.list(d[,1:3]),Summarize,digits=4)

sumTable Creates a one- or two-way table of summary statistics.

Description

Creates a one- or two-way table of summary statistics for a quantitative variable.

Usage

sumTable(formula, ...)

S3 method for class 'formula'

sumTable(formula, data = NULL, FUN = mean, digits = getOption("digits"), ...)
Arguments
formula A formula with a quantitative variable on the left-hand-side and one or two factor

variables on the right-hand-side. See details.
Other arguments to pass through to FUN.
data An optional data frame that contains the variables in formula.

FUN A scalar function that identifies the summary statistics. Applied to the quanti-
tative variable for all data subsets identified by the combination of the factor(s).
Defaults to mean.

digits A single numeric that indicates the number of digits to be used for the result.

Details

The formula must be of the form quantitative~factor or quantitative~factorxfactor2 where
quantitative is the quantitative variable to construct the summaries for and factor and factor?2
are factor variables that contain the levels for which separate summaries should be constructed. If
the variables on the right-hand-side are not factors, then they will be coerced to be factors and a
warning will be issued.

tictactoe 199

This function is largely a wrapper to tapply(), but only works for one quantitative variable on the
left-hand-side and one or two factor variables on the right-hand-side. Consider using tapply for
situations with more factors on the right-hand-side.

Value

A one-way array of values if only one factor variable is supplied on the right-hand-side of formula.
A two-way matrix of values if two factor variables are supplied on the right-hand-side of formula.
These are the same classes of objects returned by tapply.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail . com>

See Also

See tapply for a more general implementation. See Summarize for a similar computation when
only one factor variable is given.

Examples

The same examples as in the old aggregate.table in gdata package

but data in data.frame to illustrate formula notation

d <- data.frame(gl=sample(letters[1:5], 1000, replace=TRUE),
g2=sample(LETTERS[1:3], 1000, replace=TRUE),
dat=rnorm(1000))

sumTable(dat~gl*g2,data=d,FUN=1ength) # get sample size
sumTable(dat~gl1*g2,data=d,FUN=validn) # get sample size (better way)
sumTable(dat~gl*g2,data=d, FUN=mean) # get mean
sumTable(dat~gl1*g2,data=d, FUN=sd) # get sd

sumTable(dat~gl*g2,data=d,FUN=sd,digits=1) # show digits= argument

Also demonstrate use in the 1-way example -- but see Summarize()
sumTable(dat~g1,data=d,FUN=validn)
sumTable(dat~g1,data=d, FUN=mean)

Example with a missing value (compare to above)
d$dat[1] <- NA

sumTable(dat~gl,data=d,FUN=validn) # note use of validn
sumTable(dat~g1,data=d, FUN=mean,na.rm=TRUE)

tictactoe Construct a base tic-tac-toe plot for presenting predator-prey PSD val-
ues.

200

Description

tictactoe

Construct a base tic-tac-toe plot for presenting predator-prey PSD values. Predator-prey PSD values
are added with plotCI from plotrix.

Usage

tictactoe(

predobj
preyobj
predlab
preylab
obj.col

obj.trans

bnd.col
bnd.1lwd
bnd.1lty

Arguments

predobj
preyobj
predlab
preylab
obj.col

obj.trans

bnd.col
bnd. 1wd

bnd. 1ty

Details

c(30, 70),
c(30, 70),
"Predator PSD",
"Prey PSD",
"black”,

=0.2,

"black”,

1,

2

A vector of length 2 that contains the target objective range for the predator.
A vector of length 2 that contains the target objective range for the prey.

A string representing a label for the x-axis.

A string representing a label for the y-axis.

A string designating a color to which the target objective regions should be
shaded.

A numeric (decimal) that indicates the level of transparency for marking the
target objective regions.

A string that indicates a color for the boundaries of the target objective regions.

A numeric that indicates the line width for the boundaries of the target objective
regions.

A numeric that indicates the line type for the boundaries of the target objective
regions.

This function simply creates a base tic-tac-toe plot. Observed values, with confidence intervals, are
added to this plot with plotCI from plotrix; see examples.

Value

None. However, a graphic is produced.

IFAR Chapter

6-Size Structure.

tictactoe 201

Author(s)

Derek H. Ogle, <DerekOgle51@gmail . com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

See Also

See psdVal and psdCalc for related functionality.

Examples

Create hypothetical data for plotting one point .. similar to what might come from psdCalc()
prey <- c(45.4,30.2,56.8)

pred <- c(24.5,10.2,36.7)

names(prey) <- names(pred) <- c("Estimate”,"”95% LCI","95% UCI")

prey

pred

tictactoe()

if (require(plotrix)) {
plotCI(prey[1],pred[1],li=prey[2],ui=prey[3],err="x",pch=16,add=TRUE)
plotCI(prey[1],pred[1],li=pred[2],ui=pred[3],err="y", pch=16,add=TRUE)

3

Create hypothetical data for plotting three points ... similar to what might come from psdCalc()
prey <- rbind(c(45.4,30.2,56.8),
c(68.2,56.7,79.4),

c(17.1, 9.5,26.3))
pred <- rbind(c(24.5,10.2,36.7),
c(14.2, 7.1,21.3),

c(16.3, 8.2,24.4))
colnames(prey) <- colnames(pred) <- c("Estimate”,"95% LCI","95% UCI")
prey
pred

tictactoe()

if (require(plotrix)) {
plotCI(prey[,1],pred[,1]1,1li=prey[,2],ui=prey[,3],err="x",pch=16,add=TRUE)
plotCI(prey[,1],pred[,1],li=pred[,2],ui=pred[,3],err="y",pch=16,add=TRUE)

}

lines(prey[,1],pred[,11)

text(prey[,1]1,pred[,1],labels=c(2010,2011,2012),adj=c(-0.5,-0.5))

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

202 validn

validn Finds the number of valid (non-NA) values in a vector.

