
Package ‘GreedyExperimentalDesign’
January 9, 2026

Type Package

Title Greedy Experimental Design Construction

Version 1.6

Date 2026-1-1

Author Adam Kapelner [aut, cre] (ORCID: 0000-0001-5985-6792),
David Azriel [aut],
Abba Krieger [aut]

Maintainer Adam Kapelner <kapelner@qc.cuny.edu>

Description Computes experimental designs for two-arm experiments with
covariates using multiple methods, including: (0) complete randomization
and randomization with forced-balance; (1) greedy optimization of a balance
objective function via pairwise switching; (2) numerical optimization via
'gurobi'; (3) rerandomization; (4) Karp's method for one covariate; (5)
exhaustive enumeration for small sample sizes; (6) binary pair matching
using 'nbpMatching'; (7) binary pair matching plus method (1) to further
optimize balance; (8) binary pair matching plus method (3) to further
optimize balance; (9) Hadamard designs; and (10) simultaneous multiple
kernels. For the greedy, rerandomization, and related methods, three
objective functions are supported: Mahalanobis distance, standardized sums
of absolute differences, and kernel distances via the 'kernlab' library.
This package is the result of a stream of research that can be found in
Krieger, A. M., Azriel, D. A., and Kapelner, A. (2019). ``Nearly Random
Designs with Greatly Improved Balance.'' Biometrika 106(3), 695-701
<doi:10.1093/biomet/asz026>. Krieger, A. M., Azriel, D. A., and
Kapelner, A. (2023). ``Better experimental design by hybridizing binary
matching with imbalance optimization.'' Canadian Journal of Statistics,
51(1), 275-292 <doi:10.1002/cjs.11685>.

License GPL-3

Encoding UTF-8

Depends R (>= 4.1.0), rJava (>= 0.9-6)

SystemRequirements Java (>= 7.0)

LinkingTo Rcpp

1

https://doi.org/10.1093/biomet/asz026
https://doi.org/10.1002/cjs.11685

2 Contents

Imports Rcpp, checkmate, nbpMatching, rlist, stringr, stringi,
kernlab, ggplot2, graphics, grDevices, stats

Suggests testthat (>= 3.0.0), pkgload, R6

Config/testthat/edition 3

URL https://github.com/kapelner/GreedyExperimentalDesign

RoxygenNote 7.3.3

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-09 09:31:18 UTC

Contents
all_elements_same_cpp_wrap . 3
complete_randomization . 4
complete_randomization_with_forced_balanced . 5
computeBinaryMatchStructure . 6
compute_distance_matrix_cpp_wrap . 7
compute_gram_matrix . 8
compute_objective_val . 9
compute_randomization_metrics . 10
create_all_ys_cpp_wrap . 10
generate_block_design_cpp_wrap . 11
generate_stdzied_design_matrix . 12
gen_pm_designs_cpp_wrap . 13
gen_var_cov_matrix_block_designs . 13
GreedyExperimentalDesign . 14
greedy_orthogonalization_curation . 15
greedy_orthogonalization_curation2 . 16
hadamardExperimentalDesign . 17
imbalanced_block_designs . 18
imbalanced_complete_randomization . 19
initBinaryMatchExperimentalDesignSearchObject . 20
initBinaryMatchFollowedByGreedyExperimentalDesignSearchObject 21
initBinaryMatchFollowedByRerandomizationDesignSearchObject 22
initGreedyExperimentalDesignObject . 24
initGreedyMultipleKernelExperimentalDesignObject 26
initGurobiNumericalOptimizationExperimentalDesignObject 28
initKarpExperimentalDesignObject . 31
initOptimalExperimentalDesignObject . 32
initRerandomizationExperimentalDesignObject . 33
optimize_asymmetric_treatment_assignment . 35
plot.greedy_experimental_design_search . 36
plot.greedy_multiple_kernel_experimental_design . 37
plot_obj_val_by_iter . 37
plot_obj_val_order_statistic . 38

https://github.com/kapelner/GreedyExperimentalDesign

all_elements_same_cpp_wrap 3

print.binary_match_structure . 39
print.binary_then_greedy_experimental_design . 40
print.binary_then_rerandomization_experimental_design 40
print.greedy_experimental_design_search . 41
print.greedy_multiple_kernel_experimental_design . 41
print.karp_experimental_design_search . 42
print.optimal_experimental_design_search . 42
print.pairwise_matching_experimental_design_search 43
print.rerandomization_experimental_design_search . 43
resultsBinaryMatchSearch . 44
resultsBinaryMatchThenGreedySearch . 45
resultsBinaryMatchThenRerandomizationSearch . 46
resultsGreedySearch . 47
resultsGurobiNumericalOptimizeSearch . 48
resultsKarpSearch . 49
resultsMultipleKernelGreedySearch . 50
resultsOptimalSearch . 51
resultsRerandomizationSearch . 52
safe_cov_inverse . 53
searchTimeElapsed . 53
shuffle_cpp_wrap . 54
standardize_data_matrix . 55
startSearch . 56
stopSearch . 56
summary.binary_match_structure . 57
summary.binary_then_greedy_experimental_design . 58
summary.binary_then_rerandomization_experimental_design 58
summary.greedy_experimental_design_search . 59
summary.greedy_multiple_kernel_experimental_design 59
summary.karp_experimental_design_search . 60
summary.optimal_experimental_design_search . 60
summary.pairwise_matching_experimental_design_search 61
summary.rerandomization_experimental_design_search 61

Index 62

all_elements_same_cpp_wrap

Tests if a vector has all elements the same

Description

Tests if a vector has all elements the same

Usage

all_elements_same_cpp_wrap(w)

4 complete_randomization

Arguments

w The vector to be queried

Value

A boolean if it has all same elements

Author(s)

Adam Kapelner

Examples

Not run:
all_elements_same_cpp_wrap(c(1, 1, 1))
all_elements_same_cpp_wrap(c(1, 2, 1))

End(Not run)

complete_randomization

Implements complete randomization (without forced balance)

Description

For debugging, you can use set.seed to be assured of deterministic output.

Usage

complete_randomization(n, r, form = "one_zero")

Arguments

n number of observations

r number of randomized designs you would like

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

Value

a matrix where each column is one of the r designs

Author(s)

Adam Kapelner

complete_randomization_with_forced_balanced 5

Examples

Not run:
complete_randomization(n = 6, r = 2)

End(Not run)

complete_randomization_with_forced_balanced

Implements forced balanced randomization

Description

For debugging, you can use set.seed to be assured of deterministic output.

Usage

complete_randomization_with_forced_balanced(
n,
r,
form = "one_zero",
seed = NULL

)

Arguments

n number of observations

r number of randomized designs you would like

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

seed An integer which is the seed to be set within C++. Default is NULL which means
the seed is set from the system clock.

Value

a matrix where each column is one of the r designs

Author(s)

Adam Kapelner

Examples

Not run:
complete_randomization_with_forced_balanced(n = 6, r = 2, seed = 1)

End(Not run)

6 computeBinaryMatchStructure

computeBinaryMatchStructure

Compute Binary Matching Strcuture

Description

This method creates an object of type binary_match_structure and will compute pairs. You can then
use the functions initBinaryMatchExperimentalDesignSearchObject and resultsBinaryMatchSearch
to create randomized allocation vectors. For one column in X, we just sort to find the pairs trivially.

Usage

computeBinaryMatchStructure(
X,
mahal_match = FALSE,
compute_dist_matrix = NULL,
D = NULL,
symmetry_tol = 1e-12,
use_safe_inverse = FALSE

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design.

mahal_match Match using Mahalanobis distance. Default is FALSE.
compute_dist_matrix

The function that computes the distance matrix between every two observations
in X, its only argument. The default is NULL signifying euclidean squared dis-
tance optimized in C++.

D A distance matrix precomputed. The default is NULL indicating the distance
matrix should be computed.

symmetry_tol Tolerance for symmetry check on D. Default is 1e-12.
use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

Value

An object of type binary_experimental_design which can be further operated upon.

Author(s)

Adam Kapelner

compute_distance_matrix_cpp_wrap 7

Examples

Not run:
set.seed(1)
X = matrix(rnorm(16), nrow = 8)
bms = computeBinaryMatchStructure(X)
bms$indicies_pairs

End(Not run)

compute_distance_matrix_cpp_wrap

Computes a Euclidean-squared distance matrix rapidly

Description

Computes a Euclidean-squared distance matrix rapidly

Usage

compute_distance_matrix_cpp_wrap(X)

Arguments

X A numeric matrix with n rows representing each subject and p columns which
are measurements on each subject

Value

The n x n Euclidean distances squared

Author(s)

Adam Kapelner

Examples

Not run:
X = matrix(c(0, 1, 2, 3), nrow = 2)
compute_distance_matrix_cpp_wrap(X)

End(Not run)

8 compute_gram_matrix

compute_gram_matrix Gram Matrix Computation

Description

Computes the Gram Matrix for a user-specified kernel using the library kernlab. Note that this
function automatically standardizes the columns of the data entered.

