
Package ‘HQM’
January 8, 2026

Type Package

Title Superefficient Estimation of Future Conditional Hazards Based on
Marker Information

Version 2.0

Maintainer Dimitrios Bagkavos <dimitrios.bagkavos@gmail.com>

Description Provides univariate and indexed (multivariate) nonparametric smoothed kernel estima-
tors for the future conditional hazard rate function when time-dependent covari-
ates are present, a bandwidth selector for the estimator's implementation and pointwise and uni-
form confidence bands. Methods used in the package refer to Bagkavos, Isakson, Mam-
men, Nielsen and Proust-Lima (2025) <doi:10.1093/biomet/asaf008>.

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0)

Imports stats, utils, survival, pec, timeROC, nlme, JM

License GPL (>= 2)

NeedsCompilation no

RoxygenNote 6.1.0

Author Dimitrios Bagkavos [aut, cre],
Alex Isakson [ctb],
Enno Mammen [ctb],
Jens Nielsen [ctb],
Cecile Proust-Lima [ctb]

Repository CRAN

Date/Publication 2026-01-08 02:30:02 UTC

Contents
auc.hqm . 2
Boot.hqm . 4
Boot.hrandindex.param . 5
bs.hqm . 7

1

https://doi.org/10.1093/biomet/asaf008

2 auc.hqm

BwB.HRandIndex.param . 9
b_selection . 10
b_selection_index_optim . 11
b_selection_prep_g . 13
Conf_bands . 15
dataset_split . 16
dij . 17
Epan . 18
get_alpha . 18
get_h_x . 20
get_h_xll . 23
g_xt . 27
h_xt . 28
h_xtll . 30
h_xt_vec . 33
index_optim . 38
Kernels . 41
lin_interpolate . 42
llK_b . 43
llweights . 44
make_N, make_Ni, make_Y, make_Yi . 44
make_sf . 46
pbc2 . 47
Pivot.Index.CIs . 48
prep_boot . 52
prep_cv . 54
prep_cv2 . 56
Q1 . 57
Quantile.Index.CIs . 58
R_K . 63
Sim.True.Hazard . 64
SingleIndCondFutHaz . 66
StudentizedBwB.Index.CIs . 68
to_id . 72

Index 74

auc.hqm AUC for the High Quality Marker estimator

Description

Calculates the AUC for the HQM estimator.

Usage

auc.hqm(xin, est, landm, th, event_time_name, status_name)

auc.hqm 3

Arguments

xin A data frame containing event times and the patient status.

est The HQM estimator values, typically the output of get_h_x.

landm Landmark time.

th Time horizon.
event_time_name

The column name of the event times in the xin data frame.

status_name The column name of the status variable in the xin frame.

Details

The function auc.hqm implements the AUC calculation for the HQM estimator estimator.

Value

A vector of two values: the landmark time of the calculation and the AUC value.

See Also

bs.hqm

Examples

library(timeROC)
library(survival)
Landmark <- 2
pbcT1 <- pbc2[which(pbc2$year< Landmark & pbc2$years> Landmark),]
ls<-50 # 50 grid points to evaluate the estimates
s.out<- pbcT1[, 'year']
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))

timesS2 <- seq(Landmark,14,by=0.5)
b=0.9
arg1<- get_h_x(pbcT1, 'albumin', br_s = s.out.use, event_time_name = 'years',

time_name = 'year', event_name = 'status2', 2, 0.9)
br_s2 = seq(Landmark, 14, length=ls-1)
sfalb2<- make_sf((br_s2[2]-br_s2[1])/4 , arg1)
tHor <- 1.5
auc.hq.use<-auc.hqm(pbcT1, sfalb2, Landmark,tHor,

event_time_name = 'years', status_name = 'status2')
auc.hq.use

4 Boot.hqm

Boot.hqm Indexed HQM hazard estimator for one bootstrap sample

Description

Compute the bootstrap estimate of the indexed HQM hazard estimate for a single (bootstrap) sam-
ple. The function is meant to be used internally for the calculation of confidence intervals

Usage

Boot.hqm(in.par, data, data.id, ls, X1, XX1, event_time_name = 'years',
time_name = 'year', event_name = 'status2', b, t)

Arguments

in.par Numeric vector, the values of the indexing parameters.

data Bootstrap data.frame.

data.id Id-level data.frame (result of to_id).

ls user supplied grid length on the time_name argument.

X1 List of vectors for indexing: each vector corresponds to a biomarker and con-
tains one summary measurement per individual.

XX1 List of vectors for indexing: each vector corresponds to a single biomarker and
contains its longitudinal measurements across all individuals/time points.

event_time_name

Name of event time column.

time_name Name of observation time column.

event_name Name of event indicator column.

b Bandwidth parameter.

t Conditioning level.

Value

Numeric vector with estimated hazard on the grid.

Examples

#Single instance of the bootstrap version of the bootstrap version
#of the indexed HQM estimator

b.alb = 0.9
b.bil = 4

t.alb = 1 # refers to zero mean variables - slightly high
t.bil = 1.9 # refers to zero mean variable - high

Boot.hrandindex.param 5

par.alb <- 0.0702 #0.149
par.bil <- 0.0856 #0.10

b = 0.42 # The result, on the indexed marker 'indmar' of
#\code{b_selection(pbc2, 'indmar', 'years', 'year', 'status2', I=26, seq(0.2,0.4,by=0.01))}

t = t.alb * par.alb + t.bil *par.bil

marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'
ls<-50

data.use<-pbc2
data.use.id<-to_id(data.use)
data.use.id<-data.use.id[complete.cases(data.use.id),]

mean adjust the data:
X1t=data.use[,marker_name1] -mean(data.use[, marker_name1])
XX1t=data.use.id[,marker_name1] -mean(data.use.id[, marker_name1])
X2t=data.use[,marker_name2] -mean(data.use[, marker_name2])
XX2t=data.use.id[,marker_name2] -mean(data.use.id[, marker_name2])

X1=list(X1t, X2t)
XX1=list(XX1t, XX2t)
boot.haz<-Boot.hqm (c(par.alb,par.bil), data.use, data.use.id, ls=ls, X1, XX1,

event_time_name = 'years', time_name = 'year', event_name = 'status2', b, t)

Boot.hrandindex.param Bootstrap Estimation of Hazard Function and Index Parameters

Description

Performs bootstrap estimation of hazard rates and corresponding index parameters for a given set
of bootstrap samples. For each bootstrap replicate, the function re-estimates the index parameters
via optimisation and computes hazard estimates using Boot.hqm. The output is used as input in
functions Quantile.Index.CIs and Pivot.Index.CIs

Usage

Boot.hrandindex.param(B, Boot.samples, marker_name1, marker_name2,event_time_name,
time_name, event_name, b, t, true.haz, v.param, n.est.points)

6 Boot.hrandindex.param

Arguments

B Integer. Number of bootstrap iterations.

Boot.samples A list of bootstrap datasets. Each element corresponds to one replicate.

marker_name1 Character string. Name of the first longitudinal marker.

marker_name2 Character string. Name of the second longitudinal marker.
event_time_name

Name of the event time variable in the data.

time_name Name of the time variable for the longitudinal marker measurements.

event_name Name of the event indicator variable.

b Numeric. Bandwidth parameter used in hazard estimation.

t Numeric. Evaluation point for the conditional hazard.

true.haz Numeric vector. The true or reference hazard used in the optimisation criterion.

v.param Numeric vector. Starting values of the indexing parameters for the optimisation
of the index coefficients.

n.est.points Integer. Number of estimation grid points for the hazard curve.

Details

For each bootstrap iteration k = 1, . . . , B, the function:

1. Extracts the bootstrap sample data.use.

2. Computes centred marker values at the subject and observation level.

3. Estimates index parameters by minimising index_optim using optim.

4. Computes the bootstrap hazard estimate via Boot.hqm.

The outputs are matrices collecting the hazard estimates and estimated index parameter vectors
across bootstrap replicates.

Value

A matrix of dimension n.est.points × B containing the bootstrap hazard estimates.

See Also

Boot.hqm, index_optim, to_id

Examples

marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'

par.x1 <- 0.0702

bs.hqm 7

par.x2 <- 0.0856
t.x1 = 0 # refers to zero mean variables - slightly high
t.x2 = 1.9 # refers to zero mean variable - high
b = 0.42
t = par.x1 * t.x1 + par.x2 *t.x2

first simulate true HR function:
xin <- pbc2[,c(id, marker_name1, marker_name2, event_time_name, time_name, event_name)]
n <- length(xin$id)
nn<-max(as.double(xin[,'id']))
xin.id <- to_id(xin)

Create bootstrap samples by group:
set.seed(1)
B<- 10 # 400 #50
Boot.samples<-list()
for(j in 1:B)
{

i.use<-c()
id.use<-c()
index.nn <- sample (nn, replace = TRUE)
for(l in 1:nn)
{
i.use2<-which(xin[,id]==index.nn[l])
i.use<-c(i.use, i.use2)
id.use2<-rep(index.nn[l], times=length(i.use2))
id.use<-c(id.use, id.use2)

}
xin.i<-xin[i.use,]
xin.i<-xin[i.use,]
Boot.samples[[j]]<- xin.i[order(xin.i$id),] #xin[i.use,]

}
true.hazard<- Sim.True.Hazard(Boot.samples, id='id', 100, marker_name1=marker_name1,

marker_name2= marker_name2, event_time_name = event_time_name,
time_name = time_name, event_name = event_name,
in.par = c(par.x1, par.x2), b)

res <- Boot.hrandindex.param(B, Boot.samples, marker_name1, marker_name2,
event_time_name, time_name, event_name , b = 0.4, t = 1.0,
true.haz = true.hazard, v.param = c(0.07, 0.08), n.est.points = 100)

#return bootstrap hazard rate estimators in marix format:
res

bs.hqm Brier score for the High Quality Marker estimator

Description

Calculates the Brier score for the HQM estimator.

8 bs.hqm

Usage

bs.hqm(xin, est, landm, th, event_time_name, status_name)

Arguments

xin A data frame containing event times and the patient status.
est The HQM estimator values, typically the output of get_h_x.
landm Landmark time.
th Time horizon.
event_time_name

The column name of the event times in the data frame xin.
status_name The column name of the status variable in the data frame xin.

Details

The function bs.hqm implements the Brier score calculation for the HQM estimator estimator.

Value

Scalar: the Brier score of the HQM estimator.

See Also

auc.hqm

Examples

library(pec)
library(survival)
Landmark <- 2

pbcT1 <- pbc2[which(pbc2$year< Landmark & pbc2$years> Landmark),]
ls<-50 # 50 grid points to evaluate the estimates
s.out<- pbcT1[, 'year']
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))

timesS2 <- seq(Landmark,14,by=0.5)

b=0.9
arg1<- get_h_x(pbcT1, 'albumin', br_s = s.out.use, event_time_name = 'years',

time_name = 'year', event_name = 'status2', 2, 0.9)
br_s2 = seq(Landmark, 14, length=ls-1)
sfalb2<- make_sf((br_s2[2]-br_s2[1])/4 , arg1)

tHor <- 1.5
bs.use<-bs.hqm(pbcT1, sfalb2, Landmark,tHor,

event_time_name = 'years', status_name = 'status2')
bs.use

BwB.HRandIndex.param 9

BwB.HRandIndex.param Bootstrap Estimation of Hazard Function and Index Parameters

Description

Performs bootstrap estimation of hazard rates and their standard deviation at each grid point (double
boostrap) together with the corresponding index parameters for a given set of bootstrap samples.
The output of the function is used as input in StudentizedBwB.Index.CIs.

Usage

BwB.HRandIndex.param(B, B1, Boot.samples, marker_name1, marker_name2,
event_time_name, time_name, event_name, b, t, true.haz,

v.param, hqm.est, id, xin)

Arguments

B Integer. Number of bootstrap samples.
B1 Integer. Number of bootstrap re-samples.
Boot.samples A list of bootstrap datasets. Each element corresponds to one replicate.
marker_name1 Character string. Name of the first longitudinal marker.
marker_name2 Character string. Name of the second longitudinal marker.
event_time_name

Name of the event time variable in the data.
time_name Name of the time variable for the longitudinal marker measurements.
event_name Name of the event indicator variable.
b Numeric. Bandwidth parameter used in hazard estimation.
t Numeric. Evaluation point for the conditional hazard.
true.haz Numeric vector. The true or reference hazard used in the optimisation criterion.
v.param Numeric vector. Starting values of the indexing parameters for the optimisation

of the index coefficients.
hqm.est HQM estimator on the original sample.
id label of id variable of dataset.
xin original sample.

Details

For each bootstrap iteration k = 1, . . . , B, the function:

1. Extracts the bootstrap sample data.use.
2. Computes centred marker values at the subject and observation level.
3. Estimates index parameters by minimising index_optim using optim.
4. Computes the bootstrap hazard estimate via Boot.hqm.

The outputs are matrices collecting the hazard estimates and estimated index parameter vectors
across bootstrap replicates.

10 b_selection

Value

A list of matrices of dimension n.est.points × B containing the bootstrap hazard estimates, the
logarithm of the hazard rate estimates and and two vectors of the estimate’s standard deviations at
each grid point.

See Also

Boot.hqm, index_optim, to_id

Examples

See the example for function: StudentizedBwB.Index

b_selection Cross validation bandwidth selection

Description

Implements the bandwidth selection for the future conditional hazard rate ĥx(t) based on K-fold
cross validation.

Usage

b_selection(data, marker_name, event_time_name = 'years',
time_name = 'year', event_name = 'status2', I, b_list)

Arguments

data A data frame of time dependent data points. Missing values are allowed.

marker_name The column name of the marker values in the data frame data.
event_time_name

The column name of the event times in the data frame data.

time_name The column name of the times the marker values were observed in the data frame
data.

event_name The column name of the events in the data frame data.

I Number of observations leave out for a K cross validation.

b_list Vector of bandwidths that need to be tested.

b_selection_index_optim 11

Details

The function b_selection implements the cross validation bandwidth selection for the future con-
ditional hazard rate ĥx(t) given by

bCV = argminb

N∑
i=1

∫ T

0

∫ T

s

Zi(t)Zi(s)(ĥXi(s)(t− s)− hXi(s)(t− s))2dtds,

where ĥx(t) is a smoothed kernel density estimator of hx(t) and Zi the exposure process of indi-
vidual i. Note that ĥx(t) is dependent on b.

Value

A list with the tested bandwidths and its cross validation scores.

References

Bagkavos, I., Isakson, R., Mammen, E., Nielsen, J., and Proust–Lima, C. (2025). Biometrika,
112(2), asaf008. doi:10.1093/biomet/asaf008

See Also

b_selection_prep_g, Q1, R_K, prep_cv, dataset_split

Examples

I = 26
For Albumin marker:
b_list = seq(0.9, 1.7, 0.1)

b_scores_alb = b_selection(pbc2, 'albumin', 'years', 'year', 'status2', I, b_list)
b_scores_alb[[2]][which.min(b_scores_alb[[1]])]

For Bilirubin marker:
b_list = seq(3, 4, 0.1)
b_scores_bil = b_selection(pbc2, 'serBilir', 'years', 'year', 'status2', I, b_list)
b_scores_bil[[2]][which.min(b_scores_bil[[1]])]
b_scores_bil

b_selection_index_optim

Cross validation index parameter selection

Description

Implements the index parameter selection for two markers based on K-fold cross validation.

https://doi.org/10.1093/biomet/asaf008

12 b_selection_index_optim

Usage

b_selection_index_optim(in.par, data, marker_name1, marker_name2,
event_time_name = 'years', time_name = 'year', event_name = 'status2', I, b)

Arguments

in.par Vector of candidate values for the index parameters.

data A data frame of time dependent data points. Missing values are allowed.

marker_name1 The column name of the first marker values in the data frame data.

marker_name2 The column name of the second marker values in the data frame data.
event_time_name

The column name of the event times in the data frame data.

time_name The column name of the times the marker values were observed in the data frame
data.

event_name The column name of the events in the data frame data.

