Package ‘HelpersMG’

December 23, 2025
Type Package

Title Tools for Various R Functions Helpers

Version 2025.12.22

Date 2025-12-22

Depends R (>=4.1), MASS, ggplot2, rlang, coda, Matrix

Suggests Ime4, RNetCDF, ncdf4, maps, fields, shiny, ppcor, pbmcapply,
pbapply, parallel, visNetwork, igraph, shinyWidgets, cranlogs

Description Contains miscellaneous functions useful for managing 'NetCDF' files (see <https://en.
wikipedia.org/wiki/NetCDF>), get moon phase and time for sun rise and fall, tide level, anal-
yse and reconstruct periodic time series of temperature with irregular sinusoidal pat-
tern, show scales and wind rose in plot with change of color of text, Metropolis-Hastings algo-
rithm for Bayesian MCMC analysis, plot graphs or boxplot with er-
ror bars, search files in disk by there names or their content, read the con-
tents of all files from a folder at one time.

License GPL-2
LazyLoad yes
Encoding UTF-8
RoxygenNote 7.3.3
NeedsCompilation no

Author Marc Girondot [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6645-8530>)

Maintainer Marc Girondot <marc.girondot@gmail.com>
Repository CRAN
Date/Publication 2025-12-23 06:10:38 UTC

Contents
HelpersMG-package e 4
addS3Class e 7
as.mcme.memcCompositeol oL e e 8
AS.PATAMELETS .« . v v v v v e e e e e e e e e e e e e e e e e e e 9

https://en.wikipedia.org/wiki/NetCDF
https://en.wikipedia.org/wiki/NetCDF
https://orcid.org/0000-0001-6645-8530

Contents

as.quantiles L L e e e e 12
ASC o e e e e e e e e e e e e 13
barplot_errbar 14
CAITOWS . . . o v v vt e e e s e e e e 16
ChangeCoordinate e 17
char e e 18
COMPAIE . « . v v v v e e e e et e et e e e e e e e e e e e e 19
compare_AIC e e 20
compare_AICC L e 21
compare_BIC 23
contingencyTable.compare L 24
CONVEIL.AZ . . o v v i e i e e e e e e e e e e e e e e e e e e e 27
CULET o o ot e e e e e e e e e e e e e e e e e e e 28
d .o e 36
dbeta_ new e 37
doutter e e e e e e e e e e e e 38
dggamma e e e 40
DIX . . e e 42
dnbinom_new e e e e e 44
dSnbinom e e e 45
duplicated_packages 62
ellipse e e 63
ExtractAIC.glm 66
fitdistrquantiles 67
flexit o e 68
FormatCompareAIC e 71
format_ncdf 72
from_min_max e e 73
ICULET o e e e 82
IC clean_data e 83
IC_correlation_simplify L 85
IC _threshold_matrix o o e e e e 86
index.periodic L 89
ind_long_lat 90
inside e 92
INVIOEIt e e e e 93
LD50 . . . 94
LD50_MHMmMCMC o o 96
LDSO_MHmMCEMC_P o o e e e e e e 99
list.packages e 100
local.search e e e 101
logit e 102
logLik.compareAIC e 103
loghikecutter e e 104
logLik LD50 105
merge.mcmcCOMPOSITE v v v v o i e e e e e e e e e e e e e 106
MHalgoGen e 108

minmax.periodicl 112

Contents

Index

3
modeled.hist 114
modifyVector 115
moon.info e 116
MovingWindow e 117
NagelkerkeScaledR2 118
newcompassRose L L 119
newmap.scale e 120
openwd . .. L e e e e 121
PIOLCULEr o L e e e e e e e e 122
plotIconoCorel 126
plotLDS0 e 128
plotmemcCompositeo e 130
plot.PriorsmemcComposite 136
plot_add e e 137
plot_errbar. 138
predict.LD50o 140
PrNLCULEr o o oot e e e e e e 141
gvlmero e 145
92 1T) 03+ P 147
RandomFromHessianOrMCMC o o 148
TCULEET . . . v v vt et e e e e e e e e e e e e e e e 150
read_folder L e 152
RectangleRegression 154
TINNOTIN © © . o v v v et et e e e e e e e e e e e e e e 155
RM_add e 156
RM delete. s e 158
RM_duplicate e e 159
RM_get o e 160
RM_LiSt e 161
MDINOM_NEW o o v o o e e e e e e e e e e e e 163
ScalePreviousPlot 164
SEfromHessian 165
SEIES.COMPATE . « . . v v v v e et e e e e e e e e e e e 167
setPriorso 169
show_name L e e 171
similar 172
specify_decimal oL e 173
summary.memcCompositeo e 174
suninfo oL e 176
symbol.Female 177
symbol.Male e 178
SYMMEtriCIZEe o o o e e 179
tide.dnfo L L 181
130Uy 183
universalmelapply 184
WEEL . o o e e e 187

4 HelpersMG-package

HelpersMG-package Tools for Environmental Analyses, Ecotoxicology and Various R Func-
tions

Description

Contains miscellaneous functions useful for managing

’NetCDF” files (see http://en.wikipedia.org/wiki/NetCDF),

get tide levels on any point of the globe,

get moon phase and time for sun rise and fall,

analyse and reconstruct daily time series of temperature

with irregular sinusoidal pattern,

show scales and wind rose in plot with change of color of text,

Metropolis-Hastings algorithm for Bayesian MCMC analysis,

plot graphs or boxplot with error bars,

search files in disk by there names or their content,

read the contents of all files from a folder at one time,

calculate IC50 for ecotoxicological studies,

calculate the probability mass function of the sum of negative binomial

distributions, calculate distribution of unobserved values in censored or truncated distributions.
The latest version of this package can always be installed using:
install.packages("http://marc.girondot.free.fr/CRAN/HelpersMG.tar.gz", repos=NULL, type="source")

HelpersMG-package

3

HelpersMG

Details

Helpers functions for several packages

Package: HelpersMG

Type: Package
Version: 2025.12.22 build 1733
Date: 2025-12-22

License: GPL (>=2)
LazyLoad: yes

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

Not run:
library(HelpersMG)

HelpersMG-package

print (' =—--m oo D)
print('Examples for mcmcComposite objects')
print('-—---=mmmmmmmmmm o)
require(coda)

X <- rnorm(30, 10, 2)

dnormx <- function(x, par) return(-sum(dnorm(x, mean=par['mean'], sd=par['sd'], log=TRUE)))
parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),

Prior1=c(10, ©.5), Prior2=c(2, 0.5), SDProp=c(0.35, ©.2),

Min=c(-3, @), Max=c(100, 10), Init=c(10, 2), stringsAsFactors = FALSE,
row.names=c('mean', 'sd'))

mcmc_run <- MHalgoGen(n.iter=100000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
plot(mecmc_run, xlim=c(@, 20))

plot(memc_run, xlim=c(@, 10), parameters="sd")

mcmcforcoda <- as.mcmc(mcmc_run)

Optimal rejection rate should be 0.234

rejectionRate(mcmcforcoda)

heidel.diag(mcmcforcoda)

raftery.diag(mcmcforcoda)

autocorr.diag(mcmcforcoda)

acf(memcforcodal[11]1[, "mean"], lag.max=20, bty="n", las=1)
acf(memcforcodal[1]]1[,"sd"], lag.max=20, bty="n", las=1)

batchSE (mcmcforcoda, batchSize=100)

The batch standard error procedure is usually thought to

be not as accurate as the time series methods used in summary

summary (mcmcforcoda)$statistics[,"Time-series SE"]

summary (memc_run)

as.parameters(mcmc_run)

lastp <- as.parameters(mcmc_run, index="last")

parameters_mcmc[,"Init"] <- lastp

The n.adapt set to 1 is used to not record the first set of parameters
then it is not duplicated (as it is also the last one for

the object mcmc_run)

mcmc_run2 <- MHalgoGen(n.iter=10000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=1, thin=1, trace=1)

mcmc_run3 <- merge(mcmc_run, mcmc_run2)

#i##HHH#E no adaptation, n.adapt must be @

parameters_mcmc[,"Init"] <- c(mean(x), sd(x))

mcmc_run3 <- MHalgoGen(n.iter=10000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=0, thin=1, trace=1)

print('-—--==—===——-————mmm o D)
print('Examples for Daily patterns of temperature')
print('----=—----=---——-m oo D)

Generate a timeserie of time
time.obs <- NULL
for (i in 0:9) time.obs <- c(time.obs, c(@, 6, 12, 18)+i*24)
For these time, generate a timeseries of temperatures
temp.obs <- rep(NA, length(time.obs))
temp.obs[3+(0:9)*4] <- rnorm(10, 25, 3)
temp.obs[1+(0:9)*4] <- rnorm(10, 10, 3)
for (i in 1:(length(time.obs)-1))
if (is.na(temp.obs[i]))
temp.obs[i] <- mean(c(temp.obs[i-1], temp.obs[i+1]))

addS3Class

if (is.na(temp.obs[length(time.obs)]))
temp.obs[length(time.obs)] <- temp.obs[length(time.obs)-1]1/2
observed <- data.frame(time=time.obs, temperature=temp.obs)
Search for the minimum and maximum values
r <- minmax.periodic(time.minmax.daily=c(Min=2, Max=15),
observed=observed, period=24)

Estimate all the temperatures for these values
t <- temperature.periodic(minmax=r)

plot_errbar(x=t[,"time"], y=t[,"temperature”],
errbar.y=ifelse(is.na(t[,"sd"]1), @, 2xt[,"sd"]),
type="1", las=1, bty="n", errbar.y.polygon = TRUE,
xlab="hours", ylab="Temperatures”, ylim=c(@, 35),
errbar.y.polygon.list = list(col="grey"))

plot_add(x=t[,"time"], y=t[,"temperature”], type="1")

How many times this package has been download

library(cranlogs)

HelpersMG <- cran_downloads("HelpersMG"”, from = "2015-04-07",
to = Sys.Date() - 1)

sum(HelpersMG$count)

plot(HelpersMG$date, HelpersMG$count, type="1", bty="n")

End(Not run)

addS3Class Add a 83 class to an object.

Description

Add a S3 class as first class to an object.

Usage
addS3Class(x, class = NULL)

Arguments
X The object to add class.
class The class to add.
Details

addS3Class add a S3 class to an object

Value

The same object with the new class as first class

8 as.mcmc.mcmcComposite

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

print.CF <- function(x) {cat("print.CF ", x)}
result <- "Je suis donc je pense”

result <- addS3Class(result, class="CF")
class(result)

print(result)

result <- addS3Class(result, class=c("ECF", "OCF"))
class(result)

print(result)

as.mcmc.mecmcComposite Extract memc object from a mcmcComposite object

Description

Take a mecmcComposite object and create a memc.list object to be used with coda package.

Usage
S3 method for class 'mcmcComposite’
as.mcmc(x, ...)
Arguments
X A mcmcComposite obtained as a result of MHalgoGen () function
Not used
Details

as.mcmc Extract mcmc object from the result of phenology_ MHmcmc to be used with coda package

Value

A mcmc.list object

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other mecmcComposite functions: MHalgoGen(), as.parameters(), as.quantiles(), merge.mcmcComposite(),
plot.PriorsmcmcComposite(), plot.mecmcComposite(), setPriors(), summary.mcmcComposite()

as.parameters 9

Examples

Not run:

library(HelpersMG)

require(coda)
x <- rnorm(30, 10, 2)
dnormx <- function(data, x) {

data <- unlist(data)

return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))

3
parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),
Prior1=c(10, 0.5), Prior2=c(2, 0.5), SDProp=c(1, 1),

Min=c(-3, @), Max=c(100, 10), Init=c(10, 2), stringsAsFactors = FALSE,
row.names=c('mean', 'sd'))
mcmc_run <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
plot(mecmc_run, xlim=c(@, 20))

plot(memc_run, xlim=c(@, 10), parameters="sd")
mcmcforcoda <- as.mcmc(mcmc_run)
#' heidel.diag(mcmcforcoda)

raftery.diag(mcmcforcoda)

autocorr.diag(mcmcforcoda)

acf(mcmcforcodal[1]1]1[, "mean"], lag.max=20, bty="n", las=1)
acf(memcforcodal[1]1][,"sd"], lag.max=20, bty="n", las=1)
batchSE(mcmcforcoda, batchSize=100)
The batch standard error procedure is usually thought to
be not as accurate as the time series methods used in summary
summary (mcmcforcoda)$statistics[, "Time-series SE"]

summary (mcmc_run)

as.parameters(mcmc_run)

lastp <- as.parameters(mcmc_run, index="last")
parameters_mcmc[,"Init"] <- lastp

The n.adapt set to 1 is used to not record the first set of parameters
then it is not duplicated (as it is also the last one for

the object mcmc_run)

mcmc_run2 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=1, thin=1, trace=1)

mcmc_run3 <- merge(mcmc_run, mcmc_run2)

#i##HHH#E no adaptation, n.adapt must be @

parameters_mcmc[,"Init"] <- c(mean(x), sd(x))

mcmc_run3 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=0, thin=1, trace=1)

End(Not run)

as.parameters Extract parameters from mcmcComposite object

Description

Take a mcmcComposite object and create a vector object with parameter value at specified iteration.
If index="best", the function will return the parameters for the highest likelihood. It also indicates

10 as.parameters

at which iteration the maximum lihelihood has been observed.

If index="1ast", the function will return the parameters for the last likelihood.

If index="median", the function will return the median value of the parameter.

if index="quantile"”, the function will return the probs defined by quantiles parameter.

If index="mode", the function will return the mode value of the parameter based on Asselin de
Beauville (1978) method.

index can also be a numeric value. It uses all the chains being concatanated.

This function uses the complete iterations available if total is TRUE. Is adaptation part is never
used.

Usage

as.parameters(
x = stop("A result obtained after a MCMC analysis must be given."),
total = FALSE,
index = "best"”,
chain = "all",
probs = c(0.025, 0.5, 0.975),
silent = FALSE

)

Arguments
X A mcmcComposite obtained as a result of MHalgoGen () function
total If TRUE, does not use the thinned results.
index At which iteration the parameters must be taken, see description.
chain The chain in which to get parameters; "all" is for all chains.
probs Quantiles to be returned, see description.
silent If TRUE, does not print any information.

Value

A vector with parameters at maximum likelihood or index position

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References
Asselin de Beauville J.-P. (1978). Estimation non paramétrique de la densité et du mode, exemple
de la distribution Gamma. Revue de Statistique Appliquée, 26(3):47-70.

See Also

Other memcComposite functions: MHalgoGen(), as.mcmc.mecmcComposite(), as.quantiles(),
merge.mcmcComposite(), plot.PriorsmecmcComposite(), plot.memcComposite(), setPriors(),
summary .mcmcComposite()

as.parameters

Examples

Not run:
library(HelpersMG)
require(coda)
x <- rnorm(30, 10, 2)
dnormx <- function(data, x) {
data <- unlist(data)
return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))
3
parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),
Prior1=c(10, 0.5),
Prior2=c(2, 0.5),
SDProp=c(1, 1),
Min=c(-3, 0),
Max=c(100, 10),
Init=c(10, 2),
stringsAsFactors = FALSE,
row.names=c('mean', 'sd'))
mcmc_run <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=100,
thin=1, trace=1)
plot(memc_run, xlim=c(@, 20))
plot(memc_run, xlim=c(@, 10), parameters="sd")
mcmcforcoda <- as.mcmc(mcmc_run)
#' heidel.diag(mcmcforcoda)
raftery.diag(mcmcforcoda)
autocorr.diag(mcmcforcoda)
acf(memcforcodal[1]1]1[, "mean"], lag.max=20, bty="n", las=1)
acf(memcforcodal[1]]1[,"sd"], lag.max=20, bty="n", las=1)
batchSE (mcmcforcoda, batchSize=100)

The batch standard error procedure is usually thought to

be not as accurate as the time series methods used in summary
summary (mcmcforcoda)$statistics[,"Time-series SE"]

summary (memc_run)

as.parameters(mcmc_run)

lastp <- as.parameters(mcmc_run, index="last")
parameters_mcmc[,"Init"] <- lastp

The n.adapt set to 1 is used to not record the first set of parameters
then it is not duplicated (as it is also the last one for
the object mcmc_run)
mcmc_run2 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=1,
thin=1, trace=1)
mcmc_run3 <- merge(mcmc_run, mcmc_run2)

#H##H#HH# no adaptation, n.adapt must be @

parameters_mcmc[,"Init"] <- c(mean(x), sd(x))

mcmc_run3 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=0,
thin=1, trace=1)

11

12

With index being median, it returns the median value for each parameter
as.parameters(mcmc_run3, index="median")

as.parameters(mcmc_run3, index="mode")

as.parameters(mcmc_run3, index="best")

as.parameters(mcmc_run3, index="quantile"”, probs=0.025)
as.parameters(mcmc_run3, index="quantile"”, probs=0.975)
as.parameters(mcmc_run3, index="quantile", probs=c(0.025, 0.975))

End(Not run)

as.quantiles

as.quantiles Extract quantile distribution from mcmcComposite object

Description

Extract quantile distribution from mcmcComposite object

Usage

as.quantiles(
X,
chain = "all”,
fun = function(...) return(as.numeric(list(...))),
probs = c(0.025, 0.975),
x1im = NULL,
nameparxlim = NULL,
namepar = NULL

)
Arguments

X A mcmcComposite obtained as a result of MHalgoGen () function

chain The number of the chain in which to get parameters or "all"

fun The function to apply the parameters

probs The probability to get quantiles

x1lim The values to apply in fun

nameparxlim The name of the parameter for xlim

namepar The name of parameters from mcmc object to be used in fun
Value

A data.frame with quantiles

Author(s)

Marc Girondot <marc.girondot@gmail.com>

asc 13

See Also

Other memcComposite functions: MHalgoGen (), as.mcmc.mcmcComposite(), as.parameters(),
merge .mcmcComposite(), plot.PriorsmcmcComposite(), plot.mecmcComposite(), setPriors(),
summary .mcmcComposite()

Examples

Not run:
library(HelpersMG)
require(coda)
X <- rnorm(30, 10, 2)
dnormx <- function(data, x) {
data <- unlist(data)
return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))
3
parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),
Prior1=c(10, 0.5), Prior2=c(2, @.5), SDProp=c(1, 1),
Min=c(-3, @), Max=c(100, 10), Init=c(10, 2), stringsAsFactors = FALSE,
row.names=c('mean', 'sd'))
mcmc_run <- MHalgoGen(n.iter=10000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
k <- as.quantiles(x=mcmc_run, namepar="mean")
k <- as.quantiles(x=mcmc_run, namepar="mean",
xlim=c(1:5), nameparxlim="sd",
fun=function(...) return(sum(as.numeric(list(...)))))

End(Not run)

asc Return the codes (in UTF-8) of a string

Description

Return the codes (in UTF-8) of a string.

Usage

asc(x)

Arguments

X The string to be analyzed

Details

asc returns the codes (in UTF-8) of a string

Value

A vector with ITF-8 codes of a string

14

Author(s)

barplot_errbar

Based on this blog: http://datadebrief.blogspot.com/2011/03/ascii-code-table-in-r.html

See Also

Other Characters: char(), d(), tnirp()

Examples

asc("abcd")
asc("ABCD")

barplot_errbar

Plot a barplot graph with error bar on'y

Description

To plot data, just use it as a normal barplot but add the errbar.y values or errbar.y.minus, errbar.y.plus
if bars for y axis are asymetric. Use y.plus and y.minus to set absolut limits for error bars. Note that
y.plus and y.minus have priority over errbar.y, errbar.y.minus and errbar.y.plus.

Usage

barplot_errbar(

D

errbar.y = NULL,
errbar.y.plus = NULL,
errbar.y.minus = NULL,
y.plus = NULL,
y.minus = NULL,
errbar.tick = 1/50,
errbar.lwd = par("lwd"),
errbar.lty = par("lty"),
errbar.col = par("fg"),
add = FALSE
)
Arguments
Parameters for barplot() such as main= or ylim=
errbar.y The length of error bars for y. Recycled if necessary.

errbar.y.plus
errbar.y.minus
y.plus

y.minus

The length of positive error bars for y. Recycled if necessary.
The length of negative error bars for y. Recycled if necessary.
The absolut position of the positive error bar for y. Recycled if necessary.

The absolut position of the nagative error bar for y. Recycled if necessary.

barplot_errbar 15

errbar.tick Size of small ticks at the end of error bars defined as a proportion of total width
or height graph size.
errbar.lwd Error bar line width, see par("lwd")
errbar.lty Error bar line type, see par("lwd")
errbar.col Error bar line color, see par("col")
add If true, add the graph to the previous one.
Details

barplot_errbar plot a barplot with error bar on y

Value

A numeric vector (or matrix, when beside = TRUE), say mp, giving the coordinates of all the bar
midpoints drawn, useful for adding to the graph.
If beside is true, use colMeans(mp) for the midpoints of each group of bars, see example.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

plot_errorbar

Other plot and barplot functions: ScalePreviousPlot(), plot_add(), plot_errbar(), show_name()

Examples

Not run:
barplot_errbar(rnorm(10, 10, 3),
xlab="axe x", ylab="axe y", bty="n",
errbar.y.plus=rnorm(10, 1, 0.1), col=rainbow(10),
names.arg=paste("Group”,1:10), cex.names=0.6)
y <= rnorm(10, 10, 3)
barplot_errbar(y,
xlab="axe x", ylab="axe y", bty="n",
y.plus=y+2)

End(Not run)

16

CArrows

cArrows Draw curved lines with arrowhead

Description

Draw a curved line with arrowhead.

Usage

cArrows(

)

Arguments
x1 coordinates of points from which to draw.
y1 coordinates of points from which to draw.
X2 coordinates of points to which to draw.
y2 coordinates of points to which to draw.
code integer code (1, 2, or 3), determining kind of arrows to be drawn.
size size of the arrowhead.
width width of the arrowhead.
open shape of the arrowhead.
sh.adj Shift the beginning of the line.
sh.1lwd width of the line.
sh.col color of the line.
sh.1lty type of line.

x1,

y1,

X2,

y2,

code = 2,

size = 1,

width = 1.2/4/cin,
open = TRUE,

sh.adj = 0.1,
sh.lwd = 1,

sh.col = par("fg"),
sh.1lty = 1,

h.col = sh.col,
h.col.bo = sh.col,
h.lwd = sh.lwd,
h.1ty = sh.1lty,
curved = FALSE,
beautiful.arrow = 2/3

ChangeCoordinate 17

h.col color of the arrowhead.

h.col.bo color of the arrowhead border.

h.lwd width of the arrowhead.

h.1lty type of line for the arrowhead.

curved 0 is a straigth line, positive of negative value make the line curved.

beautiful.arrow
if open is false, make the arrowhead more beautiful.

Details

cArrows draws curved lines with arrowhead

Value

A list wit lab.x and lab.y being the position where to draw label

Author(s)
Modified from iGraph

Examples

plot(c(1, 10), c(1, 10), type="n", bty="n")

cArrows(x1=2, y1=2, x2=6, y2=6, curved=1)

cArrows(x1=2, y1=2, x2=6, y2=6, curved=0)

cArrows(x1=2, y1=2, x2=6, y2=6, curved=1, sh.adj=1)

cArrows(x1=2, y1=2, x2=6, y2=6, curved=-1, open=FALSE)

cArrows(x1=9, y1=2, x2=6, y2=6, curved=-1, open=FALSE, sh.col="red")

cArrows(x1=9, y1=9, x2=6, y2=6, curved=-1, open=FALSE, h.col="red")

cArrows(x1=2, y1=9, x2=6, y2=6, curved=1, open=FALSE, h.col="red"”, h.col.bo="red")

ChangeCoordinate Return a value in a changed coordinate

Description

Return a value in a changed coordinate system.

Usage

ChangeCoordinate(
x = stop("At least one value to convert must be provided”),
initial = stop(”Set of two values must be provided as references"),
transformed = stop(”Set of two transformed values must be provided")

)

18 char
Arguments
X value to convert
initial Set of two values in the original system
transformed Set of the two values in the converted system
Details
ChangeCoordinate returns a value in a changed coordinate
Value
A value in the new system
Author(s)
Marc Girondot <marc.girondot@gmail.com>
Examples
ChangeCoordinate(x=c(10, 20), initial=c(1, 100), transformed=c(@, 1))
char Return the characters defined by the codes
Description
Return a string with characters defined by the codes.
Usage
char(n)
Arguments
n The code to be used to return a character
Details
char returns the characters defined by the codes
Value
A string with characters defined by the codes
Author(s)

Based on this blog: http://datadebrief.blogspot.com/2011/03/ascii-code-table-in-r.html

compare 19

See Also

Other Characters: asc(), d(), tnirp()

Examples

char(65:75)
char(unlist(tapply(144:175, 144:175, function(x) {c(208, x)})))

compare Run a shiny application for basic functions of comparison

Description

Run a shiny application for basic functions of comparison.

Usage

compare()

Details

compare runs a shiny application for basic functions of comparison

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References
Girondot, M., Guillon, J.-M., 2018. The w-value: An alternative to t- and X2 tests. Journal of
Biostatistics & Biometrics 1, 1-3.

See Also

Other w-value functions: contingencyTable.compare(), series.compare()

Examples

Not run:
library(HelpersMG)
compare()

End(Not run)

20 compare_AIC

compare_AIC Compares the AIC of several outputs

Description

This function is used to compare the AIC of several outputs obtained with the same data but with
different set of parameters.

The parameters must be lists with $aic or $AIC or $value and $par elements or if AIC(element) is
defined.

if $value and $par are present in the object, the AIC is calculated as 2*factor.value*value+2*length(par).
If $value is -log(likeihood), then factor.value must be 1 and if $value is log(likeihood), then fac-
tor.value must be -1.

If several objects are within the same list, their AIC are summed.

For example, compare_AIC(gl=list(group), g2=list(separel, separe2)) can be used to compare a
single model onto two different sets of data against each set of data fited with its own set of param-
eters.

Take a look at ICtab in package bbmle which is similar.

Usage

compare_AIC(
factor.value = 1,
silent = FALSE,
FUN = function(x) specify_decimal(x, decimals = 2)

)

Arguments

Successive results to be compared as lists.

factor.value The $value of the list object is multiplied by factor.value to calculate AIC.

silent If TRUE, nothing is displayed.
FUN Function used to show values
Details

compare_AIC compares the AIC of several outputs obtained with the same data.

Value

A list with DeltaAIC and Akaike weight for the models.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

compare_AICc 21

See Also

Other AIC: ExtractAIC.glm(), FormatCompareAIC(), compare_AICc(), compare_BIC()

Examples

Not run:

library("HelpersMG")

Here two different models are fitted

x <- 1:30

y <= rnorm(30, 10, 2)+log(x)

plot(x, y)

d <- data.frame(x=x, y=y)

ml <- Im(y ~ x, data=d)

m2 <- Im(y ~ log(x), data=d)
compare_AIC(linear=ml1, log=m2)

Here test if two datasets can be modeled with a single model
x2 <- 1:30

y2 <- rnorm(30, 15, 2)+log(x2)

plot(x, y, ylim=c(5, 25))

plot_add(x2, y2, col="red")

d2 <- data.frame(x=x2, y=y2)

mli_2 <- Im(y ~ x, data=d2)

x_grouped <- c(x, x2)

y_grouped <- c(y, y2)

d_grouped <- data.frame(x=x_grouped, y=y_grouped)
ml_grouped <- lm(y ~ x, data=d_grouped)
compare_AIC(separate=list(m1, m1_2), grouped=m1_grouped)

End(Not run)

compare_AICc Compares the AICc of several outputs

Description

This function is used to compare the AICc of several outputs obtained with the same data but with

different set of parameters.

Each object must have associated logLik () method with df and nobs attributes.

AICc for object x will be calculated as 2xfactor.valuexloglLik (x)+(2*attributes(logLik(x))$df*(attributes(logl

Usage

compare_AICc(
factor.value = -1,
silent = FALSE,
FUN = function(x) specify_decimal(x, decimals = 2)

)

22 compare_AICc

Arguments

Successive results to be compared as lists.

factor.value The $value of the list object is multiplied by factor.value to calculate BIC.

silent If TRUE, nothing is displayed.
FUN Function used to show values
Details

compare_AICc compares the AICc of several outputs obtained with the same data.

Value

A list with DeltaAICc and Akaike weight for the models.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other AIC: ExtractAIC.glm(), FormatCompareAIC(), compare_AIC(), compare_BIC()

Examples

Not run:

library("HelpersMG")

Here two different models are fitted

x <- 1:30

y <- rnorm(30, 10, 2)+log(x)

plot(x, y)

d <- data.frame(x=x, y=y)

ml <- Im(y ~ x, data=d)

m2 <- Im(y ~ log(x), data=d)
compare_BIC(linear=ml1, log=m2, factor.value=-1)

Here test if two datasets can be modeled with a single model
x2 <- 1:30

y2 <- rnorm(30, 15, 2)+log(x2)

plot(x, y, ylim=c(5, 25))

plot_add(x2, y2, col="red")

d2 <- data.frame(x=x2, y=y2)

ml_2 <- 1lm(y ~ x, data=d2)

x_grouped <- c(x, x2)

y_grouped <- c(y, y2)

d_grouped <- data.frame(x=x_grouped, y=y_grouped)
m1_grouped <- lm(y ~ x, data=d_grouped)
compare_AICc(separate=list(ml, m1_2), grouped=m1_grouped, factor.value=-1)
Or simply

compare_AICc(m1=1ist(AICc=100), m2=1ist(AICc=102))

End(Not run)

compare_BIC 23

compare_BIC Compares the BIC of several outputs

Description

This function is used to compare the BIC of several outputs obtained with the same data but with

different set of parameters.

Each object must have associated logLik () method with df and nobs attributes.

BIC for object x will be calculated as 2xfactor.valuexsum(logLik(x))+sum(attributes(loglLik(x))$df)*log(attrik
When several data (i..n) are included, the global BIC is calculated as:

2xfactor.value*sum(logLik(x)) for i..n+sum(attributes(loglik(x))$df) for i..n*log(attributes(loglLik(x
fori..n))

Usage

compare_BIC(
factor.value = -1,
silent = FALSE,
FUN = function(x) specify_decimal(x, decimals = 2)

)

Arguments

Successive results to be compared as lists.

factor.value The $value of the list object is multiplied by factor.value to calculate BIC.

silent If TRUE, nothing is displayed.
FUN Function used to show values
Details

compare_BIC compares the BIC of several outputs obtained with the same data.

Value

A list with DeltaBIC and Akaike weight for the models.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other AIC: ExtractAIC.glm(), FormatCompareAIC(), compare_AIC(), compare_AICc()

24 contingencyTable.compare

Examples

Not run:
library("HelpersMG")
Here two different models are fitted

x <- 1:30
y <= rnorm(30, 10, 2)+log(x)
plot(x, y)

d <- data.frame(x=x, y=y)

ml <- Im(y ~ x, data=d)

m2 <- Im(y ~ log(x), data=d)

compare_BIC(linear=m1, log=m2, factor.value=-1)

Here test if two datasets can be modeled with a single model
x2 <- 1:30

y2 <- rnorm(30, 15, 2)+log(x2)

plot(x, y, ylim=c(5, 25))

plot_add(x2, y2, col="red")

d2 <- data.frame(x=x2, y=y2)

ml_2 <- Im(y ~ x, data=d2)

x_grouped <- c(x, x2)

y_grouped <- c(y, y2)

d_grouped <- data.frame(x=x_grouped, y=y_grouped)

m1_grouped <- lm(y ~ x, data=d_grouped)
compare_BIC(separate=list(m1, m1_2), grouped=ml1_grouped, factor.value=-1)

End(Not run)

contingencyTable.compare
Contingency table comparison using Akaike weight

Description

This function is used as a replacement of chisq.test() to not use p-value.

Usage
contingencyTable.compare(
table,
criterion = c("AIC", "AICc", "BIC"),
probs = NULL
)
Arguments
table A matrix or a data.frame with series in rows and number of each category in
column
criterion Which criterion is used for model selection

probs Series of probabilities used for conformity comparison

contingencyTable.compare 25

Details

contingencyTable.compare compares contingency table using Akaike weight.

Value

The probability that a single proportion model is sufficient to explain the data

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References

Girondot, M., Guillon, J.-M., 2018. The w-value: An alternative to t- and X2 tests. Journal of
Biostatistics & Biometrics 1, 1-4.

See Also

Other w-value functions: compare(), series.compare()

Examples

Not run:
library("HelpersMG")

Symmetry of Lepidochelys olivacea scutes

table <- t(data.frame(SriLanka=c(200, 157), AfricaAtl=c(19, 12),
Guyana=c(8, 6), Suriname=c(162, 88),
MexicoPac1984=c(42, 34), MexicoPac2014Dead=c(8, 9),
MexicoPac2014Alive=c(13, 12),
row.names =c(”Symmetric”, "Asymmetric")))

table

contingencyTable.compare(table)

table <- t(data.frame(SrilLanka=c(200@, 157), AfricaAtl=c(19, 12), Guyana=c(8, 6),
Suriname=c(162, 88), MexicoPac1984=c(42, 34),
MexicoPac2014Dead=c(8, 9),

MexicoPac2014Alive=c(13, 12), Lepidochelys.kempii=c(99, 1),
row.names =c(”Symmetric”, "Asymmetric”)))

table

contingencyTable.compare(table)

Conformity to a model

table <- matrix(c(33, 12, 25, 75), ncol = 2, byrow = TRUE)
probs <- c(0.5, 0.5)

contingencyTable.compare(table, probs=probs)

Conformity to a model

table <- matrix(c(33, 12), ncol = 2, byrow = TRUE)
probs <- c(0.5, 0.5)
contingencyTable.compare(table, probs=probs)

26

contingencyTable.compare

Conformity to a model

table <- matrix(c(33, 12, 8, 25, 75, 9), ncol = 3, byrow = TRUE)
probs <- c(0.8, 0.1, 0.1)

contingencyTable.compare(table, probs=probs)

Comparison of chisq.test() and this function
table <- matrix(c(NA, NA, 25, 75), ncol = 2, byrow = TRUE)

pv <- NULL

aw <- NULL
par (new=FALSE)
n <- 100

for (GroupA in 0:n) {
table[1, 1] <- GroupA
table[1, 2] <- n-GroupA
pv <- c(pv, chisq.test(table)$p.value)
aw <- c(aw, contingencyTable.compare(table, criterion="BIC")[1])

}

X <= 0:n

y <- pv

y2 <- aw

plot(x=x, y=y, type="1", bty="n", las=1, xlab="Number of type P in Group B", ylab="Probability",
main="", lwd=2)

lines(x=x, y=y2, type="1", col="red"”, 1lwd=2)

w-value
(11 <- x[which(aw>0.05)[111)
(12 <- rev(x)[which(rev(aw)>0.05)[1]])

aw[11]
pv[11]

aw[12+2]
pv[12+2]

p-value
11 <- which(pv>0.05)[1]
12 <- max(which(pv>0.05))

aw[11]
pv[1l1]

aw[12]
pv[1l2]

y[which(y2>0.05)[1]1]
y[which(rev(y2)>0.05)[11]

par (xpd=TRUE)
text(x=25, y=1.15, labels="Group A: 25 type P / 100", pos=1)

convert.tz 27

segments(x0=25, y0=0, x1=25, y1=1, 1ty=3)
plot(1, 1)

vl <- c(expression(italic("p")*"-value"), expression("after "xchi*2*"-test"))
v2 <- c(expression(italic("w")*"-value for A"), expression(”and B identical models”))
legend("topright”, legend=c(v1l, v2),

y.intersp = 1,

col=c("black”, "black”, "red", "red"), bty="n", lty=c(1, 0, 1, @))

segments(x0=0, x1=n, y0=0.05, y1=0.05, 1lty=2)
text(x=101, y=0.05, labels = "0.05", pos=4)

End(Not run)

convert.tz Convert one Date-Time from one timezone to another

Description
Convert one Date-Time from one timezone to another.
Available timezones can be shown using OlsonNames().
Usage

convert.tz(x, tz = Sys.timezone())

Arguments
X The date-time in POSIXIt or POSIXct format
tz The timezone

Details

convert.tz Convert one Date-Time from one timezone to another

Value

A POSIXIt or POSIXct date converted

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Function with_tz() from lubridate package does the same. I keep it here only for compatibility
with old scripts.

28 cutter

Examples

d <- as.POSIX1t("2010-01-01 17:34:20", tz="UTC")
convert.tz(d, tz="America/Guatemala")

cutter Distribution of the fitted distribution without cut.

Description

If observations is a data.frame, it can have 4 columns:

A column for the measurements;

A column for the lower detection limit;

A column for the upper detection limit;

A column for the truncated of censored nature of the data.

The names of the different columns are in the observations.colname, lower_detection_limit.colname,
upper_detection_limit.colname and cut_method.colname.

If lower_detection_limit.colname is NULL or if the column does not exist, the data are supposed to
not be left-cut and if upper_detection_limit.colname is NULL or if the column does not exist, the
data are supposed to not be right-cut.

If observations is a vector, then the parameters lower_detection_limit and/or upper_detection_limit
must be given. Then cut_method must be also provided.

In abservations, -Inf must be used to indicate a value below the lower detection limit and +Inf must
be used for a value above the upper detection limit.

Be careful: NA is used to represent a missing data and not a value below of above the detection
limit.