Usage

compute_gram_matrix(X, kernel_type, params = c())

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design.

kernel_type One of the following: "vanilla", "rbf", "poly", "tanh", "bessel", "laplace", "anova"
or "spline".

params A vector of numeric parameters. Each kernel_type has different numbers of
parameters required. For more information see documentation for the kernlab
library.

Value

The n x n gram matrix for the given kernel on the given data.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(12), nrow = 6)
K = compute_gram_matrix(X, kernel_type = "rbf", params = 0.5)
dim(K)

End(Not run)

compute_objective_val 9

compute_objective_val Computes Objective Value From Allocation Vector

Description

Returns the objective value given a design vector as well an an objective function. This is sometimes
duplicated in Java. However, within Java, tricks are played to make optimization go faster so Java’s
objective values may not always be the same as the true objective function (e.g. logs or constants
dropped).

Usage

compute_objective_val(
X,
indic_T,
objective = "abs_sum_diff",
inv_cov_X = NULL,
use_safe_inverse = FALSE

)

Arguments

X The n x p design matrix

indic_T The n-length binary allocation vector

objective The objective function to use. Default is abs_sum_diff and the other option is
mahal_dist.

inv_cov_X Optional: the inverse sample variance covariance matrix. Use this argument if
you will be doing many calculations since passing this in will cache this data.

use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

Author(s)

Adam Kapelner

Examples

Not run:
X = matrix(rnorm(12), nrow = 6)
indic_T = c(1, 0, 1, 0, 1, 0)
compute_objective_val(X, indic_T, objective = "abs_sum_diff")

End(Not run)

10 create_all_ys_cpp_wrap

compute_randomization_metrics

Computes Randomization Metrics (explained in paper) about a design
algorithm

Description

Computes Randomization Metrics (explained in paper) about a design algorithm

Usage

compute_randomization_metrics(designs)

Arguments

designs A matrix where each column is one design.

Value

A list of resulting data: the probability estimates for each pair in the design of randomness where
estmates close to ~0.5 represent random assignment, then the entropy metric the distance metric, the
maximum eigenvalue of the allocation var-cov matrix (operator norm) and the squared Frobenius
norm (the sum of the squared eigenvalues)

Author(s)

Adam Kapelner

Examples

Not run:
designs = matrix(c(1, 0, 1, 0, 0, 1, 0, 1), nrow = 4, ncol = 2)
compute_randomization_metrics(designs)

End(Not run)

create_all_ys_cpp_wrap

Create all binary Y’s convenience function using a randomized design

Description

Create all binary Y’s convenience function using a randomized design

Usage

create_all_ys_cpp_wrap(pCs, pTs, W, two_n, nY)

generate_block_design_cpp_wrap 11

Arguments

pCs Control-group success probabilities (length two_n)

pTs Treatment-group success probabilities (length two_n)

W Assignment matrix with nY rows and two_n columns

two_n Total number of units

nY Number of Y vectors to generate

Value

A matrix of boolean Y’s

Author(s)

Adam Kapelner

Examples

Not run:
pCs = rep(0.2, 4)
pTs = rep(0.8, 4)
W = matrix(c(1, 0, 1, 0, 0, 1, 0, 1), nrow = 2, byrow = TRUE)
create_all_ys_cpp_wrap(pCs, pTs, W, two_n = 4, nY = 2)

End(Not run)

generate_block_design_cpp_wrap

Generates homogeneous block design allocations rapidly

Description

Generates homogeneous block design allocations rapidly

Usage

generate_block_design_cpp_wrap(B, nR, dummy_block)

Arguments

B The number of blocks in the design

nR The number of allocation vectors

dummy_block The subvector of allocations in each block that will be permuted

Value

A matrix with rows being the nR random block allocation of sample size B x length(dummy_block).

12 generate_stdzied_design_matrix

Author(s)

Adam Kapelner

Examples

Not run:
generate_block_design_cpp_wrap(B = 2, nR = 3, dummy_block = c(1, 0))

End(Not run)

generate_stdzied_design_matrix

Generates a design matrix with standardized predictors.

Description

This function is useful for debugging.

Usage

generate_stdzied_design_matrix(n = 50, p = 1, covariate_gen = rnorm, ...)

Arguments

n Number of rows in the design matrix

p Number of columns in the design matrix

covariate_gen The function to use to draw the covariate realizations (assumed to be iid). This
defaults to rnorm for $N(0,1)$ draws.

... Optional arguments to be passed to the covariate_dist function.

Value

THe design matrix

Author(s)

Adam Kapelner

Examples

Not run:
X = generate_stdzied_design_matrix(n = 6, p = 2)
colMeans(X)

End(Not run)

gen_pm_designs_cpp_wrap 13

gen_pm_designs_cpp_wrap

Create PM designs

Description

Create PM designs

Usage

gen_pm_designs_cpp_wrap(indicies_pairs, n, r)

Arguments

indicies_pairs A matrix of n x 2 indicies where each row is a pair of subjects’ indicies

n Half the number of subjects i.e. the number of pairs

r The number of assignments to generate

Value

A matrix of r x 2n PM designs of +1/-1 assignments

Author(s)

Adam Kapelner

Examples

Not run:
indicies_pairs = matrix(c(1, 2, 3, 4), ncol = 2, byrow = TRUE)
gen_pm_designs_cpp_wrap(indicies_pairs, n = 2, r = 3)

End(Not run)

gen_var_cov_matrix_block_designs

Computes varcov matrix for block designs

Description

The varcov matrix for block designs consists of a block- diagonal matrix with B blocks (the number
of blocks in the design) with off-diagonal entries = -1 / (n/B - 1) where n is the number of subjected
in the study.

14 GreedyExperimentalDesign

Usage

gen_var_cov_matrix_block_designs(n, prop_T, B, use_cache = TRUE)

Arguments

n number of observations

prop_T the proportion of treatments allocated

B the number of blocks

use_cache Cache results for repeated calls with identical inputs. Default is TRUE.

Value

varcov matrix for the specific block design

Author(s)

Adam Kapelner

Examples

Not run:
gen_var_cov_matrix_block_designs(n = 12, prop_T = 0.5, B = 3)

End(Not run)

GreedyExperimentalDesign

Greedy Experimental Design Search

Description

A tool to find many types of a priori experimental designs

Author(s)

Adam Kapelner <kapelner@qc.cuny.edu>

References

Kapelner, A

greedy_orthogonalization_curation 15

greedy_orthogonalization_curation

Curate More Orthogonal Vectors Greedily

Description

This function takes a set of allocation vectors and pares them down one-by-one by eliminating the
vector that can result in the largest reduction in Avg[|r_ij|]. It is recommended to begin with a set
of unmirrored vectors for speed. Then add the mirrors later for whichever subset you wish.

Usage

greedy_orthogonalization_curation(W, Rmin = 2, verbose = FALSE)

Arguments

W A matrix in in the set −1, 1Rxn which have R allocation vectors for an experi-
ment of sample size n.

Rmin The minimum number of vectors to consider in a design. The default is the true
bottom, two.

verbose Default is FALSE but if not, it will print out a message for each iteration.

Value

A list with two elements: (1) avg_abs_rij_by_R which is a data frame with R - Rmin + 1 rows
and columns R and average absolute r_ij and (2) Wsorted which provides the collection of vectors
in sorted by best average absolute r_ij in row order from best to worst.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
W = matrix(sample(c(-1, 1), 6 * 8, replace = TRUE), nrow = 6)
res = greedy_orthogonalization_curation(W, Rmin = 3, verbose = FALSE)
res$avg_abs_rij_by_R

End(Not run)

16 greedy_orthogonalization_curation2

greedy_orthogonalization_curation2

Curate More Orthogonal Vectors Greedily

Description

This function takes a set of allocation vectors and pares them down one-by-one by eliminating the
vector that can result in the largest reduction in Avg[|r_ij|]. It is recommended to begin with a set
of unmirrored vectors for speed. Then add the mirrors later for whichever subset you wish.