I Number of observations leave out for a K cross validation.

b scalar bandwidth for the HQM estimator.

Details

The function b_selection_index_optim implements the cross validation index parameter selec-
tion for the indexing of two markers and given by

θ̂ = argminθ1,θ2

N∑
i=1

∫ T

0

∫ T

s

Zi(t)Zi(s)(ĥθT
0 Xi(s)(t− s)− hθT

0 Xi(s)(t− s))2dtds,

where ĥx(t) is the HQM estimator of hx(t), see Bagkavos et al. (2025), doi:10.1093/biomet/
asaf008, and Zi the exposure process of individual i. Note that ĥx(t) is dependent on b.

Value

A list with the tested parameters and its cross validation scores.

References

Bagkavos, I., Isakson, R., Mammen, E., Nielsen, J., and Proust–Lima, C. (2025). Biometrika,
112(2), asaf008. doi:10.1093/biomet/asaf008

See Also

b_selection_prep_g, Q1, R_K, prep_cv, dataset_split

https://doi.org/10.1093/biomet/asaf008
https://doi.org/10.1093/biomet/asaf008
https://doi.org/10.1093/biomet/asaf008

b_selection_prep_g 13

Examples

Obtain the indexing parameters for the combination of albumin and bilirubin markers
These are the values used in the example of function h_xt_vec
and yielded the values: (par.alb, par.bil) = (0.0702, 0.0856) that were used there.

I = 26
b_list = seq(1.1, 1.2, by=0.1)

for(i in 1:length(b_list))
{

res<- optim(c(0.5, 0.5), b_selection_index_optim, data=pbc2, marker_name1='albumin',
marker_name2= 'serBilir', event_time_name = 'years', time_name = 'year',
event_name = 'status2', I=26, b=b_list[i], method="Nelder-Mead")

cat("i= ", i, " ", res$par, " ", res$value, "count calls to fn = ", res$counts, " converge? ",
res$convergence, "\n")

res
}

b_selection_prep_g Preparations for bandwidth selection

Description

Calculates an intermediate part for the K-fold cross validation.

Usage

b_selection_prep_g(h_mat, int_X, size_X_grid, n, Yi)

Arguments

h_mat A matrix of the estimator for the future conditional hazard rate for all values x
and t.

int_X Vector of the position of the observed marker values in the grid for marker val-
ues.

size_X_grid Numeric value indicating the number of grid points for marker values.

n Number of individuals.

Yi A matrix made by make_Yi indicating the exposure.

14 b_selection_prep_g

Details

The function b_selection_prep_g calculates a key component for the bandwidth selection

ĝ
−Ij
i (t) =

∫ t

0

Zi(s)ĥ
−Ij
Xi(s)

(t− s)ds,

where ĥ−Ij is estimated without information from all counting processes i with i ∈ Ij and Z is the
exposure.

Value

A matrix with ĝ
−Ij
i (t) for all individuals i and time grid points t.

See Also

b_selection

Examples

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

N <- make_N(pbc2, pbc2_id, breaks_X=br_X, breaks_s=br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid,

int_s, int_X, 'years', n)

b = 1.7
alpha<-get_alpha(N, Y, b, br_X, K=Epan)

Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s,
int_X,'years', n)

Ni <- make_Ni(breaks_s=br_s, size_s_grid, ss, delta, n)

t = 2

h_xt_mat = t(sapply(br_s[1:99], function(si){
h_xt_vec(br_X, br_s, size_s_grid, alpha, t, b, Yi, int_X, n)}))

b_selection_prep_g(h_xt_mat, int_X, size_X_grid, n, Yi)

Conf_bands 15

Conf_bands Confidence bands

Description

Implements the uniform and pointwise confidence bands for the future conditional hazard rate based
on the last observed marker measure.

Usage

Conf_bands(data, marker_name, event_time_name = 'years',
time_name = 'year', event_name = 'status2', x, b)

Arguments

data A data frame of time dependent data points. Missing values are allowed.
marker_name The column name of the marker values in the data frame data.
event_time_name

The column name of the event times in the data frame data.
time_name The column name of the times the marker values were observed in the data frame

data.
event_name The column name of the events in the data frame data.
x Numeric value of the last observed marker value.
b Bandwidth.

Details

The function Conf_bands implements the pointwise and uniform confidence bands for the estimator
of the future conditional hazard rate ĥx(t). The confidence bands are based on a wild bootstrap
approach h∗

x∗,B(t).

Pointwise: For a given t ∈ (0, T) generate h∗(1)
x∗,B

(t), ..., h∗(N)
x∗,B

(t) for N = 1000 and order it

h∗[1]
x∗,B

(t) ≤ ... ≤ h∗[N]
x∗,B

(t). Then

Î1n,N =

[
ĥx∗(t)− σ̂Gx∗

(t)
h∗[N(1−α

2)]

x∗,B
(t)

√
n

, ĥx∗(t)− σ̂Gx
(t)

h∗[N
α
2]

x∗,B
(t)

√
n

]
is a 1−α pointwise confidence band for hx∗(t), where σ̂Gx∗

(t) is a bootrap estimate of the variance.
For more details on the wild bootstrap approach, please see prep_boot and g_xt.

Uniform: Generate h̄(1)
x∗,B

(t), ..., h̄
(N)
x∗,B

(t) for N = 1000 for all t ∈ [δT , T − δT] and define W (i) =

supt∈[0,T]

∣∣h̄(i)
x∗,B

(t)| for i = 1, ..., N . Order W [1] ≤ ... ≤ W [N]. Then

Î2n,N =

[
ĥx∗(t)± σ̂Gx∗

(t)
W [N(1−α)]

√
n

]
is a 1− α uniform confidence band for hx∗(t).

16 dataset_split

Value

A list with pointwise, uniform confidence bands and the estimator ĥx(t) for all possible time points
t.

See Also

g_xt, prep_boot

Examples

b = 10
x = 3
size_s_grid<-100
s = pbc2$year
br_s = seq(0, max(s), max(s)/(size_s_grid-1))

c_bands = Conf_bands(pbc2, 'serBilir', event_time_name = 'years',
time_name = 'year', event_name = 'status2', x, b)

J = 80
plot(br_s[1:J], c_bands$h_hat[1:J], type = "l", ylim = c(0,1), ylab = 'Hazard', xlab = 'Years')

lines(br_s[1:J], c_bands$I_p_up[1:J], col = "red")
lines(br_s[1:J], c_bands$I_p_do[1:J], col = "red")
lines(br_s[1:J], c_bands$I_nu[1:J], col = "blue")
lines(br_s[1:J], c_bands$I_nd[1:J], col = "blue")

dataset_split Split dataset for K-fold cross validation

Description

Creates multiple splits of a dataset which is then used in the bandwidth selection with K-fold cross
validation.

Usage

dataset_split(I, data)

Arguments

data A data frame of time dependent data points. Missing values are allowed.

I The number of individuals that should be left out. Optimally, K = n/I should
be an integer, where n is the number of individuals.

dij 17

Details

The function dataset_split takes a data frame and transforms it into K = n/I data frames with
I individuals missing from each data frame. Let Ij be sets of indices with ∪K

j=1Ij = {1, ..., n},
Ik ∩ Ij = ∅ and |Ij | = |Ik| = I for all j, k ∈ {1, ...,K}. Then data frames with {1, ..., n}/Ij
individuals are created.

Value

A list of data frames with I individuals missing in the above way.

See Also

b_selection

Examples

splitted_dataset = dataset_split(26, pbc2)

dij D matrix entries, used for the implementation of the local linear kernel

Description

Calculates the entries of the D matrix in the definition of the local linear kernel

Usage

dij(b,x,y, K)

Arguments

x A vector of design points where the kernel will be evaluated.

y A vector of sample data points.

b The bandwidth to use (a scalar).

K The kernel function to use.

Details

Implements the caclulation of all d × d entries of matrix D, which is part of the definition of the
local linear kernel. The actual calculation is performed by

djk =

n∑
i=1

∫ T

0

Kb(x−Xi(s)){x−Xij(s)}{x−Xik(s)}Zi(s)ds,

Value

scalar value, the result of djk.

18 get_alpha

Epan Epanechnikov kernel

Description

Implements the Epanechnikov kernel function

Usage

Epan(x)

Arguments

x A vector of design points where the kernel will be evaluated.

Details

Implements the Epanechnikov kernel function

K(x) =
3

4
(1− x2) ∗ (|x| < 1)),

Value

Scalar, the value of the Epanechnikov kernel at x.

get_alpha Marker-only hazard rate

Description

Calculates the marker-only hazard rate for time dependent data.

Usage

get_alpha(N, Y, b, br_X, K=Epan)

Arguments

N A matrix made by make_N indicating the occurences of events.

Y A matrix made by make_Y indicating the exposure.

b Bandwidth.

br_X Vector of grid points for the marker values X .

K Used kernel function.

get_alpha 19

Details

The function get_alpha implements the marker-only hazard estimator

α̂i(z) =

∑
k ̸=i

∫ T

0
Kb1(z −Xk(s))dNk(s)∑

k ̸=i

∫ T

0
Kb1(z −Xk(s))Zk(s)ds

,

where X is the marker and Z is the exposure. The marker-only hazard is defined as the underlying
hazard which is not dependent on time

α(X(t), t) = α(X(t)).

Value

A vector of marker-only values for br_X.

See Also

h_xt

Examples

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

N <- make_N(pbc2, pbc2_id, breaks_X=br_X, breaks_s=br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid,

size_X_grid, int_s, int_X, event_time = 'years', n)

b = 1.7
alpha<-get_alpha(N, Y, b, br_X, K=Epan)

20 get_h_x

get_h_x Local constant future conditional hazard rate estimator

Description

Calculates the (indexed) local constant future hazard rate function, conditional on a marker value x,
across across a set of time values t.

Usage

get_h_x(data, marker_name, br_s, event_time_name, time_name, event_name, x, b)

Arguments

data A data frame of time dependent data points. Missing values are allowed.

marker_name The column name of the marker values in the data frame data.

br_s User defined grid mesh on time_name variable
event_time_name

The column name of the event times in the data frame data.

time_name The column name of the times the marker values were observed in the data frame
data.

event_name The column name of the events in the data frame data.

x Numeric value of the last observed marker value.

b Bandwidth parameter.

Details

The function get_h_x implements the indexed local linear future conditional hazard estimator

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(θ̂

TXi(t+ s))Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds

,

across a grid of possible time values t, where, for a positive integer p, θ̂T = (θ̂1, . . . , θ̂p) is the
vector of the estimated indexing parameters, Xi = (X1,i, . . . , Xi,p) is a vector of markers for
indexing, Zi is the exposure and α(z) is the marker-only hazard, see get_alpha for more details
and Kb = b−1K(./b) is an ordinary kernel function, e.g. the Epanechnikov kernel. For p = 1 and
θ̂ = 1 the above estimator becomes the HQM hazard rate estimator conditional on one covariate,

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(Xi(t+ s))Zi(t+ s)Zi(s)Kb(x−Xi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x−Xi(s))ds

,

defined in equation (2) of Bagkavos et al. (2025), doi:10.1093/biomet/asaf008.

Value

A vector of ĥx(t) for a grid of possible time values t.

https://doi.org/10.1093/biomet/asaf008

get_h_x 21

References

Bagkavos, I., Isakson, R., Mammen, E., Nielsen, J., and Proust–Lima, C. (2025). Biometrika,
112(2), asaf008. doi:10.1093/biomet/asaf008

See Also

get_alpha, h_xt, get_h_xll

Examples

library(survival)
b = 10
x = 3
Landmark <- 2
pbcT1 <- pbc2[which(pbc2$year< Landmark & pbc2$years> Landmark),]

ls<-50 # 50 grid points to evaluate the estimates
s.out<- pbcT1[, 'year']
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))

b=0.9

arg1ll<-get_h_xll(pbcT1,'albumin', br_s = s.out.use, event_time_name='years',
time_name='year',event_name='status2',2,0.9)

arg1lc<-get_h_x(pbcT1,'albumin', br_s = s.out.use, event_time_name='years',
time_name='year',event_name='status2',2,0.9)

#Caclulate the local contant and local linear survival functions
br_s = seq(Landmark, 14, length= ls-1)
sfalb2ll<- make_sf((br_s[2]-br_s[1])/4 , arg1ll)
sfalb2lc<- make_sf((br_s[2]-br_s[1])/4 , arg1lc)

#For comparison, also calculate the Kaplan-Meier
kma2<- survfit(Surv(years , status2) ~ 1, data = pbcT1)

#Plot the survival functions:
plot(br_s, sfalb2ll, type="l", col=1, lwd=2, ylab="Survival probability",

xlab="Marker level")
lines(br_s, sfalb2lc, lty=2, lwd=2, col=2)
lines(kma2$time, kma2$surv, type="s", lty=2, lwd=2, col=3)

legend("topright", c("Local linear HQM", "Local constant HQM",
"Kaplan-Meier"), lty=c(1, 2, 2), col=1:3, lwd=2, cex=1.7)

Not run:
#Example of get_h_x with two indexed covariates:
#First, estimate the joint model for Albumin and Bilirubin combined:
library(JM)
lmeFit <- lme(albumin + serBilir~ year, random = ~ year | id, data = pbc2)
coxFit <- coxph(Surv(years, status2) ~ albumin + serBilir, data = pbc2.id, x = TRUE)
jointFit <- jointModel(lmeFit, coxFit, timeVar = "year", method = "piecewise-PH-aGH")

https://doi.org/10.1093/biomet/asaf008

22 get_h_x

Landmark <- 1
pbcT1 <- pbc2[which(pbc2$year< Landmark & pbc2$years> Landmark),]

ls<-50 # 50 grid points to evaluate the estimates
s.out<- pbcT1[, 'year']
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))

Index Albumin and Bilirubin:
t.alb = 3 # slightly low albumin value
t.bil = 1.9 # slightly high bilirubin value

par.alb <- 0.0702
par.bil <- 0.0856
X = par.alb * pbcT1$albumin + par.bil *pbcT1$serBilir # X is now the indexed marker
t = par.alb * t.alb + par.bil *t.bil #conditioning value

pbcT1$drug<- X ## store the combine variable in place of 'drug' column which is redundant
i.e. 'drug' corresponds to indexed bilirubin and albumin

timesS2 <- seq(Landmark,14,by=0.5)
predT1 <- survfitJM(jointFit, newdata = pbcT1, survTimes = timesS2)
nm<-length(predT1$summaries)

mat.out1<-matrix(nrow=length(timesS2), ncol=nm)
for(r in 1:nm)
{

SurvLand <- predT1$summaries[[r]][,"Mean"][1] #obtain mean predictions
mat.out1[,r] <- predT1$summaries[[r]][,"Mean"]/SurvLand

}
JM.surv.est<-rowMeans(mat.out1, na.rm=TRUE) #average the resulting JM estimates

calculate indexed local linear HQM estimator for bilirubin and albumin
b.alb = 1.5
b.bil = 4
b.hqm = par.alb * b.alb + par.bil *b.bil # bandwidth for HQM estimator
arg1<- get_h_x(pbcT1, 'drug', br_s =s.out.use, event_time_name = 'years', time_name = 'year',

event_name = 'status2', t, b.hqm)
br_s2 = seq(Landmark, 14, length=ls-1) #grid points for HMQ estimator
hqm.surv.est<- make_sf((br_s2[2]-br_s2[1])/5, arg1) # transform HR to Survival func.

km.land<- survfit(Surv(years , status2) ~ 1, data = pbcT1) #KM estimate

#Plot the survival functions:
plot(br_s2, hqm.surv.est, type="l", ylim=c(0,1), xlim=c(Landmark,14),

ylab="Survival probability", xlab="years",lwd=2)
lines(timesS2, JM.surv.est, col=2, lwd=2, lty=2)
lines(km.land$time, km.land$surv, type="s",lty=2, lwd=2, col=3)
legend("bottomleft", c("HQM est.", "Joint Model est.", "Kaplan-Meier"),

lty=c(1,2,2), col=1:3, lwd=2, cex=1.7)

get_h_xll 23

End(Not run)

get_h_xll Local linear future conditional hazard rate estimator

Description

Calculates the (indexed) local linear future hazard rate function, conditional on a marker value x,
across a set of time values t.