Description

Finds the number of valid (non-NA) values in a vector.

Usage

validn(object)

Arguments

object A vector.

Value

A single numeric value that is the number of non-NA values in a vector.

IFAR Chapter

2-Basic Data Manipulations.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

See Also

See valid.n in plotrix and nobs in gdata for similar functionality. See is.na for finding the
missing values.

Examples

junk1 <- ¢(1,7,2,4,3,10,NA)

junk2 <- c("Derek"”,"Hugh","Ogle","Santa"”,"Claus"”, "Nick"”,NA,NA)
junk3 <- factor(junk2)

junk4 <- c(TRUE,TRUE, FALSE, FALSE, FALSE, TRUE,NA,NA)

junk5 <- data.frame(junk1)

junk6 <- data.frame(junk3)

validn(junk1)
validn(junk2)
validn(junk3)
validn(junk4)
validn(junk5)
validn(junk6)

vbStarts 203

vbStarts Find reasonable starting values for a von Bertalanffy growth function.

Description

DEPRECATED (as of v0.10.0). Finds reasonable starting values for the parameters in a specific
parameterization of the von Bertalanffy growth function.

Usage

vbStarts(
formula,
data = NULL,
param = c("Typical”, "typical”, "Traditional”, "traditional”, "BevertonHolt",
"Original”, "original”, "vonBertalanffy”, "GQ", "GallucciQuinn", "Mooij", "Weisberg",
"Ogle"”, "Schnute”, "Francis”, "Somers”, "Somers2", "Pauly"),
type = param,
fixed = NULL,
methd = c("yngAge", "poly"),
methLinf = c("Walford”, "oldAge”, "longFish”, "poly"),
num4Linf = 1,
ages2use = NULL,
methEV = c("means”, "poly"),
valOgle = NULL,

plot = FALSE,
col.mdl = "gray70",
lwd.mdl = 3,
lty.mdl = 1,
cex.main = 0.9,
col.main = "red”,

dynamicPlot = FALSE,

)
Arguments
formula A formula of the form len~age.
data A data frame that contains the variables in formula.
type, param A string that indicates the parameterization of the von Bertalanffy model.
fixed A named list that contains user-defined rather than automatically generated (i.e.,
fixed) starting values for one or more parameters. See details.
metho A string that indicates how the t0 and LO parameters should be derived. See

details.

methLinf A string that indicates how Linf should be derived. See details.

204 vbStarts

num4Linf A single numeric that indicates how many of the longest fish (if methLinf="1ongFish")
or how any of the oldest ages (if methLinf="0ldAge") should be averaged to
estimate a starting value for Linf.

ages2use A numerical vector of the two ages to be used in the Schnute or Francis param-
eterizations. See details.

methEV A string that indicates how the lengths of the two ages in the Schnute parameter-
ization or the three ages in the Francis parameterization should be derived. See
details.

valOgle A single named numeric that is the set Lr or tr value for use in type="0gle".
See details.

plot A logical that indicates whether a plot of the data with the superimposed model
fit at the starting values should be created.

col.mdl A color for the model when plot=TRUE.

lwd.mdl A line width for the model when plot=TRUE.

l1ty.mdl A line type for the model when plot=TRUE.

cex.main A character expansion value for the main title when plot=TRUE.

col.main A color for the main title when plot=TRUE.

dynamicPlot DEPRECATED.

Further arguments passed to the methods.

Details
DEPRECATED ... use findGrowthStarts instead.

This function attempts to find reasonable starting values for a variety of parameterizations of the von
Bertalanffy growth function. There is no guarantee that these starting values are the ‘best’ starting
values. One should use them with caution and should perform sensitivity analyses to determine the
impact of different starting values on the final model results.

If methLinf="Walford", then the Linf and K parameters are estimated via the concept of the Ford-
Walford plot. If methLinf="oldAge" then Linf is estimated as the mean length of the num4Linf
longest observed lengths.

The product of the starting values for Linf and K is used as a starting value for omega in the
GallucciQuinn and Mooij parameterizations. The result of log(2) divided by the starting value for
K is used as the starting value for t50 in the Weisberg parameterization.

If meth@="yngAge", then a starting value for tO or L0 is found by algebraically solving the typical or
original parameterization, respectively, for tO or LO using the mean length of the first age with more
than one data point as a “known” quantity. If meth@="poly" then a second-degree polynomial
model is fit to the mean length-at-age data. The tO starting value is set equal to the root of the
polynomial that is closest to zero. The LO starting value is set equal to the mean length at age-0
predicted from the polynomial function.

Starting values for the L1 and L3 parameters in the Schnute parameterization and the L1, L2, and
L3 parameters in the Francis parameterization may be found in two ways. If methEV="poly", then
the starting values are the predicted length-at-age from a second-degree polynomial fit to the mean
lengths-at-age data. If methEV="means" then the observed sample means at the corresponding ages
are used. In the case where one of the supplied ages is fractional, then the value returned will be

vbStarts 205

linearly interpolated between the mean lengths of the two closest ages. The ages to be used for L1
and L3 in the Schnute and Francis parameterizations are supplied as a numeric vector of length 2
in ages2use=. If ages2use=NULL then the minimum and maximum observed ages will be used. In
the Francis method, L2 will correspond to the age half-way between the two ages in ages2use=.
A warning will be given if L2<L1 for the Schnute method or if L2<L.1 or L3<L2 for the Francis
method.

Starting values for the Somers and Pauly parameterizations are the same as the traditional param-
eterization for Linf, K, and t0. However, for the Pauly parameterization the starting value for Kpr
is the starting value for K divided by 1 minus the starting value of NGT. The starting values of C,
ts, WP, and NGT are set at constants that are unlikely to work for all species. Thus, the user should
use the fixed argument to fix starting values for these parameters that are more likely to result in a
reliable fit.