Usage

greedy_orthogonalization_curation2(W, R0 = 100, verbose = FALSE)

Arguments

W A matrix in −1, 1Rxn which have R allocation vectors for an experiment of
sample size n.

R0 The minimum number of vectors to consider in a design. The default is the true
bottom, two.

verbose Default is FALSE but if not, it will print out a message for each iteration.

Value

A list with two elements: (1) avg_abs_rij_by_R which is a data frame with R - Rmin + 1 rows
and columns R and average absolute r_ij and (2) Wsorted which provides the collection of vectors
in sorted by best average absolute r_ij in row order from best to worst.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
W = matrix(sample(c(-1, 1), 6 * 8, replace = TRUE), nrow = 6)
W2 = greedy_orthogonalization_curation2(W, R0 = 4, verbose = FALSE)
dim(W2)

End(Not run)

hadamardExperimentalDesign 17

hadamardExperimentalDesign

Create a Hadamard Design

Description

This method returns unique designs according to a Hadamard matrix. For debugging, you can use
set.seed to be assured of deterministic output.

Usage

hadamardExperimentalDesign(X, strict = TRUE, form = "one_zero")

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). The measurements aren’t used to com-
pute the Hadamard designs, only the number of rows.

strict Hadamard matrices are not available for all n.

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

Value

An matrix of dimension R x n where R is the number of Hadamard allocations.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(16), nrow = 8)
W = hadamardExperimentalDesign(X, strict = TRUE, form = "one_zero")
dim(W)

End(Not run)

18 imbalanced_block_designs

imbalanced_block_designs

Implements unequally allocated block designs

Description

For debugging, you can use set.seed to be assured of deterministic output. The following quan-
tities in this design must be integer valued or an error will be thrown: n_B := n / B and n_B *
prop_T

Usage

imbalanced_block_designs(n, prop_T, B, r, form = "one_zero", seed = NULL)

Arguments

n number of observations

prop_T the proportion of treatments allocated

B the number of blocks

r number of randomized designs you would like

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

seed An integer which is the seed to be set within C++. Default is NULL which means
the seed is set from the system clock.

Value

a matrix where each column is one of the r designs

Author(s)

Adam Kapelner

Examples

Not run:
imbalanced_block_designs(n = 12, prop_T = 0.5, B = 3, r = 2, seed = 1)

End(Not run)

imbalanced_complete_randomization 19

imbalanced_complete_randomization

Implements unequally allocated complete randomization

Description

For debugging, you can use set.seed to be assured of deterministic output.

Usage

imbalanced_complete_randomization(n, prop_T, r, form = "one_zero", seed = NULL)

Arguments

n number of observations

prop_T the proportion of treatments needed

r number of randomized designs you would like

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

seed An integer which is the seed to be set within C++. Default is NULL which means
the seed is set from the system clock.

Value

a matrix where each column is one of the r designs

Author(s)

Adam Kapelner

Examples

Not run:
imbalanced_complete_randomization(n = 10, prop_T = 0.3, r = 2, seed = 1)

End(Not run)

20 initBinaryMatchExperimentalDesignSearchObject

initBinaryMatchExperimentalDesignSearchObject

Begin a Binary Match Search

Description

This method creates an object of type pairwise_matching_experimental_design_search and will
immediately initiate a search through allocation space for pairwise match designs based on the
structure computed in the function computeBinaryMatchStructure. For debugging, you can use
set the seed parameter and num_cores = 1 to be assured of deterministic output.

Usage

initBinaryMatchExperimentalDesignSearchObject(
binary_match_structure,
max_designs = 1000,
wait = FALSE,
start = TRUE,
num_cores = 1,
seed = NULL,
prop_flips = 1,
verbose = TRUE

)

Arguments

binary_match_structure

The binary_experimental_design object where the pairs are computed.

max_designs How many random allocation vectors you wish to return. The default is 1000.

wait Should the R terminal hang until all max_designs vectors are found? The default
is FALSE.

start Should we start searching immediately (default is TRUE).

num_cores The number of CPU cores you wish to use during the search. The default is 1.

seed The set to set for deterministic output. This should only be set if num_cores = 1
otherwise the output will not be deterministic. Default is NULL for no seed set.

prop_flips Proportion of flips. Default is all. Lower for more correlated assignments (useful
for research only).

verbose Should the algorithm emit progress output? Default is TRUE.

Author(s)

Adam Kapelner

initBinaryMatchFollowedByGreedyExperimentalDesignSearchObject 21

Examples

Not run:
set.seed(1)
X = matrix(rnorm(16), nrow = 8)
bms = computeBinaryMatchStructure(X)
bm = initBinaryMatchExperimentalDesignSearchObject(

bms,
max_designs = 4,
num_cores = 1,
start = TRUE,
wait = TRUE,
seed = 1,
verbose = FALSE

)
bm

End(Not run)

initBinaryMatchFollowedByGreedyExperimentalDesignSearchObject

Begin a Search for Binary Matching Followed by Greedy Switch De-
signs

Description

This method creates an object of type binary_then_greedy_experimental_design and will find opti-
mal matched pairs which are then greedily switched in order to further minimize a balance metric.
You can then use the function resultsBinaryMatchThenGreedySearch to obtain the randomized
allocation vectors. For one column in X, the matching just sorts the values to find the pairs trivially.

Usage

initBinaryMatchFollowedByGreedyExperimentalDesignSearchObject(
X,
diff_method = FALSE,
compute_dist_matrix = NULL,
verbose = TRUE,
...

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design.

diff_method Once the subjects (i.e. row vectors) are paired, do we create a set of n/2
difference vectors and feed that into greedy? If TRUE, this technically breaks the
objective function, but it is shown to have better performance. The default is
thus FALSE.

22 initBinaryMatchFollowedByRerandomizationDesignSearchObject

compute_dist_matrix

The function that computes the distance matrix between every two observations
in X, its only argument. The default is NULL signifying euclidean squared dis-
tance optimized in C++.

verbose Should the algorithm emit progress output? Default is TRUE.

... Arguments passed to initGreedyExperimentalDesignObject. It is recom-
mended to set max_designs otherwise it will default to 10,000.

Value

An object of type binary_experimental_design which can be further operated upon.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(16), nrow = 8)
obj = initBinaryMatchFollowedByGreedyExperimentalDesignSearchObject(

X,
max_designs = 4,
num_cores = 1,
objective = "abs_sum_diff",
start = TRUE,
wait = TRUE,
verbose = FALSE

)
obj

End(Not run)

initBinaryMatchFollowedByRerandomizationDesignSearchObject

Begin a Search for Binary Matching Followed by Rerandomization

Description

This method creates an object of type binary_then_rerandomization_experimental_design and will
find optimal matched pairs which are then rerandomized in order to further minimize a balance met-
ric. You can then use the function resultsBinaryMatchThenRerandomizationSearch to obtain
the randomized allocation vectors. For one column in X, the matching just sorts the values to find
the pairs trivially.

initBinaryMatchFollowedByRerandomizationDesignSearchObject 23

Usage

initBinaryMatchFollowedByRerandomizationDesignSearchObject(
X,
compute_dist_matrix = NULL,
verbose = TRUE,
...

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design.

compute_dist_matrix

The function that computes the distance matrix between every two observations
in X, its only argument. The default is NULL signifying euclidean squared dis-
tance optimized in C++.

verbose Should the algorithm emit progress output? Default is TRUE.

... Arguments passed to initGreedyExperimentalDesignObject. It is recom-
mended to set max_designs otherwise it will default to 10,000.

Value

An object of type binary_experimental_design which can be further operated upon.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(16), nrow = 8)
obj = initBinaryMatchFollowedByRerandomizationDesignSearchObject(

X,
max_designs = 4,
num_cores = 1,
objective = "abs_sum_diff",
obj_val_cutoff_to_include = Inf,
start = TRUE,
wait = TRUE,
verbose = FALSE

)
obj

End(Not run)

24 initGreedyExperimentalDesignObject

initGreedyExperimentalDesignObject

Begin A Greedy Pair Switching Search

Description

This method creates an object of type greedy_experimental_design and will immediately initiate
a search through allocation space for forced balance designs. For debugging, you can use set the
seed parameter and num_cores = 1 to be assured of deterministic output.