Usage

get_h_xll(data, marker_name, br_s, event_time_name, time_name, event_name, x, b)

Arguments

data A data frame of time dependent data points. Missing values are allowed.

marker_name The column name of the marker values in the data frame data.

br_s User defined grid mesh on time_name variable
event_time_name

The column name of the event times in the data frame data.

time_name The column name of the times the marker values were observed in the data frame
data.

event_name The column name of the events in the data frame data.

x Numeric value of the last observed marker value.

b Bandwidth parameter.

Details

The function get_h_xll uses a local linear kernel to implement the indexed local linear future
conditional hazard estimator

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(θ̂

TXi(t+ s))Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds

,

across a grid of possible time values t, where, for a positive integer p, θ̂T = (θ̂1, . . . , θ̂p) is the
vector of the estimated indexing parameters, Xi = (X1,i, . . . , Xi,p) is a vector of markers for
indexing, Zi is the exposure and α(z) is the marker-only hazard, see get_alpha for more details.
For p = 1 and θ̂ = 1 the above estimator becomes the HQM hazard rate estimator conditional on
one covariate,

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(Xi(t+ s))Zi(t+ s)Zi(s)Kb(x−Xi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x−Xi(s))ds

,

24 get_h_xll

defined in equation (2) of Bagkavos et al. (2025) doi:10.1093/biomet/asaf008. In the place of Kb(),
get_h_xll uses the kernel

Kx,b(u) =
Kb(u)−Kb(u)u

TD−1c1
c0 − cT1 D

−1c1
,

where Kb() = b−1K(./b) with K being an ordinary kernel, e.g. the Epanechnikov kernel, c1 =
(c11, . . . , c1d)

T , D = (dij)(d+1)×(d+1) with

c0 =

n∑
i=1

∫ T

0

Kb(x− θ̂TXi(s))Zi(s)ds,

cij =

n∑
i=1

∫ T

0

Kb(x− θ̂TXi(s)){x− θ̂TXij(s)}Zi(s)ds,

djk =

n∑
i=1

∫ T

0

Kb(x− θ̂TXi(s)){x− θ̂TXij(s)}{x− θ̂TXik(s)}Zi(s)ds,

see also Nielsen (1998), doi:10.1080/03461238.1998.10413997.

Value

A vector of ĥx(t) for a grid of possible time values t.

References

Bagkavos, I., Isakson, R., Mammen, E., Nielsen, J., and Proust–Lima, C. (2025). Biometrika,
112(2), asaf008. doi:10.1093/biomet/asaf008

Nielsen (1998), Marker dependent kernel hazard estimation from local linear estimation, Scandina-
vian Actuarial Journal, pp. 113-124. doi:10.1080/03461238.1998.10413997

See Also

get_alpha, h_xt, get_h_x

Examples

library(survival)
library(JM)

Compare Local constant and local linear estimator for a single covariate,
use KM for reference.
Albumin marker, use landmarking
Landmark <- 2
pbcT1 <- pbc2[which(pbc2$year< Landmark & pbc2$years> Landmark),]
b=0.9

ls<-50 # 50 grid points to evaluate the estimates
s.out<- pbcT1[, 'year']
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))

https://doi.org/10.1093/biomet/asaf008
https://doi.org/10.1080/03461238.1998.10413997
https://doi.org/10.1093/biomet/asaf008
https://doi.org/10.1080/03461238.1998.10413997

get_h_xll 25

arg1ll<-get_h_xll(pbcT1, 'albumin', br_s = s.out.use, event_time_name = 'years', time_name = 'year',
event_name = 'status2', 2, 0.9)

arg1lc<-get_h_x(pbcT1, 'albumin', br_s = s.out.use, event_time_name = 'years', time_name = 'year',
event_name = 'status2', 2, 0.9)

#Calculate the local contant and local linear survival functions
br_s = seq(Landmark, 14, length=ls-1)
sfalb2ll<- make_sf((br_s[2]-br_s[1])/4 , arg1ll)
sfalb2lc<- make_sf((br_s[2]-br_s[1])/4 , arg1lc)

#For comparison, also calculate the Kaplan-Meier
kma2<- survfit(Surv(years , status2) ~ 1, data = pbcT1)

#Plot the survival functions:
plot(br_s, sfalb2ll, type="l", col=1, lwd=2, ylab="Survival probability",

xlab="Marker level")
lines(br_s, sfalb2lc, lty=2, lwd=2, col=2)
lines(kma2$time, kma2$surv, type="s", lty=2, lwd=2, col=3)
legend("topright", c("Local linear HQM", "Local constant HQM", "Kaplan-Meier"),

lty=c(1, 2, 2), col=1:3, lwd=2, cex=1.7)

Not run:
#Example of get_h_xll with a single covariate (no indexing):
#Compare JM, HQM and KM for Bilirubin
b = 10
Landmark <- 1
lmeFit <- lme(serBilir ~ year, random = ~ year | id, data = pbc2)
coxFit <- coxph(Surv(years, status2) ~ serBilir, data = pbc2.id, x = TRUE)

jointFit0 <- jointModel(lmeFit, coxFit, timeVar = "year",
method = "piecewise-PH-aGH")

pbcT1 <- pbc2[which(pbc2$year< Landmark & pbc2$years> Landmark),]
ls<-50 # 50 grid points to evaluate the estimates
s.out<- pbcT1[, 'year']
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))

timesS1 <- seq(1,14,by=0.5)
predT1 <- survfitJM(jointFit0, newdata = pbcT1,survTimes = timesS1)
nm<-length(predT1$summaries)

mat.out1<-matrix(nrow=length(timesS1), ncol=nm)
for(r in 1:nm)
{

SurvLand <- predT1$summaries[[r]][,"Mean"][1]
mat.out1[,r] <- predT1$summaries[[r]][,"Mean"]/SurvLand

}
sfit1y<-rowMeans(mat.out1, na.rm=TRUE)

arg1<- get_h_xll(pbcT1, 'serBilir', br_s= s.out.use, event_time_name = 'years',
time_name = 'year', event_name = 'status2', 1, 10)

br_s1 = seq(Landmark, 14, length=ls-1)

26 get_h_xll

sfbil1<- make_sf((br_s1[2]-br_s1[1])/5.4 , arg1)
kma1<- survfit(Surv(years , status2) ~ 1, data = pbcT1)

plot(br_s1, sfbil1, type="l", ylim=c(0,1), xlim=c(Landmark,14),
ylab="Survival probability", xlab="years",lwd=2)

lines(timesS1, sfit1y, col=2, lwd=2, lty=2)
lines(kma1$time, kma1$surv, type="s", lty=2, lwd=2, col=3)
legend("bottomleft", c("HQM est.", "Joint Model est.", "Kaplan-Meier"),

lty=c(1,2,2), col=1:3, lwd=2, cex=1.7)

#Example of get_h_xll with two indexed covariates:

#First, estimate the joint model for Albumin and Bilirubin combined:
lmeFit <- lme(albumin + serBilir~ year, random = ~ year | id, data = pbc2)
coxFit <- coxph(Surv(years, status2) ~ albumin + serBilir, data = pbc2.id,

x = TRUE)
jointFit <- jointModel(lmeFit, coxFit, timeVar = "year",

method = "piecewise-PH-aGH")

Landmark <- 1
pbcT1 <- pbc2[which(pbc2$year< Landmark & pbc2$years> Landmark),]
ls<-50 # 50 grid points to evaluate the estimates
s.out<- pbcT1[, 'year']
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))

Index Albumin and Bilirubin:
t.alb = 3 # slightly low albumin value
t.bil = 1.9 # slightly high bilirubin value

par.alb <- 0.0702
par.bil <- 0.0856
X = par.alb * pbcT1$albumin + par.bil *pbcT1$serBilir # X is now the indexed marker
t = par.alb * t.alb + par.bil *t.bil #conditioning value

pbcT1$drug<- X ## store X in place of 'drug' column which is redundant here
i.e. 'drug' corresponds to indexed bilirubin and albumin

timesS2 <- seq(Landmark,14,by=0.5)
predT1 <- survfitJM(jointFit, newdata = pbcT1,survTimes = timesS2)
nm<-length(predT1$summaries)

mat.out1<-matrix(nrow=length(timesS2), ncol=nm)
for(r in 1:nm)
{

SurvLand <- predT1$summaries[[r]][,"Mean"][1] #obtain mean predictions
mat.out1[,r] <- predT1$summaries[[r]][,"Mean"]/SurvLand

}
JM.surv.est<-rowMeans(mat.out1, na.rm=TRUE) #average the resulting JM estimates

calculate indexed local linear HQM estimator for bilirubin and albumin
b.alb = 1.5
b.bil = 4

g_xt 27

b.hqm = par.alb * b.alb + par.bil *b.bil # bandwidth for HQM estimator
arg1<- get_h_xll(pbcT1, 'drug', br_s = s.out.use, event_time_name = 'years', time_name = 'year',

event_name = 'status2', t, b.hqm)
br_s2 = seq(Landmark, 14, length=ls-1) #grid points for HMQ estimator
hqm.surv.est<- make_sf((br_s2[2]-br_s2[1])/5 ,arg1) # transform HR to Survival func.

km.land<- survfit(Surv(years , status2) ~ 1, data = pbcT1) #KM estimate

#Plot the survival functions:
plot(br_s2, hqm.surv.est, type="l", ylim=c(0,1), xlim=c(Landmark,14),

ylab="Survival probability", xlab="years",lwd=2)
lines(timesS2, JM.surv.est, col=2, lwd=2, lty=2)
lines(km.land$time, km.land$surv, type="s",lty=2, lwd=2, col=3)
legend("bottomleft", c("HQM est.", "Joint Model est.", "Kaplan-Meier"),

lty=c(1,2,2), col=1:3, lwd=2, cex=1.7)

End(Not run)

g_xt Computation of a key component for wild bootstrap

Description

Implements a key part for the wild bootstrap of the hqm estimator.

Usage

g_xt(br_X, br_s, size_s_grid, int_X, x, t, b, Yi, Y, n)

Arguments

br_X Marker value grid points that will be used in the evaluatiuon.

br_s Time value grid points that will be used in the evaluatiuon.

size_s_grid Size of the time grid.

int_X Position of the linear interpolated marker values on the marker grid.

x Numeric value of the last observed marker value.

t Numeric value of the time the function should be evaluated.

b Bandwidth.

Yi A matrix made by make_Yi indicating the exposure.

Y A matrix made by make_Y indicating the exposure.

n Number of individuals.

28 h_xt

Details

The function implements

ĝt,x(z) =
1

n

n∑
j=1

∫ T−t

0

Ê(Xj(t+ s))−1Kb(z,Xj(t+ s))Zj(t+ s)Zj(s)Kb(x,Xj(s))ds,

for every value z on the marker grid, where Ê(x) = 1
n

∑n
j=1

∫ T

0
Kb(x,Xj(s))Zj(s)ds, Z the

exposure and X the marker.

Value

A vector of ĝt,x(z) for all values z on the marker grid.

Examples

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
X = pbc2$serBilir
s = pbc2$year
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

Yi<-make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s, int_X,
'years', n)

Y<-make_Y(pbc2, pbc2_id, X_lin, br_X, br_s,size_s_grid,size_X_grid, int_s,int_X,
'years', n)

t = 2
x = 2
b = 10

g_xt(br_X, br_s, size_s_grid, int_X, x, t, b, Yi, Y, n)

h_xt Local constant future conditional hazard rate estimation at a single
time point

Description

Calculates the (indexed) future conditional hazard rate for a marker value x and a time value t.

h_xt 29

Usage

h_xt(br_X, br_s, int_X, size_s_grid, alpha, x,t, b, Yi,n)

Arguments

br_X Vector of grid points for the marker values X .

br_s Vector of grid points for the time values s.

int_X Position of the linear interpolated marker values on the marker grid.

size_s_grid Size of the time grid.

alpha Marker-hazard obtained from get_alpha.

x Numeric value of the last observed marker value.

t Numeric time value.

b Bandwidth.

Yi A matrix made by make_Yi indicating the exposure.

n Number of individuals.

Details

Function h_xt implements the future conditional hazard estimator

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(θ̂

TXi(t+ s))Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds

,

where, for a positive integer p, θ̂T = (θ̂1, . . . , θ̂p) is the vector of the estimated indexing parameters,
Xi = (X1,i, . . . , Xi,p) is a vector of markers for indexing, Zi is the exposure and α(z) is the
marker-only hazard, see get_alpha for more details and Kb = b−1K(./b) is an ordinary kernel
function, e.g. the Epanechnikov kernel. For p = 1 and θ̂ = 1 the above estimator becomes the
HQM hazard rate estimator conditional on one covariate,

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(Xi(t+ s))Zi(t+ s)Zi(s)Kb(x−Xi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x−Xi(s))ds

,

defined in equation (2) of Bagkavos et al. (2025) doi:10.1093/biomet/asaf008.

The future conditional hazard is defined as

hx,T (t) = P
(
Ti ∈ (t+ T, t+ T + dt)|θT0 Xi(T) = x, Ti > t+ T

)
,

where Ti is the survival time and Xi the marker of individual i observed in the time frame [0, T].

Value

A single numeric value of ĥx(t).

References

Bagkavos, I., Isakson, R., Mammen, E., Nielsen, J., and Proust–Lima, C. (2025). Biometrika,
112(2), asaf008. doi:10.1093/biomet/asaf008

https://doi.org/10.1093/biomet/asaf008
https://doi.org/10.1093/biomet/asaf008

30 h_xtll

See Also

get_alpha

Examples

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

N <- make_N(pbc2, pbc2_id, breaks_X=br_X, breaks_s=br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s, int_X,

'years', n)

b = 1.7
alpha<-get_alpha(N, Y, b, br_X, K=Epan)

Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s, int_X,
'years', n)

x = 2
t = 2
h_hat = h_xt(br_X, br_s, int_X, size_s_grid, alpha, x, t, b, Yi, n)

h_xtll Local linear future conditional hazard rate estimation at a single time
point

Description

Calculates the (indexed) local linear future conditional hazard rate for a marker value x and a time
value t.

