Package ‘JuliaConnectoR’

January 8, 2026

Type Package

Title A Functionally Oriented Interface for Integrating 'Julia' with R
Version 1.1.5

Maintainer Stefan Lenz <stefan-m-lenz@web.de>

Description Allows to import functions and whole packages from 'Julia' in R.
Imported 'Julia' functions can directly be called as R functions.
Data structures can be translated between 'Julia' and R.
More details can also be found in the corresponding article
<doi:10.18637/jss.v101.106>.

License MIT + file LICENCE

SystemRequirements Julia >= 1.0

Encoding UTF-8

RoxygenNote 7.3.3

Suggests testthat (>= 2.1.0), future, parallel, parallelly
NeedsCompilation no

Author Stefan Lenz [aut, cre] (ORCID: <https://orcid.org/0000-0001-9135-1743>),
Harald Binder [aut, ths] (ORCID:
<https://orcid.org/0000-0002-5666-8662>),
Angelo D'Ambrosio [ctb] (ORCID:
<https://orcid.org/0000-0002-2045-5155>),
June Choe [ctb] (ORCID: <https://orcid.org/0000-0002-0701-921X>)

Repository CRAN
Date/Publication 2026-01-08 15:00:09 UTC

Contents

JuliaConnectoR-package
AccessMutate JuliaProxy oL o
as.data.frameJuliaProxy Lo
EnvVars-JuliaConnectoR o o
Julia-Setup

https://doi.org/10.18637/jss.v101.i06
https://orcid.org/0000-0001-9135-1743
https://orcid.org/0000-0002-5666-8662
https://orcid.org/0000-0002-2045-5155
https://orcid.org/0000-0002-0701-921X

2 JuliaConnectoR-package

juliaCall . . . o o oL 10
juliaBval o e e e 11
JUAEXPr . . . e e e 12
juliaFuno e 12
juliaGet L e e 13
julialmport L e e 14
juliallet . . . o oL 16
juliaPut . . oL e 17
juliaSetupOk oo 18
startJuliaServer oL 18
stopJulia L 20
Index 21

JuliaConnectoR-package
A Functionally Oriented Interface for Integrating Julia with R

Description

This package provides a functionally oriented interface between R and Julia. The goal is to call
functions from Julia packages directly as R functions.

Details

This R-package provides a functionally oriented interface between R and Julia. The goal is to call
functions from Julia packages directly as R functions. Julia functions imported via the JuliaCon-
nectoR can accept and return R variables. It is also possible to pass R functions as arguments in
place of Julia functions, which allows callbacks from Julia to R.

From a technical perspective, R data structures are serialized with an optimized custom streaming
format, sent to a (local) Julia TCP server, and translated to Julia data structures by Julia. The results
are returned back to R. Simple objects, which correspond to vectors in R, are directly translated.
Complex Julia structures are by default transferred to R by reference via proxy objects. This enables
an effective and intuitive handling of the Julia objects via R. It is also possible to fully translate Julia
objects to R objects. These translated objects are annotated with information about the original Julia
objects, such that they can be translated back to Julia. This makes it also possible to serialize them
as R objects.

Setup

The package requires that Julia (Version > 1.0) is installed separately from the package. The Julia
installation is discovered via the system search PATH or the JULIA_BINDIR environment variable,
which can be set to the bin directory of the Julia installation. If Julia is installed via the Julia
installation manager juliaup, it should be discovered without requiring more configuration. For
more details about the setup, see Julia-Setup.

https://julialang.org/downloads/

JuliaConnectoR-package 3

Function overview

The function juliaImport makes functions and data types from Julia packages or modules avail-
able as R functions.

If only a single Julia function needs to be imported in R, juliaFun can do this. The simplest way
to call a Julia function without any importing is to use juliaCall with the function name given as
character string.

For evaluating expressions in Julia, juliaEval and julialet can be used. With julialLet one can
use R variables in a expression.

juliaExpr makes it possible use complex Julia syntax in R via R strings that contain Julia expres-
sions.