Usage

initGreedyExperimentalDesignObject(
X = NULL,
nT = NULL,
max_designs = 10000,
objective = "mahal_dist",
indicies_pairs = NULL,
Kgram = NULL,
wait = FALSE,
start = TRUE,
max_iters = Inf,
semigreedy = FALSE,
diagnostics = FALSE,
num_cores = 1,
seed = NULL,
verbose = TRUE,
use_safe_inverse = FALSE

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design. This parameter must be specified unless you
choose objective type "kernel" in which case, the Kgram parameter must be
specified.

nT The number of treatments to assign. Default is NULL which is for forced balance
allocation i.e. nT = nC = n / 2 where n is the number of rows in X (or Kgram if
X is unspecified).

max_designs The maximum number of designs to be returned. Default is 10,000. Make this
large so you can search however long you wish as the search can be stopped at
any time by using the stopSearch method

objective The objective function to use when searching design space. This is a string with
valid values "mahal_dist" (the default), "abs_sum_diff" or "kernel".

initGreedyExperimentalDesignObject 25

indicies_pairs A matrix of size $n/2$ times 2 whose rows are indicies pairs. The values of the
entire matrix must enumerate all indicies $1, ..., n$. The default is NULL meaning
to use all possible pairs.

Kgram If the objective = kernel, this argument is required to be an n x n matrix
whose entries are the evaluation of the kernel function between subject i and
subject j. Default is NULL.

wait Should the R terminal hang until all max_designs vectors are found? The deafult
is FALSE.

start Should we start searching immediately (default is TRUE).

max_iters Should we impose a maximum number of greedy switches? The default is Inf
which a flag for “no limit.”

semigreedy Should we use a fully greedy approach or the quicker semi-greedy approach?
The default is FALSE corresponding to the fully greedy approach.

diagnostics Returns diagnostic information about the iterations including (a) the initial start-
ing vectors, (b) the switches at every iteration and (c) information about the ob-
jective function at every iteration (default is FALSE to decrease the algorithm’s
run time).

num_cores The number of CPU cores you wish to use during the search. The default is 1.

seed The set to set for deterministic output. This should only be set if num_cores = 1
otherwise the output will not be deterministic. Default is NULL for no seed set.

verbose Should the algorithm emit progress output? Default is TRUE.
use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

Value

An object of type greedy_experimental_design_search which can be further operated upon

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
ged = initGreedyExperimentalDesignObject(

X,
max_designs = 5,
num_cores = 1,
objective = "abs_sum_diff",
start = TRUE,
wait = TRUE,
verbose = FALSE

)

26 initGreedyMultipleKernelExperimentalDesignObject

ged

End(Not run)

initGreedyMultipleKernelExperimentalDesignObject

Begin A Greedy Pair Multiple Kernel Switching Search

Description

This method creates an object of type greedy_multiple_kernel_experimental_design and will im-
mediately initiate a search through allocation space for forced balance designs. For debugging, you
can use set the seed parameter and num_cores = 1 to be assured of deterministic output.

Usage

initGreedyMultipleKernelExperimentalDesignObject(
X = NULL,
max_designs = 10000,
objective = "added_pct_reduction",
kernel_pre_num_designs = 2000,
kernel_names = NULL,
Kgrams = NULL,
maximum_gain_scaling = 1.1,
kernel_weights = NULL,
wait = FALSE,
start = TRUE,
max_iters = Inf,
semigreedy = FALSE,
diagnostics = FALSE,
num_cores = 1,
seed = NULL,
verbose = TRUE,
use_safe_inverse = FALSE

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design. We will standardize this matrix by column
internally.

max_designs The maximum number of designs to be returned. Default is 10,000. Make this
large so you can search however long you wish as the search can be stopped at
any time by using the stopSearch method

objective The method used to aggregate the kernel objective functions together. Default is
"added_pct_reduction".

initGreedyMultipleKernelExperimentalDesignObject 27

kernel_pre_num_designs

How many designs per kernel to run to explore the space of kernel objective
values. Default is 2000.

kernel_names An array with the kernels to compute with default parameters. Must have ele-
ments in the following set: "mahalanobis", "poly_s" where the "s" is a natural
number 1 or greater, "exponential", "laplacian", "inv_mult_quad", "gaussian".
Default is NULL to indicate the kernels are specified manually using the Kgrams
parameter.

Kgrams A list of M >= 1 elements where each is a n x n matrix whose entries are the
evaluation of the kernel function between subject i and subject j. Default is NULL
to indicate this was specified using the convenience parameter kernel_names.

maximum_gain_scaling

This controls how much the percentage of possible improvement on a kernel
objective function should be scaled by. The minimum is 1 which allows for
designs that could potentially have >=100 improvement over original. We rec-
ommend 1.1 which means that a design that was found to be the best of the
kernel_pre_num_designs still has 1/1.1 = 9% room to grow making it highly
unlikely that any design could be >= 100%.

kernel_weights A vector with positive weights (need not be normalized) where each element
represents the weight of each kernel. The default is NULL for uniform weighting.

wait Should the R terminal hang until all max_designs vectors are found? The deafult
is FALSE.

start Should we start searching immediately (default is TRUE).

max_iters Should we impose a maximum number of greedy switches? The default is Inf
which a flag for “no limit.”

semigreedy Should we use a fully greedy approach or the quicker semi-greedy approach?
The default is FALSE corresponding to the fully greedy approach.

diagnostics Returns diagnostic information about the iterations including (a) the initial start-
ing vectors, (b) the switches at every iteration and (c) information about the ob-
jective function at every iteration (default is FALSE to decrease the algorithm’s
run time).

num_cores The number of CPU cores you wish to use during the search. The default is 1.

seed The set to set for deterministic output. This should only be set if num_cores = 1
otherwise the output will not be deterministic. Default is NULL for no seed set.

verbose Should the algorithm emit progress output? Default is TRUE.
use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

Value

An object of type greedy_experimental_design_search which can be further operated upon

Author(s)

Adam Kapelner

28 initGurobiNumericalOptimizationExperimentalDesignObject

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
mk = initGreedyMultipleKernelExperimentalDesignObject(

X,
max_designs = 4,
kernel_pre_num_designs = 4,
num_cores = 1,
kernel_names = c("mahalanobis", "gaussian"),
start = TRUE,
wait = TRUE,
verbose = FALSE

)
mk

End(Not run)

initGurobiNumericalOptimizationExperimentalDesignObject

Begin Gurobi Optimized Search

Description

This method creates an object of type optimal_experimental_design and will immediately initiate a
search through allocation space for forced balance designs. Make sure you setup Gurobi properly
first. This means applying for a license, downloading, installing, registering it on your computer
using the grbgetkey command with the license file in the default directory. Then, in R, install the
package from the file in your gurobi directory.

Usage

initGurobiNumericalOptimizationExperimentalDesignObject(
X = NULL,
objective = "mahal_dist",
Kgram = NULL,
num_cores = 2,
w_0 = NULL,
initial_time_limit_sec = 5 * 60,
restart_time_limit_sec = 60,
max_number_of_restarts = 0,
max_no_good_cuts = 0,
verbose = TRUE,
gurobi_params = list(),
use_safe_inverse = FALSE,
r,
pool_solutions = NULL,
pool_gap = 0.2,

initGurobiNumericalOptimizationExperimentalDesignObject 29

pool_gap_abs = NULL,
pool_search_mode = 2,
mip_gap = 1e-04,
mip_gap_abs = 1e-10,
mip_focus = 1,
heuristics = 0.2,
cuts = 2,
presolve = 2

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design.

objective The objective function to use when searching design space. This is a string with
valid values "mahal_dist" (the default) or "kernel".

Kgram If the objective = kernel, this argument is required to be an n x n matrix
whose entries are the evaluation of the kernel function between subject i and
subject j. Default is NULL.

num_cores Number of cores to use during search. Default is 2.

w_0 The initial starting location (optional).
initial_time_limit_sec

The maximum amount of time the optimizer can run for in seconds. The default
is 5 * 60.

restart_time_limit_sec

The maximum amount of time each restart can run for in seconds. The default
is 60.

max_number_of_restarts

The maximum number of restarts to attempt if too few unique solutions are
returned. Default is 0.

max_no_good_cuts

The maximum number of no-good cuts to attempt. Default is 0 (disabled).

verbose Should Gurobi log to console? Default is TRUE.

gurobi_params A list of optional parameters to be passed to Gurobi (see their documentation
online).

use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

r Number of solution vectors to request from the Gurobi pool.

pool_solutions Number of solutions to request from the Gurobi pool. Defaults to 10 * r.

pool_gap Relative optimality gap for the pool. Default is 0.2. Use NULL to skip.

pool_gap_abs Absolute optimality gap for the pool. Default is NULL to skip.
pool_search_mode

Solution pool search mode. Default is 2 for diverse solutions.