Value
A list that contains reasonable starting values. Note that the parameters will be listed in the same
order and with the same names as listed in vbFuns.

IFAR Chapter
12-Individual Growth.

Note

The ‘original’ and ‘vonBertalanffy’ and the ‘typical’ and ‘BevertonHolt” parameterizations are syn-
onymous.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail . com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

See references in vbFuns.

See Also

See growthFunShow to display the equations for the parameterizations used in FSA and vbFuns
for functions that represent the von Bertalanffy parameterizations. See nlsTracePlot for help
troubleshooting nonlinear models that don’t converge.

Examples

Simple examples of some parameterization
vbStarts(tl~age,data=SpotVA1l)
vbStarts(tl~age,data=SpotVA1l,type="0Original”)
vbStarts(tl~age,data=SpotVA1,type="Francis",6ages2use=c(0,5))
vbStarts(tl~age,data=SpotVA1l, type="Somers")
vbStarts(tl~age,data=SpotVA1l,type="0gle",valOgle=c(tr=0))

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

206 WhitefishLC

vbStarts(tl~age,data=SpotVA1, type="0gle",valOgle=c(Lr=8))

Using a different method to find Linf
vbStarts(tl~age,data=SpotVA1,methLinf="0ldAge")

Using a different method to find t@ and L@
vbStarts(tl~age,data=SpotVA1,meth0="yngAge")
vbStarts(tl~age,data=SpotVA1l,type="original” meth@="yngAge")

Using a different method to find the L1, L2, and L3
vbStarts(tl~age,data=SpotVA1l,type="Francis"”,ages2use=c(0@,5),methEV="means")
vbStarts(tl~age,data=SpotVA1,type="Schnute"”,ages2use=c(@,5),methEV="means")

Examples with a Plot

vbStarts(tl~age,data=SpotVA1,plot=TRUE)
vbStarts(tl~age,data=SpotVA1,type="Francis", ages2use=c(0,5),plot=TRUE)
vbStarts(tl~age,data=SpotVA1,type="Somers",plot=TRUE)

Examples where some parameters are fixed by the user
vbStarts(tl~age,data=SpotVA1l,fixed=1ist(Linf=15))
vbStarts(tl~age,data=SpotVA1l,fixed=list(Linf=15,K=0.3,t0=-1),plot=TRUE)
vbStarts(tl~age,data=SpotVA1, type="Pauly”, fixed=1ist(t@=-1.5),plot=TRUE)

See examples in vbFuns() for use of vbStarts() when fitting Von B models

WhitefishLC Assigned ages from two readers on three structures for Lake Whitefish
from Lake Champlain.

Description

Assigned ages from two readers on three structures for Lake Whitefish (Coregonus clupeaformis)
from Lake Champlain in 2009.

Format
A data frame with 151 observations on the following 11 variables:

fishID A unique fish identification number

tl Total length (in mm)

scalel Assessed age from scales by first reader
scale2 Assessed age from scales by second reader
scaleC Consensus age from scales by both reader
finrayl Assessed age from fin rays by first reader
finray2 Assessed age from fin rays by second reader

finrayC Consensus age from fin rays by both reader

WR79 207

otolithl Assessed age from otoliths by first reader
otolith2 Assessed age from otoliths by second reader

otolithC Consensus age from otoliths by both reader

Topic(s)
* Age
* Ageing Error
* Precision
* Bias

* Age Comparisons

Source

Data from Herbst, S.J. and J.E. Marsden. 2011. Comparison of precision and bias of scale, fin ray,
and otolith age estimates for lake whitefish (Coregonus clupeaformis) in Lake Champlain. Journal
of Great Lakes Research. 37:386-389. Contributed by Seth Herbst. Do not use for other than
educational purposes without permission from the author. CSV file

See Also

Used in ageBias and agePrecision examples.

Examples
str(WhitefishLC)
head(WhitefishLC)
WR79 Ages and lengths for a hypothetical sample from Westerheim and
Ricker (1979).
Description

Ages and lengths for a hypothetical sample in Westerheim and Ricker (1979).

Format
A data frame of 2369 observations on the following 3 variables:

ID Unique fish identifiers
len Length of an individual fish
age Age of an individual fish

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/WhitefishLC.csv

208 wrAdd

Details

Age-length data in 5-cm increments taken exactly from Table 2A of the source which was a sample
from a hypothetical population in which year-class strength varied in the ratio 2:1 and the rate of
increase in length decreased with age. Actual lengths in each 5-cm interval were simulated with
a uniform distribution. The aged fish in this file were randomly selected and an assessed age was
assigned according to the information in Table 2A.

Topic(s)
* Age-Length Key

Source

Simulated from Table 2A in Westerheim, S.J. and W.E. Ricker. 1979. Bias in using age-length
key to estimate age-frequency distributions. Journal of the Fisheries Research Board of Canada.
35:184-189. CSV file

Examples

str(WR79)
head (WR79)

Extract the aged sample
WR79.aged <- subset(WR79,!is.na(age))
str(WR79.aged)

Extract the length sample
WR79.1length <- subset(WR79,is.na(age))
str(WR79.1length)

wrAdd Computes a vector of relative weights specific to a species in an entire
data frame.

Description

Returns a vector that contains the relative weight specific to each species for all individuals in an
entire data frame.

Usage
wrAdd(wt, ...)

Default S3 method:
wrAdd(

wt,

len,

https://raw.githubusercontent.com/fishR-Core-Team/FSA/master/data-raw/WR79.csv

wrAdd 209

spec,
thesaurus = NULL,
units = c("metric”, "English"),

WsOpts = NULL,

)

S3 method for class 'formula’

wrAdd(wt, data, thesaurus = NULL, units = c("metric”, "English"), ...)
Arguments

wt A numeric vector that contains weight measurements or a formula of the form

wt~len+spec where “wt” generically represents the weight variable, “len” gener-
ically represents the length variable, and “spec” generically represents the species
variable. Note that this formula can only contain three variables and they must
be in the order of weight first, length second, species third.