With juliaGet, a full translation of a Julia proxy object into an R object is performed.

as.data. frame is overloaded (as.data.frame. JuliaProxy) for translating Julia objects that im-
plement the Tables interface to R data frames.
Translation

Since Julia is more type-sensitive than R, and many Julia functions expect to be called using specific
types, it is important to know the translations of the R data structures to Julia.

Translation from R to Julia: The type correspondences of the basic R data types in Julia are
the following:

R Julia

integer — Int

double — Float64

logical — Bool

character — String

complex — Complex{Float64}
raw — UInt8

symbol — Symbol

R vectors of length 1 of the types in the table above will be translated to the types shown.

R vectors or arrays with more than one element will be translated to Julia Arrays of the corre-
sponding types. The dimensions of an R array, as returned by dim(), will also be respected. For
example, the R integer vector c(1L, 2L) will be of type Vector{Int}, or Array{Int,1}, inJulia.
A double matrix such as matrix(c(1,2,3,4), nrow = 2) will be of type Array{Float64,2}.
Missing values (NA) in R are translated to missing values in Julia. R vectors and arrays with
missing values are converted to Julia arrays of type Array{Union{Missing, T}}, where T stands
for the translated type in the table above.

R lists are translated as Vector{T} in Julia, with T being the most specific supertype of the list
elements after translation to Julia.

An R function that is handed to Julia as argument in a function call is translated to a Julia callback
function that will call the given R function.

Strings with attribute "JLEXPR" will be evaluated as Julia expressions, and the value is used in
their place (see juliaExpr).

https://github.com/JuliaData/Tables.jl

4 JuliaConnectoR-package

R data frames are translated to objects that implement the Julia Tables interface. Such objects
can be used by functions of many different Julia packages that deal with table-like data structures.

Translation from Julia to R: The type system of Julia is richer than that of R. Therefore, to be
able to turn the Julia data structures that have been translated to R back to the original Julia data
structures, the original Julia types are added to the translated Julia objects in R via the attribute
"JLTYPE". When passed to Julia, R variables with this attribute will be coerced to the respective
type. This allows the reconstruction of the objects with their original type.

It should not be necessary to worry too much about the translations from Julia to R because the
resulting R objects should be intuitive to handle.

The following table shows how basic R-compatible types of Julia are translated to R:

Julia R

Float64 — double

Float16, Float32, UInt32 — double with type attribute
Int64 that fits in 32 bits — integer

Int64 not fitting in 32 bits — double with type attribute
Int8, Int16,UInt16, Int32, Char — integer with type attribute
UInt8 — raw

UInt64, Int128, UInt128, Ptr — raw with type attribute
Complex{Float64} — complex

Complex{IntX} with X < 64 — complex with type attribute
Complex{FloatX} with X <32 — complex with type attribute

Julia Arrays of these types are translated to vectors or arrays of the corresponding types in R.

Julia functions are translated to R functions that call the Julia function. These functions can also
be translated back to the corresponding Julia functions when used as argument of another function
(see juliaFun).

Julia object of other types, in particular structs, Tuples, NamedTuples, and AbstractArrays of
other types are transferred by reference in the form of proxy objects. Elements and properties
of these proxy objects can be accessed and mutated via the operators “[[~, “[~, and ~$~ (see
AccessMutate.JuliaProxy).

A full translation of the proxy objects into R objects, which also allows saving these objects in R,
is possible via juliaGet.

Limitations

Possible inexactness when dealing with large 64 bit integers: Numbers of type Int64 that are
too big to be expressed as 32-bit integer values in R will be translated to double numbers. This
may lead to a inaccurate results for very large numbers, when they are translated back to Julia,
since, e. g., (2%53 + 1) - 2*53 == 0 holds for double-precision floating point numbers.