If lower_detection_limit, upper_detection_limit or cut_method are only one value, they are sup-
posed to be used for all the observations.

Definitions for censored or truncated distribution vary, and the two terms are sometimes used inter-
changeably. Let the following data set:

1125245

Censoring: some observations will be censored, meaning that we only know that they are below
(or above) some bound. This can for instance occur if we measure the concentration of a chemi-
cal in a water sample. If the concentration is too low, the laboratory equipment cannot detect the
presence of the chemical. It may still be present though, so we only know that the concentration is
below the laboratory’s detection limit.

If the detection limit is 1.5, so that observations that fall below this limit is censored, our exam-
ple data set would become:

<1.5 <1.5 2 4 5; that is, we don’t know the actual values of the first two observations, but only that
they are smaller than 1.5.

Truncation: the process generating the data is such that it only is possible to observe outcomes
above (or below) the truncation limit. This can for instance occur if measurements are taken using
a detector which only is activated if the signals it detects are above a certain limit. There may be
lots of weak incoming signals, but we can never tell using this detector.

cutter 29

If the truncation limit is 1.5, our example data set would become: 2 4 5; and we would not know
that there in fact were two signals which were not recorded.
If n.iter is NULL, no Bayesian MCMC is performed but credible interval will not be available.

Usage
cutter(

observations = stop(”"Observations must be provided"”),
observations.colname = "Observations”,
lower_detection_limit.colname = "LDL",
upper_detection_limit.colname = "UDL",
cut_method.colname = "Cut”,
par = NULL,

lower_detection_limit = NULL,
upper_detection_limit = NULL,

cut_method = "censored",
distribution = "gamma”,
n.mixture = 1,
n.iter = 5000,

n.adapt = 100,

debug = FALSE,
progress.bar = TRUE,
priors = NULL,
adaptive = TRUE,
session = NULL

Arguments

observations The observations; see description
observations.colname
If observations is a data.frame, the name of column with observations
lower_detection_limit.colname
If observations is a data.frame, the name of column with lower detection limit
upper_detection_limit.colname
If observations is a data.frame, the name of column with upper detection limit
cut_method.colname
If observations is a data.frame, the name of column with cut method, being
"censored" or "truncated"
par Initial values for parameters of distribution
lower_detection_limit
Value for lower detection limit
upper_detection_limit
Value for upper detection limit

cut_method Value for cut method, being "censored" or "truncated"

distribution Can be gamma, normal, weibull, lognormal, or generalized.gamma

30 cutter

n.mixture Number of distributions
n.iter Number of iteration for Bayesian MCMC and to estimate the goodness-of-fit
n.adapt Number of burn-in iterations Bayesian MCMC
debug If TRUE, show some information
progress.bar If TRUE, show a progress bar for MCMC
priors A dataframe with priors.
adaptive Should the adaptive methodologie for SDprop be used
session The session of a shiny process
Details

cutter returns the fitted distribution without cut

Value

The parameters of distribution of values below or above the detection limit.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: dSnbinom(), dbeta_new(), dcutter(), dggamma(), logLik.cutter(), plot.cutter(),
print.cutter(), r2norm(), rcutter(), rmnorm(), rnbinom_new()

Examples

Not run:

library(HelpersMG)

#

right censored distribution with gamma distribution

#

Detection limit

DL <- 100

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc>DL] <- +Inf

search for the parameters the best fit these censored data

result <- cutter(observations=obc, upper_detection_limit=DL,
cut_method="censored")

result

plot(result, xlim=c(@, 150), breaks=seq(from=0, to=150, by=10), col.mcmc=NULL)
plot(result, xlim=c(@, 150), breaks=seq(from=0, to=150, by=10))

#

The same data seen as truncated data with gamma distribution

#

obc <- obc[is.finite(obc)]

cutter

search for the parameters the best fit these truncated data

result <- cutter(observations=obc, upper_detection_limit=DL,
cut_method="truncated")

result

plot(result, xlim=c(@, 150), breaks=seq(from=0, to=150, by=10))

#

left censored distribution with gamma distribution

#

Detection limit

DL <- 10

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc<DL] <- -Inf

search for the parameters the best fit these truncated data

result <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored")

result

plot(result, xlim=c(@, 200), breaks=seq(from=0, to=300, by=10))
#

left censored distribution with mixture of gamma distribution
#

#' # Detection limit

library(HelpersMG)

Generate 200 random data from a gamma distribution

set.seed(1234)

obc <- c(rgamma(100, scale=10, shape=5), rgamma(100, scale=20, shape=10))

LDL <- 20

1 <- seq(from=0, to=LDL, length.out=1001)

p <- pgamma(l, scale=10, shape=5)*0.5+pgamma(l, scale=20, shape=10)

deltal <- 1[2]-1[1]

expected_LDL <- sum((1[-1]-deltal/2)*x(p[-1]-p[-length(p)1))/sum((pL[-1]1-p[-length(p)1))
remove the data below the detection limit

obc[obc<LDL] <- -Inf

UDL <- 300

1 <- seq(from=UDL, to=1000, length.out=1001)

p <- pgamma(l, scale=10, shape=5)*0.5+pgamma(l, scale=20, shape=10)

deltal <- 1[2]1-1[1]

expected_UDL <- sum((1[-1]-deltal/2)*x(p[-1]1-pL[-length(p)1))/sum((pL-1]1-p[-length(p)]1))
obc[obc>UDL] <- +Inf

search for the parameters the best fit these truncated data
resultl_gamma <- cutter(observations=obc, lower_detection_limit=LDL,
upper_detection_limit = UDL,
distribution="gamma",
cut_method="censored”, n.iter=5000, debug=0)
resultl_normal <- cutter(observations=obc, lower_detection_limit=LDL,
upper_detection_limit = UDL,
distribution="normal”,
cut_method="censored"”, n.iter=5000)
resultl_lognormal <- cutter(observations=obc, lower_detection_limit=LDL,
upper_detection_limit = UDL,

31

32

distribution="lognormal”,
cut_method="censored”, n.iter=5000)

result1_Weibull <- cutter(observations=obc, lower_detection_limit=LDL,

upper_detection_limit = UDL,
distribution="Weibull",
cut_method="censored”, n.iter=5000)

resultl_generalized.gamma <- cutter(observations=obc, lower_detection_limit=LDL,

upper_detection_limit = UDL,
distribution="generalized.gamma",
cut_method="censored"”, n.iter=5000)

result2_gamma <- cutter(observations=obc, lower_detection_limit=LDL,

upper_detection_limit = UDL,
distribution="gamma",

n.mixture=2,

cut_method="censored"”, n.iter=5000)

result2_normal <- cutter(observations=obc, lower_detection_limit=LDL,

upper_detection_limit = UDL,
distribution="normal”,

n.mixture=2,

cut_method="censored”, n.iter=5000)

result2_lognormal <- cutter(observations=obc, lower_detection_limit=LDL,

upper_detection_limit = UDL,
distribution="1lognormal”,
n.mixture=2,

cut_method="censored"”, n.iter=5000)

result2_Weibull <- cutter(observations=obc, lower_detection_limit=LDL,

upper_detection_limit = UDL,
distribution="Weibull",
n.mixture=2,

cut_method="censored”, n.iter=5000)

result2_generalized.gamma <- cutter(observations=obc, lower_detection_limit=LDL,

upper_detection_limit = UDL,
distribution="generalized.gamma",
n.mixture=2,

cut_method="censored”, n.iter=5000)

compare_AIC(nomixture.gamma=resultl_gamma,
nomixture.normal=resultl_normal,
nomixture.lognormal=result1_lognormal,
nomixture.Weibull=result1_Weibull,
nomixture.generalized.gamma=resultl_generalized.gamma,

mixture
mixture
mixture
mixture
mixture

.gamma=result2_gamma,

.normal=result2_normal,
.lognormal=result2_lognormal,
.Weibull=result2_Weibull,
.generalized.gamma=result2_generalized.gamma)

plot(result2_gamma, xlim=c(@, 600), breaks=seq(from=0, to=600, by=10))

plot(result2_generalized.gamma, xlim=c(@, 600), breaks=seq(from=0, to=600, by=10))

#

left and right censored distribution

#

cutter

cutter

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

Detection limit

LDL <- 10

remove the data below the detection limit

obc[obc<LDL] <- -Inf

Detection limit

UDL <- 100

remove the data below the detection limit

obc[obc>UDL] <- +Inf

search for the parameters the best fit these censored data

result <- cutter(observations=obc, lower_detection_limit=LDL,
upper_detection_limit=UDL,
cut_method="censored")

result

plot(result, xlim=c(@, 150), col.DL=c("black”, "grey"),

col.unobserved=c("green”, "blue"),
breaks=seq(from=0, to=150, by=10))

#

Example with two values for lower detection limits

corresponding at two different methods of detection for example

with gamma distribution

#

obc <- rgamma(50, scale=20, shape=2)

Detection limit for sample 1 to 50

LDLT <- 10

remove the data below the detection limit

obc[obc<LDL1] <- -Inf

obc2 <- rgamma(50, scale=20, shape=2)

Detection limit for sample 1 to 50

LDL2 <- 20

remove the data below the detection limit

obc2[obc2<LDL2] <- -Inf

obc <- c(obc, obc2)

search for the parameters the best fit these censored data

result <- cutter(observations=obc,
lower_detection_limit=c(rep(LDL1, 50), rep(LDL2, 50)),
cut_method="censored")

result
It is difficult to choose the best set of colors
plot(result, xlim=c(@, 150), col.dist="red",
col.unobserved=c(rgb(red=1, green=0, blue=0, alpha=0.1),
rgb(red=1, green=0, blue=0, alpha=0.2)),
col.DL=c(rgb(red=0, green=0, blue=1, alpha=0.5),
rgb(red=0, green=0, blue=1, alpha=0.9)),
breaks=seq(from=0, to=200, by=10))

#

left censored distribution comparison of normal, lognormal,
weibull, generalized gamma, and gamma without Bayesian MCMC
Comparison with Akaike Information Criterion

#

Detection limit

33

34

cutter

DL <- 10

Generate 100 random data from a gamma distribution
obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit
obc[obc<DL] <- -Inf

result_gamma <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="gamma",
n.iter=NULL)

plot(result_gamma)

result_lognormal <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored"”, distribution="lognormal”,
n.iter=NULL)

plot(result_lognormal)

result_weibull <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="weibull”,
n.iter=NULL)

plot(result_weibull)

result_normal <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="normal”,
n.iter=NULL)

plot(result_normal)

result_generalized.gamma <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="generalized.gamma",
n.iter=NULL)

plot(result_generalized.gamma)

compare_AIC(gamma=result_gamma,
lognormal=result_lognormal,
normal=result_normal,
Weibull=result_weibull,
Generalized.gamma=result_generalized.gamma)

#
left censored distribution comparison of normal, lognormal,
weibull, generalized gamma, and gamma

#
Detection limit
DL <- 10

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc<DL] <- -Inf

search for the parameters the best fit these truncated data

result_gamma <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="gamma")

result_gamma

plot(result_gamma, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

cutter

result_lognormal <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="lognormal")

result_lognormal

plot(result_lognormal, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

result_weibull <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="weibull")

result_weibull

plot(result_weibull, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

result_normal <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="normal")

result_normal

plot(result_normal, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

result_generalized.gamma <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="generalized.gamma")

result_generalized.gamma

plot(result_generalized.gamma, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

#

Test for similarity in gamma left censored distribution between two

datasets

#

obcl <- rgamma(100, scale=20, shape=2)

Detection limit for sample 1 to 50

LDL <- 10

remove the data below the detection limit

obc1[obc1<LDL] <- -Inf

obc2 <- rgamma(100, scale=10, shape=2)

remove the data below the detection limit

obc2[obc2<LDL] <- -Inf

search for the parameters the best fit these censored data

resultl <- cutter(observations=obc1,
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored”, n.iter=NULL)

loglLik(result1)
plot(resultl, xlim=c(@, 200),
breaks=seq(from=0, to=200, by=10))
result2 <- cutter(observations=obc2,
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored”, n.iter=NULL)
loglik(result2)
plot(result2, xlim=c(Q, 200),
breaks=seq(from=0, to=200, by=10))
result_totl <- cutter(observations=c(obc1, obc2),
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored”, n.iter=NULL)
loglik(result_totl)
plot(result_totl, xlim=c(@, 200),

35

36 d

breaks=seq(from=0, to=200, by=10))

compare_AIC(Separate=list(resultl, result2),
Common=result_totl, factor.value=1)

compare_BIC(Separate=list(resultl, result2),
Common=result_totl, factor.value=1)

End(Not run)

d Write an ASCII Representation of a vector object

Description

Writes an ASCII text representation of an R object.
It can be used as a replacement of dput() for named vectors.
The controls "keepNA", "keeplnteger" and "showAttributes" are utilized for named vectors.

Usage
d(
X,
file = "",
control = c("keepNA", "keepInteger”, "showAttributes"”),
collapse = ", \n "
)
Arguments
X A named vector object
file either a character string naming a file or a connection. "" indicates output to the
console.
control character vector indicating deparsing options. See .deparseOpts for their de-
scription.
collapse Characters used to separate values.
Details

d Write an ASCII Representation of a vector object

Value

A string

Author(s)

Marc Girondot <marc.girondot@gmail.com>

dbeta_new 37

See Also

Other Characters: asc(), char(), tnirp()

Examples

d(c(A=10, B=20))
dput(c(A=10, B=20))

dbeta_new Density for the Beta distributions.

Description

Density for the Beta distribution with parameters mu and v or shapel and shape2 (and optional
non-centrality parameter ncp).

The returned object has three attributes:

shapel, shape2, and ncp

Note that if x has other attributes, they are preserved.

Usage
dbeta_new(
X,
mu = NULL,
v = NULL,
shapel,
shape2,
ncp = 0,
log = FALSE,
silent = FALSE
)
Arguments
X vector of quantiles.
mu mean of the Beta distribution.
v variance of the Beta distribution.
shape1 non-negative parameters of the Beta distribution.
shape2 non-negative parameters of the Beta distribution.
ncp non-centrality parameter.
log logical; if TRUE, probabilities p are given as log(p).

silent If FALSE, show the shapel and shape 2 values.

38 dcutter

Details

dbeta_new returns the density for the Beta distributions

The Beta distribution with parameters shapel = a and shape2 = b has density
gamma(a+b)/(gamma(a)gamma(b))x”(a-1)(1-x)*(b-1)

fora>0,b>0and 0 <=x <= 1 where the boundary values at x=0 or x=1 are defined as by continuity
(as limits).

The mean is a/(a+b) and the variance is ab/((a+b)*2 (a+b+1)). These moments and all distributional
properties can be defined as limits.

Value

dbeta_new gives the density for the Beta distributions

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: cutter(), dSnbinom(), dcutter(), dggamma(), logLik.cutter(), plot.cutter(),
print.cutter(), r2norm(), rcutter(), rmnorm(), rnbinom_new()

Examples

pi <- rbeta(100, shapel1=0.48, shape2=0.12)
hist(pi, freq=FALSE, breaks=seq(from=0, to=1, by=0.1), ylim=c(@, 8), las=1)
library("HelpersMG")
mx <- ScalePreviousPlot()$ylim["end"]/
max (dbeta_new(seq(from=0.01, t0=0.99, by=0.01), mu = 0.8, v=0.1))
curve(dbeta_new(x, mu = 0.8, v=0.1)*mx, add=TRUE, col="red")
out <- dbeta_new(@.1, mu = 0.8, v=0.1)
out
attributes(out)$shapel; attributes(out)$shape2; attributes(out)$ncp
dbeta(0.1, shapel=attributes(out)$shapel, shape2=attributes(out)$shape2,
ncp=attributes(out)$ncp)

It can be used to generate random numbers using mu and v

out <- dbeta_new(@.1, mu = 0.8, v=0.1, silent=TRUE)

pi <- rbeta(100, shapel=attributes(out)$shapel, shape2=attributes(out)$shape2,
ncp=attributes(out)$ncp)

hist(pi, freq=FALSE, breaks=seq(from=0, to=1, by=0.1), ylim=c(@, 8), las=1)

dcutter Distribution of the fitted distribution without cut.

dcutter 39

Description

If observations must be a data.frame with 4 columns:
observations: A column for the measurements;

LDL: A column for the lower detection limit;

UDL: A column for the upper detection limit;

Cut: A column for the truncated of censored nature of the data.

Usage
dcutter(
par,
observations = NULL,
distribution = "gamma”,

n.mixture = NULL,
debug = FALSE,
limits.lower = NULL,
limits.upper = NULL,
log = TRUE

Arguments

par Values for parameters of distribution

observations The observations; see description.

distribution Can be gamma, normal, weibull, lognormal, or generalized.gamma.
n.mixture Number of distributions

debug If TRUE, show some information. If 2, show more information.
limits.lower Value for lower detection limit

limits.upper Value for upper detection limit

log If TRUE, return the log likelihood

Details

dcutter returns the density of the cutter function

Value

The density of the cutter function according to observations.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: cutter(), dSnbinom(), dbeta_new(), dggamma(), logLik.cutter (), plot.cutter(),
print.cutter(), r2norm(), rcutter(), rmnorm(), rnbinom_new()

40 dggamma

Examples

Not run:
library(HelpersMG)
par <- c('shapel' = 0.42265849507444225,
'scalel' = 14.139457094879594,
'shape2' = 1.667131542489706,
'scale2' = 0.10763344388223803,
'p1' = 0.12283307526788023)
obs <- data.frame(Observations=c(@.755, 1.013, 2.098, 6.265, 4.708, 0.078, 2.169, 0.403, 1.251,
0.008, 1.419, 1.078, 2.744, 81.534, 1.426, 13.486, 7.813, 0.165,
0.118, 0.864, 0.369, 7.159, 2.605, 1.579, 1.646, 0.484, 4.492,
0.139, 0.28, 0.154, 0.106, 0.104, 4.185, 0.735, 0.149, 0.183,
0.062, 8.246, 0.165, 0.121, 0.109, 0.092, 0.162, 0.108, 0.139,
0.141, 0.124, 0.124, 0.151, ©.141, 0.364, 0.295, 0.09, 0.135,
0.154, 0.218, 0.167, -Inf, 0.203, 0.228, 0.107, 0.162, 0.194,
0.322, 0.351, 0.17, 0.236, 0.176, 0.107, 0.12, 0.095, 0.27, 0.194,
0.125, 0.123, 0.085, 0.164, 0.106, 0.079, 0.162),
LDL=0.001, UDL=NA, Cut="censored")
dcutter(par=par, observations=obs, distribution="gamma",
n.mixture=NULL, debug=FALSE, limits.lower=NULL,
limits.upper=NULL, log=FALSE)
dcutter(par=par, observations=obs, distribution="gamma",
n.mixture=NULL, debug=FALSE, limits.lower=NULL,
limits.upper=NULL, log=TRUE)

End(Not run)

dggamma Generalized gamma distribution.

Description

Generalized gamma distribution

Usage
dggamma(x, theta, kappa, delta, log = FALSE)

pggamma(q, theta, kappa, delta, lower.tail = TRUE, log.p = FALSE)

gggamma(p, theta, kappa, delta, lower.tail = TRUE, log.p = FALSE)

rggamma(n, theta, kappa, delta)

Arguments

X, q vector of quantiles.

theta scale parameter.

dggamma 41

kappa shape parameter.
delta shape parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x].
p vector of probabilities.
n number of observations.
Details

pggamma, gggamma, dggamma, and rggamma are used to model the generalized gamma distribution.

The code is modified from https://rpubs.com/FJRubio/GG.

Value

dggamma gives the density, pggamma gives the distribution function, gggamma gives the quantile
function, and rggamma generates random deviates.

Functions

* dggamma(): Density of the generalized gamma.
* pggamma(): Distribution function of the generalized gamma.
* gggamma(): Quantile of the generalized gamma.

* rggamma(): Random of the generalized gamma.

More details here

The generalized gamma is described here https://en.wikipedia.org/wiki/Generalized_gamma_
distribution.

With a being theta, b being kappa, and p being delta.

theta, kappa and delta must be all > 0.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: cutter(), dSnbinom(), dbeta_new(), dcutter(), loglLik.cutter(), plot.cutter(),
print.cutter(), r2norm(), rcutter(), rmnorm(), rnbinom_new()

Examples

To reproduce the wikipedia page graphic

x <- seq(from=0, to=8, by=0.1)

plot(x, dggamma(x, theta=2, kappa=0.5, delta=0.5), 1lty=1, col="blue",
type="1", lwd=2, xlab="x", ylab="PDF")

lines(x, dggamma(x, theta=1, kappa=1, delta=0.5), lty=1, col="green", lwd=2)

lines(x, dggamma(x, theta=2, kappa=1, delta=2), lty=1, col="red"”, 1lwd=2)

https://rpubs.com/FJRubio/GG
https://en.wikipedia.org/wiki/Generalized_gamma_distribution
https://en.wikipedia.org/wiki/Generalized_gamma_distribution

42 DIx
lines(x, dggamma(x, theta=5, kappa=1, delta=5), lty=1, col="yellow”, lwd=2)
lines(x, dggamma(x, theta=7, kappa=1, delta=7), lty=1, col="grey", lwd=2)
legend("topright”, legend=c("a=2, d=0.5, p=0.5", "a=1, d=1, p=0.5",
"a=2, d=1, p=2", "a=5, d=1, p=5", "a=7, d=1, p=7"),
col=c("blue”, "green", "red”, "yellow", "grey"),
1ty=1, 1lwd=2, bty="n")
par <- c(theta=2, kappa=0.5, delta=0.5)
Mean, var and sd
mean.ggamma <- function(theta, kappa, delta)
return(thetax(gamma((kappa+1)/delta))/gamma(kappa/delta))
var.ggamma <- function(theta, kappa, delta)
return(theta*2* (((gamma((kappa+2)/delta))/gamma(kappa/delta)) -
((gamma((kappa+1)/delta))/gamma(kappa/delta))*2))
sd.ggamma <- function(theta, kappa, delta)
return(sgrt(theta*2x (((gamma((kappa+2)/delta))/gamma(kappa/delta)) -
((gamma((kappat1)/delta))/gamma(kappa/delta))*2)))
DIx Return an index of quantitative asymmetry and complexity named De-

velopmental Instability Index (DIx)

Description

Return an index of quantitative asymmetry and complexity.

Higher is the value, higher is the complexity (number of objects) and diversity (difference between
them).

The indice is based on the product of the average angular distance of Edwards (1971) for all per-
mutations of measures for both sides with the geometric mean of the inverse of Shannon entropy
H for both sides. Let pl and p2 two vectors of relative measures of objects with sum(pl) = 1 and
sum(p2)=1 and nl being the number of objects in p1 and n2 being the number of objects in p2.
Edwards distance for all permutations of pl and p2 objects are computed and the average value E
is calculated.

The maximun possible Shannon index for identical nl is max1 = sum((1/nl) * log(1/n1)).
Shannon index is v1 = sum(p1 * log(p1)).

If version == 2, the complementary of Shannon index for these nl objects is used: c1 =2 * max1 -
vl

If version == 1, the Shannon index is used directly.

The geometry mean between both sides defined the measure of diversity within each side: S=sqrt(cl
*c2)

The Developmental Instability Index is then S * E

Usage

DIx(11, 12, details = FALSE, version = 1)

Arguments

11 Set of measures at one side of an organism

DIx

12
details

version

Details

DIx returns an index of quantitative asymmetry and complexity

Value

A numeric value

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References

Set of measures at the other side of an organism
If TRUE, will show the details of computing

Can be 1 or 2; see description

43

Edwards, A.W.F., 1971. Distances between populations on the basis of gene frequencies. Biomet-
rics 27, 873-881.
Shannon C.E. 1948 A mathematical theory of communication. Bell System Technical Journal 27(3),

379-423.

Examples

Not run:
11 <= c(0.1,
12 <- c(0.2,
DIx(11, 12)

11 <- c(0.1,
12 <- c(0.1,
DIx(11, 12)

11 <- c(0.2,
12 <- c(0.2,
DIx(11, 12)

11 <~ c(0.2,
12 <- ¢(0.2,
DIx(11, 12)

11 <- c(0.2, 0.2,

12 <- c(0.3333, 0.

DIx(11, 12)

11 <- c(0.2, 0.2,
12 <- c(0.2, 0.2,

DIx(11, 12)

.2,
2

S o
(S BN,
[
NN
w w

.5)
.5)

.2, 0.2, 0.2)
.5)

0.2, 0.2, 0.2)
3333, 0.3333)

0.2, 0.2)
, 0.2, 0.2)

(S
NN

.05, 0.2, 0.3, 0.25)
.5)

~

44 dnbinom_new

11 <- ¢(0.3333, 0.3333, 0.3333)
12 <- c(0.3333, 0.3333, 0.3333)
DIx(11, 12)

End(Not run)

dnbinom_new Random numbers for the negative binomial distribution.

Description

Density for the negative binomial distribution with parameters mu, sd, var, size or prob. See

dnbinom.
Usage
dnbinom_new(
X,
size = NULL,
prob = NULL,
mu = NULL,
sd = NULL,
var = NULL,
log = FALSE
)
Arguments
X vector of (non-negative integer) quantiles.
size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.
prob probability of success in each trial. 0 < prob <= 1.
mu alternative parametrization via mean.
sd alternative parametrization via standard deviation.
var alternative parametrization via variance.
log logical; if TRUE, probabilities p are given as log(p).
Details

dnbinom_new returns density for the negative binomial distribution

Value

Random numbers for the negative binomial distribution

dSnbinom 45

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

Not run:

library("HelpersMG")

set.seed(1)

X <= rnbinom_new(n=100, mu=2, sd=3)

LnL <- NULL

df <- data.frame(mu=seq(from=0.1, to=8, by=0.1), "-LnL"=NA)
for (mu in df[, "mu"1)

LnL <- c(LnL, -sum(dnbinom_new(x=x, mu=mu, sd=3, log=TRUE)))
df[, "-LnL"] <- LnL

ggplot(data = df, aes(x = .datal[["mu"]1], y = .data[["-LnL"]1])) + geom_line()
Examples of wrong parametrization

dnbinom_new(x=x, mu=c(1, 2), sd=3, log=TRUE)

End(Not run)

dSnbinom Distribution of the sum independent negative binomial random vari-
ables.

Description

Distribution of the sum of random variable with negative binomial distributions.

Technically the sum of random variable with negative binomial distributions is a convolution of
negative binomial random variables.

dSnbinom returns the density for the sum of random variable with negative binomial distributions.
pSnbinom returns the distribution function for the sum of random variable with negative binomial
distributions.

gSnbinom returns the quantile function for the sum of random variable with negative binomial dis-
tributions.

rSnbinom returns random numbers for the sum of random variable with negative binomial distribu-
tions.

If all prob values are the same, exact probabilities are estimated.

Estimate using Vellaisamy&Upadhye method uses parallel computing depending on value of parallel.
The number of cores in usage can be defined using options(mc.cores = c¢) with ¢ being the num-
ber of cores to be used. By default it will use all the available cores. Forking will be used in Unix
system and no forking on Windows systems.

When Furman method is in use, it will return the progress of Pr(S = x) during recursion in an
attribute if verbose is TRUE (see examples).

Usage

dSnbinom(
x = stop("You must provide at least one x value"),

46

size = NULL,

prob = NULL,

mu = NULL,

log = FALSE,

tol = NULL,

method = "Furman”,

normalize = TRUE,
max.iter = NULL,

mean = NULL,
sd = NULL,
n.random = 1e+06,
parallel = FALSE,
verbose = FALSE

)

pSnbinom(

)

q = stop("At least one quantile must be provided”),
size = NULL,

prob = NULL,

mu = NULL,

lower.tail = TRUE,

log.p = FALSE,

tol = NULL,

method = "Furman”,

normalize = TRUE

gSnbinom(

)

p = stop("At least one probability must be provided"),
size = stop("size parameter is mandatory”),

prob = NULL,

mu = NULL,

lower.tail = TRUE,

log.p = FALSE,

tol = NULL,

method = "Furman”

rSnbinom(n = 1, size = NULL, prob = NULL, mu = NULL)

dSnbinom

Arguments
X vector of (non-negative integer) quantiles.
size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.
prob probability of success in each trial. 0 < prob <= 1.
mu alternative parametrization via mean.

dSnbinom

log, log.p
tol

method

normalize
max.iter

mean

sd

n.random

parallel

verbose

q
lower.tail

p
n

Details

47

logical; if TRUE, probabilities p are given as log(p).

Tolerance for recurrence for Furman (2007) method. If NULL, will use a sad-
dlepoint estimation.

Can be Furman (default), Vellaisamy&Upadhye or exact, approximate.normal,
approximate.negativebinomial, approximate.RandomObservations, or saddlepoint.

If TRUE (default) will normalize the saddlepoint approximation estimate.
Number of maximum iterations for Furman method. Can be NULL.

Mean of the distribution for approximate.normal method. If NULL, the theoret-
ical mean will be used.

Standard deviation of the distribution for approximate.normal method. If NULL,
the theoretical sd will be used.

Number of random numbers used to estimate parameters of distribution for ap-
proximate.RandomObservations method.

logical; if FALSE (default), parallel computing is not used for Vellaisamy&Upadhye
methods.

Give more information on the method.

vector of quantiles.

logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x].
vector of probabilities.

number of observations.

Distribution of the Sum of Independent Negative Binomial Random Variables.

Value

dSnbinom gives the density, pSnbinom gives the distribution function, qSnbinom gives the quantile
function, and rSnbinom generates random deviates.

Functions

* dSnbinom(): Density for the sum of random variable with negative binomial distributions.

* pSnbinom(): Distribution function for the sum of random variable with negative binomial

distributions.

* gSnbinom(): Quantile function for the sum of random variable with negative binomial distri-

butions.

* rSnbinom(): Random numbers for the sum of random variable with negative binomial distri-

butions.

Author(s)

Marc Girondot <marc.girondot@gmail.com> and Jon Barry <jon.barry@cefas.gov.uk>

48 dSnbinom

References

Furman, E., 2007. On the convolution of the negative binomial random variables. Statistics &
Probability Letters 77, 169-172.

Vellaisamy, P. & Upadhye, N.S. 2009. On the sums of compound negative binomial and gamma
random variables. Journal of Applied Probability, 46, 272-283.

Girondot M, Barry J. 2023. Computation of the distribution of the sum of independent neg-
ative binomial random variables. Mathematical and Computational Applications 2023, 28, 63,
d0i:10.3390/mca28030063

See Also

Other Distributions: cutter(), dbeta_new(), dcutter(), dggamma(), logLik.cutter(), plot.cutter(),
print.cutter(), r2norm(), rcutter(), rmnorm(), rnbinom_new()

Examples

Not run:

library(HelpersMG)

alpha <- c(1, 2, 5, 1, 2)

p <- c(0.1, .12, 0.13, 0.14, 0.14)

By default, the Furman method with tol=1E-4@ is used
dSnbinom(20, size=alpha, prob=p)

Note the attribute is the dynamics of convergence of Pr(X=x)
attributes(dSnbinom(20, size=alpha, prob=p, verbose=TRUE))$Pk[, 1]

mutest <- c(0.01, 0.02, 0.03)
sizetest <- 2
x <- 20
Exact probability
dSnbinom(x, size=sizetest, mu=mutest, method="vellaisamy&upadhye")
dSnbinom(x, size=sizetest, mu=mutest, method="vellaisamy&upadhye"”, log=TRUE)
With Furman method and tol=1E-12, when probability
is very low, it will be biased
dSnbinom(x, size=sizetest, mu=mutest, method="Furman"”, tol=1E-12)
The solution is to use a tolerance lower than the estimate
dSnbinom(x, size=sizetest, mu=mutest, method="Furman"”, tol=1E-45)
Here the estimate used a first estimation by saddlepoint approximation
dSnbinom(x, size=sizetest, mu=mutest, method="Furman", tol=NULL)
Or a huge number of iterations; but it is not the best solution
dSnbinom(x, size=sizetest, mu=mutest, method="Furman”,
tol=1E-12, max.iter=10000)
With the saddle point approximation method
dSnbinom(x, size=sizetest, mu=mutest, method="saddlepoint”, log=FALSE)
dSnbinom(x, size=sizetest, mu=mutest, method="saddlepoint”, log=TRUE)

Another example

sizetest <- c(1, 1, 0.1)

mutest <- c(2, 1, 10)

x <=5

(exact <- dSnbinom(x=x, size=sizetest, mu=mutest, method="Vellaisamy&Upadhye"))
(sp <- dSnbinom(x=x, size=sizetest, mu=mutest, method="saddlepoint”))

dSnbinom 49

paste@("Saddlepoint approximation: Error of ", specify_decimal (100*abs(sp-exact)/exact, 2), "%")
(furman <- dSnbinom(x=x, size=sizetest, mu=mutest, method="Furman"))
paste@("Inversion of mgf: Error of ", specify_decimal(1@0*abs(furman-exact)/exact, 2), "%")
(na <- dSnbinom(x=x, size=sizetest, mu=mutest, method="approximate.normal”))
paste@("Gaussian approximation: Error of ", specify_decimal (100*abs(na-exact)/exact, 2), "%")
(nb <- dSnbinom(x=x, size=sizetest, mu=mutest, method="approximate.negativebinomial”))
paste@("NB approximation: Error of ", specify_decimal(100*abs(nb-exact)/exact, 2), "%")
plot(0:20, dSnbinom(0:20, size=sizetest, mu=mutest, method="furman"), bty="n", type="h",
xlab="x", ylab="Density"”, ylim=c(@, ©.2), las=1)

points(x=0:20, y=dSnbinom(@:20, size=sizetest, mu=mutest,

method="saddlepoint”), pch=1, col="blue")
points(x=0:20, y=dSnbinom(@:20, size=sizetest, mu=mutest,

method="approximate.negativebinomial”),

col="red")
points(x=0:20, y=dSnbinom(@:20, size=sizetest, mu=mutest,

method="approximate.normal”),

col="green")

Test with a single distribution

dSnbinom(20, size=1, mu=20)

when only one distribution is available, it is the same as dnbinom()
dnbinom(20, size=1, mu=20)

If a parameter is supplied as only one value, it is supposed to be constant
dSnbinom(20, size=1, mu=c(14, 15, 10))
dSnbinom(20, size=c(1, 1, 1), mu=c(14, 15, 10))

The functions are vectorized:

plot(@:200, dSnbinom(0:200, size=alpha, prob=p, method="furman"), bty="n", type="h",
xlab="x", ylab="Density")

points(@:200, dSnbinom(@:200, size=alpha, prob=p, method="saddlepoint”),
col="red", pch=3)

Comparison with simulated distribution using rep replicates

alpha <- c(2.1, 2.05, 2)

mu <- c(10, 30, 20)

rep <- 100000

distEmpirique <- rSnbinom(rep, size=alpha, mu=mu)

tabledistEmpirique <- rep(@, 301)

names(tabledistEmpirique) <- as.character(0:300)
tabledistEmpirique[names(table(distEmpirique))] <- table(distEmpirique)/rep

plot(0:300, dSnbinom(0:300, size=alpha, mu=mu, method="furman"), type="h", bty="n",
xlab="x", ylab="Density", ylim=c(0,0.02))
plot_add(@: (length(tabledistEmpirique)-1), tabledistEmpirique, type="1", col="red")
legend(x=200, y=0.02, legend=c("Empirical”, "Theoretical”),
text.col=c("red”, "black"), bty="n")

Example from Vellaisamy, P. & Upadhye, N.S. (2009) - Table 1
Note that computing time for k = 7 using exact method is very long
k <= 2:7