Usage

h_xtll(br_X, br_s, int_X, size_s_grid, alpha, x,t, b, Yi,n, Y)

h_xtll 31

Arguments

br_X Vector of grid points for the marker values X .

br_s Vector of grid points for the time values s.

int_X Position of the linear interpolated marker values on the marker grid.

size_s_grid Size of the time grid.

alpha Marker-hazard obtained from get_alpha.

x Numeric value of the last observed marker value.

t Numeric time value.

b Bandwidth.

Yi A matrix made by make_Yi indicating the exposure.

n Number of individuals.

Y A matrix made by make_Y indicating the exposure.

Details

Function h_xtll implements the future local linear conditional hazard estimator

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(θ̂

TXi(t+ s))Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds

,

for every x on the marker grid, where, for a positive integer p, θ̂T = (θ̂1, . . . , θ̂p) is the vector of the
estimated indexing parameters, Xi = (X1,i, . . . , Xi,p) is a vector of markers for indexing, Zi is the
exposure and α(z) is the marker-only hazard, see get_alpha for more details. For p = 1 and θ̂ = 1
the above estimator becomes the HQM hazard rate estimator conditional on a single covariate,

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(Xi(t+ s))Zi(t+ s)Zi(s)Kb(x−Xi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x−Xi(s))ds

,

defined in equation (2) of Bagkavos et al. (2025) doi:10.1093/biomet/asaf008. In the place of Kb(),
h_xtll uses the kernel

Kx,b(u) =
Kb(u)−Kb(u)u

TD−1c1
c0 − cT1 D

−1c1
,

where Kb() = b−1K(./b) with K being an ordinary kernel, e.g. the Epanechnikov kernel, c1 =
(c11, . . . , c1d)

T , D = (dij)(d+1)×(d+1) with

c0 =

n∑
i=1

∫ T

0

Kb(x− θ̂TXi(s))Zi(s)ds,

cij =

n∑
i=1

∫ T

0

Kb(x− θ̂TXi(s)){x− θ̂TXij(s)}Zi(s)ds,

djk =

n∑
i=1

∫ T

0

Kb(x− θ̂TXi(s)){x− θ̂TXij(s)}{x− θ̂TXik(s)}Zi(s)ds,

https://doi.org/10.1093/biomet/asaf008

32 h_xtll

see also Nielsen (1998) doi:10.1080/03461238.1998.10413997.

The future conditional hazard is defined as

hx,T (t) = P
(
Ti ∈ (t+ T, t+ T + dt)|θT0 Xi(T) = x, Ti > t+ T

)
,

where Ti is the survival time and Xi the marker of individual i observed in the time frame [0, T].

Value

A single numeric value of ĥx(t).

References

Bagkavos, I., Isakson, R., Mammen, E., Nielsen, J., and Proust–Lima, C. (2025). Biometrika,
112(2), asaf008. doi:10.1093/biomet/asaf008

Nielsen (1998), Marker dependent kernel hazard estimation from local linear estimation, Scandina-
vian Actuarial Journal, pp. 113-124. doi:10.1080/03461238.1998.10413997

See Also

get_alpha, dij

Examples

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

N <- make_N(pbc2, pbc2_id, breaks_X=br_X, breaks_s=br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s, int_X,

'years', n)

b = 1.7
alpha<-get_alpha(N, Y, b, br_X, K=Epan)

Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s, int_X,
'years', n)

x = 2
t = 2

https://doi.org/10.1080/03461238.1998.10413997
https://doi.org/10.1093/biomet/asaf008
https://doi.org/10.1080/03461238.1998.10413997

h_xt_vec 33

h_hat = h_xtll(br_X, br_s, int_X, size_s_grid, alpha, x, t, b, Yi, n, Y)

h_xt_vec Hqm estimator on the marker grid

Description

Computes the (indexed) hqm estimator on the marker grid.

Usage

h_xt_vec(br_X, br_s, size_s_grid, alpha, t, b, Yi, int_X, n)

Arguments

br_X Marker value grid points that will be used in the evaluatiuon.

br_s Time value grid points that will be used in the evaluatiuon.

size_s_grid Size of the time grid.

alpha Marker-hazard obtained from get_alpha.

t Numeric value of the time the function should be evaluated.

b Bandwidth.

Yi A matrix made by make_Yi indicating the exposure.

int_X Position of the linear interpolated marker values on the marker grid.

n Number of individuals.

Details

The function implements the future conditional hazard estimator

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(θ̂

TXi(t+ s))Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x− θ̂TXi(s))ds

,

for every x on the marker grid, where, for a positive integer p, θ̂T = (θ̂1, . . . , θ̂p) is the vector of the
estimated indexing parameters, Xi = (X1,i, . . . , Xi,p) is a vector of markers for indexing, Zi is the
exposure and α(z) is the marker-only hazard, see get_alpha for more details and Kb = b−1K(./b)

is an ordinary kernel function, e.g. the Epanechnikov kernel. For p = 1 and θ̂ = 1 the above
estimator becomes the HQM hazard rate estimator conditional on one covariate,

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(Xi(t+ s))Zi(t+ s)Zi(s)Kb(x−Xi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x−Xi(s))ds

,

defined in equation (2) of Bagkavos et al. (2025), doi:10.1093/biomet/asaf008.

Value

A vector of ĥx(t) for all values x on the marker grid.

https://doi.org/10.1093/biomet/asaf008

34 h_xt_vec

References

Bagkavos, I., Isakson, R., Mammen, E., Nielsen, J., and Proust–Lima, C. (2025). Biometrika,
112(2), asaf008. doi:10.1093/biomet/asaf008

Examples

Longitudinal data example

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

N <- make_N(pbc2, pbc2_id, br_X, br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s,

size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)

b = 1.7
alpha<-get_alpha(N, Y, b, br_X, K=Epan)

Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s,
size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)

t = 2

h_xt_vec(br_X, br_s, size_s_grid, alpha, t, b, Yi, int_X, n)

Time-invariant data example:
pbc2 dataset, single event per individual version:
312 observations, most recent event per individual.
Use landmarking to produce comparable curve with KM.
library(survival)
Landmark <- 3 #set the landmark to 3 years
pbc2.use<- to_id(pbc2) # keep only the most recent row per patient
pbcT1 <- pbc2.use[which(pbc2.use$year< Landmark & pbc2.use$years> Landmark),]

timesS2 <- seq(Landmark,14,by=0.5)
b=0.9
arg1<- get_h_x(pbcT1, 'albumin', br_s=br_s, event_time_name = 'years', time_name = 'year',

event_name = 'status2', 2, b)
br_s2 = seq(Landmark, 14, length=99)

https://doi.org/10.1093/biomet/asaf008

h_xt_vec 35

sfalb2<- make_sf((br_s2[2]-br_s2[1])/1.35 , arg1)
kma2<- survfit(Surv(years , status2) ~ 1, data = pbcT1)

#Plot the survival functions:
plot(br_s2, sfalb2, type="l", ylim=c(0,1), xlim=c(Landmark,14), ylab="Survival probability",

xlab="years",lwd=2, main="HQM and KM survival functions, conditional on albumin=2,
for the time-invariant pbc dataset")

lines(kma2$time, kma2$surv, type="s",lty=2, lwd=2, col=2)
legend("bottomleft", c("HQM est.", "Kaplan-Meier"), lty=c(1,2), col=1:2, lwd=2, cex=1.7)

############# Indexed HR estimator example 1: ##############
The example is based on indexing two covariates: albumin and bilirubin

index.use<-84
x.grid<-br_s[1:index.use] #non need to plot the last year

b.alb = 1.5 # results from CV rule of Bagkavos et al. (2025), i.e.:
b_list = seq(1.5, 3, 0.05)
b_scores_alb = b_selection(pbc2, 'albumin', 'years', 'year', 'status2', I, b_list)
b.alb = b_scores_alb[[2]][which.min(b_scores_alb[[1]])]

b.bil = 4 # results from CV rule of Bagkavos et al. (2025) :
b_list.bil = seq(3, 4, 0.05)
b_scores_bil = b_selection(pbc2, 'serBilir', 'years', 'year', 'status2', I, b_list.bil)
b.bil = b_scores_alb[[2]][which.min(b_scores_alb[[1]])] - result = 4

t.alb = 1 # refers to zero mean variables
#corresponds to approximately normal albumin level

t.bil = 1.9 # refers to zero mean variable - corresponds to
#elevated bilirubin levelm approximately 7mg/dl

par.alb <- 0.0702 # results from the indexing process
par.bil <- 0.0856 # results from the indexing process

First, mean adjust the albumin covariate
Xalb = pbc2$albumin - mean(pbc2$albumin)
XXalb = pbc2_id$albumin - mean(pbc2_id$albumin)

br_Xalb = seq(min(Xalb), max(Xalb), (max(Xalb)-min(Xalb))/(size_X_grid-1))
X_linalb = lin_interpolate(br_s, pbc2_id$id, pbc2$id, Xalb, s)
int_Xalb <- findInterval(X_linalb, br_Xalb)
N.alb <- make_N(pbc2, pbc2_id, br_Xalb, br_s, ss, XXalb, delta)
Y.alb <- make_Y(pbc2, pbc2_id, X_linalb, br_Xalb, br_s,

size_s_grid, size_X_grid, int_s, int_Xalb, event_time = 'years', n)

alpha.alb<-get_alpha(N.alb, Y.alb, b.alb, br_Xalb, K=Epan)
Yi.alb <- make_Yi(pbc2, pbc2_id, X_linalb, br_Xalb, br_s, size_s_grid, size_X_grid,

int_s, int_Xalb, event_time = 'years', n)

#calculate HQM estimator for original albumin covariate:
arg.alb<- h_xt_vec(br_Xalb, br_s, size_s_grid, alpha.alb, t.alb, b.alb, Yi.alb,

int_Xalb, n)

36 h_xt_vec

y.grid.alb<-arg.alb[1:index.use]

Now, mean adjust the bilirubon covariate:
Xbil = pbc2$serBilir - mean(pbc2$serBilir)
XXbil = pbc2_id$serBilir - mean(pbc2_id$serBilir)

br_Xbil = seq(min(Xbil), max(Xbil), (max(Xbil)-min(Xbil))/(size_X_grid-1))
X_linbil = lin_interpolate(br_s, pbc2_id$id, pbc2$id, Xbil, s)
int_Xbil <- findInterval(X_linbil, br_Xbil)
N.bil <- make_N(pbc2, pbc2_id, br_Xbil, br_s, ss, XXbil, delta)
Y.bil <- make_Y(pbc2, pbc2_id, X_linbil, br_Xbil, br_s,

size_s_grid, size_X_grid, int_s, int_Xbil, event_time = 'years', n)

alpha.bil<-get_alpha(N.bil, Y.bil, b.bil, br_Xbil, K=Epan)
Yibil <- make_Yi(pbc2, pbc2_id, X_linbil, br_Xbil, br_s, size_s_grid, size_X_grid,

int_s, int_Xbil, event_time = 'years', n)

#calculate HQM estimator for original bilirubin covariate:
arg1.bil<- h_xt_vec(br_Xbil, br_s, size_s_grid, alpha.bil, t.bil, b.bil, Yibil,

int_Xbil, n)
y.grid.bil<-arg1.bil[1:index.use]

calculate the indexed variables:
X = par.alb * Xalb + par.bil *Xbil
XX = par.alb * XXalb + par.bil *XXbil
b = 0.4 # results from CV rule in Bagkavos et al (2025)
t = par.alb * t.alb + par.bil *t.bil

br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)
int_X <- findInterval(X_lin, br_X)
N <- make_N(pbc2, pbc2_id, breaks_X=br_X, breaks_s=br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s,

int_X, 'years', n)
alpha<-get_alpha(N, Y, b, br_X, K=Epan)
Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid,

int_s, int_X,'years', n)

Now calculate indexed HR estimator:
arg2<- h_xt_vec(br_X, br_s, size_s_grid, alpha, t, b, Yi, int_X, n)
y.grid2<-arg2[1:index.use]

############## Plot the results:
plot(x.grid, y.grid2, type="l", ylim=c(0,2), xlab="Years", ylab="Hazard rate", lwd=2)
lines(x.grid, y.grid.bil , lty=2, col=4, lwd=2)
lines(x.grid, y.grid.alb, lty=2, col=2, lwd=2)

legend("topleft", lty=c(1, 2, 2), lwd=c(2,2,2),
c("Indexed (Bilirubin and Albumin) HQM hazard rate est.",

"HQM hazard rate est. conditional on Albumin=2mg/dl",

h_xt_vec 37

"HQM hazard rate est. conditional on Bilirubin=7mg/dl"),
col=c(1,2,4), cex=2, bty="n")

############# Indexed HR estimator example 2: ##############
The example is based on indexing two covariates: bilirubin and prothrombin time

index.use<-84
x.grid<-br_s[1:index.use]

b.pro = 3
b.bil = 4

t.pro = 1.5 # refers to zero mean variables - slightly high
t.bil = 1.9 # refers to zero mean variable - high

par.pro <- 0.349 #0.5 #0.149
par.bil <- 0.0776 #0.10

############ prothrombin time #############
ind1 <- which(is.na(pbc2$prothrombin))
Xpro1 = pbc2$prothrombin
Xpro1[ind1]<-mean(pbc2$prothrombin, na.rm=TRUE)
Xpro1 <- Xpro1 - mean(Xpro1)

ind2 <- which(is.na(pbc2_id$prothrombin))
XXpro1 = pbc2_id$prothrombin
XXpro1[ind2]<-mean(pbc2_id$prothrombin, na.rm=TRUE)
XXpro1 <- XXpro1 - mean(XXpro1)

br_Xbil = seq(min(Xpro1), max(Xpro1), (max(Xpro1)-min(Xpro1))/(size_X_grid-1))
X_linbil = lin_interpolate(br_s, pbc2_id$id, pbc2$id, Xpro1, s)
int_Xbil <- findInterval(X_linbil, br_Xbil)
N.bil <- make_N(pbc2, pbc2_id, br_Xbil, br_s, ss, XXpro1, delta)
Y.bil <- make_Y(pbc2, pbc2_id, X_linbil, br_Xbil, br_s,

size_s_grid, size_X_grid, int_s, int_Xbil, event_time = 'years', n)

alpha.bil<-get_alpha(N.bil, Y.bil, b.pro, br_Xbil, K=Epan)
Yibil <- make_Yi(pbc2, pbc2_id, X_linbil, br_Xbil, br_s, size_s_grid, size_X_grid, int_s,

int_Xbil, event_time = 'years', n)
arg1.pro<- h_xt_vec(br_Xbil, br_s, size_s_grid, alpha.bil, t.pro, b.pro, Yibil, int_Xbil, n)
y.grid.pro<-arg1.pro[1:index.use]