Non-ASCII characters in variable names: Julia uses UTF-8 as default string encoding ev-
erywhere. In particular, Julia permits characters that are not expressible in encodings such as
"Latin-1" in variable and function names. In R, the encoding of names in lists of environments
depends on the platform. On locales without UTF-8 as native encoding, (i.e., mostly Windows),
unexpected translations may happen when using UTF-8 characters in strings.

https://github.com/JuliaData/Tables.jl

AccessMutate.JuliaProxy 5

When using juliaImport for importing packages/modules, alternative names for variables using
non-ASCII characters are added, which are compatible across different encodings. (For more
information, see juliaImport.)

In other places, such as when evaluating code via juliaEval and julialet, the problem can-
not be addressed. It should therefore be avoided to use non-ASCII characters if code should be
portable across different platforms.

Author(s)

Maintainer: Stefan Lenz <stefan-m-lenz@web.de> (ORCID)
Authors:

e Harald Binder (ORCID) [thesis advisor]
Other contributors:

* Angelo D’ Ambrosio (ORCID) [contributor]
¢ June Choe (ORCID) [contributor]

AccessMutate.JuliaProxy
Access or mutate Julia objects via proxy objects

Description
Apply the R operators $ and $<-, [and [<-, [[and [[<- to access or modify parts of Julia objects
via their proxy objects. For an intuitive understanding, best see the examples below.

Usage

S3 method for class 'JuliaStructProxy'
x$name

S3 replacement method for class 'JuliaStructProxy'
x$name <- value

S3 method for class 'JuliaProxy'
x[...]

S3 replacement method for class 'JuliaProxy'
x[i, j, kI <- value

S3 method for class 'JuliaSimpleArrayProxy'
x[...]

S3 method for class 'JuliaArrayProxy'
x[[...1]

https://orcid.org/0000-0001-9135-1743
https://orcid.org/0000-0002-5666-8662
https://orcid.org/0000-0002-2045-5155
https://orcid.org/0000-0002-0701-921X

6 AccessMutate.JuliaProxy

S3 replacement method for class 'JuliaArrayProxy'
x[[i, j, k11 <- value

S3 method for class 'JuliaStructProxy'
x[[name]]

S3 replacement method for class 'JuliaStructProxy'
x[[name]] <- value

S3 method for class 'JuliaArrayProxy'
length(x)

S3 method for class 'JuliaArrayProxy'

dim(x)
Arguments
X a Julia proxy object
name the field of a struct type, the name of a member in a NamedTuple, or a key in a
Julia dictionary (type AbstractDict)
value a suitable replacement value. When replacing a range of elements in an array
type, it is possible to replace multiple elements with single elements. In all
other cases, the length of the replacement must match the number of elements
to replace.
i, 3.k, ... index(es) for specifying the elements to extract or replace
Details

The operators $ and [[allow to access properties of Julia structs and NamedTuples via their proxy
objects. For dictionaries (Julia type AbstractDict), $ and [[can also be used to look up string
keys. Fields of mutable structs and dictionary elements with string keys can be set via $<- and

[L<-.

For AbstractArrays, the [, [<-, [[, and [[<- operators relay to the getindex and setindex!
Julia functions. The [[and [[<- operators are used to access or mutate a single element. With [
and [<-, a range of objects is accessed or mutated. The elements of Tuples can also be accessed
via [and [[.

The dimensions of proxy objects for Julia AbstractArrays and Tuples can be queried via length
and dim.

Examples

Not run: #'

(Mutable) struct
juliaEval("mutable struct MyStruct
x::Int

end")

as.data.frame.JuliaProxy 7

MyStruct <- juliaFun("MyStruct")
s <- MyStruct(1L)

s$x

s$x <- 2

s[["x"1]

Array

x <- juliaCall("map", MyStruct, c(1L, 2L, 3L))
X

length(x)

x[[1]1]

x[[111$x

x[[1]] <- MyStruct(2L)

x[2:3]

x[2:3] <- MyStruct(2L)

X

Tuple

x <- juliaEval("(1, 2, 3)")
x[[1]]

x[1:2]

length(x)