Not used.

len A numeric vector that contains length measurements. Not used if wt is a for-
mula.

spec A character or factor vector that contains the species names. Not used if wt is a
formula.

thesaurus A named list for providing alternative species names (the values in the list) that
correspond to specific names in PSD1it (the names in the list). See details and
examples.

units A string that indicates whether the weight and length data in formula are in

"metric” (DEFAULT; mm and g) or "English” (in and lbs) units.

WsOpts A named list that provides specific choices for group, ref, or method for species
for which more than one standard weight equation exists in WS1it.

data A data.frame that minimally contains variables of the the observed lengths, ob-
served weights, and the species names given in the formula=.

Details

This computes a vector that contains the relative weight specific to each species for all individuals
in an entire data frame. The vector can be appended to an existing data.frame to create a variable
that contains the relative weights for each individual. The relative weight value will be NA for each
individual for which a standard weight equation does not exist in WS1it, a standard weight equation
for the units given in units= does not exist in WS1it, or if the individual is shorter or longer than
the lengths for which the standard weight equation should be applied. Either the linear or quadratic
equation has been listed as preferred for each species, so only that equation will be used.

The species names in species must match the spelling and capitalization of species in WS1it.
Use wsVal() to see a list of all species for which standard weight equations exist in WS1it and,
more importantly, how the species names are spelled and capitalized.

The thesaurus argument may be used to relate alternate species names to the species names used
in WS1it. For example, you (or your data) may use ‘“Bluegill Sunfish”, but “Bluegill” is used in

210 wrAdd

WS1lit. The alternate species name can be used here if it is defined in a named vector (or list)
given to thesarus=. The alternate species name is the value and the species name in PSD1it is
the name in this vector/list - e.g., c("Bluegill”="Bluegill Sunfish"). See the examples for a
demonstration.

Some species have length categories separated by sub-group. For example, length categories exist
for both lentic and lotic populations of Brown Trout. The length values for a sub-group may be ob-
tained by either including the species name in species and the sub-group name in group in WsOpts
or by using the combined species and sub-group name, with the sub-group name in parentheses,
in species. Both methods are demonstrated in the examples. Note that an error is returned if a
species has sub-groups but neither method is used to define the sub-group.

Some (few) species have more than one equation listed in WS1it (for the specified units). In these
instances the user must select one of the equations to use with WsOpts. WsOpts is a list of lists
where the inside list contains one or more of group, ref, or method (see WS1it) required to specify
a single equation for a particular species, which is the name of the inner list. See the examples for
an illustration of how to use WsOpts.

See examples and this article for a demonstration.

Value

A numeric vector that contains the computed relative weights, in the same order as in data=.

IFAR Chapter

8-Condition.

Author(s)
Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

See Also

See wsVal, WS1it, and psdAdd for related functionality. See mapvalues for help in changing species
names to match those in WS1it.

Examples

#===== Simple example with 3 species, 2 in WSlit ... nothing unusual

tmp <- subset(PSDWRtest,
species %in% c("Yellow Perch”,"Iowa Darter"”,"”Largemouth Bass"),
select=c("species”,"len"”,"wt"))

peek(tmp,n=10)

#-—---- Add Wr variable ... using formula interface
tmp$wr1l <- wrAdd(wt~len+species,data=tmp)
#----- same but with non-formula interface

tmp$wr2 <- wrAdd(tmp$wt, tmplen, tmpspecies)

https://fishr-core-team.github.io/FSA/articles/Computing_Relative_Weights.html
https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

#--—-- same but using dplyr
if (require(dplyr)) {
tmp <- tmp %>%
mutate(wr3=wrAdd(wt, len,species))

#----- examine results
peek(tmp,n=10)

#===== Simple example with only one species in the data.frame

tmp <- subset(PSDWRtest,species %in% c("Yellow Perch"),
select=c("species”,"len","wt"))

tmp$wr <- wrAdd(wt~len+species,data=tmp)

peek(tmp,n=6)

#===== Example of species with sub-groups but only 1 sub-group in data.frame
#-—--- Group not in species name so must specify group with WsOpts
tmp <- subset(PSDWRtest,species=="Brown Trout” & location=="Trout Lake",
select=c("species”,"len"”,"wt"))
tmp$wr1 <- wrAdd(wt~len+species,data=tmp,
WsOpts=list("Brown Trout"=list("group”="lotic")))

#----- Group in species name so don't specify group with WsOpts
tmp$species2 <- "Brown Trout (lotic)”
tmp$wr2 <- wrAdd(wt~len+species2,data=tmp) # note use of species?2

peek (tmp,n=6)

#===== Example of species with sub-groups and 2 sub-groups in data.frame
tmp <- subset(PSDWRtest,species=="Brown Trout”,

select=c("species”,"location”,"len”,"wt"))
#----- Must create "species” with sub-groups in name
#-—-—- Many ways to do this, this is just one example for this case
tmp$species2 <- ifelse(tmp$location=="Trout Lake",

"Brown Trout (lotic)",”Brown Trout (lentic)")

tmp$wr <- wrAdd(wt~len+species2,data=tmp) # note use of species2

peek (tmp,n=6)

#===== Example of a species name that needs the thesaurus
tmp <- subset(PSDWRtest,species %in% c("Yellow Perch”,"Bluegill Sunfish"),
select=c("species”,"len","wt"))

#--—-- Below will not add wr for "Bluegill Sunfish” as not in WsLit ("Bluegill” is)
tmp$wr1 <- wrAdd(wt~len+species,data=tmp)
#-—-—- Use thesaurus to identify "Bluegill Sunfish” as "Blueill

tmp$wr2 <- wrAdd(wt~len+species,data=tmp, thesaurus=c("Bluegill”="Bluegill Sunfish"))
peek (tmp,n=10)