############ Bilirubin #############
Xbil = pbc2$serBilir - mean(pbc2$serBilir)
XXbil = pbc2_id$serBilir - mean(pbc2_id$serBilir)

br_Xbil = seq(min(Xbil), max(Xbil), (max(Xbil)-min(Xbil))/(size_X_grid-1))
X_linbil = lin_interpolate(br_s, pbc2_id$id, pbc2$id, Xbil, s)
int_Xbil <- findInterval(X_linbil, br_Xbil)
N.bil <- make_N(pbc2, pbc2_id, br_Xbil, br_s, ss, XXbil, delta)
Y.bil <- make_Y(pbc2, pbc2_id, X_linbil, br_Xbil, br_s,

size_s_grid, size_X_grid, int_s, int_Xbil, event_time = 'years', n)

38 index_optim

alpha.bil<-get_alpha(N.bil, Y.bil, b.bil, br_Xbil, K=Epan)
Yibil <- make_Yi(pbc2, pbc2_id, X_linbil, br_Xbil, br_s, size_s_grid, size_X_grid, int_s,

int_Xbil, event_time = 'years', n)
arg1.bil<- h_xt_vec(br_Xbil, br_s, size_s_grid, alpha.bil, t.bil, b.bil, Yibil, int_Xbil, n)
y.grid.bil<-arg1.bil[1:index.use]

######### Index prothrombin time and bilirubin
X = par.pro * Xpro1 + par.bil *Xbil
XX = par.pro * XXpro1 + par.bil *XXbil

b = 1.5
t = par.pro * t.pro + par.bil *t.bil

br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)
int_X <- findInterval(X_lin, br_X)
N <- make_N(pbc2, pbc2_id, breaks_X=br_X, breaks_s=br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s, int_X,

'years', n)
alpha<-get_alpha(N, Y, b, br_X, K=Epan)
Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s, size_s_grid, size_X_grid, int_s, int_X,

'years', n)
arg2<- h_xt_vec(br_X, br_s, size_s_grid, alpha, t, b, Yi, int_X, n)
y.grid2<-arg2[1:index.use]

##############Plot the results
plot(x.grid, y.grid2, type="l", ylim=c(0,2), xlab="Years", ylab="Hazard rate", lwd=2)
lines(x.grid, y.grid.bil , lty=2, col=4, lwd=2)

lines(x.grid, y.grid.pro, lty=2, col=2, lwd=2)
legend("topleft", lty=c(1, 2, 2), lwd=c(2,2,2),

c("Indexed (Bilirubin and PT) HQM hazard rate est.",
"HQM hazard rate est. conditional on PT=15.5s",
"HQM hazard rate est. conditional on Bilirubin=7mg/dl"),
col=c(1,2,4), cex=2, bty="n")

index_optim Indexing parameter objective function

Description

Objective used for optimizing indexing parameters via optim.

index_optim 39

Usage

index_optim(in.par, data, data.id, br_s, X1, XX1, event_time_name = 'years',
time_name = 'year', event_name = 'status2', b, t, true.haz)

Arguments

in.par Numeric vector length 2.

data Data frame.

data.id Id-level data frame.

br_s user-supplied grid points ranging from the minimum to the maximum of the
time_name argument

X1 List of vectors for indexing: each vector corresponds to a biomarker and con-
tains one summary measurement per individual.

XX1 List of vectors for indexing: each vector corresponds to a single biomarker and
contains its longitudinal measurements across all individuals/time points.

event_time_name

Name of event time column.

time_name Name of observation time column.

event_name Name of event indicator column.

b Bandwidth.

t Evaluation point or grid.

true.haz Numeric vector of true hazard values for CV.

Value

Scalar cross-validation score.

Examples

marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'

par.x1 <- 0.0702 #0.149
par.x2 <- 0.0856 #0.10
t.x1 = 0 # refers to zero mean variables - slightly high
t.x2 = 1.9 # refers to zero mean variable - high
b = 0.42
t = par.x1 * t.x1 + par.x2 *t.x2

first simulate true HR function:

40 index_optim

xin <- pbc2[,c(id, marker_name1, marker_name2, event_time_name, time_name, event_name)]
ls<-50 # 50 grid points to evaluate the estimates
s.out<- xin[, 'year']
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))

n <- length(xin$id)
nn<-max(as.double(xin[,'id']))
################### Create bootstrap samples by group ####################
set.seed(1)
B<- 10 # 400 #50
Boot.samples<-list()
for(j in 1:B)
{

i.use<-c()
id.use<-c()
index.nn <- sample (nn, replace = TRUE)
for(l in 1:nn)
{
i.use2<-which(xin[,id]==index.nn[l])
i.use<-c(i.use, i.use2)
id.use2<-rep(index.nn[l], times=length(i.use2))
id.use<-c(id.use, id.use2)

}
xin.i<-xin[i.use,]
xin.i<-xin[i.use,]
Boot.samples[[j]]<- xin.i[order(xin.i$id),] #xin[i.use,]

}
true.hazard<- Sim.True.Hazard(Boot.samples, id='id', size_s_grid=ls,

marker_name1=marker_name1, marker_name2= marker_name2,
event_time_name = event_time_name,
time_name = time_name, event_name = event_name,
in.par = c(par.x1, par.x2), b)

##

Then run the optimization for the indexing parameters:

data.use<-Boot.samples[[1]]
data.use.id<-to_id(data.use)
data.use.id<-data.use.id[complete.cases(data.use.id),]
X1t=data.use[,marker_name1] -mean(data.use[, marker_name1])
XX1t=data.use.id[,marker_name1] -mean(data.use.id[, marker_name1])
X2t=data.use[,marker_name2] -mean(data.use[, marker_name2])
XX2t=data.use.id[,marker_name2] -mean(data.use.id[, marker_name2])

X1=list(X1t, X2t)
XX1=list(XX1t, XX2t)

s.out<- data.use[, time_name]
s.out.use <- seq(0, max(s.out), max(s.out)/(ls-1))
res<- optim(par=c(par.x1, par.x2), fn=index_optim, data=data.use, data.id=data.use.id,

br_s=s.out.use, X1=X1, XX1=XX1, event_time_name = event_time_name,
time_name = time_name, event_name = event_name, b=b, t=t,
true.haz=true.hazard, method="Nelder-Mead")

Kernels 41

Kernels Classical (unmodified) kernel and related functionals

Description

Implements the classical kernel function and related functionals

Usage

K_b(b,x,y, K)
xK_b(b,x,y, K)
K_b_mat(b,x,y, K)

Arguments

x A vector of design points where the kernel will be evaluated.

y A vector of sample data points.

b The bandwidth to use (a scalar).

K The kernel function to use.

Details

The function K_b implements the classical kernel function calculation

h−1K

(
x− y

h

)
for scalars x and y while xK_b implements the functional

h−1K

(
x− y

h

)
(x− y)

again for for scalars x and y. The function K_b_mat is the vectorized version of K_b. It uses as
inputs the vectors (X1, . . . , Xn) and (Y1, . . . , Yn) and returns a n× n matrix with entries

h−1K

(
Xi − Yj

h

)

Value

Scalar values for K_b and xK_b and matrix outputs for K_b_mat.

42 lin_interpolate

lin_interpolate Linear interpolation

Description

Implements a linear interpolation between observered marker values.

Usage

lin_interpolate(t, i, data_id, data_marker, data_time)

Arguments

t A vector of time values where the function should be evaluated.

i A vector of ids of individuals for whom the marker values should be interpo-
lated.

data_id The vector of ids from a data frame of time dependent variables.

data_marker The vector of marker values from a data frame of time dependent variables.

data_time The vector of time values from a data frame of time dependent variables.

Details

Given time points t1, ..., tK and marker values m1, ...,mJ at different time points tm1 , ..., tmJ , the
function calculates a linear interpolation f with f(tmi) = mi at the time points t1, ..., tK for all
indicated individuals. Returned are then (f(t1), ..., f(tK)). Note that the first value is always
observed at time point 0 and the function f is extrapolated constantly after the last observed marker
value.

Value

A matrix with columns (f(t1), ..., f(tK)) as described above for every individual in the vector i.

Examples

size_s_grid <- 100
X = pbc2$serBilir
s = pbc2$year
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
pbc2_id = to_id(pbc2)

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

llK_b 43

llK_b Local linear kernel

Description

Implements the local linear kernel function.

Usage

llK_b(b,x,y, K)

Arguments

x A vector of design points where the kernel will be evaluated.

y A vector of sample data points.

b The bandwidth to use (a scalar).

K The kernel function to use.

Details

Implements the local linear kernel

Kx,b(u) =
Kb(u)−Kb(u)u

TD−1c1
c0 − cT1 D

−1c1
,

where c1 = (c11, . . . , c1d)
T , D = (dij)(d+1)×(d+1) with

c0 =

n∑
i=1

∫ T

0

Kb(x−Xi(s))Zi(s)ds,

cij =

n∑
i=1

∫ T

0

Kb(x−Xi(s)){x−Xij(s)}Zi(s)ds,

djk =

n∑
i=1

∫ T

0

Kb(x−Xi(s)){x−Xij(s)}{x−Xik(s)}Zi(s)ds,

see also Nielsen (1998), doi:10.1080/03461238.1998.10413997.

Value

Matrix output with entries the values of the kernel function at each point.

References

Nielsen (1998), Marker dependent kernel hazard estimation from local linear estimation, Scandina-
vian Actuarial Journal, pp. 113-124. doi:10.1080/03461238.1998.10413997

https://doi.org/10.1080/03461238.1998.10413997
https://doi.org/10.1080/03461238.1998.10413997

44 make_N, make_Ni, make_Y, make_Yi

llweights Local linear weight functions

Description

Implements the weights to be used in the local linear HQM estimator.

Usage

sn.0(xin, xout, h, kfun)
sn.1(xin, xout, h, kfun)
sn.2(xin, xout, h, kfun)

Arguments

xin Sample values.

xout Grid points where the estimator will be evaluated.

h Bandwidth parameter.

kfun Kernel function.

Details

The function implements the local linear weights in the definition of the estimator ĥx(t), see also
h_xt

Value

A vector of sn(x) for all values x on the marker grid.

make_N, make_Ni, make_Y, make_Yi

Occurance and Exposure on grids

Description

Auxiliary functions that help automate the process of calculating integrals with occurances or ex-
posure processes.

Usage

make_N(data, data.id, breaks_X, breaks_s, ss, XX, delta)
make_Ni(breaks_s, size_s_grid, ss, delta, n)
make_Y(data, data.id, X_lin, breaks_X, breaks_s,

size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)
make_Yi(data, data.id, X_lin, breaks_X, breaks_s,

size_s_grid, size_X_grid, int_s,int_X, event_time = 'years', n)

make_N, make_Ni, make_Y, make_Yi 45

Arguments

data A data frame of time dependent data points. Missing values are allowed.

data.id An id data frame obtained from to_id.

breaks_X Marker value grid points where the function will be evaluated.

breaks_s Time value grid points where the function will be evaluated.

ss Vector with event times.

XX Vector of last observed marker values.

delta 0-1 vector of whether events happened.

size_s_grid Size of the time grid.

size_X_grid Size of the marker grid.

n Number of individuals.

X_lin Linear interpolation of observed marker values evaluated on the marker grid.

int_s Position of the observed time values on the time grid.

int_X Position of the linear interpolated marker values on the marker grid.

event_time String of the column name with the event times.

Details

Implements matrices for the computation of integrals with occurences and exposures of the form∫
f(s)Z(s)Z(s+ t)ds,

∫
f(s)Z(s)ds,

∫
f(s)dN(s).

where N is a 0-1 counting process, Z the exposure and f an arbitrary function.

Value

The functions make_N and make_Y return a matrix on the time grid and marker grid for occurence
and exposure, respectively, while make_Ni and make_Yi return a matrix on the time grid for evey
individual again for occurence and exposure, respectively.

See Also

h_xt, g_xt, get_alpha

Examples

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/(size_s_grid-1))

46 make_sf

br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

N <- make_N(pbc2, pbc2_id, br_X, br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s,

size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)
Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s,

size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)
Ni <- make_Ni(br_s, size_s_grid, ss, delta, n)

make_sf Survival function from a hazard

Description

Creates a survival function from a hazard rate which was calculated on a grid.

Usage

make_sf(step_size_s_grid, haz)

Arguments

step_size_s_grid

Numeric value indicating the distance between two grid continuous grid points.

haz Vector of hazard values. Hazard rate must have been calculated on a time grid.

Details

The function make_sf calculates the survival function

S(t) = exp(−
∫ t

0

h(t)dt),

where h is the hazard rate. Here, a discritisation via an equidistant grid {ti} on [0, t] is used to
calculate the integral and it is assumed that h has been calculated for exactly these time points ti.

Value

A vector of values S(ti).

Examples

make_sf(0.1, rep(0.1,10))

pbc2 47

pbc2 Mayo Clinic Primary Biliary Cirrhosis Data

Description

Followup of 312 randomised patients with primary biliary cirrhosis, a rare autoimmune liver dis-
ease, at Mayo Clinic.

Usage

pbc2

Format

A data frame with 1945 observations on the following 20 variables.

id patients identifier; in total there are 312 patients.

years number of years between registration and the earlier of death, transplantion, or study analy-
sis time.

status a factor with levels alive, transplanted and dead.

drug a factor with levels placebo and D-penicil.

age at registration in years.

sex a factor with levels male and female.

year number of years between enrollment and this visit date, remaining values on the line of data
refer to this visit.

ascites a factor with levels No and Yes.

hepatomegaly a factor with levels No and Yes.

spiders a factor with levels No and Yes.

edema a factor with levels No edema (i.e., no edema and no diuretic therapy for edema), edema no
diuretics (i.e., edema present without diuretics, or edema resolved by diuretics), and edema
despite diuretics (i.e., edema despite diuretic therapy).

serBilir serum bilirubin in mg/dl.

serChol serum cholesterol in mg/dl.

albumin albumin in gm/dl.

alkaline alkaline phosphatase in U/liter.

SGOT SGOT in U/ml.

platelets platelets per cubic ml / 1000.

prothrombin prothrombin time in seconds.

histologic histologic stage of disease.

status2 a numeric vector with the value 1 denoting if the patient was dead, and 0 if the patient
was alive or transplanted.

48 Pivot.Index.CIs

References

Fleming, T. and Harrington, D. (1991) Counting Processes and Survival Analysis. Wiley, New
York.

Therneau, T. and Grambsch, P. (2000) Modeling Survival Data: Extending the Cox Model. Springer-
Verlag, New York.

Examples

summary(pbc2)

Pivot.Index.CIs Compute Pivot Pointwise Confidence Intervals for the Indexed Hazard
Rate Estimate

Description

Computes bootstrap pivot and symmetric bootstrap-pivot confidence intervals for the hazard, log-
hazard, and back-transformed (log-scale) hazard rate functions, using the indexed hazard estimator.

Usage

Pivot.Index.CIs(B, n.est.points, Mat.boot.haz.rate, time.grid, hqm.est, a.sig)

Arguments

B Integer. Number of bootsrap replications

n.est.points Integer. Number of estimation points at which the indexed hazard estimates and
confidence intervals are evaluated.

Mat.boot.haz.rate

A matrix of bootstrap estimated hazard rates with dimensions n.est.points ×
B, where each column corresponds to one bootstrap replicate.

time.grid Numeric vector of length n.est.points: the grid points at which the indexed
hazard estimates and confidence intervals are calculated.

hqm.est Indexed hazard estimator, calculated at the grid points time.grid and using the
original sample.

a.sig The significance level (e.g., 0.05) which will be used in computing the confi-
dence intervals.