NamedTuple
x <- juliaEval("(a=1, b=2)")
x$a

Dictionary

strDict <- juliaEval('Dict("hi” => 1, "hello” => 2)')
strDict

strDict$hi

strDict$hi <- @

strDict[["hi"]] <- 2

strDict["howdy"”, "greetings"] <- c(2, 3)
strDict["hi”, "howdy"]

End(Not run)

as.data.frame.JuliaProxy
Coerce a Julia Table to a Data Frame

Description

Get the data from a Julia proxy object that implements the Julia Tables interface, and create an R
data frame from it.

https://github.com/JuliaData/Tables.jl

8 as.data.frame.JuliaProxy

Usage
S3 method for class 'JuliaProxy'
as.data.frame(x, ...)
Arguments
X a proxy object pointing to a Julia object that implements the interface of the

package Julia package Tables

(not used)

Details

Strings are not converted to factors.

Examples

if (Sys.getenv(”NOT_CRAN") == "true" && juliaSetupOk()) {
(This example is not run on CRAN as it takes a little too long.)

Demonstrate the usage with the Julia package "IndexedTables” (v1.0)

Install the package first if it is not installed:
juliaEval('import Pkg; Pkg.add("IndexedTables"”)')

Import "IndexedTables"” package
IndexedTables <- juliaImport("IndexedTables")

mydf <- data.frame(x = c(1, 2, 3),

y c(llall’ llbll’ ”C"),

z = c(TRUE, FALSE, NA),
stringsAsFactors = FALSE)

Create a table in Julia, e. g. via IndexedTables
mytbl <- IndexedTables$table(mydf)

This table can, e g. be queried and
the result can be translated to an R data frame.
seltbl <- IndexedTables$select(mytbl, juliaExpr("(:x, :y)"))[1:2]

Translate selection of Julia table into R data frame
as.data.frame(seltbl)

EnvVars-JuliaConnectoR 9

EnvVars-JuliaConnectoR
Environment variables used by the JuliaConnectoR

Description

There are some environment variables which can be used to deviate from the default behavior of
the package. To have an effect, these environment variables must be set before a Julia connection is
established, i.e., before the first call to Julia or before a call to startJuliaServer. All the variables
are optional.

Details

The environment variables that are used in the package are listed below:

JULIA_BINDIR: If this variable is set to the path of the Julia bin directory before connecting to
Julia, the corresponding Julia installation will be used. By using this variable, it is possible to
use a different Julia version than the one in the system PATH. (You can find the correct path to
the bin directory of Julia by evaluating the expression Sys.BINDIR within Julia.)

JULIACONNECTOR_JULIAENV: Specify environment variables only for Julia. (This does not work on
Windows and the variable is ignored there.) This allows, e.g., to set the LD_LIBRARY_PATH
variable to a different value for Julia than for R. The value can be any R code that defines vari-
ables, e.g., "LD_LIBRARY_PATH="""is a valid value. On Linux, Julia is started with an empty
LD_LIBRARY_PATH by default as the LD_LIBRARY_PATH required by R may be incompatible
with Julia. If the LD_LIBRARY_PATH needs to be set to a different value, this can be done via
the JULIACONNECTOR_JULIAENYV variable.

JULIACONNECTOR_JULIAOPTS: Set start-up options for Julia. As an example, consider specifying
the project environment and enabling code coverage when starting Julia. This can be achieved
by setting the environment variable to "--project=/path/to/project --code-coverage".

JULIACONNECTOR_SERVER: Specifies the server address of a (running) Julia server that the R pro-
cess can connect to. A possible example value is "localhost:11980", specifying host and
port. The function startJuliaServer sets this variable and communicates the location of
the server to child processes with it. Due to security concerns, the Julia server accepts only

connections from the same machine and connecting to remote machines is currently not pos-
sible.