30 initGurobiNumericalOptimizationExperimentalDesignObject

mip_gap Relative MIP gap target (stops when |best-bound - best-incumbent| / |best-incumbent|
<= mip_gap). Lower values force deeper search. Default is 1e-4.

mip_gap_abs Absolute MIP gap target (stops when |best-bound - best-incumbent| <= mip_gap_abs).
Lower values force deeper search. Default is 1e-10.

mip_focus Search focus: 0 (balance), 1 (find feasible solutions), 2 (prove optimality), 3
(bound improvement). Default is 1.

heuristics Heuristics effort in [0,1] where higher values spend more time on heuristics.
Default is 0.2.

cuts Cut aggressiveness: -1 (automatic), 0 (off), 1 (conservative), 2 (aggressive), 3
(very aggressive). Default is 2.

presolve Presolve aggressiveness: -1 (automatic), 0 (off), 1 (conservative), 2 (aggres-
sive). Default is 2.

Details

Currently, this method does not return multiple vectors. This will be improved in a later version. If
you want this functionality now, use the hacked-up method gurobi_multiple_designs.

Value

A list object which houses the results from Gurobi. Depending on the gurobi_parms, the data
within will be different. The most relevant tags are x for the best found solution and objval for the
object

Author(s)

Adam Kapelner

Examples

Not run:
if ("gurobi" %in% loadedNamespaces()) {

set.seed(1)
X = matrix(rnorm(12), nrow = 6)
gobj = initGurobiNumericalOptimizationExperimentalDesignObject(

X,
r = 2,
num_cores = 1,
initial_time_limit_sec = 5,
verbose = FALSE

)
gobj$n

}

End(Not run)

initKarpExperimentalDesignObject 31

initKarpExperimentalDesignObject

Begin Karp Search

Description

This method creates an object of type karp_experimental_design and will immediately initiate a
search through allocation space. Note that the Karp search only works for one covariate (i.e. $p=1$)
and the objective "abs_sum_diff".

Usage

initKarpExperimentalDesignObject(
X,
wait = FALSE,
balanced = TRUE,
start = TRUE,
verbose = TRUE

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more karp design.

wait Should the R terminal hang until all max_designs vectors are found? The deafult
is FALSE.

balanced Should the final vector be balanced? Default and recommended is TRUE.

start Should we start searching immediately (default is TRUE).

verbose Should the algorithm emit progress output? Default is TRUE.

Value

An object of type karp_experimental_design_search which can be further operated upon

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(10), nrow = 10)
kobj = initKarpExperimentalDesignObject(

X,
start = TRUE,

32 initOptimalExperimentalDesignObject

wait = TRUE,
balanced = TRUE,
verbose = FALSE

)
kobj

End(Not run)

initOptimalExperimentalDesignObject

Begin a Search for the Optimal Solution

Description

This method creates an object of type optimal_experimental_design and will immediately initiate
a search through allocation space. Since this search takes exponential time, for most machines,
this method is futile beyond 28 samples. You’ve been warned! For debugging, you can use set
num_cores = 1 to be assured of deterministic output.

Usage

initOptimalExperimentalDesignObject(
X = NULL,
objective = "mahal_dist",
Kgram = NULL,
wait = FALSE,
start = TRUE,
num_cores = 1,
verbose = TRUE,
use_safe_inverse = FALSE

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design.

objective The objective function to use when searching design space. This is a string with
valid values "mahal_dist" (the default), "abs_sum_diff" or "kernel".

Kgram If the objective = kernel, this argument is required to be an n x n matrix
whose entries are the evaluation of the kernel function between subject i and
subject j. Default is NULL.

wait Should the R terminal hang until all max_designs vectors are found? The deafult
is FALSE.

start Should we start searching immediately (default is TRUE).

num_cores The number of CPU cores you wish to use during the search. The default is 1.

initRerandomizationExperimentalDesignObject 33

verbose Should the algorithm emit progress output? Default is TRUE.
use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

Value

An object of type optimal_experimental_design_search which can be further operated upon

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(12), nrow = 6)
obj = initOptimalExperimentalDesignObject(

X,
objective = "abs_sum_diff",
num_cores = 1,
start = TRUE,
wait = TRUE,
verbose = FALSE

)
obj

End(Not run)

initRerandomizationExperimentalDesignObject

Begin a Rerandomization Search

Description

This method creates an object of type rerandomization_experimental_design and will immediately
initiate a search through allocation space for forced-balance designs. For debugging, you can use
set the seed parameter and num_cores = 1 to be assured of deterministic output.

Usage

initRerandomizationExperimentalDesignObject(
X = NULL,
obj_val_cutoff_to_include,
max_designs = 1000,
objective = "mahal_dist",
Kgram = NULL,

34 initRerandomizationExperimentalDesignObject

wait = FALSE,
start = TRUE,
num_cores = 1,
seed = NULL,
verbose = TRUE,
use_safe_inverse = FALSE

)

Arguments

X The design matrix with n rows (one for each subject) and p columns (one
for each measurement on the subject). This is the design matrix you wish to
search for a more optimal design.

obj_val_cutoff_to_include

Only allocation vectors with objective values lower than this threshold will be
returned. If the cutoff is infinity, you are doing BCRD and you should use the
complete_randomization_with_forced_balanced function instead.

max_designs The maximum number of designs to be returned. Default is 10,000. Make this
large so you can search however long you wish as the search can be stopped at
any time by using the stopSearch method

objective The objective function to use when searching design space. This is a string with
valid values "mahal_dist" (the default), "abs_sum_diff" or "kernel".

Kgram If the objective = kernel, this argument is required to be an n x n matrix
whose entries are the evaluation of the kernel function between subject i and
subject j. Default is NULL.

wait Should the R terminal hang until all max_designs vectors are found? The default
is FALSE.

start Should we start searching immediately (default is TRUE).

num_cores The number of CPU cores you wish to use during the search. The default is 1.

seed The set to set for deterministic output. This should only be set if num_cores = 1
otherwise the output will not be deterministic. Default is NULL for no seed set.

verbose Should the algorithm emit progress output? Default is TRUE.

use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

Value

An object of type rerandomization_experimental_design_search which can be further oper-
ated upon.

Author(s)

Adam Kapelner

optimize_asymmetric_treatment_assignment 35

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
obj = initRerandomizationExperimentalDesignObject(

X,
max_designs = 5,
num_cores = 1,
objective = "abs_sum_diff",
obj_val_cutoff_to_include = Inf,
start = TRUE,
wait = TRUE,
verbose = FALSE

)
obj

End(Not run)

optimize_asymmetric_treatment_assignment

Compute Optimal Number of Treatments/Controls

Description

Given a total budget and asymmetric treatment and control costs, calculate the number of treatments
and controls that optimize the variance of the estimator. The number of treatments is rounded up by
default.

Usage

optimize_asymmetric_treatment_assignment(
c_treatment = NULL,
c_control = NULL,
c_total_max = NULL,
n = NULL

)

Arguments

c_treatment The cost of a treatment assignment. Default is NULL for symmetric costs.

c_control The cost of a control assignment. Default is NULL for symmetric costs.

c_total_max The total cost constraint of any allocation. Either this or n must be specified.
Default is NULL.

n The total cost constraint as specified by the total number of subjects. Either this
or c_total must be specified. Default is NULL.

36 plot.greedy_experimental_design_search

Value

A list with three keys: n, nT, nC plus specified arguments

Author(s)

Adam Kapelner

Examples

Not run:
optimize_asymmetric_treatment_assignment(n = 100)
optimize_asymmetric_treatment_assignment(n = 100, c_treatment = 2, c_control = 1)
optimize_asymmetric_treatment_assignment(c_total_max = 50, c_treatment = 2, c_control = 1)

End(Not run)

plot.greedy_experimental_design_search

Plots a summary of a greedy search object object

Description

Plots a summary of a greedy search object object

Usage

S3 method for class 'greedy_experimental_design_search'
plot(x, ...)

Arguments

x The greedy search object object to be summarized in the plot

... Other parameters to pass to the default plot function

Value

An array of order statistics from plot_obj_val_order_statistic as a list element

Author(s)

Adam Kapelner

plot.greedy_multiple_kernel_experimental_design 37

plot.greedy_multiple_kernel_experimental_design

Plots a summary of a greedy_multiple_kernel_experimental_design
object

Description

Plots a summary of a greedy_multiple_kernel_experimental_design object

Usage

S3 method for class 'greedy_multiple_kernel_experimental_design'
plot(x, ...)