50

dSnbinom

x <- c(3, 5, 8, 10, 15)

tablel_Vellaisamy <- matrix(NA, ncol=length(x), nrow=length(k))
rownames(tablel_Vellaisamy) <- paste@("n = ", as.character(k))
colnames(tablel_Vellaisamy) <- paste@(”"x = ", as.character(x))
tablel_approximateObservations <- tablel_Vellaisamy
tablel_Furman3 <- tablel_Vellaisamy

table1_Furman6 <- tablel_Vellaisamy

tablel_Furman9 <- tablel_Vellaisamy

tablel_Furman12 <- tablel_Vellaisamy

table1_Furman4@ <- tablel_Vellaisamy

table1_Furman4@ <- tablel_Vellaisamy

tablel_FurmanAuto <- tablel_Vellaisamy

tablel_FurmanAuto_iter <- tablel_Vellaisamy
tablel_Vellaisamy_parallel <- tablel_Vellaisamy
tablel_Approximate_Normal <- tablel_Vellaisamy
tablel_saddlepoint <- tablel_Vellaisamy

n

st_Furman3 <- rep(NA, length(k))

st_Furmané <- rep(NA, length(k))

st_Furman9 <- rep(NA, length(k))

st_Furman12 <- rep(NA, length(k))
st_Furman4@ <- rep(NA, length(k))
st_FurmanAuto <- rep(NA, length(k))
st_approximateObservations <- rep(NA, length(k))
st_Vellaisamy <- rep(NA, length(k))
st_Vellaisamy_parallel <- rep(NA, length(k))
st_Approximate_Normal <- rep(NA, length(k))
st_saddlepoint <- rep(NA, length(k))

for (n in k) {

print(n)
alpha <- 1:n
p <- (1:n)/10

st_Vellaisamy[which(n == k)] <-
system. time({
table1_Vellaisamy[which(n == k), 1 <- dSnbinom(x=x, prob=p, size=alpha,
method="Vellaisamy&Upadhye"”, log=FALSE, verbose=FALSE)
»H1]
st_Vellaisamy_parallel[which(n == k)] <-
system. time({
tablel_Vellaisamy_parallel[which(n == k),] <- dSnbinom(x=x, prob=p, size=alpha,
parallel=TRUE,
method="Vellaisamy&Upadhye"”, log=FALSE, verbose=FALSE)
»Hi1]
st_approximateObservations[which(n == k)] <-
system. time({
tablel_approximateObservations[which(n == k),] <- dSnbinom(x=x, prob=p, size=alpha,
method="approximate.RandomObservations”, log=FALSE,
verbose=FALSE)
Hi1]
st_Furman3[which(n == k)] <-
system. time({
tablel_Furman3[which(n == k), 1 <- dSnbinom(x=x, prob=p, size=alpha,

dSnbinom 51

method="Furman”, tol=1E-3, log=FALSE,
verbose=FALSE)
Hi1]
st_Furman6[which(n == k)] <-
system. time({
tablel_Furman6[which(n == k), 1 <- dSnbinom(x=x, prob=p, size=alpha,
method="Furman”, tol=1E-6, log=FALSE,
verbose=FALSE)
Hi1]
st_Furman9[which(n == k)] <-
system.time({
tablel_Furman9[which(n == k),] <- dSnbinom(x=x, prob=p, size=alpha,
method="Furman”, tol=1E-9, log=FALSE,
verbose=FALSE)
Hii1]
st_Furmani2[which(n == k)] <-
system.time({
tablel_Furmani2[which(n == k),] <- dSnbinom(x=x, prob=p, size=alpha,
method="Furman”, tol=1E-12, log=FALSE,
verbose=FALSE)
»Hi1]
st_Furman4@[which(n == k)] <-
system. time({
tablel_Furman4@[which(n == k),] <- dSnbinom(x=x, prob=p, size=alpha,
method="Furman”, tol=1E-40, log=FALSE,
verbose=FALSE)
»Hi1]

st_FurmanAuto[which(n == k)] <-
system. time({
tablel_FurmanAuto[which(n == k),] <- dSnbinom(x=x, prob=p, size=alpha,
method="Furman", tol=NULL, log=FALSE,
verbose=FALSE)
»I

st_Approximate_Normal[which(n == k)] <-
system. time({
tablel_Approximate_Normal[which(n == k),] <- dSnbinom(x=x, prob=p, size=alpha,

method="approximate.normal”, tol=1E-12, log=FALSE,
verbose=FALSE)

»H1]

st_saddlepoint[which(n == k)] <-

system. time({

tablel_saddlepoint[which(n == k),] <- dSnbinom(x=x, prob=p, size=alpha,

method="saddlepoint”, tol=1E-12, log=FALSE,
verbose=FALSE)

H1]

for (xc in x) {

essai <- dSnbinom(x=xc, prob=p, size=alpha, method="Furman”, tol=NULL, log=FALSE, verbose=TRUE)
table1_FurmanAuto_iter[which(n == k), which(xc == x)] <- nrow(attributes(essai)[[1]]1)

3

3

dSnbinom

cbind(tablel_Vellaisamy, st_Vellaisamy)
cbind(tablel_Vellaisamy_parallel, st_Vellaisamy_parallel)
cbind(tablel_Furman3, st_Furman3)

cbind(tablel_Furman6, st_Furman6)

cbind(tablel_Furman9, st_Furman9)

cbind(tablel_Furman12, st_Furmani2)
cbind(tablel_Furman4@, st_Furman4o)
cbind(tablel_FurmanAuto, st_FurmanAuto)
cbind(tablel_approximateObservations, st_approximateObservations)
cbind(tablel_Approximate_Normal, st_Approximate_Normal)
cbind(tablel_saddlepoint, st_saddlepoint)

Test of different methods

n<-9
x <= 17
alpha <- 1:n
p <- (1:n)/10

Parallel computing is not always performant

Here it is very performant

system.time({print(dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye", log=FALSE,
verbose=TRUE, parallel=TRUE))3})

system. time({print(dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye"”, log=FALSE,
verbose=TRUE, parallel=FALSE))})

Test of different methods

n<-17
x <- 8
alpha <- 1:n
p <- (1:n)/10

Parallel computing is not always performant

Here it is approximately the same time of execution

system. time({print(dSnbinom(x=x, prob=p, size=alpha, method
verbose=TRUE, parallel=TRUE))3})

system.time({print(dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye", log=FALSE,
verbose=TRUE, parallel=FALSE))})

—_n

vellaisamy&upadhye”, log=FALSE,

Test of different methods

n<-7
x <- 15
alpha <- 1:n
p <- (1:n)/10

Parallel computing is sometimes very performant

Here parallel computing is 7 times faster (with a 8 cores computer)

for vellaisamy&upadhye method

system.time(dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye"”, log=FALSE,
verbose=TRUE, parallel=TRUE))

system. time(dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye", log=FALSE,
verbose=TRUE, parallel=FALSE))

dSnbinom 53

Test of different methods

n<-2
x <=3
alpha <- 1:n
p <- (1:n)/10

Parallel computing is sometimes very performant

Here parallel computing is 7 times faster (with a 8 cores computer)

for vellaisamy&upadhye method

system. time(dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye", log=FALSE,
verbose=TRUE, parallel=TRUE))

system. time(dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye", log=FALSE,
verbose=TRUE, parallel=FALSE))

Test for different tolerant values

n<-17
x <- 8
alpha <- 1:n
p <- (1:n)/10

dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye"”, log=FALSE, verbose=TRUE)
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE, tol=1E-3, verbose=TRUE))
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Furman", log=FALSE, tol=1E-6, verbose=TRUE))
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Furman", log=FALSE, tol=1E-9, verbose=TRUE))
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE, verbose=TRUE))
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Saddlepoint”, log=FALSE, verbose=TRUE))
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="approximate.RandomObservations”,
log=FALSE, verbose=TRUE))

Test for criteria of convergence
Pr_exact <- dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye",
log=FALSE, verbose=TRUE)
Pr_Furman <- dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE,
verbose=TRUE)
Pr_exact;as.numeric(Pr_Furman)
plot(1:1length(attributes(Pr_Furman)$Pk),
logl@(abs(attributes(Pr_Furman)$Pk-Pr_exact)), type="1", xlab="Iterations”,
ylab="Abs log10", bty="n")
lines(1:(length(attributes(Pr_Furman)$Pk)-1),
logl@(abs(diff(attributes(Pr_Furman)$Pk))), col="red")
legend("bottomleft”, legend=c("”Log1@ Convergence to true value”, "Logl@ Rate of change"),
col=c("black”, "red"),

1ty=1)
n<-7
X <- 6
alpha <- 1:n
p <- (1:n)/10

Pr_exact <- dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye”,
log=FALSE, verbose=TRUE)
Pr_Furman <- dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE,
verbose=TRUE)
Pr_saddlepoint <- dSnbinom(x=x, prob=p, size=alpha, method="saddlepoint”, log=FALSE,

54

dSnbinom

verbose=TRUE)

pdf ("figure.pdf”, width=7, height=7, pointsize=14)
ylab <- as.expression(bquote(.("P(S=6) x 10")*"6"))
layout(1:2)
par(mar=c(3, 4, 1, 1))
plot(1:1length(attributes(Pr_Furman)$Pk),
attributes(Pr_Furman)$Pkx1E6, type="1", xlab="",
ylab="", bty="n", las=1, xlim=c(0, 80))
mtext(text=ylab, side=2, line=2.5)
segments(x0=25, x1=80, y@=Pr_exact*1E6, yl1=Pr_exactx1E6, 1lty=3)
par (xpd=TRUE)
text(x=0, y=6, labels="Exact probability"”, pos=4)
txt <= " Approximate probability\n based on Furman (2007)\nrecursive iterations”
text(x=20, y=2, labels=txt, pos=4)
text(x=75, y=5, labels="A", cex=2)
par(mar=c(4, 4, 1, 1))
ylab <- as.expression(bquote(”log"["10"1*""x"(P"["k+1"1*""x" - P"["k"1*x""%x")"))
plot(1: (length(attributes(Pr_Furman)$Pk)-1),
loglo(diff(attributes(Pr_Furman)$Pk)), col="black”, xlim=c(@, 80), type ="1",
bty="n", las=1, xlab="Iterations"”, ylab="")
mtext(text=ylab, side=2, line=2.5)
peak <- (1:(length(attributes(Pr_Furman)$Pk)-1))[which.max(
log1@(abs(diff(attributes(Pr_Furman)$Pk))))]
segments(x@=peak, x1=peak, y0=-12, y1=-5, 1lty=2)
text(x=0, y=-6, labels="Positive trend”, pos=4)
text(x=30, y=-6, labels="Negative trend”, pos=4)
segments(x0=0, x1=43, y0=-12, y1=-12, lty=4)
segments(x0=62, x1=80, y0=-12, y1=-12, 1lty=4)
text(x=45, y=-12, labels="Tolerance"”, pos=4)
text(x=75, y=-7, labels="B", cex=2)
dev.off()

pdf ("figure 2.pdf", width=7, height=7, pointsize=14)
ylab <- as.expression(bquote(.("P(S=6) x 10")*"6"))
layout(1:2)
par(mar=c(3, 4, 1, 1))
plot(1:1length(attributes(Pr_Furman)$Pk),
attributes(Pr_Furman)$Pkx1E6, type="1", xlab="",
ylab="", bty="n", las=1, xlim=c(0, 80))
mtext(text=ylab, side=2, line=2.5)
segments(x0=25, x1=80, y0=Pr_exact*1E6, y1=Pr_exact*1E6, 1lty=3)
par (xpd=TRUE)
text(x=0, y=6, labels="Exact probability”, pos=4)
txt <= " Approximate probability\n based on Furman (2007)\nrecursive iterations”
text(x=20, y=2, labels=txt, pos=4)
text(x=75, y=5, labels="A", cex=2)
par(mar=c(4, 4, 1, 1))
ylab <- as.expression(bquote(”(P"["k+1"]x""%" - P"["k"]x""%x") x 10"*"7"))
plot(1:(length(attributes(Pr_Furman)$Pk)-1),
diff(attributes(Pr_Furman)$Pk)*1E7,
col="black", xlim=c(@, 80), type ="1",
bty="n", las=1, xlab="Iterations"”, ylab="")

dSnbinom 55

mtext(text=ylab, side=2, line=2.5)

peak <- (1:(length(attributes(Pr_Furman)$Pk)-1))[which.max(diff(attributes(Pr_Furman)$Pk))]
segments(x@=peak, x1=peak, y0=0, y1=3.5, 1lty=2)

text(x=-2, y=3.5, labels="Positive trend"”, pos=4)

text(x=30, y=3.5, labels="Negative trend”, pos=4)

segments(x0=0, x1=22, y0=1E-12, yl1=1E-12, lty=4)

segments(x0=40, x1=80, y0=1E-12, y1=1E-12, lty=4)

text(x=22, y=1E-12+0.2, labels="Tolerance”, pos=4)

text(x=75, y=3, labels="B", cex=2)

dev.off()

Test of different methods

n<-2
x <- 15
alpha <- 1:n
p <- (1:n)/10

dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye"”, log=FALSE, verbose=TRUE)
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Furman", log=FALSE, tol=1E-3, verbose=TRUE))
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE, tol=1E-6, verbose=TRUE))
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Furman", log=FALSE, tol=1E-9, verbose=TRUE))
as.numeric(dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE, verbose=TRUE))
dSnbinom(x=x, prob=p, size=alpha, method="approximate.RandomObservations”,

log=FALSE, verbose=TRUE)

n <- 50
X <- 300
alpha <- (1:n)/100
p <- (1:n)/1000
Produce an error
Pr_exact <- dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye",
log=FALSE, verbose=TRUE)
Pr_Furman <- dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE,
verbose=FALSE)
Pr_ApproximateNormal <- dSnbinom(x=x, prob=p, size=alpha, method="approximate.normal”,
log=FALSE,
verbose=TRUE)
Pr_ApproximateRandom <- dSnbinom(x=x, prob=p, size=alpha, method="approximate.RandomObservations”,
log=FALSE, n.random=1E6,
verbose=TRUE)

n <- 500

X <- 3000

alpha <- (1:n)/100

p <- (1:n)/1000

Produce an error

Pr_exact <- dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye”,

log=FALSE, verbose=TRUE)
Pr_Furman <- dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE,
verbose=FALSE)

Pr_ApproximateNormal <- dSnbinom(x=x, prob=p, size=alpha, method
log=FALSE,
verbose=TRUE)

—_n

approximate.normal”,

dSnbinom

Pr_ApproximateNegativeBinomial <- dSnbinom(x=x, prob=p, size=alpha,
method="approximate.negativebinomial”,
log=FALSE,
verbose=TRUE)

Pr_ApproximateRandom <- dSnbinom(x=x, prob=p, size=alpha,
method="approximate.RandomObservations"”,
log=FALSE, n.random=1E6,
verbose=TRUE)

Pr_ApproximateSaddlepoint <- dSnbinom(x=x, prob=p, size=alpha,
method="saddlepoint”,
log=FALSE,
verbose=TRUE)

layout(matrix(1:4, ncol=2, byrow=TRUE))
par(mar=c(3, 4.5, 1, 1))

alpha <- seq(from=10, to=100, length.out=3)
p <- seq(from=0.5, t0=0.9, length.out=3)

p_nb <- dSnbinom(0@:100, prob=p, size=alpha, method="vellaisamy&upadhye"”, verbose=TRUE)

p_Furman <- dSnbinom(0:100@, prob=p, size=alpha, method="Furman", verbose=FALSE)

p_normal <- dSnbinom(@:100, prob=p, size=alpha, method="approximate.normal”, verbose=TRUE)

p_aNB <- dSnbinom(0:100, prob=p, size=alpha, method="approximate.negativebinomial”, verbose=TRUE)
p_SA <- dSnbinom(@:100, prob=p, size=alpha, method="saddlepoint”, verbose=TRUE)

lab_PSnx <- bquote(italic("P(S"x "" [n] * "=x)"))

plot(1, 1, las=1, bty="n", col="grey", xlab="",
xlim=c(10, 70), ylim=c(@, 0.05),
ylab=lab_PSnx, type="n")
par (xpd=FALSE)
segments(x0=(0:100), x1=(0:100),
y0=0, yl=as.numeric(p_nb), col="black")

plot(x=p_nb, y=p_normal, pch=4, cex=0.5, las=1, bty="n",
xlab=bquote(italic("P" * "" [exact] x "(S"*x "" [n] * "=x)")),
ylab=bquote(italic("P" * "" [approximate] x "(S"* "" [n] * "=x)")),
xlim=c(@, 0.05), ylim=c(@, 0.05))

points(x=p_nb, y=p_aNB, pch=5, cex=0.5)

points(x=p_nb, y=p_SA, pch=6, cex=0.5)

points(x=p_Furman, y=p_SA, pch=19, cex=0.5)

n<-2
x <- 15
alpha <- 1:n
p <- (1:n)/10

p_nb <- dSnbinom(@:8@, prob=p, size=alpha, method="vellaisamy&upadhye”, verbose=TRUE)

p_Furman <- dSnbinom(0:8@, prob=p, size=alpha, method="Furman”, verbose=FALSE)

p_normal <- dSnbinom(@:80, prob=p, size=alpha, method="approximate.normal”, verbose=TRUE)

p_aNB <- dSnbinom(@:8@, prob=p, size=alpha, method="approximate.negativebinomial”, verbose=TRUE)
p_SA <- dSnbinom(0:8@, prob=p, size=alpha, method="saddlepoint”, verbose=TRUE)

dSnbinom 57

par(mar=c(4, 4.5, 1, 1))
plot(1, 1, las=1, bty="n", col="grey", xlab="x",
xlim=c(@, 60), ylim=c(@, 0.05),
ylab=lab_PSnx, type="n")
par (xpd=FALSE)
segments(x0=(0:80), x1=(0:80),
y0=0, yl=as.numeric(p_nb), col="black")

plot(x=p_nb, y=p_normal, pch=4, cex=0.5, las=1, bty="n",
xlab=bquote(italic("P" = "" [exact] x "(S"x "" [n] x "=x)")),
ylab=bquote(italic("P" * "" [approximate] * "(S"* "" [n] x "=x)")),
xlim=c(@, 0.05), ylim=c(@, 0.05))

points(x=p_nb, y=p_aNB, pch=5, cex=0.5)

points(x=p_nb, y=p_SA, pch=6, cex=0.5)

points(x=p_Furman, y=p_SA, pch=19, cex=0.5)

pdf("figure 1.pdf", width=7, height=7, pointsize=14)

layout(1:2)

par(mar=c(3, 4, 1, 1))

alpha <- seq(from=10, to=100, length.out=3)
p <- seq(from=0.5, t0=0.9, length.out=3)

p_nb <- dSnbinom(@:100, prob=p, size=alpha, method="vellaisamy&upadhye", verbose=TRUE)

p_Furman <- dSnbinom(0:100, prob=p, size=alpha, method="Furman", verbose=FALSE)

p_normal <- dSnbinom(@:100, prob=p, size=alpha, method="approximate.normal”, verbose=TRUE)

p_aNB <- dSnbinom(0:100, prob=p, size=alpha, method="approximate.negativebinomial”, verbose=TRUE)
p_SA <- dSnbinom(@:100, prob=p, size=alpha, method="saddlepoint”, verbose=TRUE)

lab_PSnx <- bquote(italic(”"P(S"* "" [n] * "=x)"))

plot(1, 1, las=1, bty="n", col="grey", xlab="",
xlim=c(10, 70), ylim=c(@, 0.09),
ylab="", type="n", yaxt="n")
axis(2, at=seq(from=0, to=0.05, by=0.01), las=1)
mtext(lab_PSnx, side = 2, adj=0.3, line=3)
par (xpd=FALSE)
segments(x0=(0:100), x1=(0:100),
y0=0, yl=as.numeric(p_nb), col="black")

errr <- (abs((100*(p_Furman-p_nb)/p_nb)))/1000+0.055
errr <- ifelse(is.infinite(errr), NA, errr)
lines(x=(0:100), y=errr, lty=5, col="red"”, 1lwd=2)
errr <- (abs((100*(p_normal-p_nb)/p_nb)))/1000+0.055
lines(x=(0:100), y=errr, lty=2, col="blue”, lwd=2)
errr <- (abs((100*(p_aNB-p_nb)/p_nb)))/1000+0.055
lines(x=(0:100), y=errr, lty=3, col="purple”, lwd=2)
errr <- (abs((100*(p_SA-p_nb)/p_nb)))/1000+0.055
lines(x=(0:100), y=errr, lty=4, col="green", lwd=2)
axis(2, at=seq(from=0, to=40, by=10)/1000+0.055, las=1,

labels=as.character(seq(from=0, to=40, by=10)))
mtext("|% error|", side = 2, adj=0.9, line=3)

dSnbinom

par (xpd=TRUE)

legend(x=30, y=0.1, legend=c("Inversion of mgf"”, "Saddlepoint”, "Normal”, "Negative binomial"),
1ty=c(5, 4, 2, 3), bty="n", cex=0.8, col=c("red”, "green”, "blue”, "purple”), lwd=2)

legend(x=10, y=0.05, legend=c("Exact”), lty=c(1), bty="n", cex=0.8)

par (xpd=TRUE)

text(x=ScalePreviousPlot(x =
y=ScalePreviousPlot (x

|
[
©
‘U'I
<
1l

0.1)%$x,
0.1)$y, labels="A", cex=2)

I
S
©
S
<
I

When normal approximation will fail
n<-2

x <- 15

alpha <- 1:n

p <- (1:n)/10

p_nb <- dSnbinom(@:8@, prob=p, size=alpha, method="vellaisamy&upadhye”, verbose=TRUE)

p_Furman <- dSnbinom(0:8@, prob=p, size=alpha, method="Furman”, verbose=FALSE)

p_normal <- dSnbinom(@:80, prob=p, size=alpha, method="approximate.normal”, verbose=TRUE)

p_aNB <- dSnbinom(@:80@, prob=p, size=alpha, method="approximate.negativebinomial”, verbose=TRUE)
p_SA <- dSnbinom(0:8@, prob=p, size=alpha, method="saddlepoint”, verbose=TRUE)

par(mar=c(4, 4, 1, 1))
plot(1, 1, las=1, bty="n", col="grey", xlab="x",
xlim=c(0, 60), ylim=c(0, 0.09),
ylab="", type="n", yaxt="n")
axis(2, at=seq(from=0, to=0.05, by=0.01), las=1)
mtext(lab_PSnx, side = 2, adj=0.3, line=3)
par (xpd=FALSE)
segments(x0=(0:80), x1=(0:80),
y0=0, yl=as.numeric(p_nb), col="black")
errr <- (abs((100*(p_Furman-p_nb)/p_nb)))/1000+0.055
errr <- ifelse(is.infinite(errr), NA, errr)
lines(x=(0:80), y=errr, lty=5, col="red"”, lwd=2)
errr <- (abs((100*(p_normal-p_nb)/p_nb)))/1000+0.055
lines(x=(0:80), y=errr, 1lty=2, col="blue"”, 1lwd=2)
errr <- (abs((100*(p_aNB-p_nb)/p_nb)))/1000+0.055
lines(x=(0:80), y=errr, 1lty=3, col="purple”, lwd=2)
errr <- (abs((100*(p_SA-p_nb)/p_nb)))/1000+0.055
lines(x=(0:80), y=errr, lty=4, col="green", lwd=2)
axis(2, at=seq(from=0, to=40, by=10)/1000+0.055, las=1,
labels=as.character(seq(from=0, to=40, by=10)))
mtext("|% error|", side = 2, adj=0.9, line=3)
legend(x=30, y=0.055,
legend=c("Exact”, "Inversion of mgf"”, "Saddlepoint”, "Normal”, "Negative binomial"”),
lty=c(1, 5, 4, 2, 3), bty="n", cex=0.8, col=c("black”, "red"”, "green”, "blue”, "purple”),
lwd=c(1, 2, 2, 2, 2))
par (xpd=TRUE)
text(x=ScalePreviousPlot(x = ©0.95, y = 0.1)$x,
y=ScalePreviousPlot (x 0.1)$y, labels="B", cex=2)

I
IS
©
S
<
I

dev.off ()

dSnbinom 59

Test for criteria of convergence
Pr_exact <- dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye",
log=FALSE, verbose=TRUE)
Pr_Furman <- dSnbinom(x=x, prob=p, size=alpha, method="Furman"”, log=FALSE,
verbose=TRUE)
Pr_exact;as.numeric(Pr_Furman)
plot(1:1length(attributes(Pr_Furman)$Pk),
logl@(abs(attributes(Pr_Furman)$Pk-Pr_exact)), type="1", xlab="Iterations”,
ylab="Abs logl1@", bty="n")
lines(1: (length(attributes(Pr_Furman)$Pk)-1),
logl@(abs(diff(attributes(Pr_Furman)$Pk))), col="red")
legend("bottomleft”, legend=c("Log1@ Convergence to true value”, "Log1@ Rate of change"),
col=c("black”, "red"),
1ty=1)

Test of different methods

alpha <- c(2.05, 2)

mu <- c(10, 30)

test <- rSnbinom(n=100000, size=alpha, mu=mu)

plot(@:200, table(test)[as.character(0:200)]/sum(table(test), na.rm=TRUE),

bty="n", type="h", xlab="x", ylab="Density")

lines(x=0:200, dSnbinom(0:200, size=alpha, mu=mu, log=FALSE, method="Furman"), col="blue")

lines(x=0:200, y=dSnbinom(@:200, size=alpha, mu=mu, log=FALSE,
method="vellaisamy&upadhye"), col="red")

lines(x=0:200, y=dSnbinom(@:200, size=alpha, mu=mu, log=FALSE,
method="approximate.randomobservations”), col="green")

Test for criteria of convergence for x = 50
x <- 50
Test for criteria of convergence
Pr_exact <- dSnbinom(x=x, prob=p, size=alpha, method="vellaisamy&upadhye",
log=FALSE, verbose=TRUE)
Pr_Furman <- dSnbinom(x=x, prob=p, size=alpha, method="Furman”, log=FALSE, tol=1E-12,
verbose=TRUE)
Pr_exact;as.numeric(Pr_Furman)
plot(1:1length(attributes(Pr_Furman)$Pk),
logl@(abs(attributes(Pr_Furman)$Pk-Pr_exact)), type="1", xlab="Iterations”,
ylab="Abs logl1@", bty="n")
lines(1: (length(attributes(Pr_Furman)$Pk)-1),
log1@(abs(diff(attributes(Pr_Furman)$Pk))), col="red")
legend("bottomleft”, legend=c("Log1@ Convergence to true value”, "Log1@ Rate of change"),
col=c("black”, "red"),
1ty=1)

Another example more complicated

set.seed(2)

mutest <- c(56, 6.75, 1)

ktest <- c(50, 50, 50)

nr <- 100000

test <- rSnbinom(nr, size=ktest, mu=mutest)
system.time({pr_vellaisamy <- dSnbinom(x=0:150, size=ktest, mu=mutest,

60

dSnbinom

method = "vellaisamy&upadhye”, verbose=FALSE, parallel=FALSE)3})
Parallel computing is not efficient
system.time({pr_vellaisamy <- dSnbinom(x=0:150, size=ktest, mu=mutest,

method = "vellaisamy&upadhye"”, verbose=FALSE, parallel=TRUE)})
system.time({pr_furman <- dSnbinom(x=0:150, size=ktest, mu=mutest, prob=NULL,

method = "furman”, verbose=FALSE, log=FALSE)})
pr_approximateObservations <- dSnbinom(@:15@, size=ktest, mu=mutest,
method = "approximate.randomobservations")

plot(table(test), xlab="N", ylab="Density"”, las=1, bty="n", ylim=c(@, 4000), xlim=c(0, 150))
lines(@:150, pr_vellaisamy*nr, col="red")

lines(0:150, pr_furman*nr, col="blue")

lines(0:150, pr_approximateObservations*nr, col="green")

dSnbinom(x=42, size=ktest, mu=mutest, prob=NULL,
method = "vellaisamy&upadhye"”, verbose=TRUE)
as.numeric(dSnbinom(x=42, size=ktest, mu=mutest, prob=NULL,
method = "Furman”, verbose=TRUE))
dSnbinom(x=42, size=ktest, mu=mutest, prob=NULL,
method = "approximate.randomobservations”, verbose=TRUE)

x <- 100
Test for criteria of convergence
Pr_exact <- dSnbinom(x=x, size=ktest, mu=mutest, method="vellaisamy&upadhye”,
log=FALSE, verbose=TRUE)
Pr_Furman <- dSnbinom(x=x, size=ktest, mu=mutest, method="Furman"”, log=FALSE,
verbose=TRUE)
Pr_exact;as.numeric(Pr_Furman)
plot(1:1length(attributes(Pr_Furman)$Pk),
logl@(abs(attributes(Pr_Furman)$Pk-Pr_exact)), type="1", xlab="Iterations”,
ylab="Abs logl1@", bty="n", ylim=c(-100, 0))
lines(1: (length(attributes(Pr_Furman)$Pk)-1),
log1@(abs(diff(attributes(Pr_Furman)$Pk))), col="red")
legend("bottomright”, legend=c("Log1@ Convergence to true value”, "Logl1@ Rate of change"),
col=c("black”, "red"),
1ty=1)

example to fit a distribution

data <- rnbinom(1000, size=1, mu=10)
hist(data)

ag <- rep(1:100, 10)

r <- aggregate(data, by=list(ag), FUN=sum)
hist(r[,21)

parx <- c(size=1, mu=10)
dSnbinomx <- function(x, par) {
-sum(dSnbinom(x=x[,2], mu=rep(par["mu”], 10), size=par["size"], log=TRUE))

}

fit_mu_size <- optim(par = parx, fn=dSnbinomx, x=r, method="BFGS", control=c(trace=TRUE))
fit_mu_size$par

dSnbinom 61

alpha <- c(2.1, 2.05, 2)
mu <- c(10, 30, 20)
p <- pSnbinom(q=10, size=alpha, mu=mu, lower.tail = TRUE)

alpha <- c(2.1, 2.05, 2)
mu <- c(10, 30, 20)
g <- gSnbinom(p=0.1, size=alpha, mu=mu, lower.tail = TRUE)

alpha <- c(2.1, 2.05, 2)

mu <- c(10, 30, 20)

rep <- 100000

distEmpirique <- rSnbinom(n=rep, size=alpha, mu=mu)

tabledistEmpirique <- rep(@, 301)

names(tabledistEmpirique) <- as.character(0:300)
tabledistEmpirique[names(table(distEmpirique))] <- table(distEmpirique)/rep

plot(0:300, dSnbinom(0:300, size=alpha, mu=mu), type="h", bty="n",
xlab="x", ylab="Density"”, ylim=c(0,0.02))

plot_add(0:300, tabledistEmpirique, type="1", col="red")

legend(x=200, y=0.02, legend=c("Empirical”, "Theoretical”),
text.col=c("red”, "black"), bty="n")

Test if saddlepoint approximation must be normalized
Yes, it must be

n<-7
alpha <- 1:n
p <- (1:n)/10

dSnbinom(x=1@, prob=p, size=alpha, method="saddlepoint”, log=FALSE,
verbose=TRUE)

dSnbinom(x=10@, prob=p, size=alpha, method="saddlepoint”, log=FALSE,
verbose=TRUE, normalize=FALSE)

Test for saddlepoint when x=0

n<-7
alpha <- 1:n
p <- (1:n)/10

dSnbinom(x=0, prob=p, size=alpha, method="saddlepoint”, log=FALSE,
verbose=TRUE)

dSnbinom(x=1, prob=p, size=alpha, method="saddlepoint”, log=FALSE,
verbose=TRUE)

dSnbinom(x=c(@, 1), prob=p, size=alpha, method="saddlepoint”, log=FALSE,
verbose=TRUE)

dSnbinom(x=c(@, 1), prob=p, size=alpha, method="saddlepoint”, log=FALSE,
verbose=FALSE)

Test when prob are all the same

p <- rep(0.2, 7)

n<-7

alpha <- 1:n

dSnbinom(x=0:10, prob=p, size=alpha, method="saddlepoint”, log=FALSE,
verbose=TRUE)

62 duplicated_packages

dSnbinom(x=0:10, prob=p, size=alpha, method="furman"”, log=FALSE,
verbose=TRUE)

dSnbinom(x=0:10, prob=p, size=alpha, method="exact"”, log=FALSE,
verbose=TRUE)

Test when n=1

p <-0.2

n <-1

alpha <- 1:n

dSnbinom(x=0:10, prob=p, size=alpha, method="saddlepoint”, log=FALSE,
verbose=TRUE)

dSnbinom(x=0:10, prob=p, size=alpha, method="furman”, log=FALSE,
verbose=TRUE)

dSnbinom(x=0:10, prob=p, size=alpha, method="exact”, log=FALSE,
verbose=TRUE)

End(Not run)

duplicated_packages List the duplicated packages with their locations

Description

A data.frame with the duplicated packages and their locations and version.
The columns Lib1 and Versionl should have the oldest version of the packages.

Usage

duplicated_packages()

Details

duplicated_packages lists the duplicated packages with their locations

Value

A data.frame with 4 elements for each duplicated packages:

* versions: the version of the packages

e libraries: the locations

Author(s)

Marc Girondot <marc.girondot@gmail.com>

ellipse 63

Examples

Not run:
library(HelpersMG)
duplicated_packages()
To remove the oldest versions of the installed packages, use
1li <- duplicated_packages()
if (nrow(li) != @)

for (i in 1:nrow(li))

remove.packages(rownames(1i)[i], 1lib=1i[i, "Lib1"])

End(Not run)

ellipse Plot an ellipse

Description

Plot a ellipse defined by the center and the radius. The options for binomial confidence parameters
are:

e conf.level

"non non "non

* method must be one of these "wald", "wilson", "wilsoncc", "agresti-coull", "jeffreys", "mod-
ified wilson", "modified jeffreys", "clopper-pearson", "arcsine", "logit", "witting", "pratt",
"midp", "lik" and "blaker". Defaults to "wilson". Abbreviation of method is accepted. See
details.

Default is wilsoncc (Wilson with continuity correction) col parameter can be a list of colors.
See examples

Usage
ellipse(

center.x = 0,
center.y = 0,
radius.x = 1,
radius.y = 1,
radius.x.lower = NULL,
radius.x.upper = NULL,
radius.y.lower = NULL,
radius.y.upper = NULL,
alpha = 0,
binconf.x = NULL,
binconf.y = NULL,
control.binconf = list(conf.level = 0.95, method = "wilsoncc"”),
length = 100,

64 ellipse

Arguments
center.x Center of the ellipse on x axis
center.y Center of the ellipse on y axis
radius.x Radius along the x axis
radius.y Radius along the y axis

radius.x.lower Radius along the x axis, at left of center
radius.x.upper Radius along the x axis, at right of center
radius.y.lower Radius along the y axis, at bottom of center
radius.y.upper Radius along the y axis, at top of center
alpha Rotation in radians

binconf.x A data.frame or a matrix with two columns, x and n or with three columns,
PointEst, Lower, and Upper

binconf.y A data.frame or a matrix with two columns, X and n or with three columns,
PointEst, Lower, and Upper

control.binconf
A list with options for binomial confidence

length Number of points to draw the ellipse

Graphical parameters

Details

ellipse plots an ellipse

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

plot(@:1, @0:1, xlim=c(@, 1), ylim=c(0@,1), 1lty=2, type="1", las=1, bty="n",
xlab="Variable x", ylab="variable y")

.25), center.y = c(0.7, 0.6, 0.55),
= ¢c(0.15, 0.2, 0.4),
0.1, blue = 0.1, alpha = 0.1))

ellipse(center.x = c(0.2, 0.3, @
radius.x = c(0.1, 0.1, 0.1), radius.y
border=NA, col=rgb(red = 0.1, green =

ellipse(center.x = 0.5, center.y = 0.5,
radius.x.lower = 0.1, radius.x.upper = 0.3,
radius.y = 0.2,
border=NA, col=rgb(red = 0.1, green = 0.1, blue = 0.1, alpha = 0.1))

ellipse(center.x = 0.6, center.y = 0.3,

ellipse 65

radius.x.lower = 0.3, radius.x.upper = 0.3,
radius.y.lower = 0.2, radius.y.upper = 0.4,
border=NA, col=rgb(red = 0.1, green = 0.1, blue = 0.1, alpha = 0.1))

plot(@:1, @:1, xlim=c(@, 1), ylim=c(0,1), lty=2, type="1", bty="n", asp=1,
xlab="Variable x", ylab="variable y", axes=FALSE)

axis(1, at=c(0@, 0.25, 0.5, 0.75, 1))

axis(2, at=c(@, 0.25, 0.5, ©.75, 1), las=1)

ellipse(center.x = 0.5, center.y = 0.5, radius.x = 0.2, radius.y = 0.4,

border=NA, col=rgb(red = 0.1, green = 0.1, blue = 0.1, alpha = 0.1))
ellipse(center.x = 0.5, center.y = 0.5, radius.x = 0.2, radius.y = 0.4,

border=NA, col=rgb(red = 0.1, green = 0.1, blue = 0.1, alpha = 0.1), alpha = pi/4)

plot(@:1, @:1, xlim=c(@, 1), ylim=c(0@,1), lty=2, type="1", las=1, bty="n",
xlab="Variable x", ylab="variable y")

for (k in 9:8)
ellipse(center.x=0.5, center.y=0.5, radius.x=0.1, radius.y=0.4,
alpha=seq(from=0, to=pi/4, length=9)[k],
border=rainbow(9)[k1)

Exemple with confidence of proportions
males <- c(10, 25, 3, 4)
N <- c(12, 52, 17, 10@)

males2 <- c(12, 20, 3, 6)
N2 <- c(15, 50, 20, 12)

plot(@:1, @:1, xlim=c(@, 1), ylim=c(@,1), lty=2, type="1", las=1, bty="n",
xlab="Variable x", ylab="variable y")

ellipse(binconf.x = data.frame(x=males, n=N), binconf.y = data.frame(x=males2, n=N2),
border=NA, col=rgb(red = 0.1, green = 0.5, blue = 0.1, alpha = 0.1))

plot(@:1, @:1, xlim=c(@, 1), ylim=c(@,1), lty=2, type="1", las=1, bty="n",

n

xlab="Variable x", ylab="variable y")

ellipse(binconf.x = data.frame(x=males, n=N),
binconf.y = data.frame(PointEst=c(0.1, 0.2, 0.3, 0.5),
Lower=c(0.02, .12, 0.25, 0.30),
Upper=c(0.18, 0.29, ©.35, 0.67)),
border=NA, col=rgb(red = @.1, green = 0.5, blue = 0.1, alpha = 0.1))

Examples with a gradient
plot(@:1, @:1, xlim=c(@, 1), ylim=c(0,1), lty=2, type="1", las=1, bty="n",
xlab="Variable x", ylab="variable y")
ellipse(center.x = 0.6, center.y = 0.3,
radius.x.lower = 0.3, radius.x.upper =
radius.y.lower = 0.2, radius.y.upper ,
border=NA, col=grey.colors(100, alpha = 0.1))

plot(@:1, @0:1, xlim=c(@, 1), ylim=c(@,1), lty=2, type="1", las=1, bty="n",

66 ExtractAIC.glm

xlab="Variable x", ylab="variable y")
ellipse(binconf.x = data.frame(x=males, n=N), binconf.y = data.frame(x=males2, n=N2),
border=NA, col=grey.colors(100, alpha = 0.1))

ExtractAIC.glm Return AIC, AICc or BIC from a glm object

Description

For glm fits the family’s aic() function is used to compute the AIC.