Julia-Setup Julia setup

Description

Julia must be installed separately in order for the JuliaConnectoR package to work. You can
download and install Julia from https://julialang.org/downloads/.

https://julialang.org/downloads/

10 JjuliaCall

Details

Setup via the Juliaup installation manager: If you have installed Julia via Juliaup, the Julia
installation should be discovered by the JuliaConnectoR.

Juliaup on Windows: If you have freshly installed Juliaup, start Julia once on the command line.
This will do the actual installation of the current Julia version. Juliaup puts the Julia executable
on the system PATH. This way, the Julia installation can be detected by the JuliaConnectoR.

Juliaup on Mac: After the installation of Juliaup, Julia might not be on the system PATH but
it should be discovered automatically if it is installed in the default location, i.e., the . juliaup
folder in your home directory.

Setup via Julia binaries: If you have installed Julia via a binary package or any other method, the
simplest way to make Julia discoverable is by adding the directory containing the Julia executable
to the PATH environment variable.

Alternatively, you can set the JULIA_BINDIR environment variable to specify the exact directory
containing the Julia binary. (You can find the correct path to this directory by evaluating the
expression Sys.BINDIR within Julia.)

If the JULIA_BINDIR variable is set, it takes precedence over looking up the system PATH. This
makes it easy to use a different Julia version than the one in your system PATH.

juliaCall Call a Julia function by name

Description

Call a Julia function via specifying the name as string and get the translated result. It is also possible
to use a dot at the end of the function name for applying the function in a vectorized manner via
"broadcasting" in Julia.

Usage
juliaCall(...)

Arguments
the name of the Julia function as first argument, followed by the parameters
handed to the function. All arguments to the Julia function are translated to
Julia data structures.

Value

The value returned from Julia, translated to an R data structure. If Julia returns nothing, an invisible
NULL is returned.

juliaEval 11

Examples

if (juliaSetupOk()) {

juliaCall("/", 4, 2)
juliaCall("Base.div”, 4, 2)
juliaCall("sin.", c(1,2,3))
juliaCall("Base.cos."”, c(1,2,3))

juliaEval Evaluate a Julia expression

Description

This function evaluates Julia code, given as a string, in Julia, and translates the result back to R.

Usage
juliaEval(expr)

Arguments

expr Julia code, given as a one-element character vector

Details

If the code needs to use R variables, consider using julialet instead.

Value

The value returned from Julia, translated to an R data structure. If Julia returns nothing, an invisible
NULL is returned. This is also the case if the last non-whitespace character of expr is a semicolon.

Examples

if (juliaSetupOk()) {
juliaEval(”1 + 2")
juliaEval('using Random; Random.seed!(5);"')

Not run:
juliaEval('using Pkg; Pkg.add("BoltzmannMachines”)")

End(Not run)
3

12 juliaFun

juliaExpr Mark a string as Julia expression

Description

A given R character vector is marked as a Julia expression. It will be executed and evaluated when
passed to Julia. This allows to pass a Julia object that is defined by complex Julia syntax as an
argument without needing the round-trip to R via juliaEval or julialet.

Usage
juliaExpr(expr)

Arguments

expr a character vector which should contain one string

Examples

if (juliaSetupOk()) {

Create complicated objects like version strings in Julia, and compare them
vl <- juliaExpr('v"1.0.1"")

v2 <- juliaExpr('v"1.2.0"")

juliaCall(”"<", v1, v2)

juliaFun Wrap a Julia function in an R function

Description

Creates an R function that will call the Julia function with the given name when it is called. Like
any R function, the returned function can also be passed as a function argument to Julia functions.

Usage
juliaFun(name, ...)
Arguments
name the name of the Julia function

optional arguments for currying: The resulting function will be called using
these arguments.