Pivot.Index.CIs 49

Details

This function computes several forms of pivot confidence intervals for indexed hazard rate esti-
mates. Let σ̂ be the sample standard deviation of the bootstrap estimators ĥ(j)

x (t), j = 1, . . . , B and
let kpα/2, k

p
1−α/2 and k̄p1−α be the α/2, 1− α/2 and 1− α quantiles respectively of

ĥ
(j)
x (t)− ĥx(t)

σ̂
, j = 1, . . . , B.

Then, the pivot bootstrap confidence interval (CI) for ĥx(t) is given by(
ĥx(t)− σ̂kp1−α/2, ĥx(t)− σ̂kpα/2

)
.

The symmetric pivot bootstrap CI for ĥx(t) is(
ĥx(t)− σ̂k̄p1−α, ĥx(t) + σ̂k̄p1−α

)
.

For the confidence intervals for the logarithm of the hazard rate function, first let

Lx(t) = log {hx(t)} , L̂x(t) = log
{
ĥx(t)

}
, L̂(j)

x (t) = log
{
ĥ(j)
x (t)

}
,

and kL,p
α/2, k

L,p
1−α/2 and k̄L,p

1−α be respectively the α/2, 1− α/2 and 1− α quantile of

|L̂(j)
x (t)− L̂x(t)|

σ̂
, j = 1, . . . , B.

For the log hazard function Lx(t) a pivotal bootstrap confidence interval is(
L̂x(t)− σ̂kL,p

1−α/2, L̂x(t)− σ̂kL,p
α/2

)
.

A symmetric pivotal bootstrap CI for the log hazard is(
L̂x(t)− σ̂k̄L,p

1−α, L̂x(t) + σ̂k̄L,p
1−α

)
.

These last two confidence intervals can be transformed back to yield confidence intervals for the
hazard rate function hx(t). These are:(

ĥx(t)e
−σ̂kL,p

1−α/2 , ĥx(t)e
−σ̂kL,p

α/2

)
,

and (
ĥx(t)e

−σ̂k̄L,p
1−α , ĥx(t)e

σ̂k̄L,p
1−α

)
respectively.

Note: The bootstrap matrix Mat.boot.haz.rate is assumed to contain estimates produced using
the same time grid as time.grid and the same estimator used to generate hqm.est.

50 Pivot.Index.CIs

Value

A data frame with the following columns:

time The evaluation grid points.

est Indexed hazard rate estimator hqm.est.

downci, upci Lower and upper endpoints of basic pivot CIs.
docisym, upcisym

Lower and upper endpoints of symmetric pivot CIs.
logdoci, logupci

Lower and upper endpoints of pivot CIs on the log-scale.
logdocisym, logupcisym

Symmetric pivot CIs on the log-scale.

log.est The logarithm of the indexed hazard rate estimate, log(hqm.est).
tLogDoCI, tLogUpCI

Transformed-log CIs based on 2*log(hqm.est) - log-quantiles.
tSymLogDoCI, tSymLogUpCI

Symmetric transformed-log CIs.

See Also

Boot.hrandindex.param, Boot.hqm

Examples

marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'

par.x1 <- 0.0702 #0.149
par.x2 <- 0.0856 #0.10
t.x1 = 0 # refers to zero mean variables - slightly high
t.x2 = 1.9 # refers to zero mean variable - high
b = 0.42#par.alb * b.alb + par.bil *b.bil # 7
t = par.x1 * t.x1 + par.x2 *t.x2
ls<-50

#Store original sample values:
xin <- pbc2[,c(id, marker_name1, marker_name2, event_time_name, time_name, event_name)]
n <- length(xin$id)
nn<-max(as.double(xin[,'id']))

xin.id <- to_id(xin)

X1t=xin[,marker_name1] -mean(xin[, marker_name1])

Pivot.Index.CIs 51

XX1t=xin.id[,marker_name1] -mean(xin.id[, marker_name1])
X2t=xin[,marker_name2] -mean(xin[, marker_name2])
XX2t=xin.id[,marker_name2] -mean(xin.id[, marker_name2])

X1=list(X1t, X2t)
XX1=list(XX1t, XX2t)

Calculate the indexed HQM estimator on the original sample:
arg2<- SingleIndCondFutHaz(pbc2, id, ls, X1, XX1, event_time_name = 'years',

time_name = 'year', event_name = 'status2', in.par= c(par.x1, par.x2), b, t)

hqm.est<-arg2[,2] # Indexed HQM estimator on original sample
time.grid<-arg2[,1] # evaluation grid points
n.est.points<- ls # length(hqm.est)

Create bootstrap samples by group
set.seed(1)
B<- 50 #for display purposes only; for sensible results use B=1000 (slower)
Boot.samples<-list()
for(j in 1:B)
{

i.use<-c()
id.use<-c()
index.nn <- sample (nn, replace = TRUE)
for(l in 1:nn)
{
i.use2<-which(xin[,id]==index.nn[l])
i.use<-c(i.use, i.use2)
id.use2<-rep(index.nn[l], times=length(i.use2))
id.use<-c(id.use, id.use2)

}
xin.i<-xin[i.use,]
xin.i<-xin[i.use,]
Boot.samples[[j]]<- xin.i[order(xin.i$id),]

}

Simulate true hazard rate function:
true.hazard<- Sim.True.Hazard(Boot.samples, id='id', n.est.points,

marker_name1=marker_name1, marker_name2= marker_name2,
event_time_name = event_time_name, time_name = time_name,
event_name = event_name, in.par = c(par.x1, par.x2), b)

Bootstrap the original indexed HQM estimator:
res <- Boot.hrandindex.param(B, Boot.samples, marker_name1, marker_name2,

event_time_name, time_name, event_name, b = 0.4, t = t,
true.haz = true.hazard, v.param = c(0.07, 0.08), n.est.points)

Construct Ci's:
a.sig<-0.05
all.cis.pivot<- Pivot.Index.CIs(B, n.est.points, res, time.grid, hqm.est, a.sig)

extract Plain + symmetric CIs
UpCI<-all.cis.pivot[,"UpCI"]

52 prep_boot

DoCI<-all.cis.pivot[,"DoCI"]
SymUpCI<-all.cis.pivot[,"SymUpCI"]
SymDoCI<-all.cis.pivot[,"SymDoCI"]

J <- 80 #select the first 80 grid points (for display purposes only)
#Plot the selected CIs
plot(time.grid[1:J], hqm.est[1:J], type="l", ylim=c(0,2), ylab="Hazard rate",

xlab="time", lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(UpCI[1:J], rev(DoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)
lines(time.grid[1:J], SymUpCI[1:J], lty=2, lwd=2)
lines(time.grid[1:J], SymDoCI[1:J], lty=2, lwd=2)

extract transformed from Log HR + symmetric CIs
LogUpCI<-all.cis.pivot[,"LogUpCI"]
LogDoCI<-all.cis.pivot[,"LogDoCI"]
SymLogUpCI<-all.cis.pivot[,"LogSymUpCI"]
SymLogDoCI<-all.cis.pivot[,"LogSymDoCI"]

#Plot the selected CIs
plot(time.grid[1:J], hqm.est[1:J] , type="l", ylim=c(0,2), ylab="Log Hazard rate",

xlab="time", lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(LogUpCI[1:J], rev(LogDoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)
lines(time.grid[1:J], SymLogUpCI[1:J], lty=2, lwd=2)
lines(time.grid[1:J], SymLogDoCI[1:J], lty=2, lwd=2)

extract Log HR + symmetric CIs
tLogUpCI<-all.cis.pivot[,"LogtUpCI"]
tLogDoCI<-all.cis.pivot[,"LogTDoCI"]
tSymLogUpCI<-all.cis.pivot[,"SymLogtUpCI"]
tSymLogDoCI<-all.cis.pivot[,"SymLogTDoCI"]

#Plot the selected CIs
plot(time.grid[1:J], log(hqm.est[1:J]), type="l", ylim=c(-5,4), ylab="Hazard rate",

xlab="time", lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(tLogUpCI[1:J], rev(tLogDoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)
lines(time.grid[1:J], tSymLogUpCI[1:J], lty=2, lwd=2)
lines(time.grid[1:J], tSymLogDoCI[1:J], lty=2, lwd=2)

prep_boot Precomputation for wild bootstrap

Description

Implements key components for the wild bootstrap of the hqm estimator in preparation for obtaining
confidence bands.

prep_boot 53

Usage

prep_boot(g_xt, alpha, Ni, Yi, size_s_grid, br_X, br_s, t, b, int_X, x, n)

Arguments

g_xt A vector obtained by g_xt.

alpha A vector of the marker only hazard on the marker grid obtained by get_alpha.

Ni A matrix made by make_Ni indicating the occurence.

Yi A matrix made by make_Yi indicating the exposure.

size_s_grid Size of the time grid.

br_X Vector of grid points for the marker values.

br_s Time value grid points that will be used in the evaluatiuon.

t Numeric value of the time the function should be evaluated.

b Bandwidth.

int_X Position of the linear interpolated marker values on the marker grid.

x Numeric value of the last observed marker value.

n Number of individuals.

Details

The function implements

AB(t) =
1√
n

n∑
i=1

∫ T

0

ĝi,t,x∗(Xi(s))Vi{dNi(s)− α̂i(Xi(s))Zi(s)ds},

and

BB(t) =
1√
n

n∑
i=1

Vi{Γ̂(t, x∗)
−1Wi(t, x∗)− ĥx∗(t)},

where V ∼ N(0, 1),

Wi(t) =

∫ T

0

α̂i(Xi(t+ s))Zi(t+ s)Zi(s)Kb(x∗, Xi(s))ds,

and

Γ̂(t, x) =
1

n

n∑
i=1

∫ T−t

0

Zi(t+ s)Zi(s)Kb(x,Xi(s))ds,

with Z being the exposure and X the marker.

Value

A list of 5 items. The first two are vectors for calculating AB and the third one a vector for BB .
The 4th one is the value of the hqm estimator that can also be obtained by h_xt and the last one is
the value of Γ.

54 prep_cv

See Also

Conf_bands

Examples

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

N <- make_N(pbc2, pbc2_id, br_X, br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s,

size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)

b = 1.7
alpha<-get_alpha(N, Y, b, br_X, K=Epan)

Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s,
size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)

Ni <- make_Ni(br_s, size_s_grid, ss, delta, n)

t = 2
x = 2

g = g_xt(br_X, br_s, size_s_grid, int_X, x, t, b, Yi, Y, n)

Boot_all = prep_boot(g, alpha, Ni, Yi, size_s_grid, br_X, br_s, t, b, int_X, x, n)
Boot_all

prep_cv Prepare for Cross validation bandwidth selection

Description

Implements the calculation of the hqm estimator on cross validation data sets. This is a preparation
for the cross validation bandwidth selection technique for future conditional hazard rate estimation
based on marker information data.

prep_cv 55

Usage

prep_cv(data, data.id, marker_name, event_time_name = 'years',
time_name = 'year',event_name = 'status2', n, I, b)

Arguments

data A data frame of time dependent data points. Missing values are allowed.

data.id An id data frame obtained from to_id.

marker_name The column name of the marker values in the data frame data.
event_time_name

The column name of the event times in the data frame data.

time_name The column name of the times the marker values were observed in the data frame
data.

event_name The column name of the events in the data frame data.

n Number of individuals.

I Number of observations leave out for a K cross validation.

b Bandwidth.

Details

The function splits the data set via dataset_split and calculates for every splitted data set the
hqm estimator

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(Xi(t+ s))Zi(t+ s)Zi(s)Kb(x−Xi(s))ds∑n
i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x−Xi(s))ds

,

for all x on the marker grid and t on the time grid, where X is the marker, Z is the exposure and
α(z) is the marker-only hazard, see get_alpha for more details.

Value

A list of matrices for every cross validation data set with ĥx(t) for all x on the marker grid and t on
the time grid.

See Also

b_selection

Examples

pbc2_id = to_id(pbc2)
n = max(as.numeric(pbc2$id))
b = 1.5
I = 26
h_xt_mat_list = prep_cv(pbc2, pbc2_id, 'serBilir', 'years', 'year', 'status2', n, I, b)

56 prep_cv2

prep_cv2 Prepare for Cross validation index parameter selection

Description

Implements the calculation of the hqm estimator on cross validation data sets. This is a preparation
for the cross validation index selection technique for future conditional hazard rate estimation based
on marker information data.

Usage

prep_cv2(in.par, data, data.id, marker_name1, marker_name2, event_time_name = 'years',
time_name = 'year',event_name = 'status2', n, I, b)

Arguments

in.par Vector of candidate indexing values.

data A data frame of time dependent data points. Missing values are allowed.

data.id An id data frame obtained from to_id.

marker_name1 The column name of the marker values in the data frame data.

marker_name2 The column name of the marker values in the data frame data.
event_time_name

The column name of the event times in the data frame data.

time_name The column name of the times the marker values were observed in the data frame
data.

event_name The column name of the events in the data frame data.

n Number of individuals.

I Number of observations leave out for a K cross validation.

b Bandwidth.

Details

The function splits the data set via dataset_split and calculates for every splitted data set the
hqm estimator

ĥx(t) =

∑n
i=1

∫ T

0
α̂i(θ

T
0 Xi(t+ s))Zi(t+ s)Zi(s)Kb(x− θT0 Xi(s))ds∑n

i=1

∫ T

0
Zi(t+ s)Zi(s)Kb(x− θT0 Xi(s))ds

,

for all x on the marker grid and t on the time grid, where X is the marker, Z is the exposure and
α(z) is the marker-only hazard, see get_alpha for more details.

Value

A list of matrices for every cross validation data set with ĥx(t) for all x on the marker grid and t on
the time grid.

Q1 57

See Also

b_selection_index_optim

Q1 Bandwidth selection score Q1

Description

Calculates a part for the K-fold cross validation score.

Usage

Q1(h_xt_mat, int_X, size_X_grid, n, Yi)

Arguments

h_xt_mat A matrix of the estimator for the future conditional hazard rate for all values x
and t.

int_X Vector of the position of the observed marker values in the grid for marker val-
ues.

size_X_grid Numeric value indicating the number of grid points for marker values.

n Number of individuals.

Yi A matrix made by make_Yi indicating the exposure.

Details

The function implements

Q1 =

N∑
i=1

∫ T

0

∫ T

s

Zi(t)Zi(s)ĥ
2
Xi(s)

(t− s)dtds,

where ĥ is the hqm estimator, Z the exposure and X the marker.

Value

A value of the score Q1.

See Also

b_selection

58 Quantile.Index.CIs

Examples

pbc2_id = to_id(pbc2)
size_s_grid <- size_X_grid <- 100
n = max(as.numeric(pbc2$id))
s = pbc2$year
X = pbc2$serBilir
XX = pbc2_id$serBilir
ss <- pbc2_id$years
delta <- pbc2_id$status2
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)

int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

N <- make_N(pbc2, pbc2_id, br_X, br_s, ss, XX, delta)
Y <- make_Y(pbc2, pbc2_id, X_lin, br_X, br_s,

size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)

b = 1.7
alpha<-get_alpha(N, Y, b, br_X, K=Epan)

Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s,
size_s_grid, size_X_grid, int_s, int_X, event_time = 'years', n)

Ni <- make_Ni(br_s, size_s_grid, ss, delta, n)

t = 2

h_xt_mat = t(sapply(br_s[1:99],
function(si){h_xt_vec(br_X, br_s, size_s_grid, alpha, t, b, Yi, int_X, n)}))

Q = Q1(h_xt_mat, int_X, size_X_grid, n, Yi)

Quantile.Index.CIs Compute Quantile Pointwise Confidence Intervals for for the Indexed
Hazard Rate Estimate

Description

Computes quantile-bootstrap confidence intervals and its symmetric counterparts for the hazard
rate, log-hazard rate, and back-transformed (from log scale) hazard rate functions, based on the
indexed hazard estimator.