The choice between different criteria is done by setting a global option AIC. It can be checked
using show.option=TRUE. Indeed, it is not possible to use the ... parameter due to a bug in some
functions of MASS package. If you want to use this function as a replacement for setpAIC(), do
extractAIC.glm <- ExtractAIC.glm before.

Usage
ExtractAIC.glm(fit, scale = 0, k =2, ...)
Arguments
fit fitted model, the result of a fitter glm.
scale unused for glm.
k numeric specifying the ‘weight’” of the equivalent degrees of freedom (=: edf)
part in the AIC formula.
further arguments (currently unused because addterm.glm and dropterm.glm us-
ing this function do not transmit them).
Details

ExtractAIC.glm returns AIC, AICc or BIC from a glm object

Value

A numeric named vector of length 2, with first and second elements giving
edf the ‘equivalent degrees of freedom’ for the fitted model fit.
x the Information Criterion for fit.

Author(s)

Modified from stats:::extract. AIC.glm

See Also

Other AIC: FormatCompareAIC(), compare_AIC(), compare_AICc(), compare_BIC()

fitdistrquantiles 67

Examples

extractAIC.glm <- ExtractAIC.glm
n <- 100

x <= rnorm(n, 20, 2)

A <- rnorm(n, 20, 5)

g <- glm(x ~ A)

extractAIC(g, show.option=TRUE)
options(AIC="AIC")
extractAIC(g)
options(AIC="BIC")
extractAIC(g)
options(AIC="AICc")
extractAIC(g)

fitdistrquantiles Parameters of beta, normal or gamma distribution based on quantiles.

Description

Return the parameters of beta or gamm that fits the best the quantiles. The vector of probabilities
can be obtained from names of quantiles.

Usage
fitdistrquantiles(
quantiles = stop("At least two quantiles must be provided”),
probs = NULL,
scaled = FALSE,
distribution = "beta”
)
Arguments
quantiles Vector of quantiles.
probs Numeric vector of probabilities with values in [0, 1].
scaled Used scaled least-square.

distribution Distribution to be fitted: beta, normal, or gamma.

Details

fitdistrquantiles returns the parameters of beta, normal or gamma distribution

Value

Parameters of beta, normal or gamma distribution based on quantiles.

68 flexit

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

rd <- rbeta(100000, shapel = 0.7, shape2 = 6.2, ncp=0)
(q <- quantile(rd, probs=c(0.025, 0.5, 0.975)))

(best <- fitdistrquantiles(quantiles = q, probs = c(0.025, 0.5, 0.975),

scaled=FALSE, distribution = "beta"))
rd10000 <- rbeta(10000, shapel = best["shapel1”], shape2 = best["shape2"], ncp=best["ncp"])
quantile(rd10000, probs=c(0.025, 0.5, 0.975))

Here the probabilities are obtained from names of quantiles

(best <- fitdistrquantiles(quantiles = q, scaled=FALSE, distribution = "beta"))

rd10000 <- rbeta(10000, shapel = best["shape1”], shape2 = best["shape2”], ncp=best["ncp"])
quantile(rd10000, probs=c(0.025, 0.5, 0.975))

If only two quantiles are provided, ncp cannot be fitted
(g2 <- quantile(rd, probs=c(0.025, 0.975)))
(best <- fitdistrquantiles(quantiles = g2, scaled=FALSE, distribution = "beta"))
rd10000 <- rbeta(10000, shapel = best["shapel”], shape2 = best["shape2"])
quantile(rd10000, probs=c(0.025, 0.975))
x <- seq(from=0.00, to=1, by=0.001)
plot(x=x, y=pbeta(x, shapel = best["shapel”"], shape2 = best["shape2"]),
las=1, bty="n", type="1", ylim=c(0, 1))
segments(x0=q2[1], x1=q2[1], y0=0, yl1=1, 1lty=2)
segments(x0=q2[2], x1=q2[2], y0=0, y1=1, lty=2)

(best <- fitdistrquantiles(quantiles = q, probs = c(0.025, 0.5, 0.975),

scaled=FALSE, distribution = "gamma"))
rd10000 <- rgamma(10000, shape = best["shape"], scale = best["scale"])
quantile(rd10000, probs=c(0.025, 0.5, 0.975))

(best <- fitdistrquantiles(quantiles = c(10, 20, 30), probs = c(0.025, 0.5, 0.975),
scaled=FALSE, distribution = "normal”))

rd10000 <- rnorm(10000, mean = best["mean”], sd = best["sd"])

quantile(rd10000, probs=c(0.025, 0.5, 0.975))

flexit Return the flexit

Description

Return a vector with the probabilities. The flexit equation is published in:

Abreu-Grobois, F.A., Morales-Mérida, B.A., Hart, C.E., Guillon, J.-M., Godfrey, M.H., Navarro,
E. & Girondot, M. (2020) Recent advances on the estimation of the thermal reaction norm for sex
ratios. Peer], 8, e8451.

If dose < P then (1 + (251 — 1) x exp(4 * S1 % (P — 2))){ — 1/K1)

flexit 69

If dose > P then 1 — ((1 4+ (252 — 1) x exp(4 + S2 % (x — P))){ — 1/K?2)
with:

S1=(2K1—-1)%S*K1)/(2X1-1)
52 =(20K2—1) xS« K2)/(2K2 - 1)

If 21 is too large to be estimated, the approximation S1 = S x K1/2 is used.
Demonstration:

S1=(2K1-1)%S*K1)/(2X1-1)
S1 = exp(log((2'K1 —1) % S+ K1)/(2K1 —1)))
51 = exp(log(2' K1 — 1)) 4 log(S * K1) — log(251 — 1))
When K1 is very large, 251 — 1 = 251 then

S1 =exp((K1—1)xlog(2) + log(S * K1) — K1 xlog(2))

S1 = exp((K1*log(2) —log(2) + log(S * K1) — K1 xlog(2))
S1 = exp(log(S x K1) —log(2))
S1=5+K1/2

If 252 is too large to be estimated, the approximation S2 = S * K2/2 is used.
If (14+ (251 —1)*exp(4xS1x(P—=x)))(—1/K1) is not finite, the following approximation is used:

exp((—1/K1) x (K1x*log(2) + (4% S1* (P —x))))
If1—((1+(25K2—1)xexp(4%S2% (z — P)))(—1/K2) is not finite, the following approximation

is used:
1—exp((—1/K2) % (K2xlog(2) + (4% 52 % (x — P))))
Usage

flexit(
X)
par = NULL,
P = NULL,
S = NULL,
K1 = NULL,
K2 = NULL,
Min = 0,
Max = 1,

zero = l1e-09,
errord = 0,
errorl =1

70

Arguments

X
par

P

S

K1

K2

Min
Max
zero
error@

errori

Details

flexit

The values at which the flexit model must be calculated
The vector with P, S, K1, and K2 values

P value

S value

K1 value

K2 value

Min value for scaled flexit model

Max value for scaled flexit model

Value to replace zero

Value to return if an error is observed toward 0

Value to return if an error is observed toward 1

Return the flexit value

Value

A vector with the probabilities

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other logit: invlogit(), logit()

Examples

n <- flexit(x=1:100, par=c(P=50, $=0.001, K1=0.01, K2=0.02))
n <- flexit(x=1:100, P=50, $=0.001, K1=0.01, K2=0.02)

1/(1+exp(0.01x4%(50-1:100)))
flexit(1:100, P=50, S=6.01, K1=1, K2=1)

FormatCompareAIC 71

FormatCompareAIC Format data to be used with compare_AIC()

Description

Format data to be used with compare_AIC(), compare_AICc() and compare_BIC().
Note that logLik is supposed to not be -logLik.

Usage

FormatCompareAIC(loglLik, nobs, df)

Arguments
loglik The log likelihood
nobs Number of observations
df Number of parameters
Details

FormatCompareAIC formats data to be used with compare_AIC()

Value

An object to be used with compare_AIC()

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other AIC: ExtractAIC.glm(), compare_AIC(), compare_AICc(), compare_BIC()

Examples

Not run:

ED <- FormatCompareAIC(loglLik=-140, nobs=100, df=3)
L <- FormatCompareAIC(logLik=-145, nobs=100, df=4)
compare_AIC(L=L, ED=ED)

compare_AICc(L=L, ED=ED)

compare_BIC(L=L, ED=ED)

End(Not run)

72 format_ncdf
format_ncdf Return an array with ncdf data
Description
Return a list with two elements: data is an array and time is the POSIX.It time.
Or if label.time is NULL or if bathy is TRUE, a bathy object.
If varid is NULL, it shows the available variable and dimensions of the file.
Bathymetry data can be download here:
https://www.gebco.net/data_and_products/gridded_bathymetry_data/#global
Usage
format_ncdf(
ncdf,
label.latitude = "latitude”,
label.longitude = "longitude"”,
label.time = "time",
varid = NULL,
longitudel = NA,
latitudel = NA,
longitude2 = NA,
latitude2 = NA,
package = "ncdf4",
bathy = TRUE
)
Arguments
ncdf An object read from package ncdf4 or a file name of ncdf file
label.latitude Label of latitude
label.longitude
Label of longitude
label. time Label of time
varid Name of variable to extract
longitudel Longitude for first corner
latitudel latitude for first corner
longitude2 Longitude for second corner
latitude2 latitude for second corner
package If ncdf is a file, give the package to use to open the file
bathy If TRUE, return a bathy object
Details

format_ncdf is used extract information from ncdf file

from_min_max 73

Value

A list with two element: data is an array and time is the POSIX. 1t time

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other ncdf: ind_long_lat()

Examples

Not run:

url <- "https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/”
url <- paste@(url, "sst.day.mean.2012.v2.nc")

dest <- paste(Sys.getenv("HOME"), "/sst.day.mean.2012.v2.nc"”, sep="")
download.file(url, dest)

format_ncdf (dest)

End(Not run)

from_min_max Distribution from minimum and maximum

Description

Bayesian estimate of distribution when minimum, maximum, median or mean are known.

If D="norm**" or "lnorm**", it will use the approximation of Gumbel based on D.

If D="norm*" or "lnorm*", it will generate D distribution using replicates number of random num-

bers, and estimate Gumbel parameters from the simulated D distribution.

Otherwise it will estimate parameters of Gumbel distribution based on maximum likelihood.

For D="pois", "beta" or "chisq" only second (D="pois*", "beta*" or "chisq*") and third solutions

are available.

The observed.Quantiles parameter must be a named value, for example observed.Quantiles = ¢(Q0.025=17,
Q0.975=26)

Usage

from_min_max (
n = stop(”"n must be known."),
fitted.parameters = stop("At least one parameter must be supplied."”),
observed.Minimum,
observed.Maximum,
observed.Median = NULL,
observed.Mean = NULL,
observed.Quantiles = NULL,

74 from_min_max

priors = "dnorm”,
fixed.parameters = NULL,
D = "normxx",
n.iter = 10000,
n.chains = 1,
n.adapt = 100,

thin = 30,

adaptive = FALSE,
trace = 100,
replicates = 10000,
silent = FALSE

Arguments

n Number of observations
fitted.parameters

The initial value to fit
observed.Minimum

The observed minimum
observed.Maximum

The observed maximum
observed.Median

The observed median (can be omitted)

observed.Mean The observed mean (can be omitted)

observed.Quantiles
Observed quantiles with names being the values of quantiles with Q being first
letter (can be omitted; see description)

priors The priors (see MHAIgogen()) or character "dnorm" or "dunif”

fixed.parameters
The fixed parameters

D The distribution to fit as character. ex "norm" or "lnorm"
n.iter Number of iterations for each chain
n.chains Number of chains
n.adapt Number of iteration to stabilize likelihood
thin Interval for thinning likelihoods
adaptive Should an adaptive process for SDProp be used
trace Or FALSE or period to show progress
replicates Number of replicates to model D
silent If TRUE, do not print information
Details

from_min_max returns standard deviation and/or mean from minimum and maximum

from_min_max

Value

from_min_max returns a list with output, ML, Bayesian results

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

Not run:

minobs <- 5

maxobs <- 25

These two values are not mandatory

meanobs <- 15

medianobs <- 16

n<-10

To estimate only the sd of the distribution; mean is fixed
Note that there is an obligation to have mean even if it
is in fixed.parameters

By defaut a normal distribution is fitted

out_sd <- from_min_max(n=n
observed.Minimum=minobs
observed.Maximum=maxobs s
fitted.parameters=c(sd=5)
fixed.parameters=c(mean=meanobs)
n.iter=10000
trace=TRUE)

plot(out_sd, what="MarkovChain”, parameters="sd")
plot(out_sd, what="posterior”, parameters="sd")
as.parameters(out_sd, index="quantile")

To estimate both the sd and mean of the distribution

out_sd_mean_norm <- from_min_max(n=n,

observed.Minimum=minobs
observed.Maximum=maxobs
fitted.parameters=c(mean=15, sd=5) ,
fixed.parameters=NULL
n.iter=10000
D="norm*x"
trace=FALSE)

plot(out_sd_mean_norm, what="MarkovChain", parameters="sd", ylim=c(@, 10))
plot(out_sd_mean_norm, what="MarkovChain"”, parameters="mean", ylim=c(10, 20))
plot(out_sd_mean_norm, what="posterior"”, parameters="mean",
breaks=seq(from=0, to=100, by=1), xlim=c(10, 20))
as.parameters(out_sd_mean_norm, index="quantile")

Let see what's happened for a lognormal distribution

75

76

out_sd_mean_lnorm <- from_min_max(n=n,

plot(out_sd_mean_lnorm,
plot(out_sd_mean_lnorm,
plot(out_sd_mean_lnorm,

breaks=seq(from=0,

observed.Minimum=minobs
observed.Maximum=maxobs

fitted.parameters=c(meanlog=15, sdlog=5)

fixed.parameters=NULL
n.iter=10000
D="1norm*x"
trace=FALSE

as.parameters(out_sd_mean_lnorm, index="quantile")

To be compared with the rule of thumb:

n

print(paste@("mean =
print(paste@(”"sd = "

Covariation of sd and mean is nearly NULL

cor(x=as.parameters(out_sd_mean_norm, index="all"”)[, "mean"],
y=as.parameters(out_sd_mean_norm, index="all")[, "sd"])*2

plot(x=as.parameters(out_sd_mean_norm, index="all")[, "mean"],
y=as.parameters(out_sd_mean_norm, index="all")[, "sd"],

xlab="mean", ylab="sd")

Example when minimum, maximum and mean are known

out_sd_mean2 <- from_min_max(n=n

observed.Minimum=minobs
observed.Maximum=maxobs
observed.Mean=meanobs
fitted.parameters=c(mean=15, sd=5)
fixed.parameters=NULL

n.iter=10000

trace=FALSE

Example when minimum, maximum, mean and median are known

out_sd_mean3 <- from_min_max(n=n

observed.Minimum=minobs
observed.Maximum=maxobs
observed.Mean=meanobs
observed.Median=medianobs
fitted.parameters=c(mean=15, sd=5)
fixed.parameters=NULL
n.iter=10000

trace=FALSE

plot(out_sd_mean2, what="MarkovChain"”, parameters="sd")
plot(out_sd_mean2, what="MarkovChain"”, parameters="mean")

plot(out_sd_mean2, what="posterior”, parameters="mean"”, xlim=c(@, 100),

breaks=seq(from=0, to=100, by=5))

from_min_max

what="MarkovChain", parameters="sdlog", ylim=c(@, 10))
what="MarkovChain”, parameters="meanlog"”, ylim=c(10, 20))
what="posterior”, parameters="meanlog"”, xlim=c(@, 20),
to=100, by=1))

, as.character((maxobs + minobs) / 2))) # Mean Not so bad
, as.character((maxobs - minobs) / 4))) # SD Clearly biased

from_min_max 77

as.parameters(out_sd_mean2, index="quantile")

Example of GEV density function
Parametrisation from https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
dGEV <- getFromNamespace("”.dGEV", ns="HelpersMG")
x <- seq(from=-4, to=4, by=0.1)
plot(x, y=dGEV(x=x,
location=0, scale=1, shape=-1/2, log=FALSE, sum=FALSE),
type="1", col="green"”, xlab="x", ylab="Density")
lines(x, y=dGEV(x=x,
location=0, scale=1, shape=0, log=FALSE, sum=FALSE), col="red")
lines(x, y=dGEV(x=x,
location=0, scale=1, shape=1/2, log=FALSE, sum=FALSE), col="blue")
legend("topleft”, legend=c("shape=-1/2", "shape=0", "shape=1/2"),
1ty=1, col=c("green”, "red”, "blue"))

Note the different parametrisation about shape
dGEV <- getFromNamespace("dgevd”, ns="EnvStats")
x <- seq(from=-4, to=4, by=0.1)
plot(x, y=dGEV(x=x,
location=0, scale=1, shape=-1/2),
type="1", col="green"”, xlab="x", ylab="Density")
lines(x, y=dGEV(x=x,
location=0, scale=1, shape=0), col="red")
lines(x, y=dGEV(x=x,
location=0, scale=1, shape=1/2), col="blue")
legend("topleft”, legend=c("shape=-1/2", "shape=0", "shape=1/2"),
1ty=1, col=c("green", "red", "blue"))

Compute dn using the approximation from Wan et al. (2014)
get_dn <- function(n) {

if (n<2) ¢

stop(”Sample size n must be at least 2.")
}
gnorm((n - 0.375) / (n + 0.25)) * 2

b

Estimate standard deviation from min and max
estimate_sd_from_range <- function(min_val, max_val, n) {
dn <- get_dn(n)
range <- max_val - min_val
sd_estimate <- range / dn
return(sd_estimate)

3

Example usage:
n <- 10

min_val <- 5
max_val <- 25

dn_value <- get_dn(n)
sd_estimate <- estimate_sd_from_range(min_val, max_val, n)

78

from_min_max

cat("dn =", dn_value, "\n")
cat("Estimated SD =", sd_estimate, "\n")

To generate data from publication

library(parallel)
library(embryogrowth)

Values for the prior of SD
outSD <- subset(DatabaseTSD, subset = (((!is.na(IP.SD)) |
(!'is.na(IP.SE))) & (!is.na(Hatched))),
select=c("Hatched”, "IP.SE", "IP.SD", "IP.mean"))
outSD$IP.SD <- ifelse(is.na(outSD$IP.SD), outSD$IP.SE*sqrt(outSD$Hatched), outSD$IP.SD)

Model estimation

Example <- subset(DatabaseTSD, subset = (!is.na(IP.min)) &
((is.na(IP.SE)) & (is.na(IP.SD)) & (!is.na(Hatched)) &
(is.na(IP.mean))), select=c("Species”, "Incubation.temperature.set”,
"Hatched”, "IP.min"”, "IP.max",
"Reference"”))

out <- universalmclapply(X=1:nrow(Example), FUN=function(i) {
n <- Example[i, "Hatched"]

priors <- structure(list(Density = c("dunif”, "dlnorm"),
Priori c(30, log(mean(outSD$IP.SD))),
Prior2 = c(120, log(sd(outSD$IP.SD))),
SDProp = c(1, 1),
Min = c(30, 0.1),
Max = c(120, 6),
Init = c((Example[i, "IP.min"]1+ Example[i, "IP.max"])/2, log(2))),
row.names = c("mean”, "sd"),
class = c("PriorsmcmcComposite”, "data.frame”))

out_sd_mean_mcmc <- from_min_max(n=n, observed.Minimum=Example[i, "IP.min"],

observed.Maximum=Example[i, "IP.max"],

fitted.parameters=c(mean=(Example[i, "IP.min"J+
Example[i, "IP.max"])/2,

sd=1og(2)),

priors = priors,

D="normxx"

n.iter = 10000, n.adapt=15000, thin=30,

trace=100, adaptive = TRUE)

plot(out_sd_mean_mcmc, what = "MarkovChain”, parameters = "sd")

assign(paste@("out_sd_mean_mcmc_", as.character(i)), out_sd_mean_mcmc)
save(list = paste@("out_sd_mean_mcmc_", as.character(i)),
file = file.path("dataOut"”, paste@("out_sd_mean_mcmc_", as.character(i), ".Rdata")))

rm(list=paste@("out_sd_mean_mcmc_", as.character(i)))
}, progressbar = TRUE)

from_min_max 79

Generate table with all results

Example <- subset(DatabaseTSD, subset = (!is.na(IP.min)) &
((is.na(IP.SE)) & (is.na(IP.SD)) & (!is.na(Hatched)) &
(is.na(IP.mean))), select=c("Species”, "Incubation.temperature.set”,
"Hatched”, "IP.min", "IP.max",
"Reference"))

Example <- cbind(Example, dn=NA)

Example <- cbind(Example, "SD(Hozo 2005)"=NA)
Example <- cbind(Example, "SD(Wan 2014)"=NA)
Example <- cbind(Example, "mean(Wan 2014)"=NA)
Example <- cbind(Example, "median(SD)"=NA)
Example <- chind(Example, "2.5%(SD)"=NA)
Example <- cbind(Example, "97.5%(SD)"=NA)
Example <- cbind(Example, "25%(SD)"=NA)
Example <- cbind(Example, "75%(SD)"=NA)
Example <- cbind(Example, "median(mean)"=NA)
Example <- cbind(Example, "2.5%(mean)"=NA)
Example <- cbind(Example, "97.5%(mean)"=NA)
Example <- cbind(Example, "25%(mean)"=NA)
Example <- cbind(Example, "75%(mean)"”=NA)
Example <- cbind(Example, "z(mean)"=NA)
Example <- cbind(Example, "z(SD)"=NA)

library(coda)

for (i in 1:nrow(Example)) {
n <- Example[i, "Hatched"]
if (n<= 15) {

Example[i, "SD(Hozo 2005)"]1 <- (1/sqrt(12))*sqrt(((Example[i, "IP.max"] -
Example[i, "IP.min"]))"2+((Example[i, "IP.max"] - Example[i, "IP.min"1))"2/4)

} else {
if (n<=70) {
Example[i, "SD(Hozo 2005)"] <- (Example[i, "IP.max"] - Example[i, "IP.min"]1)/4
} else {
Example[i, "SD(Hozo 2005)"] <- (Example[i, "IP.max"] - Example[i, "IP.min"])/6
3
3

Example[i, "dn"] <- get_dn(n)
Example[i, "SD(Wan 2014)"] <- estimate_sd_from_range(Example[i, "IP.min"],
Example[i, "IP.max"], n)
Example[i, "mean(Wan 2014)"] <- (Example[i, "IP.min"]+ Example[i, "IP.max"])/2
load(file = file.path("dataOut”, paste@("out_sd_mean_mcmc_", as.character(i), ".Rdata")))
out_sd_mean_mcmc <- get(paste@("out_sd_mean_mcmc_", as.character(i)))
k <- as.parameters(out_sd_mean_mcmc, index="quantile"”, probs=c(0.025, 0.25, 0.5, 0.75, 0.975))
outgk <- geweke.diag(as.mcmc(out_sd_mean_mcmc))
rm(out_sd_mean_mcmc)
rm(list=paste@("out_sd_mean_mcmc_", as.character(i)))

80

from_min_max

Example[i, "median(SD)"] <- k["50%", "sd"]
Example[i, "2.5%(SD)"] <- k["2.5%", "sd"]
Example[i, "97.5%(SD)"]1 <- k["97.5%", "sd"]
Example[i, "25%(SD)"] <- k["25%", "sd"]
Example[i, "75%(SD)"]1 <- k["75%", "sd"]
Example[i, "median(mean)”] <- k["50%", "mean"]
Example[i, "2.5%(mean)"] <- k["2.5%", "mean"]
Example[i, "97.5%(mean)"] <- k["97.5%", "mean"]
Example[i, "25%(mean)”] <- k["25%", "mean"]
Example[i, "75%(mean)”"] <- k["75%", "mean"]
Example[i, "z(mean)"] <- outgk$ 1 $z["mean"]
Example[i, "z(SD)"] <- outgk$ 1~ $z["sd"]

rownames (Example) <- as.character(1:nrow(Example))
Figure 1

layout(mat = matrix(1:4, nrow=2))
par(mar=c(4, 4, 0, 0))

plot(out_sd_mean_mcmc_11, what = "MarkovChain”, parameters = "mean”, ylim=c(70, 76))

text(x=ScalePreviousPlot(x=0.05, y=0.95)%$x, y=ScalePreviousPlot(x=0.85, y=0.95)$y,
labels = "A: mean”, cex=1.5, pos=4)

plot(out_sd_mean_mcmc_8, what = "MarkovChain”, parameters = "mean”, ylim=c(50, 52))

text(x=ScalePreviousPlot(x=0.05, y=0.95)%$x, y=ScalePreviousPlot(x=0.85, y=0.95)$y,
labels = "C: mean"”, cex=1.5, pos=4)

plot(out_sd_mean_mcmc_11, what = "MarkovChain”, parameters = "sd")

text(x=ScalePreviousPlot(x=0.05, y=0.95)%$x, y=ScalePreviousPlot(x=0.85, y=0.95)$y,
labels = "B: sd”, cex=1.5, pos=4)

plot(out_sd_mean_mcmc_8, what = "MarkovChain”, parameters = "sd")

text(x=ScalePreviousPlot(x=0.05, y=0.95)%$x, y=ScalePreviousPlot(x=0.85, y=0.95)$y,
labels = "D: sd”, cex=1.5, pos=4)

Figure 2
dtafigure2 <- matrix(NA, nrow=nrow(as.parameters(out_sd_mean_mcmc, index = "all")),

ncol=nrow(Example))

for (i in T:nrow(Example)) {

#1<-1
load(file=file.path("dataOut"”, paste@("out_sd_mean_mcmc_", as.character(i), ".Rdata")))
out_sd_mean_mcmc <- get(paste@(”out_sd_mean_mcmc_", as.character(i)))
PPM <- rnorm(nrow(as.parameters(out_sd_mean_mcmc, index = "all")),
mean = as.parameters(out_sd_mean_mcmc, index = "all")[, "mean"],
sd=as.parameters(out_sd_mean_mcmc, index = "all”)[, "sd"1)

dtafigure2[, i] <- PPM
}

layout(mat = 1)
par(mar=c(3, 4, 0, 0))
boxplot(dtafigure2, outline=FALSE, las=1, bty="n", xaxt="n", frame=FALSE, ylim=c(40, 90),
col=sapply(as.character (Example$Species),
FUN=function(i) switch(i, "Caretta caretta”="white”,
"Chelonia mydas"="green",
"Dermochelys coriacea”="lightblue")),

from_min_max 81

ylab="Incubation duration in days")
axis(1, at=1:30, labels = rep(NA, 30))

Cc <- sum(as.character(Example$Species) == "Caretta caretta”)
CcCm <- sum(as.character(Example$Species) == "Caretta caretta” |
as.character(Example$Species) == "Chelonia mydas")
segments(x@= Cc + 0.5,
x1= Cc + 0.5,

y0=40, y1=90, lty = 2)

segments(x@= CcCm + 0.5,
x1= CcCm + 0.5,
y0=40, y1=90, 1ty = 2)

par (xpd=TRUE)
text(x=Cc/2, y=33, labels = expression(italic("”Caretta caretta”)), cex=0.9)

text(x=Cc+(CcCm-Cc)/2, y=32, labels = expression(italic(”"Chelonia\n mydas")), cex=0.9)
text (x=CcCm+(30-CcCm)/2, y=32, labels = expression(italic("Dermochelys\n coriacea”)), cex=0.9)

With Lognormal
To generate data from publication

library(parallel)
library(embryogrowth)

Values for the prior of SD
outSD <- subset(DatabaseTSD, subset = (((!is.na(IP.SD)) |
(!'is.na(IP.SE))) & (!is.na(Hatched))),
select=c("Hatched”, "IP.SE", "IP.SD", "IP.mean"))
outSD$IP.SD <- ifelse(is.na(outSD$IP.SD), outSD$IP.SExsqrt(outSD$Hatched), outSD$IP.SD)

Model estimation

Example <- subset(DatabaseTSD, subset = (!is.na(IP.min)) &
((is.na(IP.SE)) & (is.na(IP.SD)) & (!is.na(Hatched)) &
(is.na(IP.mean))), select=c("Species”, "Incubation.temperature.set”,
"Hatched”, "IP.min", "IP.max",
"Reference”))

out <- universalmclapply(X=1:nrow(Example), FUN=function(i) {
n <- Example[i, "Hatched"]

priors <- structure(list(Density = c("dunif”, "dlnorm"),
Priori c(30, log(mean(outSD$IP.SD))),
Prior2 = c(120, log(sd(outSD$IP.SD))),
SDProp = c(1, 1),
Min = c(30, 0.1),
Max = c(120, 6),
Init = c((Example[i, "IP.min"]+ Example[i, "IP.max"])/2, log(2))),
row.names = c("meanlog”, "sdlog"),
class = c("PriorsmcmcComposite”, "data.frame"))

82 iCutter

out_sd_mean_mcmc_LN <- from_min_max(n=n, observed.Minimum=Example[i, "IP.min"],

observed.Maximum=Example[i, "IP.max"],

fitted.parameters=c(mean=(Example[i, "IP.min"]+
Example[i, "IP.max"])/2,

sd=1og(2)),

priors = priors,

D="1normxx"

n.iter = 10000, n.adapt=15000, thin=30,

trace=100, adaptive = TRUE)

plot(out_sd_mean_mcmc, what = "MarkovChain”, parameters = "sd")

assign(paste@("out_sd_mean_mcmc_LN_", as.character(i)), out_sd_mean_mcmc_LN)
save(list = paste@("out_sd_mean_mcmc_LN_", as.character(i)),

—

file = file.path("dataOut”, paste@("out_sd_mean_mcmc_LN_", as.character(i), ".Rdata")))

rm(list=paste@("out_sd_mean_mcmc_LN_", as.character(i)))
}, progressbar = TRUE)

End(Not run)

iCutter Run a shiny application to fit bone section

Description

Run a shiny application to fit bone section

Usage

iCutter()

Details

BP runs a shiny application to fit bone section

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail.com>

IC clean data 83

Examples

Not run:

Not run:
library(HelpersMG)
iCutter()

End(Not run)

IC_clean_data Clean the dataframe before to be used with IC_threshold_matrix

Description

This function must be used if missing values are present in the dataset.

It ensures that all correlations and partial correlations can be calculated. The columns of the
dataframe are removed one per one until all can be calculated without error. It is possible to say
that one or more columns must be retained because they are of particular importance in the anal-
ysis. The use and method parameters are used by cor() function. The function uses by default a
parallel computing in Unix or MacOSX systems. If progress is TRUE and the package pbmcapply
is present, a progress bar is displayed. If debug is TRUE, some informations are shown during the
process. https://fr.wikipedia.org/wiki/Iconographie_des_corrélations

Usage

IC_clean_data(
data = stop("A dataframe object is required”),

use = c("pairwise.complete.obs”, "everything”, "all.obs”, "complete.obs”,
"na.or.complete”),
method = c("pearson”, "kendall"”, "spearman"),

variable.retain = NULL,
test.partial.correlation = TRUE,
progress = TRUE,

debug = FALSE

)
Arguments

data The data.frame to be cleaned

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be (an abbreviation of) one of the strings
"everything", "all.obs", "complete.obs", "na.or.complete”, or "pairwise.complete.obs".

method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson” (default), "kendall", or "spearman": can be
abbreviated.

variable.retain
a vector with the name of columns to keep

84 IC clean data

test.partial.correlation
should the partial correlations be tested ?

progress Show a progress bar
debug if TRUE, information about progression of cleaning are shown
Details

IC_clean_data checks and corrects the dataframe to be used with IC_threshold_matrix

Value

A dataframe

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References

Lesty, M., 1999. Une nouvelle approche dans le choix des régresseurs de la régression multiple en
présence d’interactions et de colinéarités. Revue de Modulad 22, 41-77.

See Also

Other Iconography of correlations: IC_correlation_simplify(), IC_threshold_matrix(), plot.IconoCorel()

Examples

Not run:
library("HelpersMG")
based on https://fr.wikipedia.org/wiki/Iconographie_des_corrélations
es <- structure(list(Student = c("el1”, "e2", "e3", "e4", "e5", "e6", "e7", "e8"),
Mass = c(52, 59, 55, 58, 66, 62, 63, 69),
Age = c(12, 12.5, 13, 14.5, 15.5, 16, 17, 18),
Assiduity = c(12, 9, 15, 5, 11, 15, 12, 9),
Note = c(5, 5, 9, 5, 13.5, 18, 18, 18)),
row.names = c(NA, -8L), class = "data.frame")
es

df_clean <- IC_clean_data(es, debug = TRUE)

cor_matrix <- IC_threshold_matrix(data=df_clean, threshold = NULL, progress=FALSE)
cor_threshold <- IC_threshold_matrix(data=df_clean, threshold = 0.3)
plot(cor_threshold, show.legend.strength=FALSE, show.legend.direction = FALSE)
cor_threshold_Note <- IC_correlation_simplify(matrix=cor_threshold, variable="Note")
plot(cor_threshold_Note, show.legend.strength=FALSE, show.legend.direction = FALSE)

cor_threshold <- IC_threshold_matrix(data=df_clean, threshold = 0.6)
plot(cor_threshold,
layout=matrix(data=c(53, 53, 55, 55,

55, 53, 55, 53), ncol=2, byrow=FALSE),
show.legend.direction = FALSE,

IC_correlation_simplify 85

show. legend.strength = FALSE, xlim=c(-2, 2), ylim=c(-2, 2))

End(Not run)

IC_correlation_simplify
Simplify the correlation matrix

Description

This function can be used to simplify the network of correlations.
If no vector of variables is given, the variables not linked to any other variable are removed. If a vec-
tor of variables is given, only link to these variables are retained. https://fr.wikipedia.org/wiki/Iconographie_des_c

Usage

IC_correlation_simplify(matrix, variable = NULL)

Arguments
matrix The correlation matrix to simplify
variable a vector with the name of columns to keep
Details

IC_correlation_simplify simplifies the correlation matrix

Value

A list

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References
Lesty, M., 1999. Une nouvelle approche dans le choix des régresseurs de la régression multiple en
présence d’interactions et de colinéarités. Revue de Modulad 22, 41-77.

See Also

Other Iconography of correlations: IC_clean_data(), IC_threshold_matrix(), plot.IconoCorel()

86 IC threshold_matrix

Examples

Not run:
library("HelpersMG")
es <- structure(list(Student = c("el1"”, "e2", "e3", "e4", "e5", "e6", "e7", "e8"),
Mass = c(52, 59, 55, 58, 66, 62, 63, 69),
Age = c(12, 12.5, 13, 14.5, 15.5, 16, 17, 18),
Assiduity = c(12, 9, 15, 5, 11, 15, 12, 9),
Note = ¢(5, 5, 9, 5, 13.5, 18, 18, 18)),
row.names = c(NA, -8L), class = "data.frame")

es

df <- IC_clean_data(es, debug = TRUE)

cor_matrix <- IC_threshold_matrix(data=df, threshold = NULL, progress=FALSE)
cor_threshold <- IC_threshold_matrix(data=df, threshold = 0.3)

par(mar=c(1,1,1,1))

set.seed(4)

plot(cor_threshold)

cor_threshold_Note <- IC_correlation_simplify(matrix=cor_threshold, variable="Note")
plot(cor_threshold_Note)

End(Not run)

IC_threshold_matrix Calculate correlation matrix

Description

This function calculates the matrix of correlations thresholded using partial correlation.

If the threshold is not given, the object that is produced can be used later for thresholding.

For model OAT: The link between A and B is “remarkable” if and only if the total correlation
between them is higher than a given threshold and if the partial correlation between A and B in
respect to any other variable C is also higher in absolute values than this threshold and with the
same sign as the total correlation. For model AAT: A correlation is retained if it is higher than the
threshold and the partial correlation is lower than the threshold. In this case, no missing value is
accepted.

The use and method parameters are used by cor() function. The function uses by default a parallel
computing in Unix or MacOSX systems. If progress is TRUE and the package pbmcapply is present,
a progress bar is displayed. If debug is TRUE, some informations are shown during the process but
parallel computing is not used.
https://fr.wikipedia.org/wiki/Iconographie_des_corrélations

Usage

IC_threshold_matrix(
data = stop("A dataframe or an IconoCorel object is required”),
threshold = NULL,
use = c("pairwise.complete.obs”, "everything”, "all.obs”, "complete.obs”,

IC threshold _matrix 87

"na.or.complete”),
method = c("pearson”, "kendall"”, "spearman"),
model = c("OAT", "ATT"),
significance.level = FALSE,
correction.multiple.comparisons = "fdr",
progress = TRUE,
debug = FALSE

)
Arguments

data A dataframe or an IconoCorel object from a previous run of IC_threshold_matrix

threshold threshold for partial and full correlations

use an optional character string giving a method for computing covariances in the
presence of missing values. This must be (an abbreviation of) one of the strings
"everything", "all.obs", "complete.obs", "na.or.complete"”, or "pairwise.complete.obs".

method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman": can be
abbreviated.

model a character string indicating if linear model uses all variables at a time (AAT) or

one at a time (OAT).
significance.level

if FALSE, does not use significance level; or use this significance level.
correction.multiple.comparisons

"holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", or "none".

progress show a progress bar
debug display information about progression of computing
Details

IC_threshold_matrix calculates correlation matrix thresholed by partial correlation

Value

A list

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References

Lesty, M., 1999. Une nouvelle approche dans le choix des régresseurs de la régression multiple en
présence d’interactions et de colinéarités. Revue de Modulad 22, 41-77.