#===== Example of species that has Ws eqns for multiple reference values

tmp <- subset(PSDWRtest,species=="Ruffe"”,select=c("species”,"len”,"wt"))

#-—--= Below will err as Ruffe has Ws egns for multiple reference values
tmp$wr <- wrAdd(wt~len+species,data=tmp)

#-—---- Must choose which egn to use with WsOpts

tmp$wr <- wrAdd(wt~len+species,data=tmp,
WsOpts=list(Ruffe=list(ref=75)))

211

212 WSlit

peek(tmp,n=6)

#===== Example with two uses of WsOpts (and one species without)
tmp <- subset(PSDWRtest,species %in% c("Ruffe”,"Muskellunge"”,”"Iowa Darter"),
select=c("species”,"len","wt"))
tmp$wr <- wrAdd(wt~len+species,data=tmp,
WsOpts=1list(Muskellunge=1list(group="overall”),
Ruffe=list(ref=75)))
peek (tmp,n=10)

WSlit All known standard weight equations.

Description

Parameters for all known standard weight equations.

Format

A data frame with observations on the following 13 variables:

species Species name. Use wsVal() to see the list of available species.
group Sub-group name (e.g., "female” or "lotic").

units Units of measurements. Metric uses lengths in mm and weight in grams. English uses
lengths in inches and weight in pounds.

ref Reference quartile (75, 50, or 25).
measure The type of length measurement used — total length (TL) or fork length (FL).

method The type of method used to derive the equation (Regression Line Percentile (RLP; see
Murphy et al. (1990) and Murphy et al. (1991)), Empirical Percentile (EmP; see Gerow et al.
(2005)), or Other).

min.Jen Minimum total length (mm or in, depending on units) for which the equation should be
applied.

max.len Maximum total length (mm or in, depending on units) for which the equation should be
applied.

int The intercept for the model.

slope The slope for the linear equation or the linear coefficient for the quadratic equation.
quad The quadratic coefficient in the quadratic equation.

source Source of the equation. These match the sources given in Neumann et al. (2012).

comment Comments about use of equation.

WSlit 213

Details

The minimum TL for the English units were derived by rounding the converted minimum TL for
the metric units to what seemed like common units (inches, half inches, or quarter inches).

Entries for “Chinook Salmon (landlocked)” and “Striped Bass (landlocked)” are the same as for
“Chinook Salmon” and “Striped Bass” but were added to facilitate use with PSD calculations as
Gabelhouse lengths are only published for the landlocked sub-group; i.e., these entries in WS1it are
not necessarily just for landlocked populations.

Topic(s)
* Relative weight
» Standard weight

¢ Condition

IFAR Chapter

8-Condition.

Source

Most of these equations can be found in Neumann et al. (2012). Species not in Neumann et al.
(2012) are noted as such in the comments variable.

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Gerow, K.G., R.C. Anderson-Sprecher, and W.A. Hubert. 2005. A new method to compute standard
weight equations that reduces length-related bias. North American Journal of Fisheries Manage-
ment 25:1288-1300.

Murphy, B.R., M.L. Brown, and T.A. Springer. 1990. Evaluation of the relative weight (Wr) index,
with new applications to walleye. North American Journal of Fisheries Management 10:85-97.

Murphy, B. R., D. W. Willis, and T. A. Springer. 1991. The relative weight index in fisheries
management: Status and needs. Fisheries (Bethesda) 16(2):30-38.

Neumann, R.M., C.S. Guy, and D.W. Willis. 2012. Length, Weight, and Associated Indices. Chap-
ter 14 in Zale, A.V., D.L. Parrish, and T.M. Sutton, editors. Fisheries Techniques. American Fish-
eries Society, Bethesda, MD.

See Also

See wsVal and wrAdd for related functionality.

Examples

str(Wslit)
head(WS1lit)

https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

214

ws Val

wsVal

Finds standard weight equation coefficients for a particular species.

Description

Returns a vector that contains information about the standard weight equation for a given species,
including type of measurement units, reference percentile, method used to derive the equation, and

literature source.

Usage

wsVal(

species = "List",

group = NULL,

units = c("metric”, "English"),

ref = NULL,

method = NULL,
simplify = FALSE,

dat = NULL

Arguments

species

group

units

ref

method

simplify

dat

A string that contains the species name for which to find Ws coefficients. See
details.

A string that contains the sub-group of species for which to find the Ws coef-

CEINT3

ficients; e.g., things like “lotic”, “lentic”, “female”, “male”.

A string that indicates whether the coefficients for the standard weight equation
to be returned are in "metric” (DEFAULT; mm and g) or "English” (in and
Ibs) units.

A numeric that indicates which percentile the equation should be returned for.
Note that the vast majority of equations only exist for the 75th percentile (DE-
FAULT).

A string that indicates which equation-derivation method should be used (one
of "RLP", "EmP", or "Other"). Defaults to NULL which will result in the only
method available being returned or an error asking the user to choose a method
for equations for which more than one method is available (which is the case for
very few species).

A logical that indicates whether the ‘units’, ‘ref’, ‘measure’, ‘method’, ‘com-
ments’, and ‘source’ fields should be included (=FALSE) or not (=TRUE; DE-
FAULT). See details.

Data.frame of Gabelhouse length categories for all species. Defaults to “WSlit*
and is generally not used by the user (this simplifies use of this function in
wrAdd).

wsVal 215

Details

This function extracts all known information from WS1it about the following standard weight equa-
tion,

log10(W's) = logig(a) + blogio(L) + blogio(L)?

See WS1it for more information about the meaning of each value returned.

