Package ‘GulFM’

January 8, 2026
Type Package

Title General Unilateral Load Estimator for Two-Layer Latent Factor
Models

Version 0.5.0

Description Implements general unilateral loading estimator for two-layer latent factor mod-
els with smooth, element-wise factor transformations. We provide data simulation, loading esti-
mation,finite-sample error bounds, and diagnostic tools for zero-mean and sub-Gaussian assump-
tions. A unified interface is given for evaluating estimation accuracy and cosine similar-
ity. The philosophy of the package is de-
scribed in Guo G. (2026) <doi:10.1016/j.apm.2025.116280>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=3.5.0)

Imports MASS, matrixStats

Suggests testthat (>= 3.0.0), ggplot2
NeedsCompilation no

Language en-US

Author Guangbao Guo [aut, cre]
Maintainer Guangbao Guo <ggh11111111@163.com>
Repository CRAN

Date/Publication 2026-01-08 04:40:08 UTC

Contents
estimate_gul_loadings 2
generate_gfm_data 3
gul_simulation e e 3
g fun ..o e 4
g theorem L. 5
loading_metrics e e 5

https://doi.org/10.1016/j.apm.2025.116280

2 estimate_gul_loadings

verify_mean e e e e e 6
verify_subgaussian L e e 7
Index 8

estimate_gul_loadings General unilateral load Estimator

Description

General unilateral load Estimator

Usage

estimate_gul_loadings(X, m)

Arguments
X n *p data matrix (already centred and scaled if desired).
m number of latent factors (both layers).

Details

Step 1: PCA on X to get hat_A1l Step 2: Regress X on hat_Al to get hat_gF1 Step 3: PCA on
hat_gF1 to get hat_A2 Step 4: hat_Ag = hat_Al

Value

A list with hat_Al : p * m Ist-layer loadings hat_A2 : m * m 2nd-layer loadings hat_Ag : p
* m overall loadings Sigmal : p * p sample cov(X) (for diagnostics) Sigma2 : m * m sample
cov(hat_gF1) hat_gF1 : n * m estimated transformed latent factors eigl : eigen-values of Sigmal
eig? : eigen-values of Sigma?2

Examples

dat <- generate_gfm_data(500, 50, 5, tanh, seed = 1)
est <- estimate_gul_loadings(dat$X, m = 5)
err <- sgrt(mean((est$hat_Ag - dat$Ag)"2)) # overall RMSE

generate_gfm_data 3

generate_gfm_data Generate general factor model with smooth latent transformation

Description

Generate general factor model with smooth latent transformation

Usage

generate_gfm_data(n, p, m, g_fun, seed = 1, sigma_V = 0.1)

Arguments
n Integer: sample size.
p Integer: number of observed variables.
m Integer: number of latent factors (both layers).
g_fun Function: smooth, element-wise transformation applied to latent factors. Must
be vectorised, e.g. ‘sin‘, ‘tanh‘, ‘scale‘.
seed 1.
sigma_V Numeric: standard deviation of the idiosyncratic noise (default 0.1 => Var =
0.01).
Value

List with components X : n * p matrix of standardised observations. Al : p * m first-layer loading
matrix. A2 : m * m second-layer loading matrix. Ag : p * m overall loading matrix (Ag = Al F1 :
n * m latent factors (before transformation). gF1: n * m latent factors (after transformation). V1 : n
* p noise matrix (for diagnostics).

Examples

dat <- generate_gfm_data(200, 50, 5, g_fun = tanh)

gul_simulation Single-replication GUL simulation

Description
Generates one synthetic data set, estimates loadings with the GUL, and evaluates estimation accu-
racy.

Usage

gul_simulation(n, p, m, g_fun)

Arguments

n

p
m

g_fun

Value

g fun

Integer: sample size.
Integer: number of observed variables.
Integer: number of latent factors (both layers).

Function: element-wise, smooth transformation applied to the latent factors (e.g.
‘tanh°, ‘sin®).