JjuliaGet

Examples

if

(juliaSetupOk()) {

Wrap a Julia function and use it

juliaSqrt <- juliaFun("sqrt")

juliaSqrt(2)

In the following call, the sqrt function is called without
a callback to R because the linked function object is used.
juliaCall("map”, juliaSqrt, c(1,4,9))

may also be used with arguments

plusl <- juliaFun("+", 1)

plus1(2)

Results in an R callback (calling Julia again)

because there is no linked function object in Julia.
juliaCall("map", plusl, c(1,2,3))

13

juliaGet Translate a Julia proxy object to an R object

Description

R objects of class JuliaProxy are references to Julia objects in the Julia session. These R objects
are also called "proxy objects". With this function it is possible to translate these objects into R
objects.

Usage

juliaGet(x)

Arguments

X

Details

a reference to a Julia object

If the corresponding Julia objects do not contain external references, translated objects can also
saved in R and safely be restored in Julia.

Modifying objects is possible and changes in R will be translated back to Julia.

The following table shows the translation of Julia objects into R objects.

Julia R

struct — list with the named struct elements

14 Jjulialmport

Array of struct type — list (of lists)

Tuple — list

NamedTuple — list with the named elements
AbstractDict — list with two sub-lists: "keys" and "values"
AbstractSet — list

Note

Objects containing circular references cannot be translated back to Julia.

It is safe to translate objects that contain external references from Julia to R. The pointers will be
copied as values and the finalization of the translated Julia objects is prevented. The original objects
are garbage collected after all direct or indirect copies are garbage collected. Note, however, that
these translated objects cannot be translated back to Julia after the Julia process has been stopped
and restarted.

juliaImport Load and import a Julia package via import statement

Description
The specified package/module is loaded via import in Julia. Its functions and type constructors are
wrapped into R functions. The return value is an environment containing all these R functions.
Usage

juliaImport(modulePath, all = TRUE)

Arguments
modulePath a module path or a module object. A module path may simply be the name
of a package but it may also be a relative module path. Specifying a relative
Julia module path like .MyModule allows importing a module that does not
correspond to a package, but has been loaded in the Main module, e. g. by
juliaCall("include"”, "path/to/MyModule. j1"). Additionally, via a path
such as SomePkg. SubModule, a submodule of a package can be imported.
all logical value, default TRUE. Specifies whether all functions and types shall be
imported or only those exported explicitly.
Value

an environment containing all functions and type constructors from the specified module as R func-
tions

Jjulialmport 15

Note

If a package or module contains functions or types with names that contain non-ASCII characters,
(additional) alternatives names are provided if there are LaTeX-like names for the characters avail-
able in Julia. In the alternative names of the variables, the LaTeX-like names of the characters
surrounded by <. ..> replace the original characters. (See example below.) For writing platform
independent code, it is recommended to use those alternative names. (See also JuliaConnectoR-
package under "Limitations".)

Examples

if (juliaSetupOk()) {

Importing a package and using one of its exported functions
UUIDs <- juliaImport("UUIDs")
juliaCall(”string”, UUIDs$uuid4())

Importing a module without a package

testModule <- system.file("examples”, "TestModulel.jl",
package = "JuliaConnectoR")

take a look at the file

writeLines(readLines(testModule))

load in Julia

juliaCall("include”, testModule)

import in R via relative module path

TestModulel <- julialImport(”.TestModulel")

TestModulel$test1()

Importing a local module is also possible in one line,

by directly using the module object returned by "include”.
TestModulel <- juliaImport(juliaCall("include"”, testModule))
TestModulel$test1()

Importing a submodule

testModule <- system.file("”examples”, "TestModulel.jl",
package = "JuliaConnectoR")

juliaCall("include"”, testModule)

load sub-module via module path

SubModulel <- juliaImport(”.TestModulel.SubModulel")

call function of submodule

SubModulel$test2()

Functions using non-ASCII characters
greekModule <- system.file("examples”, "GreekModule.jl",
package = "JuliaConnectoR")
suppressWarnings({ # importing gives a warning on non-UTF-8 locales
GreekModule <- julialImport(juliaCall("include"”, greekModule))
1))
take a look at the file
cat(readLines(greekModule, encoding = "UTF-8"), sep = "\n")

16 juliaLet

use alternative names
GreekModule$~<sigma>" (1)
GreekModule$™ log<sigma>" (1)

julialet Evaluate Julia code in a 1let block using values of R variables

Description

R variables can be passed as named arguments, which are inserted for those variables in the Julia
expression that have the same name as the named arguments. The given Julia code is executed in
Julia inside a 1et block and the result is translated back to R.