Note from above that the coefficients are returned for the TRANSFORMED model. Thus, to obtain
the standard weight (Ws), the returned coefficients are used to compute the common log of Ws
which must then be raised to the power of 10 to compute the Ws.

Some species have length categories separated by sub-group. For example, length categories exist
for both lentic and lotic populations of Brown Trout. The length values for a sub-group may be
obtained by either including the species name in species and the sub-group name in group or
by using the combined species and sub-group name, with the sub-group name in parentheses, in
species. Both methods are demonstrated in the examples. Note that an error is returned if a
species has sub-groups but neither method is used to define the sub-group.

See examples and this article for a demonstration.

Value

A one row data frame from WS1it that contains all known information about the standard weight
equation for a given species, type of measurement units, and reference percentile if simplify=FALSE.
If simplify=TRUE then only the species; minimum and maximum length for which the standard
equation should be applied; and intercept, slope, and quadratic coefficients for the standard weight
equation. Note that the maximum length and the quadratic coefficient will not be returned if they
do not exist in WS1it for the species.

If no arguments are given to this function then a list of available species names in WS1it will be
printed. If the species name is mis-spelled (or mis-capitalized), multiple standard weight equations
exist for the species (such that group, ref, or method should be used), or if a standard weight
equation does not exist for the species in WS1it, then an error will be issued.

IFAR Chapter

8-Condition.

Author(s)

Derek H. Ogle, <DerekOgle51@gmail.com>

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

See Also

See wrAdd and WS1it for related functionality.

https://fishr-core-team.github.io/FSA/articles/Computing_Relative_Weights.html
https://fishr-core-team.github.io/fishR/pages/books.html#introductory-fisheries-analyses-with-r

216 ws Val

Examples
#===== List all available Ws equations
wsVal()
#===== Find equations for Yellow Perch, in different formats

wsVal("Yellow Perch")

wsVal("Yellow Perch”,units="metric"”) # same as default
wsVal("Yellow Perch”,units="English")

wsVal(”"Yellow Perch”,units="English",6 simplify=TRUE)

#===== Find equation for Ruffe, demonstrating quadratic formula
wsVal("Ruffe”,units="metric"”,ref=75,simplify=TRUE)
wsVal ("Ruffe”,units="metric”,ref=50,simplify=TRUE)

#===== Find equation for Brown Trout, which has equations for sub-groups
#--—-- demonstrating use of group= argument

wsVal("Brown Trout”,group="lotic")

wsVal("Brown Trout”,group="lentic")

#-—---- demonstrating group combined in species name, so no group= arg
wsVal("Brown Trout (lotic)")

wsVal(”"Brown Trout (lentic)”)

#===== Add Ws & Wr values to a data frame (for one species) ... also see wrAdd()
#--—-- Example data from PSDWRtest, simplify variables for this example

yepdf <- subset(PSDWRtest,species=="Yellow Perch"”,select=c("species”,"len”,"wt"))
str(yepdf)

#----- Get Ws equation info

(wsYEP <- wsVal("Yellow Perch”,units="metric"))

#----- Add Ws (eqgn is on logl@-logl@ scale ... so logl@d length, 10" result)
yepdf$ws <- 10*(wsYEP[["int"]J+wsYEP[["slope”]]*logl@(yepdf$len))

#----= Change Ws for fish less than min.TL to NA
yepdf$ws[yepdf$len<wsYEP[["min.TL"]1]1] <- NA

#-—-—= Add Wr
yepdf$wr <- yepdf$wt/yepdf$ws*100

H#-———= Examine results
peek (yepdf,n=6)

#--——- Same as above but using dplyr
if (require(dplyr)) {
yepdf <- PSDWRtest %>% filter(species=="Yellow Perch") %>% select(species,len,wt) %>%
mutate(ws=10*(wsYEP[["int"]]+wsYEP[["slope"”]]*logi@(len)),
ws=ifelse(len<wsYEP[["min.TL"]],NA,ws),
wr=wt/ws*100)
peek (yepdf,n=6)
3

Index

+* Abundance
BluegillJL, 31
CutthroatAL, 60
PikeNY, 147
PikeNYPartiall, 148
SMBassLS, 186

* Age Bias
WhitefishLC, 206

*x Age Comparisons
WhitefishLC, 206

* Age Precision
WhitefishLC, 206

x Age-Length Key
WR79, 207

x Ageing Error
WhitefishLC, 206

x Back-Calculation
SMBassWB, 187

x Capture History
BluegillJL, 31
CutthroatAL, 60
PikeNYPartiall, 148

x Capture-Recapture
BluegillJL, 31
CutthroatAL, 60
PikeNY, 147
PikeNYPartiall, 148

x Catch Curve
BrookTroutTH, 32

x Catchability
SMBassLS, 186

+x Condition
PSDWRtest, 171
WS1lit, 212

* DeLury
SMBassLS, 186

* Depletion
SMBassLS, 186

* Growth

217

GrowthDatal, 85
GrowthData2, 86
GrowthData3, 87
SMBassWB, 187
SpotVA1, 188

+ Increment Analysis
SMBassWB, 187

* Jolly-Seber
CutthroatAL, 60

* Leslie
SMBassLS, 186

+ Linear Models
Mirex, 125

+ Mark-Recapture
BluegillJL, 31
CutthroatAL, 60
PikeNY, 147
PikeNYPartiall, 148

* Mortality
BrookTroutTH, 32

+ Nonlinear Model
Ecoli, 69

* Other
Ecoli, 69
Mirex, 125

* PSD
PSDlit, 163
PSDWRtest, 171

x Petersen
BluegillJL, 31

+ Population Size
BluegillJL, 31
CutthroatAL, 60
PikeNY, 147
PikeNYPartiall, 148
SMBassLS, 186