Named numeric vector with components error_F : Frobenius norm llhat(Ag) - Agll_F

Examples

gul_simulation(200, 50, 5, g_fun = tanh)

g_fun

Smooth link functions compliant with Theorems 9&10

Description

Returns a vectorised map g(-) and its exact Lipschitz constant L, for three increasingly nonlinear

choices.

Usage

g_fun(type = c("linear”, "weak_nonlinear”, "strong_nonlinear"))

Arguments

type

Value

n on

Character string selecting the map: "linear”, "weak_nonlinear”, or "strong_nonlinear".

Named list with components

g_fun
L_g

Examples

pick
tmp <-
dat <-
est <-
err <-

vectorised function g(-)

scalar Lipschitz constant of g

a link with L_g =1

g_fun("linear")

generate_gfm_data(n = 500, p = 200, m = 5, g_fun = tmp$g_fun)
estimate_gul_loadings(dat$Xx, m = 5)

norm(est$hat_Ag - dat$Ag, "F")

sprintf("F-error (L_g = %d) = %.3f", tmp$L_g, err)

g theorem 5

g_theorem Simulation wrapper for Theorems 9 & 10

Description
One Monte-Carlo replicate; returns empirical error, exceedance indicator, theoretical bounds, and
assumption-check flags.

Usage

g_theorem(n, p, m, g_type, epsilon, zero_tol = 0.02)

Arguments
n sample size
p number of observed variables
m number of latent factors
g_type character: "linear", "weak_nonlinear", "strong_nonlinear"
epsilon error threshold
zero_tol zero-mean tolerance (default 0.02)
Value

one-row data-frame

Examples

df <- g_theorem(500, 200, 5, "linear"”, 0.6)

loading_metrics Multi-metric evaluation of factor loading matrix estimation error

Description

Multi-metric evaluation of factor loading matrix estimation error

Usage

loading_metrics(A_true, A_hat)

Arguments

A_true True loading matrix (p X m)

A_hat Estimated loading matrix (p x m)

Value

data.frame with MSE, RMSE, MAE, MaxDev, and Cosine similarity

Examples

simulated example

p <- 100; m<-5

Ag_true <- matrix(rnorm(p*m), p, m)

Ag_hat

metrics
print(metrics)

<- Ag_true + matrix(rnorm(p*m, @, 0.1), p, m)
<- loading_metrics(Ag_true, Ag_hat)

verify_mean

verify_mean

Verify zero-mean preservation (Theorem 10 assumption 2a)

Description

Draws n i.i.d. N(O, I_m) latent factors, applies g component-wise, and checks whether [E[g(x)]l <
tol on every coordinate.

Usage

verify_mean(g_fun, m = 5, n = 10000, tol = 0.001)

Arguments

g_fun
m
n

tol

Value

vectorised map g: R -> R
latent dimension
Monte-Carlo sample size

numerical tolerance (default le-3)

logical TRUE if Imeanl| < tol on all coords

Examples

tmp <- g_fun("weak_nonlinear")
verify_mean(tmp$g_fun, m = 5)

verify_subgaussian 7

verify_subgaussian Verify sub-Gaussian preservation

Description
Draws n i.i.d. N(O, I_m) latent factors, applies g component-wise, and checks whether E[exp(g(x))]
remains below an empirical cut-off. This is a quick proxy for finite sub-Gaussian norm.

Usage
verify_subgaussian(g_fun, m = 5, n = 1000, cut = exp(2))

Arguments

g_fun vectorised map g: R ->R

m latent dimension

n Monte-Carlo sample size

cut empirical threshold (default exp(2) & 7.389)
Value

logical TRUE if E[exp(g)] < cut on all coords

Examples

tmp <- g_fun("strong_nonlinear")
verify_subgaussian(tmp$g_fun, m = 5)

Index

estimate_gul_loadings, 2

g_fun, 4

g_theorem, 5
generate_gfm_data, 3
gul_simulation, 3

loading_metrics, 5

verify_mean, 6
verify_subgaussian, 7

	estimate_gul_loadings
	generate_gfm_data
	gul_simulation
	g_fun
	g_theorem
	loading_metrics
	verify_mean
	verify_subgaussian
	Index