Usage

Quantile.Index.CIs(B, n.est.points, Mat.boot.haz.rate, time.grid, hqm.est, a.sig)

Quantile.Index.CIs 59

Arguments

B Integer. Number of bootsrap replications.

n.est.points Integer. Number of estimation points at which the indexed hazard estimates and
confidence intervals are evaluated.

Mat.boot.haz.rate

A matrix of bootstrap estimated hazard rates with dimensions n.est.points ×
B, where each column corresponds to one bootstrap replicate.

time.grid Numeric vector of length n.est.points: the grid points at which the indexed
hazard estimates and confidence intervals are calculated.

hqm.est Indexed hazard estimator, calculated at the grid points time.grid and using the
original sample.

a.sig The significance level (e.g., 0.05) which will be used in computing the confi-
dence intervals.

Details

This function computes several forms of pivot confidence intervals for indexed hazard rate esti-
mates. Set kα/2 = ĥ

[α/2]
x (t) − ĥx(t) and k1−α/2 = ĥ

[1−α/2]
x (t) − ĥx(t) where ĥ

[α/2]
x (t) is the

α/2 quantile of ĥ(j)
x (t), j = 1, . . . , B, obtained by ordering the bootstrap estimators in ascending

order and selecting the α/2-th ordered value. For example, for B = 1000 bootstrap iterations and
α = 0.05, ĥ[α/2]

x (t) will be the 25th smallest out of the 1000 values ĥ(j)
x (t), j = 1, . . . , 1000. Also

denote with k̄1−α the 1− α quantile of

|ĥ(j)
x (t)− ĥx(t)|, j = 1, . . . , B.

Then, the quantile bootstrap CI for ĥx(t) is given by(
ĥx(t)− k1−α/2, ĥx(t)− kα/2

)
.

The symmetric quantile CI (basic CI) is(
ĥx(t)− k̄1−α, ĥx(t) + k̄1−α

)
.

The confidence intervals for the logarithm of the hazard rate function are defined as follows. First
set kLα/2 = L̂

[α/2]
x (t)− L̂x(t) and kL1−α/2 = L̂

[1−α/2]
x (t)− L̂x(t).

Also denote with k̄L1−α the 1 − α quantile of |L̂(j)
x (t) − L̂x(t)|, j = 1, . . . , B. For the log hazard

function Lx(t) we have the quantile confidence interval is(
L̂x(t)− kL1−α/2, L̂x(t)− kLα/2

)
.

The corresponding symmetric quantile CI for the log hazard is(
L̂x(t)− k̄L1−α, L̂x(t) + k̄L1−α

)
.

60 Quantile.Index.CIs

These confidence intervals are transformed back to confidence intervals for the hazard rate function
hx(t): (

ĥx(t)e
−kL

1−α/2 , ĥx(t)e
−kL

α/2

)
.

The corresponding symmetric confidence interval is(
ĥx(t)e

−k̄L
1−α , ĥx(t)e

k̄L
1−α

)
.

Note: The bootstrap matrix Mat.boot.haz.rate is assumed to contain estimates produced using
the same time grid as time.grid and the same estimator used to generate hqm.est.

Value

A data frame with the following columns:

time The evaluation grid points.

est Indexed hazard rate estimator hqm.est.

downci, upci Lower and upper endpoints of basic quantile CIs.
docisym, upcisym

Lower and upper endpoints of symmetric quantile CIs.
logdoci, logupci

Lower and upper endpoints of quantile CIs on the log-scale.
logdocisym, logupcisym

Symmetric log-scale CIs.

log.est The logarithm of the indexed hazard rate estimate, log(hqm.est).
tLogDoCI, tLogUpCI

Transformed-log CIs based on 2*log(hqm.est) - log-quantiles.
tSymLogDoCI, tSymLogUpCI

Symmetric transformed-log CIs.

See Also

Boot.hrandindex.param, Boot.hqm

Examples

marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'

par.x1 <- 0.0702 #0.149
par.x2 <- 0.0856 #0.10

Quantile.Index.CIs 61

t.x1 = 0 # refers to zero mean variables - slightly high
t.x2 = 1.9 # refers to zero mean variable - high
b = 0.42# The result, on the indexed marker 'indmar' of

#\code{b_selection(pbc2, 'indmar', 'years', 'year', 'status2', I=26, seq(0.2,0.4,by=0.01))}
t = par.x1 * t.x1 + par.x2 *t.x2
ls<-50

#Store original sample values:
xin <- pbc2[,c(id, marker_name1, marker_name2, event_time_name, time_name, event_name)]
n <- length(xin$id)
nn<-max(as.double(xin[,'id']))

xin.id <- to_id(xin)

X1t=xin[,marker_name1] -mean(xin[, marker_name1])
XX1t=xin.id[,marker_name1] -mean(xin.id[, marker_name1])
X2t=xin[,marker_name2] -mean(xin[, marker_name2])
XX2t=xin.id[,marker_name2] -mean(xin.id[, marker_name2])

X1=list(X1t, X2t)
XX1=list(XX1t, XX2t)

Calculate the indexed HQM estimator on the original sample:
arg2<- SingleIndCondFutHaz(pbc2, id, ls, X1, XX1, event_time_name = 'years',

time_name = 'year', event_name = 'status2', in.par= c(par.x1, par.x2), b, t)

hqm.est<-arg2[,2] # Indexed HQM estimator on original sample
time.grid<-arg2[,1] # evaluation grid points
n.est.points<- ls # length(hqm.est)

Create bootstrap samples by group:
set.seed(1)
B<- 50 #for display purposes only; for sensible results use B=1000 (slower)
Boot.samples<-list()
for(j in 1:B)
{

i.use<-c()
id.use<-c()
index.nn <- sample (nn, replace = TRUE)
for(l in 1:nn)
{
i.use2<-which(xin[,id]==index.nn[l])
i.use<-c(i.use, i.use2)
id.use2<-rep(index.nn[l], times=length(i.use2))
id.use<-c(id.use, id.use2)

}
xin.i<-xin[i.use,]
xin.i<-xin[i.use,]
Boot.samples[[j]]<- xin.i[order(xin.i$id),]

}

Simulate true hazard rate function:
true.hazard<- Sim.True.Hazard(Boot.samples, id='id', n.est.points,

62 Quantile.Index.CIs

marker_name1=marker_name1, marker_name2= marker_name2,
event_time_name = event_time_name, time_name = time_name,
event_name = event_name, in.par = c(par.x1, par.x2), b)

Bootstrap the original indexed HQM estimator:
res <- Boot.hrandindex.param(B, Boot.samples, marker_name1, marker_name2, event_time_name,

time_name, event_name, b = 0.4, t = t, true.haz = true.hazard,
v.param = c(0.07, 0.08), n.est.points)

J <- 80
a.sig<-0.05

Construct Ci's:
all.cis.quant<- Quantile.Index.CIs(B, n.est.points, res, time.grid, hqm.est, a.sig)

extract Plain + symmetric CIs and plot them:
UpCI<-all.cis.quant[,"upci"]
DoCI<-all.cis.quant[,"downci"]
SymUpCI<-all.cis.quant[,"upcisym"]
SymDoCI<-all.cis.quant[,"docisym"]

#Plot the selected CIs
plot(time.grid[1:J], hqm.est[1:J], type="l", ylim=c(0,2), ylab="Hazard rate",

xlab="time", lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(UpCI[1:J], rev(DoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)
lines(time.grid[1:J], SymUpCI[1:J], lty=2, lwd=2)
lines(time.grid[1:J], SymDoCI[1:J], lty=2, lwd=2)

extract transformed from Log HR + symmetric CIs
LogUpCI<-all.cis.quant[,"logupci"]
LogDoCI<-all.cis.quant[,"logdoci"]
SymLogUpCI<-all.cis.quant[,"logupcisym"]
SymLogDoCI<-all.cis.quant[,"logdocisym"]

#Plot the selected CIs
plot(time.grid[1:J], hqm.est[1:J], type="l", ylim=c(0,2), ylab="Hazard rate",

xlab="time", lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(LogUpCI[1:J], rev(LogDoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)
lines(time.grid[1:J], SymLogUpCI[1:J], lty=2, lwd=2)#, lwd=3
lines(time.grid[1:J], SymLogDoCI[1:J], lty=2, lwd=2)

extract Log HR + symmetric CIs
tLogUpCI<-all.cis.quant[,"tLogUpCI"]
tLogDoCI<-all.cis.quant[,"tLogDoCI"]
tSymLogUpCI<-all.cis.quant[,"tSymLogUpCI"]
tSymLogDoCI<-all.cis.quant[,"tSymLogDoCI"]

#Plot the selected CIs
plot(time.grid[1:J], log(hqm.est[1:J]), type="l", ylim=c(-5,4), ylab="Log Hazard rate",

xlab="time", lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(tLogUpCI[1:J], rev(tLogDoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)

R_K 63

lines(time.grid[1:J], tSymLogUpCI[1:J], lty=2, lwd=2)
lines(time.grid[1:J], tSymLogDoCI[1:J], lty=2, lwd=2)

R_K Bandwidth selection score R

Description

Calculates a part for the K-fold cross validation score.

Usage

R_K(h_xt_mat_list, int_X, size_X_grid, Yi, Ni, n)

Arguments

h_xt_mat_list A list of matrices for all cross validation data sets. Each matrix contains the
estimator with the future conditional hazard rate for all values x and t and the
respected data set.

int_X Vector of the position of the observed marker values in the grid for marker val-
ues.

size_X_grid Numeric value indicating the number of grid points for marker values.

Yi A matrix made by make_Yi indicating the exposure.

Ni A matrix made by make_Ni indicating the occurence.

n Number of individuals.

Details

The function implements the estimator

R̂K =

K∑
j=1

∑
i∈Ij

∫ T

0

g
−Ij
i (t)dNi(t),

where ĝ
−Ij
i (t) =

∫ t

0
Zi(s)ĥ

−Ij
Xi(s)

(t − s)ds, and ĥ−Ij is estimated without information from all
counting processes i with i ∈ Ij . This function estimates

R =

N∑
i=1

∫ T

0

∫ T

s

Zi(t)Zi(s)ĥXi(s)(t− s)hXi(s)(t− s)dtds.

where ĥ is the hqm estimator, Z the exposure and X the marker.

Value

A matrix with ĝ
−Ij
i (t) for all individuals i and time grid points t.

64 Sim.True.Hazard

See Also

b_selection

Examples

pbc2_id = to_id(pbc2)
n = max(as.numeric(pbc2$id))
b = 1.5
I = 104
h_xt_mat_list = prep_cv(pbc2, pbc2_id, 'serBilir', 'years', 'year', 'status2', n, I, b)

size_s_grid <- size_X_grid <- 100
s = pbc2$year
X = pbc2$serBilir
br_s = seq(0, max(s), max(s)/(size_s_grid-1))
br_X = seq(min(X), max(X), (max(X)-min(X))/(size_X_grid-1))

ss <- pbc2_id$years
delta <- pbc2_id$status2

X_lin = lin_interpolate(br_s, pbc2_id$id, pbc2$id, X, s)
int_X <- findInterval(X_lin, br_X)
int_s = rep(1:length(br_s), n)

Yi <- make_Yi(pbc2, pbc2_id, X_lin, br_X, br_s,
size_s_grid, size_X_grid, int_s, int_X, 'years', n)

Ni <- make_Ni(br_s, size_s_grid, ss, delta, n)

R = R_K(h_xt_mat_list, int_X, size_X_grid, Yi, Ni, n)
R

Sim.True.Hazard Simulated true hazard (bootstrap average)

Description

Compute the Monte Carlo / bootstrap averaged alpha (true hazard) across a list of datasets.

Usage

Sim.True.Hazard(data.use, id, size_s_grid, marker_name1 = marker_name1,
marker_name2 = marker_name2, event_time_name = event_time_name,
time_name = time_name, event_name = event_name, in.par, b)

Sim.True.Hazard 65

Arguments

data.use List of data.frames (bootstrap samples).

id Id column name.

size_s_grid user supplied grid length on the time_name argument

marker_name1 First marker name.

marker_name2 Second marker name.
event_time_name

Name of event time column.

time_name Name of observation time column.

event_name Name of event indicator column.

in.par Numeric indexing parameters.

b Bandwidth.

Value

Numeric vector (row means of alpha estimates).

Examples

marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'

ls<-50 #user supplied grid length on the time_name argument

par.x1 <- 0.0702 #indexing parameter for marker 1
par.x2 <- 0.0856 #indexing parameter for marker 2

t.x1 = 0 # conditioning level for marker 1, assumes zero mean variable
t.x2 = 1.9 # conditioning level for marker 2, assumes zero mean variable
b = 0.42 # The result, on the indexed marker 'indmar' of

#\code{b_selection(pbc2,'indmar','years','year','status2',I=26,seq(0.2,0.4,by=0.01))}
t = par.x1 * t.x1 + par.x2 *t.x2

xin <- pbc2[,c(id, marker_name1, marker_name2, event_time_name, time_name, event_name)]
n <- length(xin$id)
nn<-max(as.double(xin[,'id']))

Create bootstrap samples by group
set.seed(1)
B<-100 #set bootstrap iterations here
Boot.samples<-list()
for(j in 1:B)
{

66 SingleIndCondFutHaz

i.use<-c()
id.use<-c()
index.nn <- sample (nn, replace = TRUE)
for(l in 1:nn)
{

i.use2<-which(xin[,id]==index.nn[l])
i.use<-c(i.use, i.use2)
id.use2<-rep(index.nn[l], times=length(i.use2))
id.use<-c(id.use, id.use2)

}
xin.i<-xin[i.use,]
xin.i<-xin[i.use,]
Boot.samples[[j]]<- xin.i[order(xin.i$id),]

}

#compute the bootstrap simulated true HR function:
true.hazard<- Sim.True.Hazard(Boot.samples, id='id', size_s_grid=ls,

marker_name1=marker_name1, marker_name2= marker_name2,
event_time_name = event_time_name, time_name = time_name,
event_name = event_name, in.par = c(par.x1, par.x2), b)

SingleIndCondFutHaz Local linear future conditional hazard estimator (wrapper)

Description

Compute the indexed local linear future conditional hazard rate estimator on a grid.

Usage

SingleIndCondFutHaz(datain, id, ls, X1, XX1, event_time_name = 'years',
time_name = 'year', event_name = 'status2', in.par, b, t)

Arguments

datain Data frame with longitudinal observations.

id Name of id column (string).

ls user supplied grid length on the time_name argument.

X1 List of vectors for indexing: each vector corresponds to a biomarker and con-
tains one summary measurement per individual.

XX1 List of vectors for indexing: each vector corresponds to a single biomarker and
contains its longitudinal measurements across all individuals/time points.

event_time_name

Name of event time column.