Usage
julialLet(expr, ...)
Arguments
expr Julia code, given as one-element character vector
arguments that will be introduced as variables in the let block. The values are
transferred to Julia and assigned to the variables introduced in the let block.
Details

A simple, nonsensical example for explaining the principle:
julialet('println(x)', x=1)

This is the same as

juliaEval('let x=1.0; println(x) end')

More complex objects cannot be simply represented in a string like in this simple example any
more. That is the problem that julialet solves.

Note that the evaluation is done in a let block. Therefore, changes to global variables in the Julia
session are only possible by using the keyword global in front of the Julia variables (see examples).

Value

The value returned from Julia, translated to an R data structure. If Julia returns nothing, an invisible
NULL is returned.

juliaPut 17

Examples

if (juliaSetupOk()) {

Intended use: Create a complex Julia object
using Julia syntax and data from the R workspace
juliaLlet('[1 => x, 17 => y]1', x = rnorm(1), y = rnorm(2))

Assign a global variable

(although not recommended for a functional style)
julialet(”"global x = xval”, xval = rnorm(10))
juliaEval("x")

juliaPut Create a Julia proxy object from an R object

Description

This function can be used to copy R vectors and matrices to Julia and keep them there. The returned
proxy object can be used in place of the original vector or matrix. This is useful to prevent that large
R vectors / matrices are repeatedly translated when using an object in multiple calls to Julia.

Usage

juliaPut(x)

Arguments

X an R object (can also be a translated Julia object)

Examples

if (juliaSetupOk()) {

Transfer a large vector to Julia and use it in multiple calls
x <= juliaPut(rnorm(100))

x is just a reference to a Julia vector now

juliaEval("using Statistics"”)

juliaCall("mean”, x)

juliaCall("var”, x)

18 startJuliaServer

juliaSetupOk Check Julia setup

Description

Checks that Julia can be started and that the Julia version is at least 1.0. For more information about
the setup and discovery of Julia, see JuliaConnectoR-package, section "Setup".

Usage
juliaSetupOk()

Value

TRUE if the Julia setup is OK; otherwise FALSE

startJuliaServer Start a Julia server that may serve multiple clients (R processes)

Description

Starting a Julia server allows that different R processes may connect to the the same Julia server
and share a single session. This can be useful for saving start-up/precompilation time when starting
additional processes or when sharing global variables between processes. A usage scenario for this
is a web server where reloading Julia for each new session should be avoided. For the standard
way of starting Julia, this function is not needed. It is also not needed if child processes should use
separate Julia sessions.

Usage
startJuliaServer(port = 11980)

Arguments
port a hint for the port that is used by the server. If it is not available, a different port
is used. The final port is returned (invisibly).
Details

The functions communicates the server address via setting the JULIACONNECTOR_SERVER environ-
ment variable. A possible value for the variable is "localhost:11980". The JULIACONNECTOR_SERVER
variable is communicated automatically via the system environment to child processes that are
started after this function has been called. The child processes will then connect to the same Julia
server if the variable is set. The variable can also be set explicitly in child processes before con-
necting to Julia to connect to a running server. Unsetting the variable will result in a normal Julia
start-up in the first call to Julia, using a single-client Julia session.

startJuliaServer 19

For security reasons, the Julia server accepts only connections from localhost.

For using Julia with multiple clients, it can be good to advise Julia to use multiple threads via setting
the JULIA_NUM_THREADS environment variable before starting Julia.

Value

the port number (invisibly)

Note

The standard (error) output from Julia (printing and warnings) can currently only be forwarded to
one client. This is currently the last client that has connected but this may be subject to change.