See Also

Other Iconography of correlations: IC_clean_data(), IC_correlation_simplify(), plot.IconoCorel()

88 IC threshold_matrix

Examples

Not run:
library("HelpersMG")
es <- structure(list(Student = c("el1"”, "e2", "e3", "e4", "e5", "e6", "e7", "e8"),
Mass = c(52, 59, 55, 58, 66, 62, 63, 69),
Age = c(12, 12.5, 13, 14.5, 15.5, 16, 17, 18),
Assiduity = c(12, 9, 15, 5, 11, 15, 12, 9),
Note = c(5, 5, 9, 5, 13.5, 18, 18, 18)),
row.names = c(NA, -8L), class = "data.frame")

es

df_clean <- IC_clean_data(es, debug = TRUE)

cor_matrix <- IC_threshold_matrix(data=df_clean, threshold = NULL, progress=FALSE)
cor_threshold <- IC_threshold_matrix(data=df_clean, threshold = 0.3)
plot(cor_threshold, show.legend.strength=FALSE, show.legend.direction = FALSE)
cor_threshold_Note <- IC_correlation_simplify(matrix=cor_threshold, variable="Note")
plot(cor_threshold_Note)

cor_threshold <- IC_threshold_matrix(data=df_clean, threshold = 0.8, progress=FALSE)
gr <- plot(cor_threshold, plot=FALSE)
ly <- getFromNamespace("layout_nicely”, ns="igraph")(gr)
plot(cor_threshold,
layout=matrix(data=c(53, 53, 55, 55,
55, 53, 55, 53), ncol=2, byrow=FALSE),
show.legend.direction = FALSE,
show.legend.strength = FALSE, xlim=c(-2, 2), ylim=c(-2, 2))

Using significance level

cor_threshold <- IC_threshold_matrix(data=df_clean,

significance.level=0.05, debug=TRUE)
plot(cor_threshold, show.legend.strength=FALSE, show.legend.direction = FALSE)
cor_threshold_Note <- IC_correlation_simplify(matrix=cor_threshold, variable="Note")
plot(cor_threshold_Note)

Using the model All at a time

cor_threshold_AAT <- IC_threshold_matrix(data=df_clean, threshold = 0.3, model="AAT")
par(mar=c(1,1,1,1))

set.seed(4)

plot(cor_threshold_AAT, show.legend.strength="bottomleft")

HHHHHHEEEE
dta <- structure(list(Student = c("el”, "e2", "e3", "e4", "e5", "e6", "e7", "e8"),
Mass = c(52, 59, 55, 58, 66, 62, 63, 69),
Age = c(12, 12.5, 13, 14.5, 15.5, 16, 17, 18),
Assiduity = c(12, 9, 15, 5, 11, 15, 12, 9),
Note = ¢(5, 5, 9, 5, 13.5, 18, 18, 18)),
row.names = c(NA, -8L), class = "data.frame")

index.periodic 89

dta@ <- dtal, 2:ncol(dta)l]

ic@ <- IC_threshold_matrix(data = dta@)

cor_threshold <- IC_threshold_matrix(data=ic@, threshold = 0.3)
par(mar=c(1,1,1,1))

set.seed(4)

library("igraph")

plot(cor_threshold, vertex.color="red"”, show.legend.strength = FALSE)

plot(IC_correlation_simplify(matrix=cor_threshold),
show.legend.strength = FALSE, show.legend.direction = FALSE)

End(Not run)

index.periodic Estimate indices in periodic timeseries based on anchored minimum
and maximum

Description

Estimate indices in periodic timeseries based on anchored minimum and maximum.

The data.frame minmax can be generated manually. It should have three columns (time, index, SD),
with all the successive minimum and maximum indices.

It can be used with sun.info() to get the time of minimum and maximum air temperature or with
getTide() to reconstruct the sea level.

Usage

index.periodic(minmax, time = NULL, replicates = 100, progressbar = FALSE)

Arguments
minmax A data.frame returned by minmax.periodic
time The time at which produced the estimate
replicates Number of replicates to estimate SD
progressbar Does a progression bar must be shown
Details

index.periodic estimate indices in periodic timeseries based on anchored minimum and maximum

Value

A data.frame with a column time and a column index

Author(s)

Marc Girondot <marc.girondot@gmail.com>

90 ind_long_lat

See Also

Other Periodic patterns of indices: minmax.periodic(), moon.info(), sun.info(), tide.info()

Examples

Not run:
Generate a timeserie of time
time.obs <- NULL
for (i in 0:9) time.obs <- c(time.obs, c(@, 6, 12, 18)+ix24)
For these time, generate a timeseries of temperatures
temp.obs <- rep(NA, length(time.obs))
temp.obs[3+(0:9)*4] <- rnorm(10, 25, 3)
temp.obs[1+(0:9)*4] <- rnorm(10, 10, 3)
for (i in 1:(length(time.obs)-1))
if (is.na(temp.obs[i]))
temp.obs[i] <- mean(c(temp.obs[i-1], temp.obs[i+1]))
if (is.na(temp.obs[length(time.obs)]))
temp.obs[length(time.obs)] <- temp.obs[length(time.obs)-11/2
observed <- data.frame(time=time.obs, temperature=temp.obs)
Search for the minimum and maximum values
r <- minmax.periodic(time.minmax.daily=c(Min=2, Max=15),
observed=observed, period=24, colname.index="temperature")

Estimate all the temperatures for these values
t <- index.periodic(minmax=r)

plot_errbar(x=t[,"time"], y=t[,"index"],
errbar.y=ifelse(is.na(t[,"sd"]1), @, 2*t[,"sd"]1),
type="1", las=1, bty="n", errbar.y.polygon = TRUE,
xlab="hours", ylab="Temperatures”, ylim=c(@, 35),

errbar.y.polygon.list = list(col="grey"))
plot_add(x=t[,"time"], y=t[,"index"], type="1")
plot_add(observed$time, observed$temperature, pch=19, cex=0.5)

End(Not run)

ind_long_lat Return or the index in ncdf object from lat/longitude or inverse

Description

Return or the index in ncdf object from lat/longitude or reverse.

Usage

ind_long_lat(
ncdf = stop("The ncdf data must be supplied”),

ind_long_lat 91

long = NULL,

lat = NULL,

indice.long = NULL,
indice.lat = NULL,
label.longitude = "lon",
label.latitude = "lat”

)
Arguments
ncdf An object read from package ncdf4, ncdf or RNetCDF
long Longitude in decimal format
lat Latitude in decimal format
indice.long Index of longitude
indice.lat Index of latitude

label.longitude
Name of argument for longitude, default is lon

label.latitude Name of argument for latitude, default is lat

Details

ind_long_lat is used to manage ncdf information

Value

Or the index in ncdf object from lat/longitude or inverse

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other ncdf: format_ncdf ()

Examples

Not run:

url <- "https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/”
url <- paste@(url, "sst.day.mean.2012.v2.nc")

dest <- paste(Sys.getenv("HOME"), "/sst.day.mean.2012.v2.nc", sep="")
download.file(url, dest)

library("ncdf4")

dta2012 <- nc_open(dest)

indices <- ind_long_lat(ncdf=dta2012, lat=5.89, long=-20.56)
coordinates <- ind_long_lat(ncdf=dta2012, indice.lat=20, indice.long=30)
library("RNetCDF")

dta2012 <- open.nc(dest)

indices <- ind_long_lat(ncdf=dta2012, lat=5.89, long=-20.56)

92 inside
coordinates <- ind_long_lat(ncdf=dta2012, indice.lat=20, indice.long=30)
ncdf library is depreciated in CRAN
library("ncdf")
dta2012 <- open.ncdf(dest)
indices <- ind_long_lat(ncdf=dta2012, lat=5.89, long=-20.56)
coordinates <- ind_long_lat(ncdf=dta2012, indice.lat=20, indice.long=30)
End(Not run)
inside Search a string within files of a folder
Description
Search for a string inside the files of a folder and return where the string is found.
The pattern for files that must be included uses regex for filtering.
Usage
inside(
text = stop("A text to be searched for is necessary"),
path = ".",
pattern = "x\\.R$",
showallfilenames = FALSE,
fixed = TRUE,
ignore.case = FALSE
)
Arguments
text Text to search in files
path Path of the folder to search in
pattern Pattern for file names to search in
showallfilenames
logical. Show all the filenames search for in
Options for readLines(), example warn = FALSE
fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments (see gsub)
ignore.case logical. if FALSE, the pattern matching for text is case sensitive and if TRUE,
case is ignored during matching.
Details

inside Search a string within files of a folder

invlogit 93

Value

Return an invisible vector with filenames in which the pattern occurs

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples
Not run:
library(HelpersMG)
Search for files in path with names based on pattern that have the string search inside.
inside("embryogrowth”, path=".", pattern="*\\.R$")

End(Not run)

invlogit Return the inverse logit

Description

Return the inverse logit.

Usage

invlogit(n)

Arguments

n The value to inverse to get the probability

Details

invlogit returns the inverse logit

Value

A value

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other logit: flexit(), logit()

94 LD50

Examples

n <- logit(@.5)
invlogit(n)

LD5@ Estimate the parameters that best describe LD50

Description

Estimate the parameters that best describe LD50

Logistic and logit models are the same but with different parametrization:

logistic = 1/(1+exp((1/S)(P-d)))

logit = 1/(1+exp(P+dS))

See these publications for the description of equations:

Girondot, M. 1999. Statistical description of temperature-dependent sex determination using max-
imum likelihood. Evolutionary Ecology Research, 1, 479-486.

Godfrey, M.H., Delmas, V., Girondot, M., 2003. Assessment of patterns of temperature-dependent
sex determination using maximum likelihood model selection. Ecoscience 10, 265-272.

Hulin, V., Delmas, V., Girondot, M., Godfrey, M.H., Guillon, J.-M., 2009. Temperature-dependent
sex determination and global change: are some species at greater risk? Oecologia 160, 493-506.
The flexit equation is not still published :

ifdose < Pthen(1+4 (251 — 1) x exp(4 % S1% (P —2))){ —1/K1)

ifdose > Pthenl — (1 + (252 — 1) x exp(4 % S2 % (x — P))){ — 1/K?2)

with:
S1=5/((4/K1)* (20 — K1)(1/K1+ 1) % (21— 1))
52 =5/((4/K2)* (20 — K2)(1/K2+ 1) % (252 — 1))
Usage
LD50(
df = NULL,
alive = NULL,
dead = NULL,
N = NULL,
doses = NULL,
1 =0.05,

parameters.initial = NULL,
fixed.parameters = NULL,
SE = NULL,

equation = "logistic”,
replicates = 1000,
range.CI = 0.95,
limit.low.TRD.minimum = 5,

LD50 95

limit.high.TRD.maximum = 1000,
print = TRUE,
doses.plot = seq(from = @, to = 1000, by = 0.1)

)
Arguments
df A dataframe with at least two columns named alive, dead or N and doses columns
alive A vector with alive individuals at the end of experiment
dead A vector with dead individuals at the end of experiment
N A vector with total numbers of tested individuals
doses The doses
1 The limit to define TRD (see Girondot, 1999)

parameters.initial

Initial values for P, S or K search as a vector, ex. c(P=29, S=-0.3)
fixed.parameters

Parameters that will not be changed during fit

SE Standard errors for parameters

equation Could be "logistic", "logit", "probit", Hill", "Richards", "Hulin", "flexit" or
"Double-Richards"

replicates Number of replicates to estimate confidence intervals

range.CI The range of confidence interval for estimation, default=0.95

limit.low.TRD.minimum

Minimum lower limit for TRD
limit.high.TRD.maximum

Maximum higher limit for TRD

print Do the results must be printed at screen? TRUE (default) or FALSE
doses.plot Sequences of doses that will be used for plotting. If NULL, does not estimate
them
Details

LD50 estimates the parameters that best describe LD50

Value

A list with the LD50, Transitional Range of Doses and their SE

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other LD50 functions: LD5@0_MHmcmc (), LD50_MHmcmc_p (), logLik.LD5@(), plot.LD50(), predict.LD50()

96 LD50_MHmcmc

Examples

Not run:

library("HelpersMG")

data <- data.frame(Doses=c(80, 120, 150, 150, 180, 200),
Alive=c(10, 12, 8, 6, 2, 1),

Dead=c(@, 1, 5, 6, 9, 15))

LD50_logistic <- LD50(data, equation="logistic")
predict(LD50_logistic, doses=c(140, 170))
plot(LD50_logistic, xlim=c(@, 300), at=seq(from=0, to=300, by=50))
LD50_probit <- LD50(data, equation="probit")
predict(LD5@_probit, doses=c(140, 170))
plot(LD50@_probit)

LD50_logit <- LD5@(data, equation="logit")
predict(LD50_logit, doses=c(140, 170))

plot(LD50@_logit)

LD50_hill <- LD5@(data, equation="hill")
predict(LD50_hill, doses=c(140, 170))

plot(LD50_hill)

LD50_Richards <- LD50(data, equation="Richards")
predict(LD50_Richards, doses=c(140, 170))
plot(LD5@_Richards)

LD50_Hulin <- LD5@(data, equation="Hulin")
predict(LD50_Hulin, doses=c(140, 170))

plot(LD5@_Hulin)

LD50_DoubleRichards <- LD5@(data, equation="Double-Richards")
predict(LD5@0_DoubleRichards, doses=c(140, 170))
plot(LD5@_DoubleRichards)

LD50_flexit <- LD50(data, equation="flexit")
predict(LD50_flexit, doses=c(140, 170))
plot(LD50_flexit)

End(Not run)

LD5@_MHmcmc Metropolis-Hastings algorithm for LD50

Description

Run the Metropolis-Hastings algorithm for tsd.

Deeply modified from a MCMC script by Olivier Martin (INRA, Paris-Grignon).

The number of iterations is n.iter+n.adapt+1 because the initial likelihood is also displayed.

I recommend that thin=1 because the method to estimate SE uses resampling.

If initial point is maximum likelihood, n.adapt = 0 is a good solution.

To get the SE from result_mcmc <- tsd_MHmcmc(result=try), use:

result_mcmc$BatchSE or result_mcmc$TimeSeriesSE

The batch standard error procedure is usually thought to be not as accurate as the time series meth-
ods.

Based on Jones, Haran, Caffo and Neath (2005), the batch size should be equal to sqrt(n.iter).
Jones, G.L., Haran, M., Caffo, B.S. and Neath, R. (2006) Fixed Width Output Analysis for Markov

LD50 _MHmcmc

97

chain Monte Carlo , Journal of the American Statistical Association, 101:1537-1547.

coda package is necessary for this function.

The parameters intermediate and filename are used to save intermediate results every ’intermediate’
iterations (for example 1000). Results are saved in a file of name filename.

The parameter previous is used to indicate the list that has been save using the parameters interme-
diate and filename. It permits to continue a mcmc search.

These options are used to prevent the consequences of computer crash or if the run is very very long
and processes at time limited.

Usage

LLD5@_MHmcmc (

result = stop("A result of LD5@() fit must be provided"),
n.iter = 10000,
parametersMCMC = NULL,

n.chains = 1,

n.adapt = 0,
thin = 1,

trace = FALSE,
batchSize = sqrt(n.iter),
adaptive = FALSE,

adaptive.lag
adaptive.fun

= 500,
= function(x) {

ifelse(x > 0.234, 1.3, 0.7)

}intermediate = NULL,

filename = "intermediate.Rdata”,

previous = NULL
)

Arguments

result An object obtained after a SearchR fit
n.iter Number of iterations for each step
parametersMCMC A set of parameters used as initial point for searching with information on priors
n.chains Number of replicates
n.adapt Number of iterations before to store outputs
thin Number of iterations between each stored output
trace True or False, shows progress
batchSize Number of observations to include in each batch fo SE estimation
adaptive Should an adaptive process for SDProp be used

adaptive.lag
adaptive.fun

intermediate

Lag to analyze the SDProp value in an adaptive content
Function used to change the SDProp

Period for saving intermediate result, NULL for no save

98 LD50_MHmcmc

filename If intermediate is not NULL, save intermediate result in this file

previous Previous result to be continued. Can be the filename in which intermediate
results are saved.

Details
LD50_MHmcmc runs the Metropolis-Hastings algorithm for LD50 (Bayesian MCMC)

Value

A list with resultMCMC being mcmec.list object, resultLnL being likelihoods and parametersM-
CMC being the parameters used

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other LD50 functions: LD50@(), LD50_MHmcmc_p (), logLik.LD50(), plot.LD5@(), predict.LD50()

Examples

Not run:

library("HelpersMG")

data <- data.frame(Doses=c(80, 120, 150, 150, 180, 200),

Alive=c(10, 12, 8, 6, 2, 1),

Dead=c(@, 1, 5, 6, 9, 15))

LD50_logistic <- LD50(data, equation="logistic")

pMCMC <- LD5@_MHmcmc_p(LD50_logistic, accept=TRUE)

Take care, it can be very long

result_mcmc_LD50 <- LD5@0_MHmcmc(result=LD50_logistic,
parametersMCMC=pMCMC, n.iter=10000, n.chains = 1,

n.adapt = 0, thin=1, trace=1000, adaptive=TRUE,)

summary() permits to get rapidly the standard errors for parameters
summary (result_mcmc_LD50)

plot(x=result_mcmc_LD50, parameters="S", scale.prior=TRUE, las=1)
plot(result_mcmc_LD5@, parameters="S", scale.prior=TRUE, las=1, xlim=c(-20, 20))
plot(result_mcmc_LD5@, parameters="P", scale.prior=TRUE, las=1)
1-rejectionRate(as.mcmc(result_mcmc_LD50))
raftery.diag(as.mecmc(result_mcmc_LD50))
heidel.diag(as.mcmc(result_mcmc_LD50))

#it## Example with Uniforms priors

pMCMC <- structure(list(Density = c("dunif”, "dunif"),
Prior1 = c(77.6216005852911, -31.0438095277258),
Prior2 = c(310.486402341165, 31.0438095277258),

SDProp = c(2, 0.5),

Min = ¢(77.6216005852911, -31.0438095277258),

Max = c(310.486402341165, 31.0438095277258),

Init = c(155.243201170582, -15.5219047638629)),

LD50_MHmcmc_p

row.names = c("P", "S"), class = "data.frame")

result_mcmc_LD50 <- LD5@0_MHmcmc(result=LD50_logistic,
parametersMCMC=pMCMC, n.iter=10000, n.chains = 1,

n.adapt = @, thin=1, trace=1000, adaptive=TRUE,)

summary() permits to get rapidly the standard errors for parameters
summary (result_mcmc_LD50)

plot(x=result_mcmc_LD5@, parameters="S", scale.prior=TRUE, las=1)
plot(result_mcmc_LD50@, parameters="S", scale.prior=TRUE, las=1, xlim=c(-40, 40))
plot(result_mcmc_LD50@, parameters="P", scale.prior=TRUE, las=1)
1-rejectionRate(as.mcmc(result_mcmc_LD50))
raftery.diag(as.mcmc(result_mcmc_LD50))
heidel.diag(as.mecmc(result_mcmc_LD50))

End(Not run)

99

LD5@_MHmcmc_p Generates set of parameters to be used with LD50_MHmcmc()

Description

Interactive script used to generate set of parameters to be used with LD50_MHmecmc().

Usage

LD5@_MHmcme_p(
result = stop("An output from LD50() must be provided”),
accept = FALSE

)
Arguments

result An object obtained after a LD50 fit

accept If TRUE, the script does not wait user information
Details

LD50_MHmcmc_p generates set of parameters to be used with LD50_MHmcmc()

Value

A matrix with the parameters

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other LD50 functions: LD50@(), LD50_MHmcmc (), logLik.LD5@(), plot.LD50(), predict.LD50()

100 list.packages

Examples

Not run:

library("HelpersMG")

data <- data.frame(Doses=c(80, 120, 150, 150, 180, 200),
Alive=c(10, 12, 8, 6, 2, 1),

Dead=c(@, 1, 5, 6, 9, 15))

LD50_logistic <- LD50(data, equation="logistic")

pmecmc <- LD5@_MHmcmc_p(LD50_logistic, accept=TRUE)

End(Not run)

list.packages List the installed packages with their locations

Description

List the installed packages with their locations and version.

Usage

list.packages()

Details

list.packages lists the installed packages with their locations

Value

A list with the installed packages and their version.

Author(s)

Marc Girondot

Examples

Not run:
library(HelpersMG)
list.packages()

End(Not run)

local.search 101

local.search Return path of file searched for in local disk based on its file name

Description

Return path of file searched for in local disk based on its file name.
It has been tested only with Windows XP and MacOSX. In MacOSX, you must have created the
locate database first. Use OnyX utilities for this purpose.

Usage
local.search(
pattern,
directory = "",
folder = "$HOME",
intern = TRUE,
ignore.stdout = FALSE,
ignore.stderr = TRUE
)
Arguments
pattern The name of file to be searched for. Can use wildcards *
directory The path of directory to be explored in for Windows
folder The path of folder to be explored in for Unix based systems
intern A logical (not NA) which indicates whether to capture the output of the com-

ignore.stdout

ignore.stderr

Details

mand as an R character vector (see system()).

a logical (not NA) indicating whether messages written to ’stdout’ should be
ignored (see system()).

a logical (not NA) indicating whether messages written to ’stderr’ should be
ignored (see system()).

local.search() returns path of file serached in local disk based on its file name

Value

A vector with paths

Author(s)

Marc Girondot

102 logit

Examples

Not run:
RnwFiles <- local.search(”"x.Rnw")
nc.files <- local.search("x.nc"”, folder=paste@("'",getwd(),""'"))

End(Not run)

logit Return the logit

Description

Return the logit.

Usage

logit(p)

Arguments

p The probability

Details

logit returns the logit

Value

A value

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other logit: flexit(), invlogit()

Examples

n <- logit(0.5)
invlogit(n)

logLik.compareAIC 103

loglLik.compareAIC Return Log Likelihood generated by FormatCompareAIC

Description

Return Log Likelihood generated by FormatCompareAIC

Usage
S3 method for class 'compareAIC'
loglik(object, ...)
Arguments
object A result generated by FormatCompareAIC
Not used
Details

logLik.compare AIC Return Log Likelihood of a fit

Value

The Log Likelihood value for the fitted model with data

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples
Not run:
ED <- FormatCompareAIC(loglLik=-140, nobs=100, df=3)
loglLik(ED)

End(Not run)

104 logLik.cutter

loglLik.cutter Return log likelihood of a cutter fitted model

Description

Return log likelihood of a cutter fitted model.

Usage
S3 method for class 'cutter'
logLik(object, ...)
Arguments
object A result file generated by cutter
Not used
Details

logLik.cutter return log likelihood of a cutter fitted model

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: cutter(), dSnbinom(), dbeta_new(), dcutter(), dggamma(), plot.cutter(),
print.cutter(), r2norm(), rcutter(), rmnorm(), rnbinom_new()

Examples

Not run:

#

Test for similarity in gamma left censored distribution between two
datasets

#

obcl <- rgamma(100, scale=20, shape=2)

Detection limit for sample 1 to 50

LDL <- 10

remove the data below the detection limit
obc1[obcl1<LDL] <- -Inf

obc2 <- rgamma(100, scale=10, shape=2)

remove the data below the detection limit
obc2[obc2<LDL] <- -Inf

logLik.LD50

search for the parameters the best fit these censored data
resultl <- cutter(observations=obc1,
lower_detection_limit=LDL,
cut_method="censored")
loglLik(result1)
result2 <- cutter(observations=obc2,
lower_detection_limit=LDL,
cut_method="censored")
loglik(result2)
result_totl <- cutter(observations=c(obcl, obc2),
lower_detection_limit=LDL,
cut_method="censored")
loglik(result_totl)
compare_AICc(Separate=list(resultl, result2),
Common=result_totl, factor.value=1)
compare_BIC(Separate=list(resultl, result2),
Common=result_totl, factor.value=1)

End(Not run)

105

loglLik.LD5@ Return Log Likelihood of a fit generated by LD50

Description

Return Log Likelihood of a fit generated by LD50

Usage
S3 method for class 'LD50'
loglLik(object, ...)
Arguments
object A result file generated by fitRMU
Not used
Details

logLik.LD50 Return Log Likelihood of a fit for LD50

Value

The Log Likelihood value for the fitted model with data

Author(s)

Marc Girondot <marc.girondot@gmail.com>

106 merge.mcmcComposite

See Also

Other LD50 functions: LD5@(), LD5@_MHmcmc (), LD50_MHmcmc_p (), plot.LD50@(), predict.LD50()

Examples

Not run:

data <- data.frame(Doses=c(80, 120, 150, 150, 180, 200),
Alive=c(10, 12, 8, 6, 2, 1),

Dead=c(@, 1, 5, 6, 9, 15))

LD50_logistic <- LD50@(data, equation="logistic")
loglik(LD50@_logistic)

AIC(LD50_logistic)

End(Not run)

merge .mcmcComposite Merge two mcmcComposite results

Description

Merge two mcmcComposite results and produced a new one mecmcComposite object.
Note that the initial value for the second run must use the last value of the first one as shown in

example.
Usage
S3 method for class 'mcmcComposite'
merge(x, y, ...)
Arguments
X A mcmcComposite obtained as a result of MHalgoGen() function
y A mcmcComposite obtained as a result of MHalgoGen () function
not used
Details

merge.mcmcComposite Merge two memcComposite results

Value

A mcmcComposite result

Author(s)

Marc Girondot <marc.girondot@gmail.com>

merge.mcmcComposite 107

See Also

Other mcmcComposite functions: MHalgoGen(), as.mcmc.mcmcComposite(), as.parameters(),
as.quantiles(), plot.PriorsmcmcComposite(), plot.mcmcComposite(), setPriors(), summary.mcmcComposite()

Examples

Not run:

library(HelpersMG)

require(coda)
x <- rnorm(30, 10, 2)
dnormx <- function(data, x) {

data <- unlist(data)

return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))

3
parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),
Prior1=c(10, 0.5), Prior2=c(2, 0.5), SDProp=c(1, 1),
Min=c(-3, @), Max=c(100, 10), Init=c(1@, 2), stringsAsFactors = FALSE,
row.names=c('mean', 'sd'))
mcmc_run <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
plot(memc_run, xlim=c(@, 20))
plot(memc_run, xlim=c(@, 10), parameters="sd")
mcmcforcoda <- as.mcmc(mcmc_run)
#' heidel.diag(mcmcforcoda)

raftery.diag(mcmcforcoda)
autocorr.diag(mcmcforcoda)
acf(memcforcodal[1]1]1[, "mean"], lag.max=20, bty="n", las=1)
acf(memcforcodal[1]1]1[,"sd"], lag.max=20, bty="n", las=1)
batchSE(mcmcforcoda, batchSize=100)
The batch standard error procedure is usually thought to
be not as accurate as the time series methods used in summary
summary (mcmcforcoda)$statistics[,"Time-series SE"]
summary (mecmc_run)
as.parameters(mcmc_run)

lastp <- as.parameters(mcmc_run, index="last")
parameters_mcmc[,"Init"] <- lastp
The n.adapt set to 1 is used to not record the first set of parameters
then it is not duplicated (as it is also the last one for
the object mcmc_run)
mcmc_run2 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=1, thin=1, trace=1)
mcmc_run3 <- merge(mcmc_run, mcmc_run2)
#i#HH#HH# no adaptation, n.adapt must be 0
parameters_mcmc[,"Init"] <- c(mean(x), sd(x))
mcmc_run3 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=0, thin=1, trace=1)

End(Not run)

108

MHalgoGen

MHalgoGen Monte-Carlo Markov-chain with Metropolis-Hastings algorithm

Description

The parameters must be stored in a data.frame with named rows for each parameter with the fol-
lowing columns:

Density. The density function name, example dnorm, dlnorm, dunif, dbeta
Priorl. The first parameter to send to the Density function

Prior2. The second parameter to send to the Density function

SDProp. The standard error from new proposition value of this parameter
Min. The minimum value for this parameter

Max. The maximum value for this parameter

Init. The initial value for this parameter

This script has been deeply modified from a MCMC script provided by Olivier Martin (INRA,
Paris-Grignon).

The likelihood function must use a parameter named parameters_name for the named parameters.
For adaptive mcmc, see:

Rosenthal, J. S. 2011. Optimal Proposal Distributions and Adaptive MCMC. Pages 93-112 in
S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, editors. MCMC Handbook. Chapman and
Hall/CRC.

Usage

MHalgoGen(
likelihood = stop(”A likelihood function must be supplied”),

parameters

stop("Priors must be supplied”),

L
ny,n

parameters_name = "x",
n.iter = 10000,

n.chains = 1,

n.adapt = 100,

thin = 30,

trace = FALSE,

traceML = FALSE,
progress.bar.ini = NULL,
progress.bar = NULL,
adaptive = FALSE,
adaptive.lag = 500,
adaptive.fun = function(x) {

ifelse(x > 0.234, 1.3, 0.7)

MHalgoGen
b
intermediate = NULL,
filename = "intermediate.Rdata”,

previous = NULL,
session = NULL,

warn = FALSE,

WAIC.out = FALSE,

n.datapoints

Arguments

likelihood

parameters

parameters_name

n.iter
n.chains
n.adapt
thin
trace

traceML

= NULL

The function that returns -In likelihood using data and parameters
A data.frame with priors; see description and examples

Parameters to be transmitted to likelihood function

The name of the parameters in the likelihood function, default is "x".

Number of iterations for each chain

Number of chains

Number of iteration to stabilize likelihood

Interval for thinning likelihoods
Or FALSE or period to show progress
TRUE or FALSE to show ML

progress.bar.ini

progress.bar
adaptive
adaptive.lag
adaptive.fun
intermediate
filename
previous
session

warn
WAIC.out

n.datapoints

Details

MHalgoGen is a function to use mcmc with Metropolis-Hastings algorithm

Value

A mcmcComposite object with all characteristics of the model and memc run

The command to initialize progress bar

The command to run the progress bar

Should an adaptive process for SDProp be used

Lag to analyze the SDProp value in an adaptive context

Function used to change the SDProp

Or NULL of period to save intermediate result
Name of file in which intermediate results are saved

The content of the file in which intermediate results are saved

The shiny session
If TRUE, show information for debug.

If TRUE matrix or array are stored to be used with loo or waic.
Number of datapoints when WAIC.out is TRUE.

109

110 MHalgoGen

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other memcComposite functions: as.mcmc.mcmcComposite(), as.parameters(), as.quantiles(),
merge.mcmcComposite(), plot.PriorsmecmcComposite(), plot.memcComposite(), setPriors(),
summary .mcmcComposite()

Examples

Not run:
library(HelpersMG)
require(coda)
val <- rnorm(30, 10, 2)
dnormx <- function(data, x) {
data <- unlist(data)
return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))
3
parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),
Prior1=c(10, 0.5), Prior2=c(2, 0.5), SDProp=c(0.35, 0.2),
Min=c(-3, @), Max=c(100, 10), Init=c(10, 2), stringsAsFactors = FALSE,
row.names=c('mean', 'sd'))
Use of trace and traceML parameters
trace=1 : Only one likelihood is printed
mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=val,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
trace=10 : 10 likelihoods are printed
mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=val,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=10)
trace=TRUE : all likelihoods are printed
mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=val,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=TRUE)
trace=FALSE : No likelihood is printed
mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=val,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=FALSE)
traceML=TRUE : values when likelihood is better are shown
mcmc_run <- MHalgoGen(n.iter=100, parameters=parameters_mcmc, data=val,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=TRUE, traceML=TRUE)
mcmc_run <- MHalgoGen(n.iter=100, parameters=parameters_mcmc, data=val,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=FALSE, traceML=TRUE)

plot(memc_run, xlim=c(@, 20))

plot(mecmc_run, x1lim=c(@, 10), parameters="sd")
library(graphics)

library(fields)

show a scatter plot of the result

x <- memc_run$resultMCMCL[1]]1L, 1]

y <= mcmc_run$resultMCMCL[111[, 2]

marpre <- par(mar=c(4, 4, 2, 6)+0.4)
smoothScatter(x, y)

show a scale

MHalgoGen 111

n <- matrix(@, ncol=128, nrow=128)
xrange <- range(x)
yrange <- range(y)
for (i in 1:length(x)) {
posx <- 1+floor(127x(x[i]-xrange[1])/(xrange[2]-xrange[1]))
posy <- 1+floor(127x(y[i]-yrange[1])/(yrange[2]-yrange[1]1))
n[posx, posy] <- n[posx, posy]+1
3
image.plot(legend.only=TRUE, zlim= c(@, max(n)), nlevel=128,
col=colorRampPalette(c("white", blues9))(128))
Compare with a heatmap
x <- seq(from=8, to=12, by=0.2)
y <- seq(from=1, to=4, by=0.2)
df <- expand.grid(mean=x, sd=y)
df <- cbind(df, L=rep(@, length(nrow(df))))
for (i in 1:nrow(df)) df[i, "L"] <- -sum(dnorm(val, df[i, 1], df[i, 2], log = TRUE))
hm <- matrix(df[, "L"], nrow=length(x))
par(mar = marpre)
image.plot(x=x, y=y, z=hm, las=1)
Diagnostic function from coda library
mcmcforcoda <- as.mcmc(memc_run)
#' heidel.diag(mcmcforcoda)
raftery.diag(mcmcforcoda)
autocorr.diag(mcmcforcoda)
acf(memcforcodal[1]1]1[, "mean"], lag.max=20, bty="n", las=1)
acf(memcforcodal[1]1][,"sd"], lag.max=20, bty="n", las=1)
batchSE (mcmcforcoda, batchSize=100)
The batch standard error procedure is usually thought to
be not as accurate as the time series methods used in summary
summary (mcmcforcoda)$statistics[,"Time-series SE"]
summary (mcmc_run)
as.parameters(mcmc_run)
lastp <- as.parameters(mcmc_run, index="last")
parameters_mcmc[,"Init"] <- lastp
The n.adapt set to 1 is used to not record the first set of parameters
then it is not duplicated (as it is also the last one for
the object mcmc_run)
mcmc_run2 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, x=x, data=val,
likelihood=dnormx, n.chains=1, n.adapt=1, thin=1, trace=1)
mcmc_run3 <- merge(mcmc_run, mcmc_run2)
#i##HH#E no adaptation, n.adapt must be @
parameters_mcmc[,"Init"] <- c(mean(x), sd(x))
mcmc_run3 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, x=x, data=val,
likelihood=dnormx, n.chains=1, n.adapt=0, thin=1, trace=1)
Here is how to use adaptive mcmc
mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=val, adaptive = FALSE,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
1-rejectionRate(as.mcmc(mcmec_run))
mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=val, adaptive = TRUE,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
1-rejectionRate(as.mcmc(mcmec_run))
To see the dynamics :
var <- "mean”

112 minmax.periodic

par(mar=c(4, 4, 1, 1)+0.4)

plot(1:nrow(mcmc_run$resultMCMCL[1]1]), mcmc_run$resultMCMCL[1]]1[, varl, type="1",
xlab="Iterations"”, ylab=var, bty="n", las=1)

Exemple with a progress bar

val <- rnorm(30, 10, 2)

dnormx <- function(data, x) {

data <- unlist(data)

return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))

3

parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),

Prior1=c(10, 0.5), Prior2=c(2, 0.5), SDProp=c(@.35, 0.2),

Min=c(-3, @), Max=c(100, 10), Init=c(10, 2), stringsAsFactors = FALSE,

row.names=c('mean', 'sd'))

Set up the progress bar

mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=val,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=FALSE,
progress.bar.ini=function(n.iter) {

assign("pb"”, txtProgressBar(min=0, max=n.iter, style=3),
env = parent.frame())},
progress.bar=function(iter) {setTxtProgressBar(get("pb”, envir = parent.frame()), iter)})

End(Not run)

minmax.periodic Search for minimum and maximum indices in periodic timeseries

Description

Search for minimum and maximum for periodic timeseries when only intermediate values are
known.

For each couple of value with an increasing or decreasing segment of the sinusoid function, it is
possible to estimate a minimum and maximum values using analytical algebra.

Then the average and standard deviations of all minima and maxima are evaluated.

It should be noted that any extremum can be estimated at least twice, one by increasing segment
and one by decreasing segment. Both are used here to produce SD.

time.minmax.daily should be used when the time at which maximum and minimum indices are
regular and time.minmax permits to define this time day by day.