SingleIndCondFutHaz 67

time_name Name of observation time column.
event_name Name of event indicator column.
in.par Numeric vector length 2 with indexing parameters.
b Bandwidth parameter.
t conditioning parameter.

Value

A data frame with columns time and est.

Examples

b.alb = 0.9
b.bil = 4

t.alb = 1 # refers to zero mean variables - slightly high
t.bil = 1.9 # refers to zero mean variable - high

par.alb <- 0.0702 #0.149
par.bil <- 0.0856 #0.10

b = 0.42
t = t.alb * par.alb + t.bil *par.bil

marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'
ls<-50

data.use<-pbc2
data.use.id<-to_id(data.use)
#data.use.id<-data.use.id[complete.cases(data.use.id),]

mean adjust the data:
X1t=data.use[,marker_name1] -mean(data.use[, marker_name1])
XX1t=data.use.id[,marker_name1] -mean(data.use.id[, marker_name1])
X2t=data.use[,marker_name2] -mean(data.use[, marker_name2])
XX2t=data.use.id[,marker_name2] -mean(data.use.id[, marker_name2])

X1=list(X1t, X2t)
XX1=list(XX1t, XX2t)

arg2<-SingleIndCondFutHaz(pbc2, id, ls, X1, XX1, event_time_name = 'years',
time_name = 'year', event_name = 'status2', in.par= c(par.alb, par.bil), b, t)

hqm.est<-arg2[,2]
time.grid<-arg2[,1]
n.est.points<-length(hqm.est)

68 StudentizedBwB.Index.CIs

StudentizedBwB.Index.CIs

Compute Studentized Double Bootstrap Pointwise Confidence Inter-
vals for the Indexed Hazard Rate Estimate

Description

Computes bootstrap confidence intervals—studentized (double bootstrap) and its symmetric ver-
sions for the hazard rate, log-hazard rate, and back-transformed (from the log scale) hazard rate
functions, based on the indexed hazard estimator.

Usage

StudentizedBwB.Index.CIs(n.est.points, all.mat, time.grid, hqm.est, a.sig)

Arguments

n.est.points Integer. Number of estimation points at which the indexed hazard estimates and
confidence intervals are evaluated.

all.mat A list of matrices of bootstrap estimated hazard and log hazard rates with di-
mensions n.est.points × B, where each column corresponds to one bootstrap
replicate.

time.grid Numeric vector of length n.est.points: the grid points at which the indexed
hazard estimates and confidence intervals are calculated.

hqm.est Indexed hazard estimator, calculated at the grid points time.grid and using the
original sample.

a.sig The significance level (e.g., 0.05) which will be used in computing the confi-
dence intervals.

Details

This function computes several forms of studentized confidence intervals for the indexed hazard rate
function. First, for each bootstrap iteration j = 1, . . . , B we construct estimators of the standard
deviation, denoted by σ̂2

j as follows: each bootstrap sample is itself bootstrapped, say B1 times, we
estimate the corresponding B1 index parameters θ̂j,k = (θ̂1,j,k, θ̂2,j,k), k = 1, . . . , B1, and use them
to calculate the corresponding hazard estimators ĥ(j,k)

x, (t), k = 1, . . . , B1. Finally we calculate σ̂2
j

as the sample variance of ĥ(j,1)
x (t), . . . , ĥ

(j,B1)
x (t). Let ksα/2, k

s
1−α/2 and k̄s1−α be respectively the

α/2, 1− α/2 and 1− α quantiles of

|ĥ(j)
x (t)− ĥx(t)|

σ̂j
, j = 1, . . . , B.

Given the bootstrap estimators ĥ
(j)
x (t), j = 1, . . . , B, the estimator of the original data set ĥx(t)

and the quantiles ksα/2, k
s
1−α/2 and k̄s1−α, the studentized (double bootstrap) confidence interval

StudentizedBwB.Index.CIs 69

(CI) for ĥx(t) is given by (
ĥx(t)− σ̂ks1−α/2, ĥx(t)− σ̂ksα/2

)
.

The symmetric studentized confidence interval (CI) for ĥx(t) defined by(
ĥx(t)− σ̂k̄s1−α, ĥx(t) + σ̂k̄s1−α

)
.

For the confidence intervals for the logarithm of the hazard rate function first set kL,s
α/2, k

L,s
1−α/2 and

k̄L,s
1−α be the α/2, 1− α/2 and 1− α quantile of |L̂(j)

x (t)− L̂x(t)|/σ̂j , j = 1, . . . , B.

The studentized (double bootstrap) CI confidence interval for the logarithm of the hazard rate func-
tion is (

L̂x(t)− σ̂kL,s
1−α/2, L̂x(t)− σ̂kL,s

α/2

)
.

Its symmetric studentized (double bootstrap) CI for the log hazard is(
L̂x(t)− σ̂k̄L,s

1−α, L̂x(t) + σ̂k̄L,s
1−α

)
.

These confidence intervals are transformed back to yield the following confidence intervals for the
hazard rate function hx(t): (

ĥx(t)e
−σ̂kL,s

1−α/2 , ĥx(t)e
−σ̂kL,s

α/2

)
,

and the symmetric version (
ĥx(t)e

−σ̂k̄L,s
1−α , ĥx(t)e

σ̂k̄L,s
1−α

)
.

Note: The bootstrap matrix Mat.boot.haz.rate is assumed to contain estimates produced using
the same time grid as time.grid and the same estimator used to generate hqm.est.

Value

A data frame with the following columns:

time The evaluation grid points.

est Indexed hazard rate estimator hqm.est.

downci, upci Lower and upper endpoints of basic studentized CIs.
docisym, upcisym

Lower and upper endpoints of symmetric CIs.
logdoci, logupci

Lower and upper endpoints of studentized CIs on the log-scale.
logdocisym, logupcisym

Symmetric log-scale CIs.

70 StudentizedBwB.Index.CIs

log.est The logarithm of the indexed hazard rate estimate, log(hqm.est).
tLogDoCI, tLogUpCI

Transformed-log CIs based on 2*log(hqm.est) - log-quantiles.
tSymLogDoCI, tSymLogUpCI

Symmetric transformed-log CIs.

See Also

Boot.hrandindex.param, Boot.hqm

Examples

marker_name1 <- 'albumin'
marker_name2 <- 'serBilir'
event_time_name <- 'years'
time_name <- 'year'
event_name <- 'status2'
id<-'id'

xin <- pbc2[,c(id, marker_name1, marker_name2, event_time_name, time_name, event_name)]
n <- length(xin$id)
nn<-max(as.double(xin[,'id']))

xin.id <- to_id(xin)

par.x1 <- 0.0702 #0.149
par.x2 <- 0.0856 #0.10
t.x1 = 0 # refers to zero mean variables - slightly high
t.x2 = 1.9 # refers to zero mean variable - high
b = 0.42#par.alb * b.alb + par.bil *b.bil # 7
t = par.x1 * t.x1 + par.x2 *t.x2
ls<-50

X1t=xin[,marker_name1] -mean(xin[, marker_name1])
XX1t=xin.id[,marker_name1] -mean(xin.id[, marker_name1])
X2t=xin[,marker_name2] -mean(xin[, marker_name2])
XX2t=xin.id[,marker_name2] -mean(xin.id[, marker_name2])

X1=list(X1t, X2t)
XX1=list(XX1t, XX2t)

Calculate the indexed HQM estimator on the original sample:
arg2<- SingleIndCondFutHaz(pbc2, id, ls, X1, XX1, event_time_name = 'years',

time_name = 'year', event_name = 'status2', in.par= c(par.x1, par.x2), b, t)

hqm.est<-arg2[,2] # Indexed HQM estimator on original sample
time.grid<-arg2[,1] # evaluation grid points
n.est.points<- ls # length(hqm.est)

Create bootstrap samples by group

StudentizedBwB.Index.CIs 71

set.seed(1)
B<-10 # 20 # 5 for display purposes only; for sensible results use B=200 (slower)
B1<- 10 # 20 # 5 for display purposes only; use B1=20 (slower)
Boot.samples<-list()
for(j in 1:B)
{

i.use<-c()
id.use<-c()
index.nn <- sample (nn, replace = TRUE)
for(l in 1:nn)
{
i.use2<-which(xin[,id]==index.nn[l])
i.use<-c(i.use, i.use2)
id.use2<-rep(index.nn[l], times=length(i.use2))
id.use<-c(id.use, id.use2)

}
xin.i<-xin[i.use,]
xin.i<-xin[i.use,]
Boot.samples[[j]]<- xin.i[order(xin.i$id),]

}

Simulate true hazard rate function:
true.hazard<- Sim.True.Hazard(Boot.samples, id='id', n.est.points,

marker_name1=marker_name1, marker_name2= marker_name2,
event_time_name = event_time_name, time_name = time_name,
event_name = event_name, in.par = c(par.x1, par.x2), b)

Bootstrap the original indexed HQM estimator:
all.mat.use<-BwB.HRandIndex.param(B, B1, Boot.samples, marker_name1, marker_name2,

event_time_name, time_name, event_name, b, t, true.haz=true.hazard,
v.param=c(par.x1, par.x2), hqm.est=hqm.est, id= 'id', xin=xin)

Construct Ci's:
a.sig<-0.05
st.ci.data<-StudentizedBwB.Index.CIs(n.est.points, all.mat.use, time.grid, hqm.est, a.sig)

extract Plain + symmetric CIs
UpCI<-st.ci.data[,"UpCI"]
DoCI<-st.ci.data[,"DoCI"]
SymUpCI<-st.ci.data[,"SymUpCI"]
SymDoCI<-st.ci.data[,"SymDoCI"]

#Plot the selected CIs
J<-80 #select the first 80 grid points (for display purposes only)
plot(time.grid[1:J], hqm.est[1:J], type="l", ylim=c(0,2), ylab="Hazard rate", xlab="time",

lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(UpCI[1:J], rev(DoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)
lines(time.grid[1:J], SymUpCI[1:J], lty=2, lwd=2)
lines(time.grid[1:J], SymDoCI[1:J], lty=2, lwd=2)

72 to_id

extract transformed from Log HR + symmetric CIs
LogUpCI<-st.ci.data[,"LogUpCI"]
LogDoCI<-st.ci.data[,"LogDoCI"]
SymLogUpCI<-st.ci.data[,"LogSymUpCI"]
SymLogDoCI<-st.ci.data[,"LogSymDoCI"]

#Plot the selected CI's
plot(time.grid[1:J], log(hqm.est[1:J]), type="l", ylim=c(-5,4), ylab="Log Hazard rate",

xlab="time", lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(LogUpCI[1:J], rev(LogDoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)
lines(time.grid[1:J], SymLogUpCI[1:J], lty=2, lwd=2)
lines(time.grid[1:J], SymLogDoCI[1:J], lty=2, lwd=2)

extract Log HR + symmetric CIs
tLogUpCI<-st.ci.data[,"LogtUpCI"]
tLogDoCI<-st.ci.data[,"LogTDoCI"]
tSymLogUpCI<-st.ci.data[,"SymLogtUpCI"]
tSymLogDoCI<-st.ci.data[,"SymLogTDoCI"]

#Plot the selected CIs
plot(time.grid[1:J], hqm.est[1:J] , type="l", ylim=c(0,2), ylab="Hazard rate", xlab="time",

lwd=2)
polygon(x = c(time.grid[1:J], rev(time.grid[1:J])), y = c(tLogUpCI[1:J], rev(tLogDoCI[1:J])),

col = adjustcolor("red", alpha.f = 0.50), border = NA)
lines(time.grid[1:J], tSymLogUpCI[1:J], lty=2, lwd=2)
lines(time.grid[1:J], tSymLogDoCI[1:J], lty=2, lwd=2)

to_id Event data frame

Description

Creates a data frame with only one entry per individual from a data frame with time dependent data.
The resulting data frame focusses on the event time and the last observed marker value.

Usage

to_id(data_set)

Arguments

data_set A data frame of time dependent data points. Missing values are allowed.

Details

The function to_id uses a data frame of time dependent marker data to create a smaller data frame
with only one entry per individual, the last observed marker value and the event time. Note that the
column indicating the individuals must have the name id. Note also that this data frame is similar

to_id 73

to pbc2.id from the JM package with the difference that the last observed marker value instead of
the first one is captured.

Value

A data frame with only one entry per individual.

Examples

data_set.id = to_id(pbc2)

Index

auc.hqm, 2, 3, 8

b_selection, 10, 11, 14, 17, 55, 57, 64
b_selection_index_optim, 11, 12, 57
b_selection_prep_g, 11, 12, 13, 14
Boot.hqm, 4, 6, 10, 50, 60, 70
Boot.hrandindex.param, 5, 50, 60, 70
bs.hqm, 3, 7, 8
BwB.HRandIndex.param, 9

Conf_bands, 15, 15, 54

data, 10, 12, 15, 20, 23, 55, 56
dataset_split, 11, 12, 16, 17, 55, 56
dij, 17, 32

Epan, 18

g_xt, 15, 16, 27, 45, 53
get_alpha, 18, 19–21, 23, 24, 29–33, 45, 53,

55, 56
get_h_x, 3, 8, 20, 20, 24
get_h_xll, 21, 23, 23, 24

h_xt, 19, 21, 24, 28, 29, 44, 45, 53
h_xt_vec, 33
h_xtll, 30, 31

I, 17
index_optim, 6, 10, 38

K_b (Kernels), 41
K_b_mat (Kernels), 41
Kernels, 41

lin_interpolate, 42
llK_b, 43
llweights, 44

make_N, 18, 45
make_N (make_N, make_Ni, make_Y,

make_Yi), 44

make_N, make_Ni, make_Y, make_Yi, 44
make_Ni, 45, 53, 63
make_Ni (make_N, make_Ni, make_Y,

make_Yi), 44
make_sf, 46, 46
make_Y, 18, 27, 31, 45
make_Y (make_N, make_Ni, make_Y,

make_Yi), 44
make_Yi, 13, 27, 29, 31, 33, 45, 53, 57, 63
make_Yi (make_N, make_Ni, make_Y,

make_Yi), 44

pbc2, 47
Pivot.Index.CIs, 48
prep_boot, 15, 16, 52
prep_cv, 11, 12, 54
prep_cv2, 56

Q1, 11, 12, 57
Quantile.Index.CIs, 58

R_K, 11, 12, 63

Sim.True.Hazard, 64
SingleIndCondFutHaz, 66
sn.0 (llweights), 44
sn.1 (llweights), 44
sn.2 (llweights), 44
StudentizedBwB.Index.CIs, 68

to_id, 6, 10, 45, 55, 56, 72, 72

xK_b (Kernels), 41

74

	auc.hqm
	Boot.hqm
	Boot.hrandindex.param
	bs.hqm
	BwB.HRandIndex.param
	b_selection
	b_selection_index_optim
	b_selection_prep_g
	Conf_bands
	dataset_split
	dij
	Epan
	get_alpha
	get_h_x
	get_h_xll
	g_xt
	h_xt
	h_xtll
	h_xt_vec
	index_optim
	Kernels
	lin_interpolate
	llK_b
	llweights
	make_N, make_Ni, make_Y, make_Yi
	make_sf
	pbc2
	Pivot.Index.CIs
	prep_boot
	prep_cv
	prep_cv2
	Q1
	Quantile.Index.CIs
	R_K
	Sim.True.Hazard
	SingleIndCondFutHaz
	StudentizedBwB.Index.CIs
	to_id
	Index