See Also
JULIACONNECTOR_SERVER

Examples

if (juliaSetupOk() && Sys.getenv("NOT_CRAN") == "true") {
library(JuliaConnectoR)
library(future)

1) Start a shared Julia TCP server in the main R session, which may use all CPU threads
Sys.setenv("JULIA_NUM_THREADS" = parallel::detectCores())

stopJulia() # stop current Julia connection before starting server
startJuliaServer()

2) Create R workers
cl <- parallelly::makeClusterPSOCK(workers = 2)

3) Warm-up R workers, load Julia and execute first Julia function
(In practice, you could, e.g., trigger Julia pre-compilation here.)
parallel::clusterEvalQ(cl, {

library(JuliaConnectoR)

JuliaConnectoR::juliaEval("1") # open Julia TCP connection on each worker

b))

4) Re-Use those warmed workers for use via futures
plan(cluster, workers = cl)

5) Create a global variable for demonstration purposes (and stay thread safe)
juliaEval("”global const counter = Threads.Atomic{Int}(@)")

incrementCounter <- function() {
JuliaConnectoR: :juliaEval("Threads.atomic_add! (counter, 1)")

}

6) Execute futures via worker-pool
f1 <- future({incrementCounter()})
f2 <- future({incrementCounter()})
value(f1)

20 stopJulia

value(f2)
Reading the value should demonstrate that the
global variable is shared across workers.

juliaEval("counter[]1")

7) Cleanup

plan(sequential)
parallel::stopCluster(cl)
stopJulia()
3
stopJulia Stop the connection to Julia
Description

This ends the connection to Julia. Julia terminates if no R process is connected any more.

Usage

stopJulia()

Index

[.JuliaProxy (AccessMutate.JuliaProxy),

5
[.JuliaSimpleArrayProxy
(AccessMutate.JuliaProxy), 5
[<-.JuliaProxy
(AccessMutate. JuliaProxy), 5
[[.JuliaArrayProxy
(AccessMutate.JuliaProxy), 5
[[.JuliaStructProxy
(AccessMutate.JuliaProxy), 5
[[<-.JuliaArrayProxy
(AccessMutate.JuliaProxy), 5
[[<-.JuliaStructProxy
(AccessMutate.JuliaProxy), 5
$.JuliaStructProxy
(AccessMutate.JuliaProxy), 5
$<-.JuliaStructProxy
(AccessMutate.JuliaProxy), 5

AccessMutate.JuliaProxy, 4, 5
as.data.frame.JuliaProxy, 3,7

dim.JuliaArrayProxy
(AccessMutate.JuliaProxy), 5

EnvVars-JuliaConnectoR, 9

Julia-Setup, 9

JULIA_BINDIR (EnvVars-JuliaConnectoR), 9

juliaCall, 3, 10
JuliaConnectoR
(JuliaConnectoR-package), 2
JuliaConnectoR-package, 2, 15, 18
JULTIACONNECTOR_JULIAENV
(EnvVars-JuliaConnectoR), 9
JULTIACONNECTOR_SERVER, 19
JULTACONNECTOR_SERVER
(EnvVars-JuliaConnectoR), 9
juliaEval, 3,5, 11, 12
juliaExpr, 3, 12

21

juliaFun, 3, 4, 12
juliaGet, 3, 4, 13
julialImport, 3, 5, 14
julialet, 3,5, 12, 16
juliaPut, 17
juliaSetupOk, 18

length.JuliaArrayProxy
(AccessMutate.JuliaProxy), 5

startJuliaServer, 9, 18
stopJulia, 20

	JuliaConnectoR-package
	AccessMutate.JuliaProxy
	as.data.frame.JuliaProxy
	EnvVars-JuliaConnectoR
	Julia-Setup
	juliaCall
	juliaEval
	juliaExpr
	juliaFun
	juliaGet
	juliaImport
	juliaLet
	juliaPut
	juliaSetupOk
	startJuliaServer
	stopJulia
	Index