Arguments

x The greedy_multiple_kernel_experimental_design object to be summa-
rized in the plot

... Other parameters to pass to the default plot function

Value

An array of order statistics from plot_obj_val_order_statistic as a list element

Author(s)

Adam Kapelner

plot_obj_val_by_iter Plots the objective value by iteration

Description

Plots the objective value by iteration

Usage

plot_obj_val_by_iter(res, runs = NULL)

Arguments

res Results from a greedy search object

runs A vector of run indices you would like to see plotted (default is to plot the first
up to 9)

38 plot_obj_val_order_statistic

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
ged = initGreedyExperimentalDesignObject(

X,
max_designs = 5,
num_cores = 1,
diagnostics = TRUE,
objective = "abs_sum_diff",
start = TRUE,
wait = TRUE,
verbose = FALSE

)
res = resultsGreedySearch(ged, max_vectors = 2)
plot_obj_val_by_iter(res)

End(Not run)

plot_obj_val_order_statistic

Plots an order statistic of the object value as a function of number of
searches

Description

Plots an order statistic of the object value as a function of number of searches

Usage

plot_obj_val_order_statistic(
obj,
order_stat = 1,
skip_every = 5,
type = "o",
...

)

Arguments

obj The greedy search object object whose search history is to be visualized

order_stat The order statistic that you wish to plot. The default is 1 for the minimum.

skip_every Plot every nth point. This makes the plot generate much more quickly. The
default is 5.

print.binary_match_structure 39

type The type parameter for plot.
... Other arguments to be passed to the plot function.

Value

An array of order statistics as a list element

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
ged = initGreedyExperimentalDesignObject(

X,
max_designs = 5,
num_cores = 1,
objective = "abs_sum_diff",
start = TRUE,
wait = TRUE,
verbose = FALSE

)
plot_obj_val_order_statistic(ged, order_stat = 1, skip_every = 1)

End(Not run)

print.binary_match_structure

Prints a summary of a binary_match_structure object

Description

Prints a summary of a binary_match_structure object

Usage

S3 method for class 'binary_match_structure'
print(x, ...)

Arguments

x The binary_match_structure object to be summarized in the console
... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

40 print.binary_then_rerandomization_experimental_design

print.binary_then_greedy_experimental_design

Prints a summary of a binary_then_greedy_experimental_design
object

Description

Prints a summary of a binary_then_greedy_experimental_design object

Usage

S3 method for class 'binary_then_greedy_experimental_design'
print(x, ...)

Arguments

x The binary_then_greedy_experimental_design object to be summarized in
the console

... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

print.binary_then_rerandomization_experimental_design

Prints a summary of a binary_then_rerandomization_experimental_design
object

Description

Prints a summary of a binary_then_rerandomization_experimental_design object

Usage

S3 method for class 'binary_then_rerandomization_experimental_design'
print(x, ...)

Arguments

x The binary_then_rerandomization_experimental_design object to be sum-
marized in the console

... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

print.greedy_experimental_design_search 41

print.greedy_experimental_design_search

Prints a summary of a greedy_experimental_design_search ob-
ject

Description

Prints a summary of a greedy_experimental_design_search object

Usage

S3 method for class 'greedy_experimental_design_search'
print(x, ...)

Arguments

x The greedy_experimental_design_search object to be summarized in the
console

... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

print.greedy_multiple_kernel_experimental_design

Prints a summary of a greedy_multiple_kernel_experimental_design
object

Description

Prints a summary of a greedy_multiple_kernel_experimental_design object

Usage

S3 method for class 'greedy_multiple_kernel_experimental_design'
print(x, ...)

Arguments

x The greedy_multiple_kernel_experimental_design object to be summa-
rized in the console

... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

42 print.optimal_experimental_design_search

print.karp_experimental_design_search

Prints a summary of a karp_experimental_design_search object

Description

Prints a summary of a karp_experimental_design_search object

Usage

S3 method for class 'karp_experimental_design_search'
print(x, ...)

Arguments

x The karp_experimental_design_search object to be summarized in the con-
sole

... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

print.optimal_experimental_design_search

Prints a summary of a optimal_experimental_design_search ob-
ject

Description

Prints a summary of a optimal_experimental_design_search object

Usage

S3 method for class 'optimal_experimental_design_search'
print(x, ...)

Arguments

x The optimal_experimental_design_search object to be summarized in the
console

... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

print.pairwise_matching_experimental_design_search 43

print.pairwise_matching_experimental_design_search

Prints a summary of a pairwise_matching_experimental_design_search
object

Description

Prints a summary of a pairwise_matching_experimental_design_search object

Usage

S3 method for class 'pairwise_matching_experimental_design_search'
print(x, ...)

Arguments

x The pairwise_matching_experimental_design_search object to be sum-
marized in the console

... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

print.rerandomization_experimental_design_search

Prints a summary of a rerandomization_experimental_design_search
object

Description

Prints a summary of a rerandomization_experimental_design_search object

Usage

S3 method for class 'rerandomization_experimental_design_search'
print(x, ...)

Arguments

x The rerandomization_experimental_design_search object to be summa-
rized in the console

... Other parameters to pass to the default print function

Author(s)

Adam Kapelner

44 resultsBinaryMatchSearch

resultsBinaryMatchSearch

Binary Pair Match Search

Description

Returns the results (thus far) of the binary pair match design search

Usage

resultsBinaryMatchSearch(obj, form = "one_zero")

Arguments

obj The pairwise_matching_experimental_design_search object that is cur-
rently running the search

form Which form should the assignments be in? The default is one_zero for 1/0’s or
pos_one_min_one for +1/-1’s.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(16), nrow = 8)
bms = computeBinaryMatchStructure(X)
bm = initBinaryMatchExperimentalDesignSearchObject(

bms,
max_designs = 4,
num_cores = 1,
start = TRUE,
wait = TRUE,
seed = 1,
verbose = FALSE

)
res = resultsBinaryMatchSearch(bm, form = "one_zero")
dim(res)

End(Not run)

resultsBinaryMatchThenGreedySearch 45

resultsBinaryMatchThenGreedySearch

Returns unique allocation vectors that are binary matched

Description

Returns unique allocation vectors that are binary matched

Usage

resultsBinaryMatchThenGreedySearch(
obj,
num_vectors = NULL,
compute_obj_vals = FALSE,
form = "one_zero",
use_safe_inverse = FALSE

)

Arguments

obj The binary_then_greedy_experimental_design object where the pairs are
computed.

num_vectors How many random allocation vectors you wish to return. The default is NULL
indicating you want all of them.

compute_obj_vals

Should we compute all the objective values for each allocation? Default is
FALSE.

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(16), nrow = 8)
obj = initBinaryMatchFollowedByGreedyExperimentalDesignSearchObject(

X,
max_designs = 4,
num_cores = 1,
objective = "abs_sum_diff",

46 resultsBinaryMatchThenRerandomizationSearch

start = TRUE,
wait = TRUE,
verbose = FALSE

)
res = resultsBinaryMatchThenGreedySearch(obj, num_vectors = 3, form = "one_zero")
dim(res$indicTs)

End(Not run)

resultsBinaryMatchThenRerandomizationSearch

Returns unique allocation vectors that are binary matched

Description

Returns unique allocation vectors that are binary matched

Usage

resultsBinaryMatchThenRerandomizationSearch(
obj,
num_vectors = NULL,
compute_obj_vals = FALSE,
form = "one_zero",
use_safe_inverse = FALSE

)

Arguments

obj The binary_then_greedy_experimental_design object where the pairs are
computed.

num_vectors How many random allocation vectors you wish to return. The default is NULL
indicating you want all of them.

compute_obj_vals

Should we compute all the objective values for each allocation? Default is
FALSE.

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

use_safe_inverse

Should a regularized inverse be used for the Mahalanobis objective? Default is
FALSE.

Author(s)

Adam Kapelner

resultsGreedySearch 47

Examples

Not run:
set.seed(1)
X = matrix(rnorm(16), nrow = 8)
obj = initBinaryMatchFollowedByRerandomizationDesignSearchObject(

X,
max_designs = 4,
num_cores = 1,
objective = "abs_sum_diff",
obj_val_cutoff_to_include = Inf,
start = TRUE,
wait = TRUE,
verbose = FALSE

)
res = resultsBinaryMatchThenRerandomizationSearch(obj, num_vectors = 3, form = "one_zero")
dim(res$indicTs)

End(Not run)

resultsGreedySearch Returns the results (thus far) of the greedy design search

Description

Returns the results (thus far) of the greedy design search

Usage

resultsGreedySearch(obj, max_vectors = 9, form = "one_zero")

Arguments

obj The greedy_experimental_design object that is currently running the search

max_vectors The number of design vectors you wish to return. NULL returns all of them.
This is not recommended as returning over 1,000 vectors is time-intensive. The
default is 9.