Usage

minmax.periodic(
time.minmax.daily = NULL,
time.minmax = NULL,
progressbar = FALSE,
observed = stop("data.frame with observed indices"”),
period = 24,
colname.time = "time"”,

minmax.periodic

colname. index

113

= "index",

colname.SD = "SD",

plot = FALSE

)

Arguments

time.minmax.daily

time.minmax

progressbar

observed

period
colname. time
colname. index
colname.SD

plot

Details

A named vector with Min and Max being the time in the day with minimum and
maximum indices (temperature or level)

A named vector daily with time in the day at which minimum and maximum
indices are observed

Tell if a progression bar must be shown

A dataframe with at least two columns: time and temperatures. A third column
SD can indicate the know error in index

The unit of day period (24 for hours, 24*60 for minutes)
The name of the column for time in observed

The name of the column for indices in observed

The name of the column for SD in observed

If TRUE, show a plot with the different estimates

minmax.periodic search for minimum and maximum indices (temperatures or levels) in periodic

timeseries

Value

A data.frame with a column time, a column index and a column SD

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Periodic patterns of indices: index.periodic(), moon.info(), sun.info(), tide.info()

Examples

Not run:

library("HelpersMG")
Generate a timeserie of time

time.obs <- NULL

for (i in 0:9) time.obs <- c(time.obs, c(@, 6, 12, 18)+i*24)
For these time, generate a timeseries of temperatures
temp.obs <- rep(NA, length(time.obs))

temp.obs[3+(0:9)*4] <- rnorm(10, 25, 3)

114 modeled.hist

temp.obs[1+(0:9)*4] <- rnorm(10, 10, 3)
for (i in 1:(length(time.obs)-1))
if (is.na(temp.obs[il))
temp.obs[i] <- mean(c(temp.obs[i-1], temp.obs[i+1]))
if (is.na(temp.obs[length(time.obs)]))
temp.obs[length(time.obs)] <- temp.obs[length(time.obs)-11/2
observed <- data.frame(time=time.obs, temperature=temp.obs)
Search for the minimum and maximum values
r <- minmax.periodic(time.minmax.daily=c(Min=2, Max=15),
observed=observed, period=24, colname.index="temperature")

Estimate all the temperatures for these values
t <- index.periodic(minmax=r)

plot_errbar(x=t[,"time"], y=t[,"index"],
errbar.y=ifelse(is.na(t[,"sd"]), @, 2*xt[,"sd"]),
type="1", las=1, bty="n", errbar.y.polygon = TRUE,
xlab="hours", ylab="Temperatures”, ylim=c(@, 35),

errbar.y.polygon.list = list(col="grey"))
plot_add(x=t[,"time"], y=t[,"”index"], type="1")
plot_add(observed$time, observed$temperature, pch=19, cex=0.5)

End(Not run)

modeled.hist Return the theoretical value for the histogram bar

Description

Return the theoretical value for the histogram bar based on a model of distribution.

Usage
modeled.hist(breaks, FUN, ..., sum = 1)
Arguments
breaks Vector with the breaks; it can be obtained directly from hist()
FUN Function to be used to integrate the density, ex. pnorm
Parameters to be used by FUN
sum Total numbers in the histogram; 1 for emperical frequencies
Details

modeled.hist returns the theoretical value for the histogram bar based on a model of distribution.

modify Vector 115

Value

A list with x (the center of the bar) and y components

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

Not run:

n <- rnorm(100, mean=10, sd=2)
breaks <- 0:20

hist(n, breaks=breaks)

s <- modeled.hist(breaks=breaks, FUN=pnorm, mean=10, sd=2, sum=100)

points(sx, sy, pch=19)
lines(sx, sy)

n <- rlnorm(100, meanlog=2, sdlog=0.4)
b <- hist(n, ylim=c(0@, 70))

s <- modeled.hist(breaks=b$breaks, FUN=plnorm, meanlog=2, sdlog=0.4, sum=100)

points(sx, sy, pch=19)
lines(sx, sy)

End(Not run)

modifyVector Modifies Elements of a Vector

Description

Modifies a vector by changing a subset of elements to match a second vector.

Usage
modifyVector(x, val, add = TRUE)

Arguments
X A named vector.
val A named vector with components to replace corresponding components in X.
add If FALSE, only existing elements of x are returned.

Details

modifyVector modifies elements of a vector

116 moon.info

Value

A modified version of x, with the elements of val replacing the elements of x

Author(s)

Marc Girondot

Examples

library("HelpersMG")

e <- c(M=10, L=20, J=30)

modifyVector(e, c(U=10, M=30))
modifyVector(e, c(U=10, M=30), add=FALSE)

moon.info Moon phase based on a date

Description

The script gives an index (base 100) that represents moon phase.

If the return value (from O to 100) is between:

0 and 1.6931595 or 98.3068405 and 100, it is full moon,

23.3068405 and 26.6931595, last quarter,

48.3068405 and 51.6931595, new moon,

73.3068405 and 76.6931595, first quarter

When phase is set to TRUE, a character representing the moon phase is returned.

Usage
moon.info(date = Sys.Date(), phase = FALSE)

Arguments

date A date in class Date. By default, it will use today date

phase If TRUE, a vector of characters with NM, FQ, FL LQ will be returned
Details

moon.info calculates the moon phase based on a date.

Value

Return a value describing the moon phase:
0 and 100 are full moon, 50 is new moon, 25 last quarter and 75 first quater

Author(s)

Marc Girondot <marc.girondot@gmail.com>

MovingWindow 117

See Also

Other Periodic patterns of indices: index.periodic(), minmax.periodic(), sun.info(), tide.info()

Examples

Not run:

library("HelpersMG")
moon.info(as.Date("2001-12-31"))
moon.info(as.Date("14/04/2010", "%d/%m/%Y"))
moon.info(as.Date("22/06/07", "%d/%m/%y"))

moon. info(seq(from=as.Date("2012-03-01"),
to=as.Date("2012-04-15"), by="days"))
moon.info(seq(from=as.Date("2012-03-01"),
to=as.Date("2012-04-15"), by="days"), phase=TRUE)

End(Not run)

MovingWindow Return a moving average of a vector.

Description

Return a moving average of a vector.

hole parameter can be "none", "bothL", "bothR", "both", "begin", or "end".
Usage

MovingWindow(x, window, hole = "begin”, fill = TRUE, FUN = mean)

Arguments
X The vector to analyze
window The window size
hole Should the returned vector have the same length than x
fill TRUE or FALSE, should the vector return NA
FUN Function to apply to the window
Details

MovingWindow returns a moving average of a vector.

Value

A vector

Author(s)

Marc Girondot <marc.girondot@gmail.com>

118 NagelkerkeScaledR2

Examples

MovingWindow(1:10, window =
MovingWindow(1:1@, window =
MovingWindow(1:10, window =
MovingWindow(1:10, window =
MovingWindow(1:10, window =
MovingWindow(1:10, window =
MovingWindow(1:10, window =

fill = TRUE, hole="bothL")

fill = TRUE, hole="bothR")

fill = TRUE, hole="both")

fill = TRUE, hole="none")

fill = TRUE, hole="begin")

fill = TRUE, hole="end")

fill = TRUE, hole="end"”, FUN=sd)

e e i

NagelkerkeScaledR2 Return the scaled R2 defined by Nagelkerke (1991)

Description

Return the scaled R2 of a binomial model based on:

Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika
78:691-192.

This definition of scaled R2 by Nagelkerke (1991) has the following properties:

(i) It is consistent with classical R2, that is the general definition applied to e.g. linear regression
yields the classical R2.

(i1) It is consistent with maximum likelihood as an estimation method, i.e. the maximum likelihood
estimates of the model parameters maximize R2.

(iii) It is asymptotically independent of the sample size n.

(iv) 1-R2 has the interpretation of the proportion of unexplained ’variation’.

(v) It is dimensionless, i.e. it does not depend on the units used.

The reported value is similar to the value estimated with nagelkerke() function from rcompanion
package but not from the NagelkerkeR2() function from fmsb package. I don’t know why.

Usage

NagelkerkeScaledR2(x, size, prediction, scaled = TRUE)

Arguments
X The number of observations
size Number of trials
prediction Prediction of x/size
scaled If TRUE, return the scaled R2
Details

NagelkerkeScaledR2 returns the scaled R2 defined by Nagelkerke (1991)

Value

The scaled R2 value

newcompassRose 119

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

x <- ¢(10, 9, 6, 4, 3, 1, @)

size <- c(10, 10, 10, 10, 10, 10, 10)

prediction <- c(0.9, 0.8, 0.7, 0.5, 0.4, 0.3, 0.2)
NagelkerkeScaledR2(x, size, prediction)

Using the example in fmsb: :NagelkerkeR2
res <- glm(cbind(ncases,ncontrols) ~ agegp+alcgp+tobgp, data=esoph, family=binomial())
NagelkerkeScaledR2(x=esoph$ncases, size = esoph$ncasestesoph$ncontrols,

prediction = res$fitted.values)

newcompassRose Display a compass rose

Description

Displays a basic compass rose, usually to orient a map.

newcompassRose displays a conventional compass rose at the position requested.

The size of the compass rose is determined by the character expansion, as the central "rose" is
calculated relative to the character size.

Rotation is in degrees counterclockwise.

Usage
newcompassRose (
X,
Yy,
rot = 0,
cex =1,
col = "black",
col.arrows.light = "white",
col.arrows.dark = "black”
)
Arguments
X The position of the center of the compass rose in user units.
y The position of the center of the compass rose in user units.
rot Rotation for the compass rose in degrees. See Details.
cex The character expansion to use in the display.
col The color of text

col.arrows.light
The color of lighter lines

120 newmap.scale

col.arrows.dark
The color of darker lines

Details

newcompassRose Display a compass rose

Value

none

Author(s)

modified from Jim Lemon; See sp: : compassRose ()

Examples

Not run:

library(HelpersMG)

require("maps”)

map("world”, "China")

newcompassRose(x=110, y=35, col.arrows.light="grey")

End(Not run)

newmap.scale Add Scale to Existing Unprojected Map

Description

Adds a scale to an existing map, both as a ratio and a distance gauge. If x or y are not specified, this
will be taken to be near the lower left corner of the map.

Usage

newmap.scale(
X,
Y,
relwidth = 0.15,
metric = TRUE,
ratio = TRUE,
col.line = "black”,

openwd

Arguments

X
y
relwidth
metric
ratio

col.line

Details

121

Location of left end of distance gauge.

Location of left end of distance gauge.

Proportion of width of display to be used for the scale. The default is 0.15.
If TRUE, the distance gauge will be in km, otherwise miles.

If FALSE, the scale ratio of the map is not displayed.

The color of lines for the gauge.

Further plotting parameters may be specified as for the command text().

newmap.scale Add Scale to Existing Unprojected Map

Value

The exact calculated scale is returned.

Author(s)

See maps: :map.scale().

Examples

Not run:
library("maps")

library("HelpersMG")
map("world”, "China")
newmap.scale(col.line = "red”, col="blue")

End(Not run)

openwd

Open a finder window with current working directory in MacOS X and
windows

Description

This function opens a finder window with directory files in MacOS X. It has not been fully tested
in Windows. In linux, it just returns the list of files in directory.
By defaut, it uses the current working directory.

Usage

openwd(directory = getwd())

122

Arguments

directory The directory you want to open

Details

openwd will open a finder window with current working directory

Value

A vector with the list of files.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

Not run:
openwd()

End(Not run)

plot.cutter

plot.cutter Plot results of cutter that best describe distribution

Description

Plot the estimates of cut distribution.

Usage

S3
plot(
X,
col
col
col
col
col

method for class 'cutter'
.hist = "grey",

.DL = "blue”,

.dist = "black”,
.unobserved = "green”,

.mcmc = rgb(red = 0.6, green = @, blue = @, alpha = 0.01),

legend = TRUE,
show.DL = TRUE,
show.plot = TRUE,

set

= NULL,

plot.cutter 123

Arguments
X A result file generated by cutter
col.hist The color of histogram
col.DL The color of below of above samples
col.dist The color of distribution

col.unobserved The color of unobserved states

col.memc The color of memc outputs

legend If TRUE, a legend is shown

show.DL If TRUE, the limits of DL are shown

show.plot If FALSE, no plot is shown

set In case of mixture, will show and return only this set

Parameters for plot

Details

plot.cutter plot result of cutter

Value

The matrix of all the memc curves with invisible state.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: cutter(), dSnbinom(), dbeta_new(), dcutter(), dggamma(), loglLik.cutter(),
print.cutter(), r2norm(), rcutter(), rmnorm(), rnbinom_new()

Examples

Not run:

library(HelpersMG)

#

right censored distribution with gamma distribution

#

Detection limit

DL <- 100

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc>DL] <- +Inf

search for the parameters the best fit these censored data

result <- cutter(observations=obc, upper_detection_limit=DL,
cut_method="censored")

result

124 plot.cutter

plot(result, xlim=c(@, 150), breaks=seq(from=0, to=150, by=10))
#
The same data seen as truncated data with gamma distribution
#
obc <- obc[is.finite(obc)]

search for the parameters the best fit these truncated data
result <- cutter(observations=obc, upper_detection_limit=DL,

cut_method="truncated")

result

plot(result, xlim=c(@, 150), breaks=seq(from=0, to=150, by=10))

#

left censored distribution with gamma distribution

#

Detection limit

DL <- 10

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc<DL] <- -Inf

search for the parameters the best fit these truncated data

result <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored")

result

plot(result)

plot(result, xlim=c(@, 200), breaks=seq(from=0, to=200, by=10))

#

left and right censored distribution

#

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

Detection limit

LDL <- 10

remove the data below the detection limit

obc[obc<LDL] <- -Inf

Detection limit

UDL <- 100

remove the data below the detection limit

obc[obc>UDL] <- +Inf

search for the parameters the best fit these censored data

result <- cutter(observations=obc, lower_detection_limit=LDL,
upper_detection_limit=UDL,

cut_method="censored")
result
plot(result, xlim=c(@, 150), col.DL=c("black”, "grey"),
col.unobserved=c("green”, "blue"),

breaks=seq(from=0, to=150, by=10))
#
Example with two values for lower detection limits
corresponding at two different methods of detection for example
with gamma distribution
#
obc <- rgamma(50, scale=20, shape=2)
Detection limit for sample 1 to 50

plot.cutter 125

LDLT <- 10
remove the data below the detection limit
obc[obc<LDL1] <- -Inf
obc2 <- rgamma(50, scale=20, shape=2)
Detection limit for sample 1 to 50
LDL2 <- 20
remove the data below the detection limit
obc2[obc2<LDL2] <- -Inf
obc <- c(obc, obc2)
search for the parameters the best fit these censored data
result <- cutter(observations=obc,
lower_detection_limit=c(rep(LDL1, 50), rep(LDL2, 50)),
cut_method="censored")
result
It is difficult to choose the best set of colors
plot(result, xlim=c(@, 150), col.dist="red",
col.unobserved=c(rgb(red=1, green=0, blue=0, alpha=0.1),
rgb(red=1, green=0, blue=0, alpha=0.2)),
col.DL=c(rgb(red=0, green=0, blue=1, alpha=0.5),
rgb(red=0, green=0, blue=1, alpha=0.9)),
breaks=seq(from=0, to=200, by=10))
#
left censored distribution comparison of normal, lognormal and gamma
#
Detection limit
DL <- 10
Generate 100 random data from a gamma distribution
obc <- rgamma(100, scale=20, shape=2)
remove the data below the detection limit
obc[obc<DL] <- -Inf
search for the parameters the best fit these truncated data
result_gamma <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored"”, distribution="gamma")

result_gamma
plot(result_gamma, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

result_lognormal <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="lognormal")

result_lognormal

plot(result_lognormal, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

result_normal <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="normal")

result_normal

plot(result_normal, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

compare_AICc(gamma=result_gamma,
lognormal=result_lognormal,
normal=result_normal)
#
Test for similarity in gamma left censored distribution between two
datasets
#

126 plot.IconoCorel

obcl <- rgamma(100, scale=20, shape=2)
Detection limit for sample 1 to 50
LDL <- 10
remove the data below the detection limit
obc1[obc1<LDL] <- -Inf
obc2 <- rgamma(100, scale=10, shape=2)
remove the data below the detection limit
obc2[obc2<LDL] <- -Inf
search for the parameters the best fit these censored data
resultl <- cutter(observations=obc1,
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored")
loglLik(result1)
plot(resultl, xlim=c(@, 200),
breaks=seq(from=0, to=200, by=10))
result2 <- cutter(observations=obc2,
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored")
loglik(result2)
plot(result2, xlim=c(@, 200),
breaks=seq(from=0, to=200, by=10))
result_totl <- cutter(observations=c(obc1, obc2),
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored")
loglik(result_totl)
plot(result_totl, xlim=c(@, 200),
breaks=seq(from=0, to=200, by=10))

compare_AICc(Separate=list(resultl, result2),
Common=result_totl, factor.value=1)

compare_BIC(Separate=list(resultl, result2),
Common=result_totl, factor.value=1)

End(Not run)

plot.IconoCorel Clean the dataframe before to be used with IC_threshold_matrix

Description

This function plots the data as a network. It returns an invisible object that can be used with visI-
graph from package visNetwork. https://fr.wikipedia.org/wiki/Iconographie_des_corrélations

Usage

S3 method for class 'IconoCorel'
plot(

plot.IconoCorel 127

X’
show.legend.direction = "bottomright”,
show.legend.strength = "topleft”,
title = "Correlation iconography”,
vertex.label.color = "black”,
vertex.label = NULL,
vertex.color = "white”,
vertex.label.cex = 1,
plot = TRUE

)

Arguments
X The correlation matrix to show

other options of plot.igraph()

show.legend.direction
the position of the legend of direction; FALSE to not show it

show.legend.strength
the position of the legend with intensity of correlation; FALSE to not show it

title the title of the plot

vertex.label.color
a vector with the colors of labels

vertex.label a vector with the labels

vertex.color a vector of colors
vertex.label.cex
a vector of cex

plot if TRUE, the plot is shown

Details

plot.IconoCorel checks and corrects the dataframe to be used with IC_threshold_matrix

Value

A igraph object

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References

Lesty, M., 1999. Une nouvelle approche dans le choix des régresseurs de la régression multiple en
présence d’interactions et de colinéarités. Revue de Modulad 22, 41-77.

128 plot.LD50

See Also

Other Iconography of correlations: IC_clean_data(), IC_correlation_simplify(), IC_threshold_matrix()

Examples

Not run:
library("HelpersMG")
es <- structure(list(Student = c("el1”, "e2", "e3", "e4", "e5", "e6", "e7", "e8"),
Mass = c(52, 59, 55, 58, 66, 62, 63, 69),
Age = c(12, 12.5, 13, 14.5, 15.5, 16, 17, 18),
Assiduity = ¢(12, 9, 15, 5, 11, 15, 12, 9),
Note = ¢(5, 5, 9, 5, 13.5, 18, 18, 18)),
row.names = c(NA, -8L), class = "data.frame")

es

df <- IC_clean_data(es, debug = TRUE)

cor_matrix <- IC_threshold_matrix(data=df, threshold = NULL, progress=FALSE)
cor_threshold <- IC_threshold_matrix(data=df, threshold = 0.3)
par(mar=c(1,1,1,1))

set.seed(4)

library("igraph")

library("visNetwork™)

kk <- plot(cor_threshold, vertex.color="red")

it can be shown also with the visNetwork package

visIgraph(kk)

cor_threshold_Note <- IC_correlation_simplify(matrix=cor_threshold, variable="Note")
plot(cor_threshold_Note)

You can record the position of elements and use them later
ly <- layout_nicely(kk)

plot(cor_threshold, vertex.color="red"”, layout=ly)

End(Not run)

plot.LD50@ Plot results of LD50() that best describe LD50

Description

Plot the estimates that best describe lethality of doses.

Usage

S3 method for class 'LD50Q'
plot(
X’

las.x =1,

plot.LD50 129

las.y = 1,

lab.PT = "LD50",

at = NULL,

lab.TRD = paste@("Transitional range of doses 1=", 1 x 100, "%"),
col.TRD = "gray"”,

col.TRD.CI = rgh(0.8, 0.8, 0.8, 0.5),

col.PT.CI = rgb(0.8, 0.8, 0.8, 0.5),

show.CI = TRUE

)
Arguments
X A result file generated by IC50()
Parameters for plot()
las.x las parameter for x axis
las.y las parameter for y axis
lab.PT Label to describe pivotal dose
at Position of ticks in x-axis
lab.TRD Label to describe transitional range of dose
col.TRD The color of TRD
col.TRD.CI The color of CI of TRD based on range.CI
col.PT.CI The color of CI of PT based on range.CI
show. CI Do the CI for the curve should be shown
Details

plot.LD50 plot result of IC50() that best describe IC50

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other LD50 functions: LD5@(), LD5@_MHmcmc (), LD50_MHmcmc_p (), loglLik.LD50@(), predict.LD50()

Examples

Not run:

data <- data.frame(Doses=c(80, 120, 150, 150, 180, 200),
Alive=c(10, 12, 8, 6, 2, 1),

Dead=c(@, 1, 5, 6, 9, 15))

LD50_logistic <- LD50@(data, equation="logistic")

130

predict(LD50_logistic, doses=c(140, 170))
plot(LD5@_logistic, xlim=c(Q, 300))

End(Not run)

plot. mcmcComposite

plot.mcmcComposite Plot the result of a mecmcComposite object

Description

Plot the results within a mcmcComposite object.

If scale.prior is TRUE, another scale is shown at right.

legend can take these values:

FALSE, TRUE, topleft, topright, bottomleft, bottomright, c(x=, y=)

Usage
S3 method for class 'mcmcComposite’
plot(
X,
chains = "all",

parameters = 1,
transform = NULL,

scale.prior =

TRUE,

legend = "topright”,
ylab = "Posterior density”,

las = 1,
bty = lln”,

show.prior = TRUE,
show.posterior.density = TRUE,

col.prior = "red”,
lty.prior =1,
lwd.prior = 1,
what = "Posterior”,

col.posterior
lty.posterior
lwd.posterior

= colorRampPalette(c("blue”, "grey"), alpha = 0.001),

:'I,
1

show.yaxis.prior = TRUE,

ylab.prior = "Prior density”
)
Arguments
X A mcmcComposite object
Graphical parameters to be sent to hist() or plot()
chains The chains to use

plot. mcmcComposite 131

parameters Name of parameters or "all"

transform Function to be used to transform the variable
scale.prior If TRUE, the prior is scaled at the same size as posterior
legend If FALSE, the legend is not shown; see description
ylab y-label for posterior

las las parameter (orientation of y-axis graduation)

bty Design of box for Markov Chain plot

show.prior Should the prior be shown?

show.posterior.density
Should the posterior density be shown?

col.prior Color for prior curve

lty.prior Type of line for prior curve
lwd.prior Width of line for prior curve

what can be Posterior, MarkovChain or LnL

col.posterior Color for posterior histogram
lty.posterior Type of line for posterior histogram

lwd.posterior Width of line for posterior histogram

show.yaxis.prior
Should the y-axis for prior be shown

ylab.prior y-label for prior

Details

plot.mcmcComposite plots the result of a MCMC search

Value

None

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other mcmcComposite functions: MHalgoGen (), as.mcmc.mcmcComposite(), as.parameters(),
as.quantiles(), merge.mcmcComposite(), plot.PriorsmemcComposite(), setPriors(), summary.mcmcComposite()

132 plot. mcmcComposite

Examples

Not run:

library(HelpersMG)

require(coda)

x <- rnorm(30, 10, 2)

dnormx <- function(data, x) {

data <- unlist(data)

return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))

3

parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),
Prior1=c(10, 0.5), Prior2=c(2, 0.5),
SDProp=c(1, 1),
Min=c(-3, @), Max=c(100, 10),
Init=c(10, 2), stringsAsFactors = FALSE,
row.names=c('mean', 'sd'))

mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=x,
adaptive = TRUE,
likelihood=dnormx, n.chains=4,
n.adapt=100, thin=1, trace=1)
plot(memc_run, xlim=c(@, 20), parameters="mean")
plot(memc_run, xlim=c(@, 10), parameters="sd")
plot(x=mcmc_run, what="MarkovChain”, ylim=c(@, 15), parameters="mean",
col.posterior = colorRampPalette(c("blue”, "grey"), alpha = 0.001)
(mcmc_run$parametersMCMC$n. chains))
plot(memc_run, what="MarkovChain"”, ylim=c(@, 10), parameters="sd",
col.posterior = colorRampPalette(c("blue”, "grey"”), alpha = 0.001)
(mcmc_run$parametersMCMC$n. chains))
plot(memc_run, what="LnL",
col.posterior = colorRampPalette(c("blue”, "grey"), alpha = 0.001)
(mcmc_run$parametersMCMC$n. chains))
mcmcforcoda <- as.mecmc(memc_run)
heidel.diag(mcmcforcoda)
raftery.diag(mcmcforcoda)
autocorr.diag(mcmcforcoda)
acf(mcmcforcodal[1]]1[, "mean”"], lag.max=20, bty="n", las=1)
acf(memcforcodal[1]1][,"sd"], lag.max=20, bty="n", las=1)
batchSE (mcmcforcoda, batchSize=100)
The batch standard error procedure is usually thought to
be not as accurate as the time series methods used in summary
summary (mcmcforcoda)$statistics[,”"Time-series SE"]
summary (mcmc_run)
as.parameters(mcmc_run)
lastp <- as.parameters(mcmc_run, index="last")
parameters_mcmc[,"Init"] <- lastp
The n.adapt set to 1 is used to not record the first set of parameters
then it is not duplicated (as it is also the last one for
the object mcmc_run)
mcmc_run2 <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=x,
adaptive = TRUE,
likelihood=dnormx, n.chains=1, n.adapt=1, thin=1, trace=1)
mcmc_run3 <- merge(mcmc_run, mcmc_run2)

plot. mcmcComposite 133

#i#H#H#HH# no adaptation, n.adapt must be 0

parameters_mcmc[,"Init"] <- c(mean(x), sd(x))

mcmc_run3 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
adaptive = TRUE,

likelihood=dnormx, n.chains=1, n.adapt=0, thin=1, trace=1)

S HEHHH HEHHEEHEE AR
Example with transform
AR AR

X.1<-rnorm(6000, 2.4, 0.6)
X.2<-rlnorm(10000, 1.3,0.1)

X<-c(x.1, x.2)
hist(X,100,freq=FALSE, ylim=c(0,1.5))
Lnormlnorm <- function(par, val) {
p <- invlogit(par["p"1])
return(-sum(log(p*dnorm(val, par["m1"], abs(par[”s1"]), log = FALSE)+
(1-p)*dlnorm(val, par["m2"], abs(par["s2"]), log = FALSE))))
3
Mean 1
ml=2.3; s1=0.5
Mean 2
m2=1.3; s2=0.1
proportion of category 1 - logit transform
p=0

par<-c(ml=m1, sl=s1, m2=m2, s2=s2, p=p)

result2<-optim(par, Lnormlnorm, method="BFGS", val=X,
hessian=FALSE, control=list(trace=1))

lines(seq(from=0, to=5, length=100),
dnorm(seq(from=0, to=5, length=100),
result2$par["m1"], abs(result2$par[”s1"]1)), col="red")

lines(seq(from=0, to=5, length=100),
dlnorm(seq(from=0, to=5, length=100),
result2$par["m2"], abs(result2$par[”s2"]1)), col="green")

p <- invlogit(result2$par["p"]1)
paste("Proportion of Gaussian data”, p)

lines(seq(from=0, to=5, length=100),
pxdnorm(seq(from=0, to=5, length=100),
result2$par["m1"”], result2$par["s1"]1)+
(1-p)*dlnorm(seq(from=0, to=5, length=100),
result2$par["m2"], result2$par[”s2"]), col="blue")

parameters_mcmc <- data.frame(Density=c('dunif', 'dunif', 'dunif', 'dunif', 'dunif'),
Priori=c(0, 0.001, 0, 0.001, -3),
Prior2=c(10, 10, 10, 10, 3),

134 plot. mcmcComposite

SDProp=c(1, 1, 1, 1, 1),

Min=c(0, 0.001, @, 0.001, -3),

Max=c(10, 10, 1@, 10, 3),

Init=result2$par, stringsAsFactors = FALSE,
row.names=c('m1', 's1', 'm2', 's2', 'p'))

mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, val=X,
parameters_name = "par”,
adaptive = TRUE,
likelihood=Lnormlnorm, n.chains=1,
n.adapt=100, thin=1, trace=100)
plot(memc_run, parameters="m1", breaks=seq(from=0, to =10, by=0.1),
legend=c(x=6, y=3.10))
plot(mecmc_run, parameters="p", transform=invlogit, xlim=c(0,1),
breaks=seq(from=0, to=1, by=0.01), legend=c(x=0.6, y=10))
plot(mecmc_run, parameters="p", xlim=c(-3,3),
breaks=seq(from=-3, to =3, by=0.05), legend=c(x=1, y= 3.10))
plot(memc_run, parameters="p", what="MarkovChain")
plot(mecmc_run, parameters="p", transform=invlogit, what="MarkovChain",
ylim=c(0, 1))
plot(memc_run, what="1nl", col.posterior = "black")

parameters_mcmc <- data.frame(Density=c('dunif', 'dunif', 'dunif', 'dunif', 'dnorm'),
Prior1=c(@, 0.001, @, 0.001, 0.5),
Prior2=c(10, 10, 10, 10, 1),
SDProp=c(1, 1, 1, 1, 1),
Min=c(0, 0.001, 0, 0.001, -3),
Max=c(10, 10, 10, 10, 3),
Init=result2$par, stringsAsFactors = FALSE,
row.names=c('m1', 's1', 'm2', 's2', 'p"))

mcmc_run_pnorm <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, val=X,
parameters_name = "par”,
adaptive = TRUE,
likelihood=Lnormlnorm, n.chains=1,
n.adapt=100, thin=1, trace=100)
plot(mecmc_run_pnorm, parameters="m1", breaks=seq(from=0, to =10, by=0.1),
legend=c(x=6, y=0.10))
plot(mecmc_run_pnorm, parameters="p", transform=invlogit, xlim=c(0,1),
breaks=seq(from=0, to=1, by=0.01), legend=c(x=0.6, y=0.10))
plot(x=mcmc_run_pnorm, parameters="p"”, xlim=c(-3,3),
breaks=seq(from=-3, to =3, by=0.05), legend=c(x=1, y= 0.10))

Note that it is more logic to use beta distribution for p as a

proportion. However p value must be checked to be used in optim
The use of logit transform can be a problem because it can stuck
the p value to 1 or @ during fit.

Lnormlnorm <- function(par, val) {
p <= par["p"]
return(-sum(log(p*xdnorm(val, par["m1"], abs(par[”s1"]), log = FALSE)+
(1-p)*dlnorm(val, par["m2"], abs(par["”s2"]), log = FALSE))))

plot. mcmcComposite 135

Example of beta distribution

Mean is alpha/(alphatbeta)
Variance is (alpha*beta)/((alphatbeta)”2x(alphatbeta+1))
alpha = 5
beta = 9
plot(x = seq(0.0001, 1, by = .0001),
y = dbeta(seq(0.0001, 1, by = .0001), alpha, beta),
type = "1", ylab="Density"”, xlab="p", bty="n")
points(x=alpha/(alphatbeta), y=0, pch=4)
segments(x@=alpha/(alphatbeta)-sqrt((alphaxbeta)/((alphatbeta)*2x(alphatbeta+1))),
x1=alpha/(alphatbeta)+sqrt((alphaxbeta)/((alphatbeta)”2*(alphatbeta+1))),
y0=0, y1=0)

Use of optim with L-BFGS-B to limit p between @ and 1 and s > @

Mean 1

m1=2.3; s1=0.5

Mean 2

m2=1.3; s2=0.1

proportion of category 1 - logit transform
p=0.5

par <- c(ml=ml1, s1=s1, m2=m2, s2=s2, p=p)

result2 <- optim(par, Lnormlnorm, method="L-BFGS-B", val=X,
lower = c(-Inf, @, -Inf, 0, 0),
upper = c(Inf, Inf, Inf, Inf, 1),
hessian=FALSE, control=list(trace=1))

parameters_mcmc <- data.frame(Density=c('dunif', 'dunif', 'dunif', 'dunif', 'dbeta'),
Prior1=c(@, 0.001, @, 0.001, 5),
Prior2=c(10, 10, 10, 10, 9),
SDProp=c(1, 1, 1, 1, 1),
Min=c(0, 0.001, @, 0.001, 0),
Max=c(10, 10, 10, 10, 1),
Init=c('ml' = 2.4,

's1' = 0.6,

'm2' = 1.3,

's2' = 0.1,

'p' = 0.5), stringsAsFactors = FALSE,
row.names=c('m1', 's1', 'm2', 's2', 'p'))

mcmc_run_pbeta <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, val=X,
parameters_name = "par”,
adaptive = TRUE,
likelihood=Lnormlnorm, n.chains=1,
n.adapt=100, thin=1, trace=100)
plot(mecmc_run_pbeta, parameters="m1", breaks=seq(from=0, to =10, by=0.1),
legend=c(x=6, y=2.10))
plot(memc_run_pbeta, parameters="p", xlim=c(0,1),

136 plot.PriorsmcmcComposite

breaks=seq(from=0, to=1, by=0.01), legend=c(x=0.6, y=6))

End(Not run)

plot.PriorsmcmcComposite
Plot a prior defined with setPriors function

Description

Create a ggplot graph with prior.
The function makes minimal effort to decorate the plot.

Usage
S3 method for class 'PriorsmcmcComposite’
plot(x, parameter =1, ...)
Arguments
X The priors to show
parameter The name or rank of prior to show
Not used
Details

plot.PriorsmcmcComposite plot a prior

Value

A ggplot object

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other mcmcComposite functions: MHalgoGen(), as.mcmc.mcmcComposite(), as.parameters(),
as.quantiles(), merge.mcmcComposite(), plot.mcmcComposite(), setPriors(), summary.mcmcComposite()

plot_add 137

Examples

Not run:
library("HelpersMG")
par <- c(a0=10, al=2, b2=20, b1=-1)
rules <- rbind(data.frame(Name=""a", Min=0, Max="xx2"),
data.frame(Name="b", Min=0, Max=100))
p <- setPriors(par=par, se=NULL, density="dgamma"”, rules=rules)
plot(p, parameter="a@")
g <- plot(p, parameter="b1")
g + geom_line(color = "red") + theme_bw() +
theme(plot.margin=unit(c(2,1,1,1), 'cm"),
panel.border = element_blank(),
axis.line.x.bottom = element_line(colour = "black"),
axis.line.y.left = element_line(colour = "black")) +
labs(title="Parameter: b1") + theme(plot.title = element_text(hjust = 0.5))

End(Not run)

plot_add Add a plot to a previous one

Description

To plot data, just add use it as a normal plot. It will plot the new data without axes, or labels for
axes.
This function is complementary to matlines() and matpoints() from package graphics.

Usage
plot_add(...)

Arguments

Parameters for plot()

Details

plot_add adds a plot to a previous one

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail.com>

138 plot_errbar

See Also

Other plot and barplot functions: ScalePreviousPlot(), barplot_errbar(), plot_errbar(),
show_name ()

Examples

Not run:
plot(x=1:100, y=sin(1:100), type="1", bty="n", xlim=c(1,200), xlab="x", ylab="y")
plot_add(x=1:200, y=cos(1:200), type="1", bty="n", col="red")

End(Not run)

plot_errbar Plot a xy graph with error bar on x and/or y

Description

To plot data, just use it as a normal plot but add the errbar.x and errbar.y values or errbar.x.minus,
errbar.x.plus if bars for x axis are asymetric and errbar.y.minus, errbar.y.plus if bars for y axis are
asymetric. Use x.plus, X.minus, y.plus and y.minus to set absolut limits for error bars. Note that
x.plus and x.minus have priority over errbar.x, errbar.x.minus and errbar.x.plus and that y.plus and
y.minus have priority over errbar.y, errbar.y.minus and errbar.y.plus.

The parameter errbar.y.polygon=TRUE permits to define error as an envolop for y axis.

Usage

plot_errbar(

L

errbar.x = NULL,
errbar.y = NULL,
errbar.x.plus = NULL,
errbar.x.minus = NULL,
errbar.y.plus = NULL,
errbar.y.minus = NULL,
x.plus = NULL,

x.minus = NULL,

y.plus = NULL,

y.minus = NULL,
errbar.tick = 1/50,

errbar.lwd = par("lwd"),
errbar.lty = par("lty"),
errbar.col = par("fg"),

errbar.y.polygon = FALSE,
errbar.y.polygon.list = list(NULL),
names = NULL,

add = FALSE

plot_errbar 139

Arguments
Parameters for plot() such as main= or ylim=
errbar.x The length of error bars for x. Recycled if necessary.
errbar.y The length of error bars for y. Recycled if necessary.

errbar.x.plus The length of positive error bars for x. Recycled if necessary.
errbar.x.minus The length of negative error bars for x. Recycled if necessary.
errbar.y.plus The length of positive error bars for y. Recycled if necessary.

errbar.y.minus The length of negative error bars for y. Recycled if necessary.

x.plus The absolut position of the positive error bar for x. Recycled if necessary.