* Recruitment
CodNorwegian, 55

* Relative Weight

218

PSDWRtest, 171
WS1lit, 212

+x Schnabel
PikeNY, 147
PikeNYPartiall, 148

* Size Structure
PSDlit, 163
PSDWRtest, 171

* Standard Weight
PSDWRtest, 171
WS1lit, 212

* Stock-Recruit
CodNorwegian, 55

+ Weight-Length
ChinookArg, 54

* Weisberg LGM
SMBassWB, 187

+ datasets
BluegillJL, 31
BrookTroutTH, 32
ChinookArg, 54
CodNorwegian, 55
CutthroatAL, 60
Ecoli, 69
GrowthDatal, 85
GrowthData2, 86
GrowthData3, 87
Mirex, 125
PikeNY, 147
PikeNYPartialil, 148
PSDlit, 163
PSDWRtest, 171
SMBassLS, 186
SMBassWB, 187
SpotVAT, 188
WhitefishLC, 206
WR79, 207
WS1lit, 212

* hplot
catchCurve, 44
depletion, 61
growthModels, 88
hist.formula, 95
histFromSum, 98
makeGrowthFun, 121
psdCalc, 158
psdCI, 161
psdPlot, 165

sumTable, 198
tictactoe, 199

* htest
ageBias, 7
agePrecision, 15
binCI, 29
catchCurve, 44
chapmanRobson, 49
confint.boot, 57
extraTests, 75
hypercCI, 100
ksTest, 109
nlsBoot, 139
plotAB, 149
poiCI, 152

* manip
addZeroCatch, 4
ageBias, 7
agePrecision, 15
alkAgeDist, 19
alkIndivAge, 21
alkMeanVar, 24
capFirst, 33
capHistConvert, 34
capHistSum, 41
catchCurve, 44
chapmanRobson, 49
col2rgbt, 56
depletion, 61
expandCounts, 70
expandLenFreq, 73
fact2num, 78
findGrowthStarts, 79
growthModels, 88
headtail, 94
is.odd, 101
jolly, 102
kCounts, 106
lagratio, 111
lencat, 112
logbtcf, 117
1wCompPreds, 118
makeGrowthFun, 121
Mmethods, 126
mrClosed, 131
peek, 144
plotAB, 149
psdAdd, 153

INDEX

INDEX

psdval, 168
removal, 173
repeatedRows2Keep, 180
se, 182
srFuns, 189
srStarts, 192
validn, 202
vbStarts, 203
wrAdd, 208
wsVal, 214

* misc
fishR, 82
geomean, 84
perc, 145
rcumsum, 172
rSquared, 181
Summarize, 195

* plot
alkPlot, 26
nlsTracePlot, 141

* von Bertalanffy
GrowthDatal, 85
GrowthData2, 86
GrowthData3, 87
SpotVAT1, 188

addZeroCatch, 4
ageBias, 7,11, 16, 18,151, 207
agePrecision, 13, 15, 151, 207
agesurv, 47,53
agesurvcl, 47, 53
aggregate, 197
AlewifelH, 12, 17
alkAgeDist, 19, 22, 23, 26
alkIndivAge, 21,21, 25, 26, 29
alkMeanVar, 22, 23, 24
alkPlot, 23, 26

alkprop, 20, 21

anova, 76

anova.catchCurve (catchCurve), 44
anova.depletion (depletion), 61

binCI, 29, 134, 135, 137, 162
binom. test, 30
BlueCrab, 65
BluegillJL, 31

Boot, 57-59, 141

boot, 58

boot (confint.boot), 57

219

bootCase (FSA-defunct), 83
BrookTroutTH, 32
by, 197

capFirst, 33

capHistConvert, 34, 41-43,61

capHistSum, 34, 35, 37,41, 102, 103, 105,
135,137, 148, 188

capture.output, 142, 143

catchCurve, 32, 44, 53

chapmanRobson, 32, 47, 49

ChinookArg, 54

chooseColors (FSA-defunct), 83

CodNorwegian, 55

coef.catchCurve (catchCurve), 44

coef.chapmanRobson (chapmanRobson), 49

coef.depletion (depletion), 61

coef.removal (removal), 173

col2rgb, 56

col2rgbt, 56

colors, 56

compare2, 12, 13, 151

compIntercepts (FSA-defunct), 83

compSlopes (FSA-defunct), 83

Confint, 59

confint.boot, 57

confint.catchCurve (catchCurve), 44

confint.chapmanRobson (chapmanRobson),
49

confint.depletion (depletion), 61

confint.mrClosed1 (mrClosed), 131

confint.mrClosed2 (mrClosed), 131

confint.mrOpen (jolly), 102

confint.nlsBoot (nlsBoot), 139

confint.removal (removal), 173

cumsum, /72

CutthroatAL, 60, 104

CutthroatALf, 61

darter, 65

deplet, 65
depletion, 61, 178, 187
descriptive, 43

diags (FSA-defunct), 83
diff, 111
droplevels, 5
dunn.test, 66-68
dunnTest, 66

220

Ecoli, 69
expandCounts, 70, 75
expandLenFreq, 71,73
extraSs (extraTests), 75
extraTests, 75

fact2num, 78

filterD (FSA-defunct), 83
findGrowthStarts, 79, 85-87, 124, 204
fishR, 82

fitPlot (FSA-defunct), 83
formatC, 108

FSA-defunct, 83

fsaNews (FSA-defunct), 83

geomean, 84

geosd (geomean), 84
GompertzFuns, 143

GompertzFuns (growthModels), 88
GrowthData1l, 85, 86, 87
GrowthDataz2, 85, 86, 86, 87
GrowthData3, 85, 87
growthFunShow, 205
growthFunShow (growthModels), 88
growthModels, 88

hcl.colors, 27, 29
hcl.pals, 27, 142
headtail, 94

hist, 96-99

hist.boot (confint.boot), 57
hist.formula, 95, 99
histFromSum, 98

hoCoef (FSA-defunct), 83
htest (nlsBoot), 139
htest.boot (confint.boot), 57
hyperCI, 100, 135, 137