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

Author(s)

Adam Kapelner

48 resultsGurobiNumericalOptimizeSearch

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
ged = initGreedyExperimentalDesignObject(

X,
max_designs = 5,
num_cores = 1,
objective = "abs_sum_diff",
start = TRUE,
wait = TRUE,
verbose = FALSE

)
res = resultsGreedySearch(ged, max_vectors = 2)
res$obj_vals

End(Not run)

resultsGurobiNumericalOptimizeSearch

Query the Gurobi Results

Description

Returns the results (thus far) of the Gurobi numerical optimization design search

Usage

resultsGurobiNumericalOptimizeSearch(obj)

Arguments

obj The gurobi_numerical_optimization_experimental_design_search object
that is currently running the search

Author(s)

Adam Kapelner

Examples

Not run:
if ("gurobi" %in% loadedNamespaces()) {

set.seed(1)
X = matrix(rnorm(12), nrow = 6)
gobj = initGurobiNumericalOptimizationExperimentalDesignObject(

X,
r = 2,
num_cores = 1,

resultsKarpSearch 49

initial_time_limit_sec = 5,
verbose = FALSE

)
res = resultsGurobiNumericalOptimizeSearch(gobj)
res$obj_vals

}

End(Not run)

resultsKarpSearch Returns the results (thus far) of the karp design search

Description

Returns the results (thus far) of the karp design search

Usage

resultsKarpSearch(obj)

Arguments

obj The karp_experimental_design object that is currently running the search

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(10), nrow = 10)
kobj = initKarpExperimentalDesignObject(

X,
start = TRUE,
wait = TRUE,
balanced = TRUE,
verbose = FALSE

)
res = resultsKarpSearch(kobj)
res$obj_val

End(Not run)

50 resultsMultipleKernelGreedySearch

resultsMultipleKernelGreedySearch

Returns the results (thus far) of the greedy design search for multiple
kernels

Description

Returns the results (thus far) of the greedy design search for multiple kernels

Usage

resultsMultipleKernelGreedySearch(obj, max_vectors = 9, form = "one_zero")

Arguments

obj The greedy_multiple_kernel_experimental_design object that is currently
running the search

max_vectors The number of design vectors you wish to return. NULL returns all of them.
This is not recommended as returning over 1,000 vectors is time-intensive. The
default is 9.

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
mk = initGreedyMultipleKernelExperimentalDesignObject(

X,
max_designs = 4,
kernel_pre_num_designs = 4,
num_cores = 1,
kernel_names = c("mahalanobis", "gaussian"),
start = TRUE,
wait = TRUE,
verbose = FALSE

)
res = resultsMultipleKernelGreedySearch(mk, max_vectors = 2, form = "one_zero")
res$obj_vals

End(Not run)

resultsOptimalSearch 51

resultsOptimalSearch Returns the results (thus far) of the optimal design search

Description

Returns the results (thus far) of the optimal design search

Usage

resultsOptimalSearch(obj, num_vectors = 2, form = "one_zero")

Arguments

obj The optimal_experimental_design object that is currently running the search

num_vectors How many allocation vectors you wish to return. The default is 1 meaning the
best vector. If Inf, it means all vectors.

form Which form should it be in? The default is one_zero for 1/0’s or pos_one_min_one
for +1/-1’s.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(12), nrow = 6)
obj = initOptimalExperimentalDesignObject(

X,
objective = "abs_sum_diff",
num_cores = 1,
start = TRUE,
wait = TRUE,
verbose = FALSE

)
res = resultsOptimalSearch(obj, num_vectors = 2, form = "one_zero")
res$opt_obj_val

End(Not run)

52 resultsRerandomizationSearch

resultsRerandomizationSearch

Returns the results (thus far) of the rerandomization design search

Description

Returns the results (thus far) of the rerandomization design search

Usage

resultsRerandomizationSearch(
obj,
include_assignments = FALSE,
form = "one_zero"

)

Arguments

obj The rerandomization_experimental_design object that is currently running
the search

include_assignments

Do we include the assignments (takes time) and default is FALSE.

form Which form should the assignments be in? The default is one_zero for 1/0’s or
pos_one_min_one for +1/-1’s.

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
obj = initRerandomizationExperimentalDesignObject(

X,
max_designs = 5,
num_cores = 1,
objective = "abs_sum_diff",
obj_val_cutoff_to_include = Inf,
start = TRUE,
wait = TRUE,
verbose = FALSE

)
res = resultsRerandomizationSearch(obj, include_assignments = TRUE, form = "one_zero")
dim(res$ending_indicTs)

End(Not run)

safe_cov_inverse 53

safe_cov_inverse Computes a numerically stable inverse of a covariance matrix

Description

Computes a numerically stable inverse of a covariance matrix

Usage

safe_cov_inverse(X, ridge = 1e-08, max_ridge_steps = 6)

Arguments

X The n x p design matrix

ridge Initial ridge penalty added to the diagonal
max_ridge_steps

Maximum number of ridge escalation attempts

Value

The inverse covariance matrix

Author(s)

Adam Kapelner

Examples

Not run:
X = matrix(rnorm(20), nrow = 10)
Sinv = safe_cov_inverse(X)
dim(Sinv)

End(Not run)

searchTimeElapsed Returns the amount of time elapsed

Description

Returns the amount of time elapsed

Usage

searchTimeElapsed(obj)

54 shuffle_cpp_wrap

Arguments

obj The experimental_design object that is currently running the search

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
ged = initGreedyExperimentalDesignObject(

X,
max_designs = 1,
num_cores = 1,
start = TRUE,
wait = TRUE,
objective = "abs_sum_diff",
verbose = FALSE

)
searchTimeElapsed(ged)

End(Not run)

shuffle_cpp_wrap Shuffles a vector rapidly

Description

Shuffles a vector rapidly

Usage

shuffle_cpp_wrap(w, seed = NA_integer_)

Arguments

w The vector to be shuffled

seed Optional integer seed; use NA to draw from the system clock

Value

The vector with elements shuffled

Author(s)

Adam Kapelner

standardize_data_matrix 55

Examples

Not run:
shuffle_cpp_wrap(1:5, seed = 1)

End(Not run)

standardize_data_matrix

Standardizes the columns of a data matrix.

Description

Standardizes the columns of a data matrix.

Usage

standardize_data_matrix(X)

Arguments

X The n x p design matrix

Value

The n x p design matrix with columns standardized

Author(s)

Adam Kapelner

Examples

Not run:
X = matrix(rnorm(12), nrow = 6)
Xstd = standardize_data_matrix(X)
colMeans(Xstd)

End(Not run)

56 stopSearch

startSearch Starts the parallelized greedy design search.

Description

Once begun, this function cannot be run again.

Usage

startSearch(obj)

Arguments

obj The experimental_design object that will be running the search

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
ged = initGreedyExperimentalDesignObject(

X,
max_designs = 3,
num_cores = 1,
start = FALSE,
wait = FALSE,
objective = "abs_sum_diff",
verbose = FALSE

)
startSearch(ged)
stopSearch(ged)

End(Not run)

stopSearch Stops the parallelized greedy design search.

Description

Once stopped, it cannot be restarted.

Usage

stopSearch(obj)

summary.binary_match_structure 57

Arguments

obj The experimental_design object that is currently running the search

Author(s)

Adam Kapelner

Examples

Not run:
set.seed(1)
X = matrix(rnorm(20), nrow = 10)
ged = initGreedyExperimentalDesignObject(

X,
max_designs = 3,
num_cores = 1,
start = TRUE,
wait = FALSE,
objective = "abs_sum_diff",
verbose = FALSE

)
stopSearch(ged)

End(Not run)

summary.binary_match_structure

Prints a summary of a binary_match_structure object

Description

Prints a summary of a binary_match_structure object

Usage

S3 method for class 'binary_match_structure'
summary(object, ...)

Arguments

object The binary_match_structure object to be summarized in the console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

58 summary.binary_then_rerandomization_experimental_design

summary.binary_then_greedy_experimental_design

Prints a summary of a binary_then_greedy_experimental_design
object

Description

Prints a summary of a binary_then_greedy_experimental_design object

Usage

S3 method for class 'binary_then_greedy_experimental_design'
summary(object, ...)