X.minus The absolut position of the negative error bar for x. Recycled if necessary.

y.plus The absolut position of the positive error bar for y. Recycled if necessary.

y.minus The absolut position of the nagative error bar for y. Recycled if necessary.

errbar.tick Size of small ticks at the end of error bars defined as a proportion of total width
or height graph size.

errbar. lwd Error bar line width, see par("lwd")

errbar.lty Error bar line type, see par("lwd")

errbar.col Error bar line color, see par("col")

errbar.y.polygon

If true, the errors are shown as a filed polygon.
errbar.y.polygon.list

List of parameters to be used for polygon.

names The names of the points to be used with show_name().
add If true, add the graph to the previous one.
Details

plot_errbar plot a xy graph with error bar on x and/or y

Value

A list with X, y and names for points

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

barplot_errorbar

Other plot and barplot functions: ScalePreviousPlot(), barplot_errbar(), plot_add(), show_name()

140 predict.LD50

Examples

Not run:
plot_errbar(1:100, rnorm(100, 1, 2),
xlab="axe x", ylab="axe y", bty="n", xlim=c(1,100),
errbar.x=2, errbar.y=rnorm(100, 1, 0.1))
x <- 1:100
plot_errbar(x=1:100, rnorm(100, 1, 2),
xlab="axe x", ylab="axe y", bty="n", xlim=c(1,100),
X.minus=x-2, x.plus=x+2)
X <- 1:100
plot_errbar(x=1:100, rnorm(100, 1, 2),
xlab="axe x", ylab="axe y", bty="n",
pch=21, bg="white",
Xx.minus=x-10, x.plus=x+10)
x <= (1:200)/10
y <= sin(x)
plot_errbar(x=x, y=y, xlab="axe x", ylab="axe y", bty="n", xlim=c(1,20),
y.minus=y-1, y.plus=y+1, ylim=c(-3, 3), type="1",
errbar.y.polygon=TRUE,
errbar.y.polygon.list=1list(border=NA, col=rgh(@, 0, 90, 0.5)))

End(Not run)

predict.LD50 Estimate survival according to doses

Description

Estimate survival according to doses.
The returned data.frame has the following components:
doses, SE, survival, Cl.minus.sexratio, CI.plus.sexratio, range.CI

Usage

S3 method for class 'LD50'
predict(

object,

doses = NULL,

SE = NULL,

range.CI = 0.95,

replicates = 1000,

progressbar = FALSE,

print.cutter 141

Arguments
object A result file generated by LD50
doses A vector of temperatures
SE The standard error for doses, optional
range.CI The range of confidence interval for estimation, default=0.95
replicates Number of replicates to estimate CI
progressbar Logical. Does a progression bar must be shown
Not used
Details

predict.LD50 Estimate survival according to doses

Value

A data.frame with informations about survival

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other LD50 functions: LD5@ (), LD5@_MHmcmc (), LD5@_MHmcme_p (), loglik.LD50(), plot.LD50@()

Examples

Not run:

#' data <- data.frame(Doses=c(80, 120, 150, 150, 180, 200),
Alive=c(10, 12, 8, 6, 2, 1),

Dead=c(@, 1, 5, 6, 9, 15))

LD50_logistic <- LD50@(data, equation="logistic")
predict(LD50_logistic, doses=c(140, 170))
plot(LD50@_logistic

End(Not run)

print.cutter Print results of cutter that best describe distribution

Description

Print the estimates of cut distribution.

142 print.cutter

Usage
S3 method for class 'cutter'
print(x, silent = FALSE, ...)
Arguments
X A result file generated by cutter
silent If TRUE does not show the outpout
Not used
Details

print.cutter plot result of cutter

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail . com>

See Also

Other Distributions: cutter(), dSnbinom(), dbeta_new(), dcutter(), dggamma(), loglLik.cutter(),
plot.cutter(), r2norm(), rcutter(), rmnorm(), rnbinom_new()

Examples

Not run:

library(HelpersMG)

#

right censored distribution with gamma distribution

#

Detection limit

DL <- 100

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc>DL] <- +Inf

search for the parameters the best fit these censored data

result <- cutter(observations=obc, upper_detection_limit=DL,
cut_method="censored")

result

plot(result, xlim=c(@, 150), breaks=seq(from=0, to=150, by=10))
#

The same data seen as truncated data with gamma distribution
#

obc <- obc[is.finite(obc)]
search for the parameters the best fit these truncated data

print.cutter 143

result <- cutter(observations=obc, upper_detection_limit=DL,
cut_method="truncated")

result

plot(result, xlim=c(@, 150), breaks=seq(from=0, to=150, by=10))

#

left censored distribution with gamma distribution

#

Detection limit

DL <- 10

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc<DL] <- -Inf

search for the parameters the best fit these truncated data

result <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored")

result

plot(result, xlim=c(@, 200), breaks=seq(from=0, to=200, by=10))
#

left and right censored distribution

#

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

Detection limit

LDL <- 10

remove the data below the detection limit

obc[obc<LDL] <- -Inf

Detection limit

UDL <- 100

remove the data below the detection limit

obc[obc>UDL] <- +Inf

search for the parameters the best fit these censored data

result <- cutter(observations=obc, lower_detection_limit=LDL,
upper_detection_limit=UDL,
cut_method="censored")

result

plot(result, xlim=c(@, 150), col.DL=c("black”, "grey"),

col.unobserved=c("green”, "blue"),
breaks=seq(from=0, to=150, by=10))

#

Example with two values for lower detection limits

corresponding at two different methods of detection for example

with gamma distribution

#

obc <- rgamma(50, scale=20, shape=2)

Detection limit for sample 1 to 50

LDLT <- 10

remove the data below the detection limit

obc[obc<LDL1] <- -Inf

obc2 <- rgamma(50, scale=20, shape=2)

Detection limit for sample 1 to 50

LDL2 <- 20

remove the data below the detection limit

144

obc2[obc2<LDL2] <- -Inf

obc <- c(obc, obc2)

search for the parameters the best fit these censored data
result <- cutter(observations=obc,

print.cutter

lower_detection_limit=c(rep(LDL1, 50), rep(LDL2, 50)),

cut_method="censored")
result
It is difficult to choose the best set of colors
plot(result, xlim=c(@, 150), col.dist="red"”,
col.unobserved=c(rgb(red=1, green=0, blue=0, alpha=0.1),
rgb(red=1, green=0, blue=0, alpha=0.2)),
col.DL=c(rgb(red=0, green=0, blue=1, alpha=0.5),
rgb(red=0, green=0, blue=1, alpha=0.9)),
breaks=seq(from=0, to=200, by=10))
#
left censored distribution comparison of normal, lognormal and gamma
#
Detection limit
DL <- 10
Generate 100 random data from a gamma distribution
obc <- rgamma(100, scale=20, shape=2)
remove the data below the detection limit
obc[obc<DL] <- -Inf
search for the parameters the best fit these truncated data
result_gamma <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="gamma")

result_gamma
plot(result_gamma, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

result_lognormal <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="lognormal”)

result_lognormal

plot(result_lognormal, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

result_normal <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored”, distribution="normal")

result_normal

plot(result_normal, xlim=c(@, 250), breaks=seq(from=0, to=250, by=10))

compare_AICc(gamma=result_gamma,
lognormal=result_lognormal,
normal=result_normal)

#

Test for similarity in gamma left censored distribution between two

datasets

#

obc1 <- rgamma(100, scale=20, shape=2)

Detection limit for sample 1 to 50

LDL <- 10

remove the data below the detection limit

obc1[obc1<LDL] <- -Inf

obc2 <- rgamma(100, scale=10, shape=2)

remove the data below the detection limit

qvlmer 145

obc2[obc2<LDL] <- -Inf
search for the parameters the best fit these censored data
resultl <- cutter(observations=obc1,
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored")
loglLik(result1)
plot(resultl, xlim=c(@, 200),
breaks=seq(from=0, to=200, by=10))
result2 <- cutter(observations=obc2,
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored")
loglLik(result2)
plot(result2, xlim=c(@, 200),
breaks=seq(from=0, to=200, by=10))
result_totl <- cutter(observations=c(obc1, obc2),
distribution="gamma",
lower_detection_limit=LDL,
cut_method="censored")
loglik(result_totl)
plot(result_totl, xlim=c(@, 200),
breaks=seq(from=0, to=200, by=10))

compare_AICc(Separate=list(resultl, result2),
Common=result_totl, factor.value=1)

compare_BIC(Separate=list(resultl, result2),
Common=result_totl, factor.value=1)

End(Not run)

gvlmer Quasi Variances for Imer Model Coefficients

Description

Computes a set of quasi variances (and corresponding quasi standard errors) for estimated model
coefficients relating to the levels of a categorical (i.e., factor) explanatory variable. For details
of the method see Firth (2000), Firth (2003) or Firth and de Menezes (2004). Quasi variances
generalize and improve the accuracy of “floating absolute risk” (Easton et al., 1991). This device
for economical model summary was first suggested by Ridout (1989).

Modified from qvcalc.lm() of packages qvcalc by David Firth, d.firth@warwick.ac.uk

Usage

gvlmer(object, factorname = NULL, coef.indices = NULL, dispersion = NULL, ...)

146 qvimer

Arguments
object A object obtained using Imer from package Ime4
factorname Either NULL, or a character vector of length 1

coef.indices Either NULL, or a numeric vector of length at least 3

dispersion An optional scalar multiplier for the covariance matrix, to cope with overdisper-
sion for example

Other arguments to pass to gqvcalc.default

Details

qvlmer is Quasi Variances for Imer Model Coefficients

Value

A list of class qv.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References

Easton, D. F, Peto, J. and Babiker, A. G. A. G. (1991) Floating absolute risk: an alternative to
relative risk in survival and case-control analysis avoiding an arbitrary reference group. Statistics
in Medicine 10, 1025-1035.

Firth, D. (2000) Quasi-variances in Xlisp-Stat and on the web. Journal of Statistical Software 5.4,
1-13. At http://www.jstatsoft.org

Firth, D. (2003) Overcoming the reference category problem in the presentation of statistical mod-
els. Sociological Methodology 33, 1-18.

Firth, D. and de Mezezes, R. X. (2004) Quasi-variances. Biometrika 91, 65-80.
McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Menezes, R. X. de (1999) More useful standard errors for group and factor effects in generalized
linear models. D.Phil. Thesis, Department of Statistics, University of Oxford.

Ridout, M.S. (1989). Summarizing the results of fitting generalized linear models to data from
designed experiments. In: Statistical Modelling: Proceedings of GLIMS89 and the 4th International
Workshop on Statistical Modelling held in Trento, Italy, July 17-21, 1989 (A. Decarli et al., eds.),
pp 262-269. New York: Springer.

Examples

Not run:

X <= rnorm(100)

y <= rnorm(100)

G <- as.factor(sample(c("A", "B", "C", "D"), 100, replace = TRUE))
R <- as.factor(rep(1:25, 4))

library(1lme4)

r2norm 147

m <- lmer(y ~x + G+ (1 | R))
gvlmer(m, factorname="G")

End(Not run)

r2norm Random generation for Gaussian distributions different at left and
right

Description

Random generation for Gaussian distributions different at left and right

Usage

r2norm(n, mean = @, sd_low = 1, sd_high = 1)

Arguments
n number of observations.
mean vector of means
sd_low vector of standard deviations below the mean.
sd_high vector of standard deviations above the mean.
Details

r2norm returns random numbers for Gaussian distributions different at left and right

Value

r2norm returns random numbers

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: cutter (), dSnbinom(), dbeta_new(), dcutter(), dggamma(), loglLik.cutter(),
plot.cutter(), print.cutter(), rcutter(), rmnorm(), rnbinom_new()

Examples

Not run:
n <- r2norm(1000, mean=25, sd_low=2, sd_high=10)

hist(n)

End(Not run)

148

RandomFromHessianOrMCMC

RandomFromHessianOrMCMC

Random numbers based on Hessian matrix or MCMC

Description

If it is very long, use silent parameter to check if something goes wrong.

If replicates is NULL or is 0, or if method is NULL, parameters are just copied into data.frame.

If method is NULL, replicate.CI is set to 0.

If method is hessian, it will generate replicate.CI random numbers using Hessian matrix with co-

variance.

If method is se, it will generate replicate.CI random numbers using SE values then without covari-

ance.

If method is memc, it will generate replicate.CI random numbers using random samples of the
MCMC or the regularThin number if it is a number.

Usage

RandomFromHessianOrMCMC(

se = NULL,

Hessian =

NULL,
mcmc = NULL,

chain = "all",
regularThin = TRUE,

MinMax =

NULL,

fitted.parameters = NULL,
fixed.parameters = NULL,
method = NULL,

probs = ¢c(0.025, 0.5, 0.975),

replicates
fn = NULL,

10000,

silent = FALSE,

ParTofn =

Arguments

se
Hessian
meme

chain
regularThin

MinMax

uparn ,

A named vector with SE of parameters

An Hessian matrix

A result from MHalgogen()

MCMC chain to be used or "all"

If TRUE, use regular thin for MCMC or use a number

A data.frame with at least two columns: Min and Max and rownames being the
variable names

RandomFromHessianOrMCMC 149

fitted.parameters

The fitted parameters
fixed.parameters

The fixed parameters

method Can be NULL, "SE", "Hessian", "MCMC", or "PseudoHessianFromMCMC"
probs Probability for quantiles

replicates Number of replicates to generate the randoms

fn The function to apply to each replicate

silent Should the function display some information

ParTofn Name of the parameter to send random values to fn

Parameters send to fn function

Details

RandomFromHessianOrMCMC returns random numbers based on Hessian matrix or MCMC

Value

Returns a list with three data.frames named random, fn, and quantiles

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

Not run:

library(HelpersMG)

val <- rnorm(100, mean=20, sd=5)+(1:100)/10

Return -1n L of values in val in Gaussian distribution with mean and sd in par

fitnorm <- function(par, data) {

-sum(dnorm(data, par["mean”], abs(par[”sd"]), log = TRUE))

3

Initial values for search

p<-c(mean=20, sd=5)

fit the model

result <- optim(par=p, fn=fitnorm, data=val, method="BFGS", hessian=TRUE)

Using Hessian

df <- RandomFromHessianOrMCMC(Hessian=result$hessian,
fitted.parameters=result$par,
method="Hessian")$random

hist(df[, 11, main="mean"

hist(df[, 21, main="sd")

plot(df[, 11, df[, 2], xlab="mean"”, ylab="sd"”, las=1, bty="n")

Using MCMC

parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),
Prior1=c(10, 0.5), Prior2=c(2, 0.5), SDProp=c(0.35, 0.2),

Min=c(-3, @), Max=c(100, 10), Init=c(10, 2), stringsAsFactors = FALSE,

150 reutter

row.names=c('mean', 'sd'))

Use of trace and traceML parameters

trace=1 : Only one likelihood is printed

mcmc_run <- MHalgoGen(n.iter=50000, parameters=parameters_mcmc, data=val,

parameters_name = "par”,

likelihood=fitnorm, n.chains=1, n.adapt=100, thin=1, trace=1)

df <- RandomFromHessianOrMCMC(mcmc=mcmc_run, fitted.parameters=NULL,
method="MCMC") $random

hist(df[, 11, main="mean")

hist(df[, 2], main="sd")

plot(df[, 11, df[, 2], xlab="mean", ylab="sd"”, las=1, bty="n")

Return the two first elements of the MCMC
df <- RandomFromHessianOrMCMC(mcmc=mcmc_run, fitted.parameters=NULL,
method="MCMC", replicates = 2, regularThin = c(1, 2))$random

Using a function fn
fitnorm <- function(par, data, x) {
y=par["a"]*(x)+par["b"]
-sum(dnorm(data, y, abs(par[”sd"]1), log = TRUE))
3
p<-c(a=0.1, b=20, sd=5)
fit the model
X <= 1:100
result <- optim(par=p, fn=fitnorm, data=val, x=x, method="BFGS", hessian=TRUE)
Using Hessian
df <- RandomFromHessianOrMCMC(Hessian=result$hessian, fitted.parameters=result$par,
method="Hessian",
fn=function(par) (par["a"]x(x)+par["b"]))
plot(1:100, val)
lines(1:100, df$quantiles["50%", 1)
lines(1:100, df$quantiles["2.5%", 1, 1lty=2)
lines(1:100, df$quantiles["97.5%", 1, lty=2)

End(Not run)

rcutter Random values of unobserved values of cut distribution.

Description

Return n random numbers.

It can be used to get the posterior predictive distribution; see example.

If random_method is "ML", the parameter values obtained using maximum likelihood are used.

If random_method is "medianMCMC", the parameter values obtained using median of posterior
distribution are used.

If random_method is "MCMC", the parameter values are one sample of the MCMC posterior dis-
tribution.

if observed_detection_limit is set to TRUE, the number of random number is equal to the number
of observations; n is not used.

rcutter is the abbreviation for random-cutter.

reutter 151

Usage

rcutter(
cutter = stop("A result of cutter() must be provided”),
n=1,
lower_detection_limit = NULL,
upper_detection_limit = NULL,
method_cut = c("censored”, "truncated”),
observed_detection_limit = FALSE,
random_method = c("medianMCMC", "MCMC", "ML"),
index_mcmc = NULL

)

Arguments
cutter The fitted model obtained with cutter()
n number of random numbers

lower_detection_limit

The lower detection limit
upper_detection_limit

The upper detection limit

method_cut What method is used to cut the distribution: "censored", "truncated"?

observed_detection_limit
If TRUE, will use the pattern of detection limit as in observations

random_method How to get parameters; it can be "ML", "medianMCMC", or "MCMC"

index_mcmc For MCMC random_method, the index of data to be used.

Details

rcutter returns random values based on fitted distribution with cut.

Value

A vector with the random numbers.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: cutter(), dSnbinom(), dbeta_new(), dcutter(), dggamma(), logLik.cutter(),
plot.cutter(), print.cutter(), r2norm(), rmnorm(), rnbinom_new()

152 read_folder

Examples

Not run:

library(HelpersMG)

#

right censored distribution with gamma distribution

#

Detection limit

DL <- 100

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc>DL] <- +Inf

search for the parameters the best fit these censored data

result <- cutter(observations=obc, upper_detection_limit=DL,
cut_method="censored")

result

Posterior predictive distribution

r <- rcutter(cutter=result, upper_detection_limit=DL, n=100)

hist(r)

#

left censored distribution with gamma distribution

#

Detection limit

DL <- 10

Generate 100 random data from a gamma distribution

obc <- rgamma(100, scale=20, shape=2)

remove the data below the detection limit

obc[obc<DL] <- -Inf

search for the parameters the best fit these truncated data

result <- cutter(observations=obc, lower_detection_limit=DL,
cut_method="censored")

result

plot(result, breaks=seq(from=0, to=200, by=10))

r <- rcutter(cutter=result, n=100)

hist(r, breaks=seq(from=0, to=200, by=10))

r <- rcutter(cutter=result, lower_detection_limit=DL, n=100)

hist(r, breaks=seq(from=0, to=250, by=10))

With censored method, some values are replaced with +Inf or -Inf

any(is.infinite(r))

r <- rcutter(cutter=result, upper_detection_limit=DL, n=100,
method_cut="truncated")

With truncated method, the values below LDL or upper UDL are not present

any(is.infinite(r))

hist(r, breaks=seq(from=0, to=10, by=0.25))

r <- rcutter(cutter=result, observed_detection_limit=TRUE)

hist(r, breaks=seq(from=0, to=300, by=10))

End(Not run)

read_folder 153

read_folder Read files present in a folder and creates a list with the content of these

files

Description

To create a list, the syntax is:

datalist <- read_folder(folder=".", read=read.delim, header=FALSE)

It returns an error if the folder does not exist.

The names of the elements of the list are the filenames.

The parameter file can be used to predefine a list of file. If file is NULL, all the files of the
folder/directory are used.

Usage

read_folder(
folder = try(file.choose(), silent = TRUE),
file = NULL,
wildcard = "*.x",
read = read.delim,

Arguments
folder Where to search for files; can be or a file path or a folder path
file list of files
wildcard Define which files are to be read (examples: ".", ".xIs", "essai.txt"). It can be
also a vector with all filenames.
read Function used to read file. Ex: read.delim or read.xls from gdata package
Parameters send to the read function
Details

read_folder reads all files present in a folder

Value

Return a list with the data in the files of the folder (directory for windows users)

Author(s)

Marc Girondot <marc.girondot@gmail.com>

RectangleRegression

Examples

Not run:

library(HelpersMG)

Read all the .csv files from the current folder/directory

contentaslist <- read_folder(folder=".", wildcard="*.csv", read=read.csv2)

Read all the files from the current folder/directory
contentaslist <- read_folder(folder=".", wildcard="x*.x",
Read two files from the current folder/directory
files <- c("filenamel.csv”, "filename2.csv")
contentaslist <- read_folder(folder=".", wildcard=files, read=read.csv2)
To concvert the list into a single dataframe:

mydf <- do.call("rbind"”, contentaslist)

read=read.csv2)

End(Not run)

RectangleRegression Return parameters of rectangle regression

Description

Fit a line using least rectangle method.

Usage
RectangleRegression(
x1,
X2,
replicate = 1000,
xTnew = seq(from = min(x1), to = max(x1), length.out = 100)
)
Arguments
X1 The first series of data
X2 The second series of data
replicate Number of replicates for bootstrap
xTnew Values for x1 to generate x2
Details

RectangleRegression performs rectangle regression

Value

A list with parameters of rectangle regression

rmnorm

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

x1 <= runif (100, min=10, max=20)
X2 <= runif (100, min=10, max=20)+x1

rectreg <- RectangleRegression(x1, x2)

plot(x=x1, y=x2, bty="n", las=1, xlim=c(10, 20), ylim=c(20, 40))
abline(a=rectreg$par["Intercept”], b=rectreg$par["”Slope"], lwd=2)
par (xpd=FALSE)

lines(rectreg$x2new["xTnew”,], rectreg$x2new["50%", 1)
lines(rectreg$x2new["xTnew",], rectreg$x2new["2.5%", 1, lty=2)
lines(rectreg$x2new["xTnew",], rectreg$x2new["97.5%", 1, lty=2)

abline(a=rectreg$Intercept[1], b=rectreg$Slope[3], col="red")
abline(a=rectreg$Intercept[3], b=rectreg$Slope[1], col="red")

155

rmnorm Generate random numbers from the multivariate normal distribution

Description

rmnorm generate random numbers from a multivariate normal distribution.

Usage

rmnorm(n = 1, mean = rep(@, d), varcov)

Arguments
n the number of random vectors to be generated.
mean a vector with means of length d.
varcov a variance-covariance matrix with dimentions d * d.
Details

rmnorm Generate random numbers from the multivariate normal distribution

Value

For n > 1 rmnorm returns a matrix of n rows of random vectors, while for n = 1 rmnorm returns a

named random vector.

156 RM_add

Author(s)

Based on Imf package

See Also

Other Distributions: cutter(), dSnbinom(), dbeta_new(), dcutter(), dggamma(), logLik.cutter(),
plot.cutter(), print.cutter(), r2norm(), rcutter(), rnbinom_new()

Examples

Not run:
#Variance-covariance matrix
varcov <- matrix(c(2.047737e-03, 3.540039e-05, 0.0075178920, 3.540039e-05,
6.122832e-07, ©.0001299661, 7.517892e-03, 1.299661e-04, 0.0276005740), ncol = 3)
#Set names
nam <- c("a", "b", "c")
dimnames(varcov) <- list(nam, nam)
#Check positive definiteness (all positive eigenvalues = positive definite)
eigen(varcov) $values
#Mean
mean <- c(1, 0.3, 0.5)
#Generate n = 1 random vector
rmnorm(n = 1, mean = mean, varcov = varcov)
#Generate n = 10 random vectors
rmnorm(n = 10, mean = mean, varcov = varcov)
#Generate n = 1 random vectors when varcov is non-positive definite
#Non-positive definite varcov matrix
varcov2 <- matrix(c(2.04e-03, 3.54e-05, 7.52e-03, 3.54e-05, 6.15e-07,
1.30e-04, 7.52e-03, 1.30e-04, 2.76e-02), ncol = 3)
dimnames(varcov2) <- dimnames(varcov)
eigen(varcov2)
#Random vector
rmnorm(n = 1, mean = mean, varcov = varcov2)

End(Not run)

RM_add Create a results managment or add a value in a results managment to
an object

Description

Return original object with a new value or a new results managment.

Usage

RM_add(
x = stop("An object with results managment must be provided”),
RM = "RM",

RM_add 157

RMname = stop("A results managment name must be provided”),
valuename = NULL,

value = NULL
)
Arguments
X The object to add a results managment or a result in a results managment
RM The name of results managment stored
RMname The name of the results managment to be modified or created
valuename The name of the new value to be added
value The value to be added
Details

RM_add adds a results managment or a value in results managment to an object

Value

The original object with a new value in a results managment object or a new results managment

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Results Managment: RM_delete(), RM_duplicate(), RM_get (), RM_list()

Examples

Not run:

library("HelpersMG")

Let an object of class objclass being created

obj <- list(A=100, name="My object”)

class(obj) <- "objclass”

And now I create a RM to this object

obj <- RM_add(x=obj, RMname="NewAnalysis1")

RM_list(obj)

obj <- RM_add(x=obj, RMname="NewAnalysis2")

RM_list(obj)

obj <- RM_add(x=obj, RMname="NewAnalysis2", valuename="V1", value=100)
RM_get(x=obj, RMname="NewAnalysis2", valuename="V1")

obj <- RM_add(x=obj, RMname="NewAnalysis2", valuename="V1", value=200)
RM_get(x=obj, RMname="NewAnalysis2", valuename="V1")

obj <- RM_add(x=obj, RMname="NewAnalysis2", valuename="V2", value=300)
RM_get(x=obj, RMname="NewAnalysis2"”, valuename="V2")

RM_list(obj)

End(Not run)

158 RM_delete

RM_delete Delete a results managment or a result within a results managment
from an object

Description

Return the original object with the deleted results managment or result.

Usage
RM_delete(
x = stop("An object with results managment must be provided”),
RM = "RM",

RMname = stop("A name must be provided"),
valuename = NULL

)
Arguments
X The object to delete a results managment
RM The name of results managment stored
RMname The name of the result that will be deleted or its rank
valuename The name of the result that will be deleted
Details

RM_delete deletes a results managment or a result within a results managment from an object

Value

The original object with the deleted results managment

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other Results Managment: RM_add (), RM_duplicate(), RM_get(), RM_list()

Examples

Not run:

library("HelpersMG")

Let an object of class objclass being created
obj <- list(A=100, name="My object”)

class(obj) <- "objclass”

And now I create a RM to this object

RM_duplicate 159

obj <- RM_add(x=obj, RMname="NewAnalysis1")

obj <- RM_add(x=obj, RMname="NewAnalysis2")

RM_list(obj)

obj <- RM_delete(x=obj, RMname="NewAnalysis1")

RM_list(obj)

obj <- RM_delete(x=0obj, RMname=1)

RM_list(obj)

obj <- RM_add(x=obj, RMname="NewAnalysis1"”, valuename="V1", value=100)
RM_list(obj)

RM_get(x=0bj, RMname="NewAnalysisl1”, valuename="V1")

obj <- RM_add(x=obj, RMname="NewAnalysis1"”, valuename="V2", value=200)
RM_get(x=obj, RMname="NewAnalysisl1”, valuename="V2")

obj <- RM_delete(x=obj, RMname="NewAnalysisl1”, valuename="V1")
RM_get(x=obj, RMname="NewAnalysis1", valuename="V1")

RM_get(x=obj, RMname="NewAnalysisl1”, valuename="V2")

End(Not run)

RM_duplicate Duplicate a results managment within an object.

Description

RM_duplicate duplicates a results managment within an object.

Usage

RM_duplicate(
x = stop("An object with results managment must be provided”),

RM = "RM",
RMnamefrom = 1,
RMnameto = 2
)
Arguments
X The object to duplicate a results managment
RM The name of results managment stored
RMnamefrom The name of the results managment to be duplicated
RMnameto The new name of the results managment
Details

RM_duplicate duplicates a results managment within an object

Value

The original object with a duplicated results managment.

160 RM_get

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other Results Managment: RM_add (), RM_delete(), RM_get (), RM_list()

Examples

Not run:

library("HelpersMG")

Let an object of class objclass being created

obj <- 1list(A=100, name="My object"”)

class(obj) <- "objclass”

And now I create a RM to this object

obj <- RM_add(x=obj, RMname="NewAnalysisl1")

RM_list(obj)

obj <- RM_duplicate(x=obj, RMnamefrom="NewAnalysis1”, RMnameto="NewAnalysis2")
RM_list(obj)

End(Not run)

RM_get Get a value in a results managment to an object

Description

Return the value valuename of the results managment RMname.

Usage

RM_get(
x = stop("An object with results managment must be provided”),
RM = "RM”,
RMname = NULL,
valuename = NULL

)

Arguments
X The object in which to get a result in a results managment
RM The name of results managment stored
RMname The name of the results managment to be read
valuename The name of the value to be read

Details

RM_get gets a value in results managment to an object

RM_Iist 161

Value

Return a value in a results managment object

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Results Managment: RM_add (), RM_delete(), RM_duplicate(),RM_list()

Examples

Not run:

library("HelpersMG")

Let an object of class objclass being created

obj <- 1list(A=100, name="My object"”)

class(obj) <- "objclass”

And now I create a RM to this object

obj <- RM_add(x=obj, RMname="NewAnalysisl1")
RM_list(obj)

obj <- RM_add(x=obj, RMname="NewAnalysis2")
RM_list(obj)

obj <- RM_add(x=obj, RMname="NewAnalysis2", valuename="V1", value=100)
RM_get(x=obj, RMname="NewAnalysis2"”, valuename="V1")

End(Not run)

RM_list Return the list of results managment of an object.

Description

RM_list returns the list of results managment of an object.

Usage

RM_list(
x = stop("An object with results managment must be provided”),
RM = "RM",
silent = FALSE,
max.level = FALSE

162 RM_Iist

Arguments

X The object to add a results managment

RM The name of results managment stored

silent Should the results be shown ?

max.level If TRUE, will return all list element of the objects
Details

RM_list returns the list of results managment of an object

Value

A list with the names of results stored in an object

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Results Managment: RM_add (), RM_delete(), RM_duplicate(), RM_get()

Examples

Not run:

library("HelpersMG")

Let an object of class objclass being created

obj <- list(A=100, name="My object”)

class(obj) <- "objclass”

And now I create a RM to this object

obj <- RM_add(x=obj, RMname="NewAnalysis1")

RM_list(obj)

obj <- RM_add(x=obj, RMname="NewAnalysis2")

RM_list(obj)

obj <- RM_add(x=obj, RMname="NewAnalysis2", valuename="V1", value=100)
RM_get(x=obj, RMname="NewAnalysis2", valuename="V1")

obj <- RM_add(x=obj, RMname="NewAnalysis2", valuename="V1", value=200)
RM_get(x=obj, RMname="NewAnalysis2", valuename="V1")

obj <- RM_add(x=obj, RMname="NewAnalysis2", valuename="V2", value=300)
RM_get(x=o0bj, RMname="NewAnalysis2", valuename="V2")

RM_list(obj)

rmlist <- RM_list(obj, max.level=TRUE)

rmlist

End(Not run)

rnbinom_new 163

rnbinom_new Random numbers for the negative binomial distribution.

Description

See rnbinom.

Usage
rnbinom_new(n, size = NULL, prob = NULL, mu = NULL, sd = NULL, var = NULL)

Arguments
n number of observations.
size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive, need not be
integer.
prob probability of success in each trial. 0 < prob <= 1.
mu alternative parametrization via mean.
sd alternative parametrization via standard deviation.
var alternative parametrization via variance.
Details

rnbinom_new returns random numbers for the negative binomial distribution

Value

Random numbers for the negative binomial distribution

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Distributions: cutter(), dSnbinom(), dbeta_new(), dcutter(), dggamma(), logLik.cutter(),
plot.cutter(), print.cutter(), r2norm(), rcutter(), rmnorm()

Examples

Not run:

library("HelpersMG")

set.seed(1)

X <= rnbinom_new(n=1000, prob=6.25/(5+6.25), size=6.25)
mean(x)

sd(x)

164 ScalePreviousPlot

set.seed(1)

X <= rnbinom_new(n=1000, mu=5, sd=3)

mean (x)

sd(x)

set.seed(1)

X <= rnbinom_new(n=1000, mu=5, var=3"2)
mean(x)

sd(x)

set.seed(1)

X <= rnbinom_new(n=1000, mu=5, size=6.25)
mean(x)

sd(x)

set.seed(1)

X <- rnbinom_new(n=1000, size=6.25, var=3*2)
mean(x)

sd(x)

set.seed(1)

X <- rnbinom_new(n=1000, prob=6.25/(5+6.25), var=3+2)
mean(x)

sd(x)

Example of wrong parametrization
set.seed(1)

X <= rnbinom_new(n=1000, sd=3, var=3"2)
set.seed(1)

X <= rnbinom_new(n=1000, mu=10, var=3%2)

End(Not run)

ScalePreviousPlot Return the scale of the previous plot

Description

Return a list with the limits of the previous plot, the center, the range, and the position of label on
this axe.

Usage

ScalePreviousPlot(x = NULL, y = NULL)

Arguments
X The position in x as relative position
y The position in y as relative position
Details

ScalePreviousPlot returns the scale of the previous plot

SEfromHessian 165

Value

A list with xlim and ylim

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other plot and barplot functions: barplot_errbar(), plot_add(), plot_errbar(), show_name()

Examples

Not run:
par(xaxs="1i", yaxs="i")
plot(x=1:100, y=sin(1:100), type="1", bty="n", xlim=c(1,200), xlab="x", ylab="y")
x1lim= ScalePreviousPlot()$x1im[1:2]
ylim= ScalePreviousPlot()$ylim[1:2]
par(xaxs="r", yaxs="i")
plot(x=1:100, y=sin(1:100), type="1", bty="n", xlim=c(1,200), xlab="x", ylab="y")
x1lim= ScalePreviousPlot()$x1im[1:2]
ylim= ScalePreviousPlot()$ylim[1:2]
Here is an example of the use of the label output
plot(x=1:100, y=sin(1:100), type="1", bty="n", xlim=c(1,200), xlab="", ylab="")
text(x=ScalePreviousPlot()$x1im["1label”], y=ScalePreviousPlot()$ylim["center"],
xpd=TRUE, "Legend for Y axes”, pos=3, srt=90)
text(x=ScalePreviousPlot()$x1lim["center"], y=ScalePreviousPlot()$ylim["label”],
xpd=TRUE, "Legend for X axes”, pos=1)
Example to plot legend always in the same place
layout(1:2)
plot(x=1:100, y=sin(1:100), type="1", bty="n", xlim=c(1,200), xlab="", ylab="")
text(x=ScalePreviousPlot(x=0.95, y=0.05)%x,
y=ScalePreviousPlot(x=0.95, y=0.05)$y,
labels="A", cex=2)
plot(x=0:1, y=0:1, type="p", bty="n")
text(x=ScalePreviousPlot(x=0.95, y=0.05)%x,
y=ScalePreviousPlot(x=0.95, y=0.05)$y,
labels="B", cex=2)

End(Not run)

SEfromHessian Standard error of parameters based on Hessian matrix

Description

Standard error of parameters based on Hessian matrix.
The strategy is as follow:
First it tries to inverse the Hessian matrix. If it fails, it uses the near positive definite matrix of the

166 SEfromHessian

Hessian.

So now the inverse of the Hessian matrix can be computed.

The diagonal of the inverse of the Hessian matrix is calculated. If all values are positive, the SEs
are the square root of the inverse of the Hessian.

If not all values are positive, it will estimate the pseudo-variance matrix based on Gill & King
(2004). It necessitates a Cholesky matrix.

If from some reason it fails (for example all SE are 0 in output), then the strategy of Rebonato and
Jackel (2000) will be used to generate the Cholesky matrix.

Usage

SEfromHessian(a, hessian = FALSE, silent = FALSE)

Arguments
a An Hessian matrix
hessian If TRUE, return a list with the hessian and SE
silent If TRUE, report some problems

Details

SEfromHessian returns standard error of parameters based on Hessian matrix

Value

SEfromHessian returns a vector with standard errors

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References

Gill J. and G. King 2004. What to do when your Hessian is not invertible: Alternatives to model
respecification in nonlinear estimation. Sociological Methods & Research 33: 54-87.

Rebonato and Jackel, “The most general methodology for creating a valid correlation matrix for
risk management and option pricing purposes”, Journal of Risk, Vol 2, No 2, 2000.

Examples

Not run:
val=rnorm(100, mean=20, sd=5)
Return -1n L of values in val in Gaussian distribution with mean and sd in par
fitnorm<-function(par, val) {
-sum(dnorm(val, par["mean”], par[”sd"], log = TRUE))
3
Initial values for search
p<-c(mean=20, sd=5)
fit the model
result <- optim(par=p, fn=fitnorm, val=val, method="BFGS", hessian=TRUE)

series.compare 167

SE <- SEfromHessian(result$hessian)
library(MASS)
fitdistr(val, densfun = "normal”)

End(Not run)

series.compare Data series comparison using Akaike weight

Description

This function is used as a replacement of t.test() to not use p-value.

Usage
series.compare(..., criterion = c("BIC", "AIC", "AICc"), var.equal = TRUE)
Arguments
Series of data (at least two or data are in a table with series in different rows)
criterion Which criterion is used for model selection. can be AIC, AICc or BIC
var.equal Should the variances of all series being equal? Default TRUE
Details

series.compare compares series of data using Akaike weight.