is.CapHist (capHistSum), 41
is.even (is.odd), 101
is.na, 202

is.odd, 101

jolly, 102

kCounts, 106

knit, 108

kPvalue (kCounts), 106
ks.test, 110

ksTest, 109

INDEX

lagratio, 111

legend, 167

lencat, 74, 75, 96, 112, 160, 163, 167, 170
LobsterPEI, 65

logbtcf, 117

logisticFuns, /43

logisticFuns (growthModels), 88

1rt (extraTests), 75

lrtest, 76

1wCompPreds, 55, 118

M.empirical, 129, 130

makeGrowthFun, 80, 89, 121, 184, 185

mapvalues, 156, 210

mapvalues (FSA-defunct), 83

metaM, 47, 53

metaM (Mmethods), 126

Mirex, 125

Mmethods, 126

mrClosed, 31, 37, 41-43, 105, 131, 147, 148,
188

mrN.single, 137

mrOpen, 37, 41-43, 61, 137

mrOpen (jolly), 102

multhist, 98

nls, 141-143
nlsBoot, /39, 139, 141
nlsTracePlot, 56, 80, 141, 189, 194, 205

palette, 56

pcumsum (rcumsum), 172

peek, 144

perc, 145

PikeNY, 147, 148
PikeNYPartiall, /147, 148
plot.ageBias (ageBias), 7
plot.agePrec (agePrecision), 15
plot.boot (confint.boot), 57
plot.CapHist (capHistSum), 41
plot.catchCurve (catchCurve), 44
plot.chapmanRobson (chapmanRobson), 49
plot.depletion (depletion), 61
plot.mrClosed2 (mrClosed), 131
plotAB, 11-13, 149

plotBinResp (FSA-defunct), 83
plotCI, 9, 10, 150, 200
plotmath, 89, 190

poiCl, 134-137,152

INDEX

predict.boot (confint.boot), 57

predict.nlsBoot (nlsBoot), 139

print.dunnTest (dunnTest), 66

print.extraTest (extraTests), 75

psdAdd, 153, 160, 163, 165, 167,170, 171, 210

psdCalc, 156, 158, 162, 165, 167, 170, 171,
201

psdCI, 159, 161

PSD1it, 154-156, 160, 163, 163, 167, 170

psdPlot, 156, 160, 163, 165, 165, 170

psdval, 156, 158-160, 163, 165-167, 168, 201

PSDWRtest, 171

purl2 (kCounts), 106

rcumsum, 160, 163, 167, 170, 172
removal, 65, 173
repeatedRows2Keep, 180

reproInfo (kCounts), 106

residPlot (FSA-defunct), 83

rgb, 56

RichardsFuns, /43

RichardsFuns (growthModels), 88
rSquared, 181

rSquared. catchCurve (catchCurve), 44
rSquared.depletion (depletion), 61

schnabel, 137

Schnute (FSA-defunct), 83

se, 182

showGrowthFun, 80, 89, 121, 124, 183

SMBassLS, 65, 186

SMBassWB, 187

SnapperHG2, 20

SpotVAT, 188

SpotVA2, 189

srFuns, 56, 143, 189, 194

srFunShow, /194

srFunShow (srFuns), 189

srStarts, 56, 191, 192

Subset (FSA-defunct), 83

Summarize, 195, 199

summary, 195-197

summary.ageBias (ageBias), 7

summary . agePrec (agePrecision), 15

summary.catchCurve (catchCurve), 44

summary . chapmanRobson (chapmanRobson),
49

summary.depletion (depletion), 61

summary.mrClosed1 (mrClosed), 131

221

summary.mrClosed?2 (mrClosed), 131
summary.mrOpen (jolly), 102
summary.removal (removal), 173
sumTable, 198

SunfishIN, /137

table, 99

tapply, 197, 199
tictactoe, 160, 163, 165, 167, 170, 199
try, 142, 143

valid.n, 202

validn, 202
vbFuns, 143, 189, 205
vbFuns (growthModels), 88
vbStarts, 189, 203

WhitefishLC, 17,206

WR79, 207

wrAdd, 156, 171,208, 213,215
WS1it, 209, 210,212,215
wsVal, 210, 213,214

xtabs, 99

	addZeroCatch
	ageBias
	agePrecision
	alkAgeDist
	alkIndivAge
	alkMeanVar
	alkPlot
	binCI
	BluegillJL
	BrookTroutTH
	capFirst
	capHistConvert
	capHistSum
	catchCurve
	chapmanRobson
	ChinookArg
	CodNorwegian
	col2rgbt
	confint.boot
	CutthroatAL
	depletion
	dunnTest
	Ecoli
	expandCounts
	expandLenFreq
	extraTests
	fact2num
	findGrowthStarts
	fishR
	FSA-defunct
	geomean
	GrowthData1
	GrowthData2
	GrowthData3
	growthModels
	headtail
	hist.formula
	histFromSum
	hyperCI
	is.odd
	jolly
	kCounts
	ksTest
	lagratio
	lencat
	logbtcf
	lwCompPreds
	makeGrowthFun
	Mirex
	Mmethods
	mrClosed
	nlsBoot
	nlsTracePlot
	peek
	perc
	PikeNY
	PikeNYPartial1
	plotAB
	poiCI
	psdAdd
	psdCalc
	psdCI
	PSDlit
	psdPlot
	psdVal
	PSDWRtest
	rcumsum
	removal
	repeatedRows2Keep
	rSquared
	se
	showGrowthFun
	SMBassLS
	SMBassWB
	SpotVA1
	srFuns
	srStarts
	Summarize
	sumTable
	tictactoe
	validn
	vbStarts
	WhitefishLC
	WR79
	wrAdd
	WSlit
	wsVal
	Index