Arguments

object The binary_then_greedy_experimental_design object to be summarized in
the console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

summary.binary_then_rerandomization_experimental_design

Prints a summary of a binary_then_rerandomization_experimental_design
object

Description

Prints a summary of a binary_then_rerandomization_experimental_design object

Usage

S3 method for class 'binary_then_rerandomization_experimental_design'
summary(object, ...)

Arguments

object The binary_then_rerandomization_experimental_design object to be sum-
marized in the console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

summary.greedy_experimental_design_search 59

summary.greedy_experimental_design_search

Prints a summary of a greedy_experimental_design_search ob-
ject

Description

Prints a summary of a greedy_experimental_design_search object

Usage

S3 method for class 'greedy_experimental_design_search'
summary(object, ...)

Arguments

object The greedy_experimental_design_search object to be summarized in the
console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

summary.greedy_multiple_kernel_experimental_design

Prints a summary of a greedy_multiple_kernel_experimental_design
object

Description

Prints a summary of a greedy_multiple_kernel_experimental_design object

Usage

S3 method for class 'greedy_multiple_kernel_experimental_design'
summary(object, ...)

Arguments

object The greedy_multiple_kernel_experimental_design object to be summa-
rized in the console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

60 summary.optimal_experimental_design_search

summary.karp_experimental_design_search

Prints a summary of a karp_experimental_design_search object

Description

Prints a summary of a karp_experimental_design_search object

Usage

S3 method for class 'karp_experimental_design_search'
summary(object, ...)

Arguments

object The karp_experimental_design_search object to be summarized in the con-
sole

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

summary.optimal_experimental_design_search

Prints a summary of a optimal_experimental_design_search ob-
ject

Description

Prints a summary of a optimal_experimental_design_search object

Usage

S3 method for class 'optimal_experimental_design_search'
summary(object, ...)

Arguments

object The optimal_experimental_design_search object to be summarized in the
console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

summary.pairwise_matching_experimental_design_search 61

summary.pairwise_matching_experimental_design_search

Prints a summary of a pairwise_matching_experimental_design_search
object

Description

Prints a summary of a pairwise_matching_experimental_design_search object

Usage

S3 method for class 'pairwise_matching_experimental_design_search'
summary(object, ...)

Arguments

object The pairwise_matching_experimental_design_search object to be sum-
marized in the console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

summary.rerandomization_experimental_design_search

Prints a summary of a rerandomization_experimental_design_search
object

Description

Prints a summary of a rerandomization_experimental_design_search object

Usage

S3 method for class 'rerandomization_experimental_design_search'
summary(object, ...)

Arguments

object The rerandomization_experimental_design_search object to be summa-
rized in the console

... Other parameters to pass to the default summary function

Author(s)

Adam Kapelner

Index

∗ design
GreedyExperimentalDesign, 14

∗ optimize
GreedyExperimentalDesign, 14

all_elements_same_cpp_wrap, 3

complete_randomization, 4
complete_randomization_with_forced_balanced,

5
compute_distance_matrix_cpp_wrap, 7
compute_gram_matrix, 8
compute_objective_val, 9
compute_randomization_metrics, 10
computeBinaryMatchStructure, 6
create_all_ys_cpp_wrap, 10

gen_pm_designs_cpp_wrap, 13
gen_var_cov_matrix_block_designs, 13
generate_block_design_cpp_wrap, 11
generate_stdzied_design_matrix, 12
greedy_orthogonalization_curation, 15
greedy_orthogonalization_curation2, 16
GreedyExperimentalDesign, 14

hadamardExperimentalDesign, 17

imbalanced_block_designs, 18
imbalanced_complete_randomization, 19
initBinaryMatchExperimentalDesignSearchObject,

20
initBinaryMatchFollowedByGreedyExperimentalDesignSearchObject,

21
initBinaryMatchFollowedByRerandomizationDesignSearchObject,

22
initGreedyExperimentalDesignObject, 24
initGreedyMultipleKernelExperimentalDesignObject,

26
initGurobiNumericalOptimizationExperimentalDesignObject,

28
initKarpExperimentalDesignObject, 31

initOptimalExperimentalDesignObject,
32

initRerandomizationExperimentalDesignObject,
33

optimize_asymmetric_treatment_assignment,
35

plot.greedy_experimental_design_search,
36

plot.greedy_multiple_kernel_experimental_design,
37

plot_obj_val_by_iter, 37
plot_obj_val_order_statistic, 36, 37, 38
print.binary_match_structure, 39
print.binary_then_greedy_experimental_design,

40
print.binary_then_rerandomization_experimental_design,

40
print.greedy_experimental_design_search,

41
print.greedy_multiple_kernel_experimental_design,

41
print.karp_experimental_design_search,

42
print.optimal_experimental_design_search,

42
print.pairwise_matching_experimental_design_search,

43
print.rerandomization_experimental_design_search,

43

resultsBinaryMatchSearch, 44
resultsBinaryMatchThenGreedySearch, 45
resultsBinaryMatchThenRerandomizationSearch,

46
resultsGreedySearch, 47
resultsGurobiNumericalOptimizeSearch,

48
resultsKarpSearch, 49

62

INDEX 63

resultsMultipleKernelGreedySearch, 50
resultsOptimalSearch, 51
resultsRerandomizationSearch, 52

safe_cov_inverse, 53
searchTimeElapsed, 53
shuffle_cpp_wrap, 54
standardize_data_matrix, 55
startSearch, 56
stopSearch, 24, 26, 34, 56
summary.binary_match_structure, 57
summary.binary_then_greedy_experimental_design,

58
summary.binary_then_rerandomization_experimental_design,

58
summary.greedy_experimental_design_search,

59
summary.greedy_multiple_kernel_experimental_design,

59
summary.karp_experimental_design_search,

60
summary.optimal_experimental_design_search,

60
summary.pairwise_matching_experimental_design_search,

61
summary.rerandomization_experimental_design_search,

61

	all_elements_same_cpp_wrap
	complete_randomization
	complete_randomization_with_forced_balanced
	computeBinaryMatchStructure
	compute_distance_matrix_cpp_wrap
	compute_gram_matrix
	compute_objective_val
	compute_randomization_metrics
	create_all_ys_cpp_wrap
	generate_block_design_cpp_wrap
	generate_stdzied_design_matrix
	gen_pm_designs_cpp_wrap
	gen_var_cov_matrix_block_designs
	GreedyExperimentalDesign
	greedy_orthogonalization_curation
	greedy_orthogonalization_curation2
	hadamardExperimentalDesign
	imbalanced_block_designs
	imbalanced_complete_randomization
	initBinaryMatchExperimentalDesignSearchObject
	initBinaryMatchFollowedByGreedyExperimentalDesignSearchObject
	initBinaryMatchFollowedByRerandomizationDesignSearchObject
	initGreedyExperimentalDesignObject
	initGreedyMultipleKernelExperimentalDesignObject
	initGurobiNumericalOptimizationExperimentalDesignObject
	initKarpExperimentalDesignObject
	initOptimalExperimentalDesignObject
	initRerandomizationExperimentalDesignObject
	optimize_asymmetric_treatment_assignment
	plot.greedy_experimental_design_search
	plot.greedy_multiple_kernel_experimental_design
	plot_obj_val_by_iter
	plot_obj_val_order_statistic
	print.binary_match_structure
	print.binary_then_greedy_experimental_design
	print.binary_then_rerandomization_experimental_design
	print.greedy_experimental_design_search
	print.greedy_multiple_kernel_experimental_design
	print.karp_experimental_design_search
	print.optimal_experimental_design_search
	print.pairwise_matching_experimental_design_search
	print.rerandomization_experimental_design_search
	resultsBinaryMatchSearch
	resultsBinaryMatchThenGreedySearch
	resultsBinaryMatchThenRerandomizationSearch
	resultsGreedySearch
	resultsGurobiNumericalOptimizeSearch
	resultsKarpSearch
	resultsMultipleKernelGreedySearch
	resultsOptimalSearch
	resultsRerandomizationSearch
	safe_cov_inverse
	searchTimeElapsed
	shuffle_cpp_wrap
	standardize_data_matrix
	startSearch
	stopSearch
	summary.binary_match_structure
	summary.binary_then_greedy_experimental_design
	summary.binary_then_rerandomization_experimental_design
	summary.greedy_experimental_design_search
	summary.greedy_multiple_kernel_experimental_design
	summary.karp_experimental_design_search
	summary.optimal_experimental_design_search
	summary.pairwise_matching_experimental_design_search
	summary.rerandomization_experimental_design_search
	Index