Value

The probability that a single proportion model is sufficient to explain the data

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References
Girondot, M., Guillon, J.-M., 2018. The w-value: An alternative to t- and X2 tests. Journal of
Biostatistics & Biometrics 1, 1-4.

See Also

Other w-value functions: compare(), contingencyTable. compare()

168 series.compare

Examples

Not run:
library("HelpersMG")

A <- rnorm(100, 10, 2)

B <- rnorm(100, 11.1, 2)

series.compare(A, B, criterion = "BIC", var.equal=TRUE)
B <- B[1:10]
series.compare(A, B, criterion = "BIC", var.equal=TRUE)

A <- rnorm(100, 10, 2)
B <- rnorm(100, 10.1, 2)
C <= rnorm(100, 10.5, 2)

series.compare(A, B, C, criterion = "BIC", var.equal=TRUE)
B <- B[1:10]
series.compare(A, B, criterion = "BIC", var.equal=TRUE)

t.test(A, B, var.equal=TRUE)

Example with a data.frame
series.compare(t(data.frame(A=c(10, 27, 19, 20, NA), B=c(10, 20, NA, NA, NA))))
Test in the context of big data

A <- rnorm(10000, 10, 2)

B <- rnorm(10000, 10.1, 2)

series.compare(A, B, criterion = "BIC", var.equal=TRUE)
t.test(A, B, var.equal=TRUE)

HEHHHHHHHEEHE AR

w <- NULL

p <- NULL

for (i in 1:1000) {
A <- rnorm(50000, 10, 2)
B <- rnorm(50000, 10.01, 2)

w <- c(w, unname(series.compare(A, B, criterion = "BIC", var.equal=TRUE)[1]))
p <- c(p, t.test(A, B, var.equal=TRUE)$p.value)

}

layout(mat = 1:2)
par(mar=c(4, 4, 1, 1)+0.4)

hist(p, main="", xlim=c(@, 1), las=1, breaks = (0:20)/20,
freq=FALSE, xlab = expression(italic("p")*"-value"))
hist(w, main="", xlim=c(@, 1), las=1, breaks = (0:20)/20,

freq=FALSE, xlab = expression(italic("w")x"-value"))
WA

x <- seq(from=8, to=13, by=0.1)

pv <- NULL

aw <- NULL

A <- rnorm(100, mean=10, sd=2)
B <- A-2

for (meanB in x) {
pv <- c(pv, t.test(A, B, var.equal = FALSE)$p.value)

setPriors 169

aw <- c(aw, series.compare(A, B, criterion="BIC", var.equal = FALSE)[1])
B<-B+ 0.1
3

par(mar=c(4, 4, 2, 1)+0.4)

y <= pv

plot(x=x, y=y, type="1", lwd=2,
bty="n", las=1, xlab="Mean B value (SD = 4)", ylab="Probability"”, ylim=c(0,1),
main="")

y2 <- aw

lines(x=x, y=y2, type="1", col="red"”, lwd=2)

11 <- which(aw>0.05)[1]
12 <- max(which(aw>0.05))

aw[11]
pv[11]

aw[12]
pv[12]

11 <- which(pv>0.05)[1]
12 <- max(which(pv>0.05))

aw[11]
pv[1l1]

aw[12]
pv[12]

par (xpd=TRUE)

segments(x0=10-1.96%2/10, x1=10+1.96%2/10, y0=1.1, y1=1.1, lwd=2)
segments(x0=10, x1=10, y0=1.15, y1=1.05, 1lwd=2)

par (xpd=TRUE)

text(x=10.5, y=1.1, labels = "Mean A = 10, SD = 2", pos=4)

vl <- c(expression(italic("p")*"-value"), expression("based on "xitalic("t")*"-test"))
v2 <- c(expression(italic("w")*"-value for A"), expression("and B identical models"))
legend("topright”, legend=c(v1l, v2),

y.intersp = 1,

col=c("black”, "black"”, "red", "red"), bty="n", lty=c(1, 0, 1, 0))

segments(x@=min(x), x1=max(x), y0=0.05, y1=0.05, lty=2)
par(xpd = TRUE)
text(x=13.05, y=0.05, labels = "0.05", pos=4)

End(Not run)

setPriors Set priors for MHalgoGen()

170 setPriors

Description

Set priors for MHalgoGen()

Usage
setPriors(
par = stop("A vector with init values is necessary."),
se = NULL,
density = "dunif”,
rules = NULL,
silent = FALSE
)
Arguments
par Named vector with init value of parameters
se Named vector with standard error of parameters
density Named vector with density or single value
rules List of rules to define priors
silent If TRUE, do not show warning.
Details

setPriors is a general function to set priors for MHalgoGen()

Value

Return a data.frame with priors

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other mcmcComposite functions: MHalgoGen(), as.mcmc.mcmcComposite(), as.parameters(),
as.quantiles(), merge.mcmcComposite(), plot.PriorsmcmcComposite(), plot.mecmcComposite(),
summary .mcmcComposite()

Examples

Not run:

library(HelpersMG)

rules <- rbind(data.frame(Name=""a", Min=0, Max="xx2"),
data.frame(Name=""b", Min=0, Max=100))

par <- c(a0=10, al=2, b2=20)

(p <- setPriors(par=par, se=NULL, density="dgamma", rules=rules))

(p <- setPriors(par=par, se=NULL, density="dnorm”, rules=rules))

show_name

(p <- setPriors(par=par, se=NULL, density="dunif”, rules=rules))
par <- c(a0=10, al=2, b2=20, bl1=-1)
(p <- setPriors(par=par, se=NULL, density="dgamma”, rules=rules))

End(Not run)

171

show_name Show the name of a point

Description

Click on a point in plot region and it will tell you what is the point.

Usage

show_name (
points = NULL,

x = NULL,
y = NULL,
names = NULL,
col = "red”,
silent = FALSE
)
Arguments
points A list with x, y and names elements
X The x coordinates
y The y coordinates.
names The names of the points
col Color of the legend.
silent TRUE or FALSE
Details

Show the name of a point

Value

Name of the point

Author(s)

Marc Girondot <marc.girondot@gmail.com>

172 similar

See Also

plot_errorbar

Other plot and barplot functions: ScalePreviousPlot(), barplot_errbar(), plot_add(), plot_errbar()

Examples

Not run:

k <- plot_errbar(1:100, rnorm(100, 1, 2),
xlab="axe x", ylab="axe y", bty="n", xlim=c(1,100),
errbar.x=2, errbar.y=rnorm(100, 1, 0.1))
show_name (k)

k <- plot_errbar(1:10, rnorm(1@, 1, 2),

xlab="axe x", ylab="axe y", bty="n", xlim=c(1,10),
errbar.x=2, errbar.y=rnorm(10, 1, 0.1),
names=LETTERS[1:10])

show_name (k)

k <- plot_errbar(1:10, rnorm(10, 1, 2),

xlab="axe x", ylab="axe y", bty="n", xlim=c(1,10),
errbar.x=2, errbar.y=rnorm(10, 1, 0.1))
show_name(k, names=LETTERS[1:10])

End(Not run)

similar Test if two vectors contains the same elements independently of their
order

Description

Return TRUE only if all elements of x are present and only once in y.

Usage

similar(x, y, test.names = FALSE)

Arguments
X A vector with numeric or character elements
y A vector with numeric or character elements
test.names Logical. If TRUE, the names of the vector elements must be also identical and
unique
Value

A logical TRUE or FALSE

specify_decimal 173

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

Not run:

A <= c("A", "B", "C", "D")

B <- c("A", "B", "C", "D")
similar(A, B)

similar(B, A)

A <= c(x="A", y="B", z="C", k="D")
B <- c(x="A", y="B", z="C", 1="D")
similar(B, A)

similar(A, B, test.names=TRUE)

A <= c(x="A", y="B", z="C", k="D")
B <- c(x="A", z="C", k="D", y="B")
similar(B, A)

similar(A, B, test.names=TRUE)

End(Not run)

specify_decimal Return a number as character with specified number of decimals

Description

Return a number as character with specified number of decimals. If a is a matrix, it will return a
matrix of the same size and the same attributes.

Usage

specify_decimal(x, decimals = NULL, decimal.point = ".")
Arguments

X The numbers to be formated

decimals Number of decimals to print

decimal.point Character to be used as decimal point

Details

specify_decimals format a number with specified number of decimals

Value

A character

174 summary.mcmcComposite

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples
specify_decimal(x=pi, decimal.point=".")
specify_decimal (x=pi, decimals=4, decimal.point=".")

specify_decimal (x=c(pi, exp(1)), decimals=3, decimal.point=",")
specify_decimal (x=c(pi, exp(1)), decimal.point=",")
specify_decimal (x=c(pi*10, pi, pi/10, pi/100, pi/1000))
specify_decimal (x=c(pi=pi), decimal.point=".")

specify_decimal (x=matrix(pi*1:4, ncol=2), decimal.point=".")
m <- matrix(pix1:4, ncol=2)

rownames(m) <- c("A", "B")

colnames(m) <- c("C", "D")

specify_decimal (x=m, decimal.point=".")

summary .mcmcComposite Summarize the result of a mecmcComposite object

Description

Summary for the result of a memcComposite object.

Usage
S3 method for class 'mcmcComposite’
summary(object, chain = NULL, ...)
Arguments
object A mcmcComposite object
chain The chain to use
Not used
Details

summary.mcmcComposite get info on the result of a memcComposite object

Value

A summary of the result

Author(s)

Marc Girondot <marc.girondot@gmail.com>

summary.mcmcComposite 175

See Also

Other mecmcComposite functions: MHalgoGen (), as.mcmc.mcmcComposite(), as. parameters(),
as.quantiles(), merge.mcmcComposite(), plot.PriorsmcmcComposite(), plot.mecmcComposite(),
setPriors()

Examples

Not run:

library(HelpersMG)

require(coda)
x <- rnorm(30, 10, 2)
dnormx <- function(data, x) {

data <- unlist(data)

return(-sum(dnorm(data, mean=x['mean'], sd=x['sd'], log=TRUE)))

}
parameters_mcmc <- data.frame(Density=c('dnorm', 'dlnorm'),
Prior1=c(10, 0.5), Prior2=c(2, 0.5), SDProp=c(1, 1),
Min=c(-3, @), Max=c(100, 10), Init=c(1@, 2), stringsAsFactors = FALSE,
row.names=c('mean', 'sd'))
mcmc_run <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=100, thin=1, trace=1)
plot(memc_run, xlim=c(@, 20))
plot(memc_run, xlim=c(@, 10), parameters="sd")
mcmcforcoda <- as.mcmc(mcmc_run)
#' heidel.diag(mcmcforcoda)

raftery.diag(mcmcforcoda)
autocorr.diag(mcmcforcoda)
acf(memcforcodal[1]1]1[, "mean"], lag.max=20, bty="n", las=1)
acf(memcforcodal[1]]1[,"sd"], lag.max=20, bty="n", las=1)
batchSE (mcmcforcoda, batchSize=100)
The batch standard error procedure is usually thought to
be not as accurate as the time series methods used in summary
summary (mcmcforcoda)$statistics[,"Time-series SE"]
summary (mecmc_run)
as.parameters(mcmc_run)

lastp <- as.parameters(mcmc_run, index="last")
parameters_mcmc[,"Init"] <- lastp
The n.adapt set to 1 is used to not record the first set of parameters
then it is not duplicated (as it is also the last one for
the object mcmc_run)
mcmc_run2 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=1, thin=1, trace=1)
mcmc_run3 <- merge(mcmc_run, mcmc_run2)
#i#HH#HH# no adaptation, n.adapt must be 0
parameters_mcmc[,"Init"] <- c(mean(x), sd(x))
mcmc_run3 <- MHalgoGen(n.iter=1000, parameters=parameters_mcmc, data=x,
likelihood=dnormx, n.chains=1, n.adapt=0, thin=1, trace=1)

End(Not run)

176 sun.info

sun.info Estimate the time of sunrise and sunset according to longitude, latitude
and date

Description

Estimate the sun fates according to latitude and date.

Can be compared with the function sunrise.set() of package StreamMetabolism.
Usage

sun.info(date, latitude, longitude)

Arguments
date A vector with the time at which sun fates are needed
latitude The latitude at which estimate the sun fates
longitude The longitude at which estimate the sun fates
Details

sun.info estimate the time of sunrise and sunset according to longitude, latitude and date

Value

A data.frame with information about daily sun

Author(s)

Marc Girondot <marc.girondot@gmail.com>

References

Teets, D.A. 2003. Predicting sunrise and sunset times. The College Mathematics Journal 34(4):317-
321.

See Also

Other Periodic patterns of indices: index.periodic(), minmax.periodic(), moon.info(), tide.info()

Examples

Not run:

Generate a timeserie of time

date <- seq(from=as.Date("2000-01-01"), to=as.Date("2000-12-31"), by="1 day")

plot(date, sun.info(date, latitude=23, longitude=0)$day.length, bty="n",
las=1, type="1", xlab="Ordinal days"”, ylab="Day length in hours")

plot(date, sun.info(date, latitude=23, longitude=0)$sunrise, bty="n",

symbol.Female 177

las=1, type="1", xlab="Ordinal days”, ylab="Sun rise in hours")

End(Not run)

symbol.Female Plot a female symbol in the plotting region

Description

Plot a female symbol in the plotting region.

Usage

symbol.Female(centerx, centery, rayonx, lwd = 2, col = "black")
Arguments

centerx The x position of the center of the circle

centery The y position of the center of the circle

rayonx The size of the rayon in the scale of the x axis

lwd The width of the line of the symbol

col The color of the symbol
Details

symbol.Female plot a female symbol in the plotting region

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Symbol: symbol.Male()

178 symbol.Male

Examples

Not run:
plot(x=1:2, y=c(10,20), type="n", bty="n", xlab="", ylab="")

rayonx <- 0.01
centerx <- 1.2
centery <- 15

symbol.Male(centerx=centerx, centery = centery, rayonx=rayonx)
symbol.Female(centerx=centerx+@.5, centery = centery, rayonx=rayonx)

rayonx <- 0.03
centerx <- 1.2
centery <- 18

symbol.Male(centerx=centerx, centery = centery, rayonx=rayonx, lwd=3)
symbol.Female(centerx=centerx+0.5, centery = centery, rayonx=rayonx, lwd=3, col="red")

rayonx <- 0.05
centerx <- 1.4

centery <- 13

symbol .Male(centerx=centerx, centery = centery, rayonx=rayonx, lwd=4, col="blue")
symbol.Female(centerx=centerx+@.5, centery = centery, rayonx=rayonx, lwd=4, col="red")

End(Not run)

symbol.Male Plot a male symbol in the plotting region

Description

Plot a male symbol in the plotting region.

Usage

symbol.Male(centerx, centery, rayonx, lwd = 2, col = "black”)
Arguments

centerx The x position of the center of the circle

centery The y position of the center of the circle

rayonx The size of the rayon in the scale of the x axis

lwd The width of the line of the symbol

col The color of the symbol
Details

symbol.Male plot a male symbol in the plotting region

symmetricize 179

Value

Nothing

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other Symbol: symbol.Female()

Examples

Not run:
plot(x=1:2, y=c(10,20), type="n", bty="n", xlab="", ylab="")

rayonx <- 0.01
centerx <- 1.2
centery <- 15

symbol.Male(centerx=centerx, centery = centery, rayonx=rayonx)
symbol.Female(centerx=centerx+0.5, centery = centery, rayonx=rayonx)

rayonx <- 0.03
centerx <- 1.2
centery <- 18

symbol.Male(centerx=centerx, centery = centery, rayonx=rayonx, lwd=3)
symbol.Female(centerx=centerx+@.5, centery = centery, rayonx=rayonx, lwd=3, col="red")

rayonx <- 0.05
centerx <- 1.4

centery <- 13

symbol.Male(centerx=centerx, centery = centery, rayonx=rayonx, lwd=4, col="blue")
symbol.Female(centerx=centerx+@.5, centery = centery, rayonx=rayonx, lwd=4, col="red")

End(Not run)

symmetricize Make a matrix symmetric

Description

This function was part of the package ENA. This package is no more available and it cannot be
installed from archive because some dependencies are no more available.

180 symmetricize

Usage
symmetricize(
matrix,
method = C(HmaXH’ Mmin"7 "avg”’ Hld”’ "ud”),
adjacencylList = FALSE
)
Arguments
matrix The matrix to make symmetric
method The method to use to make the matrix symmetric. Default is to take the maxi-

mum.
"max" For each position, m; ;, use the maxiumum of (m; j,m; ;)
"min" For each position, m; ;, use the minimum of (m; j,m; ;)
"avg" For each position, m; ;, use the mean: (m; ; +m;;)/2

"Id" Copy the lower triangular portion of the matrix to the upper triangular
portion.

"ud" Copy the upper triangular portion of the matrix to the lower triangular
portion.

adjacencyList Logical. If false, returns the symmetric matrix (the same format as the input). If
true, returns an adjacency list representing the upper triangular portion of the ad-
jacency matrix with addressing based on the row.names of the matrix provided.
Details
Make the matrix symmetric by making all "mirrored" positions consistent. A variety of methods
are provided to make the matrix symmetrical.
Value

The symmetric matrix

Author(s)

Jeffrey D. Allen <Jeffrey.Allen@UTSouthwestern.edu>

Examples

#Create a sample 3x3 matrix
mat <- matrix(1:9, ncol=3)

#Copy the upper diagonal portion to the lower
symmetricize(mat, "ud")

#Take the average of each symmetric location
symmetricize(mat, "avg")

tide.info

181

tide.info

Annual tide calendar for one particular location

Description

Annual tide information.
The columns are: Location, Longitude, Latitude, Phase, DateTime.local, DateTime.UTC, Tide.meter
This function uses an API linking xtide software (https://flaterco.com/xtide/) with tide.info() func-

tion.

You must have a working internet connection for this function.

Usage

tide.info(

location = NULL,
year = 2021,
longitude = NULL,

latitude = NULL,
force.tide.height = TRUE
)
Arguments
location Textual information about location name
year Year to get the calendar
longitude Longitude to search for
latitude Latitude to search for

force.tide.height

Details

If FALSE, can return a current speed rather than tide height

tide.info gets the annual tide calendar for one particular location.

Value

Return a data.frame with annual tide calendar.

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also

Other Periodic patterns of indices: index.periodic(), minmax.periodic(), moon.info(), sun.info()

182 tide.info

Examples

Not run:

library("HelpersMG")

Location <- "Les Hattes”

Year <- 2010

tide <- tide.info(Location, Year)

plot(tide[, "DateTime.local”], tide[, "Tide.meter"],
type="1", bty="n", las=1,
main=tide[1, "Location"],
xlab=as.character(Year), ylab="Tide level in meter")

Location <- "Hawaii"
Year <- 2010
tide <- tide.info(Location, Year)

Location <- "Hanamaulu Bay, Kauai Island, Hawaii”

Year <- 2010

tide <- tide.info(Location, Year)

plot(tide[, "DateTime.local”], tide[, "Tide.meter"],
type="1", bty="n", las=1,
main=tide[1, "Location"],
xlab=as.character(Year), ylab="Tide level in meter")

tide <- tide.info(year=2010, longitude=-32, latitude=-4)
library(maps)
map(database = "world", regions = "Brazil"”, asp=1,
xlim=c(-80, -30), ylim=c(-33, 5))
points(tide[1, "Longitude"”], tide[1, "Latitude"], col="red", pch=19)
points(-32, -4, col="blue"”, pch=19)
axis(1)
axis(2, las=1)

Show the locations with data
library(maps)
map(xlim=c(-180, 180), ylim=c(-90, 90))
title("Locations with harmonics data”)
axis(1, at=seq(from=-180, to=180, by=45))
axis(2, las=1, at=seq(from=-90, to=90, by=15))
points(getFromNamespace(x="tide_location”, ns="HelpersMG")[, c("longitude"”)],
getFromNamespace(x="tide_location”, ns="HelpersMG")[, c("latitude"”)],
pch=".", col="red", cex=2)
Another example
tikei_lon <- (-144.5465183)
tikei_lat <- -14.9505897
Year <- 2021
tikei_tide <- tide.info(year=Year, longitude=tikei_lon, latitude=tikei_lat)
plot(tikei_tide[, "DateTime.local”], tikei_tide[, "Tide.meter"],
type="1", bty="n", las=1,
main=tikei_tide[1, "Location"],
xlab=as.character(Year), ylab="Tide level in meter")
Another one
tikei_lon <- (-75.56861111)

tnirp 183

tikei_lat <- 39.50083333
Year <- 2012
tikei_tide <- tide.info(year=Year, longitude=tikei_lon, latitude=tikei_lat)

library(mapdata)

map('worldHires', xlim=c(-77, -74), ylim=c(37, 40))

points(x=tikei_lon, y=tikei_lat, pch=19, col="red", cex=1)

points(x=tikei_tide$Longitude[1], y=tikei_tide$Latitude[2],
pch=19, col="blue"”, cex=1)

par(mar=c(4, 4, 2, 2))
plot(tikei_tide$DateTime.local, tikei_tide$Tide.meter, type="1")

End(Not run)

tnirp Read an ASCII text representation of a named or not vector object

Description
Read an ASCII text representation of a named or not vector object.
Note that pasteO(rev(c("p", "t", "i", "n", "t")), collapse="") = "tnirp"
Usage

tnirp(x, named = TRUE)

Arguments
X A string or a vector of strings with value and possibly names.
named TRUE if names are included.

Details

tnirp reads an ASCII text representation of a named or not vector object

Value

A vector

Author(s)

Marc Girondot <marc.girondot@gmail.com>

See Also
Other Characters: asc(), char(), d()

184 universalmclapply
Examples

A <- structure(runif(26), .Names=letters)

text <- capture.output(A)

tnirp(text)

tnirp(” mu mu_season OTN p1.09 pl.10 p1.11

4.63215947 10.78627511 ©.36108497 0.08292101 -0.52558196 -0.76430859
p1.12 p1.13 pl.14 p1.15 p1.16 p1.17
-0.75186542 -0.57632291 -0.58017174 -0.57048696 -0.56234135 -0.80645122
p1.18 p1.19 p1.20 p1.21 p1.22 p1.23
-0.77752524 -0.80909494 -0.56920540 -0.55317302 @.45757298 -0.64155368
p1.24 p1.25 p1.26 p1.27 p1.28 p1.29
-0.59119637 -0.66006794 -0.66582399 -0.66772684 -0.67351412 -0.66941992
p1.30 p1.31 p1.32 p1.33 p1.34 p1.35
-0.67038245 -0.68938726 -0.68889078 -0.68779016 -0.68604629 -0.68361820
p1.36 p1.37 p2.09 p2.10 p2.11 p2.12
-0.67045238 -0.66115613 2.55403149 2.31060620 2.31348160 2.20958757
p2.13 p2.14 p2.15 p2.16 p2.17 p2.18
2.14304918 2.19699719 2.30705457 2.18740019 2.32305811 2.31668302
p2.19 p2.20 p2.21 p2.22 p2.23 p2.24
1.99424288 2.06613445 2.38092301 2.40551276 2.31987342 2.30344402
p2.25 p2.26 p2.27 p2.28 p2.29 p2.30
2.26869058 2.25008836 2.23385204 2.22768782 2.25341904 1.77043360
p2.31 p2.32 p2.33 p2.34 p2.35 p2.36
2.21606813 2.21581431 2.21153872 2.21118013 2.21375660 2.21182196
p2.37

1.86137833 ")
tnirp(" 27.89 289.99
90.56", named=FALSE)

universalmclapply

Run the function FUN on X using parallel computing

Description

Return the results of the function FUN applied to X. It uses forking in unix system and not in

windows system.

By default, it will send all the content of environment.

Usage

universalmclapply(

X,
FUN,

L

mc.cores = getOption("mc.cores”, parallel::detectCores()),

mc.preschedule

clusterExport =

clusterEvalQ =

= TRUE,
list(),
list(),

universalmclapply

)

Arguments

X

185

forking = ifelse(.Platform$0S.type == "windows", FALSE, TRUE),
progressbar = FALSE

FUN

mc.cores

mc.preschedule

clusterExport
clusterEvalQ
forking

progressbhar

Details

A vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

The function to be applied to each element of X
Optional arguments to FUN

The number of cores to use, i.e. at most how many child processes will be run
simultaneously.

if set to TRUE then the computation is first divided to (at most) as many jobs
are there are cores and then the jobs are started, each job possibly covering more
than one value. If set to FALSE then one job is forked for each value of X. The
former is better for short computations or large number of values in X, the latter
is better for jobs that have high variance of completion time and not too many
values of X compared to mc.cores.

List of clusterExport parameters as list

List of clusterEvalQ parameters as list

If TRUE will use forking

If pbapply package is installed, show a progressbar

universalmclapply runs the function FUN on X using parallel computing

Value

The results of the function FUN applied to X

Author(s)

Marc Girondot <marc.girondot@gmail.com>

Examples

Not run:

library(HelpersMG)

X <- 1:1000

funx <- function(y) {

mint <- rep(NA, length(y))

for (i in seq_along(y)) {
k <= rnorm(runif(n = 1, 50, 50), mean=10, sd=2)
mint[i] <- mean(k)

}

}

mint

186 universalmclapply

Note that parallel computing is not always the best solution !
(tp <- system.time({
m <- lapply(X=x, FUN=funx)
1))
(tp <- system.time({
m <- universalmclapply(X=x, FUN=funx, forking=FALSE)
1))
(tp <- system.time({
m <- universalmclapply(X=x, FUN=funx, forking=TRUE)
1))

An example using clusterExport

Here no error is generated because environment was exported

However forking is not possible in windows and non parallel code is ran
pp <- runif(100)

X <- 1:100

funx1 <- function(y) {pplyl*10}

u <- universalmclapply(x, FUN=funx1, forking=TRUE)

Here an error is generated because environment was not exported when parLapplylB is used
pp <- runif(100)
X <- 1:100
u <- universalmclapply(x, FUN=funx1, forking=FALSE)
u <- universalmclapply(x, FUN=funx1, forking=FALSE,
clusterExport=list())

here no error is generated because the variable pp is exported

pp <- runif(100)

x <- 1:100

u <- universalmclapply(x, FUN=funx1, forking=FALSE,
clusterExport=list(varlist=c("pp"), envir=environment()))

here no error is generated because all the environment is exported

pp <- runif(100)

X <- 1:100

u <- universalmclapply(x, FUN=funx1, forking=FALSE,
clusterExport=list(varlist=c(1ls()), envir=environment()))

An example using clusterEvalQ
asc("a") # asc() is a function from packages HelpersMG
funx2 <- function(y) {asc("a")*10}
In unix, the loaded packages are visible from all cores
<- 1:100
<- universalmclapply(x, FUN=funx2, forking=TRUE)
In windows, the loaded packages are not visible from all cores
1:100
<- universalmclapply(x, FUN=funx2, forking=FALSE)
In windows, the loaded packages are not visible from all cores
<- 1:100
<- universalmclapply(x, FUN=funx2, forking=FALSE,
clusterEvalQ=list(expr=expression(library(HelpersMG)))
)

C X #H C X #H C X %
A
1

wget 187

#i## If package pbapply is available, progress bar can be shown
m <- universalmclapply(X=x, FUN=funx, forking=FALSE, progressbar=TRUE)
m <- universalmclapply(X=x, FUN=funx, forking=TRUE, progressbar=TRUE)

You can manage the number of cores used using:
options(mc.cores=1)

End(Not run)

wget Download a file from internet and save it locally

Description

Download a file from internet and save it locally. This function is a wrapper for download.files()
that keep the name identical and can get several files at once. It was written to simplify downloading
of file. It doest not use the true wget function (https://www.gnu.org/software/wget/) which is much
more complex but also powerful.

Usage
wget(url = stop("At least one internet adress is required”), ...)
Arguments
url The url where to download file
The parameters send to download.file()
Details

wget download a file from internet and save it locally

Value

Nothing

Author(s)

Marc Girondot

Examples

Not run:

library(HelpersMG)

Save locally the files send in the parameter url

wget(c("https://cran.r-project.org/web/packages/HelpersMG/HelpersMG. pdf",
"https://cran.r-project.org/web/packages/embryogrowth/embryogrowth.pdf"))

End(Not run)

Index

x AIC functions
loglLik.compareAlIC, 103

* AIC
compare_AIC, 20
compare_AICc, 21
compare_BIC, 23
ExtractAIC.glm, 66
FormatCompareAIC, 71

x Characters
asc, 13
char, 18
d, 36
tnirp, 183

x Distributions
cutter, 28
dbeta_new, 37
dcutter, 38
dggamma, 40
dSnbinom, 45
loglik.cutter, 104
plot.cutter, 122
print.cutter, 141
r2norm, 147
rcutter, 150
rmnorm, 155
rnbinom_new, 163

* Iconography of correlations
IC_clean_data, 83
IC_correlation_simplify, 85
IC_threshold_matrix, 86
plot.IconoCorel, 126

+x LD50 functions
LD50, 94
LD5@_MHmcme, 96
LD5@_MHmcmc_p, 99
logLik.LD50, 105
plot.LD50, 128
predict.LD50, 140

+ Lunar

188

moon.info, 116

+ Lune
moon.info, 116

+ Moon
moon.info, 116

* Periodic patterns of indices
index.periodic, 89
minmax.periodic, 112
moon.info, 116
sun.info, 176
tide.info, 181

* Rectangle Regression
RectangleRegression, 154

* Results Managment
RM_add, 156
RM_delete, 158
RM_duplicate, 159

RM_get, 160
RM_list, 161
* Symbol

symbol.Female, 177
symbol.Male, 178

* Tide
tide.info, 181

* logit
flexit, 68
invlogit, 93
logit, 102

+ memcComposite functions
as.mcmc.mcmcComposite, 8
as.parameters, 9
as.quantiles, 12
merge.mcmcComposite, 106
MHalgoGen, 108
plot.mcmcComposite, 130

plot.PriorsmcmcComposite, 136

setPriors, 169
summary .mcmcComposite, 174
* ncdf

INDEX

format_ncdf, 72
ind_long_lat, 90

* plot and barplot functions
barplot_errbar, 14
plot_add, 137
plot_errbar, 138
ScalePreviousPlot, 164
show_name, 171

*x w-value functions
compare, 19
contingencyTable. compare, 24
series.compare, 167

addS3Class, 7

as.mcmc.mcmcComposite, 8, 10, 13, 107, 110,
131,136,170,175

as.parameters, 8,9, 13, 107, 110, 131, 136,
170,175

as.quantiles, 8, 10, 12, 107, 110, 131, 136,
170, 175

asc, 13, 19, 37, 183

barplot_errbar, 14, 138, 139, 165, 172

cArrows, 16
ChangeCoordinate, 17
char, 14, 18, 37, 183
compare, 19, 25, 167
compare_AIC, 20, 22, 23, 66, 71
compare_AICc, 21,21, 23,66, 71
compare_BIC, 21, 22, 23, 66, 71
contingencyTable.compare, 19, 24, 167
convert.tz, 27
cutter, 28, 38, 39,41, 48, 104, 123, 142, 147,
151, 156, 163

d, 14, 19, 36, 183

dbeta_new, 30, 37, 39, 41, 48, 104, 123, 142,
147,151, 156, 163

dcutter, 30, 38, 38,41, 48, 104, 123, 142,
147,151, 156, 163

dggamma, 30, 38, 39, 40, 48, 104, 123, 142,
147,151, 156, 163

DIx, 42

dnbinom_new, 44

dSnbinom, 30, 38, 39, 41,45, 104, 123, 142,
147,151, 156, 163

duplicated_packages, 62

ellipse, 63

189

ExtractAIC.glm, 21-23, 66, 71

fitdistrquantiles, 67
flexit, 68, 93, 102
format_ncdf, 72, 91
FormatCompareAIC, 21-23, 66,71
from_min_max, 73

HelpersMG-package, 4

IC_clean_data, 83, 85, 87, 128
IC_correlation_simplify, 84, 85, 87, 128
IC_threshold_matrix, 84, 85, 86, 128
iCutter, 82

ind_long_lat, 73,90
index.periodic, 89, 113,117,176, 181
inside, 92

invlogit, 70, 93, 102

LD50, 94, 98, 99, 106, 129, 141

LD5@_MHmcmc, 95, 96, 99, 106, 129, 141

LD50_MHmcmc_p, 95, 98, 99, 106, 129, 141

list.packages, 100

local.search, 101

logit, 70, 93, 102

loglik.compareAIC, 103

loglLik.cutter, 30, 38, 39,41, 48, 104, 123,
142, 147,151, 156, 163

loglik.LD5@0, 95, 98, 99, 105, 129, 141

maps: :map.scale(), 121

merge .mcmcComposite, 8, 10, 13, 106, 110,
131,136,170, 175

MHalgoGen, 8, 10, 13, 107, 108, 131, 136, 170,
175

minmax.periodic, 90, 112, 117, 176, 181

modeled.hist, 114

modifyVector, 115

moon. info, 90, 113,116, 176, 181

MovingWindow, 117

NagelkerkeScaledR2, 118
newcompassRose, 119
newmap.scale, 120

openwd, 121

pggamma (dggamma), 40
plot.cutter, 30, 38, 39, 41, 48, 104, 122,
142, 147, 151, 156, 163

190

plot.IconoCorel, 84, 85,87, 126
plot.LD50, 95, 98, 99, 106, 128, 141
plot.mcmcComposite, 8, 10, 13, 107, 110,

130, 136, 170, 175
plot.PriorsmcmcComposite, 8, 10, 13, 107.

110,131,136, 170, 175
plot_add, 15, 137, 139, 165, 172
plot_errbar, 15, 138, 138, 165, 172
predict.LD50, 95, 98, 99, 106, 129, 140
print.cutter, 30, 38, 39,41, 48, 104, 123,

141, 147, 151, 156, 163
pSnbinom (dSnbinom), 45

gggamma (dggamma), 40
gSnbinom (dSnbinom), 45
gvlmer, 145

r2norm, 30, 38, 39, 41, 48, 104, 123, 142, 147,
151, 156, 163

RandomFromHessianOrMCMC, 148

rcutter, 30, 38, 39,41, 48, 104, 123, 142,
147,150, 156, 163

read_folder, 152

RectangleRegression, 154

rggamma (dggamma), 40

RM_add, 156, 158, 160-162

RM_delete, 157, 158, 160162

RM_duplicate, 157, 158, 159, 161, 162

RM_get, 157, 158, 160, 160, 162

RM_list, 157, 158, 160, 161, 161

rmnorm, 30, 38, 39, 41,48, 104, 123, 142, 147,
151,155,163

rnbinom_new, 30, 38, 39, 41, 48, 104, 123,
142, 147,151, 156, 163

rSnbinom (dSnbinom), 45

ScalePreviousPlot, 15, 138, 139, 164, 172

SEfromHessian, 165

series.compare, 19, 25, 167

setPriors, 8, 10, 13, 107, 110, 131, 136, 169,
175

show_name, 15, 138, 139, 165, 171

similar, 172

sp: :compassRose(), 120

specify_decimal, 173

summary .mcmcComposite, 8, 10, 13, 107, 110,
131,136, 170, 174

sun.info, 90, 113,117,176, 181

symbol.Female, 177, 179

symbol.Male, 177,178
symmetricize, 179

tide.info, 90, 113,117,176, 181
tnirp, 14, 19, 37, 183

universalmclapply, 184

wget, 187

INDEX

	HelpersMG-package
	addS3Class
	as.mcmc.mcmcComposite
	as.parameters
	as.quantiles
	asc
	barplot_errbar
	cArrows
	ChangeCoordinate
	char
	compare
	compare_AIC
	compare_AICc
	compare_BIC
	contingencyTable.compare
	convert.tz
	cutter
	d
	dbeta_new
	dcutter
	dggamma
	DIx
	dnbinom_new
	dSnbinom
	duplicated_packages
	ellipse
	ExtractAIC.glm
	fitdistrquantiles
	flexit
	FormatCompareAIC
	format_ncdf
	from_min_max
	iCutter
	IC_clean_data
	IC_correlation_simplify
	IC_threshold_matrix
	index.periodic
	ind_long_lat
	inside
	invlogit
	LD50
	LD50_MHmcmc
	LD50_MHmcmc_p
	list.packages
	local.search
	logit
	logLik.compareAIC
	logLik.cutter
	logLik.LD50
	merge.mcmcComposite
	MHalgoGen
	minmax.periodic
	modeled.hist
	modifyVector
	moon.info
	MovingWindow
	NagelkerkeScaledR2
	newcompassRose
	newmap.scale
	openwd
	plot.cutter
	plot.IconoCorel
	plot.LD50
	plot.mcmcComposite
	plot.PriorsmcmcComposite
	plot_add
	plot_errbar
	predict.LD50
	print.cutter
	qvlmer
	r2norm
	RandomFromHessianOrMCMC
	rcutter
	read_folder
	RectangleRegression
	rmnorm
	RM_add
	RM_delete
	RM_duplicate
	RM_get
	RM_list
	rnbinom_new
	ScalePreviousPlot
	SEfromHessian
	series.compare
	setPriors
	show_name
	similar
	specify_decimal
	summary.mcmcComposite
	sun.info
	symbol.Female
	symbol.Male
	symmetricize
	tide.info
	tnirp
	universalmclapply
	wget
	Index

